Grammar Pruning: Enabling Low-Latency Zero-Shot Task-Oriented
Language Models for Edge AI

Octavian Alexandru Trifan*
Alexandru Nicolau

Jason Lee Weber
Alexander Veidenbaum

Marec Titus Trifan

University of California, Irvine

Abstract

Edge deployment of task-oriented semantic
parsers demands high accuracy under tight la-
tency and memory budgets. We present Gram-
mar Pruning, a lightweight zero-shot frame-
work that begins with a user-defined schema
of API calls and couples a rule-based entity ex-
tractor with an iterative grammar-constrained
decoder: extracted items dynamically prune the
context-free grammar, limiting generation to
only those intents, slots, and values that remain
plausible at each step. This aggressive search-
space reduction both reduces hallucinations and
slashes decoding time. On the adapted FoodOr-
dering, APIMIXSNIPS, and APIMIXATIS
benchmarks, Grammar Pruning with small lan-
guage models achieves an average execution
accuracy of over 90%—rivaling State-of-the-
Art, cloud-based solutions—while sustaining
at least 2x lower end-to-end latency than exist-
ing methods. By requiring nothing beyond the
domain’s full API schema values yet deliver-
ing precise, real-time natural-language under-
standing, Grammar Pruning positions itself as
a practical building block for future edge-Al
applications that cannot rely on large models
or cloud offloading. !

1 Introduction

Recent growth in edge computing and “Internet-
of-Things” has led to increased adoption of edge
devices such as smartphones, wearables, and even
embedded industrial systems. Consequently, there
is an increasing demand for complex Natural Lan-
guage Processing (NLP) on edge devices. One
critical task for NLP on the edge is Task-Oriented
Semantic Parsing (TOSP), which enables users to
invoke device functionality via natural language,
like telling a smart watch to set a timer or a phone to
initiate a call. State-of-the-Art (SOTA) Large Lan-
guage Models (LLMs) have been shown to solve
*Corresponding author: otrifan@uci.edu

'Code and adapted datasets are available at: github.com/
octatrifan/grammar-pruning

High recall, lower precision

|
| want a ticket from '
to !

|

Valid intents/slots

I
|
|
I also what
' flights use aircraft [Z%
|
|

and what airlines fly I atis_fare:
from on /' departure_city: []
———————————— _~7 destination_city:[|

atis_aircraft:

a Schema Allintents + slots
aircraft_model: [(Z@]

atis_fare:
departure_city: [.|
destination_city:[, | Prune Grammar

using Valid Iltems
atis_aircraft:)
aircraft_model: [D Z20 X ...] g::z:;:';ii g
- Pruned Grammar

(V] (V] X :
Valid intents =0> atis_fare ~ atis_aircraft (fatiszmeat) - :
) no valid items for intent
t=1 |departure_city:]
w2 o ~_ 0 x

Valid slots

| ' item not detected
'

: Remove items
| : after use

@ atis_fare(departure_city="Los Angeles’, destination_city="New York’)
@ atis_flight(airline=American Airlines’, aircraft="747’)
@ atis_airline(departure_city="New York/ day_name='"Monday’)

Figure 1: Grammar Pruning: Entities are extracted from
the input and mapped to a set of valid items with the
help of the schema. The existing grammar for genera-
tion is dynamically pruned so that the LM is restricted
to only valid intents and slot values. Used items are
removed, ensuring schema-compliant and hallucination-
free generated API calls.

this problem quite accurately when latency and
computational costs are not a concern. However, in
edge devices, high latency and extensive resource
requirements are not feasible.

Existing approaches that leverage large
reasoning-oriented models—such as DeepSeek’s
R1—prioritize accuracy at significant compu-
tational expense, with resource requirements
far exceeding typical edge device constraints.
Edge-based systems cannot tolerate high latency,

16956

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16956—16969
November 4-9, 2025 ©2025 Association for Computational Linguistics

github.com/octatrifan/grammar-pruning
github.com/octatrifan/grammar-pruning

nor can users accept the consequences of model
hallucinations, which risk critical usability
errors (e.g., incorrect alarms, erroneous financial
interactions). Thus, a novel approach that carefully
balances computational cost, latency, and accuracy
is necessary.

To address this critical challenge, we intro-
duce Grammar Pruning, a lightweight and schema-
driven semantic parsing framework. By dynami-
cally constraining the output space of small lan-
guage models (SLMs), our approach ensures ac-
curate, efficient, and schema-compliant parsing
suitable for deployment in real-time edge environ-
ments.

2 Related Work

Task-Oriented Semantic Parsing

Task-oriented semantic parsing involves convert-
ing natural language user requests into structured,
machine-readable representations to facilitate the
execution of specific tasks. Numerous methods
have been proposed to increase parsing perfor-
mance, including hierarchical annotation schemes
to improve accuracy and efficiency (Gupta et al.,
2018), in-context learning approaches like kKNN-
ICL to improve compositional generalization (Zhao
et al., 2024), and Stack-Transformers within shift-
reduce parsing frameworks for diverse resource sce-
narios (Fernandez-Gonzalez, 2024). Furthermore,
leveraging the intrinsic properties of ontology la-
bels has also proven beneficial for semantic parsing
in low-resource settings (Desai et al., 2021).
Recent attention has also been drawn towards
zero-shot semantic parsing, where models clas-
sify new concepts without prior labeled examples
by transferring knowledge from similar tasks or
by leveraging semantic context. Many success-
ful approaches use Chain-of-Thought (CoT) (Wei
et al., 2022) prompting strategies, which decom-
poses tasks into smaller pieces and reasons about
each part individually. Qin et al. (2025), for ex-
ample, uses Divide-Solve-Combine as a 3-step
process of splitting the input into multiple intents
and solving them individually before aggregating
the results. Mekala et al. (2022), decomposes se-
mantic parsing tasks into abstractive and extractive
question-answering problems. Similarly, schema-
augmented methods, as employed by Rubino et al.
(2022) on their FoodOrdering dataset, closely re-
late to our work. However, their approach does
not explicitly address the computational efficiency

and strict schema compliance, which is critical for
edge-device applications, motivating our novel ap-
proach. MIXATIS and MIxXSNIPS (Qin et al.,
2020) have been widely used in academic research,
lately including zero-shot techniques focused on
prompting (Qin et al., 2025; Wu et al., 2021)

Schema-Augmented Methods

Modern systems move beyond flat slot labeling by
leveraging explicit schema information to guide
parsing and slot-filling (Cheng, 2024). Schema-
augmented prompting allows models to interpret
new APIs by conditioning on domain ontologies
and slot descriptions, as shown in recent dialogue
state tracking and semantic parsing tasks (Pan et al.,
2023; Li, 2022). Task-oriented semantic parsing
often employs a two-step pipeline, leveraging a
predefined schema: first, Named Entity Recog-
nition (NER) identifies entities in the input text;
second, constrained generation techniques utilize
predefined schemas to ensure the output aligns with
the expected structure. This approach enhances ac-
curacy and interpretability in applications such as
knowledge base question answering and dialogue
systems (Nam and Lee, 2023; Shrivastava et al.,
2022; Gupta et al., 2022).

Constrained Decoding

Constrained decoding (CD) techniques play a fun-
damental role in enforcing structured outputs dur-
ing generation, ensuring that models adhere to spec-
ified schemas or formatting rules. Such methods
have been successfully applied across diverse appli-
cations including semantic role labeling (Deutsch
et al., 2019), code validation (Scholak et al., 2021),
secure code generation (Fu et al., 2024), and seman-
tic parsing (Shin et al., 2021; Stengel-Eskin et al.,
2023; Roy et al., 2023). Context-free grammars
(CFGs) are widely used in constrained decoding
to systematically restrict autoregressive language
model outputs, thus reducing overall hallucinations
and accuracy. Toolkits such as Guidance (Lund-
berg, 2023), LMQL (Beurer-Kellner, 2023), and
Outlines (Willard and Louf, 2023) support flexible
constraint integration for LLMs.

Input-Dependent Grammars

Recent methods have also explored dynamic gram-
mar adjustments based on the specific input pro-
vided, referred to as input-dependent grammars.
This concept was formally introduced by Geng et al.
(2023), whose work primarily addressed tasks such

16957

as entity disambiguation and constituency pars-
ing. Other researchers have experimented with
grammars generated dynamically by LLMs them-
selves as intermediate steps within CoT prompting
strategies (Wang et al., 2023). Explicit prompting
for reasoning steps (Nye et al., 2021; Wei et al.,
2022; Yao et al., 2023) has proven beneficial, sig-
nificantly improving output quality and inspiring
SOTA models such as OpenAI’s o1 (OpenAl, 2024)
and Deepseek’s R1 (Guo et al., 2025).

Despite these advances, dynamically-generated
or reasoning-dependent grammar techniques often
incur substantial computational costs, rendering
them impractical for resource-constrained edge en-
vironments. The computational burden introduced
by explicit reasoning or intermediate grammar gen-
eration highlights the need for alternative methods
capable of maintaining accuracy without excessive
resource usage.

Summary of Contribution

Existing literature illustrates significant progress
in TOSP, NER, CD, and input-dependent grammar
methods, yet often overlooks the stringent compu-
tational constraints inherent in edge-device scenar-
ios. Prior work either demands extensive computa-
tional resources incompatible with edge hardware
or compromises the accuracy due to overly sim-
plistic constraints. To address this crucial gap, we
introduce a novel approach based on Grammar
Pruning, which dynamically contains the output
generation space for SLMs. Our method uniquely
combines schema-driven grammar constraints, effi-
cient zero-shot parsing capabilities, and lightweight
deployment, providing a practical solution specifi-
cally tailored for accurate, resource-efficient, and
latency-sensitive edge applications.

3 Method

The overall architecture is illustrated in Figure 1,
and each of the components will be discussed in-
depth in the remainder of this section. The architec-
ture remains constant across different datasets and
downstream tasks, with minimal changes required.
However, the following sections focus on our im-
plementation and our experiments showing the effi-
ciency of our method on the APIMIXATIS dataset,
our own adaptation of the popular MIXATIS, with
more details in Section 4.1. The dataset consists of
multi-intent task-oriented parsing requests in the
airline travel domain.

The modularity of our system allows for flexibil-
ity in deployment as well as incremental updates
to each module, making it particularly suitable for
resource-constrained devices. For edge devices,
it is crucial that each module is both resource-
efficient and low-latency capable. Below we de-
scribe in detail how the key modules work.

3.1 Item Extraction (NER) and Intent
Validation

Crucially, for effective and lightweight item extrac-
tion, the system relies on the presence of a well-
defined schema that details all permissible intents
and their associated slots; without such a structured
framework, accurately identifying and categoriz-
ing relevant information from user input becomes
more challenging. For example, the APIMIX-
ATIS schema defines permissible intents and slots
(e.g., for flight booking, intents like atis_fare,
atis_aircraft, and slots like departure_city,
destination_city, aircraft_model).

We start with the set C' = {c1,co,...,¢cn}
that contains all the categories (corresponding
to slot types, for example, departure_city,
aircraft_model). For each category ¢ € C
we define V. = {v.,ve,,.-.,0, } Which cor-
responds to the possible values for each cat-
egory (for example, "New York", "Los An-
geles" for departure_city; "737", "747" for
aircraft_model). All these values represent valid
strings accepted by the backend engine or for slot
filling. Therefore, the full schema S can be defined
as encompassing all intent-slot structures and their
permissible values.

For the item extraction system, each query to
our system will receive the input x, which is a
sequence x = (wy,ws,...,wy) with words w;.
Our goal is to extract only the items (entities) that
are needed for our downstream task, map them
to their respective backend-valid values, and store
them in a multiset M, Cy S, where S represents
all possible item values defined in the schema:

M, = {{(v,0)|(v,c) € S, p(v,z;) > 1,2 C x}}

where p is the function that controls the similar-
ity between the extracted item from the input and
a schema item, and 7 is a threshold that must be
achieved. We note that M, is a multiset, as we al-
low duplicates to be included, because our function
might extract the same item that is used multiple
times in the same input (e.g., if "New York" appears
multiple times and is relevant each time).

16958

3.2 Recall vs Precision

Following this initial extraction, the new method
emphasizes identifying "Valid intents/slots." This
involves taking the extracted items M, and evalu-
ating them based on the schema S to determine 1,
the set of plausible intents and slot assignments for
the given input.

The process for generating I, from M, and the
full schema S follows 2 steps. First, we identify
potential slot fillers: For each unique extracted
entity v in M, we consult the schema S to find
every possible slot ¢ that v can populate. We then
form a set of all valid (v, ¢) pairs. For instance,
if "New York" is in M, this step would generate
both ("New York", departure_city) and ("New
York", destination_city) if the schema permits
it. The second step is to validate intents: We iterate
through all intents defined in the schema S. An
intent is considered valid and added to I, only if
at least one of its required slots can be filled by an
item in our set of potential slot fillers. For example,
the intent atis_meal is discarded if no food-related
items were extracted into M,. The resulting set
I, is therefore a union of all valid intents and all
potential (v, ¢) pairs.

This identification of I, is performed with a
strong emphasis on maximizing recall. Such pri-
oritization is critical because any element or slot
value erroneously omitted from I, (a false nega-
tive) would mean the resulting pruned grammar
G would be overly restrictive, preventing the LM
from generating the correct output.

A consequence of this recall-centric approach
is that the set I, may include ambiguities (i.e., ex-
hibit lower precision). For instance, an extracted
entity like "New York" might be present in I, as
a valid candidate for both a departure_city slot
and a destination_city slot if both are plausible
according to the schema S and the extracted items
M. The LM is later tasked with disambiguating
these cases, operating with a grammar constrained
by this potentially ambiguous /.

3.3 Grammar Pruning and Constrained
Generation

We arrive at the grammar pruning step with the
set of initially extracted items M, and more crit-
ically, the derived set of "Valid intents/slots" I,
(the nature and formation of which, including its
recall-prioritized characteristic, are detailed in Sec-
tion 3.1). Initially, our grammar is defined as

G = Grammar(S), where S is the full schema.
This is the unpruned grammar, allowing the model
to output from all possible intents and slots defined
in the schema.

The function Grammar will now prune the initial
grammar G based on the identified "Valid intents/s-
lots" I,,. So, G = Grammar(I,). The output is
structured, for example, as a series of API calls or
structured data objects. By applying the function
Grammar on I, we are forcing the LM to first se-
lect from valid intents, and for each chosen intent,
to only allow values for its slots from the permissi-
ble items identified in I, (which were derived from
M_). For example, if atis_fare is a valid intent,
and departure_city is a slot for it, the grammar
for departure_city= will only allow items v &
{v|(v, departure_city) € I, for intent atis_fare}.

Moreover, the grammar pruning step is dynamic
and iterative. As the LM generates output and fills
slots (e.g., at step t, it selects departure_city:
Los Angeles), that item can be considered "used."
We can use the fact that M, (and by extension, the
available items in I,) is a multiset to keep pruning
the grammar whenever the LM uses an item. If
(vg, ¢t) is used by the LM at step ¢, we can mod-
ify the available items and thus the grammar for
subsequent steps:

MUY = MO {(vy,e1)}

GUHD = Grammar(I{+D)

where Ig(fﬂ) is derived from M;,gtﬂ). Therefore,

the LM operates on an increasingly pruned gram-
mar. Unconstrained Generation (vanilla Language
Model inference) is defined by:

T

g = argmax [[po(lz,y<1)
t=1

Let L(G) be the language generated by GG. Con-
strained decoding modifies the generation as fol-
lows:

T

j=arg max [[pe(ulz, y<r)
yeL(G) 1

It follows that (|I;| < |S]) — (|L(Gz)] <
|L(G)|), therefore our model will have fewer item-
s/structures to choose from, speeding up generation
and reducing hallucinations. The LM, by operat-
ing with the constrained grammar (G, that permits
the (potentially ambiguous but recall-rich) options

16959

present in I, is responsible for disambiguating
these possibilities during the generation process
to produce the contextually appropriate structured
output.

4 Experimental Setup

4.1 Datasets & Processing

Our experiments focus on zero-shot semantic pars-
ing. We utilize three primary datasets which we
release publicly, all adapted to output Python API
call structures: FoodOrdering, APIMIXSNIPS,
and APIMIXATIS. FoodOrdering is our adapta-
tion of the full > dataset from (Rubino et al., 2022).
APIMIXSNIPS and APIMIXATIS are evaluation-
only sets derived from subsets of the original MixS-
NIPS and MixATIS benchmarks (Qin et al., 2020),
respectively, which focused on only intent/slot ex-
traction, not execution accuracy. We modified these
subsets by converting all annotations to our Python
API format and making minor alterations to some
examples, such as rephrasing prompts for clarity
and updating parameters for better real-world align-
ment. The rest of the input structure remained
nearly identical. The fully adapted datasets are
available in our code repository. An overview is
presented in Table 1.

Dataset Train Eval Intent Slot Val
FoodOrdering

Pizza 10,000 348 2 10 166
Burrito 9,982 191 7 11 34
Sub 10,000 161 3 8 62
Burger 0 161 3 9 44
Coffee 0 104 1 9 43
APIMixSNIPS 0 103 7 44 259
APIMixATIS 0 103 16 59 215

Table 1: Overview of the adapted datasets. The Burger
and Coffee subsets of FoodOrdering, as well as APIM-
IXSNIPS and APIMIXATIS, are evaluation-only. In-
tents, Slots, and Values (Val) are schema-dependent.

This transformation to Python API outputs for
all datasets is a crucial pre-processing step, leverag-
ing findings from Bogin et al. (2024). Their work
demonstrates that parsing to rare Domain-Specific
Languages (DSLs) from few examples is challeng-
ing. We improve semantic parsing effectiveness
by: (1) using general-purpose programming lan-
guages like Python for the target representation
(see Appendix A.1), and (2) augmenting prompts

2https://github.com/amazon—science/
food-ordering-semantic-parsing-dataset

with a structured domain description (e.g., avail-
able Python classes and functions). This shift to
Python-based outputs also considerably eases the
grammar-building process.

4.2 TItem Extraction (NER) Setup

For all three datasets used, the availability of a well-
defined schema significantly simplifies the item
extraction process.

Specifically, for datasets with very structured
schemas like APIMIXSNIPS and APIMIXATIS,
entity extraction can often be achieved with
straightforward rule-based methods, potentially im-
plemented using tools like spaCy (Honnibal et al.,
2020). The clear mapping between schema items
and expected user phrases in these datasets facili-
tates precise extraction.

While the schema in FoodOrdering also aids
extraction, its greater linguistic diversity (e.g.,
variations like "caramel”, "caramel syrup”,
"caramel drizzle") may benefit from more ro-
bust techniques. In such cases, we can aug-
ment rule-based approaches with heuristics or
lightweight fuzzy matching to accurately map var-
ied expressions to schema items.

4.3 Grammar Operations

The Guidance® framework from Microsoft is em-
ployed to implement the grammar building and
pruning process. Guidance provides a flexible pro-
gramming paradigm that integrates control logic,
such as conditionals and loops, with the generation
process. We choose Guidance for its low compu-
tational overhead, making it particularly suitable
for resource-constrained environments. An exam-
ple of a grammar is provided in Appendix A.2.1.
Guidance is optimized to batch non-generated text,
meaning that when the grammar allows for just one
possible next token, Guidance will simply append
the token. This speedup is noticeable when there is
a set structure, with a lot of boilerplate parts. We
would like to note that our method is agnostic with
respect to the framework used; however, the best
results can be seen with a system that can handle
the grammar pruning process very quickly.

4.4 Models

Given the latency-aware nature of our work, we
focus on small, open-source models that are pre-
trained for code generation. Specifically, we

Shttps://github.com/guidance-ai/guidance

16960

https://github.com/amazon-science/food-ordering-semantic-parsing-dataset
https://github.com/amazon-science/food-ordering-semantic-parsing-dataset
https://github.com/guidance-ai/guidance

choose to experiment with both the 0.5B and 1.5B
parameter models of the instruct-tuned family of
Qwen2.5 Coder models (Hui et al., 2024) and the
0.6B, 1.7B, and 4B parameter models of the family
of Qwen3 models (Yang et al., 2025). In addi-
tion, we test these models with full Floating-Point
16 (F16) weights and quantized 4-bit (Q4_K_M)
model weights. As a comparison, Cross-TOP (Ru-
bino et al., 2022) runs on a BART-Large (Lewis
et al., 2019) model.

Using multiple models serves two key reasons.
First, it demonstrates the robustness and generaliz-
ability of Grammar Pruning across different model
architectures and scales. Second, it allows us to
analyze how the performance of various methods,
including our own, changes with model size, pro-
viding insight into the interplay between model
capacity and explicit generation constraints.

The open-source nature of these models is cru-
cial for two reasons: (1) we need to be able to
deploy them directly on edge devices (in our case,
using llama.cpp (Gerganov, 2023) and (2) we need
logit access to properly run constrained decoding.

To test cross-schema knowledge transfer, the
PIZZA, BURRITO, and SUB datasets are used for in-
struction fine-tuning (Wei et al., 2021), leaving
the BURGER and COFFEE datasets for zero-shot ex-
periments. For fine-tuning, we use the Unsloth
(Daniel Han and team, 2023) framework, train-
ing for a full epoch. For the APIMIXSNIPS and
APIMIXATIS datasets, out-of-the-box models are
used. The fine-tuning is performed on a single
GPU for less than 10 GPU hours total between
each model and quantization.

4.5 Hardware

The FoodOrdering experiments were performed on
an NVIDIA 4090 GPU, while the APIMIXSNIPS
and APIMIXATIS experiments (including latency)
were run on an NVIDIA 3090 GPU. Both cards are
equipped with 24GB of VRAM.

4.6 Evaluation Metrics

Our evaluation framework employs Unordered Ex-
act Matching (EM) with refined adjustments to
ensure accuracy and flexibility. Since we utilize
named parameters, their order does not impact
equivalence, allowing for a more adaptable com-
parison. Likewise, within lists, element order is
disregarded as long as their content remains con-
sistent. While accuracy is important, it is also vital
that our system performs efficiently on edge de-

vices. Therefore, we also measure the average total
latency across the datasets.

4.7 Baselines and Ablations

In order to demonstrate the effectiveness of Gram-
mar Pruning, we are performing multiple ablations
and comparing them against other methods.

In terms of ablations, we test 2 main changes:
(1) we test using prompts both with and without ap-
pending the NER results, and (2) the grammar can
be skipped entirely, or the full non-pruned grammar
can be used. These are tested on the FoodOrdering
dataset using the Qwen2.5 model.

For the cross-schema evaluation, the baseline
is Cross-TOP (Rubino et al., 2022), which uses
an augmented schema but no dynamic constrained
decoding, comparing to their reported results.

We use the Qwen3 (Yang et al., 2025) model
for the adapted APIMIXATIS and APIMIXS-
NIPS datasets, in the 2 CoT baselines, specifi-
cally Qwen3 in Thinking Mode and Divide-Solve-
Combine Prompting (DSCP) (Qin et al., 2025).
DSCP breaks down zero-shot multi-intent detection
into three steps: dividing an utterance into single-
intent parts, solving for each intent separately, and
then combining the results. This method has shown
impressive results for the original MIXATIS and
MixSNIPS datasets, however, while employing
larger models, and focusing on intent-slot resolu-
tion, not execution accuracy.

We are also reporting results from GPT-4.1 mini,
a non-reasoning proprietary model, while using
their Function Calling setup, which allows us to
pass our schema. Comparing to this model serves
two purposes: it benchmarks our open-source mod-
els against a powerful, closed-source competitor,
and it highlights the effectiveness of Grammar
Pruning. By showing that our method with a small,
local model can match or exceed GPT-4.1-mini’s
accuracy, we underscore the value of a targeted, al-
gorithmic approach over relying solely on a larger,
general-purpose model.

5 Results and Analysis
5.1 Item Extraction (NER) Accuracy

Our evaluation focuses on three key metrics: pre-
cision, recall, and the balance of these, F1 score.
As shown in Table 2, the system achieves high pre-
cision and recall, with minor variations between
datasets. Both food ordering datasets exhibit sim-
ilar precision and recall of approximately 0.96

16961

Dataset Precision Recall F1
FoodOrdering

Coffee 0.96 0.97 0.96
Burger 0.96 0.95 0.96
APIMixSNIPS 0.93 1.00 0.97
APIMixATIS 0.69 1.00 0.81

Table 2: Classification metrics of Rule-Based NER
across FoodOrdering and API datasets.

within a very small margin of error (£0.01).

However, the precision and recall of the APIM-
IXSNIPS and APIMIXATIS datasets present a
different pattern. Both datasets exhibit perfect re-
call; that is, we extract all of the true positives from
both datasets. As mentioned in Section 4.2, this
is because there is a very clear mapping in these
datasets between schema items and expected user
phrases. While precision is still greater than 0.9
for APIMIXSNIPS, it is much lower in APIMIXx-
ATIS. Since we are heavily prioritizing recall in
our item extraction, ambiguity can be introduced
into our resulting extraction in instances where an
extracted item may be usable with multiple differ-
ent slots (see Section 3.2).

5.2 Accuracy Results
5.2.1 FoodOrdering

Table 3 shows that grammar pruning delivers sub-
stantial zero-shot performance gains over the Cross-
TOP baseline (Rubino et al., 2022). Accuracy rises
from 73.3% to 96.2% on BURGER and from 54.8%
to 91.1% on COFFEE, yielding improvements of 23
and 41 absolute points, respectively.

Augmenting the prompt with high-recall NER
entities, but without any grammar, makes it hard
for the small model to respect the schema, result-
ing in hallucinated slots/values, which sometimes
are artifacts of fine-tuning. Adding full gram-
mar—constrained decoding (CD) narrows the search
space, yet the irrelevant menu items remain reach-
able, so performance barely exceeds the NER-only
setting. By dynamically pruning the grammar to
the utterance-specific subset, hallucinations are
eliminated and near-perfect exact matches are ob-
tained.

Grammar pruning benefits every tested back-
bone, from the 0.5B model up to 1.5B, and remains
highly stable under 4-bit quantization: Q4 mod-
els trail their 16-bit counterparts by at most two
percentage points.

To contextualize our findings, we also conducted
preliminary experiments with larger models in the
8B-parameter class. As expected, we observed
that baseline performance improved significantly,
confirming the established trend that model scale
enhances reasoning capabilities. Critically, how-
ever, this improved accuracy still fell considerably
short of that achieved by our much smaller models
enhanced with Grammar Pruning.

Since our investigation centers on models that
are practical for edge deployment, this outcome is
particularly salient. It highlights that for this class
of structured generation tasks, our efficient pruning
method can be a more direct and effective means
of improving accuracy than relying on an increase
in model parameters alone.

5.2.2 APIMixATIS and APIMixSNIPS

In Table 4, the grammar-pruning pipeline again
dominates, attaining 96.1% EM on APIMIXS-
NIPS and 92.2% on APIMIXATIS with the 4
B backbone-matching GPT-4.1-mini + Function-
Calling while using roughly one-tenth the param-
eters. Although the GPT model always produced
syntactically well-formed calls, it occasionally sup-
plied slot values that were outside the valid schema,
leading to EM errors (a behavior we also observed
in some few-shot experiments, see Appendix A.5).

DSCP decomposes an utterance into smaller sub-
queries, solves them, and recombines the partial
outputs. In practice, the divide step often omits or
invents entities, guaranteeing that the subsequent
combine step assembles an invalid call. These
malformed outputs are heavily penalized by the
exact-match metric, limiting DSCP to 34.0% on
APIMIXSNIPS and 45.6% on APIMIXATIS.

Qwen3 (CoT) often behaves like DSCP with ex-
tra self-verification steps, which explains the size-
able improvement over vanilla DSCP. Nevertheless,
any spurious entity that appears in the reasoning
phase leaks into the structured output, and it of-
ten fails to follow the correct syntax. As a result,
Qwen3 (CoT) peaks at 51.5% EM on APIMIXS-
NIPS and 74.8% on APIMIXATIS.

Across all baselines, accuracy improves with the
parameter count: both CoT variants gain over 20
percentage points between 0.6B and 4B parameters,
consistent with prior findings that chain-of-thought
prompting begins to pay off only for sufficiently
large models. Grammar pruning, however, already
yields high accuracy at 0.6B and retains it under
4-bit quantization, where the drop is never more

16962

Burger Coffee

Approach Qwen2.5 0.5B | Qwen2.5 1.5B | Qwen2.5 0.5B | Qwen2.5 1.5B

Q4 F16 Q4 F16 Q4 F16 Q4 F16
Standard Prompting + No Grammar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Standard Prompting + Full Grammar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NER-augmented Prompt + No Grammar | 0.0 1.2 252 206 1.0 0.0 0.0 1.0
NER-augmented Prompt + Full Grammar | 0.0 1.2 252 206 3.7 6.2 9.7 10.1
Cross-TOP (Rubino et al., 2022) 73.3 54.8
Grammar Pruning 870 904 [946 962 [911 911 [911 911

Table 3: Accuracy (%) on the COFFEE and BURGER datasets across different ablations. All models, including
baselines, are fine-tuned on the other three FoodOrdering subsets (Pizza, Burrito, Sub) to test for cross-schema

knowledge transfer.

APIMixSNIPS APIMixATIS
Approach 0.6B 1.7B 4B 0.6B 1.7B 4B
Q4 F16 Q4 F16 Q4 F16 Q4 F16 Q4 F16 Q4 F16

Qwen3 Thinking 582 6.79 | 18.44 1941 | 5145 5145 | 6.80 16.50 | 30.10 33.98 | 74.76 74.76
DSCP (Qin et al., 2025) | 097 097 | 6.79 6.79 | 3398 3398 | 097 194 | 16.50 16.50 | 45.63 45.63
Constrained Decoding 291 291 | 3.88 388 |36.89 36.89 | 4.85 6.80 | 11.65 13.59 | 3495 36.89
GPT-4.1 mini + FC 91.26 92.23

Grammar Pruning 91.26 91.26 | 94.17 94.17 | 96.12 96.12 || 67.96 69.90 ‘ 83.50 83.50 | 92.23 92.23

Table 4: Accuracy (%) of various models and baselines. GPT-4.1 mini is presented directly alongside other model
sizes for direct comparison. FC denotes "Function Calling". The model used is Qwen3 for all other baselines. None
of the models are fine-tuned, as these datasets are designed for zero-shot evaluation."

Model Execution Speed - 4-bit Precision

Method
Grammar Pruning
Constrained Decoding

z g | ™= Qwen3 Thinking
§ W DSCP
Q
L
25 4.82
[
&
2 4.24
24
=3
3 3.59 3.50
i
=3 293 2 2.92
°
B
I 2.05
T 2 1.80
£
E
2

1 0.92 0.93 1.01

0

0.6B 1.7B 4B

Parameter Size

Model Execution Speed - 16-bit Precision

6.69
5.59 5.59
3.62
3.20
3.06 3.05 201
215
093 I 0.96 1.07
0.6B

1.7B 4B
Parameter Size

Figure 2: Average response time for a single prompt in seconds (single NVIDIA 3090 GPU). Grammar pruning
outperforms all other techniques at each level of quantization and for each model size.

than two percentage points - an attractive property
for edge deployment.

5.3 Latency Results

For task-oriented parsing on edge devices, a seam-
less user experience requires near real-time inter-
action. While the exact threshold varies by appli-
cation, latencies over a few seconds can feel slow.
The goal is often sub-second response times, which

are challenging for generative models on resource-
constrained hardware.

Figure 2 presents the mean end-to-end response
times for the four methods tested in Table 4—Gram-
mar Pruning, Constrained Decoding, Qwen3 Think-
ing, and DSCP. We test the 0.6B, 1.7B, and 4B
model sizes with both 4-bit quantization and regu-
lar floating point 16 weights. Across every model
size and quantization level, we see that Grammar

16963

Pruning achieves sub-one-second latency while
also performing over twice as fast as the next best
method. Grammar Pruning also remains remark-
ably consistent, suggesting that the method is well-
optimized for small models.

Constrained Decoding falls consistently between
2.9 and 3.2, roughly 3 times slower than Gram-
mar Pruning and occasionally faster than Qwen3
in Thinking Mode. While Grammar Pruning has
a runtime that will scale with the number of slot
value entities extracted from the prompt since it
will run out of generation options as entities are
removed, there is no stopping mechanism in pure
Constrained Decoding. In the case of small models
with Constrained Decoding, they seem unable to
stop themselves and will continue generating un-
til they hit a manually-set or architecture-encoded
context limit.

While Qwen3 in thinking mode performs better
on the accuracy front than the other ablation meth-
ods, it does so at the cost of increased latency. In
Figure 2, we see that as the precision and number
of parameters increase, the latency of Qwen3 in
Thinking Mode also increases. The downside to
“thinking” before speaking is that more tokens are
used in generation.

Lastly, DSCP underperforms all other methods
over all precision levels and model sizes. In these
ablations, we see that it is anywhere from 3 to al-
most 7 times worse than Grammar Pruning. How-
ever, the key difference is that Qwen3 has been
explicitly trained for general reasoning across all
parameter levels. Because of this, the model has
been trained to stop roughly after a certain amount
of thinking has been done. However, DSCP is
purely a prompting technique that can be used with
any model and has not been fine-tuned to stop af-
ter a certain amount of thinking. Because of this,
Qwen3 in Thinking mode tends to stop sooner than
DSCEP, even though it has more “links” in its Chain-
of-Thought.

6 Conclusion

In this work, we have presented Grammar Prun-
ing, a lightweight, schema-driven framework for
zero-shot Task-Oriented Semantic Parsing on edge
devices. By pairing rule-based, schema-guided slot
extraction with dynamic grammar constraints, our
approach rigorously limits the language model’s
response space to only valid intents, slots, and
slot value entities, minimizing hallucinations.

Through evaluation of zero-shot benchmarks both
with knowledge transfer—FOODORDERING—and
without—APIMIXSNIPS and APIMix-
ATIS—Grammar Pruning significantly outper-
forms prior constrained-decoding baselines in
terms of both accuracy and latency.

Limitations

Despite the empirical gains in accuracy and latency,
we acknowledge several practical constraints that
warrant further investigation and represent exciting
avenues for future work.

First, the current NER module is essentially a
schema-defined collection of rules. While this de-
sign minimizes computational overhead, it leaves
the system vulnerable to novel lexical variants and
domain drift. For example, a slang term like a
cup of "Joe" for coffee would currently produce
a false negative that propagates into the grammar,
causing downstream failures. Future work must
explore hybrid or self-refining extraction methods
that maintain low latency while gracefully respond-
ing to out-of-schema inputs.

Second, Grammar Pruning presupposes a com-
plete and static schema. When an application
allows for user-defined extensions (e.g., custom
menu items), the schema must be recreated. While
our method transfers across schemas with zero fine-
tuning, each new domain requires this explicit in-
ventory. To substantiate the broader applicability
of our approach, future work should evaluate Gram-
mar Pruning on more diverse datasets and extend it
to tasks beyond TOSP, such as structured web data
extraction or specialized code generation, which
could also benefit from dynamic, schema-driven
constraints. Learning to automatically relax or ex-
pand the grammar for valid, out-of-schema user
inputs remains an open challenge.

Finally, while latency was low on a consumer
GPU, preliminary tests on a Raspberry Pi 5 (Ap-
pendix A.7) show that hardware plays a consider-
able role. Future work must involve device-specific
optimizations to further reduce latency on highly
constrained edge hardware.

In sum, Grammar Pruning is a promising bridge
between reliability and efficiency on the edge, but
its practicality outside of controlled testbeds hinges
on adaptive extraction, schematic evolution, and
additional optimization for edge devices.

16964

References

Lukas et al. Beurer-Kellner. 2023. Lmql: Programming
language for constraint-based language model query-
ing. In NeurIPS 2023.

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish
Sabharwal. 2024. Leveraging code to improve in-
context learning for semantic parsing. Preprint,
arXiv:2311.09519.

Biao et al. Cheng. 2024. Sgp-tod: Schema-guided
prompting for zero-shot task-oriented dialogue. In
ACL 2024.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Shrey Desai, Akshat Shrivastava, Alexander Zotov, and
Ahmed Aly. 2021. Low-resource task-oriented se-
mantic parsing via intrinsic modeling. arXiv preprint
arXiv:2104.07224.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019.
A general-purpose algorithm for constrained sequen-
tial inference. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 482-492.

Daniel Fernandez-Gonzélez. 2024. Shift-reduce task-
oriented semantic parsing with stack-transformers.
Cognitive Computation, 16(6):2846-2862.

Yanjun Fu, Ethan Baker, Yu Ding, and Yizheng Chen.
2024. Constrained decoding for secure code genera-
tion. arXiv preprint arXiv:2405.00218.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured nlp tasks without finetuning. arXiv
preprint arXiv:2305.13971.

G. Gerganov. 2023. ggerganov/llama.cpp: Llm infer-
ence in c/c++.

In Gim, Guojun Chen, Seung seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. 2024. Prompt
cache: Modular attention reuse for low-latency infer-
ence. Preprint, arXiv:2311.04934.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar,
and Mike Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. arXiv
preprint arXiv:1810.07942.

Vivek Gupta, Akshat Shrivastava, Adithya Sagar, and
Denis Savenkov. 2022. Retronlu: Retrieval aug-
mented task-oriented semantic parsing. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Yaliang et al. Li. 2022. Zero-shot dialogue state tracking
via reading comprehension. In ACL 2022.

Scott Lundberg. 2023. Guidance: A guidance
language for controlling large language models.
Https://github.com/microsoft/guidance.

Dheeraj Mekala, Jason Wolfe, and Subhro Roy. 2022.
Zerotop: Zero-shot task-oriented semantic pars-
ing using large language models. arXiv preprint
arXiv:2212.10815.

Daehwan Nam and Gary Lee. 2023. Semantic pars-
ing with candidate expressions for knowledge base
question answering.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

OpenAl. 2024. Openai ol system card.

Liang Pan, Lei Zhang, and Zhenzhong Yang. 2023. Can
chatgpt do zero-shot dialogue state tracking? In
arXiv preprint arXiv:2302.01180.

Libo Qin, Qiguang Chen, Jingxuan Zhou, Jin Wang,
Hao Fei, Wanxiang Che, and Min Li. 2025. Divide-
solve-combine: An interpretable and accurate
prompting framework for zero-shot multi-intent de-
tection. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pages 25038—
25046.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
AGIF: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1807-1816, Online.
Association for Computational Linguistics.

16965

https://arxiv.org/abs/2311.09519
https://arxiv.org/abs/2311.09519
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2202.00901
https://arxiv.org/abs/2202.00901
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://openreview.net/forum?id=ICSvW69W5K
https://openreview.net/forum?id=ICSvW69W5K
https://openreview.net/forum?id=ICSvW69W5K
https://cdn.openai.com/o1-system-card-20241205.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.163
https://doi.org/10.18653/v1/2020.findings-emnlp.163

Subhro Roy, Samuel Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin
Van Durme. 2023. Benchclamp: A benchmark for
evaluating language models on syntactic and seman-
tic parsing. Advances in Neural Information Process-
ing Systems, 36:49814-49829.

Melanie Rubino, Nicolas Guenon des Mesnards, Uday
Shah, Nanjiang Jiang, Weiqi Sun, and Konstan-
tine Arkoudas. 2022. Cross-TOP: Zero-shot cross-
schema task-oriented parsing. In Proceedings of the
Third Workshop on Deep Learning for Low-Resource
Natural Language Processing, pages 48—60, Hybrid.
Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Richard Shin, Christopher H Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner,
and Benjamin Van Durme. 2021. Constrained lan-

guage models yield few-shot semantic parsers. arXiv
preprint arXiv:2104.08768.

Akshat Shrivastava, Shrey Desai, Anchit Gupta, Ali
Elkahky, Aleksandr Livshits, Alexander Zotov, and
Ahmed Aly. 2022. Retrieve-and-fill for scenario-
based task-oriented semantic parsing. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing.

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin
Van Durme. 2023. Zero and few-shot semantic
parsing with ambiguous inputs. arXiv preprint
arXiv:2306.00824.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif
A Saurous, and Yoon Kim. 2023. Grammar prompt-
ing for domain-specific language generation with
large language models. Advances in Neural Informa-
tion Processing Systems, 36:65030-65055.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Brandon T Willard and Rémi Louf. 2023. Effi-
cient guided generation for llms. arXiv preprint
arXiv:2307.09702.

Ting-Wei Wu, Ruolin Su, and Biing-Hwang Juang.
2021. A label-aware bert attention network for zero-
shot multi-intent detection in spoken language un-
derstanding. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Process-
ing, pages 5090-5100, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. 2025. Qwen3 Technical Report. arXiv preprint.
ArXiv:2505.09388 [cs].

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang
Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yun-
long Xu, and Philip Yu. 2024. KNN-ICL: Composi-
tional task-oriented parsing generalization with near-
est neighbor in-context learning. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 326-337, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

A Appendix

A.1 Data Preprocessing

Below is an example of how all 5 datasets of the
FoodOrdering dataset are changed to a Python
structure instead of the original cluttered DSL. For
example:

"one regular latte light roast with an
extra espresso shot and honey added and
one large cappuccino with caramel syrup”

is initially represented as:

(DRINK_ORDER (NUMBER 1) (SIZE regular) (
DRINK_TYPE latte) (ROAST_TYPE
light_roast) (TOPPING
ESPRESSO_SHOT_1) (TOPPING honey)) (
DRINK_ORDER (NUMBER 1) (SIZE large)
(DRINK_TYPE cappuccino) (TOPPING
caramel_syrup))

and transformed into:

16966

https://doi.org/10.18653/v1/2022.deeplo-1.6
https://doi.org/10.18653/v1/2022.deeplo-1.6
https://arxiv.org/abs/2202.00901
https://arxiv.org/abs/2202.00901
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.18653/v1/2024.naacl-long.19
https://doi.org/10.18653/v1/2024.naacl-long.19
https://doi.org/10.18653/v1/2024.naacl-long.19

[DrinkOrder (number=1, drink_type='latte'
, roast_type='light_roast', size='

regular', toppings=[Topping(name="
ESPRESSO_SHOT_1"), Topping(name="'
honey')1), DrinkOrder (number=1,

drink_type='cappuccino', size='large
', toppings=[Topping(name="'
caramel_syrup')1)1]

This ensures a compact yet flexible representa-
tion, suitable for downstream processing, which
leverages the knowledge of Python from the pre-

training phase.

if 1Im['toppingsFlag']:
for i in topping_values[:]:
Im += toppingCoffee()
if not topping_values:
Im += '7]"'
break
Im += select([", ", "1"]1, name
="finishedListToppings")
if Im['finishedListToppings']
nyn

break

return 1lm +

n)n

Listing 1: Function to generate a DrinkOrder object.

A.2 Guidance Framework Code for Dynamic

Constrained Decoding

This appendix provides the implementation of a
grammar using the Guidance framework. The
functions handle the generation of structured
DrinkOrder outputs with dynamic constraints, rep-

resented by the list of possible values.

A.2.1 Drink Order Grammar

Description:

This function generates a

DrinkOrder grammar with attributes such as

number, drink_type, roast_type, size, style
and an optional list of toppings. Each attribute
is constrained by dynamically updated grammar
rules.

A.2.2 Topping Functions

guidance(stateless=False)
def drinkOrderCoffee(lm):
Im += "DrinkOrder ("
Im += select(["number="+regex ("\d+")
, ""1, name='numberFlag"')
if drink_type_values:

Im += select(["”, drink_type="'" +
select(drink_type_values, name
='drinkTypeName ')+ ",
name="'drinkTypeFlag')

if Im['drinkTypeFlag']

drink_type_values.remove (1m['
drinkTypeName'])

non

"o,

if roast_type_values:

Im += select(["”, roast_type='"+
select(roast_type_values, name
='roastTypeName')+""'", ""7],
name="'drinkTypeFlag')

if Im['drinkTypeFlag']

roast_type_values.remove (1lm['
roastTypeName'])

"

nn o,

if size_values:

Im += select([", size='"+select(
size_values, name='sizeName')+
mrrm,""], name='sizeFlag')

if Im['sizeFlag'] s

size_values.remove(lm['sizeName'

D

o

if style_values:

Im += select(["”, style='"+select(
style_values, name='styleName'
Y+t ""1, name='styleFlag')

if 1Im['styleFlag'] "

style_values.remove(lm['
styleName'])

'

if topping_values:
Im += select([", toppings=[",
name="'toppingsFlag')

n u]
’

@guidance(stateless=False)
def toppingCoffee(lm):

Im += "Topping(name="
if topping_values:
Im += "'" + select(topping_values,
name="'toppingName') + "'"
topping_values.remove(1lm['
toppingName '])

if quantity_values:

"

Im += select(["”, qualifier= +
select(quantity_values, name='
qualifierName') + "'" ""7, name

='qualifierFlag')
if Im["qualifierFlag"]
quantity_values.remove(lm['
qualifierName'])

nn o,

if not_values:
Im += select(["”, negation=True",
1, name='negationFlag')
if 1Im['negationFlag'] s
not_values.remove('not"')

nn

1m += H)H
return 1m

Listing 2: Function to generate a Topping object.

Description: This grammar generates a

Topping object with attributes such as name,
qualifier, and negation. The values for each
attribute are dynamically constrained by user input.

A.3 Valid Order Function

16967

@guidance(stateless=False)
def validOrderCoffee(lm):

Im += "[”
first True
for i in range(7):

if drink_type_values:
if not first:

Im += select(”, ", "")
else:
first = False
Im += drinkOrderCoffee ()
else:
break

return 1Im +'7]"'

Listing 3: Function to generate a valid order.

Description: This grammar generates a list of
DrinkOrder objects, iterating through multiple or-
ders.

A.4 Qualitative Error Analysis for
FoodOrdering Baselines

The low accuracy scores for the ablation baselines
in Table 3 can be attributed to two key factors: the
strictness of our evaluation metric and a common
failure mode in small language models. Our evalu-
ation uses Unordered Exact Matching (EM), which
penalizes any deviation from the ground-truth API
call, assigning a score of 0 for outputs with even
minor errors.

The primary failure mode observed was the hal-
lucination of parameters. Even when guided by a
full, unpruned grammar, the models often inferred
and incorrectly assigned attributes that were not
specified in the user’s prompt. Because the full
grammar makes all schema items from the training
domains (Pizza, Burrito, Sub) technically reach-
able, the model would make contextually inappro-
priate assignments. For example, models would
assign a roast_style to a hot_chocolate order
or specify a coffee’s style as decaf when no such
information was present in the request.

For the baselines without NER augmentation,
the small models struggled to perform both en-
tity extraction and structured generation simulta-
neously. They often failed to detect all the correct
items from the prompt before attempting to gener-
ate the output, leading to incomplete or malformed
API calls.

These errors highlight the limitations of using
small models with broad, unpruned constraints.
While the full grammar prevents syntax errors, it
does not prevent the model from navigating the
large semantic space of all possible schema values
incorrectly. In contrast, our Grammar Pruning
method entirely eliminates these hallucinations by
dynamically restricting the generation space to only
those intents, slots, and values explicitly extracted

from the user’s prompt, ensuring near-perfect exact
matches. While larger models (e.g., 8B+) show
improved performance on these baselines, our ap-
proach enables smaller, edge-friendly models to
achieve state-of-the-art accuracy.

A.5 Few-Shot Learning Sanity Check

While our primary focus is the strict zero-shot sce-
nario, we performed a brief sanity check with GPT-
4.1-mini using 3-shot prompting. We observed
that the model still occasionally produced out-of-
schema slot values, suggesting that a small number
of examples may be insufficient to fully constrain
the model against a large and complex schema.
This confirmed our focus on a zero-shot approach
where schema compliance is guaranteed by the gen-
eration method itself.

A.6 Prompt Caching

One of our optimization strategies is prompt
caching (Gim et al., 2024), which significantly en-
hances efficiency in inference. Our prompts adhere
to a structured instruction-based format, incorpo-
rating both input data and the extracted elements
only at the end of each prompt. As a result, mul-
tiple queries exhibit a shared long prefix (as we
augmented prompts with a structured domain de-
scription that includes the available classes and
function), allowing us to cache this common seg-
ment rather than fully regenerating it for each re-
quest. Because this prefix accounts for ~ 70% of
the total prompt length, this approach dramatically
reduces cold-start overhead, optimizing response
times and substantially accelerating Time-To-First-
Token (TTFT), particularly for extensive prompts.
By leveraging this caching mechanism, we achieve
a considerable boost in computational efficiency
and overall system responsiveness.

A.7 Raspberry Pi Latency Test Results
A.7.1 Time-to-first-token

Device Qwen2.50.5B | Qwen2.5 1.5B
Q4 F16 Q4 F16
Raspberry Pi 6.46s 9.83s | 17.69s 35.98s
Raspberry Pi + Cache | 2.10s 2.70s | 4.77s 10.07s
GPU 0.28s 0.30s | 0.27s 0.27s
GPU + Cache 0.18s 0.18s | 0.18s 0.19s

Table 5: Time-to-first-token (averaged) on the 2 local
devices. "Cache" represents using Prompt Caching.

TTFT measures the delay from input submis-
sion to the first generated token, and is reported

16968

in Table 5. On the Raspberry Pi, TTFT is greatly
reduced by the quantization in both model sizes.
However, it didn’t have as big as an impact on the
GPU, as times remained constant across quantiza-
tion. Prompt caching proves to have a great impact
on both the Pi and the GPU. With prompt caching,
TTFT is sped up by up to 3.6x on the Pi and 1.6x
on GPU.

A.7.2 Total Latency

For the Raspberry Pi, quantization plays a crucial
role in reducing latency. The Qwen2.5 0.5B (Q4)
model runs in 3.79s with CD, compared to 4.72s
in F16, showing a clear performance advantage.
The effect is even more pronounced for the 1.5B
model, where Q4 achieves 7.29s with CD, while
F16 takes 13.35s. On GPU, quantization has a
minimal effect on total latency, as both Q4 and F16
models perform consistently, with differences of
only 0.02-0.05s.

Using the grammar improves the speed for the
larger 1.5B model on Raspberry Pi, as well as on
the smaller model F16 quant. This suggests that
constraining the model’s output space reduces un-
necessary computations, making inference more
efficient. However, for the smaller 0.5B model,
CD introduces a minor overhead, increasing la-
tency slightly from 3.41s to 3.79s. Additionally,
CD introduces a small latency overhead on GPU,
increasing inference time by about 0.4s. While the
difference is marginal, it indicates that grammar
pruning slightly slows inference on fast executions,
but with very little overhead.

Despite the higher latency compared to GPUs,
the Raspberry Pi’s performance (especially on the
smaller quantized model) remains within a practi-
cal range for real-time applications.

Device Qwen2.5 0.5B | Qwen2.5 1.5B
Q4 F16 Q4 F16

Raspberry Pi + CD 379s 4.72s | 7.29s 13.35s
Raspberry Pi w/o CD | 3.41s 5.55s | 7.88s 15.73s
GPU + CD 0.73s 0.75s | 0.77s 0.78s
GPU w/o CD 0.30s 0.32s | 0.33s 0.38s

Table 6: Total average latency (time from input to out-
put) on the 2 local devices. "CD" signifies Constrained
Decoding (grammar pruning). "w/o CD" represents the
unconstrained model (no grammar). Prompt Caching is
used for all experiments.

16969

