
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 15983–15990
November 4-9, 2025 ©2025 Association for Computational Linguistics

SliceMoE: Routing Embedding Slices Instead of Tokens
for Fine-Grained and Balanced Transformer Scaling

Harshil Vejendla
Rutgers University - New Brunswick
harshil.vejendla@rutgers.edu

Abstract
Mixture-of-Experts (MoE) layers scale trans-
formers by routing tokens to a sparse subset
of feed-forward experts. Token-level routing,
however, assigns an entire semantic spectrum
to each expert, creating capacity bottlenecks,
load-balancing pathologies, and limited spe-
cialisation. We introduce SliceMoE, an archi-
tecture that routes contiguous slices of a to-
ken’s hidden vector. A d-dimensional embed-
ding is partitioned into S slices, and for each
slice, a lightweight shared router predicts the
top-k experts. Experts operate on their as-
signed slices independently, and outputs are
re-assembled, maintaining per-token FLOP ef-
ficiency. Because slices from different tokens
interleave within an expert, utilisation is nat-
urally smoother. We propose a slice-level ca-
pacity loss, cross-slice dropout, and efficient
fused batched-GEMM kernels. Experiments
on WikiText-103 language modelling, WMT
En–De translation, and three text-classification
datasets show SliceMoE attains up to 1.7×
faster inference than dense baselines, 12–18%
lower perplexity than parameter-matched token-
MoE, and improved expert balance, with inter-
pretable expertise over syntactic versus seman-
tic sub-spaces.

1 Introduction

Sparse Mixture-of-Experts (MoE) layers attain
state-of-the-art efficiency by activating only a few
expert feed-forward networks (FFNs) per token
(Fedus et al., 2021). Yet, practical deployments
of token-level MoE face persistent issues: whole-
token routing often overloads popular experts while
others remain under-utilised, wasting parameters
and causing latency spikes (Shen et al., 2022). Fur-
thermore, forcing an expert to process an entire
feature vector limits its ability to specialise on nar-
rower sub-spaces, blunting modularity benefits.

We hypothesise that different contiguous seg-
ments (slices) of a token’s embedding vector cap-
ture diverse and partially independent information

(e.g., syntactic cues in some coordinates, semantic
nuances in others). Exposing this sub-token di-
versity to the routing mechanism can unlock finer-
grained conditional computation. To this end, we
propose SliceMoE, which partitions each token’s
hidden vector into S contiguous slices and dis-
patches each slice separately to a selection of k
experts. This approach yields: (i) smoother load
distribution, as each token contributes S indepen-
dent routing decisions; (ii) increased parameter
utilisation due to more diverse expert activation
patterns; and (iii) enhanced sub-token specialisa-
tion, which we demonstrate to be interpretable.

Our contributions are: (1) SliceMoE, a novel
slice-level routing mechanism applicable to various
MoE models; (2) an efficient implementation strat-
egy using fused batched GEMM kernels; (3) exten-
sive experiments demonstrating superior perplexity,
accuracy, and load balance over strong baselines;
and (4) analyses, including ablations on slice gran-
ularity and interpretability studies, confirming the
benefits of sub-token routing.

2 Related Work

Token-level MoE has evolved from early Top-k
routing (Fedus et al., 2021) to adaptive variants that
merge experts (Muqeeth et al., 2023), tie weights
(He et al.), or employ sophisticated capacity man-
agement and load balancing losses (Shen et al.,
2022). While some methods, like Switch Trans-
formers, focus on simplifying routing, others ex-
plore more complex, learned routing strategies.
Segment-based routing concepts have appeared in
dynamic adapter systems (Kong et al.). Chowdhury
et al. (2020) and Chen et al. (2022) study modu-
lar selective networks, but none explicitly dispatch
sub-token feature fragments to distinct experts in
the manner of SliceMoE. Our approach is orthog-
onal and complementary to hardware-aware ker-
nel optimizations like FlexGEMM (Wang), which

15983



can be used to implement efficient batched oper-
ations. SliceMoE differs from standard regular-
ization techniques (Salehin and Kang, 2023) by
operating directly on the routing decisions and data
flow within the MoE layer. Recent works have also
explored more sophisticated routing policies, such
as introducing randomness to escape local minima
(PR-MoE; Chen et al., 2023) or employing rein-
forcement learning to optimize routing decisions.
SliceMoE’s contribution is largely orthogonal, fo-
cusing on changing the fundamental routing unit
from a token to a sub-token slice, a principle that
could potentially be combined with these advanced
routing policies.

3 SliceMoE Architecture

Given a token representation h ∈ Rd, SliceMoE
first splits it into S contiguous, non-overlapping
slices h(s) ∈ Rd/S for s = 1, . . . , S. Each slice is
then processed by a shared routing mechanism.

3.1 Slice Router and Gating
The slice router is a lightweight Multi-Layer Per-
ceptron (MLP) shared across all S slices of all to-
kens. For each individual slice h(s), the router MLP
(Linear(d/S → Hr) → ReLU → Linear(Hr →
E), where Hr = 256 is the hidden router dimen-
sion and E is the total number of experts) computes
logits g(s) ∈ RE . These logits are passed through
a softmax function to obtain routing probabilities
p
(s)
e = softmax(g(s))e for expert e. For each slice

s, the top-k experts are selected based on these
probabilities. The j-th selected expert ej for slice
s processes the weighted slice:

h̃(s)ej = p(s)ej · h(s) (1)

The expert ej itself is a standard FFN (e.g., a two-
layer MLP), producing an output ϕej (h̃

(s)
ej ). The S

output slices (summed if k > 1 for a given slice,
or concatenated if experts output vectors of the
same slice dimension) are then concatenated to
reconstruct the full token representation h′ ∈ Rd

for the subsequent transformer layer. The router is
trained end-to-end along with the experts using the
main task loss and the auxiliary slice-level capacity
loss.

3.2 Slice-Level Capacity Loss
To encourage balanced load across experts at the
slice level, we introduce a slice-level capacity loss.
We count the number of slices assigned to each

expert e across all B×S slices in a mini-batch. The
capacity loss (Lcap) is then defined as the squared
coefficient of variation (CV) of these counts:

Lcap = α ·
(

std(counts1, . . . , countsE)
mean(counts1, . . . , countsE)

)2

(2)

where α is a hyperparameter (typically 0.01-0.2).
This penalizes imbalance in slice assignments, pro-
ducing smoother gradients and more stable load
distribution than token-level objectives.

This fine-grained approach addresses the global
load balancing problem through statistical multi-
plexing: a batch of B tokens with S slices creates
B×S smaller, more independent routing decisions.
By the law of large numbers, this naturally diver-
sifies expert assignments across the batch, leading
to a smoother load distribution than the B coarse-
grained decisions in token-level routing.

3.3 Cross-Slice Dropout
To encourage router diversification and prevent
over-reliance on specific slice-expert pairings dur-
ing training, we apply cross-slice dropout. For each
slice, after computing the top-k routing probabil-
ities p

(s)
ej , we randomly set a fraction (e.g., 20%)

of these k assignment probabilities to zero. The
remaining non-zero probabilities for that slice are
then re-normalized to sum to 1 before weighting the
slice as in Equation (1). This forces the router to ex-
plore alternative expert assignments for each slice
while ensuring information flow is maintained.

3.4 Fused Kernels for Efficiency
A naive implementation routing individual small
slices can be inefficient. To maintain GPU effi-
ciency, all slices h(s) (weighted by p

(s)
ej ) destined

for a particular expert ej from different tokens in a
batch are dynamically grouped and stacked. This
forms a new batch of slice inputs specific to expert
ej . This allows each layer of the expert FFN to be
processed using a single batched matrix multiply
operation (e.g., via ‘torch.bmm‘ or custom kernels
generated by tools like CUTLASS or Triton based
on FlexGEMM principles). This approach amor-
tizes kernel launch overhead and improves memory
access patterns, enabling throughput comparable
to dense layers on capable hardware (e.g., A100
GPUs).

4 Experimental Setup

Models We primarily use a 16-expert (E=16) con-
figuration based on Switch-Transformer (Fedus

15984



Dataset Accuracy ↑ ELE ↑ Loss ↓
AG NEWS 0.88 0.95 0.35
EMOTION 0.48 0.96 1.36
DBPEDIA-14 0.96 0.96 0.26

Table 1: Validation metrics for 90M SliceMoE (S=8,
k=2, E=16) after three epochs on classification tasks.

et al., 2021) with approximately 90M total param-
eters. The MoE layer is replaced with SliceMoE.
Unless stated otherwise, we use S = 8 slices and
route each slice to top-k = 2 experts. For compar-
ison, we evaluate against a dense transformer of
similar parameter count and a standard token-level
MoE (TokenMoE) baseline.

Datasets Language modelling (LM) uses
WikiText-103 (WT-103) (Wang et al.). Machine
translation (MT) uses WMT-21 English–German
(Subramanian et al.). Text classification tasks
include AG NEWS, DBPEDIA-14, and EMO-
TION (from HuggingFace Datasets). A synthetic
64-dimensional dataset is used for initial toy
experiments (Figure 9).

Training For classification, to isolate the perfor-
mance of the MýoE layer and routing strategy, the
DistilBERT encoder weights were frozen after ini-
tial pretraining; only the MoE layer and the final
classifier were trained for 3 epochs on 5k examples
per Pytorch dataset. LM models are trained for
100k updates on four A100 GPUs. We use Adam
optimizer (β1 = 0.9, β2 = 0.98), a learning rate
of 2e-4, batch size 32, and label smoothing of 0.1
for MT. Key results for accuracy and perplexity are
averaged over 3 runs with different random seeds.
Improvements over TokenMoE were generally sta-
tistically significant (p < 0.05 via t-tests) for AG
NEWS and WT-103.

Metrics Task quality is measured by perplexity
(PPL) for LM and accuracy for classification. Ex-
pert balance is quantified by the Entropy of Load
Estimate (ELE): −∑

e(loade log loade)/ logE,
where loade is the fraction of total slices routed
to expert e. ELE=1 indicates perfect balance.

5 Results and Analysis

Comparison to Baselines Figure 1 reports vali-
dation accuracy. SliceMoE (S=8) consistently out-
performs TokenMoE by 2–4 pp on AG NEWS
and DBPEDIA-14, and matches or exceeds a
dense DistilBERT baseline while using effectively

Slices AG NEWS WT-103
(S) Acc. ↑ ELE ↑ PPL ↓ ELE ↑
2 0.861 0.90 26.8 0.91
4 0.873 0.93 26.0 0.94
8 0.880 0.95 25.4 0.97
16 0.875 0.94 25.7 0.96
32 0.864 0.92 26.1 0.93

Table 2: Impact of Slice Count (S) on AG NEWS (Accu-
racy, ELE) and WikiText-103 (Perplexity, ELE). Model:
16 Experts, k = 2. Performance peaks at S=8. Too few
slices limit fine-grained routing benefits, while too many
may increase routing overhead or fragment information
excessively.

k ·S/Etotal ≈ 2·8/16 = 1/8-th of the FFN parame-
ters per token compared to traditional MoE or k/E
if token-MoE is compared. More accurately, it
matches dense DistilBERT with approximately 6×
fewer active parameters per token pass compared to
a dense FFN. Figure 2 plots accuracy against ELE.
SliceMoE achieves both high task quality and near-
optimal load balance (ELE ≈ 0.95− 0.97), while
TokenMoE often shows a trade-off, struggling to
maintain high ELE without sacrificing accuracy. To
confirm these benefits generalize beyond a frozen
backbone, we ran a preliminary experiment on AG
NEWS with full end-to-end fine-tuning. The trend
holds: SliceMoE (0.925 accuracy) continues to
outperform both the dense baseline (0.918) and
TokenMoE (0.912).

Training Dynamics Figures 3 and 4 illustrates
stable training dynamics for SliceMoE. Loss and
accuracy curves show smooth convergence. Crit-
ically, expert load entropy (ELE) remains high
(≈ 0.95 − 0.97) throughout training, confirming
the effectiveness of the slice-level capacity loss and
routing diversity. Validation performance closely
tracks training, with minimal overfitting except on
the smaller EMOTION dataset.

Impact of Slice Count (S) Table 2 shows the
impact of varying the number of slices S on AG
NEWS accuracy and WT-103 perplexity, along-
side ELE. Performance generally improves from
S = 2 to S = 8, after which it slightly degrades
for S = 16 and S = 32. This suggests an optimal
granularity: S = 8 (for d = 768, slice dim = 96)
appears to strike a balance. Too few slices may
not provide enough diversity for effective special-
ized routing, while too many might lead to overly
fragmented information or increased routing com-
plexity not offset by specialization gains, and could

15985



Figure 1: Validation accuracy across models and
datasets. SliceMoE improves task quality and expert
utilisation, comparing accuracy for SliceMoE (S=8),
TokenMoE, and Dense models on EMOTION and
DBPEDIA-14.

also make individual slices too small to carry mean-
ingful distinct signals. ELE also peaks around S=8.
Across our experiments, we observed a general
heuristic: the slice dimension (d/S) should be large
enough to contain a meaningful signal (e.g., >64).
For a new task, we recommend a quick sweep over
a range of S values (e.g., {4, 8, 16}) to find the
optimal granularity, a computationally inexpensive
step.

Contiguous vs. Shuffled Slices As shown in Fig-
ure 5, routing random permutations of slice indices
(shuffled slices) consistently degrades performance
by 1–3 pp and slightly reduces load balance com-
pared to using natural contiguous slices. This sup-
ports our hypothesis that contiguous blocks of the
embedding vector often capture coherent, locally
structured information that benefits specialized pro-
cessing.

Robustness to Router Noise Figure 6 demon-
strates SliceMoE’s robustness. Adding Gaussian
noise to the router logits before the softmax acti-
vation has minimal impact on accuracy until the
noise standard deviation (σ) exceeds 0.5, indicating
resilient routing decisions.

Language Modelling and MT On WikiText-
103, SliceMoE (16 Experts, S = 8, k = 2)
achieves a perplexity of 25.4, compared to 29.1 for
TokenMoE and 31.0 for a dense model of similar
FFN size, all while matching training FLOPs. In-
ference for SliceMoE is up to 1.7× faster than the
dense baseline due to sparsity. On WMT En–De,
SliceMoE obtains a BLEU score of 29.8, versus
28.2 for TokenMoE and 27.6 for dense, with an
ELE of 0.97.

Figure 2: Accuracy versus expert-load entropy (ELE).
SliceMoE shows strong performance on both axes.

Figure 3: Learning curves for AG NEWS. Accuracy,
loss, and ELE confirm stable optimisation and balanced
routing for SliceMoE.

Comparison with SOTA MoE Variants To bet-
ter situate SliceMoE, we compare it against PR-
MoE (Chen et al., 2023), a strong baseline with
randomized routing, on WikiText-103. As shown
in Table 3, SliceMoE not only achieves a lower
perplexity but also demonstrates substantially bet-
ter load balancing, highlighting the benefits of its
fine-grained routing design.

Model PPL ↓ ELE ↑
TokenMoE 29.1 0.88
PR-MoE 26.5 0.91
SliceMoE (ours) 25.4 0.97

Table 3: Comparison with SOTA MoE variants on
WikiText-103. SliceMoE provides superior perplexity
and load balance.

Interpretability Principal Component Analysis
probes on slice embeddings sent to different ex-
perts suggest specialization. To quantify this, we
compute an Expert Specialization Score (ESS). For
each expert on AG NEWS, we identify the top-
50 most frequent words from input tokens whose
slices were predominantly routed to it. We then
calculate the average cosine similarity between the
pre-trained embeddings of these words and the cen-
troid of all slice embeddings processed by that ex-

15986



Figure 4: Learning curves for DBPEDIA-14. Accuracy,
loss, and ELE confirm stable optimisation and balanced
routing for SliceMoE.

Figure 5: Contiguous slicing outperforms shuffled
slice partitions across AG NEWS, EMOTION, and
DBPEDIA-14. Solid lines: contiguous; dashed lines:
shuffled.

pert. SliceMoE experts achieved an average ESS
of 0.72 (std=0.08), compared to 0.55 (std=0.15)
for TokenMoE experts (where "slices" are whole
tokens for consistent ESS calculation). This sug-
gests more coherent semantic/syntactic groupings
within SliceMoE experts. For instance, on AG
NEWS, one SliceMoE expert frequently processed
slices derived from financial contexts (tokens like
’quarter’, ’earnings’, ’stock’, ’inc’), while another
specialized in slices from sports-related tokens
(’game’, ’season’, ’player’, ’team’). Token-level
MoE showed less distinct separation. More ex-
amples are in Appendix C. This functional spe-
cialization is not merely a curiosity; it provides
a direct path for model debugging. For instance,

Figure 6: Accuracy under Gaussian-perturbed routing
logits. Performance is stable until noise standard devia-
tion exceeds 0.5.

if the model performs poorly on scientific texts,
a developer could probe the expert specializing
in technology-related concepts to diagnose if it is
under-trained, has low activation, or if slices are
being systematically misrouted, offering a clear
avenue for improvement.

6 Conclusion

SliceMoE introduces a novel fine-grained routing
mechanism for MoE models by dispatching con-
tiguous sub-token embedding slices. This approach
demonstrably improves load balancing, parameter
utilisation, and task performance across diverse
NLP tasks, while also fostering interpretable ex-
pert specialisation. Its efficiency, aided by fused
kernels, makes it a promising direction for scal-
ing transformers. Future work may explore hier-
archical routing combining slice- and token-level
decisions, adaptive slice counts, and porting fused
kernels to a wider range of emerging accelerators.

Limitations

SliceMoE, while promising, has several limitations
and areas for future investigation:

Scalability The router MLP’s input dimension is
d/S. While lightweight for moderate d and S, the
total routing FLOPs scale with S (number of slices
per token). For extremely large S or a very high
number of experts E, routing computation could
become a bottleneck relative to expert computation.
Hierarchical routing or dynamically determined
slice counts could mitigate this.

Hyperparameter Sensitivity The number of
slices S, top-k expert choices, capacity loss weight
α, and cross-slice dropout rate are crucial hyperpa-
rameters requiring careful tuning for optimal per-
formance. The ideal S may also depend on the
embedding dimension d and the specific task.

Hardware Dependency for Fused Kernels The
reported efficiency gains rely on fused batched

15987



GEMM kernels, which are most effective on mod-
ern GPUs like A100s. Performance benefits might
be less pronounced on older hardware or if less op-
timized kernel implementations are used. Broader
hardware compatibility and optimized open-source
kernels would enhance practical adoption.

Classification Experimental Setup Our classi-
fication experiments utilized a frozen DistilBERT
encoder to isolate the MoE layer’s impact. While
this allows for a focused comparison of routing
strategies, these results may not directly generalize
to scenarios involving full end-to-end fine-tuning
of the entire model. Exploring SliceMoE in fully
trainable large models is an important next step.

Comparisons with SOTA MoE Variants While
SliceMoE demonstrates significant improvements
over standard token-level MoE and dense baselines,
this work did not include exhaustive comparisons
against all recent, highly specialized MoE architec-
tures (e.g., those with very complex learned routing
or dynamic expert merging/pruning). Such com-
parisons would provide a more complete picture of
SliceMoE’s relative standing.

Increased Implementation Complexity Slice-
level routing and aggregation introduce more rout-
ing decisions and data manipulation steps com-
pared to token-level routing, potentially increasing
the initial implementation complexity.

Interpretability Metrics Our current inter-
pretability analysis, while indicative, relies on spe-
cific metrics like ESS and qualitative examples.
Developing more comprehensive and standardized
quantitative metrics for expert specialization in
MoE models remains an open research area.

References
Zexuan Chen, Zihui Li, Xuan Zhao, A-Long Zhou,

Lichao Yu, Wei Zhang, and Ming Zhou. 2023. PR-
MoE: Post-routing mixture of experts. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and
Yuan-Fang Li. 2022. Towards understanding the
mixture-of-experts layer in deep learning. Advances
in Neural Information Processing Systems, 35:3136–
3149.

I. M. Chowdhury, Kai Su, and Qiangfu Zhao. 2020. MS-
NET: Modular selective network. International Jour-
nal of Machine Learning and Cybernetics, 12:763–
781.

W. Fedus, B. Zoph, and N. Shazeer. 2021. Switch
transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961.

Ethan He, Abhinav Khattar, Ryan Prenger, Oleksii
Kuchaiev, Anima Liu, and Boris Ginsburg.

Rui Kong, Qiyang Li, Xinyu Fang, Haotian Chen, Guo-
hao Zhao, Guangtou Zhao, Yuchen Wang, Zhen
Cheng, Ming Zhang, Wen Xiao, and Yu Wang.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel.
2023. Soft merging of experts with adaptive routing.
arXiv preprint arXiv:2306.03745.

Imrus Salehin and Dae-Ki Kang. 2023. A review on
dropout regularization approaches for deep neural
networks. Electronics, 12(5).

Liang Shen, Zhihua Wu, Weibao Gong, Hongxiang
Hao, Yangfan Bai, Huachao Wu, Xinxuan Wu, Haoyi
Xiong, Dianhai Yu, and Yanjun Ma. 2022. MoESys:
A distributed and efficient mixture-of-experts train-
ing and inference system for internet services. IEEE
Transactions on Services Computing, 17:2626–2639.

Sandeep Subramanian, Oleksii Hrinchuk, Virginia
Adams, and Oleksii Kuchaiev. NVIDIA NeMo’s neu-
ral machine translation systems at WMT21. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation (WMT21).

Luyu Wang, Yujia Li, Özlem Aslan, and Oriol Vinyals.
WikiGraphs: A wikipedia text–knowledge graph
paired dataset. In Proceedings of the 15th Workshop
on Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-15).

Shunhong Wang. FlexGEMM: A flexible micro-kernel
generation framework.

A Hyper-parameter Details

The following details supplement Section 4:

• Transformer hidden dimension d = 768, FFN
intermediate dimension 4× d = 3072.

• SliceMoE Router MLP: Input d/S, hidden
layer Hr = 256 with ReLU, output E (num-
ber of experts). For S = 8, d/S = 96.

• Number of Slices S: Varied in
{2, 4, 8, 16, 32} for ablation (Table 2).
S = 8 was generally optimal.

• Top-k experts per slice: k = 2 used consis-
tently.

• Capacity loss weight α: Validated in range
[0.01, 0.2], set to 0.1 for LM/MT and 0.05 for
classification for best stability and ELE.

15988



• Cross-slice dropout rate: 0.2 (i.e., 20% of se-
lected expert assignments per slice dropped).
Standard dropout of 0.1 on FFN activations.

B Additional Ablation Results

Figure 7 shows the effect of varying the softmax
temperature in the slice router on AG NEWS val-
idation accuracy. Performance is relatively stable
for temperatures between 0.5 and 2.0, with a slight
peak around 1.0 (default used).

Figure 7: Effect of router softmax temperature on AG
NEWS validation accuracy for SliceMoE (S=8, k=2).

Impact of Experts per Slice (k) We ablate the
number of experts selected per slice (k) on AG
NEWS, shown in Table 4. Using k = 1 is fastest
but results in lower accuracy and balance, as it
limits the router’s flexibility. Increasing from k = 2
to k = 3 offers a marginal accuracy improvement
at a significant latency cost. This confirms that k =
2 provides a robust trade-off between performance
and efficiency for our setup.

k Accuracy ↑ ELE ↑ Latency (ms/batch) ↓
1 0.874 0.91 15.2
2 0.880 0.95 18.5
3 0.881 0.94 24.1

Table 4: Ablation on the number of experts per slice (k)
for SliceMoE (S=8) on AG NEWS. k = 2 offers the
best balance.

C Additional Figures and Interpretability
Examples

Figure 8 shows the confusion matrix for SliceMoE
on DBPEDIA-14, indicating strong performance

across most classes.

Figure 8: Confusion matrix for DBPEDIA-14 (Slice-
MoE, S=8), showing improved class-wise performance
compared to TokenMoE (not shown).

Figure 9 illustrates SliceMoE’s behavior on a
synthetic task designed with distinct features in
different embedding segments. SliceMoE quickly
learns to route corresponding slices to specialized
experts, achieving near-perfect load balance.

Figure 9: SliceMoE on a synthetic toy task: expert
load entropy (ELE) rapidly converges to near-optimal
balance within five epochs.

Further Interpretability Examples (AG NEWS,
S=8):

• Expert 3 (Financial/Business): High ac-
tivation for slices from tokens/phrases like
"Inc.", "Corp.", "stocks fell", "quarterly re-
sults", "market share". Input slice embeddings
show tighter clustering around business con-
cepts.

• Expert 7 (Technology/Science): High acti-
vation for slices from "software", "version",
"internet", "researchers", "nasa".

• Expert 12 (World Affairs/Politics): High
activation for slices from "government", "elec-
tion", "minister", "United Nations", "conflict".

15989



These qualitative observations, alongside the ESS
metric, reinforce the finding that SliceMoE experts
develop more granular specializations.

Generalizability of Slicing Assumption (WMT
En-De): To test if our slicing assumption holds
on other tasks, we performed a preliminary analysis
on WMT En-De translation. We found evidence of
specialization here as well. One expert consistently
received slices from early-to-mid vector indices
(e.g., dimensions 128-256), which we found corre-
lated with source-side verb tense information. An-
other expert showed high activation for slices from
later indices (e.g., dimensions 512-640), which cor-
related with noun phrases and gender agreement
cues. This suggests the principle of local, coher-
ent information within embedding vectors is not
task-specific.

15990


