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Abstract
This work presents a novel trie (prefix-tree)-
based parallel decoding method that addresses
the memory inefficiency of batch-based beam
search. By sharing a single KV cache
across beams with common prefixes, our ap-
proach dramatically reduces memory usage
and enables efficient decoding. We evalu-
ated our method across three attention archi-
tectures, Multi-Head Attention (Phi-3.5-mini-
instruct), Grouped Query Attention (Llama-3.1-
8B-Instruct), and Sliding Window Attention
(Mistral-Small-24B-Instruct-2501), using CN-
N/DailyMail for abstractive summarization and
HumanEval for code generation. Our experi-
ments demonstrate substantial memory savings
(4–8×) and up to 2.4× faster decoding, with-
out compromising generation quality. These
results highlight our method’s suitability for
memory-constrained environments and large-
scale deployments.

1 Introduction

Large language models (LLMs) face significant
deployment challenges due to their high memory
requirements. For example, the 8-billion-parameter
Llama 3.1 model, when deployed in float16 preci-
sion, requires approximately 15.7GB of GPU mem-
ory solely for its model parameters. Processing an
8k token sequence adds another 2.5GB for the key-
value (KV) cache. These constraints make efficient
memory utilization a critical factor in optimizing
LLM performance.

Memory optimization not only reduces hardware
requirements but also accelerates inference. Mod-
ern GPUs often exhibit faster computation speeds
than memory transfer rates, leading to a memory-
bound performance bottleneck. Addressing this
bottleneck has spurred innovations like Flash At-
tention (Dao et al., 2022; Dao, 2024), which mini-
mizes memory operations. Efficient memory usage
reduces the overhead of transferring data within the
GPU, enhancing both speed and scalability.

The decoding process plays a pivotal role in the
performance and quality of sequence generation in
LLMs. Typical decoding strategies fall into three
categories: greedy decoding, top-k sampling, and
beam search. Greedy decoding selects the most
probable token at each step, offering simplicity
but often failing to recover from suboptimal de-
cisions. Top-k sampling introduces diversity by
choosing the next token from the k most probable
options based on their probabilities. While effec-
tive for generating varied outputs, top-k sampling
is prone to hallucination (Dziri et al., 2021), limit-
ing its applicability for tasks requiring high factual
accuracy, such as programming, math, or retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Pham and Vo, 2024).

Beam search, on the other hand, maintains multi-
ple candidate sequences (beams) at each time step
and ultimately selects the one with the highest over-
all probability. Unlike greedy search, beam search
can “look ahead” to identify sequences that may
start with lower-probability tokens but lead to better
overall outcomes. By keeping multiple hypotheses,
beam search can recover from locally suboptimal
decisions, often yielding better results than greedy
decoding in certain tasks that require high accu-
racy, like recommendation (Li et al., 2023) and
coding. However, its computational cost and mem-
ory demands make it less practical for real-world
applications, especially at scale.

Beam search’s high memory consumption stems
from its handling of KV caches. While beam
search explores multiple branches originating from
a shared prefix, conventional batch-based imple-
mentations allocate independent KV caches for
each branch, leading to significant memory redun-
dancy, as overlapping tokens across branches are
stored multiple times. Such inefficiencies make
memory optimization crucial for scalable and cost-
effective deployment.

In this paper, we propose a novel trie (prefix
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Figure 1: With beam width b = 3, the top panel shows
multiple explored hypotheses. The middle illustrates
conventional beam search, which stores redundant pre-
fixes (e.g., “Once upon a time,”) in separate caches. The
bottom shows our trie-based approach, consolidating
overlaps into a shared trie to reduce memory while pre-
serving beam width and behavior. Red tokens (e.g.,
“far”, “a”) indicate pruned branches, and position IDs
are reassigned to match conventional beam search.

tree)-based decoding method that significantly re-
duces memory usage in beam search by leveraging
the hierarchical structure of shared prefixes among
branches. Our approach consolidates all branches
into a single shared kernel using a trie search strat-
egy. As shown in Figure 1, this method stores only
unique tokens corresponding to shared prefixes,
reducing memory consumption by eliminating re-
dundant KV cache entries. For instance, in the
illustrated example, our approach requires storing
only 12 tokens, compared to the 21 tokens required
by conventional batch-based methods.

The idea of trie-based decoding introduces two
challenges. First, tokens from different beams may
inadvertently attend to one another, resulting in
corrupted outputs. Second, eliminated tokens may
remain in memory, contradicting the goal of effi-
cient memory usage. To address these issues, we
adapt the attention mechanism to isolate branch-
specific contexts and employ dynamic pruning to
remove low-probability branches, ensuring both
correctness and memory efficiency. These inno-
vations enable our approach to achieve substantial
memory savings while maintaining inference speed,
offering a scalable solution for deploying LLMs in
resource-constrained settings.

We conduct experiments to evaluate our trie-
based decoding approach against greedy decoding

and conventional batch-based beam search across
three attention variants and two datasets, showing
the correctness and robustness of our method. The
results demonstrate that our method achieves com-
parable performance to batch-based beam search
with the same beam width, while substantially re-
ducing memory usage, particularly for larger beam
widths. Our contributions are as follows:

1. We propose a trie-based decoding method
that significantly reduces memory usage dur-
ing beam search by consolidating KV caches
among beams with common prefixes, effec-
tively addressing a critical limitation of batch-
based beam search.

2. Under dense attention, our approach is the-
oretically equivalent to conventional beam
search while substantially reducing memory
overhead. Empirical results across three trans-
former architectures, Multi-Head, Grouped
Query, and Sliding Window Attention, demon-
strate that it preserves output quality, with dif-
ferences from conventional beam search being
statistically insignificant.

3. We release our implementation,1 offering a
scalable and practical decoding alternative.
Unlike greedy decoding or top-k sampling,
our method retains beam search’s robustness
with significantly lower computational over-
head, enabling efficient deployment of LLMs.

2 Related Work

The evolution of decoding methods for language
models in natural language processing (NLP) has
been a subject of extensive research, focusing
on improving both efficiency and output quality.
This section reviews key developments in decoding
strategies, including beam search, sampling meth-
ods, hybrid approaches, and recent advancements
in computational efficiency.

The work of Bahdanau et al. (2016) marked a
pivotal moment in NLP, introducing the attention
mechanism, which allowed models to dynamically
focus on relevant parts of the input sequence dur-
ing generation. This breakthrough significantly im-
proved translation quality, especially for long sen-
tences. Notably, the study employed beam search
as its decoding method—a technique that had al-
ready gained traction in statistical machine transla-
tion.

1https://github.com/brian030128/tridecode
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Following this milestone, beam search became
the dominant decoding method, as evidenced by its
use in prominent works like Vaswani et al. (2017)
and Wu et al. (2016). Beam search’s ability to
maintain multiple hypotheses during decoding of-
ten resulted in outputs that were more coherent and
grammatically accurate, solidifying its popularity
in constrained tasks.

Comparative analyses of decoding strategies
have highlighted the trade-offs between beam
search and sampling. Ippolito et al. (2019) showed
that while sampling methods generate more diverse
outputs, they often compromise coherence and fac-
tual accuracy. Similarly, Massarelli et al. (2020)
emphasized the susceptibility of sampling to hal-
lucinations, contrasting this with beam search’s
strengths in accuracy and faithfulness, albeit at the
cost of diversity. These trade-offs have inspired
hybrid approaches, such as combining initial sam-
pling with beam search (Massarelli et al., 2020), to
leverage the strengths of both methods.

Computational efficiency has become increas-
ingly critical with the growth of model size and
complexity. For example, Vaswani et al. (2017) pro-
posed a high-level algorithm that reduces the beam
search space by bounding the length deviation, im-
proving both memory efficiency and speed without
sacrificing output quality. While our method op-
erates at a lower level, it can integrate with such
techniques to further optimize memory usage.

The issue of prefix overlap has also been studied
in speculative decoding. SpecInfer (Miao et al.,
2024), Spector and Re (2023), and Medusa (Cai
et al., 2024) introduced tree-structured draft-token
approaches with tree attention to improve effi-
ciency. Qin et al. (2025) further enhanced SpecIn-
fer with dynamic beam width.

In contrast, speculative decoding focuses on ac-
celerating local sampling, whereas our work re-
duces the memory footprint of global beam search.
These are complementary directions, and our opti-
mized beam search could even be integrated into
speculative decoding frameworks to improve draft-
token tree generation.

A trie, or prefix tree, is a tree-based data struc-
ture designed for efficient storage and retrieval of
strings based on their prefixes (Briandais, 1959;
Fredkin, 1960). A trie represents common prefixes
of strings as shared nodes, enabling compact stor-
age and efficient traversal. Each node corresponds
to a character, and the path from the root to any
node represents a prefix of the stored string.

In the context of NLP, tries have been employed
in tasks such as language modeling, dictionary con-
struction, and decoding. Their ability to compactly
represent shared prefixes makes them particularly
suitable for beam search, where multiple beams
often share a large number of overlapping prefixes.
As decoding progresses, most beams converge on
a dominant path, leading to substantial redundancy
in the KV cache across different beams.

Our work leverages the trie structure to address
this redundancy. By organizing beams into a trie,
we consolidate overlapping prefixes into a single
representation, significantly reducing memory us-
age. This trie-based approach ensures efficient
storage of shared contexts while maintaining the
integrity of independent beams during decoding.
It highlights the natural fit of trie for optimizing
beam search in LLMs, where memory constraints
and computational efficiency are critical.

3 Methodology

This section introduces a trie-based decoding ap-
proach that addresses inefficiencies by consolidat-
ing overlapping prefixes into a shared representa-
tion, significantly reducing memory usage while
maintaining comparable performance to traditional
beam search. We outline the conventional batch-
based beam search process, explain the proposed
trie-based approach, and detail key innovations
such as tree-based attention masking and garbage
collection for efficient memory management.

3.1 Batch-Based Beam Search

The high-level concept of batch-based beam search
is outlined in Algorithm 1. In transformer-based to-
ken generation, each newly generated token attends
to the KV cache of previously generated tokens.
Due to the nature of matrix operations in attention
mechanisms, all tokens within a sequence must
share consistent hidden state dimensions. Conse-
quently, in batched beam search, each beam main-
tains a separate and complete context KV cache to
preserve distinct dimensional spaces.

During beam search, most candidate beams are
eliminated early on as their cumulative probability
scores fall outside the beam width b. As decod-
ing progresses, new branches predominantly grow
from the single dominant path. This leads to sig-
nificant redundancy, with multiple beams sharing
overlapping prefixes, as illustrated in Figure 1.
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Algorithm 1 Standard Batch-Based Beam Search
Require: LLM in batch inference

P (xbatch|Xbatch), beam width b, prompt
x1, . . . , xt, and target sequence length T

1: Initialize beam B0 ← {(x1, . . . , xt)}
2: Initialize empty KV cache kv
3: for i = t, . . . , T − 1 do
4: Stack all sequences in Bi into a batch tensor

Xbatch
5: Compute probabilities and update KV cache:

B̂i+1, kv← P (xbatch|Xbatch, kv)
6: Select top b sequences: Bi+1 ←

top-b(B̂i+1)
7: end for
8:

9: return Sequence in BT with the highest cu-
mulative probability

3.2 Trie-Based Decoding

Our trie-based decoding approach leverages this
redundancy by merging all branches with shared
prefixes into a single dimension using a prefix tree
traversal. This eliminates the need to store dupli-
cated tokens across beams, significantly reducing
memory usage.

However, this approach introduces two chal-
lenges. First, if the merged tensor is directly pro-
cessed by the language model, tokens from differ-
ent branches could attend to each other, corrupting
the outputs. Second, eliminated tokens would per-
sist in the tensor, unnecessarily occupying memory
and undermining the goal of memory conservation.
The following subsections present our solutions to
these challenges.

3.3 Tree Attention for Trie-based Decoding

Combining multiple sequence branches into a
single dimension improves processing efficiency
but risks unwanted cross-branch interactions. For
example, in Figure 1, tokens like “castle” and “was,”
which belong to different branches, should not in-
fluence one another during attention operations.
To ensure branch independence, we construct a
specialized causal attention mask that mirrors the
structure of a trie, as detailed in Algorithm 3.

During the attention mechanism, masks are ap-
plied by assigning large negative values to spe-
cific attention scores prior to the softmax opera-
tion. This ensures that the masked positions re-
ceive zero attention weight, thereby eliminating

Algorithm 2 Trie-Based Beam Search

Require: LLM with trie attention P (x|T ,M),
where T is the trie structure, M is the attention
mask corresponding to T , and x is the next to-
ken to predict; beam width b, target sequence
length L, prompt, garbage collection interval
g

1: Initialize a trie T ← initialize_trie(prompt)
2: Initialize attention mask M
3: Serialize the trie to input: input ←

serialize(T )
4: for i = |input|, . . . , L− 1 do
5: if i mod g = 0 then
6: garbage_collect()
7: M ← recompute_mask(T , b)
8: end if
9: Predict the b best tokens to expand T : V←

argsortbP (x|input,M)
10: T ← update_trie(T , V )
11: M ← update_mask(T ,M)
12: Serialize updated trie for next iteration:

input← serialize(T )
13: end for
14:

15: return Sequence in T with the highest cumu-
lative probability

their influence on isolated branches. This standard
transformer practice ensures isolation via masking.
Since attention weights are computed relatively dur-
ing the softmax phase, applying a mask beforehand
effectively isolates cross-branch tokens without in-
troducing interference.

As illustrated in Figure 2, this mask enforces
that tokens attend only to other tokens within their
respective branches, maintaining the integrity of
each beam during the decoding process. The at-
tention mask is dynamically updated in two key
steps. First, after selecting the top b tokens at each
decoding step, we update the mask to reflect the
relationships between these tokens and their parent
branches. Second, following garbage collection
(Section 3.5), we update the mask to account for
the changes in the KV cache, ensuring consistency
with the updated tree structure.

3.4 Maintenance of Positional Integrity
In the trie-based beam search illustration, the
renumbered position IDs are designed to simulate
the exact behavior of conventional beam search,
where the position ID of each token plays a crucial
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Figure 2: Causal attention masking that mirrors the trie
structure. Rows and columns represent tokens in the
trie. Blue cells indicate valid self-attention within a
branch, while pink cells (masks) block cross-branch
connections, preserving branch isolation.

role in contextual understanding within the trans-
former architecture. Unlike conventional beam
search, where each beam maintains independent po-
sition IDs, our trie-based approach merges shared
prefixes and consolidates the tokens from all beams
into a single structure. However, neighboring to-
kens within the same branch may be separated by
tokens from other branches in this shared structure.

To preserve the integrity of positional informa-
tion, the renumbered position IDs in our approach
are assigned to match the positions in the origi-
nal beam search. This ensures that the contextual
dependency between tokens in the same branch
remains intact, even when tokens from different
branches are interleaved. By aligning the position
IDs with those in the conventional beam search, our
method achieves equivalent contextual understand-
ing while maintaining memory efficiency. This
alignment is critical for ensuring that the model
generates outputs consistent with the original beam
search behavior, while leveraging the benefits of
the trie structure to reduce redundancy.

3.5 Garbage Collection

Garbage collection (GC) consolidates and reclaims
unused memory. Because GPU memory operations
are expensive, we minimize overhead by deferring
token removal and KV cache reorganization. In-
stead of updating at every decoding step, we ac-
cumulate changes and trigger garbage collection

Algorithm 3 Causal Mask Construction for the
Trie Structure
Require: Trie T , input length t, beam width b

1: Initialize attention mask M ∈ Rb×(t+|T |) ←
−∞ {Initialize mask with negative infinity}

2: M [:, : t] ← 0 {Allow attention to the input
sequence}

3: Initialize temporary nodes: V ←
leaf_nodes(T )

4: while true do
5: reached_root← true
6: for i = 1 to b do
7: M [i, idx(Vi) + t]← 0 {Allow attention

to current node}
8: if parent(Vi) ̸= ∅ then
9: Vi ← parent(Vi) {Move up the tree}

10: reached_root ← false {Continue
traversal}

11: end if
12: end for
13: if reached_root then
14: return M
15: end if
16: end while

only after a predefined threshold is reached. The
procedure executes in three stages:

1. Marking: Traverse the tree bottom-up from
leaf nodes to the root, marking all unvisited
nodes for removal (CPU).

2. Pruning: Eliminate marked nodes from the
CPU-side reference structure via a lightweight
traversal (CPU).

3. Compaction: Compact the KV cache
by discarding marked tokens, using
torch.index_select to retain only un-
marked entries (GPU).

At each GC, we reconstruct the decoding se-
quence from the surviving nodes. This design
follows the amortized philosophy of scapegoat
trees (Galperin and Rivest, 1993): rather than pay-
ing incremental maintenance costs at every step,
we periodically rebuild the structure in linear time,
achieving predictable long-term efficiency.

4 Experiments

4.1 Experimental Setup
We evaluated our trie-based decoding on three
representative transformer models chosen to
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Model Dataset Beam Mem/Tok (MB) ↓ Tok/Sec ↑ Score (mean) Gain (×)

Origin Trie ∆±CI Origin Trie ∆±CI Origin Trie Mem. Speed

Llama 3.1 8B

CNN
1 0.32 N/A N/A 5.32 N/A N/A 0.20 N/A N/A N/A
3 0.85 0.34 −0.51†±0.00 4.45 10.96 +6.51†±0.13 0.21 0.20 2.50× 2.46×
9 2.45 0.43 −2.02†±0.01 3.69 10.02 +6.33†±0.18 0.20 0.20 5.70× 2.72×

HumanEval

1 0.45 N/A N/A 5.61 N/A N/A 0.60 N/A N/A N/A
3 1.01 0.58 −0.43†±0.01 4.98 12.53 +7.55†±0.05 0.65 0.65 1.74× 2.52×
9 2.67 0.85 −1.82†±0.02 4.41 11.81 +7.40†±0.10 0.66 0.65 3.14× 2.68×
15 4.35 1.09 −3.26†±0.04 4.04 11.23 +7.19†±0.15 0.65 0.65 4.00× 2.78×

Mistral-Small

CNN
1 0.37 N/A N/A 7.23 N/A N/A 0.17 N/A N/A N/A
3 1.04 0.41 −0.63†±0.01 5.52 6.56 +1.04†±0.07 0.17 0.17 2.54× 1.19×
6 2.04 0.49 −1.55†±0.01 4.13 5.74 +1.61†±0.10 0.16 0.16 4.16× 1.39×

HumanEval
1 0.52 N/A N/A 4.32 N/A N/A 0.74 N/A N/A N/A
3 1.21 0.68 −0.53†±0.02 3.71 7.32 +3.61†±0.03 0.78 0.78 1.78× 1.97×
6 2.23 0.86 −1.37†±0.02 3.33 6.59 +3.26†±0.06 0.77 0.77 2.59× 1.98×

Phi-3.5-mini

CNN
1 1.36 N/A N/A 14.13 N/A N/A 0.19 N/A N/A N/A
3 4.00 1.39 −2.61†±0.11 11.51 10.81 −0.70†±0.07 0.20 0.19 2.88× 0.94×
9 11.95 1.39 −10.56†±0.19 4.23 8.88 +4.65†±0.09 0.19 0.19 8.59× 2.10×

HumanEval

1 1.11 N/A N/A 13.79 N/A N/A 0.65 N/A N/A N/A
3 3.23 1.27 −1.96†±0.08 12.82 13.99 +1.17†±0.10 0.69 0.69 2.55× 1.09×
9 9.63 2.21 −7.42†±0.29 10.89 11.86 +0.97†±0.10 0.69 0.70 4.36× 1.09×
15 15.97 3.11 −12.86†±0.46 9.85 10.96 +1.11†±0.13 0.70 0.70 5.14× 1.11×

Table 1: Comparison of our trie-based decoding vs. conventional beam search. Means over 1,000 samples;
∆ = Trie − Origin. Statistical significance (p < 0.01) for efficiency deltas is indicated by †. Score reports no
significant difference in quality metrics (ROUGE-L for CNN; Accuracy for HumanEval) across all models, datasets,
and beam widths. Memory Efficiency Gain = Origin / Trie; Speed Efficiency Gain = Trie / Origin. For beam size
= 1 (greedy decoding), both methods are identical; thus, comparison cells are marked N/A.

demonstrate the generalizability of our approach
across popular attention mechanisms: Multi-Head
Attention (Phi-3.5-mini-instruct; Abdin et al.,
2024), Grouped Query Attention (Llama-3.1-8B-
Instruct2), and Sliding Window Attention (Mistral-
Small-24B-Instruct-25013).

Experiments were conducted on two diverse gen-
eration tasks: abstractive summarization (CNN/-
DailyMail dataset; Nallapati et al., 2016) evaluated
using ROUGE-L scores (Lin, 2004), and code gen-
eration (HumanEval dataset; Chen et al., 2021)
evaluated using binary accuracy.

In addition to generation quality, we evaluated
two efficiency metrics. Memory efficiency was de-
fined as memory consumption per processed token:

Peak memory−Model memory
Input length + Output length

Here, “Model memory” denotes the fixed GPU
memory required to load the model, which is ex-

2https://github.com/meta-llama/llama-models/
blob/main/models/llama3_1/MODEL_CARD.md

3https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501

cluded from comparisons. Decoding speed was
measured in tokens per second, computed as the
ratio of output length to inference time.

All evaluations were conducted in a one-shot
setting across beam widths (b). Experiments em-
ployed four Tesla V100-SXM2-32GB GPUs for
Llama 3.1 and Mistral, and a single GPU for Phi-
3.5, demonstrating both single- and multi-GPU
compatibility of our algorithm. Statistical signifi-
cance was assessed using paired t-tests for ROUGE-
L, memory efficiency, and decoding speed, and the
McNemar test for Accuracy.

4.2 Output Fidelity
Table 1 summarizes the experimental results. De-
spite substantial efficiency gains, our trie-based de-
coding is intended to be mathematically equivalent
to conventional beam search. Across beam widths,
it achieves nearly identical ROUGE-L scores on
CNN and comparable accuracies on HumanEval,
with no statistically significant differences (p <
0.01). Minor variations arise from implementation
details, numerical precision, and the lack of batch
invariance (He and Lab, 2025).
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A further limitation stems from sparse attention
mechanisms (Child et al., 2019): because they mod-
ify the effective dependency structure, the flattened
trie may not perfectly replicate the behavior of
dense-attention beam search. This structural di-
vergence can introduce additional discrepancies,
albeit typically small in practice.

To further validate fidelity, we compared per-
token logit distributions from trie-based decod-
ing Tt ∈ RB×V and batch-based beam search
Bt ∈ RB×V at each decoding step t. Logits were
evaluated up to the first divergence point in the
decoding tree. At b = 3 across all models and
datasets, the average softmax-normalized differ-
ences remained below 10−5, effectively at machine
precision, confirming equivalence in behavior.

These complementary analyses confirm that trie-
based decoding reproduces the outputs of conven-
tional beam search to machine precision in practice.
Both the sequence-level results in Table 1 and the
per-token logit comparisons show outputs that are
indistinguishable across all tested settings. Sparse
attention mechanisms may theoretically alter the
dependency structure and limit strict equivalence,
but such effects did not manifest empirically in our
experiments. Overall, trie-based decoding provides
a faithful and efficient alternative to beam search,
while sparse-attention–aware extensions remain a
direction for future work.

4.3 Efficiency Analysis

Memory Efficiency As shown in Table 1, our
trie-based decoding substantially reduces memory
usage across all models and beam widths. For
larger beam widths (e.g., 9 or 15), we observe mem-
ory savings of 4–8 times for Phi-3.5-mini and 4–6
times for Llama 3.1 and Mistral-Small. Notably,
our method achieves memory usage comparable to
greedy decoding (beam width of 1), as illustrated in
Figure 3, highlighting its suitability for deployment
in memory-constrained environments.

Time Efficiency Table 1 also confirms that our
approach consistently improves decoding speed,
especially at larger beam widths. For instance,
Phi-3.5-mini achieves a speedup of 2.42× at beam
width 9, while Mistral attains 1.38× at beam width
6. Although speed was not our primary optimiza-
tion goal, these improvements are significant, high-
lighting reduced memory transfer overhead and
further enhancing practical applicability.

As summarized in Table 1, multiplicative gains

Configuration Trie GC Saved Tokens

Original Beam Search 0.0± 0.0
Trie-based w/o GC ✓ 360.3± 22.1
Trie-based (Ours) ✓ ✓ 535.8± 32.3

Table 2: Results of the ablation study on Phi-3.5-mini
with beam width of 3 on HumanEval. “Saved To-
kens” denotes the average number of KV cache entries
avoided.

in memory (Memory Gain = Origin / Trie) and
speed (Speed Gain = Trie / Origin) consistently
increase with wider beams, highlighting the
scalability and robustness of trie-based decod-
ing. Although optimal beam width remains task-
dependent, our results show that it preserves the
output quality of conventional beam search while
substantially improving efficiency.

5 Discussion

5.1 Ablation Study

We performed an ablation study to evaluate the
individual contributions of the two core compo-
nents in our approach: (1) the trie-based attention
masking, which removes redundant tokens by con-
solidating shared prefixes; and (2) the garbage
collection mechanism, which reclaims memory by
eliminating obsolete branches from the KV cache.

Experiments were conducted using the Phi-3.5-
mini model on the HumanEval dataset with a beam
width of 3. The results are summarized in Table 2.
The trie-based attention masking alone yields sub-
stantial savings of approximately 360 tokens per
run in KV cache storage, confirming its effective-
ness in mitigating redundancy from shared prefixes.
However, without GC, obsolete branches persist
in memory, limiting scalability. Incorporating GC
further improves efficiency, reaching an average
saving of 536 tokens, and consistently prevents
accumulation of unused branches. These results
demonstrate that the trie reduces redundancy, while
GC sustains efficiency.

5.2 Memory Usage During Decoding

As shown in Figure 3, all methods exhibit a tempo-
rary memory spike during the prefilling stage, most
noticeable for the Phi-3.5-mini model. The spike
originates from a large intermediate output tensor
of size (beam width × input length × vocab size)
generated during prefilling. Although this tensor is
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Figure 3: Memory usage during decoding across three models and tasks. Dashed lines show standard beam search;
solid lines show trie-based decoding. Each point is the average at a decoding step, truncated when fewer than 80%
of samples remain. Our trie-based decoding consistently reduces memory usage, closely matching greedy decoding.

released immediately afterward, the spike is dispro-
portionately pronounced in Phi-3.5-mini due to its
smaller model size, accentuating its relative impact
on overall memory usage.

5.3 Overhead of Garbage Collection

We conducted an experiment on Llama 3.1 8B us-
ing 30 beams to generate 1,000 tokens, as shown in
Figure 4. GC consumed less than 20% of the time
required for a single decoding pass and was fur-
ther amortized over 15 decoding steps, resulting in
negligible impact on overall decoding time. While
the GC overhead does increase with the number

of generated tokens, it scales more slowly than the
decoding time. This is primarily because attention
operations scale quadratically, whereas GC scales
linearly. Although CPU and GPU operation costs
are not directly comparable, this observation pro-
vides insight into the relative insignificance of GC
overhead. Given this negligible overhead, we did
not perform further optimization, though additional
refinements remain possible.

5.4 Trie-based Decoding for Reasoning

We evaluate our trie-based beam search on
reasoning-heavy tasks using the MATH500 dataset
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Figure 4: Comparison between GC time and decoding
pass time across 1,000 decoding steps with a beam width
of 30. GC is triggered every 15 decoding steps in this
experiment. The results show that GC overhead remains
low and scales more favorably than the decoding pass
time, which increases steadily over time.

with chain-of-thought (CoT) prompting (“think
step by step”) (Hendrycks et al., 2021; Lightman
et al., 2023). As baselines, we compare against
top-k sampling (k = 3), a standard approach for
reasoning tasks, and greedy decoding, a special
case of top-k sampling (k = 1) and of beam search
(beam width b = 1).

Table 3 shows that trie-based decoding consis-
tently improves accuracy as beam width increases,
outperforming both greedy decoding and top-k
sampling. For example, accuracy rises from 0.23
(Llama 3.1 8B) and 0.41 (Phi-3.5-mini) under top-k
sampling to 0.40 and 0.47 with a beam width of 15.
These results confirm that wider beams enhance
reasoning consistency and correctness. We also
observe that beam search tends to produce longer
CoT sequences, consistent with prior findings on
the positive correlation between reasoning length
and accuracy (Guo et al., 2025).

In terms of efficiency, greedy decoding and top-
k sampling use a single beam, resulting in lower
memory usage and faster decoding. By design, trie-
based decoding maintains multiple beams, increas-
ing memory consumption and reducing throughput.
This gap is expected and not a direct comparison.
Nevertheless, the overhead remains modest and
practically tolerable.

6 Conclusion

This work presents trie-based decoding, a novel
beam search method for LLMs that significantly
reduces memory usage by consolidating shared pre-
fixes among beams. Our approach demonstrates
substantial improvements in memory efficiency,
and its effectiveness has been validated across three

Results on Llama 3.1 8B

Method Mem/Tok Tok/Sec Acc. ℓout

Greedy 0.28 14.03 0.30 411.98
Top-3 0.29 14.08 0.23 383.68
Trie (b = 3) 0.38 12.13 0.33 421.80
Trie (b = 9) 0.68 9.59 0.38 453.68
Trie (b = 15) 1.00 8.22 0.40 440.44

Results on Mistral-Small 24B

Method Mem/Tok Tok/Sec Acc. ℓout

Greedy 0.18 8.38 0.62 434.63
Top-3 0.18 8.21 0.35 383.24
Trie (b = 3) 0.30 7.90 0.63 434.78
Trie (b = 6) 0.44 7.31 0.65 448.66

Results on Phi-3.5-mini 3.8B

Method Mem/Tok Tok/Sec Acc. ℓout

Greedy 0.81 12.36 0.43 277.25
Top-3 0.81 12.36 0.41 271.60
Trie (b = 3) 1.22 10.93 0.44 290.95
Trie (b = 9) 2.37 8.74 0.43 306.74
Trie (b = 15) 3.56 7.74 0.47 302.99

Table 3: Comparison of greedy decoding, top-k sam-
pling, and trie-based beam search on MATH500 with
CoT prompting. Memory usage is measured in MB, and
ℓout denotes the average output length in tokens.

popular modern transformer architectures, includ-
ing Multi-Head, Grouped Query, and Sliding Win-
dow Attention.

Trie-based decoding is especially beneficial for
tasks with large contexts and wide beams, such as
code generation. Our approach requires no addi-
tional training or specialized hardware, offering a
practical, scalable, and cost-effective solution for
deploying LLMs in resource-constrained settings.
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Limitations

While our trie-based decoding method significantly
improves memory and decoding speed, it also has
several limitations:

• Interaction with Sparse Attention: Sparse
attention may modify the dependency struc-
ture, preventing strict equivalence. However,
this effect did not manifest empirically in our
evaluations. We therefore conclude that trie-
based decoding offers a faithful and efficient
substitute for conventional beam search in
practice, while sparse-attention–aware exten-
sions remain a promising avenue for future
work.

• Garbage Collection Overhead: Acceleration
primarily stems from reduced memory usage.
In modern LLMs, the computational bottle-
neck often lies in memory bandwidth, so when
memory usage is high, our implementation
tends to be faster than the original. However,
garbage collection introduces some overhead.
As a result, when the model size is small, the
beam width is narrow, and the total number
of tokens is low, our method may actually be
slightly slower. This can be observed in the
case of the small 3.8B Phi-3.5-mini model in
Table 1.

• Task Dependency: Our approach offers sub-
stantial gains primarily when beams share
common prefixes, making it most beneficial
for tasks where beams frequently converge.
Its efficiency gain may diminish for tasks in-
volving highly diverse or divergent outputs.

• Evaluation Scope: Our experiments focus
on summarization (CNN/DailyMail) and code
generation (HumanEval), evaluating three
mainstream transformer architectures. While
these results support the generalizability of
our approach, its performance on other tasks
or models, such as multimodal transformers
or retrieval-augmented generation, requires
further investigation.

Future work should address these limitations, ex-
ploring broader task applicability.

Ethical Considerations

This work exclusively utilizes publicly available
datasets (CNN/DailyMail and HumanEval), which

contain no personally identifiable or sensitive in-
formation. Additionally, we disclose that the
manuscript underwent minor language refinement
and polishing using ChatGPT. The authors retain
full responsibility for all content presented.
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A Empirical Analysis of Prefix Overlap

A key advantage of our trie-based beam search over
conventional beam search is its ability to consol-
idate overlapping prefixes across beams, thereby
reducing redundant KV cache storage. This nat-
urally raises the question: how frequent is prefix
overlap in practice, and are the observed efficiency
gains justified?

In principle, certain prompts could yield little
to no overlap, limiting the benefit of our method.
However, extensive evaluations across multiple
models, datasets, and tasks show that such cases
are rare in practice.

To quantify overlap, we measured the ratio of
memory usage between trie-based decoding (MT )
and conventional beam search (MB), averaged
across all samples (MT

MB
).

Table 4 summarizes results over 21 settings
spanning three models from our main experiments
(Llama 3.1 8B, Mistral-Small 24B, and Phi-3.5-
mini 3.8B). In addition, we report results for a
much larger model, Llama 3.1 70B, on the Hu-
manEval dataset with a beam width of 3. Due to
computational limitations, this was the only feasi-
ble setting we could evaluate for the 70B model.

Across all settings, we observe an average ratio
of 0.311 (median 0.274, standard deviation 0.155),
consistently reflecting substantial memory savings.
These findings indirectly confirm that significant
prefix overlap is common in realistic scenarios,
and that it underpins the efficiency gains of our
approach. Importantly, at the 70B scale, trie-based
decoding continued to deliver substantial savings,
reinforcing its applicability to very large models.

B Comparing Beam Search and Top-k
Sampling

While our primary objective is to improve the
efficiency of beam search decoding, it is also in-
formative to compare beam search with alternative
strategies to better understand its relative strengths
and limitations.

We conducted additional experiments on the Hu-
manEval benchmark using the Phi-3.5-mini model,
comparing beam search with top-k sampling (k =
50). Top-k sampling achieved an accuracy of 64%,
which is lower than greedy decoding (65%) and
beam search (70% with b = 15). Although top-k
sampling matches greedy decoding in speed, its
stochastic nature introduces greater variability and
increases susceptibility to errors.

Model Dataset b MT
MB
↓

Llama 3.1 8B

CNN
3 0.385
9 0.158

HumanEval
3 0.669
9 0.274

15 0.212

Mistral-Small
CNN

3 0.398
6 0.248

HumanEval
3 0.053
6 0.065

Phi-3.5-mini

CNN
3 0.386
9 0.138

HumanEval
3 0.512
9 0.302

15 0.216

GSM8K
3 0.494
9 0.274

15 0.227

WMT
3 0.472
9 0.325

15 0.270

Llama 3.1 70B HumanEval 3 0.455

Table 4: Memory usage ratios of trie-based decoding
relative to conventional beam search across models,
datasets, and beam widths (b).

As an illustration, consider generating a Python
function to compute the maximum depth of nested
parentheses for each space-separated substring
(e.g., input “(()()) ((())) ()” → output [2,
3, 1]). As shown in Figure 5, with top-k sam-
pling, the generated code erroneously measures the
depth of each individual parenthesis pair, produc-
ing [2, 2, 1, 3, 2, 1, 1]. In contrast, the code
produced via beam search correctly aggregates per
substring and returns [2, 3, 1].
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from typing import List

def parse_nested_parens(paren_string: str) -> List[int]:
stack = []
max_depths = []

for char in paren_string:
if char == '(':

stack.append(len(stack))
elif char == ')':

if stack:
max_depth = stack.pop()
max_depths.append(max_depth + 1)

return max_depths

from typing import List

def parse_nested_parens(paren_string: str) -> List[int]:
result = []
for group in paren_string.split():

depth = 0
max_depth = 0
for char in group:

if char == '(':
depth += 1
max_depth = max(max_depth , depth)

elif char == ')':
depth -= 1

result.append(max_depth)
return result

Figure 5: Code generated with top-k sampling (upper) vs. beam search (lower)

14819


