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Abstract

We introduce GuessingGame, a protocol for
evaluating large language models (LLMs) as
strategic question-askers in open-ended, open-
domain settings. A Guesser LLM identifies a
hidden object by posing free-form questions
to an Oracle without predefined choices or
candidate lists. To measure question quality,
we propose two information gain (IG) metrics:
a Bayesian method that tracks belief updates
over semantic concepts using LLM-scored rel-
evance, and an entropy-based method that fil-
ters candidates via ConceptNet. Both metrics
are model-agnostic and support post hoc anal-
ysis. Across 858 games with multiple models
and prompting strategies, higher IG strongly
predicts efficiency: a one-standard-deviation
IG increase reduces expected game length by
43%. Prompting constraints guided by IG,
such as enforcing question diversity, enable
weaker models to significantly improve perfor-
mance. These results show that question-asking
in LLMs is both measurable and improvable,
and crucial for interactive reasoning.

1 Introduction

Large language models (LLMs) excel at factual re-
call, arithmetic reasoning, and multi-turn dialogue
(Brown et al., 2020; OpenAl et al., 2024a). How-
ever, while their performance as answerers is well
studied, their capacity as askers, formulating strate-
gic, adaptive, and information-seeking questions,
remains less explored. This limitation matters in in-
teractive applications such as education (Chen et al.,
2024a), medical diagnosis (Li et al., 2024), and au-
tonomous decision making (Wang et al., 2024),
where effective question generation is the key to
identifying knowledge gaps and eliciting relevant
information—where knowing what to ask can mat-
ter more than knowing how to answer.

Despite their fluency, LLMs often ask vague or
redundant questions (Mazzaccara et al., 2024). Few
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| What material is the object made of? |

| The object is typically made of wood and beads. |

| What is the primary function of the object? |

| The primary function is to perform calculations. |

| Where is this object commonly found? |

| It's found in educational settings or schools. |

| Is the object an abacus?

| Correct. |

Figure 1: Example of a GuessingGame interaction: the
Guesser identifies an abacus through open-ended ques-
tions.

standardized protocols exist to evaluate question-
asking strategies in unconstrained open-domain set-
tings. Most limit queries to yes/no format (Berto-
lazzi et al., 2023), constrain the hypothesis space
(Aliannejadi et al., 2019), or assume a fully known
planning context (Zhang et al., 2024). As a re-
sult, we lack a robust way to evaluate how LLMs
generate purposeful, informative questions in un-
constrained, real-world settings.

We address this gap with GuessingGame, an
evaluation protocol in which a Guesser LLM iden-
tifies a hidden object by asking free-form questions
to an Oracle LLLM (Figure 1). The setting is fully
open-domain (no candidate list is provided) and
open-ended (questions may take any form, not just
binary). To analyze behavior, we define a five-part
taxonomy of question types: Attribute, Function,
Location, Category, and Direct guesses, and mea-
sure performance by success rate and average num-
ber of questions to reach the answer.

One disadvantage of these two metrics is that
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they only provide useful information for successful
guesses—for instance, the number of questions is
always fixed at the maximum limit when a game
fails. To address this, we propose two information
gain (IG) measures estimating uncertainty reduc-
tion per question. The first is a Bayesian belief-
tracking metric that uses LLM-generated relevance
scores to update a distribution over semantic con-
cepts. The second is a ConceptNet (Speer et al.,
2017) based metric that filters candidate objects
using knowledge graph assertions implied by each
question and its answer, estimating IG as the reduc-
tion in entropy over the object set. These metrics
allow us to quantify question informativeness with-
out requiring access to model internals or ground-
truth beliefs.

We evaluate our framework across 858 games,
testing a range of prompting strategies and model
families. @~ We find that open-ended prompts
consistently outperform binary (yes/no) ques-
tions, improving success from 32.1% to 39.4%
with LLaMA-3.3 70B (Grattafiori et al., 2024).
Attribute-based questions (e.g., about size, material,
or shape) emerge as the most informative, achiev-
ing the highest average IG and the best task perfor-
mance when used in isolation. Information gain
itself is a strong predictor of task efficiency: a one-
standard-deviation increase in Bayesian IG corre-
sponds to a 43% reduction in expected game length,
about twice the effect size of the ConceptNet-based
IG (19%). By constraining LLaMA to avoid re-
peated question types or to ask only open-ended
questions, we increase its success rate from 39.4%
to 80.0% and from 39.4% to 97.4% respectively,
greatly improving performance without architec-
tural changes. Finally, when we apply our Bayesian
IG metric post hoc to human-generated dialogues,
we observe high correlations with game efficiency
(Spearman p = —0.95 for experts and p = —0.90
for naive participants), exceeding correlations seen
in model outputs. This suggests that the metric
captures a domain-general notion of question in-
formativeness, rather than merely reflecting model-
specific uncertainty estimates. To support repli-
cation and future research, we release the Guess-
ingGame, including code, prompts, and evaluation
scripts. !

In summary, our contributions are:

1. We introduce GuessingGame, a novel open-
domain, open-ended protocol for evaluating

"https://github.com/cincynlp/GuessingGame

LLMs as strategic question-askers.

2. We propose two complementary informa-
tion gain metrics: a Bayesian belief-tracking
method using LLM-scored relevance over
semantic concepts, and an entropy-based
method grounded in ConceptNet.

3. We show that these metrics not only pre-
dict performance across humans and models,
but also support interpretable diagnosis and
prompt-level interventions that significantly
improve model behavior.

2 Related Work

LLMs as Question Askers. Recent work ex-
plores LLMs as question-askers, often using the 20
Questions game (Walsorth, 1882) to assess strate-
gic behavior. Gains are shown with belief tracking
(Bertolazzi et al., 2023), reinforcement learning
(Zhang et al., 2024), and preference tuning (Mazza-
ccara et al., 2024). Role-reversal (Noever and Mc-
Kee, 2023) and ambiguity-resilient setups (Chen
et al., 2024b) probe robustness, but remain domain-
bounded or structured. Applied work in education
(Chen et al., 2024a), healthcare (Li et al., 2024),
and preference inference (Piriyakulkij et al., 2023)
focuses on single-turn clarification under known
contexts. Prompting strategies like Rephrase-and-
Respond (Deng et al., 2024) and abstention-aware
querying (Li et al., 2024) improve specificity but do
not address long-horizon strategy. Most prior work
is either closed-domain or non-strategic, whereas
our evaluation protocol is open and strategic.

Information Gain and Strategic Reasoning. Ef-
fective questioning reduces uncertainty, and its util-
ity is often quantified using expected information
gain (EIG), entropy, or KL divergence. For ex-
ample, Mazzaccara et al. (2024) leverage direct
preference optimization (DPO) to fine-tune models
that prefer more informative questions; Piriyakulkij
et al. (2023) employ entropy-based acquisition
functions to select questions that maximize uncer-
tainty reduction about user preferences; and Hu
etal. (2024) use forward-planning strategies that an-
ticipate which queries will yield the most diagnos-
tic responses. Symbolic reasoning approximations
such as program sampling (Grand et al., 2024), be-
lief filtering (Keh et al., 2023), and commonsense
graph traversal (Zhao et al., 2023) further enable
structured search over candidate spaces to generate
or evaluate useful questions. These approaches typ-
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ically operate in closed or well-structured domains.
In contrast, we evaluate question quality without
predefined answer spaces or acquisition objectives.

Reasoning About Objects in Language Models.
Several studies probe whether LLMs encode ob-
ject attributes, affordances, and physical reason-
ing. Benchmarks like NEWTON (Wang et al.,
2023), PROST (Aroca-Ouellette et al., 2021), and
TEXT2AFFORD (Adak et al., 2024) show that
while models can reason abstractly, they often fail
on concrete or uncommon affordances. In parallel,
prior work has demonstrated that leveraging func-
tion knowledge supports object-use inference and
visual activity recognition (Jiang and Riloff, 2022,
2023). Bertolazzi et al. (2023) finds that LLMs im-
prove object identification when guided to reason
over feature spaces. We extend this line of research
by evaluating how models apply such knowledge
in open-ended, multi-turn settings.

3 Methodology

We formalize the GuessingGame protocol and de-
scribe its implementation with LLMs. Our goal
is to evaluate how effectively models gather infor-
mation, not just whether they guess correctly. To
support this, we introduce a multi-agent framework,
evaluation metrics, and a question-type taxonomy
for analysis and prompt-level control.

3.1 Task Formulation

GuessingGame is played by three agents: Ora-
cle, Guesser, and Checker, instantiated as separate
LLM instances to prevent information leakage. Or-
acle: Privy to a secret physical object drawn from
an object corpus, the Oracle answers every question
posed by the Guesser. Guesser: Asks questions
about the Oracle’s object to identify it. Checker:
Classifies each Guesser query (by question type)
and enforces any experiment-specific restrictions.
A single game proceeds in alternating turns.
Question Generation: The Guesser asks a question
based on the full dialogue history. Validity Check:
The Checker verifies that the question adheres to
all applicable constraints (e.g., “only attribute ques-
tions”). If a constraint is violated or if the Guesser
attempts to ask “What is the object?” or a similarly
trivializing question, it is prompted to revise the
query (see Appendix D for validation details). Or-
acle Response: If the question is valid, the Oracle
responds. If the Guesser makes a correct direct
guess, the game ends; otherwise, play continues.

Figure 2: Overview of one GuessingGame round:
Guesser asks, Checker validates, Oracle responds.

The game ends when the Guesser correctly names
the object or after 50 turns (failure).

Formally, let O be the set of possible objects,
@ the space of queries, and A the space of Ora-
cle responses. A single game runs for up to Tiax
turns (we set Tinax = 50 for all our experiments).
At turn t, the Guesser generates a question Q; =
Guesser(H;_1), and the Oracle returns an answer
A; = Oracle(Qy, 0*), where 0* € O is the secret
objectand Hy_1 = {(Ql, Al), ey (Qtfl, Atfl)}
is the full dialogue history up to turn ¢. The game
ends successfully at turn T' < T if Qr =
“Is it a 07?” and the Oracle answers “Correct.”
Otherwise it is a failure after T, ax.

Evaluation Metrics. We evaluate model perfor-
mance using two primary metrics. First, Success
Rate (SR) measures the proportion of games in
which the Guesser successfully identifies the target
object, reflecting overall task accuracy. Second,
Average Number of Questions (ANQ) calculates
the mean number of questions asked in successful
games, indicating the model’s efficiency. We define
success rate as SR = & 3"V | 1(game; succeeds)
and average number of questions as ANQ =
‘?ﬂ Zie s Ii, where N is the total number of games,
S is the set of successful games and 7; is the num-
ber of turns in game 3.

3.2 Question Types

Rosch et al. (1976) showed that humans prefer “ba-
sic” category questions that maximize diagnostic
features. Motivated by focused studies that target
most common object-knowledge—functions (Chao
et al., 2015; Jiang and Riloff, 2021), locations (Col-
lell et al., 2018; Jiang and Riloff, 2018; Xu et al.,
2018), physical attributes (Forbes and Choi, 2017;
Tandon et al., 2017), and category/taxonomic rela-
tions (Suchanek et al., 2007; Shwartz et al., 2016)—
we adopt these question types as the principal axes
of inquiry:
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Attribute questions gather physical features
(shape, size, color). Ex: What color is the object?
Function questions probe purpose, unlocking
causal or affordance-based reasoning. Ex: Is the
object used for communication?

Location questions tap into contextual priors;
knowing where something lives often reveals what
itis. Ex: Is the object typically found indoors?
Category questions leverage taxonomic knowl-
edge, asking “Is it a kind of X?” to traverse seman-
tic hierarchies. Ex: Is the object an instrument?
Direct guesses commit to a hypothesis, serving as
a binary test that can immediately terminate the
search. Ex: Is the object a table?

Together, these question types capture key di-
mensions of inquiry: sensory grounding (Attribute),
causal reasoning (Function), contextual inference
(Location), conceptual classification (Category),
and decisive hypothesis testing (Direct).

4 Measuring Information Gain

While success rate and question count reflect over-
all task performance, they do not capture how much
each question reduces uncertainty. To address this,
we introduce two complementary measures of in-
formation gain (1G) that evaluate the utility of indi-
vidual question-answer pairs.

Information-theoretic approaches have long
guided questioning strategies in 20 Questions-style
tasks (Dagan et al., 2017; Bertolazzi et al., 2023),
typically assuming a fixed candidate set. But these
assumptions break down in open-domain settings
like ours. Instead, we propose two methods to mea-
sure the information gain: (1) a Bayesian belief-
tracking model that updates a distribution over se-
mantic concepts using scores from an Interpreter
LLM, and (2) a symbolic entropy-based metric that
uses ConceptNet (Speer et al., 2017) to filter candi-
dates based on answer-implied assertions.

4.1 Bayesian Belief Update

Intuitively, when playing the GuessingGame, a
good answer should shift our “belief”” about which
objects remain plausible: a good question will elim-
inate unlikely candidates and boost the likelihood
of those that fit the evidence. Since our Guess-
ingGame is open-domain (object candidate list is
not provided), it is not plausible to measure the
probability distribution of each candidate during
the game. Inspired by Smith et al. (2023), which
prioritizes belief shifts over latent hypotheses, we

measure a probability distribution over belief con-
cepts (instead of potential objects) and update it
whenever we observe a new answer. For example,
if we know the hidden object is made of metal (con-
cept), then it is unlikely to be clothing. By framing
each answer as “soft evidence” for or against partic-
ular concepts, we can use a Bayesian-style update
rule to track how uncertainty changes over time.

Interpreter LLM. To create a belief distribu-
tion, we introduce an Interpreter model—an LLM
which is prompted to take the latest question and an-
swer as input and returns a scored list of concepts,
St = {(ci,mi)}™,, where r; € (—1,1). Each
concept c; represents a physical or functional prop-
erty (e.g., metal, kitchen appliance, man-made),
and each score r; indicates how strongly the an-
swer supports or contradicts that concept. We treat
negative scores as evidence against a concept and
relabel them as negations, e.g., a score of —0.8 for
plastic becomes “not plastic” with score 0.8. This
framework follows the intuition behind verbalized
confidence scoring (Yang et al., 2024), to assign
explicit relevance scores to candidate concepts.

Belief Update. To achieve an open-world setting
we do not assume a predefined concept pool. We
begin each game with an empty belief state by(c)—
no concept receives any probability mass until it
is first introduced by the Interpreter. Evidence ac-
crued during the dialogue then builds the posterior
from scratch using a log-linear update:

ifc e by,

exp(a - 1¢), otherwise

bus (¢) = {bt(c) e

max(l;tfl (c),¢)
> max(bir1(c),€)

Here, a > 0 controls the influence of the ev-
idence (we use o = 1; see Appendix F), and
e = 10712 prevents zero mass. A pruning thresh-
old is used to discard concepts whose posterior
mass falls below a fixed cutoff, preventing the be-
lief state from being diluted by dozens of near-zero
hypotheses and keeping the Guesser focused on the
most plausible candidates. This formulation cor-
responds to a soft-evidence update consistent with
Jeffrey conditioning (Jeffrey, 1965), treating each
relevance score as a log-likelihood proxy. The ex-
ponential form is well-suited to our setting, where
observations are uncertain, continuous-valued (i.e.,
LLM-scored), and no hard posterior is known. It

beyi(c) =
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provides a smooth, monotonic shift toward con-
cepts most consistent with the answer.

To measure how much the belief changed from
one turn to the next, we compute the KL divergence
between the updated belief and the prior:

1G; = D (bt || br)
= Z be41(c) log

This value increases when the distribution becomes
more focused, i.e., the model becomes more confi-
dent in a smaller set of hypotheses. This reflects the
principle that informativeness arises when answers
induce meaningful belief shifts over predictions,
consistent with work on prediction-oriented acqui-
sition functions (Smith et al., 2023).

bi+1(c) (2)
max(b(c),e)’

Example. At turn t, the Guesser asks “What ma-
terial is it made of?” and the Oracle replies “It’s
shiny and metallic.” The Interpreter processes this
exchange and outputs relevance scores for high-
level concepts: metal: 0.9, steel: 0.7, aluminum:
0.6. These scores are treated as soft evidence in the
belief update, boosting concepts that align with the
answer using the log-linear update. Concepts not
mentioned (e.g., plastic, wood) retain their scores
and become down-weighted during normalization.
This shifts the belief distribution toward more plau-
sible hypotheses and yields a gain in information
measurable by KL divergence.

4.2 Entropy-Based Information Gain

Alternative to our Bayesian belief-tracking ap-
proach, we propose a method for estimating infor-
mation gain based on uncertainty reduction in an
existing knowledge graph. If the Oracle’s answer
implies that the object likely has a certain property
(e.g., sharp), we can prune candidates that lack that
property for measurable entropy reduction.

We use ConceptNet (Speer et al., 2017), a large
commonsense knowledge graph where nodes are
natural language concepts and directed edges
encode semantic relations such as IsA, MadeOf,
UsedFor, and HasProperty. For example,
(/r/HasProperty, /c/en/knife, /c/en/sharp)

and (/r/UsedFor, /c/en/knife, /c/en/cutting).

This lets us ground free-form Oracle answers in a
symbolic space of semantic hypotheses.

Matching Answers to Assertions. Given an Or-
acle response A;, we convert it into an embed-
ding vector v, using a pre-trained model all-
MiniLM-L6-v2 from the Sentence Transformers

library (Reimers and Gurevych, 2019). Each Con-
ceptNet concept label is also embedded into a
vector v.. We then compute the cosine similar-
ity between the Oracle response and each con-
cept as sim(Ay, c) = %. This allows us
to identify the concepts most semantically related
to the Oracle’s answer. For all concepts ¢ where
sim(A;,¢) > 7 (we use 7 = 0.60; see Ap-
pendix E), we collect all ConceptNet edges that
end in c: that is, we extract assertions of the form
(r,0,c), where 7 is a relation and o is a possible
object. This gives us a set of assertions (7, ¢) that
are semantically implied by the answer.

At each turn t, we maintain a set D; of remain-
ing candidate objects. Initially this is all possible
objects in ConceptNet. After each Oracle response,
we shrink this set based on the matched assertions.
For each assertion (r,c), we retrieve the subset

of objects consistent with that assertion: yt("’c) =
{o € D; | (r,0,c) € ConceptNet}. We then define
the updated candidate set as Dy = U(T’ 0 yt(“c),
the union of all “yes-sets”. In other words, we re-
tain any object o € D, that matches at least one of
the answer-implied assertions; objects that match
none are filtered out.

Measuring Entropy Reduction. We assume a
uniform prior over the current candidate set Dy,
so the initial uncertainty is Hprior = logy |Dyl.
After applying the filter, the new candidate set
is D¢11, and the updated uncertainty becomes
Hpost = logy |Dyy1|. We define information gain
as the drop in entropy:

Dy
D]’

which reflects how much the question-answer ex-
change reduced the size, and thus uncertainty, of
the hypothesis space.

This entropy-based metric captures how Con-
ceptNet knowledge prunes unlikely candidates for
the secret object. The candidate pool shrinks each
turn, since D; 11 C Dy, guaranteeing non-negative
information gain. In Section 5.2, we compare this
method to our Bayesian KL metric and show that
it correlates with convergence, albeit less strongly.

IGt = Hprior - Hpost = 10g2 (3)

Design Tradeoffs. While both information gain
metrics estimate how much a question reduces un-
certainty, they differ in assumptions, scalability,
and cost. The Bayesian method is much more flex-
ible, requiring no fixed knowledge base, and han-
dles implicit properties and unstructured domains.
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Condition

Closed-Ended
Open-Ended

SR (%) ANQ

321+£3.12 250+ 135
394 +3.26 23.3+1.36

Table 1: LLaMA-3.3 70B performance under open-
ended vs. binary-only questions. 95% confidence inter-
vals shown. SR—success rate, ANQ-average number of
questions.

Type Ratio (%) BayesIG (0) Entropy IG (o)
Attribute 37.6 +0.19 +0.24
Direct 21.7 +0.08 -0.13
Category 14.0 -0.01 -0.00
Function 23.6 -0.07 -0.18
Location 2.90 -0.19 +0.08
Open-Ended 5.90 +0.12 +0.03
Closed-Ended 94.1 -0.12 -0.03

Table 2: Proportion and mean IG per question type and
format, reported as standard deviations from the overall
mean IG.

However, it is computationally expensive and de-
pends on the calibration of the Interpreter model.
In contrast, the ConceptNet-based method is more
efficient and model-free, relying on sentence em-
beddings and graph lookups to prune the candidate
set. But it is limited by ConceptNet’s coverage and
may miss properties not explicitly encoded.

5 Results

We evaluate our GuessingGame protocol across var-
ious settings, each run for a total of 858 games. Un-
less otherwise noted, all agents—the Guesser, Ora-
cle, and Checker—were instantiated with LLaMA-
3.3 70B and a temperature of 0.6.

Object Corpus. We draw our secret objects from
Jiang and Riloff (2021), a broad collection of ev-
eryday objects annotated with their typical func-
tions. To obtain a clean set of standalone objects,
we exclude high-level categories (e.g., apparel, ap-
pliance) that do not denote specific objects, and
de-duplicate synonymous entries (e.g., axe vs. ax).
The resulting corpus consists of 858 distinct objects
which we test in all experiments.

5.1 GuessingGame Results

We begin our evaluation by assessing LLM per-
formance on the core GuessingGame task: iden-
tifying a hidden object through multi-turn, free-
form dialogue. Table 1 summarizes baseline re-
sults for LLaMA-3.3 70B under two conditions:
the standard, unconstrained setting in which the

1.00

Type
—— Attribute

Function
0.75 A —— Location
—— Category
—— Direct

Proportion
o
o
o

0.25

T T T T T T T T T
1 6 11 16 21 26 31 36 41 46
Turn Number

Figure 3: Distribution of question types by turn. Later
turns reflect fewer games, as many conclude early, so
proportions in later rounds are based on smaller samples.

Guesser may ask any type of question, and a more
traditional closed-ended variant restricted to yes/no
queries. In the open-ended setting, the model
achieves a 39.4% success rate. When constrained
to binary prompts, performance drops to 32.1%.

Intuitively, this makes sense: open-ended
prompts elicit more complete answers, while bi-
nary questions may convey no new information
depending on the response. For example, “What
material is the object made of?” yields a useful an-
swer regardless of the object, whereas “Is it metal?”
is only informative if the answer is “yes.”

Our information gain metrics reinforce this inter-
pretation. We measure the average IG per question
type and report them as standard deviations from
the overall mean 1G. As shown in Table 2, open-
ended questions yield substantially higher average
IG than closed-ended ones (+0.120 vs. —0.120
under the Bayesian metric).

Despite their clear advantage, open-ended ques-
tions are rarely used: only 5.9% of all questions
were open-ended. This suggests a missed oppor-
tunity and motivates our later experiments, which
test whether prompting strategies can encourage
more informative, high-yield questions.

Question-Type. Effective inquiry often depends
on the type of question being asked. Cognitive
psychology research has shown that concrete, per-
ceptual questions (e.g., about size or material) tend
to be more diagnostic than abstract or contextual
questions (Rosch et al., 1976).

Figure 3 shows how our question types (see Sec-
tion 3.2) are distributed over the course of the game-
play of the standard GuessingGame task. Early
turns are dominated by exploratory questions, es-
pecially Attribute and Function, while later rounds
shift toward Direct guesses. This reflects a shift
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Question Type SR (%) ANQ

All Types 394 +326 233+ 1.36
Attribute-Only  35.8 +3.20 23.6 £1.30
Function-Only  31.0 £3.09 243+ 1.28
Location-Only 184 +2.59 245 £9.40

Table 3: LLaMA-3.3 70B GuessingGame performance
when limited to specific question types.

from exploration to hypothesis testing.

To isolate the utility of each question type, we
run a controlled experiment where the Guesser is
restricted to asking only one type of information-
seeking question: Artribute, Function, or Location,
while still permitting Direct guesses. Table 3 shows
that Attribute-only questions yield a 35.8% suc-
cess rate, nearly matching the full-question base-
line (39.4%). Function-only and Location-only
conditions perform worse (31.0% and 18.4%, re-
spectively). This disparity likely reflects differ-
ences in expressive range: most objects afford only
one or two meaningful function or location queries
(e.g., “What is it used for?”, “Where is it found?”),
whereas Attribute questions have many aspects to
probe (e.g., size, shape, material, and color).

These behavioral trends are reflected in our infor-
mation gain metrics. As shown in Table 2, Attribute
questions achieve the highest average information
gain (+0.190 Bayesian, +0.240 entropy), while
Function and Location questions perform worse.
These findings directly align with the Bayesian IG
rankings (Attribute>Function>Location), suggest-
ing that the Bayesian metric captures the per-type
informativeness of questions with high fidelity.

5.2 Information Gain Comparison

We compare our two information gain (IG) metrics,
Bayesian belief updates and ConceptNet-based en-
tropy reduction, by asking: does higher IG predict
faster convergence to the correct object?

Spearman Correlation. To evaluate if IG pre-
dicts success, we compute Spearman correlation p
between mean IG per round and total game length.
Bayesian 1G shows a stronger correlation in Spear-
man correlation with total number of questions as
opposed to Entropy-based IG: p = —0.63 (p =
1.51 x 107 13) vs. p = —0.21 (p = 2.73 x 10721).
This suggests Bayesian IG better reflects long-term
informativeness trends.

Accelerated Failure Time Model. To capture
the turn-level predictive power of IG, we apply

IG Metric AFT Coefficient (p) Spearman p
Bayesian —0.57 —0.63
Entropy —-0.21 —0.25

Table 4: Comparison of IG metrics. AFT coefficients
reflect the log-linear effect of IG on game length; Spear-
man correlations are computed between average IG and
number of rounds to completion. Negative values in-
dicate that higher IG predicts faster convergence. All
coefficients are significant at the p < 0.001 level.

an Accelerated Failure Time (AFT) model, com-
monly used in survival analysis. AFT models esti-
mate how covariates directly scale expected time-
to-event, in this case, the number of turns until the
Guesser succeeds. AFT operates in log-time, ex-
pressing the logarithm of expected duration as a
linear function of predictors. Coefficients can be
exponentiated to interpret the multiplicative effect
of each unit increase in a predictor.

In our analysis, Bayesian IG yields a strong nega-
tive effect (8 = —0.57, p = 1.77x1077), meaning
that for every one standard deviation increase in IG,
the expected number of turns is scaled by a factor
of e7057 ~ 0.57, a 43% reduction. Entropy-
based IG also has a significant effect (8 = —0.21,
p = 1.25 x 107'2), corresponding to a 19% re-
duction in expected game length (e 02! ~ 0.81).

Both metrics significantly predict task conver-
gence, but Bayesian IG consistently outperforms
entropy-based IG in both correlation and effect size.
While entropy-based IG provides a fast, model-
free signal grounded in commonsense pruning,
Bayesian IG offers a more descriptive and flexi-
ble measure of question utility.

6 Analysis

We analyze two complementary aspects of perfor-
mance on the GuessingGame protocol: (1) how
simple prompting interventions affect model be-
havior, and (2) how different LLMs compare in
terms of strategic questioning ability. In both cases,
Bayesian information gain serves as a useful mea-
sure for interpreting and explaining observed dif-
ferences in performance.

Improving Behavior through Prompting Con-
straints. Qualitatively, we noticed a common fail-
ure mode in GuessingGame which we call enu-
merative questioning, where the Guesser issues a
sequence of near-identical queries that vary only
slightly in content (e.g., “Is it made in Ohio?”,
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Figure 4: Average Bayesian information gain by number
of consecutive same-type questions. 95% CI shown.

“...in New York?”, “...in Germany?’). To as-
sess the impact of this behavior, we analyzed how
information gain changes under these conditions.
As shown in Figure 4, average IG drops sharply
when models repeat the same type across consec-
utive turns, indicating diminishing returns. To ad-
dress this, we introduced a repeat-type prompting
constraint that prevents back-to-back questions of
the same type. This simple intervention leads to
substantial improvement: LLaMA-3.3 70B’s suc-
cess rate more than doubles, rising from 39.4% to
80.0%.

Our second intervention targets question format.
As shown in Table 2, open-ended questions yield
higher IG than binary (yes/no) questions. Yet,
despite their higher informativeness, open-ended
questions were rarely used in LLaMA’s default be-
havior. So, we introduced a forced open-endedness
prompt constraint, limiting the Guesser to free-
form questions except for final direct guesses—
increasing the success rate to 97.4%. Together,
these findings demonstrate that targeted prompting
strategies, motivated by IG trends, can substantially
improve question quality and task performance.

Model Comparisons. We evaluate several LLMs
on GuessingGame to assess their ability to ask in-
formative, goal-directed questions.

Table 5 shows that proprietary models such as
GPT-40 (OpenAl et al., 2024b) and Gemini 2.0
Flash-Lite (Team et al., 2025) perform better out of
the box, with them achieving a 64.1% and 74.1%
success rate respectively. In contrast, LLaMA-3.3
70B, under default prompting, has a 39.4% success
rate. When prompted to adopt an open-ended strat-
egy via constraints enforcing question diversity and
free-form formats, every model shows a striking
improvement in performance. These results un-

Model / Condition SR ANQ Spearman p
LLaMA-3.3 70B
Standard 39.4+3.30 233+1.30 -0.63
Repeat Constraint 80.0 £2.70 12.6 +1.00 -0.69
Forced Open 974 +1.06 8.30+0.56 -0.51
GPT-40
Standard 64.1£3.20 20.1+1.17 -0.33
Forced Open 98.5+0.83 690+ 048 -0.45
Gemini 2.0 Flash-Lite
Standard 74.1+£292 165+ 1.28 -0.43
Forced Open 87.3+222 134+1.09 -0.47

Table 5: LLM performance under different prompting
strategies and models. Spearman coefficients (p) show
correlation between the average IG per question per
game and the length of the game, with significance at
the p < 0.001 level.

Group SR (%) ANQ Spearman p
Experts 96.3 +2.50 7.00 & 1.00 -0.95
Naive 88.8 £6.90 9.24 +2.20 -0.90

Table 6: Human performance on the GuessingGame
task. 95% confidence intervals shown. Spearman coef-
ficients represent the correlation between the average
Information Gain per question per game and length of
the game, with significance at the p < 0.001 level.

derscore a key distinction between capability and
behavior. Weaker models like LLaMA can match,
or even outperform, stronger models, if prompted
to ask better questions.

However, regardless of models and settings,
higher per-turn information gain is consistently as-
sociated with shorter games and greater accuracy.

Human Performance Comparison. To contex-
tualize LLM performance, we conducted a small-
scale evaluation with human participants. Two of
the paper’s authors (familiar with the task design)
and two unpaid naive volunteers (with no prior
exposure) each completed 40 games under the stan-
dard 50-turn limit, yielding a total of 160 games.
Results are shown in Table 6.

We applied our Bayesian information gain met-
ric post hoc to the human-generated dialogues. Per-
turn IG was a very strong predictor of game effi-
ciency, with Spearman p = —0.95 for experts and
p = —0.90 for naive participants, exceeding the
corresponding values observed in LLMs.

These results raise a key question about what the
metric is actually measuring. While our IG formu-
lation is motivated by verbalized relevance scores
intended to approximate belief updates from LLMs
(Yang et al., 2024), its consistently high correlation
with both human and model performance suggests
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it may not reflect internal uncertainty. Rather, it
appears here to function as a general-purpose mea-
sure of question informativeness.

7 Conclusion

We present GuessingGame, a protocol for eval-
uating large language models as question-askers
in open-ended, open-domain settings. Framed as
an interactive guessing task, it enables principled
assessment of question quality using Bayesian be-
lief updates and entropy-based metrics. Our re-
sults show that question-asking is both measurable
and improvable. This work lays the foundation
for richer evaluations of curiosity, exploration, and
strategy in language models.

Limitations

While GuessingGame provides a novel and rig-
orous framework for evaluating question-asking
behavior in large language models (LLMs), several
limitations merit discussion.

External vs. Internal Belief Modeling. Our
Bayesian information gain metric is computed via
an external belief-tracking mechanism rather than
derived from internal model states. While this
allows for interpretability and post hoc analysis
across any model’s output or question, it does not
reveal whether LLMs internally represent beliefs
or update them coherently across turns. Our met-
ric measures observable behavior, not necessarily
latent cognition. Future work should investigate
whether these externally modeled belief updates
align with a model’s internal representations, po-
tentially leveraging adequacy criteria proposed by
Herrmann and Levinstein (2024).

Dependence on the Interpreter LLM. Our
Bayesian IG metric depends on the accuracy and
calibration of an Interpreter LLM, which scores
relevance of answer-implied concepts. This intro-
duces a second-order model dependency that may
inject bias or noise. If the Interpreter misjudges
the semantic content of an answer, belief updates
may be misleading. While we mitigate this through
normalization and smoothing, future work should
validate alternative interpreters, explore ensemble
methods, or benchmark against human-labeled rel-
evance scores.

Interpretive Status of Bayesian IG. Our results
suggest that Bayesian information gain is a strong
predictor of task efficiency across both LLMs and

humans. In particular, its post hoc application to
human-generated dialogues yields striking correla-
tion with game performance. However, we do not
claim to have formally established that this met-
ric constitutes a domain-general or human-aligned
measure of question informativeness. While the
observed correlations are promising, they do not
prove that the metric captures the same cognitive
principles humans use when formulating questions,
nor that it generalizes beyond the GuessingGame
context. Further work is needed to test whether
this metric aligns with human judgments of infor-
mativeness across diverse tasks, question formats,
and domains. Our current findings should thus be
interpreted as preliminary evidence that Bayesian
IG could serve as a general-purpose metric, not a
definitive validation.

Knowledge Base Coverage for Entropy-Based
IG. Our entropy-based metric depends on Con-
ceptNet’s graph structure to filter candidate ob-
jects. However, ConceptNet has limited coverage
for niche or multi-functional objects and contains
sparse or noisy edges for some object-property
pairs. This makes the metric more reliable for com-
mon objects but potentially brittle in low-resource
or specialized domains. Additionally, the reliance
on static embeddings for semantic matching may
overlook subtle answer nuances not captured by
cosine similarity.

Limited Domain Scope. While our experiments
focus exclusively on everyday, prototypical objects,
the GuessingGame framework is general and could
be instantiated over a wide range of object sets. For
example, the task could be adapted to diagnostic
domains by using diseases as the hidden concepts
and simulating symptom-based queries. Similarly,
it could be applied to scientific discovery, legal
reasoning, or strategic gameplay where the hidden
target represents a theory, precedent, or opponent
strategy. In this work, we restrict our scope to
concrete, physical artifacts to ensure interpretabil-
ity and controlled analysis, but future work could
explore more abstract or high-stakes domains.

Acknowledgments

This work benefited greatly from the discussions of
the CincyNLP group. We further thank the anony-
mous EMNLP reviewers for their careful reading
and thoughtful feedback. We also thank volunteer
game players, Jim and Marylee Vennemeyer.

17353



References

Sayantan Adak, Daivik Agrawal, Animesh Mukherjee,
and Somak Aditya. 2024. Text2afford: Probing ob-
ject affordance prediction abilities of language mod-
els solely from text. In Proceedings of the 28th Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2024).

Mohammad Aliannejadi, Hamed Zamani, Fabio
Crestani, , and W. Bruce Croft. 2019. Asking clari-
fying questions in open-domain information-seeking
conversations. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2019).

Stéphane Aroca-Ouellette, Cory Paik, Alessandro Ron-
cone, and Katharina Kann. 2021. Prost: Physical
reasoning of objects through space and time. In Find-
ings of the Association for Computational Linguistics
(ACL-1JCNLP 2021).

Leonardo Bertolazzi, Davide Mazzaccara, Filippo
Merlo, and Raffaella Bernardi. 2023. Chatgpt’s in-
formation seeking strategy: Insights from the 20-
questions game. In Proceedings of the 16th Inter-
national Natural Language Generation Conference
(INLG 2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 13 others. 2020. Language models are
few-shot learners. In Advances in Neural Informa-
tion Processing Systems 33 (NeurIPS 2020).

Yu-Wei Chao, Zhan Wang, Rada Mihalcea, and Jia
Deng. 2015. Mining semantic affordances of visual
object categories. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition

(CVPR 2015).

Yuyan Chen, Chenwei Wu, Songzhou Yan, Panjun Liu,
and Yanghua Xiao. 2024a. Dr.Academy: A bench-
mark for evaluating questioning capability in edu-
cation for large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2024).

Yuyan Chen, Tianhao Yu, Yueze Li, Songzhou Yan, Si-
jia Liu, Jiaging Liang, and Yanghua Xiao. 2024b. Do
large language models have problem-solving capa-
bility under incomplete information scenarios? In
Findings of the Association for Computational Lin-
guistics (ACL 2024).

Guillem Collell, Luc Van Gool, and Marie-Francine
Moens. 2018. Acquiring common sense spatial
knowledge through implicit spatial templates. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI 2018).

Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay
Moran. 2017. Twenty (simple) questions. In Pro-
ceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC 2017).

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2024. Rephrase and respond: Let large
language models ask better questions for themselves.
Preprint, arXiv:2311.04205.

Maxwell Forbes and Yejin Choi. 2017. Verb physics:
Relative physical knowledge of actions and objects.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2017).

Gabriel Grand, Valerio Pepe, Jacob Andreas, and
Joshua B. Tenenbaum. 2024. Loose lips sink
ships: Asking questions in battleship with language-
informed program sampling. In Proceedings of the
Annual Meeting of the Cognitive Science Society
(CogSci 2024).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Daniel A. Herrmann and Benjamin A. Levinstein. 2024.
Standards for belief representations in LLMs. Minds
and Machines, 35(1).

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao,
See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei
Koh, and Bryan Hooi. 2024. Uncertainty of thoughts:
Uncertainty-aware planning enhances information
seeking in large language models. In Advances in
Neural Information Processing Systems 37 (NeurlPS
2024).

Richard C. Jeffrey. 1965. The Logic of Decision. Uni-
versity of Chicago Press, New York, NY, USA.

Tianyu Jiang and Ellen Riloff. 2018. Learning proto-
typical goal activities for locations. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL 2018).

Tianyu Jiang and Ellen Riloff. 2021. Learning prototyp-
ical functions for physical artifacts. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(ACL-1JCNLP 2021).

Tianyu Jiang and Ellen Riloff. 2022. Identifying phys-
ical object use in sentences. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2022).

Tianyu Jiang and Ellen Riloff. 2023. Exploiting com-
monsense knowledge about objects for visual activity

17354


https://aclanthology.org/2024.conll-1.27/
https://aclanthology.org/2024.conll-1.27/
https://aclanthology.org/2024.conll-1.27/
https://dl.acm.org/doi/10.1145/3331184.3331265
https://dl.acm.org/doi/10.1145/3331184.3331265
https://dl.acm.org/doi/10.1145/3331184.3331265
https://aclanthology.org/2021.findings-acl.404/
https://aclanthology.org/2021.findings-acl.404/
https://aclanthology.org/2023.inlg-main.11/
https://aclanthology.org/2023.inlg-main.11/
https://aclanthology.org/2023.inlg-main.11/
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Chao_Mining_Semantic_Affordances_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Chao_Mining_Semantic_Affordances_2015_CVPR_paper.html
https://aclanthology.org/2024.acl-long.173/
https://aclanthology.org/2024.acl-long.173/
https://aclanthology.org/2024.acl-long.173/
https://aclanthology.org/2024.findings-acl.131/
https://aclanthology.org/2024.findings-acl.131/
https://aclanthology.org/2024.findings-acl.131/
https://cdn.aaai.org/ojs/12239/12239-13-15767-1-2-20201228.pdf
https://cdn.aaai.org/ojs/12239/12239-13-15767-1-2-20201228.pdf
https://dl.acm.org/doi/10.1145/3055399.3055422
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://doi.org/10.18653/v1/P17-1025
https://doi.org/10.18653/v1/P17-1025
https://escholarship.org/uc/item/6gx0t2wj
https://escholarship.org/uc/item/6gx0t2wj
https://escholarship.org/uc/item/6gx0t2wj
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1007/s11023-024-09709-6
https://proceedings.neurips.cc/paper_files/paper/2024/hash/2b0e14abd8128e6bf98b6b0bec1cfcbf-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/2b0e14abd8128e6bf98b6b0bec1cfcbf-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/2b0e14abd8128e6bf98b6b0bec1cfcbf-Abstract-Conference.html
https://press.uchicago.edu/ucp/books/book/chicago/L/bo3640589.html
https://doi.org/10.18653/v1/P18-1120
https://doi.org/10.18653/v1/P18-1120
https://aclanthology.org/2021.acl-long.540/
https://aclanthology.org/2021.acl-long.540/
https://doi.org/10.18653/v1/2022.emnlp-main.781
https://doi.org/10.18653/v1/2022.emnlp-main.781
https://doi.org/10.18653/v1/2023.findings-acl.457
https://doi.org/10.18653/v1/2023.findings-acl.457

recognition. In Findings of the Association for Com-
putational Linguistics: ACL 2023 (Findings of ACL
2023).

Sedrick Keh, Justin T. Chiu, and Daniel Fried. 2023.
Asking more informative questions for grounded re-
trieval. Preprint, arXiv:2311.08584.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin
Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, , and Yulia Tsvetkov. 2024. Mediq: Question-
asking LLMs and a benchmark for reliable interactive
clinical reasoning. In Advances in Neural Informa-
tion Processing Systems 37 (NeurlPS 2024).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Davide Mazzaccara, Alberto Testoni, and Raffaella
Bernardi. 2024. Learning to ask informative ques-
tions: Enhancing LLMs with preference optimization
and expected information gain. In Findings of the
Association for Computational Linguistics: EMNLP
2024 (Findings of EMNLP 2024).

David Noever and Forrest McKee. 2023. Chatbots as
problem solvers: Playing twenty questions with role
reversals. Preprint, arXiv:2301.01743.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAl, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, and 400 oth-
ers. 2024b.  Gpt-4o0 system card.  Preprint,
arXiv:2410.21276.

Top Piriyakulkij, Volodymyr Kuleshov, and Kevin Ellis.
2023. Asking clarifying questions using language
models and probabilistic reasoning. In Foundation
Models for Decision Making Workshop (NeurIPS
2023).

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2019).

Eleanor Rosch, Carolyn B Mervis, Wayne D Gray,
David M Johnson, and Pennt Boyes-Braem. 1976.
Basic objects in natural categories. Cognitive psy-
chology, 8(3).

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL 2016).

Freddie Bickford Smith, Andreas Kirsch, Sebastian Far-
quhar, Yarin Gal, Adam Foster, and Tom Rainforth.
2023. Prediction-oriented bayesian active learning.
In Proceedings of the 26th International Conference
on Artificial Intelligence and Statistics (AISTATS
2023).

Robert Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI
2017).

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowledge
unifying wordnet and wikipedia. In Proceedings of
the 16th International Conference on World Wide
Web (WWW 2007).

Niket Tandon, Gerard de Melo, and Gerhard Weikum.
2017. WebChild 2.0 : Fine-grained commonsense
knowledge distillation. In Proceedings of ACL 2017,
System Demonstrations.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki
Lazaridou, and 1332 others. 2025. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

M.T. Walsorth. 1882. Twenty Questions: A Short Trea-
tise on the Game to which are Added a Code of Rules
and Specimen Games for the Use of Beginners. Holt.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6).

Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha
Srinivasa. 2023. Newton: Are large language models
capable of physical reasoning? In Findings of the
Association for Computational Linguistics (EMNLP
2023).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Hugging-
face’s transformers: State-of-the-art natural language
processing. Preprint, arXiv:1910.03771.

17355


https://doi.org/10.18653/v1/2023.findings-acl.457
https://arxiv.org/abs/2311.08584
https://arxiv.org/abs/2311.08584
https://proceedings.neurips.cc/paper_files/paper/2024/hash/32b80425554e081204e5988ab1c97e9a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/32b80425554e081204e5988ab1c97e9a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/32b80425554e081204e5988ab1c97e9a-Abstract-Conference.html
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2024.findings-emnlp.291/
https://aclanthology.org/2024.findings-emnlp.291/
https://aclanthology.org/2024.findings-emnlp.291/
https://arxiv.org/abs/2301.01743
https://arxiv.org/abs/2301.01743
https://arxiv.org/abs/2301.01743
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=2SjoG6lVz3
https://openreview.net/forum?id=2SjoG6lVz3
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://www.sciencedirect.com/science/article/abs/pii/001002857690013X
https://doi.org/10.18653/v1/P16-1226
https://doi.org/10.18653/v1/P16-1226
https://proceedings.mlr.press/v206/bickfordsmith23a
https://aaai.org/papers/11164-aaai-31-2017/
https://aaai.org/papers/11164-aaai-31-2017/
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://aclanthology.org/P17-4020/
https://aclanthology.org/P17-4020/
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://books.google.com/books?id=VzoVAAAAYAAJ
https://books.google.com/books?id=VzoVAAAAYAAJ
https://books.google.com/books?id=VzoVAAAAYAAJ
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://aclanthology.org/2023.findings-emnlp.652/
https://aclanthology.org/2023.findings-emnlp.652/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

Frank F. Xu, Bill Yuchen Lin, and Kenny Zhu. 2018.
Automatic extraction of commonsense LocatedNear
knowledge. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics

(ACL 2018).

Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Ya-
mada. 2024. On verbalized confidence scores for
LLMs. Preprint, arXiv:2412.14737.

Yizhe Zhang, Jiarui Lu, and Navdeep Jaitly. 2024. Prob-
ing the multi-turn planning capabilities of LLMs via
20 question games. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational

Linguistics (ACL 2024).

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. In Advances in Neural
Information Processing Systems 36 (NeurIPS 2023).

A Error Analysis

There are many different types of errors that can oc-
cur in a guessing game. Errors that we encountered
are listed and described in this section.

* Enumeration is when the Guesser keeps
asking very specific and similar questions,
thus yielding minimal information. This is
the most common error and often does not
end naturally once it starts. It can be miti-
gated by encouraging the Guesser to ask high-
information questions or by preventing re-
peated question types.

* The Oracle can give Incorrect Responses,
usually due to misunderstanding the Guesser’s
question or misjudging its relevance to the
object. Depending on the importance of the
question, this can either have little impact or
completely derail the game. There is no sim-
ple solution, as this error reflects the Oracle’s
incomplete or inconsistent object knowledge.

* A Misleading Response occurs when the Ora-
cle gives a technically correct but easily misin-
terpreted answer. For example, if you can just
barely hold an object in your hands, and the
Oracle replies “yes” to “Can it be held in your
hands?”, the Guesser may incorrectly assume
the object is much smaller. These subtle mis-
understandings can misdirect the Guesser’s
strategy and reduce efficiency.

Hierarchy Mismatch occurs when the
Guesser fixates on the wrong level of semantic
abstraction, either too specific or too general,
relative to the Oracle’s object. In some cases,
the Guesser gets stuck distinguishing between
fine-grained subtypes (e.g., “thermos,” “can-
teen,” “water bottle”’) when the correct an-
swer is simply “container.”” In other cases,
the Guesser asks questions that are too vague
or high-level (e.g., “Is it an object?” or “Is
it man-made?”’), which fail to narrow the hy-
pothesis space meaningfully. This mismatch
often leads to inefficient questioning and can
be difficult to recover from without stronger
concept-level reasoning or hierarchical search
strategies.

B Enumeration Analysis

Enumeration is the most common error and the one
most likely to lead to failure. For each experiment,
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Question Type Enumeration Percent (%)

All Types 14.4
All Types k=1 1.30
All Types k=2 3.40
All Types Forced Open 3.60
Attribute Only 237
Function Only 44.4
Location Only 48.0

Table 7: Average percent of questions that are enumera-
tions across different questions types using LLaMA-3.3
70B.

Model Enumeration Percent (%)
GPT-40 11.3
GPT-40 k=1 0.60
GPT-40 Forced Open 0.10
GPT-40 Forced Open k=1 0.00
Gemini 16.5
Gemini k=1 1.40
Gemini Forced Open 6.10
Gemini Forced Open k=1 0.00

Table 8: Average percent of questions that are enumera-
tions for GPT-40 and Gemini 2.0 Flash-Lite.

we count the percentage of the Guesser’s queries
that were enumerations. We show these result in
Table 7 and Table 8. The two type-restrictions
naturally have the lowest enumeration rate, since
enumeration is defined by repeatedly asking similar
questions and type-restrictions prevent this. Experi-
ments where the Guesser is restricted to asking one
type of question increase enumeration by definition.
The rates for function-only and location-only are
significantly higher than the rest, while attributes-
only is relatively low considering the constraint.
This occurs because there are fewer ways to ask
about an object’s purpose or location than there are
to ask about all of its attributes.

C Forced Open Questions

Since each model has a low inclination towards
choosing open-ended questions when not prompted
to (Table 9), we forced them to ask only open-
ended questions with the exception of direct ques-
tions (which are necessary to complete the game).
The results are shown in Table 10 and Table 11.
There is a significant improvement across all ex-
periments. An open-ended question is guaranteed
to learn a new piece of information from every
question, unlike closed-ended questions. Many ob-
jects can be identified by a few key aspects, such
as primary function and location. Through only

Model Open-Ended (%)
LLaMA 5.90
LLaMA k=1 41.8
LLaMA Forced Open 70.5
LLaMA Forced Open k=1 77.3
GPT 0.70
GPT k=1 11.9
GPT Forced Open 73.7
GPT Forced Open k=1 72.1
Gemini 7.50
Gemini k=1 32.9
Gemini Forced Open 24.4
Gemini Forced Open k=1 59.8

Table 9: Proportion of open-ended vs. closed-ended
questions used by each model during standard Guess-
ingGame gameplay. Open-ended questions elicit richer
Oracle responses and are associated with higher informa-
tion gain. LLaMA is LLaMA-3.3 70B, GPT is ChatGPT-
40, Gemini is Gemini 2.0 Flash-Lite.

Question Type SR (%) ANQ

All Types 974+ 1.06 8.30+0.56
All Types, k=1 98.1 £0.92 7.70 £ 0.48
All Types, k=2 99.2 + 0.62 8.40 + 0.62
Attribute-Only  70.2 £3.05 162+ 1.11
Function-Only  63.6 £3.21 153+ 1.13
Location-Only  53.5+3.33 16.6 £ 1.25

Table 10: Performance of LLaMA-3.3 70B on the
GuessingGame task with the forced-open constraint,
where the Guesser is restricted to asking only open-
ended questions (except for final direct guesses). SR
denotes success rate, and ANQ is the average number
of questions asked. Rows labeled All Types allow the
Guesser to use any type of open-ended question. The
k parameter denotes a repeat-type constraint, which
limits the number of consecutive questions of the same
type: k=1 prohibits back-to-back questions of the same
type, while k=2 allows up to two in a row. Lower values
of k enforce greater question-type diversity. Restricted
rows (Attribute-Only, Function-Only, Location-Only)
constrain the Guesser to a single type of open-ended
question, revealing the relative informativeness of each
question type when used in isolation.

open-ended questions, these aspects can be learned
in a few questions, allowing a quick victory, as
demonstrated in this experiment. When these early
open questions do not identify the object, this leads
to an increased number of direct guesses. This
means that the models’ inherent reasoning capa-
bilities affect the percent of open-ended questions.

17357



Question Type SR (%) ANQ

GPT-40 98.5 + 0.83 6.60 + 0.42
GPT-40 k=1 97.8+£0.99 6.90£0.48
Gemini 87.3+222 134+ 1.09
Gemini k=1 97.7+1.02 890+0.75

Table 11: Performance of GPT-40 and Gemini 2.0 Flash-
Lite with the forced-open constraint.

Approach Acc. Pmacro  Rmacro  Flmacro
Rule-Based Baseline 0.82  0.89 0.64 0.67
RoBERTa Classifier 096  0.96 0.87 0.90
LLM Checker 095 093 0.96 0.94

Table 12: Performance of different question-type check-
ers. Macro- and weighted-average precision (P), recall
(R), and F1, plus overall accuracy.

The general difference between the types of ques-
tions is similar to previous experiments, though the
gap between all types and restricted types is larger
and the gap between the restricted types is smaller.
This shows the benefit of diverse questions, as there
is a limit to the amount of information to be gained
from only one type of question.

D Checker Validation

Since we use our Checker LLM to enforce our
experiment’s parameters (e.g., function questions
only), we experimentally validate that our Checker
can correctly classify all question types (attribute,
function, location, category). We manually anno-
tated 1,000 questions randomly sampled from ac-
tual Guesser outputs from our experiment. There
was an inter-annotator agreement of 0.88. We com-
pare three approaches on human-annotated data: a
rule-based baseline, a fine-tuned RoBERTa classi-
fier (80/20 train/test split), and the prompt-based
LLM Checker. Table 12 summarizes their macro-
average performance and overall accuracy.

The rule-based system achieves an accuracy of
0.82 and suffers from low recall on less frequent
types. A fine-tuned RoBERTa (Liu et al., 2019)
classifier yields high overall accuracy at 0.96 and
strong macro-F1 (0.90), demonstrating the task’s
learnability from moderate data. Our LLM Checker
matches this performance (accuracy 0.95, macro-
F1 0.94) without any additional fine-tuning, con-
firming that prompt-based classification is a reli-
able and maintenance-free choice for enforcing
question-type constraints in GuessingGame.

RoBERTa Classifier Setup. We fine-tuned a
roberta-large model using HuggingFace Trans-
formers (Wolf et al., 2020) on an 80/20 strati-
fied split of the 1,000 labeled examples. The
model was trained for 10 epochs with a batch
size of 8 using the AdamW optimizer and
the default learning rate scheduler (linear de-
cay). Evaluation was performed at the end of
each epoch. Input text was tokenized using
RobertaTokenizerFast, and padding was han-
dled by DataCollatorWithPadding to ensure dy-
namic batching. Truncation and padding were en-
abled during pre-processing to standardize input
lengths. No data augmentation or additional pre-
training was performed. Performance was evalu-
ated using standard scikit-learn metrics and confu-
sion matrix analysis.

E Entropy-Based IG Threshold Selection

To determine the optimal similarity threshold 7
for our entropy-based IG metric (Section 4.2), we
swept values from 0.55 to 0.85 in increments of
0.05 as seen in Table 13. For each threshold, we
evaluated the predictive utility of IG using 2,000
question-answer pairs via two analyses:

1. Accelerated Failure Time (AFT) model: Es-
timates the effect of IG on the number of
turns until game success. Positive coeffi-
cients imply that higher IG is associated with
slower convergence; negative coefficients im-
ply faster convergence.

2. Spearman rank correlation: Measures
whether higher average I1G per game corre-
lates with fewer total questions.

T AFT 3 AFTp Spearmanp Spearman p
0.55 +0.137 0.423 +0.137 0.343
0.60 —0.233 0.017 —0.253 0.003
0.65 —0.085 0.507 —0.130 0.369
0.70 —0.057 0.647 —0.222 0.122
0.75 —0.012 0.923 —0.237 0.098
0.80 —0.075 0.560 —0.234 0.103
0.85 +0.060 0.619 —-0.312 0.027

Table 13: AFT model coefficients (mu_ ig_z) and Spear-
man correlations between entropy-based IG and game
length across ConceptNet similarity thresholds 7. Neg-
ative AFT coefficients imply faster convergence with
higher IG.
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Discussion. Threshold 7 = 0.60 yields the
only statistically significant AFT coefficient (8 =
—0.233, p = 0.017), suggesting that information
gain at this threshold robustly predicts faster con-
vergence. In the AFT model, a negative coefficient
indicates that higher IG leads to shorter games.
This aligns with the intended role of 1G as a proxy
for question informativeness.

By contrast, 7 = 0.85 achieves the best Spear-
man correlation (p = 0.312, p = 0.027), but its
AFT coefficient is positive and non-significant, sug-
gesting that IG at this threshold may capture broad
informativeness trends rather than per-turn utility.

Given these trade-offs, we adopt 7 = 0.60 in
our main experiments due to its stronger turn-level
predictive power. Nonetheless, higher thresholds
such as 7 = 0.8 may offer value in summarizing
informativeness at a more coarse-grained level.

F Bayesian Belief Update

Interpreter. We impose a strictly formatted sys-
tem instruction (Appendix G) that requests a
comma-separated list of at most five concept:score
pairs, where every score lies in the open interval
(—1,1). Gemini is queried with a low-temperature
nucleus configuration (temperature 0.3, ¢, = 0.8)
to obtain deterministic extractions. This is trans-
formed into a normalized dictionary 5(y) € [0, 1]
that can be consumed by the Bayesian update.

Soft-evidence Belief Update. Let b(y) be the
categorical belief over candidate concepts at turn
t, and let s;(y) € (0,1) be the Interpreter’s nor-
malized relevance score for concept y. We apply a
multiplicative soft-evidence rule (1) where o =1
controls update strength and ¢ = 10~'2 prevents
zero probabilities.

Tuning Soft-evidence Scale . We performed
a small grid-search over the scaling constant « in
Eq. (1) using a held-out sample of 40 games. After
each game we computed the Spearman correlation
between information gain from each question and
the number of turns remaining. Table 14 summa-
rizes the outcome.

All three scales yield a significant negative cor-
relation between average IG and dialogue length,
but the strength of the relationship varies:

At o = 0.5 the update is conservative, producing
a moderate correlation (r = —0.55, p = 2.4 X
1074).

Increasing the weight to o = 1.0 strengthens the

« Spearman r (IG vs. turns) p-value

0.5 —0.55 2.40 x 107*
1.0 —0.76 1.40 x 1078
2.0 —0.47 2.10 x 1073

Table 14: Effect of the multiplicative scale « on the cor-
relation between Average information gain per question
and dialogue length (N = 40 games).

a=0.5
Threshold P p
none —0.62 2.40x107°
15% —-0.75 2.2x10°8
25% —0.55 2.40x10~%
35% —0.29 7.20x1072
45% +0.15 3.60x107 1!
55% +0.49 1.30x1072
65% +0.49 1.20x1072

a=1
Threshold P p
none —0.63 1.30x10°°
15% —0.31 5.30x1072
25% —0.76  1.40x10~8
35% —0.78 2.40x10°
45% —0.10 5.40x10°!
55% +0.18 2.70x107*
65% +0.45 3.90x107°

o =
Threshold P p
none —0.30  6.30x1072
15% +0.10  5.20x107%
25% —0.47 2.20x1073
35% —0.61 2.60x10°°
45% +0.56 2.00x107%
55% +0.71  3.70x1077
65% +0.74 3.70x1078

Table 15: Spearman correlation (p) between average
information gain and dialogue length under different
pruning thresholds. Bold numbers mark the strongest
negative correlation for each oo (N=40 games).

link (r = —0.76, p = 1.4 x 10®), indicating that
a unit-scale multiplier best aligns information gain
with faster convergence.

Pushing to o = 2.0 causes the correlation to slip
back to r = —0.47 (p = 2.1 x 1073), suggest-
ing mild over-confidence that slightly blunts the
predictive value of IG.

We therefore fix & = 1 in all subsequent ex-
periments as it provides the best trade-off between
statistical significance and stability.

Effect of the pruning threshold. We
evaluated a grid of soft-evidence scales
a € {0.5,1,2} and pruning thresholds
{none, 15%, 25%, 35%, 45%, 55%, 656%}

(see Table 15). For the conservative weight
(a = 0.5) the IG-turn correlation peaks at a strong
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p = —0.75 with a 15 % threshold, but weakens
rapidly, and even changes sign, as the threshold
increases. The aggressive setting (v = 2) shows
the opposite pattern: it still yields a notable
p = —0.61 at 35 %, yet flips to large positive
correlations (p > +0.55) when more than 45 % of
the belief mass is pruned, indicating over-confident
collapse. By contrast, the mid-range scale o = 1
is consistently stable, producing highly significant
negative correlations across the 25-35 % band
(strongest at 35 %, p~ —0.78, p < 2.4 x 1079).
Balancing robustness with predictive strength,
we therefore adopt « = 1 and a 35 % pruning
threshold in all subsequent experiments.

G Prompts

* Guesser Any Question Prompt: “You are
named Guesser. You are trying to guess what
physical object or physical material Oracle is
thinking of. You will ask questions to get
more information about the object. Open
ended question are questions that have a large
variety of answers. A question is not open
ended if the only answers to it are yes or no.
An example of an open ended question is:
What material is the object made of? An ex-
ample of a not open ended question is: Is the
material the object is made of copper? You
may ask open or not open questions. You
can make direct guesses on what the object
is. When you believe you have enough infor-
mation about the object you will guess what
it is. Your guessing will be informed by your
prior guesses. Do not ask the question: What
is the object? Do not explain your reasoning
in your guess, only say your question. You
will start each message with Guesser said: .
If you guess wrong you will ask more ques-
tions about the object until you have enough
information to guess again.”

* Guesser Open Question Prompt: “You are
named Guesser. You are trying to guess what
physical object or physical material Oracle is
thinking of. You will ask open ended ques-
tions to get more information about the object.
Open ended question are questions that have
a large variety of answers. A question is not
open ended if the only answers to it are yes
or no. An example of an open ended question
is: What material is the object made of? An
example of a not open ended question is: Is

17360

the material the object is made of copper? You
can make direct guesses on what the object
is. When you believe you have enough infor-
mation about the object you will guess what
it is. Your guessing will be informed by your
prior guesses. Do not explain your reasoning
in your guess, only say your question. You
will start each message with Guesser said: .
If you guess wrong you will ask more ques-
tions about the object until you have enough
information to guess again. ”’

Oracle Prompt: “You are named Oracle.
Guesser is trying to guess what physical object
you are thinking of. When Guesser correctly
guesses the object, you will only return Cor-
rect. If Guesser asks: is it a type of object,
and the object is the same as your object then
this is also a correct guess. You can not make
any guesses or ask any questions. You start
each response with Oracle said: . The object
you are thinking of is a ™

Checker Prompt: "You are an expert anno-
tator that is categorizing the questions asked
by Guesser in an object guessing game. There
are 5 types of questions. The first type are
Attribute questions, these involve the physical
attributes of the physical object. Examples
of Attribute questions are: Is the object made
of metal? What color is the object? What
shape is the object? The second type of ques-
tions are Function questions, these involve the
function of the physical object. Example of
Function questions are: Is the object used for
communication? Is the object used for build-
ing? Is the object used for eating food? The
third type of questions are Location questions,
these ask about where a physical object is lo-
cated. Examples of Location questions are:
Is the object in the bedroom? Is the object
located inside or outside? Is the object on
the desk? The fourth type of questions are
Category questions, these ask if the physical
object belong to certain category of objects.
Examples of Category questions are: Is the
object a type of car? If the object a type of
furniture? The fifth type of questions are Di-
rect questions, these are questions that directly
guess what the object is. Examples of Direct
questions are: Is the object a phone? Is the
object a bed? Is the object a knife? After be-



ing given Guesser’s question return only what
type of question it is. Return only one of the
following 5 words: Attribute, Function, Loca-
tion, Category, or Direct, based on what type
of question Guesser is asking. Do not explain
your reasoning or your thinking. What type
of question is Guesser asking? "

Interpreter Prompt: “You are named the
Interpreter. Your task is to generate a comma-
separated relevance-scored list of candidate
concepts based on the Guesser’s questions and
the Oracle’s answers to that question. Candi-
date concepts are inferences you can make
about the physical or functional attributes or
location or category of the object that the Or-
acle is answering about. Rules 1. Every con-
cept and its corresponding score must be sep-
arated by a colon and each concept-score pair
must followed by a comma 2. Each score is a
floatin (-1, 1). 1 = strongly positive correla-
tion, -1 = strongly negative correlation. 3. Do
not output any additional text, explanation,
punctuation (except commas), or commen-
tary, metadata tags, special tokens, statements,
explanations, additional works, questions or
guesses.”

17361



