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Abstract

The effectiveness of Large Language Models
(LLMs) in solving tasks depends significantly
on the quality of their instructions, which of-
ten require substantial human effort to craft.
This underscores the need for automated in-
struction optimization. However, optimizing
instructions is particularly challenging when
working with black-box LLMs, where model
parameters and gradients are inaccessible. We
introduce ACING, an actor-critic reinforcement
learning framework that formulates instruction
optimization as a stateless, continuous-action
problem, enabling exploration of infinite in-
struction spaces using only black-box feedback.
ACING automatically discovers prompts that
outperform human-written prompts in 76% of
instruction-induction tasks, with gains of up to
33 points and a 10-point median improvement
over the best automatic baseline in 33 tasks
spanning instruction-induction, summarization,
and chain-of-thought reasoning. Extensive ab-
lations highlight its robustness and efficiency.
An implementation of ACING is available at
https://github.com/salmakh1/ACING.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities across tasks like clas-
sification, summarization, and reasoning (Cobbe
etal., 2021; Touvron et al., 2023; Zhao et al., 2024).
A key driver of this success is their ability to follow
natural language instructions, commonly known as
prompts (Chen et al., 2023a; Wei et al., 2022; Liu
etal., 2023). Yet crafting effective prompts remains
labor-intensive and brittle, particularly in black-box
settings where model internals are inaccessible.

A core challenge in prompt engineering lies in
the extreme sensitivity of LLMs to subtle linguistic
variations. Even minor changes in phrasing can
lead to substantial performance shifts. As shown in
Table 1, a minor wording change yields a 12-point
gain (using GPT-40 (Hurst et al., 2024)) despite

preserving semantics. Such prompt sensitivity is
pervasive, underscoring the need for robust, auto-
mated prompt optimization methods.

Recent work has explored automating prompt
design to reduce human effort (Reynolds and Mc-
Donell, 2021; Mishra et al., 2021). Soft prompt-
ing techniques (Li and Liang, 2021; Lester et al.,
2021) and heuristic-based discrete search methods
(Zhou et al., 2023; Pryzant et al., 2023) have shown
promise, yet each faces key limitations in black-
box settings. Soft prompts require access to the
model internals, limiting them to white-box scenar-
ios. Discrete search methods, in turn, often struggle
to explore vast and nuanced instruction spaces ef-
ficiently. More recent hybrid methods combine
white-box prompt generation with black-box eval-
uation (Chen et al., 2023b; Lin et al., 2024b), but
typically rely on finite candidate pools or rigid re-
ward assumptions, constraining their applicability.

To overcome these limitations, we introduce AC-
ING, an actor-critic reinforcement learning (RL)
framework for automated instruction optimization
in black-box LLM settings. ACING formulates
prompt optimization as a stateless, continuous-
action RL problem within a continuum bandit en-
vironment. By learning a latent instruction space
through an off-policy actor-critic algorithm, AC-
ING efficiently explores infinite instruction can-
didates, using only black-box feedback for eval-
uation. A frozen white-box model is used as
a decoder to convert latent vectors into discrete
prompts, enabling both scalability and linguistic
richness. The generated instructions are not only
high-performing but also naturally interpretable,
clear, and semantically aligned with the tasks, mak-
ing them suitable for practical deployment. To
effectively guide exploration under tight query bud-
gets, ACING leverages entropy-regularized pol-
icy optimization, encouraging diversity in sampled
prompts and improving the likelihood of discover-
ing high-performing instructions.
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Source  Instruction Score
Human  Write a word that means the opposite of the input word. ~ 0.70
ACING  Take a word and change it to its opposite. 0.82

Table 1: Our prompt vs human on GPT-40 for antonym task.

Notably, to our knowledge, ACING is the first ap-
proach to apply off-policy, continuous-action actor-
critic reinforcement learning to instruction learning
in black-box LLMs, using lightweight actor and
critic neural networks (rather than LLMs), making
the approach both efficient and widely applicable.

We evaluate ACING against state-of-the-art tech-
niques, including Bayesian optimization, contex-
tual bandits, and evolutionary strategies. Empiri-
cal results across 33 diverse tasks—including in-
struction induction, reasoning (including zero-shot
Chain-of-Thought (CoT)), semantics, syntax, pho-
netics, translation, summarization, and code un-
derstanding—show that ACING outperforms both
human-written prompts and strong automated base-
lines. Notably, it surpasses human instructions in
76% of instruction induction tasks, achieving gains
of up to 33 points and a median improvement of 10
points over the best automatic baselines.

In summary, our contributions are threefold:

(1) An RL formulation of instruction learning:
We propose a continuous-action actor-critic RL ap-
proach for instruction optimization in black-box
LLMs, enabling scalable exploration of infinite in-
struction spaces using entropy-regularized policies.

(2) Comprehensive validation. Across 33 di-
verse tasks, including instruction induction, zero-
shot CoT reasoning, and summarization, ACING
consistently outperforms both human-written and
strong automated instructions, achieving statisti-
cally significant gains.

(3) In-depth analysis and insights: Through
extensive ablation studies, we analyze the impact of
latent dimensionality, exemplar configuration, de-
coder architecture, and optimization budget, high-
lighting the robustness of the ACING approach.
Additionally, human evaluation and automated
readability analysis confirm the clarity and seman-
tic faithfulness of the generated instructions.

2 Problem Formulation

2.1 Problem: Prompt Optimization for
Black-Box LL.Ms

We aim to improve the performance of a black-box
LLM, denoted by f, which can only be accessed
through its API, while its internal parameters re-
main unknown. Given a task represented by an (un-

known) distribution (x,y) ~ D—where = denotes
possible inputs and y the corresponding correct out-
puts—our goal is to find the optimal prompt 7* that
maximizes the likelihood of f producing correct
outputs for a given task. This is evaluated using a
scoring function ¢(-, -) € [0, 1].

The black-box model f processes an input
formed by concatenating () the prompt 7 with
the sentence x, producing a predicted output 4 =
f(7 @ x). More formally, the objective is to maxi-
mize the expected score of the LLM in solving the
task represented by the distribution D, defined as:

max B )~ [(y, f(T @ 2))] . M
We utilize a validation dataset V = {(z;, y;)}/;,
where each pair consists of an input sentence z;
and its corresponding ground truth output y;. Our
objective is to find the prompt that maximizes the
scoring function ¢(-, -) across the validation dataset,
where ¢(7;,y;) measures the quality of the pre-
dicted output 7; against the true output y;. Thus,
our objective becomes finding the prompt 7* that
maximizes the average score over the validation
set V. The derived prompt 7* is then evaluated on
a separate test set 7 = {(z7, yé)}?"‘zll to assess its
generalization performance.

2.2 Reformulating Discrete Prompt Search as
a Continuous Optimization Problem

Directly optimizing the prompt 7 for the black-box
LLM model f presents substantial challenges due
to the discrete combinatorial nature of token selec-
tion in 7. To mitigate this challenge, similar to prior
approaches (Chen et al., 2024; Lin et al., 2024b;
Hu et al., 2024) we employ a publicly available,
open-source white-box model, represented by #,
and introduce a soft prompt vector z € R%, which
is a continuous d-dimensional vector representing
the token embedding of a set of virtual tokens. The
white-box model h, which remains entirely frozen,
with no training or gradient updates, serves as a
proxy mapping z into a discrete prompt 7 for the
black-box LLM.

Given a dataset of exemplars, & =
{(uy, Uj)}g‘?:l, where each pair (uj,v;) de-
fines input-output text sequences that exemplify a
downstream task and the vector z, their concatena-
tion is input to the white-box model, generating the
discrete prompt 7(z) = h(z,£). This generated
prompt 7(z) is prepended to a test input z; from
the validation set V), and the combined input is
provided to the black-box LLM f to generate
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Figure 1: Pipeline of ACING. At each iteration, a soft prompt and task exemplars are fed to the white-box model to generate
an instruction. This instruction queries the black-box LLM, whose outputs are scored. The resulting score is returned to the
agent as a reward, which is used to update its networks and adjust its policy. Both LLMs remain frozen throughout.

an output §; = f(7(z) @ x;). The output §;
is then evaluated using the scoring function
q(9;,y;). By using a fixed set of exemplars &, the
original discrete problem (Eq. (1)) of finding the
optimal prompt 7 is effectively transformed into
a continuous optimization problem over the soft
prompt vector z, as follows:

max
zeRD

E(ay)~p [a(y, f(7(2) ® )] . @)

The soft prompt z is typically high-dimensional.
Therefore, we employ random projection tech-
niques to reduce the input dimension as done in
prior works (Chen et al., 2024; Lin et al., 2024b).
Specifically, we sample a matrix P € R%*4" with
entries from Uniform(—1, 1), and optimize a lower-
dimensional vector a € [0, 1] The soft prompt
is then given by z = Pa, transforming the origi-
nal problem into optimization over a compact and
continuous space as follows:

max
’
acRd

E(e,y)~p [q(y, f(T(Pa) ® x))] . (3)

This optimization problem is central to our
framework. The following section elaborates on
our approach to solving it. For clarity, we summa-
rize all symbols used in our actor-critic framework
in Table 6.

3 Framework for Instruction Learning

We formulate the problem of prompt learning for
black-box LLMs as a RL problem, where the agent
explores an infinite instruction space by sampling
continuous actions a € [0, 1]d/. Each action cor-
responds to a latent prompt representation, which
is mapped—via a fixed projection matrix and a

decoder—into a discrete instruction. This instruc-
tion is then evaluated by the black-box LLM on a
validation set to produce a reward indicating task
performance. The stateless, stochastic setup places
the problem in the continuum bandit regime, unlike
traditional discrete multi-armed bandits (Slivkins,
2019; Lattimore and Szepesvéri, 2020).

3.1 Actor-Critic for Instruction Optimization

To efficiently learn in a high-dimensional and
limited-feedback setting, we propose a stateless,
off-policy actor-critic framework inspired by recent
advances in continuous control (Konda and Tsitsik-
lis, 1999; Mnih et al., 2016; Haarnoja et al., 2018,
2019). Our framework comprises lightweight net-
works: (1) a policy network (actor) 7(+; ), which
outputs latent action vectors corresponding to soft
prompts, and (2) two critics to compute a value
function Q(a) = min{Qw, (a), Qw,(a)}, which
estimates the expected reward of a given action.
Formally, the policy 7 (-; ) is modeled as a Gaus-
sian distribution with a diagonal covariance ma-
trix. The actor network outputs the mean and log
standard deviation for each action dimension, and
actions are sampled using the reparameterization
trick. The critics, Qw, (.) and Qw, (.), are trained
to minimize the mean squared error between pre-
dicted and observed rewards:

r@)*, @

EaNE

min Jo(w) £ Eacp | 5 (Qu (a) -

which can be optimized with stochastic gradients

Vwlo(w) = VwQw (ar) (Qw (a:) = (ar)) . (5)

Training alternates between actor and critic up-
dates. Despite the lack of state transitions, this
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Figure 2: Tlustration of the prompt generation and testing inside the environment using the larger_animal dataset as an example.

architecture proves effective: the critic generalizes
reward signals in prompt space, stabilizes updates
by reducing reward variance, and enhances robust-
ness via a twin-critic setup to mitigate overesti-
mation. Empirically, this actor-critic formulation
consistently outperforms no-critic baselines.

3.2 Enhancing Exploration via Entropy
Regularization

In our setting, the agent operates under a fixed eval-
uation budget of T" queries and must discover the
best-performing instruction within this limit. This
corresponds to a pure exploration regime, where
broad coverage of the action space is essential.
While random exploration may seem sufficient,
effective learning often requires balancing explo-
ration with exploitation of prior observations to
guide the search toward high-reward regions.

To encourage systematic exploration while lever-
aging past experience, we adopt the maximum en-
tropy reinforcement learning framework (Ziebart,
2010; Haarnoja et al., 2018). This approach aug-
ments the expected reward with a policy entropy
term, promoting stochasticity in the actor’s deci-
sions. The objective becomes:

mein J=(0) £ Eanr(.0) [alog (7 (a;0)) — Qw ()], (6)

where « is a temperature coefficient that governs
the exploration-exploitation trade-off. A higher a
encourages greater policy entropy, while a lower
value biases the policy toward exploitation.

This formulation simplifies the soft actor-critic
objective (Haarnoja et al., 2018), omitting state-
related components and long-horizon returns, since
our environment is stateless and rewards are im-
mediate. The entropy term, —E,(..9)[log 7(a)],
incentivizes the actor to maintain a diverse action
distribution, thereby avoiding premature conver-
gence to suboptimal prompts.

To avoid manual tuning of o, we follow prior
work (Haarnoja et al., 2019) and adapt it to match
a target entropy Harger, by minimizing:

minJo £ —Equr() [ (logm(a;0) + Harget)] . (7)

@

We use stochastic gradient descent, specifically the
Adam optimizer (Kingma and Ba, 2017; Reddi
et al., 2018), to jointly update the policy, critic, and
entropy temperature.

3.3 Putting it All Together

Fig. 1 illustrates our actor-critic framework and its
interaction with the environment. Fig. 2 zooms in
on an example from the larger_animal dataset.

Overview: In each iteration ¢ < T, the actor-
critic agent generates a continuous vector “action”
a (step 1). The action is then projected into the ap-
propriate space using a fixed matrix P to obtain z.
The environment then concatenates the projected
vector z with a set of exemplars’ embeddings from
£ and feeds it into a white-box model A (step 2).
The white-box model produces a discrete prompt,
7, which is evaluated using the validation dataset )V
based on the responses from the black-box LLM f
(step 3). The black-box LLM’s prediction is com-
pared to true labels of the validation examples, and
a score function provides a reward, used to update
both the critic and actor networks accordingly.

Step (D). The actor outputs the mean and vari-
ance of a distribution fr/om which the action, a soft
prompt vector a € R? , is sampled. It also com-
putes the log probability, which is key for policy
optimization, as shown in Eq. (6).

Step @). As shown in the left side of Fig. 2, the
examples describing the task from the set of ex-
emplars £, along with additional text such as “The
instruction was to,” are input into the embedding
layer of the white-box model to generate continu-
ous vectors (using the instruction generation tem-
plate in Fig. 1 top right). These continuous vectors
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are then concatenated with the soft prompt z, pro-
jected from the action a. The white-box model lay-
ers subsequently process the resulting concatenated
vector to produce the discrete prompt 7, suitable
for input into the black-box LLM.

Step (3). As depicted in the right side of
Fig. 2, for every input z; in the validation set V =
{(xj,y;)}72,, the generated prompt 7 is concate-
nated to the input sentence x; and fed to the black-
box LLM, which generates an output sentence
U; = f(7(z) ® x;). The output of the black-box
LLM is fed into a scoring function ¢(-, -), which
computes the score between the predicted output 3;
and the true label ;. The overall score is calculated
by averaging the scores across all samples, repre-
senting the reward: r = L 3" ¢(§;, y;), where
m represents the number of samples.

Step (@). The critic evaluates the actions taken
by the actor using the network (Qw, which estimates
the expected reward for a generated action a from
the policy network 7. Based on the observed re-
ward r(a), the critic updates its network using the
loss function (Eq.(4)) and gradient (Eq.(5)). The
critic’s feedback helps the actor improve its pol-
icy by maximizing the reward (Eq. (6)), ensuring a
balance between exploration and exploitation.

After T iterations, the agent returns the best-
performing prompt 7*, which is evaluated on the
test set 7 in the black-box LLM using the evalua-
tion template shown in Fig. 1 (bottom right).

4 Experiments

We focus on instruction learning for ChatGPT
(OpenAl, 2023b), with additional analysis on GPT-
4 (OpenAl, 2023c) and GPT-40 (Hurst et al., 2024)
as representative black-box LLMs. We conduct
instruction induction tasks using 30 datasets span-
ning several diverse categories from Honovich
et al. (2023); Chen et al. (2024), zero-shot CoT
reasoning datasets (GSMS8K (Cobbe et al., 2021),
AQUARAT (Ling et al., 2017)), and summarization
on SAMSum (Gliwa et al., 2019).

In §4.1, we compare ACING’s best-learned
instructions against human-written prompts
from (Honovich et al., 2023). We also benchmark,
in §4.2, against four recent black-box instruction
optimization methods: APE (Zhou et al., 2023),
EvoPrompt (Guo et al., 2024), InstructZero (Chen
et al., 2024), and INSTINCT (Lin et al., 2024b).
Furthermore, we study the interpretability and
clarity of generated instructions (§4.3) and conduct

ablation studies (§4.4) to examine the impact of
the different design choices.

To ensure fairness and comparability with other
automatic approaches, we adopt a fixed evaluation
budget of black-box queries 7' = 165,! consistent
with prior work. Moroever, ACING uses an off-
the-shelf, publicly available white-box decoder to
map latent vectors to prompts. Moreover, all learn-
ing and evaluation occur solely through black-box
interactions, which is consistent with other lead-
ing methods (e.g., INSTINCT, InstructZero). To
ensure fairness, we fix the same decoder Vicuna-
13B (Chiang et al., 2023), as used in their analyses
across all methods, while in ablations we compare
with WizardLM-13B (Xu et al., 2024).

The experimental setup isolates ACING’s core
contribution, ensuring that performance gains are
not attributable to decoder selection or tuning. Fur-
ther details, including hyperparameters, are pro-
vided in Appendix B.

4.1 ACING vs. Humans

We compare instructions found by ACING against
human-authored prompts from Honovich et al.
(2023) across a broad range of instruction-
induction tasks. Table 2 highlights only those tasks
where test performance differed between the two.
The full set of tasks is included in Appendix H.

ACING not only matches but often surpasses
human-written instructions—often by substantial
margins. For instance, in the Antonyms task, the
human instruction (“Write a word that means the
opposite of the input word”) scores 0.70. ACING
improves this to 0.82 with a more direct and action-
able phrasing: “Take a word and change it to its
opposite.” The formulation is simpler yet effective.

Consider the rhyming task, where the human
instruction—*“Write a word that rhymes with the
input word”—yields a score of 0.61. ACING sig-
nificantly improves performance, achieving a per-
fect score of 1.00 with an alternative phrasing.
This highlights ACING’s ability to discover high-
performing instructions that align closely with the
underlying model behavior.

In the sentence similarity task, where the human
instruction results in a score of 0.00, ACING raises
performance to 0.21. The highest-scoring AC-
ING instruction introduces a mild incline toward a
mid-scale output (“3 - probably”), but its phrasing
remains semantically valid and interpretable. A

ISee Appendix G.3 for reward plots where ACING often
peaks well before the budget is exhausted.
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Category Task Human Instruction ACING Instruction (Ours) Human ACING
Spelling Second_word_letter Extract the second letter of the input word. Input a word and output the letter that corresponds to the  0.96 0.92
second letter in that word (0.00) (0.00)
Syntax Negation Negate the input sentence. Flip the truth value of the statements in the input 0.81 0.82
(0.00)  (0.00)
Lexical Antonyms Write a word that means the opposite of the = Take a word and change it to its opposite 0.70 0.83
Semantics input word. (0.00)  (0.00)
Synonyms Write a word with a similar meaning to the input  Input a word that is a synonym for the word that was output ~ 0.14 0.13
word. (0.01)  (0.00)
Phonetics  Rhymes Write a word that rhymes with the input word.  Input the word that the program thought I was inputting and ~ 0.61 1.00
then output the word that program thought I was inputting (0.01)  (0.00)
Semantics Cause_and_effect Find which of the two given cause and effect ~Find the sentence that is the cause of the effect in the pair of  0.97 0.90
sentences is the cause. sentences 0.02) (0.02)
Style Informal_to_formal Rephrase the sentence in formal language. Convert the input into output using the same word order and  0.63 0.50
with the same meaning (0.00) (0.00)
Multi- Translation_en-de  Translate the word into German. Provide a translation for each word in the English text into ~ 0.81 0.84
lingual German (0.00)  (0.00)
Translation_en-es  Translate the word into Spanish. Translate the words from English to Spanish, but I noticed ~ 0.89 0.88
that some of the translations are not accurate (0.00) (0.00)
Translation_en-fr Translate the word into French. Create a program that would take an English word as input ~ 0.86 0.87
and output its French equivalent (0.00)  (0.00)
GLUE Sentiment Determine whether a movie review is positive ~ Classify each input as positive or negative based on the 0.89 0.91
or negative. assessment of the corresponding movie (0.01)  (0.00)
Sentence_similarity Rate the semantic similarity of two input sen- Find a sentence pair that is probably not similar, and the  0.00 0.21
tences on a scale of O - definitely not to 5 - output is 3 - probably (0.00)  (0.00)
perfectly.
median score 0.81 0.86
# best-performing tasks 5 7

Table 2: Tasks from the instruction-induction datasets where the human and ACING test scores differed. For each task, we
provide the corresponding human instruction as proposed in (Honovich et al., 2023) and our best discovered instruction. We
tested these instructions on the test dataset and report the average score (with standard deviation) over 3 repetitions.

second-best instruction, unbiased, still improves
upon the human-written version by 0.14 points.

On average, ACING improves the median task
score from 0.81 to 0.86 and outperforms human-
written instructions on 7 out of 12 tasks in this sub-
set—underscoring its potential as a practical and
effective alternative to manual prompt engineering.
Further generated instructions are in Appendix J.
Furthermore, extended results with GPT-4o0 are pro-
vided in Table 11 in Appendix E.

4.2 ACING vs. Other Optimization Methods

Instruction-induction datasets: In Table 3, we
show tasks from (Honovich et al., 2023) where at
least one method failed to achieve 70% score (full
results on all 30 tasks can be found in Appendix C).
The table shows the average test accuracy (along
with the standard deviation) over three independent
runs, using three different seeds. For each seed,
we selected the best instruction achieved by each
method and evaluated it on the testing dataset. The
results demonstrate that our method, ACING, out-
performs the others, achieving the highest accuracy
in 13 out of the remaining 23 tasks, compared to
INSTINCT, InstructZERO, EvoPrompt, and APE,
which succeeded in 8 tasks or fewer. Addition-
ally, ACING achieves the highest median accuracy
across tasks, with a value of 0.69, which is approx-

imately 10 percentage points higher than the best
baseline. The score types can be found in Table 8.
Moreover, the best prompt achieved for each task
and the corresponding test scores, can be found
in Table 22 in Appendix C. Further analyses on
GPT-4 can be found in the Appendix. D.

CoT datasets. We evaluate our method on two
zero-shot CoT reasoning datasets: GSM8K (Cobbe
et al., 2021) and AQUA-RAT (Ling et al., 2017).
Prior work (Kojima et al., 2022) shows that simple
CoT prompts can enhance LLM performance. Us-
ing 100 steps (and other settings as above), ACING
achieves the best results on both, demonstrating
strong CoT reasoning capability.

Summarization dataset. We compare the per-
formance of ACING with other methods on summa-
rization tasks using the SAMSum dataset (Gliwa
et al., 2019). The results, presented in Table 4,
show that ACING outperforms the other methods
across the three metrics considered: ROUGE-1,
ROUGE-2, and ROUGE-L (Lin, 2004).

Statistical significance test. We conduct a
Wilcoxon signed-rank test (Wilcoxon, 1992), a
non-parametric test. The results confirm that AC-
ING significantly outperforms all baselines across
tasks, with p = 0.0005 (APE), 0.0041 (INSTINCT),
0.0092 (EvoPrompt), and 0.0335 (InstructZero), all
below the standard 0.05 threshold, indicating that
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Category Task APE EvoPrompt InstructZero INSTINCT ACING
Spelling Letters_list 0.59 (0.02) 0.97 (0.03) 1.00 (0.00) 0.99 (0.01)  1.00 (0.00)
First_word_letter 0.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00)
Second_word_letter 0.00 (0.00)  0.63 (0.17) 0.35 (0.09) 0.39 (0.28)  0.70 (0.15)
Morpho-Syntax Negation 0.79 (0.00)  0.84 (0.02) 0.65 (0.10) 0.58(0.22)  0.71 (0.06)
Lexical Semantics ~ Synonyms 0.14 (0.01)  0.19(0.07) 0.22 (0.11) 0.19 (0.08) 0.13 (0.02)
Word_unscrambling 0.54 (0.00)  0.44 (0.06) 0.59 (0.06) 0.54 (0.02)  0.50 (0.07)
Phonetics Rhymes 0.59 (0.01)  0.52(0.05) 0.99 (0.01) 0.36 (0.04)  0.57 (0.31)
Numerical Sum 0.87 (0.01)  1.00 (0.00) 1.00 (0.00) 0.70 (0.21)  1.00 (0.00)
Diff 0.00 (0.00)  0.99 (0.01) 1.00 (0.00) 0.93(0.09)  1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02)  0.58 (0.06) 0.63 (0.07) 0.81(0.09) 0.84 (0.07)
Cognitive Tasks Cause_and_effect 0.44 (0.09)  0.48 (0.10) 0.52 (0.09) 0.55 (0.11) 0.69 (0.15)
Common_concept 0.03 (0.02)  0.17 (0.00) 0.14 (0.04) 0.09 (0.04)  0.19 (0.05)
Object_counting 0.30 (0.02)  0.50 (0.06) 0.38 (0.06) 0.40 (0.12)  0.41(0.03)
Odd_one_out 0.32(0.02)  0.64 (0.04) 0.57 (0.02) 0.25(0.18)  0.64 (0.00)
Orthography_starts_with ~ 0.23 (0.01)  0.47 (0.02) 0.41 (0.09) 0.54 (0.06)  0.60 (0.12)
Taxonomy_animal 0.02 (0.02) 0.38(0.15) 0.67 (0.14) 0.85(0.06) 0.71 (0.02)
Auto_categorization 0.31(0.01) 0.20(0.03) 0.29 (0.02) 0.07 (0.07)  0.29 (0.04)
Word_sorting 0.58 (0.01)  0.01 (0.00) 0.64 (0.05) 0.23(0.20)  0.70 (0.03)
CLUE Sentence_similarity 0.00 (0.00)  0.05 (0.00) 0.10 (0.00) 0.00 (0.00) 0.13 (0.07)
Translation Num_to_verbal 0.13(0.02)  1.00 (0.00) 0.99 (0.01) 1.00 (0.00)  0.99 (0.01)
Translation_en-es 0.86 (0.01)  0.76 (0.00) 0.67 (0.24) 0.89 (0.00)  0.87 (0.02)
Style Informal_to_formal 0.57 (0.01) 0.50(0.02) 0.48 (0.02) 0.54 (0.09)  0.44 (0.05)
Coding Auto_debugging 0.25 (0.00)  0.25 (0.00) 0.25 (0.00) 0.07 (0.07)  0.25 (0.00)
median score 0.31 0.50 0.59 0.54 0.69
# best-performing tasks 3 7 8 4 13

Table 3: Average test performance (with standard deviations) over 3 seeds comparing ACING to APE (Zhou et al., 2023),
EvoPrompt (Guo et al., 2024), InstructZero (Chen et al., 2024), and INSTINCT (Lin et al., 2024b) on the 23 most challenging
tasks (where at least one method has score < 0.7). Bottom rows show median scores and the number of best-performing tasks.

Metric APE EvoPompt InstructZero INSTINCT ACING

ROUGE-1 0.35(0.01) 0.35(0.01) 0.33(0.00) 0.36 (0.01) 0.37 (0.01)
ROUGE-2  0.12(0.00) 0.12(0.00)  0.11(0.00)  0.14 (0.00) 0.14 (0.00)
ROUGE-L 0.25(0.00) 0.26 (0.00) 0.24(0.01)  0.27 (0.01)  0.28 (0.01)

Table 4: Average test performance (and standard deviations)
for summarization task using SAMSum dataset.

the observed gains are statistically significant.

Results breakdown. To better understand AC-
ING’s strengths, we grouped the tasks into various
categories. On cognitive tasks, requiring complex
reasoning, ACING demonstrates the clearest ad-
vantage. It ranks first on 5 out of 8 such tasks
from Table 3, including Cause_and_effect (0.69,
+14%), Word_sorting (0.70, +6%), Odd_one_out
(0.64, tied), and Orthography_starts_with (0.60,
+6%). As shown in Fig. 3 (ordered left to right by
median ranking), ACING achieves the best me-
dian rank and shows a strong skew toward top
rankings in this category. Furthermore, ACING
shows the best performance in the zero-shot CoT
reasoning tasks (Table 5). In symbolic manipula-
tion, ACING again performs best, achieving per-
fect scores on Letters_list and First_word_letter,
and leading on Second_word_letter (0.70 vs. 0.63).
This highlights its precision in low-level, structured
tasks. ACING is competitive but not dominant in
tasks involving lexical semantics, world knowledge,
and translation—e.g., Informal_to_formal (0.44 vs.
0.57), and Translation_en-es (0.87 vs. 0.89). Fi-
nally, it consistently outperforms the other methods
in summarization.

4.3 Instruction Clarity and Readability

To evaluate the interpretability and clarity of gen-
erated instructions, we assess whether ACING-
generated prompts are understandable and task-
aligned. We conduct a human evaluation with 26
participants who rated the clarity and alignment of
generated instructions from Table 2 on a 5-point
Likert scale. The results show that participants
found the prompts generally clear, with a median
score of 3.9/5 (see Appendix I for the protocol
and statistics). In parallel, we use standard read-
ability metrics to automatically assess the gener-
ated prompts. The results show a median Flesch
Reading Ease (FRE) of 70.8, Flesch-Kincaid Grade
Level (FKG) of 7.0, and Coleman-Liau Index (CLI)
of 7.3. These scores correspond to mid-grade read-
ability (7th—8th grade), indicating that the gener-
ated instructions are accessible to a broad user base.

4.4 Ablation Studies

We present detailed ablation studies on key design
choices, summarize some below, and provide full
results and plots in Appendices G.1-G.7.

Use of critics. We compare our method (with
two critics) to variants with a single critic and to
a baseline without a critic (policy-gradient). As
shown in Appendix G.1, the two-critic architecture
yields the highest accuracy, best stability, and top
performance in difficult settings (e.g., cognitive),
confirming the value of conservative estimation.
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Method Dataset Best Zero-Shot Instruction Score
(Kojima et al., 2022) GSM8K Let’s think step by step. 0.72
INSTINCT (Lin et al., 2024b) | GSM8K Let’s use our creativity to find the solution. 0.75
ACING (Ours) GSM8K Let’s use our math skills to conquer this challenge. 0.76
(Kojima et al., 2022) AQUA-RAT | Let’s think step by step. 0.59
INSTINCT (Lin et al., 2024b) | AQUA-RAT | Let’s break it down. 0.59
ACING (Ours) AQUA-RAT | Let’s use the power of substitution to solve this problem. 0.63

Table 5: Best zero-shot instructions and corresponding scores for different methods and datasets.

\

APE EvoPrompt INSTINCT

InstructZero ACING

Figure 3: Ranking distributions across cognitive tasks for all
algorithms, ordered increasing by median rank.

Budget efficiency. While ACING uses a fixed
165-query budget for fair comparison with prior
work, it often converges well before the budget is
exhausted. As illustrated in Appendix G.3, many
tasks reach optimal rewards within 60—80 queries,
and some within 10-20, showing strong sample
efficiency under constrained settings.

White-box model. Using WizardLM-13B (Xu
et al., 2024) instead of Vicuna improves median
test accuracy by 8 points and increases the num-
ber of best-performing tasks (Appendix G.7). This
demonstrates that ACING can benefit from stronger
decoding models, although it remains effective
across architectures.

Action dimensionality. We test latent action
sizes d' € {5,10,20,40,100}. Results in Ap-
pendix G.5 show that d’ = 10 and d’ = 20 per-
form consistently well, while larger dimensions
like d’ = 40 yield improvements on specific tasks.

Number of exemplars. Using a single exem-
plar performs surprisingly well and matches the
5-exemplar setup on several tasks (e.g., phonetics
and summation). Still, five exemplars offer more
consistent gains on complex tasks (Appendix G.6).

Budget splitting. We explore dividing the query
budget into an exploration phase and a final re-
ranking phase, where top prompts are re-evaluated
multiple times. This two-phase strategy improves
median test scores by 5 points and boosts the num-
ber of best-performing tasks (Appendix G.4).

5 Related Work

Early approaches such as AutoPrompt (Shin et al.,
2020), FluentPrompt (Shi et al., 2023), and soft
prompt tuning (Lester et al., 2021; Li and Liang,

2021; Zhong et al., 2021) rely on access to model
gradients or embeddings, limiting their applicabil-
ity in black-box settings. Grey-box methods such
as BBT and BBTv2 (Sun et al., 2022b,a) and CLIP-
tuning (Chai et al., 2022) relax these constraints by
leveraging token embeddings or logits, but are still
incompatible with API-only black-box models.

Several recent works frame instruction search as
a discrete optimization problem. RLPrompt (Deng
et al., 2022) and Tempera (Zhang et al., 2023)
use RL to identify prompts, but assume access
to token-level outputs or confidence scores. Al-
ternatively, sampling- and evolution-based strate-
gies such as APE (Zhou et al., 2023), Prompt-
Breeder (Fernando et al., 2024), EvoPrompt (Guo
et al., 2024), PromptWizard (Agarwal et al., 2024),
and Auto Evol-Instruct (Zeng et al., 2024) itera-
tively generate and refine candidate prompts via
LLM sampling or mutation. While effective in
some cases, these methods typically rely on large
candidate pools or expensive query budgets.

Zeroth-order optimization (e.g., AIO (Qi et al.,
2025), ZOPO (Hu et al., 2024)) estimates gra-
dients without backpropagation, yet incurs high
computational cost and query complexity. In-
structZero (Chen et al., 2024) and INSTINCT (Lin
et al., 2024b) apply Bayesian Optimization (BO)
and NeuralUCB (Zhou et al., 2020) within a finite
action space. In contrast, StablePrompt (Kwon
et al., 2024) uses PPO to stabilize discrete prompt
learning, but fine-tune white-box LLMs. Our ap-
proach differs by formulating prompt optimiza-
tion as a continuous-action RL problem, enabling
more efficient exploration without gradient access
or large models.

Complementary strategies include exemplar se-
lection (Wu et al., 2024), preference-based feed-
back (Lin et al., 2024a), and best-arm identifica-
tion (Shi et al., 2024). However, these typically rely
on fixed prompt pools or require human preference
labels. ACING jointly addresses both the genera-
tion and selection in a unified framework, yielding
high-performing prompts without pool constraints
or external supervision.
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6 Conclusion

We present ACING, an actor-critic RL framework
for prompt optimization in black-box LLMs. By
formulating the task as a continuous-action prob-
lem, ACING enables exploration of an infinite
space through an entropy-regularized policy un-
der strict query constraints. It outperforms strong
baselines and surpasses human-written instructions,
without any per-task tuning, demonstrating effec-
tiveness, efficiency, and practicality.

7 Limitations

While ACING achieves strong and consistent per-
formance across diverse tasks, we do not claim uni-
versal superiority on every individual task. Given
the stochastic and non-convex nature of prompt
optimization—particularly in black-box LLMs un-
der tight query budgets—strong prompts can oc-
casionally arise even from random search or other
optimization approaches. However, ACING sub-
stantially improves the chances of discovering such
prompts through a principled exploration strategy
grounded in actor-critic learning.

Similar to previous prior works (Lin et al.,
2024b; Chen et al., 2024; Hu et al., 2024), our
reliance on a white-box model introduces variabil-
ity, as model selection affects performance (Ap-
pendix G.7). Addressing this limitation would re-
quire operating directly on black-box LLMs, which
poses challenges due to the large discrete action
space. Adapting RL methods for such spaces, as
explored in Fourati et al. (2024), and proposing
hybrid approaches combining soft-prompt and dis-
crete optimization, represent promising directions
for future research.

Despite the strong performance achieved with a
fixed hyperparameter configuration across all tasks,
we acknowledge that domain-specific tuning might
yield marginal gains, particularly in edge cases.
That said, our goal was to emphasize generality
and simplicity without introducing per-task over-
head—an important factor for real-world usability.

8 Ethical Considerations

ACING automates prompt optimization for LLMs,
which can reduce manual effort but may also am-
plify risks associated with bias, misuse, or harmful
content generation. We emphasize that ACING is a
general optimization framework and does not guar-
antee ethical outputs from the underlying LLMs.
It should be paired with appropriate content filters

and safety mechanisms when deployed in sensitive
domains. Optimized prompts could reinforce or
amplify existing biases present in the base LLMs.
Future work should incorporate fairness-aware re-
ward functions or post-hoc bias mitigation.

Lastly, our experiments assume legal and eth-
ical API usage, and we caution against applying
instruction optimization to restricted or proprietary
models without adherence to usage policies and
terms of service.
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A Table of Notations

For clarity, we summarize all symbols used in our
actor-critic framework in Table 6.

B Experimental Details

B.1 Hyperparameters

Across the diverse tasks, in the main paper, the
same hyperparameters were used, which shows
that the algorithm generalizes well across the 30
tasks without specifically tuning hyperparameters
in each task. A summary of the key parameters can
be found in the following Table.

Furthermore, like previous works, we use their
default (tuned) hyperparameters for the results in
the main paper, including the intrinsic dimension
d’ = 10 and the number of soft tokens N, = 5.
For fairness, we refrain from fine-tuning these pa-
rameters for our method and use the same values
as in prior works. This ensures that our ACING
algorithm searches in the same space, [0, 1]1°, and
uses the same total number of queries to the black-
box LLM as APE, InstructZero, and INSTINCT
for a fair comparison. For each algorithm, after
identifying the best instruction using the validation
set )V, we evaluate the discovered instruction on a
separate test set 7 and report the test score.

B.2 Actor-Critic Details

Across all the tasks, we used three fully-connected
layers for both the actor (1 — 1024 — 256 — 10) and
the critics (10 — 128 — 128 — 1) networks, with
learning rates fixed at 3 - 10~ for each. We learn
the entropy parameter « using a learning rate of
9-10~%. We adopt two independently trained critics
and take the minimum of their outputs to mitigate
overestimation bias. This conservative approach
helps regularize training and improves robustness,
particularly in tasks with noisy or sparse rewards.
We further validate this choice in our ablation stud-
ies with one critic, two critics, and without critics.

B.3 Maetrics

Table 8 outlines the evaluation metrics used across
various task types. Depending on the nature of
the task, we adopt different scoring schemes to
ensure fair and meaningful evaluation. For most
classification and generation tasks, we employ ex-
act match (EM) scoring, which requires the predic-
tion to match the ground truth exactly, making it a
stringent yet interpretable metric.

B.4 Licenses and Terms of Use for Artifacts

Black-box APIs. We use the OpenAl API to ac-
cess ChatGPT (OpenAl, 2023a), GPT-4 (OpenAl,
2023c¢), and GPT-40 (Hurst et al., 2024) for black-
box evaluation. These models are proprietary and
accessed via paid API under OpenAl’s terms of
service. We do not redistribute or modify these
models.

White-box Models. Our framework uses Vicuna-
13B (Chiang et al., 2023) (and WizardLM (Xu et al.,
2024) for ablations) as a frozen decoder to gener-
ate discrete prompts. Both models are publicly
available for research use under a non-commercial
license. We follow all usage restrictions and do not
modify or redistribute these models.

Datasets.
cluding:

We use publicly available datasets in-

 Instruction induction datasets from Honovich
et al. (2023).

* SAMSum (Gliwa et al., 2019) for summariza-
tion.

e GSMSK (Cobbe et al., 2021) and AQUA-RAT
(Ling et al., 2017) for reasoning.

All datasets are used under their original licenses
and are cited appropriately.

Our Code and Models. We will publicly release
our implementation, including the actor-critic train-
ing framework and prompt optimization pipeline,
under an open-source license (MIT license) upon
publication.

B.5 Data Usage, Privacy, and Safety
Considerations

All datasets for the studied tasks are publicly re-
leased and widely used in NLP research. We used
them under their respective licenses for academic
use, and we cite the original sources in all cases.

Privacy and Anonymization. None of the
datasets we used contain personally identifiable
information (PII) to the best of our knowledge.
The datasets are either synthetic, anonymized, or
derived from public sources with appropriate pre-
processing. We did not augment or modify these
datasets in ways that would introduce identifying
information.
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Meaning

Black-box LLM (only accessible via API)
White-box LLM (frozen, used as decoder)

Validation set {(x;,y;)}7.,

f
h
D Task distribution over input—output pairs (z, y)
v
T

/
Test set { (2}, y}) 172,

Scoring function measuring output quality

T Discrete prompt

7(2) Prompt generated from soft prompt z

7(Pa) Prompt from projected action vector a

T Optimal prompt

z € R? Soft prompt vector (continuous)

acl0,1)¢ Action (latent prompt representation)

P e RIxd Random projection matrix

(-5 0) Policy network (actor) with parameters ¢

Qu, (a), Qu,(a) Twin critic networks with parameters wy, wa
Q(a) Value estimate: Q(a) = min{Q, (a), Qu,(a)}
Jo(w) Critic loss: Equp [5(Qu(a) — r(a))?]

Jr(6) Actor loss (entropy-regularized policy objective)
r(a) Reward obtained from the environment

Q Temperature coefficient for entropy regularization
Hiarget Target entropy for adaptive «

Table 6: Summary of notations used in the ACING actor-critic framework.

Human Evaluation and Safety. For our human
evaluation of ACING-generated prompts, we used
only automatically generated instructions and task
templates. Prior to annotation, we reviewed the
generated prompts and outputs to ensure that they
did not contain any offensive or inappropriate con-
tent. The tasks involved abstract or anonymized
content (e.g., generic input strings or public task
descriptions), and no human names, images, or
personal data were included.

Ethical Use. We ensured that all experiments in-
volving human subjects were conducted ethically
and responsibly. Participation in the annotation
study was fully voluntary. Annotators were in-
formed about the nature and purpose of the task
and could withdraw at any time. The study was
limited to rating task-level clarity and alignment, in-
volved no sensitive content, and did not collect any
personal or identifiable information. All responses
were anonymized, and only aggregate statistics
were analyzed. As the study posed no foreseeable
risk to participants and did not involve identifiable
data, it did not require formal ethics review under
our institution’s guidelines.

B.6 Artifact Documentation

Task Coverage. We evaluate ACING on a di-
verse set of NLP tasks, categorized as follows:

* Instruction Induction: A wide range of
classification and transformation tasks drawn
from Honovich et al. (2023), covering syntax,
semantics, phonetics, word manipulation, and
reasoning.

* Reasoning: Zero-shot chain-of-thought rea-
soning tasks using GSM8K (Cobbe et al.,
2021) and AQUA-RAT (Ling et al., 2017),
which involve multi-step symbolic and arith-
metic problem solving.

* Summarization: Dialogue-based abstractive
summarization using the SAMSum dataset
(Gliwa et al., 2019).

* Translation: Lexical-level English-to-
German, English-to-Spanish, and English-to-
French tasks to assess multilingual instruction
learning.

Language Coverage. Our experiments involve
four languages: English (the primary language for
most tasks), and German, Spanish, and French in
translation tasks.
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Hyperparameter

Choice

White-box h
Actor-network
Critic-network

Budget T
Intrinsic (action) dimension d’
Number of soft tokens NV,
Soft prompt dimension d
Number of exemplars |£]

Number of tokens generated by Wb

Vicuna-13B and WizardLM
(1 —1024 — 256 — 10)
(10 —128 — 128 — 1)

165

10

5
5120 * N,

5

64

Table 7: Key hyperparameters and their values.

Linguistic Phenomena. The tasks cover a broad
range of linguistic phenomena, including:

* Morphosyntax: e.g., negation, word reorder-
ing.

* Lexical Semantics: e.g., antonyms, syn-
onyms, word similarity.

* Discourse and Pragmatics: e.g., summariza-
tion, cause-effect reasoning.

¢ Symbolic and Numerical Reasoning: e.g.,
math problem solving, program induction.

Demographics and Bias. All datasets used are
publicly available academic benchmarks. None
were collected or annotated by the authors. To the
best of our knowledge, these datasets do not contain
personally identifiable information (PII) or explicit
demographic attributes. No demographic inference,
fairness evaluation, or bias analysis was performed,
as our work focuses on instruction optimization
and not on social or identity-based NLP tasks.

Human Annotation. We conducted a human
evaluation study to assess the clarity and semantic
alignment of instructions generated by ACING.
Annotators were presented with anonymized task
prompts and model-generated instructions, and
asked to rate clarity and alignment on a 5-point
Likert scale. The annotation involved 26 in-house
participants, all of whom were informed of the
task goals and free to opt out at any time. No
demographic data was collected. All instructions
shown were manually reviewed to ensure that they
contained no PII or offensive content. Collected
responses were fully anonymized, and no free-form
sensitive text was stored. Results are summarized
in Section 4.3 and Appendix I. The full set of in-
structions used in the study is from Table 2.

Artifact Availability. We will release our full
codebase under an open-source license (MIT li-
cense) upon publication. This includes the rein-
forcement learning framework, prompt decoding
pipeline, and evaluation scripts. All third-party
datasets and models used are cited and publicly
available under their respective research licenses.

B.7 Implementation and Compute Details

Model Sizes. Our actor and critic networks are
lightweight MLPs with three layers each. The
white-box decoder is Vicuna-13B, and the black-
box models queried include GPT-3.5 (ChatGPT),
GPT-4, and GPT-40, whose sizes are not publicly
disclosed.

Compute Infrastructure. We use an internal
SLURM cluster for running our experiments. The
experiments were done on an ASUS ESC N4A-
E11 server. The node has 4 A100 GPUs, an AMD
EPYC 7003 series 64 core @ 3.5GHz CPU and
512GB of RAM. We used one A100, with 2 cores,
and required at most 50GB of memory for the ex-
periments. All black-box LLM queries were per-
formed via APL

Compute Budget. Each ACING run used a fixed
query budget of 165 black-box API calls. Across
33 tasks and 3 random seeds, this corresponds to
a total of approximately 16,000 black-box LL.M
queries. Training time per task was approximately
10-20 minutes on a single GPU.

C ACING vs. Other Optimization
Methods

We compare our method against recent baselines on
the 30 instruction-induction datasets. The results
in Table 9 show the average test accuracy (along
with the standard deviation) over three indepen-
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Task

Score Type

Common_concept, Informal_to_formal

F1 score = (2 x precision X recall) /(precision + recall)

Orthography_starts_with, Taxonomy_animal

Set match: prediction set must match ground truth set

Synonyms

In-list match: prediction is correct if it falls within the list of ground truth words

All other datasets (e.g., Antonyms, Translation, Cause_and_effect, Diff)

EM score: 1 if exact match, 0 otherwise (letter-by-letter for words)

Table 8: Scoring metrics for different tasks.

dent runs, using three different seeds. For each
seed, we selected the best instruction achieved by
each method and evaluated it on the testing dataset.
The table demonstrates that our method, ACING,
outperforms others by achieving the highest accu-
racy in 14 out of 30 tasks, compared to INSTINCT,
InstructZERO, EvoPrompt, and APE which suc-
ceeded in 8 tasks or less each. Additionally, AC-
ING achieves the highest median accuracy across
tasks, with a value of 0.71, which is 22 percentage
points higher than APE. Table 22 shows the best
prompt achieved for each task and corresponding
test scores.

D ACING vs InstructZero on GPT-4

We extend our experiments to include GPT-4 as
the black-box LLM and Vicuna as the white-
box model. Given the high cost associated with
querying GPT-4, we restrict our comparison to
InstructZero, the strongest baseline after ACING
based on prior results with GPT-3.5 (Table 9). To
ensure a fair and cost-efficient comparison, both
methods are allocated an equal budget of 100 API
calls. Additionally, we focus this analysis on the
most challenging subset—cognitive tasks—to con-
centrate the evaluation on settings where prompt
optimization is most demanding.

Table 10 presents the results of this experiment.
Consistent with our earlier findings (Table 9), AC-
ING continues to excel in cognitive tasks, solving
6 out of 8 tasks compared to only 3 solved by In-
structZero, and achieving a 13-point higher median
score. These results further highlight ACING’s ro-
bustness and effectiveness under tighter budgets
and more difficult evaluation scenarios.

E Extended Results on GPT-40

We extend a subset of our evaluation to include
results on GPT-40 (Hurst et al., 2024), as shown in
Table 11. These results are based on 3 repetitions,
and we report the average accuracy along with stan-
dard deviation in parentheses. We observe that
ACING continues to perform competitively, often
outperforming human-written instructions on tasks
such as Antonyms, Rhyme, and Sentence Similarity.

F Extended Results on GPT-03

To further examine ACING’s effectiveness on
stronger black-box LLMs, we conducted additional
experiments using GPT-03. Table 12 compares
ACING-generated prompts with human-crafted
prompts on representative tasks. Despite GPT-03’s
overall strength, it remains sensitive to prompt de-
sign: ACING often outperforms or matches human-
designed prompts, with particularly notable gains
on tasks involving reasoning and rephrasing. These
results show that even strong models like GPT-03
remain sensitive to prompt phrasing. For exam-
ple, ACING improves Antonyms performance by
about 5% over human prompts (ACING: “Provide
a word that is the opposite of the provided word.”
vs. Human: “Write a word that means the opposite
of the input word.”). Interestingly, in the Cause
and Effect task, the human prompt drops to 0.06
while ACING achieves 0.64, underscoring GPT-
03’s sensitivity to prompt phrasing. Conversely,
for Rhymes, GPT-03 exhibits smaller differences,
aligning with the observation that stronger models
can sometimes be less sensitive to prompt varia-
tion. Overall, these additional experiments provide
a more comprehensive picture of ACING’s effec-
tiveness across models with varying sensitivities to
prompt design, further underscoring its robustness
and broad applicability.

G Ablation Studies

We perform ablation studies to understand the role
of key design choices in ACING’s performance.
These include critic usage, action dimensionality,
exemplar count, budget allocation, and white-box
model selection.

G.1 On the use of Critics

While the policy in our setting produces only a
single-step action, the reward is stochastic due to
the non-deterministic behavior of black-box LLMs:
repeated evaluations of the same instruction-action
pair can yield different rewards. Consequently, the
immediate reward is only a noisy sample of the
true expected reward (i.e., the value). The critic
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Category Task APE EvoPrompt InstructZero INSTINCT ACING
Spelling Letters_list 0.59(0.02)  0.97 (0.03) 1.00 (0.00) 0.99 (0.01)  1.00 (0.00)
First_word_letter 0.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00)
Second_word_letter 0.00 (0.00) 0.63 (0.17) 0.35 (0.09) 0.39 (0.28)  0.70 (0.15)
Morpho-Syntax Singular_to_plural 1.00 (0.00)  1.00 (0.00) 0.99 (0.01) 0.95(0.03)  0.95 (0.03)
Active_to_passive 1.00 (0.00)  0.99 (0.00) 0.98 (0.01) 1.00 (0.00)  1.00 (0.00)
Negation 0.79 (0.00)  0.84 (0.02) 0.65 (0.10) 0.58 (0.22)  0.71 (0.06)
Lexical Semantics ~ Antonyms 0.79 (0.02)  0.70 (0.01) 0.76 (0.00) 0.84 (0.01) 0.74 (0.01)
Synonyms 0.14 (0.01)  0.19(0.07) 0.22 (0.11) 0.19 (0.08)  0.13 (0.02)
Word_unscrambling 0.54 (0.00)  0.44 (0.06) 0.59 (0.06) 0.54 (0.02)  0.50 (0.07)
Phonetics Rhymes 0.59 (0.01)  0.52(0.05) 0.99 (0.01) 0.36 (0.04)  0.57 (0.31)
Numerical Sum 0.87 (0.01)  1.00 (0.00) 1.00 (0.00) 0.70 (0.21)  1.00 (0.00)
Diff 0.00 (0.00)  0.99 (0.01) 1.00 (0.00) 0.93 (0.09)  1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02)  0.58 (0.06) 0.63 (0.07) 0.81 (0.09)  0.84 (0.07)
Periodic_elements 0.99 (0.01)  0.92 (0.00) 0.96 (0.03) 1.00 (0.00)  0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.44 (0.09) 0.48 (0.10) 0.52 (0.09) 0.55(0.11)  0.69 (0.15)
Common_concept 0.03(0.02)  0.17 (0.00) 0.14 (0.04) 0.09 (0.04)  0.19 (0.05)
Object_counting 0.30(0.02)  0.50 (0.06) 0.38 (0.06) 0.40 (0.12)  0.41 (0.03)
Odd_one_out 0.32(0.02)  0.64 (0.04) 0.57 (0.02) 0.25(0.18)  0.64 (0.00)
Orthography_starts_with  0.23 (0.01)  0.47 (0.02) 0.41 (0.09) 0.54 (0.06)  0.60 (0.12)
Taxonomy_animal 0.02 (0.02) 0.38(0.15) 0.67 (0.14) 0.85 (0.06) 0.71 (0.02)
Auto_categorization 0.31 (0.01) 0.20 (0.03) 0.29 (0.02) 0.07 (0.07)  0.29 (0.04)
Word_sorting 0.58 (0.01)  0.01 (0.00) 0.64 (0.05) 0.23 (0.20)  0.70 (0.03)
CLUE Sentence_similarity 0.00 (0.00)  0.05 (0.00) 0.10 (0.00) 0.00 (0.00)  0.13 (0.07)
Sentiment 0.90 (0.00) 0.63(0.17) 0.88 (0.03) 0.88 (0.02)  0.89 (0.01)
Translation Num_to_verbal 0.13(0.02)  1.00 (0.00) 0.99 (0.01) 1.00 (0.00)  0.99 (0.01)
Translation_en-de 0.83 (0.01) 0.80(0.02) 0.82 (0.01) 0.77 (0.02)  0.82 (0.01)
Translation_en-es 0.86 (0.01)  0.76 (0.00) 0.67 (0.24) 0.89 (0.00) 0.87 (0.02)
Translation_en-fr 0.88 (0.01) 0.86 (0.00) 0.77 (0.06) 0.85(0.02) 0.83 (0.01)
Style Informal_to_formal 0.57 (0.01)  0.50 (0.02) 0.48 (0.02) 0.54 (0.09)  0.44 (0.05)
Coding Auto_debugging 0.25 (0.00)  0.25 (0.00) 0.25 (0.00) 0.07 (0.07)  0.25 (0.00)
median score 0.49 0.63 0.66 0.64 0.71
# best-performing tasks 8 8 8 7 14

Table 9: Average test performance (and standard deviations) across 3 random seeds comparing ACING versus APE (Zhou
et al., 2023), EvoPrompt (Guo et al., 2024), InstructZero (Chen et al., 2024), and INSTINCT (Lin et al., 2024b). The bottom
rows report the median score and total number of best-performing tasks for each method.

is trained to approximate this expected reward,
thereby reducing the variance of the gradient esti-
mates and improving sample efficiency. Relying
directly on raw rewards would yield high-variance
updates, especially under tight evaluation budgets,
whereas a learned critic acts as a baseline that stabi-
lizes training and accelerates convergence. From a
theoretical perspective, this aligns with critic-based
methods in contextual bandit settings (e.g., Neu-
ralUCB), where the goal is also to learn a value
function despite the absence of temporal credit as-
signment.

To empirically assess the contribution of the
critic(s), we evaluate three variants of our method:

* ACING (two critics): Full method using dual
critics.

* ACING (one critic): Ablation using a single
critic.
* Policy Gradient (no critic): Baseline using

pure policy gradients without any critic.

We report results averaged across 30 diverse
tasks (3 trials per task). Due to space constraints,

we summarize performance using per-category av-
erages and global statistics.

In Table 13, ACING achieves a slightly higher
median score (0.71 vs. 0.70) and clearly dominates
in terms of robustness, outperforming policy gradi-
ent on 21 of 33 tasks. This suggests that the critic
plays a crucial role in stabilizing learning and guid-
ing exploration, especially in noisy or sparse re-
ward settings (e.g., Rhymes, Auto_categorization,
Word_sorting).

Table 14 further underscores the benefit of using
two critics: while both ACING variants reach the
same median score (0.71), the two-critic version
leads on more tasks (22 vs. 16) and shows stronger
performance on several cognitively demanding
or unstable tasks (e.g., Cause_and_effect, Sen-
tence_similarity, Taxonomy_animal). This high-
lights the importance of ensemble value estimation
in improving reliability across diverse tasks.

Remark G.1. We note that both critics are op-
timized using the same objective (minimizing
squared error between predicted and observed
rewards), but are initialized independently and
trained with separate updates.
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Category Task InstructZero ACING

Cognitive Tasks on GPT-4  Cause_and_effect 0.43 (0.10) 0.53 (0.10)
Common_concept 0.27 (0.00) 0.04 (0.01)
Object_counting 0.54 (0.03) 0.62 (0.03)
Odd_one_out 0.77 (0.01) 0.77 (0.01)
Orthography_starts_with 0.40 (0.12) 0.60 (0.03)
Taxonomy_animal 0.97 (0.02) 0.98 (0.00)
Auto_categorization 0.35 (0.01) 0.31 (0.02)
Word_sorting 0.72 (0.03) 0.74 (0.01)
median score 0.48 0.61
# best-performing tasks 3 6

Table 10: Average test performance (with standard deviations) across 3 random seeds comparing ACING and InstructZero
(Chen et al., 2024) on 8 cognitively demanding tasks using GPT-4 (black-box) and Vicuna (white-box), under a budget of
100 calls. The bottom rows report the median score and the total number of tasks where each method achieves the highest

performance.

Task with GPT-4o Human ACING

Antonyms 0.73 (0.01) 0.80 (0.01)
Rhyme 0.61 (0.01) 0.80 (0.15)
Sentence Similarity  0.00 (0.02)  0.15 (0.00)
Informal to Formal  0.58 (0.00) 0.48 (0.02)
Synonyms 0.14 (0.00)  0.20 (0.05)
Cause and Effect 0.92 (0.03) 0.85(0.13)

Table 11: Comparison of human-written (from Table 20
vs. ACING-generated instructions on a subset of tasks
evaluated using GPT-40 (Hurst et al., 2024). Results
are averaged over 3 repetitions; standard deviations are
shown in parentheses.

Task with GPT-03 ACING Human

Antonyms 0.83 0.79
Synonyms 0.23 0.20
Rhymes 0.42 0.63
Cause and Effect 0.64 0.06
Informal to Formal 0.70 0.63

Table 12: Comparison of ACING vs. human-crafted
prompts on GPT-03.

G.2 On Direct Parameterization of the Actor

To assess the impact of using a feed-forward net-
work (FFN) versus direct parameterization for the
actor, we compare the following two variants:

* ACING: Our standard approach, where the
actor is parameterized using a feed-forward
neural network that receives a constant one-
dimensional input (set to 1).

¢ ACING (direct parameterization): A vari-
ant using the same critics, but with the actor
represented directly by learnable mean and
variance vectors, completely removing the

FFN.

We report results averaged across 30 diverse

tasks (3 trials per task), summarizing performance
by task category and global statistics.
Summary: As shown in Table 15, the FFN-
based ACING achieves a substantially higher me-
dian score (0.69 vs. 0.44) and outperforms the
direct parameterization variant on many more
tasks (19 vs. 8). While direct parameterization
occasionally matches or surpasses FFN perfor-
mance on simpler tasks (e.g., Negation, Antonyms,
Num_to_verbal, Informal_to_formal), it gener-
ally struggles on tasks requiring more composi-
tional or fine-grained control (e.g., Word_sorting,
Odd_one_out, Auto_categorization).

G.3 ACING Rewards over the (Calls) Steps

In the main paper, we report the final test score after
a fixed budget of 165 black-box LLM calls. In this
section, we provide reward plots for the ACING
approach, showing the best-achieved reward within
the conducted calls. As shown in various plots in
Figure 4, the ACING approach found the optimal
prompt (achieving a reward of 1) within just a few
black-box calls. Some tasks required fewer than 10
API calls to find the optimal instruction, such as for
‘active to passive’ and ‘letters list’, and fewer than
20 for tasks like ‘translation” and ‘diff’. It can be
seen that the vast majority of tasks achieved their
best reward value within the first 60 to 80 calls,
demonstrating that ACING can even be used for
much more constrained budgets. The choice of 165
calls was mainly based on previous work (Lin et al.,
2024b; Chen et al., 2024), avoiding any potential
advantage that could come from optimizing this
number.
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Figure 4: Reward plots for running ACING on various selected tasks, showing the highest achieved reward on the
y-axis until each API call (step), with the x-axis representing the number of API calls.
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Category Task ACING Policy Gradient (no critic)
Spelling Letters_list 1.00 (0.00) 0.93 (0.05)
First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.55 (0.30)
Morpho-Syntax Singular_to_plural 0.95 (0.03) 1.00 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.71 (0.00)
Lexical Semantics ~ Antonyms 0.74 (0.01) 0.69 (0.15)
Synonyms 0.13 (0.02) 0.19 (0.10)
Word_unscrambling 0.50 (0.07) 0.54 (0.02)
Phonetics Rhymes 0.57 (0.31) 0.36 (0.14)
Numerical Sum 1.00 (0.00) 0.98 (0.03)
Diff 1.00 (0.00) 0.93 (0.05)
Knowledge Larger_animal 0.84 (0.07) 0.68 (0.18)
Periodic_elements 0.98 (0.00) 0.93 (0.04)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.71 (0.19)
Common_concept 0.19 (0.05) 0.12 (0.02)
Object_counting 0.41 (0.03) 0.44 (0.08)
Odd_one_out 0.64 (0.00) 0.53 (0.08)
Orthography_starts_with  0.60 (0.12) 0.52 (0.14)
Taxonomy_animal 0.71 (0.02) 0.77 (0.10)
Auto_categorization 0.29 (0.04) 0.17 (0.12)
Word_sorting 0.70 (0.03) 0.23 (0.30)
CLUE Sentence_similarity 0.13 (0.07) 0.00 (0.00)
Sentiment 0.89 (0.01) 0.89 (0.00)
Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.80 (0.00)
Translation_en-es 0.87 (0.02) 0.87 (0.01)
Translation_en-fr 0.83 (0.01) 0.87 (0.00)
Style Informal_to_formal 0.44 (0.05) 0.50 (0.03)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)
median score 0.71 0.70
# best-performing tasks 21 14

Table 13: Performance comparison between ACING and Reinforce different task categories.

G.4 ACING with Budget Splitting

Due to the stochastic nature of the black-box LLM,
the same instruction may yield different rewards
when evaluated by the LLM. To address this, we
add a mechanism for more robust decision-making.
The budget T is split into two parts: an exploration
phase where steps 1 to 4 are repeated, and an ex-
ploitation phase where the best p prompts are eval-
uated multiple times, k£ times each, using the black-
box LLM. The exploration phase uses T'— p- k API
calls, with the remaining calls used for exploitation.
Finally, the prompt with the highest average reward
across repetitions is used at test time. In Table 16,
we demonstrate that ACING, with an exploration
budget of T' = 150 and the remaining 15 calls al-
located to uniform exploration of the top p = 5
prompts (evaluated k£ = 3 times each), achieves
improved median scores across tasks and higher

test accuracy on 13 tasks compared to previous
work. Furthermore, it acheives a higher median
score compared to ACING without splitting.

G.5 ACING with Different Intrinsic (Action)
Dimensions

In the main paper, we present results using actions
with a dimension of d’ = 10, following the setup of
prior work. To evaluate the performance of ACING
across different dimensionalities, we conducted ex-
periments with d’ € {5, 10, 20, 40}, keeping other
parameters fixed, for a budget of 165. We report
the test results over different tasks and dimension-
alities for a fixed seed. The results, shown in Ta-
ble 17, indicate that while the smallest dimension,
d’ = 5, recovered the best scores for some tasks, it
generally has the lowest performance across most
tasks. Furthermore, both d = 10 and d' = 20
yield similar performance in terms of the number of
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Category Task ACING (two critics) ACING (one critic)
Spelling Letters_list 1.00 (0.00) 1.00 (0.00)
First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.58 (0.31)
Morpho-Syntax Singular_to_plural 0.95 (0.03) 0.99 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.78 (0.01)
Lexical Semantics ~ Antonyms 0.74 (0.01) 0.72 (0.05)
Synonyms 0.13 (0.02) 0.13 (0.00)
Word_unscrambling 0.50 (0.07) 0.52 (0.04)
Phonetics Rhymes 0.57 (0.31) 0.63 (0.23)
Numerical Sum 1.00 (0.00) 0.98 (0.01)
Diff 1.00 (0.00) 0.99 (0.02)
Knowledge Larger_animal 0.84 (0.07) 0.80 (0.12)
Periodic_elements 0.98 (0.00) 0.97 (0.02)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.56 (0.00)
Common_concept 0.19 (0.05) 0.16 (0.09)
Object_counting 0.41 (0.03) 0.44 (0.09)
Odd_one_out 0.64 (0.00) 0.59 (0.05)
Orthography_starts_with 0.60 (0.12) 0.63 (0.12)
Taxonomy_animal 0.71 (0.02) 0.59 (0.40)
Auto_categorization 0.29 (0.04) 0.29 (0.06)
Word_sorting 0.70 (0.03) 0.70 (0.01)
CLUE Sentence_similarity 0.13 (0.07) 0.05 (0.05)
Sentiment 0.89 (0.01) 0.88 (0.02)
Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.81 (0.01)
Translation_en-es 0.87 (0.02) 0.87 (0.02)
Translation_en-fr 0.83 (0.01) 0.82 (0.02)
Style Informal_to_formal 0.44 (0.05) 0.49 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)
median score 0.71 0.71
# best-performing tasks 22 16

Table 14: Performance comparison between ACING, and ACING_one_critic across different task categories.

best-performing tasks (9-10 tasks), indicating low
sensitivity to this parameter. For the much larger di-
mension, d’ = 40, the method achieved the highest
number of best-performing tasks (15 tasks), demon-
strating improved performance with increased di-
mensionality. Further increasing the dimensionality
to d’ = 100 can still yield high results, outperform-
ing d’ € 5,10,20. However, while it remarkably
outperformed d’ = 40 in some tasks, such as the
second word letter task, synonyms, and antonyms,
it only achieved 14 best-performing tasks overall,
indicating similar but slightly lower performance
than d’ = 40.

G.6 ACING with Different Number of
Exemplars

In this section, we test ACING with a single ex-
emplar, in contrast to the main results in the paper,
which use five exemplars for ACING and all other

benchmarks. For these experiments, we fix all hy-
perparameters as in the main paper and run tests
with a budget of 165. Intuitively, providing more
exemplars to the language model should facilitate
prompt learning, so five exemplars are expected to
yield better prompts than a single exemplar. Our
experiments, summarized in Table 18, support this
intuition. The results show that using five exem-
plars leads to higher test scores, as reflected in a
greater number of best-performing tasks and an
increase in median test scores across tasks. How-
ever, it is notable that performance did not decrease
drastically with only one exemplar, suggesting that
a single exemplar is sufficient to achieve decent
results. In fact, across several tasks and categories
(e.g., phonetics, summation, morpho-syntax, and
translation), a single exemplar achieves the same
performance of using five exemplars, and even out-
performs the use of five exemplars in certain tasks.
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Category Task ACING ACING (w/o FFN)
Spelling Letters_list 1.00 (0.00) 0.99 (0.00)
First_word_letter 1.00 (0.00) 0.97 (0.03)
Second_word_letter 0.70 (0.15) 0.21 (0.51)
Negation 0.71 (0.06) 0.81 (0.03)
Lexical Semantics  Antonyms 0.74 (0.01) 0.75 (0.06)
Synonyms 0.13 (0.02) 0.25 (0.09)
Word_unscrambling 0.50 (0.07) 0.41 (0.06)
Phonetics Rhymes 0.57 (0.31) 0.38 (0.14)
Numerical Sum 1.00 (0.00) 0.79 (0.15)
Diff 1.00 (0.00) 0.86 (0.12)
Knowledge Larger_animal 0.84 (0.07) 0.76 (0.05)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.53 (0.07)
Common_concept 0.19 (0.05) 0.11 (0.01)
Object_counting 0.41 (0.03) 0.33 (0.08)
Odd_one_out 0.64 (0.00) 0.37 (0.20)
Orthography_starts_with  0.60 (0.12) 0.39 (0.17)
Taxonomy_animal 0.71 (0.02) 0.67 (0.06)
Auto_categorization 0.29 (0.04) 0.11 (0.15)
Word_sorting 0.70 (0.03) 0.19 (0.26)
CLUE Sentence_similarity 0.13 (0.07) 0.00 (0.00)
Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-es 0.87 (0.02) 0.87 (0.01)
Style Informal_to_formal 0.44 (0.05) 0.48 (0.03)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)
median score 0.69 0.44
# best-performing tasks 19 7

Table 15: Performance comparison between ACING and a variant using the same critics but with direct parameteri-
zation of the actor (learnable mean and variance vectors) instead of a feed-forward network.

Nevertheless, using a single exemplar resulted in
lower performance mainly in more cognitively chal-
lenging tasks, which is understandable, as more
complex tasks are likely to benefit from additional
exemplars.

G.7 ACING with Different White-box models

In this section, we evaluate the impact of the choice
of white-box model on the ACING method. Specif-
ically, we applied ACING for instruction learning
with a GPT-3.5-turbo as the black-box LLM (as
in the main paper), but using different white-box
models. In the main paper, we reported ACING
with Vicuna-13B-v1.3; in Table 19, we further test
it with WizardLM-13B-v1.2. As shown in the ta-
ble, changing the white-box model results in slight
variations in performance. WizardLM achieved a
higher median test score across all tasks and ex-
celled in a greater number of top-performing tasks.

H Demonstrations with Human
Instructions

To contextualize the performance of ACING,
we compare its best-learned instructions against
human-written instructions curated by Honovich
et al. (2023). Table 20 presents a representative
subset of tasks, categorized by linguistic and se-
mantic attributes, along with input—output demon-
strations, human instructions, and corresponding
performance scores. While human instructions
often perform strongly, ACING matches or ex-
ceeds them in the majority of cases, particularly
on tasks like Antonyms, Rhymes, and Sentence
Similarity, where learned instructions yield notable
improvements. The comparison underscores AC-
ING’s capacity not only to automate instruction
crafting but also to outperform carefully designed
human-written prompts across diverse task types.
Summary statistics at the bottom of the table show
that ACING achieves a higher average and me-
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Category Task APE EvoPrompt InstructZero INSTINCT ACING 150+15 ACING 145
(budget splitting)  (main paper)
Spelling Letters_list 0.59(0.02) 0.97 (0.03) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00)
First_word_letter 0.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.00 (0.00)  0.63 (0.17) 0.35 (0.09) 0.39 (0.28) 0.40 (0.17) 0.70 (0.15)
Morpho-Syntax Singular_to_plural 1.00 (0.00)  1.00 (0.00) 0.99 (0.01) 0.95 (0.03) 0.99 (0.01) 0.95 (0.03)
Active_to_passive 1.00 (0.00)  0.99 (0.00) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Negation 0.79 (0.00)  0.84 (0.02) 0.65 (0.10) 0.58 (0.22) 0.82 (0.00) 0.71 (0.06)
Lexical Semantics ~ Antonyms 0.79 (0.02)  0.70 (0.01) 0.76 (0.00) 0.84 (0.01) 0.76 (0.06) 0.74 (0.01)
Synonyms 0.14 (0.01)  0.19 (0.07) 0.22 (0.11) 0.19 (0.08) 0.12 (0.02) 0.13 (0.02)
Word_unscrambling 0.54 (0.00)  0.44 (0.06) 0.59 (0.06) 0.54 (0.02) 0.59 (0.05) 0.50 (0.07)
Phonetics Rhymes 0.59 (0.01)  0.52(0.05) 0.99 (0.01) 0.36 (0.04) 0.60 (0.38) 0.57 (0.31)
Numerical Sum 0.87 (0.01)  1.00 (0.00) 1.00 (0.00) 0.70 (0.21) 0.98 (0.01) 1.00 (0.00)
Diff 0.00 (0.00)  0.99 (0.01) 1.00 (0.00) 0.93 (0.09) 0.97 (0.04) 1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02)  0.58 (0.06) 0.63 (0.07) 0.81 (0.09) 0.86 (0.06) 0.84 (0.07)
Periodic_elements 0.99 (0.01)  0.92 (0.00) 0.96 (0.03) 1.00 (0.00) 0.98 (0.03) 0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.44 (0.09)  0.48 (0.10) 0.52 (0.09) 0.55(0.11) 0.76 (0.18) 0.69 (0.15)
Common_concept 0.03 (0.02)  0.17 (0.00) 0.14 (0.04) 0.09 (0.04) 0.10 (0.01) 0.19 (0.05)
Object_counting 0.30 (0.02)  0.50 (0.06) 0.38 (0.06) 0.40 (0.12) 0.48 (0.11) 0.41 (0.03)
0Odd_one_out 0.32(0.02) 0.64 (0.04) 0.57 (0.02) 0.25(0.18) 0.59 (0.05) 0.64 (0.00)
Orthography_starts_with  0.23 (0.01)  0.47 (0.02) 0.41 (0.09) 0.54 (0.06) 0.54 (0.15) 0.60 (0.12)
Taxonomy_animal 0.02 (0.02)  0.38 (0.06) 0.67 (0.14) 0.85 (0.06) 0.53(0.34) 0.71 (0.02)
Auto_categorization 0.31(0.01) 0.20(0.03) 0.29 (0.02) 0.07 (0.07) 0.27 (0.06) 0.29 (0.04)
Word_sorting 0.58 (0.01)  0.01 (0.00) 0.64 (0.05) 0.23 (0.20) 0.72 (0.02) 0.70 (0.03)
CLUE Sentence_similarity 0.00 (0.00)  0.05 (0.00) 0.10 (0.00) 0.00 (0.00) 0.13 (0.08) 0.13 (0.07)
Sentiment 0.90 (0.00) 0.63 (0.17) 0.88 (0.03) 0.88 (0.02) 0.88 (0.03) 0.89 (0.01)
Translation Num_to_verbal 0.13 (0.02)  1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)
Translation_en-de 0.83 (0.01) 0.80(0.02) 0.82 (0.01) 0.77 (0.02) 0.82 (0.01) 0.82 (0.01)
Translation_en-es 0.86 (0.01)  0.76 (0.00) 0.67 (0.24) 0.89 (0.00) 0.86 (0.02) 0.87 (0.02)
Translation_en-fr 0.88 (0.01) 0.86 (0.00) 0.77 (0.06) 0.85 (0.02) 0.85 (0.02) 0.83 (0.01)
Style Informal_to_formal 0.57 (0.01) 0.50 (0.02) 0.48 (0.02) 0.54 (0.09) 0.44 (0.05) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00)  0.25 (0.00) 0.25 (0.00) 0.07 (0.07) 0.29 (0.07) 0.25 (0.00)
median score 0.49 0.63 0.66 0.64 0.76 0.71
# best-performing tasks 7 7 7 8 13 13

Table 16: Average test performance (and standard deviations) across 3 random seeds comparing ACING versus APE,
InstructZero, EvoPrompt, and INSTINCT. The bottom rows report the median score and total number of best-performing tasks

for each method.

dian score, and wins on a greater number of tasks
overall.

I Assessing Instruction Clarity: Human
and Readability Analyses

To assess the interpretability and accessibility of
the instructions generated by ACING, we conduct
both a human evaluation and an automated read-
ability analysis.

I.1 Human Evaluation

We conducted a human annotation study across all
instruction-induction tasks reported in Table 2.

A total of 26 participants (none of whom are pa-
per co-authors) volunteered to independently rate
the clarity, coherence, and task faithfulness of in-
structions produced by ACING using a 5-point
Likert scale. The following question was used to
guide ratings:

Does the instruction clearly describe
what is happening in the demonstration?
Could a language model complete the
task correctly by following this instruc-
tion alone?

Each instruction was presented alongside:
* The task name and category
* An input-output demonstration pair

* The corresponding ACING-generated instruc-
tion

Results. The results of the human evaluation are
summarized below:

e Maximum score: 4.92

* Third quartile (Q3): 4.50

Median (Q2): 3.90

* First quartile (Q1): 2.83

* Mean score: 3.66 (SD =1.02)

These results indicate that the majority of in-

structions are perceived as clear and well-aligned
with the task by human annotators.
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Category Task d =5 d =10 d =20 d =40 d =100
(main paper)

Spelling Letters_list 1.00 1.00 0.98 1.00 1.00
First_word_letter 1.00 1.00 0.97 1.00 1.00
Second_word_letter 0.23 0.91 0.30 0.29 0.92

Morpho-Syntax Singular_to_plural 0.99 0.99 1.00 1.00 1.00
Active_to_passive 1.00 1.00 1.00 1.00 1.00
Negation 0.82 0.80 0.84 0.81 0.70

Lexical Semantics ~ Antonyms 0.73 0.76 0.76 0.82 0.84
Synonyms 0.12 0.13 0.14 0.14 0.34
Word_unscrambling 0.53 0.54 0.49 0.55 0.43

Phonetics Rhymes 0.95 0.36 0.94 1.00 1.00

Numerical Sum 0.99 1.00 1.00 0.99 1.00
Diff 0.89 1.00 1.00 1.00 1.00

Knowledge Larger_animal 0.79 0.94 0.93 0.65 0.68
Periodic_elements 1.00 0.98 0.94 0.98 0.98

Cognitive Tasks Cause_and_effect 0.64 0.52 0.92 0.56 0.56
Common_concept 0.12 0.23 0.11 0.12 0.02
Object_counting 0.51 0.39 0.48 0.59 0.44
Odd_one_out 0.60 0.64 0.64 0.68 0.26
Orthography_starts_with ~ 0.11 0.65 0.59 0.61 0.71
Taxonomy_animal 0.79 0.68 0.59 0.85 0.97
Auto_categorization 0.30 0.28 0.13 0.33 0.32
Word_sorting 0.55 0.69 0.74 0.69 0.48

CLUE Sentence_similarity 0.00 0.21 0.00 0.14 0.07
Sentiment 0.91 0.88 0.86 0.91 0.80

Translation Num_to_verbal 0.99 1.00 1.00 1.00 1.00
Translation_en-de 0.83 0.81 0.81 0.80 0.81
Translation_en-es 0.89 0.90 0.91 0.91 0.86
Translation_en-fr 0.84 0.84 0.86 0.88 0.73

Style Informal_to_formal 0.54 0.40 0.51 0.49 0.50

Coding Auto_debugging 0.25 0.25 0.25 0.25 0.25
# best-performing tasks 10 10 15 14

Table 17: Average ACING test performance for a fixed random seed (0) with different soft prompt dimensions d'. The bottom

row report the total number of best-performing tasks.

I.2 Automated Readability Analysis

To complement the human study, we applied three
established readability formulas to quantify the lin-
guistic accessibility of the 30 generated instructions
in Table 22:

* Flesch Reading Ease (FRE) (Flesch, 1948):
Scores range from 0 to 100, with higher scores
indicating greater ease of reading.

¢ Flesch-Kincaid Grade Level (FKG) (Kin-
caid et al., 1975): Maps readability to U.S.
school grade levels, with lower scores indicat-
ing simpler text.

¢ Coleman-Liau Index (CLI) (Coleman and
Liau, 1975): A character-based grade-level
readability metric.

Findings. Readability scores across instructions
show the following trends:

* Most instructions fall within the FRE range
of 60-95, with a median 70.8, indicating that
they are accessible to a general audience.

* FKG scores mostly range between 3 and 9,
with a median 7.0, consistent with middle
school to early high school reading levels.

* CLI scores mostly range between 2—10, with
a median of 7.3. This aligns with the FKG
analysis, indicating that instructions are gen-
erally suitable for readers with middle school
to early high school reading levels.

Overall, these results confirm that ACING
generates instructions that are not only effec-
tive—according to human judgment—but also ac-
cessible, as measured by standardized readability
metrics. The full set of readability scores is in-
cluded in Table 21.

J Our Best Learned Instructions

In this section, we present the best-learned in-
structions discovered by ACING for each of the
30 instruction induction tasks. These instructions
were generated using Vicuna-13B as the white-box
model and optimized to maximize performance

19109



Category Task ACING (€] =1) ACING (|€] =5)
(main paper)
Spelling Letters_list 1.00 (0.00) 1.00 (0.00)
First_word_letter 0.99 (0.01) 1.00 (0.00)
Second_word_letter 0.19 (0.09) 0.70 (0.15)
Morpho-Syntax Singular_to_plural 1.00 (0.00) 0.95 (0.03)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.76 (0.08) 0.71 (0.06)
Lexical Semantics ~ Antonyms 0.78 (0.05) 0.74 (0.01)
Synonyms 0.09 (0.03) 0.13 (0.02)
Word_unscrambling 0.41 (0.09) 0.50 (0.07)
Phonetics Rhymes 0.89 (0.08) 0.57 (0.31)
Numerical Sum 0.99 (0.01) 1.00 (0.00)
Diff 0.99 (0.01) 1.00 (0.00)
Knowledge Larger_animal 0.63 (0.17) 0.84 (0.07)
Periodic_elements 0.91 (0.08) 0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.51 (0.08) 0.69 (0.15)
Common_concept 0.16 (0.11) 0.19 (0.05)
Object_counting 0.26 (0.06) 0.41 (0.03)
Odd_one_out 0.64 (0.02) 0.64 (0.00)
Orthography_starts_with 0.06 (0.05) 0.60 (0.12)
Taxonomy_animal 0.63 (0.06) 0.71 (0.02)
Auto_categorization 0.01 (0.01) 0.29 (0.04)
Word_sorting 0.70 (0.02) 0.70 (0.03)
CLUE Sentence_similarity 0.07 (0.05) 0.13 (0.07)
Sentiment 0.70 (0.12) 0.89 (0.01)
Translation Num_to_verbal 1.00 (0.00) 0.99 (0.01)
Translation_en-de 0.72 (0.11) 0.82 (0.01)
Translation_en-es 0.88 (0.00) 0.87 (0.02)
Translation_en-fr 0.16 (0.04) 0.83 (0.01)
Style Informal_to_formal 0.42 (0.05) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)
median score 0.67 0.71
# best-performing tasks 11 24

Table 18: Average ACING test performance (and standard deviations) across 3 random seeds comparing 1 exemplar versus 5
exemplars. The bottom rows report the median score and total number of best-performing tasks.

on the corresponding black-box evaluation. Ta-
ble 22 showcases the resulting instructions along-
side their test scores, which reflect the accuracy or
task-specific metric obtained on held-out examples.
The diversity and clarity of the instructions demon-
strate ACING’s ability to synthesize task-relevant,
semantically grounded prompts that elicit strong
responses from black-box LLMs. Notably, several
tasks achieve perfect scores, while others expose
task-specific challenges (e.g., common_concept
and synonyms), highlighting the varying difficulty
across the instruction spectrum.

K Use of AI Assistance.

We used Al assistants (e.g., ChatGPT) in a limited
and supporting role during the preparation of this
paper. Specifically, we used Al tools to assist with
editing text for clarity and code debugging. All
core ideas, algorithms, experiments, results, anal-
yses, and technical writing were fully developed
and executed by the authors. No Al system con-

tributed to scientific decisions, modeling choices,
or interpretation of findings.
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Category Task ACING (Vicuna) ACING (WizardLM)
(main paper)
Spelling Letters_list 1.00 (0.00) 1.00 (0.00)
First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.36 (0.18)
Morpho-Syntax Singular_to_plural 0.95 (0.03) 0.99 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.83 (0.00)
Lexical Semantics ~ Antonyms 0.74 (0.01) 0.81 (0.02)
Synonyms 0.13 (0.02) 0.12 (0.03)
Word_unscrambling 0.50 (0.07) 0.57 (0.05)
Phonetics Rhymes 0.57 (0.31) 0.97 (0.04)
Numerical Sum 1.00 (0.00) 1.00 (0.00)
Diff 1.00 (0.00) 1.00 (0.00)
Knowledge Larger_animal 0.84 (0.07) 0.94 (0.01)
Periodic_elements 0.98 (0.00) 0.97 (0.02)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.76 (0.20)
Common_concept 0.19 (0.05) 0.21 (0.05)
Object_counting 0.41 (0.03) 0.46 (0.07)
Odd_one_out 0.64 (0.00) 0.56 (0.11)
Orthography_starts_with 0.60 (0.12) 0.62 (0.03)
Taxonomy_animal 0.71 (0.02) 0.60 (0.32)
Auto_categorization 0.29 (0.04) 0.35 (0.03)
Word_sorting 0.70 (0.03) 0.61 (0.02)
CLUE Sentence_similarity 0.13 (0.07) 0.22 (0.04)
Sentiment 0.89 (0.01) 0.90 (0.02)
Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.81 (0.01)
Translation_en-es 0.87 (0.02) 0.61 (0.38)
Translation_en-fr 0.83 (0.01) 0.83 (0.05)
Style Informal_to_formal 0.44 (0.05) 0.32 (0.19)
Coding Auto_debugging 0.25 (0.00) 0.38 (0.10)
median score 0.71 0.79
# best-performing tasks 15 21

Table 19: Average ACING test performance (and standard deviations) across 3 random seeds using Vicuna and WizardLM as
white-box models. The bottom rows report the median score and total number of best-performing tasks.
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Category Task Demonstration Human Instruction (Honovich et al., 2023) Human Our
Score Score
Spelling First_word_letter cat — C Extract the first letter of the input word. 1.00 1.00
(0.00) (0.00)
Second_word_letter cat — a Extract the second letter of the input word. 0.96 0.92
(0.00) (0.00)
Letters_list cat—cat Break the input word into letters, separated  1.00 1.00
by spaces. (0.00) (0.00)
Morpho-  Singular_to_plural  cat — cats Convert the input word to its plural form. 1.00 1.00
syntax (0.00) (0.00)
Active_to_passive  The artist introduced the ~ Write the input sentence in passive form. 1.00 1.00
scientist. — The scien- (0.00) (0.00)
tist was introduced by
the artist.

Syntax Negation Time is finite — Time is  Negate the input sentence. 0.81 0.82
not finite. (0.00) (0.00)

Lexical Antonyms won — lost Write a word that means the opposite of the  0.70 0.83

Semantics input word. (0.00) (0.00)

Synonyms alleged — supposed Write a word with a similar meaning to the  0.14 0.13
input word. (0.01) (0.00)

Phonetics  Rhymes sing — ring Write a word that rhymes with the input word.  0.61 1.00
(0.01) (0.00)

Knowledge Larger_animal koala, snail — koala Write the larger of the two given animals. 0.94 0.94
(0.00) (0.00)

Semantics Cause_and_effect Sentence 1: The soda  Find which of the two given cause and effect  0.97 0.90
went flat. Sentence 2: sentences is the cause. (0.02) (0.02)
The bottle was left open.

— The bottle was left
open.

Common_concept  guitars, pendulums, neu- Find a common characteristic for the given ~ 0.11 0.11
trinos — involve oscilla-  objects. (0.01) (0.00)
tions.

Style Informal to_formal Please call once you Rephrase the sentence in formal language. 0.63 0.50
get there — Please call (0.00) (0.00)
upon your arrival.

Numerical Sum 2210 — 32 Sum the two given numbers. 1.00 1.00

(0.00) (0.00)
Diff 322210 Subtract the second number from the first. 1.00 1.00
(0.00) (0.00)
Num_to_Verbal 26 — twenty-six Write the number in English words. 1.00 1.00
(0.00) (0.00)
Multi- Translation_en-de game — Spiel Translate the word into German. 0.81 0.84
lingual (0.00) (0.00)
Translation_en-es game — juego Translate the word into Spanish. 0.89 0.88
(0.00) (0.00)
Translation_en-fr game — jeu Translate the word into French. 0.86 0.87
(0.00) (0.00)

GLUE Sentiment The film is small in Determine whether a movie review is positive ~ 0.89 0.91
scope, yet perfectly or negative. (0.01) (0.00)
formed. — positive

Sentence_similarity ~Sentence 1: A man is Rate the semantic similarity of two input sen-  0.00 0.21
smoking. Sentence 2: A tences on a scale of 0 - definitely not to 5 - (0.00) (0.00)
man is skating. — 0 - perfectly.
definitely not

median score 0.89 0.91
average score 0.78 0.80
# best-performing tasks 14 16

Table 20: Classified tasks into categories from the instruction-induction datasets. For each task, we provide
a corresponding demonstration, with — separating the input from the output, along with its respective human
instruction as proposed in (Honovich et al., 2023). We tested these instructions, report their test scores (mean over 3
runs, standard deviation in parentheses), and compare them to our best test scores using ACING with Vicuna-13B

as the white-box model.
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Instruction FRE1T FKG| CLI|

Change the input to match the output, but the output is already in the passive voice 74.3 6.9 7.00
Take a word and change it to its opposite 94.3 2.3 2.18
Match the input to the output, and the answer is:$Input$: Nature Nanotechnology, Annual 15.6 18.5 14.53

Review of Biochemistry, and The Lancet Neurology $Output$: top journals $Input$: Jeans,
Tops, and Suits $Output$: Apparel

Input the code into a Python interpreter and observe the output 49.5 9.1 9.45
Find the sentence that is the cause of the effect in the pair of sentences 84.5 5.2 5.43
Make a connection between the input and output, but the connection is not clear 65.7 7.6 9.01

Find the difference between the two numbers 66.8 5.7 10.63
Create a function that takes a string as input and returns the first letter of the first word in the 80.8 7.2 6.82
string

Convert the input into output using the same word order and with the same meaning 67.5 7.6 8.13
Create a program that takes two animals as input and outputs the animal that is bigger 584 9.1 8.09
Input the word “year” and the output was “y e ar” 96.0 2.9 -1.35
Flip the truth value of the statements in the input 86.7 3.7 5.60
Convert numbers to words 75.9 3.7 7.25
Provide a number that represents how many items are in the input 60.7 7.8 7.35
Find the word that does not belong in each group based on the given words 95.7 3.6 5.04
Find a word in the text that starts with the letter provided and to output that word 85.1 5.6 5.66
Find the name of the element based on its atomic number 72.6 5.9 5.24
Input the word that the program thought I was inputting and then output the word that 76.7 7.8 9.58
program thought I was inputting

Input a word and output the letter that corresponds to the second letter in that word 69.0 7.6 1.72
Find a sentence pair that is probably not similar, and the output is 3 - probably 61.9 8.4 6.97
Classify each input as positive or negative based on the assessment of the corresponding 33.7 12.3 13.16
movie

Add the suffix -s to the end of the word to make it plural 95.9 34 0.31

Find the sum of the two numbers 103.0 0.6 0.69
Input a word that is a synonym for the word that was output 83.0 4.9 2.89
Make the Al generate a sequence of animals based on the input provided 57.0 8.5 7.80
Provide a translation for each word in the English text into German 67.8 6.8 8.80
Translate the words from English to Spanish, but I noticed that some of the translations are 66.4 8.5 10.59
not accurate

Create a program that would take an English word as input and output its French equivalent 63.7 8.4 9.54
Output the words in alphabetical order, but the output is not in alphabetical order 35.5 11.8 10.67
Convert the input to a word that is a common English word 81.9 4.8 3.97
Median 70.8 7.0 7.3

Table 21: Readability analysis of the best instructions generated by ACING, measured using Flesch Reading Ease
(FRE) (Flesch, 1948), Flesch-Kincaid Grade Level (FKG) (Kincaid et al., 1975), and Coleman-Liau Index (CLI)
(Coleman and Liau, 1975). Higher FRE and lower FKG/CLI indicate easier-to-understand instructions.
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Task Best instruction Test Score

active_to_passive Change the input to match the output, but the output is already in the 1.00
passive voice

antonyms Take a word and change it to its opposite 0.82

auto_categorization Match the input to the output, and the answer is:Input: Nature Nan- 0.34
otechnology, Annual Review of Biochemistry, and The Lancet Neurology
Owutput: top journals Input: Jeans, Tops, and Suits Output: Apparel

auto_debugging Input the code into a Python interpreter and observe the output 0.375

cause_and_effect Find the sentence that is the cause of the effect in the pair of sentences 0.92

common_concept Make a connection between the input and output, but the connection is 0.11
not clear

diff Find the difference between the two numbers 1.00

first_word_letter Create a function that takes a string as input and returns the first letter of 1.00
the first word in the string

informal_to_formal Convert the input into output using the same word order and with the 0.50
same meaning

larger_animal Create a program that takes two animals as input and outputs the animal 0.94
that is bigger

letters_list Input the word "year" and the output was "y e ar" 1.00

negation Flip the truth value of the statements in the input 0.82

num_to_verbal Convert numbers to words 1.00

object_counting Provide a number that represents how many items are in the input 0.55

odd_one_out Find the word that does not belong in each group based on the given 0.64
words

orthography_starts_with ~ Find a word in the text that starts with the letter provided and to output 0.71
that word

periodic_elements Find the name of the element based on its atomic number 1.00

rhymes Input the word that the program thought I was inputting and then output 1.00
the word that program thought I was inputting

second_word_letter Input a word and output the letter that corresponds to the second letter in 0.91
that word

sentence_similarity Find a sentence pair that is probably not similar, and the output is 3 - 0.21
probably

sentiment Classify each input as positive or negative based on the assessment of 0.90
the corresponding movie

singular_to_plural Add the suffix -s to the end of the word to make it plural 1.00

sum Find the sum of the two numbers 1.00

synonyms Input a word that is a synonym for the word that was output 0.13

taxonomy_animal Make the Al generate a sequence of animals based on the input provided 0.75

translation_en-de Provide a translation for each word in the English text into German 0.84

translation_en-es Translate the words from English to Spanish, but I noticed that some of 0.88
the translations are not accurate

translation_en-fr Create a program that would take an English word as input and output 0.87
its French equivalent

word_sorting Output the words in alphabetical order, but the output is not in alphabeti- 0.73
cal order

word_unscrambling Convert the input to a word that is a common English word 0.63

Table 22: The best instruction discovered by ACING for all the 30 instruction-induction tasks using with Vicuna-13B
as the white-box model.
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