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Abstract

Although large language models (LLM) have
achieved remarkable performance, their enor-
mous parameter counts hinder deployment on
resource-constrained hardware. Low-rank com-
pression can reduce both memory usage and
computational demand, but applying a uniform
compression ratio across all layers often leads
to significant performance degradation, and pre-
vious methods perform poorly during decoding.
To address these issues, we propose the Fine-
grained Low-Rank Compressor (FLRC), which
efficiently determines an optimal rank alloca-
tion for each layer, and incorporates progres-
sive low-rank decoding to maintain text gener-
ation quality. Comprehensive experiments on
diverse benchmarks demonstrate the superior-
ity of FLRC, achieving up to a 17% improve-
ment in ROUGE-L on summarization tasks
compared to state-of-the-art low-rank compres-
sion methods, establishing a more robust and
efficient framework to improve LLM inference.

1 Introduction

In recent years, large language models (LLM)
(Zhang et al., 2022; Touvron et al., 2023; Jiang
et al., 2023; Liu et al., 2024a) have achieved re-
markable progress in text understanding and gen-
eration, finding widespread applications in areas
ranging from customer service to data analysis.
However, the substantial parameter counts and
high computational demands of these models pose
significant challenges for deployment in resource-
constrained environments such as mobile devices
and edge servers.

To address these challenges, various model com-
pression techniques have been proposed to reduce
the computational and memory requirements of
LLM while maintaining performance. Notable
methods include model pruning (Ma et al., 2023;
Akhauri et al., 2024) and quantization (Shao et al.,
2023; Liu et al., 2024b). Among these, low-rank
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Figure 1: The differences between FLRC and traditional
low-rank compression. As shown on the left side of the
figure, we can determine the optimal number of ranks
to preserve for each layer. On the right side, during
the decoding stage, our approach gradually reduces the
model’s overall activated rank as more tokens are gener-
ated, unlike previous static methods, thereby decreasing
the parameter usage and computational requirements
while maintaining the quality of the generated output.

compression methods based on singular value de-
composition (SVD) (Yuan et al., 2023; Wang et al.,
2024) have shown particular promise in reducing
both model size and computational cost.

Despite their potential, low-rank compression
methods face several challenges that must be ad-
dressed. First, each layer (and even each projec-
tion) has its own tolerance for compression (c.f.
Appendix A). Previous studies (Lin et al., 2024;
Ji et al., 2024; Shao et al., 2024) have attempted
to assign different, optimal compression rates to
each component, but these methods are often time-
consuming or insufficiently precise. Another sig-
nificant issue is that prior work primarily evalu-
ates compressed models on prefill-centric bench-
marks, such as perplexity or common-sense reason-
ing tasks, which are limited to single-token genera-
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tion. Our analysis reveals that even state-of-the-art
SVD-based methods suffer from notable accuracy
degradation on tasks that require multiple decoding
iterations, such as text summarization.

As shown in Figure 1, we propose Fine-grained
Low-Rank Compressor (FLRC) to overcome cur-
rent limitations. Our framework introduces two
key innovations. First, we develop an efficient,
gradient-based rank allocation algorithm that is sig-
nificantly faster and more accurate than existing
methods. Second, we implement a dynamic low-
rank compression paradigm that adjusts the rank
allocation during each token generation, starting
with a conservative compression rate and progres-
sively increasing it to maintain high accuracy at the
same overall compression ratio.

Experimental results on popular LLaMA model
families further validate our approach. In our ex-
periments, our rank allocation algorithm reduces
search time by up to 49× compared to previous
methods, and FLRC achieves up to a 17.35% higher
ROUGE-L score on summarization benchmarks,
setting a new standard for efficient and accurate
model compression.

2 Related Works

Low-rank compression (Kaushal et al., 2023; Hsu
et al., 2022) has emerged as an effective strategy for
reducing both parameter counts and computational
overhead in neural networks. ASVD (Yuan et al.,
2023) mitigates the impact of outlier activations by
scaling weight matrices based on activation distri-
bution. Additionally, it introduces a rank allocation
strategy to assign appropriate parameters ratio to
each layer. However, this search method is ex-
tremely time-consuming. In contrast, our proposed
rank search significantly reduces search time and,
under high compression rates, finds rank allocation
that deliver superior performance.

Another related work, SVD-LLM (Wang et al.,
2024), introduces a truncation-aware data whiten-
ing method to better correlate singular values with
compression errors, allowing the truncation of
smaller singular values with minimal impact on
error. However, despite these improvements, many
low-rank compression methods still perform sub-
optimally during the decoding phase of LLM in-
ference. To overcome this limitation, we propose
progressive low-rank decoding, which maintains
high text generation quality even under aggressive
compression, thereby improving the practicality of

compressed LLM in real-world generation tasks.

Algorithm 1 Layer-wise Rank Allocation

Input: Model M with layers L,
where each layer l ∈ L
contains a set of projections Pl;
Calibration dataset D;
Rank budget target Rbudget.

Output: Rank allocation {rl,p}l∈L,p∈Pl
.

1: {Gl,p} ← ComputeGradient(M,D)
2: for each layer l ∈ L do
3: for each projection p ∈ Pl do
4: Compute the importance:

αl,p =
∑

i

(
Gl,p[i]×Wl,p[i]

)2
.

5: end for
6: end for
7: Compute the total importance:

S =
∑

l∈L
∑

p∈Pl
αl,p.

8: for each layer l ∈ L do
9: for each projection p ∈ Pl do

10: Allocate rank proportionally:
rl,p = round

(
αl,p

S ×Rbudget

)
.

11: end for
12: end for
13: return {rl,p | l ∈ L, p ∈ Pl}.

3 Proposed Method

Our proposed Fine-grained Low-Rank Compressor
(FLRC) consists of two main components.

3.1 Fisher-based Layer-wise Rank Allocation
In LLM, different weight matrices—and even dif-
ferent projections within the same layer—exhibit
varying capacities to tolerate compression. A uni-
form compression ratio across all layers can thus be
suboptimal, as it may overcompress some compo-
nents while undercompressing others. To address
this issue, we propose the Fisher-based Layer-wise
Rank Allocation algorithm, which computes an op-
timal rank allocation for each projection, preserv-
ing crucial projection ranks while effectively re-
ducing overall model size. An overview of our
algorithm is provided in Algorithm 1.

Our method begins by passing a calibration
dataset D through the model M and computing
the gradients via backward propagation. Let L de-
note the set of all layers in the model, and for each
layer l ∈ L, let Pl be the set of projections in that
layer. For each layer l ∈ L and each projection
p ∈ Pl, we denote the corresponding weight vector
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as Wl,p and its gradient as Gl,p. We then calculate
a fisher-based (Abdelfattah et al., 2021) importance
value αl,p, defined as:

αl,p =
∑

i

(
Gl,p[i]×Wl,p[i]

)2
, (1)

which measures the sensitivity of each projection
by incorporating both the gradient and the weight
values. Higher αl,p values indicate that the pro-
jection is more critical and should be compressed
less aggressively (or potentially left uncompressed),
whereas lower values suggest that the projection
can tolerate more aggressive compression. For
further details on Equation 1, please refer to Ap-
pendix B.

After computing the importance values for all
projections, we sum them to obtain the total im-
portance score S. We then allocate the rank for
each projection proportionally to its importance by
setting:

rl,p = round
(αl,p

S
×Rbudget

)
, (2)

where Rbudget is the overall rank budget target, ad-
justable based on the desired level of overall pa-
rameter compression. This yields a layer-wise rank
allocation {rl,p | l ∈ L, p ∈ Pl} that specifies the
number of ranks retained for each projection in
each layer, reflecting their relative importance.

This adaptive strategy ensures that the available
compression budget is efficiently distributed across
the model, focusing more resources on the most
impactful components. As a result, our rank allo-
cation method achieves a better balance between
compression and performance compared to meth-
ods that apply a uniform compression ratio across
all layers.

3.2 Progressive Low-rank Decoding
In text generation tasks, earlier tokens play a more
significant role in shaping the overall coherence
and quality of the output compared to later tokens
(c.f. Appendix D). Thus, we propose Progressive
Low-rank Decoding, a dynamic compression strat-
egy that gradually reduces the model’s overall acti-
vated ranks during decoding. As shown in Figure 1,
our method progressively decreases the rank as
more tokens are generated, increasing the overall
compression rate while preserving strong perfor-
mance in generation phase.

To adapt the rank allocation during decoding,
we design a scheduler that determines the over-
all rank budget Rbudget to be used for each token.

Our scheduler leverages a calibration dataset to
identify the optimal schedule based on different
target compression levels. Let Rbudget(t) denote
the rank budget for token t as determined by the
scheduler. Note that Rbudget(t) is non-increasing,
meaning that while consecutive tokens may share
the same budget, the budget for token t + 1 will
never exceed that for token t.

Substituting Rbudget(t) for Rbudget in Equation 2
yields the token-specific rank configuration:

rl,p(t) = round
(αl,p

S
×Rbudget(t)

)
. (3)

This yields the configuration {rl,p(t) | l ∈ L, p ∈
Pl} for the current token.

This scheduler-based approach dynamically ad-
justs the rank budget during decoding: early tokens
benefit from a larger parameter set, while later to-
kens are generated with a reduced rank configu-
ration. For supplementary details on our method,
please refer to Appendix C.

4 Experiments

4.1 Experiments Setup

For the decoding stage evaluation, we conduct ex-
periments on two summarization benchmarks: Di-
alogSum (Chen et al., 2021) and CNN/DM (Her-
mann et al., 2015). In addition, to assess per-
formance during the prefilling stage, we measure
the perplexity on the Wikitext2 (Merity et al.,
2016) dataset and evaluate zero-shot accuracy
across seven common tasks provided in the LM-
Evaluation-Harness (Gao et al., 2021). For experi-
mental details, please refer to the Appendix F.

4.2 Evaluation on Generation Tasks

As shown in Table 1, our experiments on Llama-3-
8B-Instruct (Dubey et al., 2024) reveal that previ-
ous low-rank compression methods struggle with
generation tasks. In contrast, our approach, which
incorporates progressive low-rank decoding, con-
sistently maintains strong performance across var-
ious compression ratios. Here, the compression
rate represents the overall percentage of parame-
ter usage saved during the entire generation stage.
Notably, under a 20% compression rate1, evalua-
tions on the DialogSum benchmark indicate that
while competing methods yield ROUGE-L scores

1We define the compression rate as the average percentage
reduction in model parameters per token, computed over both
the prefilling and decoding stages.
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Comp. Rate Method
Llama-3-8B-Instruct Llama-2-7B-Chat

DialogSum CNN/DM DialogSum CNN/DM
ROUGE-L ↑ BERTScore ↑ ROUGE-L ↑ BERTScore ↑ ROUGE-L ↑ BERTScore ↑ ROUGE-L ↑ BERTScore ↑

- Baseline 24.72 86.79 24.34 86.51 24.56 87.75 24.82 87.23

20%
ASVD 0.10 80.07 0.54 77.09 15.44 80.45 7.94 78.75

SVD-LLM 0.24 78.12 6.29 76.46 13.62 83.07 19.71 84.86
FLRC 17.35 86.00 17.72 84.18 17.22 85.29 19.84 84.83

30%
ASVD 0.53 72.45 0.07 71.81 6.47 80.34 3.44 75.66

SVD-LLM 0.41 72.06 3.98 74.28 2.34 75.62 15.56 82.20
FLRC 8.09 81.92 10.83 79.92 14.91 83.62 17.28 83.91

Table 1: Generative performance comparison (ROUGE-L and BertScore are expressed as percentages).

Model Comp. Rate Method
Perplexity ↓ Zero-shot Task Accuracy (%) ↑

Wiki2 ARC-e ARC-c Hella OBQA Wino MathQA PIQA Avg.

Llama-3-8B

- Baseline 6.14 80.13 50.51 60.17 34.80 72.61 40.50 79.71 59.78

20%
ASVD 3206.80 30.81 19.54 27.06 13.80 52.41 21.04 56.37 31.58

SVD-LLM 14.72 55.64 27.30 37.22 21.60 60.54 24.39 64.69 41.63
FLRC 12.53 54.42 28.58 38.95 23.80 68.27 25.03 66.54 43.66

30%
ASVD 28566.03 25.58 22.78 25.84 12.40 51.22 18.26 52.29 29.77

SVD-LLM 33.13 40.07 20.99 30.30 16.80 55.33 22.75 57.94 34.88
FLRC 25.46 38.34 20.39 30.84 19.00 59.51 21.68 60.55 35.76

Table 2: Perplexity and zero-shot accuracy of low-rank compression methods.

of less than 1%, our method achieves an impressive
17.35%.

Although earlier low-rank compression tech-
niques have shown relatively better performance
on Llama-2-7B-Chat, our method still delivers sig-
nificantly higher ROUGE-L and BertScore met-
rics at high compression rates across both bench-
marks. An ablation study of our proposed approach
is presented in Appendix E. We also evaluated our
method on different model sizes to demonstrate its
generalization; see Appendix H for details.

4.3 Evaluation on Understanding Tasks
In addition to generation tasks, we evaluate our ap-
proach on perplexity and zero-shot accuracy using
Llama-3-8B, as shown in Table 2. On the Wikitext2
dataset, our method achieves significantly lower
perplexity compared to other low-rank compres-
sion techniques. Moreover, the average zero-shot
accuracy across various compression ratios consis-
tently outperforms that of previous methods. These
results indicate that our proposed layer-wise rank
allocation effectively mitigates the performance
loss typically associated with model compression,
ensuring robust language understanding even under
aggressive parameter reduction.

4.4 Rank Allocation Search Time
We compare our proposed rank allocation search
with the ASVD approach. The ASVD method, be-

ing perplexity-based, requires substantially more
time for the search process compared to our ap-
proach. On an A100 GPU, the ASVD method
takes approximately 147 minutes to complete the
search, whereas our method requires only 3 min-
utes, representing a 49-fold improvement in speed.
This significant reduction in search time demon-
strates that our approach can quickly and efficiently
determine an optimal rank configuration for the
model, thereby facilitating faster deployment. For
additional performance comparison experiments,
please refer to Appendix G.

5 Conclusion

In this study, we propose the Fine-grained Low-
Rank Compressor (FLRC) to rapidly determine the
optimal compression ratio for each layer, thereby
mitigating the performance degradation that arises
from applying a uniform compression rate across
all layers. Additionally, we introduce progressive
low-rank decoding to address the poor performance
of existing low-rank compression methods during
the generation phase. Experimental results demon-
strate that, under the same parameter utilization,
our approach outperforms other methods on both
generation and understanding tasks, indicating a
significant performance improvement in low-rank
compression.
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Limitation

In this study, we rely on a calibration dataset to
perform layer-wise rank allocation and design the
scheduler for FLRC. However, the model’s perfor-
mance on different benchmarks may vary depend-
ing on the choice of calibration dataset, which can
lead to discrepancies. To ensure fairness, we use
the same calibration dataset for all methods in our
experiments.

Additionally, our experimental results show that
dynamically specifying the number of model pa-
rameters used per token can greatly enhance LLM
inference efficiency. Nevertheless, optimizing the
scheduler for dynamic rank allocation remains a
crucial challenge, as it may introduce additional
overhead. Consequently, our future work will fo-
cus on engineering optimizations and kernel design,
specifically reducing the overhead associated with
dynamic rank allocation, to further improve the
overall efficiency of our approach.

Acknowledgment

We would like to express our gratitude to all organi-
zations that provided the computational resources
necessary to complete the experiments in this study.
Additionally, we acknowledge the use of ChatGPT
for assisting with paraphrasing and polishing, and
not for any other illegal purposes.

References
Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas D Lane. 2021. Zero-
cost proxies for lightweight nas. arXiv preprint
arXiv:2101.08134.

Yash Akhauri, Ahmed F AbouElhamayed, Jordan
Dotzel, Zhiru Zhang, Alexander M Rush, Safeen
Huda, and Mohamed S Abdelfattah. 2024. Shad-
owllm: Predictor-based contextual sparsity for large
language models. arXiv preprint arXiv:2406.16635.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
Preprint, arXiv:1905.13319.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Yulong Chen, Yang Liu, Liang Chen, and Yue
Zhang. 2021. Dialogsum: A real-life scenario
dialogue summarization dataset. arXiv preprint
arXiv:2105.06762.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept, 10:8–9.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Language model
compression with weighted low-rank factorization.
arXiv preprint arXiv:2207.00112.

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi
Liu, Kehai Chen, and Min Zhang. 2024. Feature-
based low-rank compression of large language mod-
els via bayesian optimization. arXiv preprint
arXiv:2405.10616.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ayush Kaushal, Tejas Vaidhya, and Irina Rish. 2023.
Lord: Low rank decomposition of monolingual
code llms for one-shot compression. arXiv preprint
arXiv:2309.14021.

Quentin Lhoest, Albert Villanova Del Moral, Yacine
Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Ab-
hishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin,
and Yen-Chang Hsu. 2024. Modegpt: Modular de-
composition for large language model compression.
arXiv preprint arXiv:2408.09632.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.

14961

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319


Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tij-
men Blankevoort. 2024b. Spinquant–llm quan-
tization with learned rotations. arXiv preprint
arXiv:2405.16406.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-shot
sensitivity-aware mixed sparsity pruning for large
language models. In ICASSP 2024-2024 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11296–11300. IEEE.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.
2024. Svd-llm: Truncation-aware singular value de-
composition for large language model compression.
arXiv preprint arXiv:2403.07378.

Thomas Wolf. 2020. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang
Wu, Yan Yan, and Guangyu Sun. 2023. Asvd:
Activation-aware singular value decomposition for
compressing large language models. arXiv preprint
arXiv:2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings

of the 57th Annual Meeting of the Association for
Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A Importance Score of Different Layers

Different layers within a model often exhibit vary-
ing degrees of “compressibility”, implying that uni-
form compression ratio can lead to suboptimal re-
sults. We can calculate the importance score of
each component in the model based on our pro-
posed method. As shown in Figure 2, the impor-
tance score of the projection in each layer varies
significantly. Identifying which layers can toler-
ate more aggressive compression and which layers
require a more careful approach is crucial to maxi-
mizing efficiency while minimizing performance
degradation.
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Figure 2: The importance score of various projections
in Llama-3-8B across different layer indices. Each
point represents a projection’s score; higher scores (e.g.,
"down_proj") indicate that less compression should be
applied, while lower scores allow for more aggressive
compression.

B Sensitivity Metrics for Each Projection

We use a small calibration dataset and perform back
propagation to compute the gradient for each pro-
jection. We observed that parameters with larger
gradients tend to be more sensitive, and that larger
weight values typically indicate higher importance.
Thus, we multiply the weight and its corresponding
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Comp. Rate Method DialogSum ROUGE-L ↑

- Baseline 24.72

10%
Eq. 4 0.44
Eq. 5 15.74
Eq. 1 20.23

20%
Eq. 4 0.07
Eq. 5 2.16
Eq. 1 17.35

Table 3: Generative performance comparison of
different sensitivity metrics on Llama-3-8B-Instruct
(ROUGE-L is expressed as percentages).

gradient and then square the product to derive an
importance value.

In addition to Equation 1, we evaluated two al-
ternative metrics. First, we considered only the
weight magnitudes:

αl,p =
∑

i

(
Wl,p[i]

)2
, (4)

and second, we considered only the gradient val-
ues:

αl,p =
∑

i

(
Gl,p[i]

)2
. (5)

Using each metric, we computed the importance of
every projection and performed rank allocation ac-
cordingly. Table 3 presents generative performance
comparison on Llama-3-8B-Instruct. It is clear
that the metric combining both gradient and weight
magnitudes is the most accurate. Consequently, we
adopt Equation 1 as our chosen method for estimat-
ing the importance of projection.

C Supplementary Details on Progressive
Low-Rank Decoding

Increasing the compression rate gradually during
the generation phase is highly compatible with low-
rank compression. After decomposing each projec-
tion’s parameter matrix into two smaller matrices
using singular value decomposition, the channels
in these matrices are automatically ordered by im-
portance. In other words, rows or columns at lower
indices contain the most critical information, while
those at higher indices can be safely truncated. This
allows us to dynamically decide, at each token
generation step, how many of the top k rows or
columns to retain, where a smaller k corresponds
to a higher compression rate. This inherent prop-
erty makes our approach ideally suited for dynamic

Method DialogSum ROUGE-L ↑

Static rank decoding 14.71
Increased rank decoding 8.59
Decreased rank decoding 19.87

Table 4: Comparison of different dynamic rank decod-
ing methods on Llama-3-8B-Instruct (ROUGE-L is ex-
pressed as percentages).

rank allocation, leading to an efficient implementa-
tion of progressive low-rank decoding, as we only
need to decrement k during token generation.

Although dynamic rank adjustment introduces
some overhead, when the savings in computation
and data transfer are substantial, the overhead of
dynamically changing the rank becomes negligible.
Moreover, users can also evaluate what level of
performance degradation is acceptable in exchange
for the corresponding acceleration, as this will vary
depending on the specific use case.

In our work, the term “schedule” refers to the
points during the generation process at which the
LLM switches to a higher compression rate. This
means we can generate many schedule candidates,
each corresponding to an overall compression rate
(i.e., the average compression rate used for every
token), which we denote as the overall rank budget
(Rbudget). We then use a calibration dataset to evalu-
ate the performance of each schedule (using metrics
like BERTScore), ultimately selecting the sched-
ule that best meets our desired overall rank budget
Rbudget while achieving optimal performance for
running our FLRC.

D Progressive Low-rank Decoding Forms

In this study, we propose dynamically adjusting
the number of ranks used for each generated token,
and we compare three approaches for doing so.
The first approach, Static Rank Decoding, applies a
fixed rank for every token. The second, Increased
Rank Decoding, uses fewer ranks for early tokens
and more for later ones. The third, Decreased Rank
Decoding, assigns more ranks to early tokens and
fewer to later tokens. In Table 4, we compare these
methods on the DialogSum summarization task,
ensuring that each approach uses the same average
number of parameters. Our results demonstrate that
Decreased Rank Decoding achieves superior per-
formance, which is why we adopt it as our method
for Progressive Low-Rank Decoding.
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Ablation Settings
DialogSum ROUGE-L ↑

SVD-LLM FLRA PLRD

✓ ✗ ✗ 0.24
✓ ✓ ✗ 13.28
✓ ✓ ✓ 17.35

Table 5: Ablation study on generative performance
(ROUGE-L is expressed as percentages). “FLRA” de-
notes Fisher-based Layer-wise Rank Allocation, and
“PLRD” denotes Progressive Low-Rank Decoding.

E Ablation Study

Our proposed Fine-grained Low-Rank Compres-
sor consists of two key components: Fisher-based
Layer-wise Rank Allocation (FLRA) and Progres-
sive Low-Rank Decoding (PLRD). To quantify the
impact of each component, we conducted an abla-
tion study on Llama-3-8B-Instruct with a 20% com-
pression rate, measuring generative performance.
As shown in Table 5, SVD-LLM alone delivers
poor results. In contrast, applying either our FLRA
or PLRD individually yields substantial gains in
generation quality. These findings demonstrate
that both components of our method effectively
enhance the performance of low-rank compressed
models.

F Experimental Details

Our used datasets and base models were sourced
from the HuggingFace (Lhoest et al., 2021) and
Transformers (Wolf, 2020) libraries, and all us-
age complied with the respective terms and condi-
tions. For evaluating zero-shot accuracy, we em-
ployed seven common tasks: ARC-Easy, ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2019), MathQA
(Amini et al., 2019) and PIQA (Bisk et al., 2020).
For summarization tasks, we used ROUGE-L (Lin,
2004) and BertScore (Zhang et al., 2019) as evalu-
ation metrics.

For the FLRC layer-wise rank allocation, we
sampled 256 sequences (each with a length of
2048) from the Wikitext2 training set as our cali-
bration dataset, while the scheduler’s calibration
dataset was drawn from 500 samples from the Di-
alogSum training set. For perplexity evaluation,
the input sequence length was set to 2048. The
compression rate is computed by first establishing
a baseline based on the number of parameters in
the q_proj, k_proj, v_proj, o_proj, gate_proj,

up_proj, and down_proj matrices of the LLaMA
model, and then determining the percentage of pa-
rameters omitted during each inference.

Our experimental pipeline follows the SVD-
LLM procedure. First, the model weights are
decomposed using SVD-LLM’s truncation-aware
data whitening method, after which we apply our
proposed layer-wise rank allocation and progres-
sive low-rank decoding modules. Notably, since
our compression strategy is orthogonal to PEFT
fine-tuning, we deliberately omit the weight up-
dating steps typically included in the SVD-LLM
framework. This design choice was made to ensure
a fair comparison with SVD-LLM.

G Rank Allocation Method Comparison

In order to compare our rank allocation method
with ASVD’s, we first whiten the model weights
and then apply different rank allocation strategies.
We evaluate the resulting models on Wikitext2 by
measuring perplexity. As shown in Table 6, under
the same compression rate, our method achieves
lower perplexity, demonstrating that our approach
not only speeds up the search process but also finds
a more optimal rank allocation for the compressed
model.

Comp. Rate Rank Allocation Method Wiki2 Perplexity ↓

20%
ASVD 22.69
FLRC 12.53

30%
ASVD 128.96
FLRC 25.46

Table 6: Rank allocation method comparison on Llama-
3-8B.

The rank allocation method we employ is both
fast (as detailed in Section 4.4) and yields supe-
rior results. Unlike techniques that rely on iterative
updates (such as Bayesian Optimization (Ji et al.,
2024)) or memory-intensive and slow Hessian-
based methods (Shao et al., 2024), our approach
avoids these drawbacks.

Previous works (Lin et al., 2024; Ji et al., 2024;
Shao et al., 2024) have proposed estimating the im-
portance of various model components; however,
these approaches are often inefficient or inaccurate
and unsuitable for our method. MoDeGPT (Lin
et al., 2024) evaluates the importance of different
blocks (or layers) using block influence, which re-
quires the input and output dimensions to be the
same. In contrast, our rank allocation method is
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Comp. Rate Rank Allocation Method Dialogsum ROUGE-L ↑

- Baseline 24.56

20%
MoDeGPT 3.91
PrunerGPT 16.28

FLRC 17.22

30%
MoDeGPT 2.43
PrunerGPT 10.81

FLRC 14.91

Table 7: Generative performance comparison of differ-
ent allocation methods on Llama-2-7B-Chat (ROUGE-L
is expressed as percentages).

more fine-grained and can evaluate the importance
of each projection within every block, making it
better suited for our progressive low-rank decoding.
Bolaco (Ji et al., 2024) uses Bayesian optimization
for rank allocation, which requires multiple itera-
tions to converge. Our approach, on the other hand,
only needs a single iteration, making it significantly
more efficient. PrunerGPT (Shao et al., 2024) uses
a Hessian-based approach to identify the impor-
tance of each component, which consumes substan-
tial memory and computation time. As a result,
these methods are less efficient than our proposed
method.

We integrated the allocation methods from prior
works with our progressive low-rank decoding and
conducted a generative performance comparison.
As shown in Table 7, our fisher-based rank alloca-
tion outperforms the other methods and remains
highly efficient.

H Evaluation on Models of Different Sizes

We evaluated our method on 3B and 13B models to
demonstrate its generalization capability. Table 8
clearly shows that FLRC continues to outperform
SVD-LLM by a significant margin. The results
demonstrate that, although SVD-LLM experiences
a significant performance drop, FLRC substantially
mitigates the performance degradation at the same
compression rate.

We also conducted a zero-shot evaluation on the
Llama-2-13B model. As shown in Table 9, our
method consistently outperforms prior approaches
across diverse tasks at the same compression rate,
highlighting the superiority of FLRC efficacy in
preserving models performance.

We further evaluated our approach on the Llama-
30B model (i.e., models exceeding 20B param-
eters), as presented in Table 10. On this larger
scale, our method continues to outperform prior

Method Comp. Rate
DialogSum ROUGE-L ↑

Llama3.2-3B Llama-2-13B

Baseline - 12.84 17.23

SVD-LLM
10%

7.09 16.94
FLRC 13.98 17.99

SVD-LLM
20%

3.55 0.18
FLRC 9.94 17.43

Table 8: Generative performance comparison on 3B and
13B models (ROUGE-L is expressed as percentages).

techniques at identical compression rates. More-
over, we observe that our technique achieves even
greater compression efficiency on larger models,
yielding a smaller accuracy drop.

I Speedup of End-to-end Decoding

We conducted practical speedup experiments on
our method. Table 11 is our current acceleration
result using the Llama-3-8B-Instruct model with
a batch size of 512, a sequence length of 32, and
128 tokens generated. These results still show a
tangible speedup. Typically, benchmarks for such
work increase the batch size to make the model
compute-bound and achieve higher throughput.

However, we believe that our proposed progres-
sive low-rank decoding is particularly effective for
alleviating memory-bound issues as well as situa-
tions characterized by low throughput. To further
validate this, we conducted an additional experi-
ment under offloading conditions. In this setup, us-
ing the same Llama-3-8B-Instruct model, our GPU
is limited to approximately 8GB of VRAM; hence,
the remaining parameter matrices are offloaded
to host DRAM and transferred to GPU VRAM
when needed for computation. The experimental
settings in this case are: a batch size of 1, sequence
length of 32, and generating 128 tokens. Table 12
is our experimental result for offloading. Our ap-
proach alleviates the memory transfer requirements,
thereby accelerating the overall process. Our re-
sults clearly demonstrate that our method yields
even more significant acceleration when the system
is memory-bound. Additionally, in data transfers,
larger data tend to experience increased fragmenta-
tion compared to smaller ones. This fragmentation
means that the data is divided into more segments
or fragments, and each fragment often incurs its
own processing overhead. Therefore, in strongly
memory-bound situations, FLRC may deliver even
better acceleration than theoretically predicted.
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Comp. Rate Method
Zero-shot Task Accuracy (%) ↑

ARC-e ARC-c Hella OBQA Wino MathQA PIQA Avg.

- Baseline 79.42 48.29 60.05 35.20 72.30 32.13 79.05 58.06

20%
SVD-LLM 67.89 32.76 44.28 29.00 67.56 25.59 71.11 48.31

FLRC 70.33 38.05 47.49 31.20 69.53 27.91 72.91 51.06

30%
SVD-LLM 58.71 25.94 37.80 26.60 64.56 24.49 66.54 43.52

FLRC 63.64 30.12 41.52 26.60 66.14 24.72 68.39 45.88

Table 9: Zero-shot comparison results on Llama2-13B.

Comp. Rate Method
Wiki2

Perplexity ↓
Dialogsum
Rouge-L ↑

- Baseline 4.10 17.25

20%
SVD-LLM 5.55 16.77

FLRC 5.21 18.95

30%
SVD-LLM 6.27 16.31

FLRC 5.75 18.98

40%
SVD-LLM 7.58 0.00

FLRC 6.62 18.19

Table 10: Performance comparison on 30B model.

Method Comp. Rate Throughput (tokens/sec) Speedup

Baseline - 3646.62 1x

FLRC
20% 3856.99 1.06x
30% 4051.53 1.11x
40% 5290.33 1.45x

Table 11: Speedup of FLRC on Llama-3-8B-Instruct.

As models grow larger and context windows
increase, GPU VRAM demand will rise, making
offloading scenarios increasingly common for sin-
gle user and edge device. Under these conditions,
the model’s inherent throughput can become very
low. Therefore, FLRC is particularly beneficial in
environments that require model offloading.

J FLRC on Low-precision Model

We conducted our experiments primarily in FP16
precision. As shown in Table 13, our method re-
mains equally effective at lower precisions. We
evaluated generation task on both Llama-3-8B-
Instruct and Llama-2-7B-Chat models using our
approach. The results demonstrate that there is no
drop in accuracy across various compression rates,
even when using lower-precision models. This con-
firms that our parameter-reduction technique and
low-precision quantization work synergistically.

Method Comp. Rate Throughput (tokens/sec) Speedup

Baseline - 1.20 1x

FLRC
20% 1.40 1.17x
30% 1.83 1.53x
40% 2.54 2.12x

Table 12: Offloading speedup of FLRC on Llama-3-8B-
Instruct.

Comp. Rate Precision
Dialogsum Rouge-L ↑

Llama-3-8B-Instruct Llama-2-7B-Chat

- FP16 24.72 24.56

20%
FP16 17.35 17.22
INT8 17.48 17.47

30%
FP16 8.09 14.91
INT8 7.81 15.19

Table 13: Generative performance comparison on low-
precision models.

K Sensitivity Analysis to Calibration
Datasets

Most existing SVD-based methods rely on calibra-
tion datasets. Table 14 shows experimental results
obtained by calibrating on different datasets for
compressing Llama-3.2-3B. Notably, when cali-
brated on Wikitext2, the model exhibits improved
perplexity on Wikitext2 but performs worse on C4;
conversely, calibration on C4 yields better results
on C4 but poorer performance on Wikitext2. This
behavior is expected, as models tend to perform bet-
ter on data that closely resembles the calibration set.
Importantly, our results indicate that FLRC consis-
tently achieves lower perplexity than SVD-LLM
across different calibration datasets. Therefore, as
long as all compared methods are calibrated using
the same dataset, the experiments remain fair. In all
our experiments, FLRC and the previous methods
(ASVD, SVD-LLM) have been calibrated on the
identical dataset.
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Method Comp. Rate
Calibration on Wikitext2 Calibration on C4
Wiki2 ↓ C4 ↓ Wiki2 ↓ C4 ↓

Baseline - 7.81 11.33 7.81 11.33

SVD-LLM
10%

14.72 48.03 38.01 29.63
FLRC 11.39 25.79 18.99 18.55

SVD-LLM
20%

26.95 120.92 117.74 53.78
FLRC 19.12 58.92 42.92 27.41

Table 14: Perplexity on different calibration datasets on Llama-3.2-3B.
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