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Abstract

Large language models (LLMs) excel at few-
shot learning, but their ability to reject out-of-
distribution examples remains under-explored.
We study this challenge under the setting of
few-shot open-set classification, where a model
must not only classify examples from a small
set of seen classes but also reject unseen ones
at inference time. This setting is more real-
istic and challenging than traditional closed-
set supervised learning, requiring both fine-
grained classification and robust rejection. We
show that, for small LLMs, neither chain-of-
thought (CoT) prompting nor supervised fine-
tuning (SFT) alone are sufficient to generalise
reliably, particularly when class semantics are
anonymised. We introduce Wasserstein GFN
(W-GFN), a novel amortised Generative Flow
Network framework that uses latent trajectories
to approximate the Bayesian posterior. With as
few as 4 examples per class, W-GFN substan-
tially improves performance, enabling Llama
3.2 3B to achieve up to > 80% of the perfor-
mance of Llama 3.3 70B in complex datasets,
despite being ~ 23 times smaller, which high-
lights the importance of reasoning-aware ap-
proaches for robust open-set few-shot learning.

1 Introduction

Generative large language models (LLMs) have
been shown to excel in few-shot learning (Brown
et al., 2020; Gao et al., 2021; Zhao et al., 2021),
where tasks are performed using only a handful of
labelled examples at inference time. This is typi-
cally achieved through in-context learning, where
in the test setting the classes are considered seen,
since examples from the same classes as the test in-
stances are provided as demonstrations. However,
the mechanisms driving this generalisation remain
under-explored — particularly the distinction be-
tween genuine reasoning about input data versus
reliance on surface cues or shallow memorisation
of patterns from pretraining.
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Figure 1: Few-shot CoT F1-score for Seen / Unseen
classes with Non-Anonymised and Anonymised labels.

This question becomes especially pressing in
few-shot open-set classification (OSC), where mod-
els must classify among seen demonstration classes
while rejecting examples from unseen ones — unlike
traditional supervised learning, which assumes a
shared label space for training and testing. OSC is
a more realistic and challenging setting, requiring
to handle both known in-distribution (IID) and un-
known/unseen out-of-distribution (OOD) samples
at test time. Under the generalised OOD detection
framework (Yang et al., 2024), OSC involves test-
time semantic shift: Pyqin(Y) # Prest(Y”). Few-
shot OSC is particularly challenging for smaller
LLMs, which, in the absence of rich prompts, may
fall back on surface cues or memorised associa-
tions from pretraining rather than demonstrating
genuine generalisation. While more accessible and
efficient for constrained environments, these mod-
els struggle more with generalisation. Nonetheless,
studying few-shot OSC in smaller LLMs remains
important, as it reflects real-world needs where
both efficiency and the ability to distinguish known
from unknown classes are critical (Liu et al., 2020;
Geng et al., 2021).

Motivation To better understand the challenges
of OSC, we examine the use of chain-of-thought
(CoT) prompting on the MultiNERD named entity
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recognition dataset (Tedeschi and Navigli, 2022).
From the training split, we sample 8 examples
each from 4 random classes for few-shot prompt-
ing to encourage explicit reasoning. For evaluation,
we sample 50 instances each from 10 random test
classes, repeating this 3 times to create distinct test
sets. We report F1-scores for seen classes (classi-
fied into demonstration classes) and unseen classes
(correctly rejected as out-of-set). We compare two
settings: (1) non-anonymised labels (e.g., Person,
Animal), and (2) anonymised labels (e.g., A, B).
The anonymised condition prevents the model from
exploiting prior semantic knowledge of labels, forc-
ing it to rely on reasoning over the demonstrations.
By contrasting the two, we test whether models
genuinely reason over inputs or instead rely on
surface cues or memorised associations — a distinc-
tion that is critical for separating reasoning failures
from memorisation. In both, the model chooses
a class or None of these. Furthermore, predicting
any non-demonstrated class for unseen instances
(e.g., Class N or Class Location) is still regarded
as correct rejection.!

In Figure 1, we evaluate four comparatively
small LLMs, ranging from 2B to 13B. All models
perform well with non-anonymised labels — even
on unseen classes — by extrapolating to semanti-
cally related outputs (see Footnote 1). Interest-
ingly, under anonymised labels, performance drops
substantially and particularly for unseen classes
(see prompts in Appendix A.1). This suggests that
smaller LLMs may overly depend on label seman-
tics (semantic memorisation) when available rather
than engaging in example-based reasoning.

To address this, we focus on anonymised la-
bels,”? and propose introducing latent variables Z
representing intermediate reasoning steps condi-
tioned on input X and predicting Y by marginal-
ising over Z. We propose maximising the poste-
rior P(Y|X) o ) . P(Y|Z;X)P(Z;|X) instead
of directly optimising P(Y'|X). This encourages
reasoning via latent trajectories rather than short-
cutting to Y. Such reasoning-aware decomposi-
tion is well aligned with cognitive and probabilis-
tic decision-making frameworks. It also mitigates

'This is a lenient evaluation setting: any incorrect pre-
diction to an out-of-set label is accepted as ‘None of these’,
artificially inflating unseen F1. We also prompt the model
that some examples may be out-of-set (Appendix A.1). Thus,
these results represent an upper bound on unseen performance.

2Anonymised labels are a common practice in prior work
(e.g., encoder-based classification and meta-learning; Liu et al.
(2020); Snell et al. (2017); Bansal et al. (2020a)).

overfitting, especially when Y lacks semantic cues,
by promoting abstraction (i.e., intermediate con-
cepts) over memorisation.

2 Related Work

Few-shot learning There is a large body of re-
search on few-shot learning with LLMs (Ji et al.,
2023; He et al., 2024; Liu et al., 2024b; Singh et al.,
2024; Yu et al., 2023). Existing approaches span
a range of strategies, including learning with em-
beddings from (non-generative) language models
(Snell et al., 2017; Bansal et al., 2020b; J. Reddi
et al., 2023; Viswanathan et al., 2024), using
few-shot demonstrations (with or without expla-
nations) (Brown et al., 2020; Gao et al., 2021;
Lampinen et al., 2022), prompt engineering (Bohra
et al., 2023; Kaneko et al., 2024), and retrieval-
augmented methods (Izacard et al., 2023; Cao et al.,
2021). However, most assume a closed-set setting,
where the label space is shared between training
tasks and test inputs. Meta-learning approaches
additionally rely on large, diverse sets of few-shot
tasks to generalise well, thus limiting applicability
in data-scarce settings (Hospedales et al., 2022).

Out-of-distribution detection These methods
rely on LLM robustness (Hendrycks et al., 2020)
combined with statistical tools such as Maha-
lanobis distance (Xu et al., 2020; Podol’skii et al.,
2021; Zhou et al., 2021), likelihood ratios (Zhang
et al., 2025), logit similarity (Liu et al., 2024a),
or few-shot demonstrations (Wang et al., 2024).
However, these typically distinguish in-distribution
from OOD data, lacking fine-grained classification
within the in-distribution space and few-shot capa-
bilities (Chen et al., 2024).

Few-shot open-set intent detection This body
of work is the closest to our setting. Existing gen-
erative LLM approaches rely on very large mod-
els such as ChatGPT (Wang et al., 2024; Song
et al., 2023) and are benchmarked exclusively on
intent detection tasks (Casanueva et al., 2020; Lar-
son et al., 2019). Our work differs in that it tar-
gets small, decoder-based LLMs and introduces a
reasoning-aware latent-variable framework to en-
able both classification and rejection in a unified,
amortised way. We also demonstrate that label se-
mantics play a critical role in model generalisation,
and show that anonymising labels exposes core
weaknesses in LLM reasoning — issues that are
largely unaddressed in prior intent detection litera-
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ture. Nevertheless, we take relevant baselines such
as CoT prompting and apply them to our work,
while also using the CLINC150 intent detection
dataset (Larson et al., 2019) in our evaluation setup.

Our contribution We present W-GFN, a
reasoning-aware,> amortised* approach to few-
shot open-set classification, using as few as 4 ex-
amples per class. This is particularly valuable
for smaller LLMs in data-scarce settings, where
both compute and supervision are limited. Our
method introduces latent-variable decomposition
to encourage reasoning via intermediate abstrac-
tions, mitigating overfitting to label semantics.
To the best of our knowledge, this is the first
amortised approach to few-shot OSC for (small)
LLMs. We release our code to facilitate research
in this area: https://github.com/avyavkumar/
few-shot-open-set-classification.

3 Generative Flow Networks

Overview Generative Flow Networks (GFNs)
(Bengio et al., 2023; Malkin et al., 2022; Hu et al.,
2024) are probabilistic models that learn to sample
from structured distributions over complex discrete
spaces by modelling generation as a sequence of
actions, similar to a Markov Decision Process. Un-
like traditional models that define a direct distribu-
tion over outcomes, GFNSs train a stochastic policy
so the marginal probability Pr(s) of a state s is
proportional to a reward R(s), enabling sampling
from unnormalised distributions via an energy func-
tion E(s) = —logR(s). Unlike diffusion pro-
cesses (Ho et al., 2020; Yang et al., 2023) or VAEs
(Kingma and Welling, 2014; van den Oord et al.,
2017), GFNs match reward signals rather than re-
lying solely on positive examples, making them
well-suited for tasks like molecular generation (Zhu
et al., 2023; Roy et al., 2023), causal discovery
(Deleu et al., 2023; Atanackovic et al., 2023), and
combinatorial optimisation (Zhang et al., 2023;
Kim et al., 2024).

Language modelling GFNs are appropriate for
LLM-style sequence generation, as they allow ex-
plicit reward shaping over sequences. As pre-
viously demonstrated (Hu et al., 2024), GFNs
model a policy function over the generation of

3Where the model operates over latent explanations / struc-
tured reasoning chains and scores those for alignment with
downstream task performance.

“Where we train a single model, unlike approaches which
use separate models to classify seen & detect unseen classes.
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Figure 2: GFNs for language modelling. Blue state:
input X; green: latent sequences Z; yellow: labels Y.
Probability of generating label s, is proportional to the
unnormalised reward R(X ZY') where Y = s;.

latent sequences Z = z123...2, 1 € Z, where
T signifies a terminal stop token. The objective
is to sample from a distribution over the space
Z, guided by an unnormalised reward function
R : Z — R-o. Starting from an empty string,
a token z; is sampled at each step according to
the learned sampler qern(2; | 21:—1), and is ap-
pended to the partial sequence until T is drawn.
The probability assigned to a complete sequence
Z = z1., T by the policy is given by glipn(Z) =
(ITiZ; acrn(zi | z1:-1)) qarn(T | 2) —i.e., the
trajectory-level probability from beginning to end
— where the initial context zy corresponds to the
empty string. The training objective of GFNs is to
fit a parameterised sampler ggpn (- | -; 0) such that
the resulting distribution over terminal sequences
satisfies gqarn(Z) < R(Z), aligning the sampling
likelihood with the reward signal (see Figure 2).

Training a GFN To achieve the desired objec-
tive of a GFN — sampling a sequence of discrete
states proportional to a reward signal R — we need
to learn the forward transition policy Pr(S¢+1]|st),
the backward transition probability Pg(s¢|s¢+1),
and a flow function F'(s;) with the following con-
straint: the total outgoing flow from state s; must
equal the total incoming flow at s; (Bengio et al.,
2023). The subtrajectory balance loss (Madan et al.,
2023) enforces this between any pair of interme-
diate states ¢ — j within a sampled sequence of
tokens Z = zy., T, and is written as:

F(s) [ Pﬂmﬂa))z

Lswrp(Z) = | log =
F(s;) TT)Z P(silsi+1)
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where F is parameterised by 6. For LL.Ms, at con-
vergence, we have R(s,T) = F(s,)Pr(T|spn);
therefore, Hu et al. (2024) define F(s,) =
R(s,T)/Pp(T|syp). Trivially, Pg(s¢|s¢+1) = 1
for any fixed sampled sequence in natural language,
as the next token deterministically follows the pre-
vious prefix. This allows us to simplify the loss for
sampled sequences, and for all intermediate states
1 — j we have:

Lswrs(Z;0)= > Y (1)
1<j<n 0<i<y

R(Zl;iT) Hi:z#l Q(Zk|zl:k—l)Q(T|Zlij)
R(21;5T)q(T |21:4)

2

where ¢(+|-) refers to ggrn(+|-). This loss min-
imises the difference between the probability of
transitioning forward from ¢+ — j and backward
from 5 — 4 for each pair of token indices ¢ and 7 in
the sequence R(z1.,T), thus satisfying the condi-
tion that incoming flows must equal outgoing flows.
Details of other losses are in Appendix A.2.

4 Our method: Wasserstein-GFN

Training objective Following the episodic meta-
learning definitions, given K data points for each
of N classes, we construct an input episode X
comprising a support set of few-shot demonstra-
tions and a single guery test example which can
belong to any of the seen classes (see Figure 7,
Appendix A.1). We generate multiple training
episodes by sampling different class subsets and
query instances and aim to correctly classify the
query example using the provided few-shot demon-
strations in the support set. On the other hand, the
objective at fest time is to correctly classify a query
example into either the correct seen class or reject
it as an out-of-distribution example.

Directly estimating posterior probabilities Hu
et al. (2024) apply GFNs at the token level to
generate latent sequences Z ~ qgrn(Z|X) and
then rely on the pretrained (base) LLM to pre-
dict the label Y ~ prra(Y|XZ). This setup
assumes that the base LLM can already assign
high probability to the correct label Y given a la-
tent Z — an assumption that often fails, particu-
larly under anonymised labels — and they address
this by fine-tuning the LLM on concatenated se-
quences X ZY. By contrast, we reframe the role
of GFNs entirely: rather than generating text to-
kens, we use GFNs as reasoning-aware posterior

estimators that directly score latent reasoning paths
with respect to a classification task. This allows
us to approximate the marginal posterior p(Y | X)
without supervised fine-tuning of the base LLM,
while still performing inference over latent rea-
soning chains provided by the LLM. Specifically,
we estimate p(Y'|X) o< >, p(Y|XZ)p(Z|X) =~
>.za9arN(Y|XZ)p(Z|X), where the conditional
prior latent Z| X corresponds to latent sequences
sampled from the base LLLM conditioned on the
input X : Z ~ prrym(Z|X).

Sampling conditional prior latents Using the
few-shot demonstrations, we sample prompt-based
support latents (sequences obtained by prompt-
ing the base LLM to describe the class of
the query example using only few-shot demon-
strations), and query latents (sequences ob-
tained by prompting the base LLM to describe
only the query example) (see examples in Ap-
pendix A.3). We can then train g¢grpy to
maximise Xzpg, .y (YIXZ)prov(Z|X); how-
ever, to simplify training, we assume a uniform
prior over sampled latents and directly maximise
Y 2Dgern (Y| X Z) for all input-latent sequences
X Z describing class Y. To summarise, we col-
lect conditional prior latent sequences Z|X for
query label Y and train qgrpy to map Z — Y
by maximising ¢qarn (Y |XZ) ¥V Z. This aligns
with classical graphical model formulations and
enables amortised inference over structured latent
spaces, allowing the model to reason over multiple
latent explanations efficiently.

Logit normalisation trick Prior work (Hu et al.,
2024) trains qgrn towards higher reward trajecto-
ries by adding a negative offset A to undesirable
trajectories (e.g., trajectories mapping a latent to
an incorrect class in a classification task) — making
low-reward trajectories less likely to be sampled
under the GFN policy (Bengio et al., 2023). In our
experiments, mapping latents to the correct class
with a positive reward offset causes training insta-
bility, and Lg,pr(Z;60) in Equation 1 diverges
(see Appendix A.4). Moreover, penalising all in-
correct trajectories is both costly and ill-posed. As-
signing negative rewards to all alternative labels
incurs O(NT') complexity per instance (IV classes
and T tokens in the sequence X ZY), while the
space of full reasoning paths is combinatorially

5This approximation is reasonable since sampling with
lower temperatures yields high-probability priors.
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(a) Base LLM log-probs for tokens in ZY (prrm (ZY|X)).

(b) Base LLM log-probs for prra(ZY|X) in black; token-
wise log-probs for high- and low-probability sequences under
garn(ZY]X) in blue and red respectively.
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(c) In-distribution logit differences in blue and out-of-
distribution logit differences in red.

Figure 3: By performing pr1 0 (X ZY)—qgern (X ZY)
we are able to detect in-distribution and out-of-
distribution latent — label mappings.

large. Furthermore, “incorrect” trajectories often
lack a clear negative signal — many are partially
plausible — so uniformly suppressing them risks
penalising useful alternatives. To address these is-
sues, we introduce a logit normalisation trick that
is applied post-training: we normalise the token-
wise log probabilities by subtracting them from the
base model’s token-wise log probabilities to get
the relative score § (X ZY) = logpripm (X ZY) —
log gqarn (X ZY). This calibration ensures higher
scores for correct latent—label mappings (see Fig-
ure 3), acting as contrastive training without explic-
itly penalising alternatives.® It offers a scalable, sta-
ble objective that mitigates reward imbalance and
reframes training in terms of relative confidence.

Wasserstein reward offset In Hu et al. (2024),
for a latent sequence Zj.; of length T, the
token-wise reward at step t is defined as
R(Z14) = [lprom(XZ14Y) with offset A <
0 added at token t if prrar(XZ1:Yeorrect) <
pLim (X Z1.¢Yincorreet)- This penalises incorrect
latent — label mappings with a low reward to dis-
courage qgr N from sampling these sequences. We

®Although this breaks autoregressive consistency of garn,

it is inconsequential here since we only compute posterior
probabilities of fixed sequences.

(@ KL (NG| V1) = 1744 (b) KL (N || V1) = 72.13

Figure 4: GPs fit on OOD log probabilities (normalised
by sequence length; X-axis) per class, with their respec-
tive KL divergences: OOD logits have low KL diver-
gence (left); in-distribution ones have high (right).

propose using a gradually increasing negative offset
on trajectories that yield the correct label (rather
than a constant A), which leads to more stable
training (see Section 6). Specifically, we add a neg-
ative reward offset A; at token ¢ to R(Z;.¢) using
a Wasserstein interpolation between 0 and A as

Ay~ —-N((1-a)Ag+A-a,1) 2)
where Ag = 0,a = t/T. The offset is near zero
at early steps but grows larger toward the end of
the sequence. This reduces the relative dominance
of correct paths without removing their overall ad-
vantage, preventing the GFN from collapsing too
quickly onto a few reasoning chains. By narrowing
the margin between correct and incorrect trajecto-
ries, the model is encouraged to explore a broader
range of reasoning paths, which improves stability
and yields a more informative reward signal with-
out requiring dense supervision of negatives. Once
the Wasserstein offset is applied to the correct se-
quences, we use the logit normalisation trick to
compare token-wise log-probabilities between the
base LLLM and ggrn and select high-confidence
mappings from latents to correct labels.

Detecting high probability latent— label transi-
tions automatically To identify whether a sam-
pled latent sequence Z ~ prra(Z|X) leads to a
high-confidence prediction for a class ¢, we analyse
the distribution of token-wise log-probability dif-
ferences between the base LLM and qgrn, using
the logit normalisation trick. For each class ¢, we
generate negative training examples by using one
query example X with a label that is not c (given by
c*) and compute their token-wise logit differences
log prrar(XZY€) — logqarn(XZY ) Ve —
these sequences represent the characteristic out-
of-distribution logit behaviour for ¢, and help us
identify how far a new candidate trajectory diverges
from what’s not expected. We then fit a Gaussian
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Process (Rasmussen, 2004) to these ¢ for class
c using a linear mean and a Matérn kernel (with
v = 5/2) (Genton, 2002). Given a test input X;cs¢,
we sample latent sequences Z and compute the
token-wise logit differences. For each class ¢, we
compare the test sequence’s distribution of § (N7)
against the distribution modelled by the GP trained
for ¢, f. (N§). We then compute the closed-form
KL divergence between these two distributions as

by
Q—n—i—

O
2 % 1%0]

t=1

1 T
KLV IA) =53 |

tr(S7 ' S0) + (uh — pb) TSk — )

where f) is the mean of f, at token position ¢, u}
is the logit ¢ at ¢ for the test sequence, and g
and X are the covariance matrices of f. and the
test example respectively. Note that any distribu-
tion of token-wise log probabilities that deviates
substantially from these modelled low-confidence,
out-of-distribution log-probabilities will be inter-
preted and classified as in-distribution for class
c. Specifically, we apply Z-Score normalisation
across the list of class-wise KL divergences. If the
Z-score for a class cis Z: > 3.5 (i.e., it reflects
a strong statistical deviation), we classify the test
example as c as this is a high probability latent —
label mapping. If there is no such outlier detected
for any of the classes, then we predict that the test
example as out-of-distribution (see Figure 4).

Core principle of our approach Training qgrn
to map latent sequences to a label encourages it to
explore nearby sequences and associate them with
similar rewards for that label (Bengio et al., 2023;
Huet al., 2024), thereby inducing locally consistent
reward neighbourhoods in latent space. This helps
generalise beyond specific latent sequences and
capture broader distributional structure associated
with each label. We then classify a test example
as either seen class or unseen by examining the
distribution of logit differences, enabling robust la-
bel prediction and principled OOD detection using
posterior probability signals. Our training and test
process is shown in Algorithms 1 and 2.

5 Tasks and Baselines

Datasets We evaluate on three tasks of increasing
complexity: NER (MultiNERD; Tedeschi and Nav-
igli (2022)), intent detection (CLINC150; Larson
et al. (2019)), and emotion classification (GoEmo-
tion; Demszky et al. (2020)). MultiNERD serves

Algorithm 1: Training Wasserstein-GFN

1 gorN < parameterised by 0
{X,Y} + N(K — 1) episodes and labels
{X™",Y*} + K episodes and labels
ESubTB(Z; 9) 0
forz,y € {X,Y} do
Z ~ pLL]u(.’E),Z = {Z1,Z2...Zm}
for Z € Z do
for tokent € Z do
| R(Z1.4) += Ay using Eq. 2
end
Calculate lsusrr(Z; 0) using Eq. 1
Lsuwrs(Z;0) += lsurs(Z;0)

e % N U kR W

-
N o= o

end

14 6« 0— VeﬁsubTB(Z; 9)

15 end

16 for 2%,y € {X",Y"} do

17 ZNpLLj\/[(CEC),Z:{Z1,Z2...Zm}
18 diff + {}

19 fory € {Y*} —y°do

-
w

20 diff.append(prra (°Zy) — qarn (x°Zy))
VZ € Z

21 end

2 Train f. using diff

23 end

24 return qgrn, {f1, fo...fe}

Algorithm 2: Prediction with W-GFN

gerN < parameterised by 6
{f1 : fe} < GPs fitted on log-probs
{X} < test example
{Y'} + all labels in support set
Sample Z = {Z1|X, Z2|X...Zm| X }
preds < []
for Z € Z do
dlc] + [KL(8(X Zye)||fe)] Vye €Y
Z*® < Z-Score normalisation of d
if Z°[c] > 3.5
preds.append(y.)
else
preds.append(out-of-distribution)

e e N N AR W N -

P T e
[P I SR

end
return maz_count(preds)

e
n s

as a structured, pattern-driven classification task;
CLINC150 offers high-level domain-specific user
utterance classification, at times with surface-level
cues (e.g., highly specific domains such as Credit
Cards contain the words credit or card in many
of the train/test examples); GoEmotion presents
a challenging fine-grained emotion classification
task, requiring models to generalise across highly
diverse linguistic expressions, while also handling
annotation subjectivity, multi-label dependencies
and diffused semantic features (embeddings for all
tasks are presented in Figure 10, Appendix A.6).

Training sets For all three datasets, we sample
10 classes and anonymise them (see Appendix A.6).
To create training sets for MultiNERD and GoE-
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motion, we generate 3 random support sets con-
sisting of N = {3, 4,5} classes each, and sample
K = {4,8,16} examples for each class from the
training split — resulting in a total of 27 {N, K'}
tuples per dataset. For CLINC150, we set N = 10
(i.e., all support classes for the seen setting) and
sample K = {4,8,16} for each domain. Since
the test split of the dataset already contains OOD
examples, we do not need to create an additional
OOD test split from non-support classes.

Test sets For each of MultiNERD and GoEmo-
tion, we create 3 test sets by randomly sampling 50
examples from each of the 10 classes in the original
test split. As CLINC150 includes OOD domains
in its test set, we use these examples for evaluation
in the unseen setting (100 examples in total), while
for the seen setting we sample 50 examples from
each domain of the seen intents.

Evaluation Seen classes are assigned their
anonymised label, while unseen ones are labelled
as None of these (Footnote 1). We train gopn with
N - K episodes and report the mean and standard
deviation of F1-scores across the three test sets,
separately for seen and unseen classes.

Baselines Following existing baselines in related
tasks (Hu et al., 2024; Song et al., 2023; Wang
etal., 2024), we compare qgrn to (a) CoT prompt-
ing with step-by-step reasoning and a hint for un-
seen classes (Kojima et al., 2022), and (b) super-
vised fine-tuning (SFT). CoT helps quantify W-
GFN’s improvement over reasoning capabilities
of pretrained LLMs on unseen examples, while
SFT evaluates whether W-GFN surpasses strong
in-distribution accuracy. We calculate the ‘unseen’
performance of the baselines using the same lenient
evaluation setting as for W-GFN (Footnote 1).

Construction of episodes Training episodes X
contain few-shot demonstrations and a query ex-
ample. For N support classes with K examples
each, we construct IV - K episodes, so that every
datapoint appears once as a query. At test time, we
evaluate only on queries without demonstrations.
To provide the anonymised label space required for
classification, we take the labels from the training
demonstrations (examples in Appendix A.5).

Training details We use Llama-3.2 3B as our
base LLM (Grattafiori et al., 2024). We perform
extensive hyperparameter sweeps over CoT temper-
atures (with nucleus sampling), CoT/SFT prompt

optimisation, learning and decay rates, epochs, and
number of support/query latents (72 latents per
training episode) (details in Appendix A.7).

6 Results and Discussion

From Table 1, we observe that W-GFN consis-
tently outperforms all baselines. On MultiNERD,
it achieves the highest F1-score in 50/54 settings
for seen classes and 47/54 for unseen classes. On
the more challenging GoEmotion dataset, W-GFN
leads in 51/54 seen settings and 53 /54 unseen set-
tings. While W-GFN marginally underperforms
SFT in CLINC150 in the seen setting, SFT suf-
fers substantially from overfitting on the few-shot
demonstrations (possibly from surface-level cues
provided in test sentences as elaborated in Sec-
tion 5), failing to generalise in the unseen setting
and achieving a score of zero. High F1-scores
on MultiNERD are observed with W-GFN with
semantically coherent and distinct support class
clusters; for instance, combinations such as Plant,
Animal, Mythology, Disease (in Figure 10a in the
appendix) result in higher scores (Table 1a), likely
due to tighter latent alignment. In contrast, GoE-
motion presents a harder generalisation problem,
with comparatively lower scores across all models.
This is attributed to both task complexity and less
distinct support class clusters (see Figure 10b in
the appendix)’ — an issue that is especially harmful
in few-shot setups. Notably, CoT performance on
GoEmotion often drops as the number of support
classes increases, and adding more few-shot ex-
amples provides little improvement, echoing prior
results (Wang et al., 2024). SFT consistently per-
forms better than CoT in the seen setting but fails
to generalise to unseen classes. Overall, W-GEN is
the best-performing model across datasets, main-
taining strong results even with as high a number
as 10 support classes (CLINC150 dataset).

CoT prompt dependence CoT reasoning is
highly prompt-sensitive. Table 3 shows that re-
moving the explicit hint regarding potential unseen
examples at test time leads to a clear performance
drop, most notably a complete failure of OOD de-
tection on CLINC150 (last row). This suggests
that CoT struggles to capture distributional uncer-
tainty without explicit prompt engineering, often
tending to follow incorrect reasoning paths. In con-
trast, W-GEN infers both in- and out-of-distribution

"Semantically overlapping classes may result in generated
reasoning paths that are more ambiguous (see Appendix A.8).
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l K=4 l K=8 K=16
Support Classes | SFT CoT W-GFN | SFT CoT W-GFN | SFT CoT W-GFN
Cosmos, Food, Mythology 0.370.01 0.370.03 0.580.06 0.49¢.05 0.40¢.01 0.609 .06 0.47¢0.01 0.41¢.04 0.61¢g.05
0.019.01  0.540.03 0.800.01 0.020.01  0.550.01 0.67¢.0a 0.030.02  0.490.01 0.58¢.08
Person, Plant, Vehicle 0.490.01  0.320.03 0.500.09 0.530.05  0.340.03 0.66¢ 07 0.520.05  0.380.05 0.63¢.07
0.020.01 0.640p.03 0.580.07 0.060.04 0.580.02  0.530.09 0.090.03 0.600.01  0.580.10
Location, Disease, Time 0.41¢.02 0.400.00 0.590.03 0.530.0 0.390.02 0.62¢p .07 0.480.04 0.390.02 0.640 .02
0.02¢.01 0.350.03 0.700.01 0.050.03 0.45¢.03 0.590.01 0.019p.02 0.390.03 0.720.04
Disease, Food, Cosmos, 0.480.04 0.470.04 0.580.05 0.580.01 0.540.01 0.720.01 0.640.06 0.450.04 0.670.03
Location 0.080.02 0.479.03 0.41¢.05 0.050.05 0.360.04 0.550.05 0.070.06 0.330.02 0.34¢9.04
Person, Plant, Time, 0.550.03 0.38p.02 0.510.05 0.560.04  0.390.03 0.61p 01 0.619.03 0.430.04 0.69¢ 02
Mythology 0.050.05 0.470.03 0.550 08 | 0.070.01 0.400.04 0.600 02 | 0.030.02 0.370.01 0.510 03
Plant, Animal, Mythology 0.520.0a4 0.3909.02 0.499 0s 0.549.03 0.400.03 0.630.0a | 0.560.02 0.350.02 0.670.03
Disease 0.139.02 0.569.04 0.600 0o | 0.0lg.01 0.650.02 0.650.03 | 0.099.06 0.600.01 0.760. 04
Animal, Person, Time, 0.680.0a 0.460.04 0.520 04 0.580.04 0.439.03 0.64903 | 0.670.02 0.41g.02 0.74¢.03
Plant, Disease 0.019.01 0.520.05 0.470.05 0.020.02 0.479.04 0.590.0a | 0.020.01 0.44g03 0.490 06
Plant, Location, Vehicle, 0.580.03 0.42¢0.04 0.590.05 0.590.03 0.41¢.08 0.640.04 0.580.03 0.500.03 0.650.04
Disease, Food 0.019.01  0.390.01 0.540.0a 0.050.04 0.52¢p.03 0.41¢p.09 0.019.01  0.420.01 0.45¢.03
Animal, Mythology, Food, 0.570.03 0.370.03  0.490.02 0.600.02  0.390.02 0.71p.0a 0.660.01  0.420.02 0.67¢.03
Location, Person 0.070.06 0.450.05 0.500.01 0.109.05 0.41¢.03 0.5190.06 0.030.01 0.380.02 0.640 .01
(a) F1-scores for MultiNERD using anonymised labels.
| K=4 | K=8 K=16
Support Classes | SFT CoT W-GFN | SFT CoT W-GFN | SFT CoT W-GFN
Fear, Love, Gratitude 0.380.01 0.349.01 0.48¢.08 0.419.01 0.31p.02 0.520.01 0.360.02  0.270.01 0.51p.01
0.000.00  0.590.03 0.64¢ .06 0.000.00  0.400.02 0.600. 08 0.020.02  0.100.01 0.590.03
Curiosity, Remorse, 0.280.07 0.24¢ .03 0.429 01 0.31p.02 0.230.02 0.42¢9 04 0.370.03 0.230.02 0.450.03
Amusement 0.0009.01 0.40903 0.520.00 | 0.020.01 0.23g.02 0.600.0a | 0.020.02 0.100.02 0.550.04
Gratitude, Anger, Remorse 0.290.05 0.330.01 0.400 .00 0.42¢ .02 0.320.02 0.500.06 0.350.02 0.320.03 0.540 .03
0.009.00  0.490.03 0.510.02 0.010.01 0.449.01  0.550.08 0.000.00  0.290.02 0.540.05
Admiration, Gratitude, Anger, 0.300.02 0.279.01 0.400.05 | 0.450.03 0.349.02 0.560.02 | 0.380.05 0.360.02 0.54¢. 04
Fear 0.000.00  0.31p.03 0.550.08 0.000.00  0.290.03 0.500.04 0.000.00  0.21p.09 0.350.07
Fear, Remorse, Love, 0.310.03 0.280p.01 0.540 .02 0.360.03 0.310.01 0.520.04 0.40¢.02 0.230.01 0.500.07
Admiration 0.000.00 0.460 06 0.370.0s | 0.000.00 0.240.01 0.540.09 | 0.000.00 0.270.04 0.500 03
Love, Amusement, Curiosity, 0.31p.02  0.2909.05 0.48¢.07 0.419.05 0.249.02 0.42¢ 02 0.380.06  0.280.02 0.47¢.01
Sadness 0.000.0p 0.389.04 0.41g07 | 0.009.00 0.23g.01 0.41g0s | 0.030.02 0.11g.03 0.430 01
Fear, Remorse, Admiration, 0.330.02 0.32¢.03 0.42¢0 01 0.380.01 0.280.00 0.430.01 0.449 08 0.270.02 0.449 05
Curiosity, Anger 0.000.00 0.350.03 0.390.03 | 0.000.01 0.13503 0.500.06 | 0.000.00 0.11g.02 0.400 03
Love, Anger, Gratitude, 0.450.04 0.29¢.02 0.520 .03 0.49¢ .01 0.290.01 0.480.04 0.54¢0.01 0.300.01 0.500.02
Curiosity, Amusement 0.010.01 0.380.03 0.62¢.01 0.010.01 0.170.02  0.45¢.07 0.010.01 0.160.03 0.360.12
Remorse, Love, Sadness, 0.32¢.02 0.230.02 0.370.03 0.350.02 0.290.03 0.530.05 0.42¢ .04 0.280.02 0.430.01
Admiration, Gratitude 0.000.00  0.31p.01 0.520.06 0.01p.01 0.21p.05 0.630.06 0.000.00  0.200.03 0.51p.06
(b) F1-scores for GoEmotion using anonymised labels.
‘ K=4 ‘ K=8 K=16
Support Classes | SFT CoT W-GFN | SFT CoT W-GFN | SFT CoT W-GFN
Banking, Credit Cards, Dining, 0.540 .03 0.41¢.01 0.500.03 0.470.02 0.550.02 0.649 02 0.52¢.01 0.600.02
Home, Auto/Commute, Travel, 0.000.00 0.250.02 0.260 .02 0.000.00 0.21¢.03 0.300.01 0.000.00 0.19¢.02 0.260 .02

Utility, Work, Small Talk, Meta

‘ 0.630.02

(c) F1-scores for CLINC150 using anonymised labels.

Table 1: Each table cell contains two rows: the first row shows the average F1-score for seen classes; the second row
shows the average F1-score for unseen classes. Entries in green indicate the highest score.

likelihoods through learned latent-to-label transi-
tions, quantitatively demonstrating its ability to
model posterior uncertainty in a principled and
data-driven manner (see Appendix A.8 for com-
plete set of results).

Comparison with Llama-3.3 70B CoT prompt-
ing is an emergent capability that typically becomes
robust in very large LL.Ms (Kojima et al., 2022;
Wei et al., 2022a,b). We therefore compare W-
GFN (using Llama-3.2 3B) to CoT reasoning with

the substantially larger Llama-3.3 70B.® Table 2
shows that W-GFN (3B) often approaches the per-
formance of Llama-3.3 70B for high-complexity
tasks, reaching > 80% of its performance on GoE-
motion. Llama 3.3 70B generalises well on tasks
such as MultiNERD (where structured, pattern-
driven classification is effective) and CLINC150

8A model ~ 23 times larger than Llama-3.2 3B, trained
on substantially more data, and tuned for complex reasoning
tasks, demonstrating 150% pre-training improvement over
Llama-3.2 3B on GPQA-Diamond (Rein et al., 2024).
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Support Classes CoT (3B) ‘W-GFN (3B) \ CoT (70B) %

Fear, Love, 0.310.02 0.52¢.01 0.630.02 819
Gratitude 0.400.02 0.600.08 0.760.02
Admiration, Gratitude, 0.340.02 0.560.02 0.570.03 98%
Anger, Fear 0.299.03 0.500.04 0.510.02 ’
Remorse, Love, Sadness, 0.29¢.03 0.530.05 0.660.03 84%
Admiration, Gratitude 0.210.05 0.630.06 0.760.02 ’
Disease, Food, 0.540.01 0.720.01 0.900.02 709
Cosmos, Location 0.360.04 0.550.05 0.930.03

Banking, Credit Cards, Dining, 0.470.02 0.550.02 0.800.01 68%
Home, Auto/Commute, Travel, 0.21p.03 0.300.01 0.450.05 °
Utility, Work, Small Talk, Meta

Table 2: % shows W-GFN performance (Llama-3.2 3B)
relative to CoT (Llama-3.3 70B) (8 examples per class).

Support Classes W-GFN (3B) ‘ CoT™ (3B) ‘ CoT (3B)

Admiration, Gratitude, 0.560.02 0.350.01 0.340.02
Anger, Fear 0.500.04 0.119.02 0.29¢ .03
Disease, Food, 0.72¢.01 0.510.03 0.540.01
Cosmos, Location 0.550.05 0.09¢.02 0.360.04
Banking, Credit Cards, Dining, 0.550.02 0.490.02 0.470.02
Home, Auto/Commute, Travel, 0.300.01 0.009.00 0.219.03
Utility, Work, Small Talk, Meta

Table 3: CoT without (COT ™) and with (COT) an out-
of-distribution hint, using 8 examples per class.

(where surface-level cues in both few-shot demon-
strations and query examples aid open-set classifi-
cation); however, it performs less robustly on more
complex tasks such as GoEmotion. Remarkably,
W-GEFN can sometimes outperform Llama-3.3 70B
CoT reasoning when the OOD hint is omitted from
the prompt (see Appendix A.8). This highlights
the efficiency and generalisation capability of W-
GFN, positioning it as a practical alternative to ex-
tremely large models. Inference with full-precision
Llama-3.3 70B is highly resource-intensive, requir-
ing 4 NVIDIA A100 40GB GPUs (using a total of
150GB GPU memory) and > 1 min per example
for CoT reasoning, whereas a trained W-GFN runs
on a single NVIDIA A100 40GB GPU using only
7GB GPU memory, with inference times as low as
5 — 8 sec/example.

Impact of Wasserstein offset We study the ef-
fect of training with and without the Wasserstein-
style offset (i.e., constant reward), using the sup-
port classes Disease, Food, Cosmos, Location, and
training g for 2 epochs. Figure 5 shows that
incorporating the offset stabilises training and im-
proves validation performance. It also suggests
that constant reward shaping can lead to overfitting:
the model without the offset reaches a validation
accuracy of a max of only 0.45¢ 19, compared to
0.779.05 with the Wasserstein offset. The smooth
Wasserstein interpolation helps qgrn assign simi-
lar rewards to semantically related latent sequences
without abrupt jumps in the reward signal, which

Tl V.,{*"‘M i *;,,awm.wwmm

(a) log Lswrr(Z;0) (b) Validation accuracies

Figure 5: Training loss and validation accuracy without
(orange) and with (blue) the Wasserstein offset.

8 16 32 48 64 128

8 069 066 0.69 07 0.67 0.65

16 0.7 071 068 0.68 0.65 0.69
32072 066 072 0.64 0.64 0.63
48 071 0.69 0.66 0.69 0.66 0.66
64 [0.72 0.71 0.69 068 0.66 0.64
128 0.7 071 0.7 068 0.66 0.69

Figure 6: Mean validation accuracy over seen/unseen
classes with varying support (|) and query latents (—).

encourages learning a smooth and generalisable
distribution over latent sequences.

Latent allocation tradeoff Figure 6 presents an
ablation study varying the number of support and
query latents (latents describing few-shot demon-
strations and the query example respectively). We
use the support classes Disease, Food, Cosmos, Lo-
cation and train gg v for two epochs. We find that
strong generalisation is primarily driven by support
latents, which capture class-level abstractions and
are particularly effective at mitigating noise. Query
latents provide complementary, instance-specific
reasoning that further boost performance. The re-
sults suggest that (class-level) support latents com-
bined with a small number of (instance-specific)
query latents yield the best tradeoff.

7 Conclusions

We demonstrate that Wasserstein-GFN (W-GFN)
enables robust few-shot classification and princi-
pled out-of-distribution detection within a unified
framework, even with small LLMs. Our approach
substantially improves reasoning performance and
provides a viable alternative to much larger models.
We also release our code to support further research
in this area.

Limitations

Computationally heavy reward signal Train-
ing ggrn 1s computationally demanding and
scales with the length of the latent sequence
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Z.  Specifically, computing the log reward
difference R(i,j) = Yilogprim(XZ1.,Y) —
Yilog prrav (X Zy1.;Y) across all token pairs {7, j }
in the complete latent sequence (from Equation 1)
becomes intractable for very long sequences. To ad-
dress this, we cap the maximum length of Z to 15
tokens. While this works well in our domains, this
restriction could reduce representational capacity
for other complex domains such as commonsense
reasoning, mathematics, or coding. A potential
remedy is to approximate the reward landscape
with Gaussian Processes (see Appendix A.8).
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A Appendix

A.1 Prompts for Sparse-Shot Learning

An example prompt is provided in Figure 7. Here,
we provide 3 classes with 3 few-shot demonstra-
tions each and the objective is to classify the query
example correctly within the seen classes.

A.2 Generative Flow Networks

Generative Flow Networks (GFNs) are a class of
models designed to sample from complex distribu-
tions over structured objects by modeling a stochas-
tic process over sequences (trajectories) of actions.
A key objective in training GFNGs is to ensure that
the distribution over complete sequences (terminal
states) induced by the policy is proportional to a
given reward function R(zx).

Key Condition: Flow Matching and Detailed
Balance GFNs define a flow F(s, a) over state-
action pairs, where the incoming and outgoing
flows must match under the condition:

Y F(s.a)= > F(sa)

a’€pred(s) a€succ(s)

A stronger condition that ensures global consis-
tency is the detailed balance condition, which re-
quires:

F(s,a) =F(s,d)

for any forward and backward pair s — s’. As
discussed before, this implies a form of symmetry
and equilibrium between forward and backward
flows, leading to a stationary distribution which
can be sampled from. Several loss functions have
been proposed to train GFNs to approximate the
desired reward-distribution proportionality.

Trajectory Balance (TB) This loss ensures that
the total flow along a trajectory matches the re-
ward at the terminal state. For a trajectory 7 =
(s0, @, - - ., s7) that ends in terminal state x, the
condition is:

T-1
log R(z) =log Z + Z log Pp(a|st)—
=0
T
Z log Pp(ai—1|st)
t=1

Here, Pr and Ppg are the forward and backward
policies, and Z is a learned normalisation constant.
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In the sentence "He generally skated with captain Jonathan Toews on the team ’s first line.’ the entity [’Jonathan Toews’]
represents Class A.

In the sentence 'He is buried in Vilnius Cathedral together with his brother Karigaila, who died in the civil war in 1390.
the entity ['Karigaila’] represents Class A.

In the sentence ’Minister Margaret Thatcher complained when, by adroit image editing, the programme implied she had
crashed a car.’ the entity ['Margaret Thatcher’] represents Class A.

In the sentence ’In the job interview he encounters eccentric owner (Gunnar Bjornstrand), who informs him the duties
of job and possible promotion to a projectionist in the future.’ the entity ['Gunnar Bjornstrand’] represents Class A.
In the sentence 'The culture can be naturally captured from the wild, by mixing rice flour with ground spices ( include
garlic, pepper, chili, cinnamon ), cane sugar or coconut water, slices of ginger or ginger extract, and water to make a
dough.’ the entities [ 'pepper’, 'chili’, ’cinnamon’, ’ginger’| represent Class M.

In the sentence ’"' Pouteria virescens " is a species of plant in the family Sapotaceae.’ the entities [’plant’, ’Sapotaceae’]
represent Class M.

In the sentence 'When possible, three washings are performed : first with water infused with plum leaves, then with
water infused with camphor, and lastly with purified water.’ the entity [ 'plum’] represents Class M.

In the sentence 'The amount can be less than one percent in animals consuming less digestible plants, and it can be as
high as forty percent in zooplankton consuming phytoplankton.’ the entity ['phytoplankton’ ] represents Class M.

In the sentence "The class was gradually repainted from 1983 as the V / Line logo and colour scheme was introduced.
the entity [’V / Line’] represents Class O.

In the sentence "This record was finally broken in 2004 by a Porsche Carrera GT, which did it in.’ the entity [’ Porsche
Carrera GT’] represents Class O.

In the sentence 'The engine made its first flight aboard a Gotha Go 145 on 30 April 1941. the entity ['Gotha Go 145°]
represents Class O.

In the sentence ’He was the backup of Klaus-Dietrich Flade for the Soyuz TM-14 mission.” the entity ['Soyuz TM-14"]
represents Class O. Which class does the entity ['James Wyatt’] in the sentence ’An extension to the north designed by
James Wyatt was added in 1785." represent? Think step by step. Reply with ’None of these’ if the answer does not fall in
any class.

Figure 7: Example input for the NER task. We provide three examples per class (total of three classes) here.

The TB loss (Malkin et al., 2022) is defined as

L1 =E < p, [(log R(z) —log Z

T—1 T 2
=3 log Pr(aslss) + > 1og Paas—1]s:)
t=0 t=1

Subtrajectory Balance This loss generalises TB
by applying balance conditions to subparts of a

trajectory. For subtrajectories (s;, ..., s;):
R(Sz)

L(Z) = 1

D= % (osqi*

0<i<j<T
j j—1 2

Z log Pr(ai|st) — ZIOgPB(at|St+1)

t=i+1 t=i

This provides richer supervision and enables off-
policy training from partial data. Note that existing
work (Hu et al., 2024) uses a variation of this loss
provided previously in Equation 1 for language
models as

Lswrs(Z:0)= > Y
1<j<n 0<i<j

R(zln-—l—) Hi:i—o—l Q(Zk"zlzkfl)q(—r‘zlij)
R(21:;5T)q(T|21:4)

log

Flow Matching Loss Another approach is di-
rectly minimising the squared difference between
incoming and outgoing flows at each state (Bengio
et al., 2023) which is defined as

2

EFM:Z Z F(s',ad') - Z F(s,a)

s€S | a’ep(s) a€s(s)

where p(s;) and s(s;) refer to predecessor and suc-
cessor states of s;. This enforces the local flow-
matching condition but may be harder to train due
to lack of global context.

Detailed Balance Loss To directly enforce the
detailed balance constraint between forward and
backward transitions, there is another loss func-
tion defined which satisfies all conditions of a GFN
which is called the detailed balance loss. the de-
tailed balance loss is defined as

Lon= Y (logF(s,a) —log Fy(s',a'))’

(870’7'3/)

which shows success in Bayesian structure learning
(Lahlou et al., 2023) amongst other tasks.
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Class A broadly represents names of people.

Class A broadly represents famous people, including politicians and soldiers.

Class A broadly represents well-known people in history.

(a) Sampling support conditional latents

The entity [’James Wyatt’] in the sentence ’An extension to the north designed by James Wyatt was added in 1785.
broadly represents an English architect famous for his neo-Gothic work.

The entity [’James Wyatt’] in the sentence ’An extension to the north designed by James Wyatt was added in 1785.
broadly represents a British architect who designed many buildings.

The entity [’James Wyatt’] in the sentence ’An extension to the north designed by James Wyatt was added in 1785.
broadly represents James Wyatt, the English architect active in the eighteenth century.

(b) Sampling query conditional latents

The test entity broadly represents names of people.

The test entity broadly represents famous people, including politicians and soldiers.

The test entity broadly represents well-known people in history.

The test entity broadly represents an English architect famous for his neo-Gothic work.

The test entity broadly represents a British architect who designed many buildings.

The test entity broadly represents James Wyatt, the English architect active in the eighteenth century.

(c) Final conditional prior latent sequences used to train garn

Figure 8: Support and query latents for the example in Figure 7

A.3 Sampling support latents and query
latents

For the prompt in Figure 7, the sampled support

latents and query labels can be seen in Figure 8.

For training the GFN, we use only the descriptive
part of the latent sequence and replace the prefix

with “The test entity" as demonstrated in Figure 8c.

At test time, we only sample query latents as we
do not have access to the correct support set.

A.4 Pitfalls of a positive offset in the reward
Given a sub-trajectory loss function for a GFN as

Lswrn(Z:0)= Y Y

1<j<n 0<i<y

R(215T) [Th_iyq 2(2rlz1:0—1)a(T |215)
R(21:;T)q(T|21:4)

2

log

where ¢(-|-) refers to garn(-]-).
IT7.—is1 96FN (2k|21:6-1). The loss can thus be

Let Tisj =

rewritten as:

L(Z;0)= >

(log (R(Zl;ﬂ—)
0<i<j<n R(z15T)
Ti—sj - qarn (T |21:5) > ) 2

qarn (T|214)

Consider a case where log R(Z1,;T) is higher
for the correct label than an incorrect label
at token 7 (i.e.: ElogpLLM(XZI:iY;orrect> >
EpLLM 1Og(XZ1:iY;nco7“rect)) but it is lower at
token j (i.e.. Xprrmlog(XZijYeorreet) <
Yprrmv1og(X Z1.;Yincorrect)) Which is a scenario
we came across while training ggry. Thus, we
would need to add a positive scalar offset A > 0
to the log-probabilities of the reward to the correct
trajectory X Z1.;Ycorrect 10 get :

L(Z;0) = Z <logRR(2MT)

0<i<j<n (215 T) +0

Tisj QGFN(T|21:j)>2
qarN(T|z1:)
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Parameter Search Space SFT CoT W-GFN
Sampling temperature | {0.6,0.7,0.8,0.9} {0.7,0.8}* {0.7,0.8,0.9}* 0.7

LORA rank {32,64, 256} 32 — 256

LORA o {4,8,16} 4 - 16

Learning rate {le—6:1e — 4} {le—=5:1le—4}* | — {le—6:le—4}*
Learning rate scheduler | {cosine,uniform} uniform — cosine
Dropout {0.0: 0.5} 0.0 - 0.0

Epochs {1,3,5,10} {3:5} - 10

Batch size for latents | {16, 24, 32} - - {16, 24, 32}*
Length of latent Z {10, 15} — — 15

Support latents {8,24, 36,48} — — {36, 48}
Query latents {8,24, 36,48} — — {24,36}

Test latents {9} — - {9}

k(z,z") RBF, Matérn{3/2,5/2} | — — Matérn {5/2}
A {50, 80,100} - - {50,80}*

Table 4: Hyperparameters for training all methods

for a constant ¢ such that log(R(z1;T) + 6) =
log R(21:; T)+A. Note that R(z1; T) < R(z15T)
therefore log R(z1.;T) < log R(z1;T) < 0. From
the definition of a GFN (Bengio et al., 2023),
L(Z;0) minimises when
R(lei—r) ]
R(zlij) + 1)

Ti—sj - qarn (T |21:5)

—1
qarn(T|21:)

Suppose that after adding 6, we have R(zlzj—l’) +
0 > R(z,T) (a quite realistic scenario as
R(z14T) = Uprrm (X Z1,;Y) << 1), therefore
at convergence we should have

Timsj - qarN (T |215)
qarN(Tz1:4)

>1

However, this condition can only be satisfied
when ¢grpn(Tl|z15) — 0 because m; -
qarn(Tlz1y) = Ilheiir 9arn (zrlzi-1) -
qarn(T|z1:5) — 0 especially for long token se-
quences between ¢ and j. This, in turn, causes in-
stability in VyL(Z; 6) due to a very high negative
value of log ggrn (T |21.;) which in turn causes an
underflow error. Note that a backward policy func-
tion 7er ”,; can stabilise training as a general GFN
typically has forward and backward policy func-
tions, however, we have set the backward policy
function 75 (s4|s441) = 1 for qgrn Which approx-
imates language models.

A.5 Training episode format for gorn

Similar to the prompt format for CoT reasoning in
Figure 7, we include few-shot demonstrations and
a query training example. We append all latents
generated and for each latent, we append the com-
plete label set. The GFN objective is thus to train

with the correct label sequence X ZY oy rect With
the offsets added to the reward and other sequences
X ZYincorrect are trained with their reward signals
without any offset attached — thus we can recover
high-probability logits using the logit normalisa-
tion trick in Section 4. We provide an example in
Figure 9b.

A.6 Dataset details

Training dataset We use three tasks to evaluate
the performance of gy on open-set classification
— namely, Named Entity Recognition (NER) us-
ing the dataset MultiNERD (Tedeschi and Navigli,
2022), fine-grained emotion classification using the
dataset GoEmotion (Demszky et al., 2020) as well
as fine-grained intent classification on the dataset
CLINC150 (Larson et al., 2019). We sample ten
random classes from MultiNERD (Person, Loca-
tion, Animal, Cosmos, Disease, Food, Mythology,
Plant, Vehicle, Time) which form the complete test
distribution as well as GoEmotion (Neutral, Amuse-
ment, Admiration, Fear, Gratitude, Love, Sadness,
Anger, Curiosity, Remorse) and CLINC150 (Bank-
ing, Credit Cards, Kitchen/Dining, Home, Auto/-
Commute, Travel, Utility, Work, Small Talk, Meta).
We then anonymise all classes by using a single
capital letter and train a different gg N per set of
support classes with a varying number of examples
per class (we define K € {4,8,16}).

Validation dataset We use the same validation
dataset which consists of 10 uniformly sampled
points per class (therefore, 100 data points in total)
for both MultiNERD, GoEmotion and CLINC150.
We use this validation set for W-GFN and our other
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In the sentence 'He is buried in Vilnius Cathedral together with his brother Karigaila, who died in the civil war in
1390. the entity [’Karigaila’] represents Class A.

In the sentence ’In the job interview he encounters eccentric owner (Gunnar Bjornstrand), who informs him the
duties of job and possible promotion to a projectionist in the future.’ the entity ['Gunnar Bjornstrand’| represents
Class A.

In the sentence 'The culture can be naturally captured from the wild, by mixing rice flour with ground spices (
include garlic, pepper, chili, cinnamon ), cane sugar or coconut water, slices of ginger or ginger extract, and water
to make a dough.’ the entities ['pepper’, ’chili’, ’cinnamon’, ’ginger’] represent Class M.

In the sentence ’" Pouteria virescens " is a species of plant in the family Sapotaceae.” the entities [’plant’,
"Sapotaceae’] represent Class M.

In the sentence "The engine made its first flight aboard a Gotha Go 145 on 30 April 1941. the entity [’Gotha Go
145’ ] represents Class O.

In the sentence 'He was the backup of Klaus-Dietrich Flade for the Soyuz TM-14 mission.’ the entity [’Soyuz
TM-14’] represents Class O. Which class does the entity ['James Wyatt’] in the sentence ’An extension to the north
designed by James Wyatt was added in 1785.” represent?

(a) We provide two examples per class (total of three classes) here and we define this as the input X.

The test entity broadly represents names of people, thus, it belongs to Class A.
The test entity broadly represents names of people, thus, it belongs to Class M.
The test entity broadly represents names of people, thus, it belongs to Class O.
The test entity broadly represents famous people, including politicians and soldiers, thus, it belongs to Class A. +
The test entity broadly represents famous people, including politicians and soldiers, thus, it belongs to Class M. o
The test entity broadly represents famous people, including politicians and soldiers, thus, it belongs to Class O. o

o o+

(b) Gathered latents (see Figure 8c) attached to the list of labels to form ZY'| X . Sequences marked with + are trained with
the reward offset while sequences marked with o are trained with an unchanged reward signal.

Figure 9: Training episode format for qgrn

baselines (CoT and SFT).

Task complexity We sample few-shot support
sets ranging from 3 to 5 classes (inclusive) for
MultiNERD and GoEmotion, and use all 10 classes
in CLINC150 as there are out-of-distribution
examples available in the training split. We
check how well qgy manages to identify which
are in-distribution classes and which are out-of-
distribution while further performing fine-grained
classification for in-distribution classes. While
MultiNERD is a comparatively easy task, GoEmo-
tion and CLINC150 are much harder tasks (from
a classification point of view) — for instance, a
BERT-based (Devlin et al., 2019) classifier trained
on the complete training set (unlike the few-shot
setup in our approach) scores an average f1-score
of 0.65 = 0.13 for our sampled classes for GoEmo-
tion. We also provide test set embeddings reduced
to two dimensions using t-sne (van der Maaten
and Hinton, 2008) and Roberta-large (Liu et al.,
2019) in Figure 10 — note how there are no clear,
well-defined clusters for GoEmotion or CLINC150
while the training distribution for MultiNERD is
clearly defined into separate clusters.

A.7 Training details

Gaussian Process We fit a Gaussian Process
(Rasmussen, 2004) to to model out-of-distribution
log probabilities (after applying the logit normali-
sation trick) ¢ for class c using a linear mean and
a Matérn kernel (with v = 5/2) (Genton, 2002)
defined as

fe(x) ~ GP(m(x), k(x,x"))
m(x) =w'x+b
k(x,x') = o(1 + V5r/e + 57%/362) exp(—V5r/c)

where ¢, o, w, b are trainable parameters and r =
|x — x||2. We decided to use the Matérn kernel
(v = 5/2) over the RBF kernel — though the latter
is simpler, it was not able to fit logit differences as
well as the former in the same number of optimiser
steps (check Figure 11). We use the Huggingface
transformers library (Wolf et al., 2020) for loading
the base models, tokenisers and datasets.

We perform extensive hyperparameter sweeps
for a range of hyperparameters which we list in Ta-
ble 4. Note that where we mention ranges with an
asterisk(*), we pick the best hyperparameter from
these ranges for a particular support set and choice
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(2) MultiNERD

(b) GoEmotion

(c) CLINC150

Figure 10: Visualitions of t-SNE (van der Maaten and Hinton, 2008) test embeddings using Roberta-large (Liu et al.,
2019) which highlights the complexity of GoEmotion (Demszky et al., 2020) and CLINC150 (Larson et al., 2019).

(d) ID logit diffs — RBF

(c) OOD logit diffs — RBF

Figure 11: Fitting out-of-distribution and in-distribution
logit differences with the RBF and Matérn kernels.

of K € {4,8,16}. We also train gqgpy for a maxi-
mum of the mentioned epochs and select the model
which performs best on the validation set. We also
ensure that the total latents (support and query) add
up to exactly 72. We perform validation after ev-
ery 15 episodes. We use AdamW as our optimiser
for both ggrn and use a learning rate of le — 1
to train all GPs. We use FlashAttention-2 (Dao,
2023) for all LLMs. We also use ChatGPT (https:
//openai.com/index/chatgpt/) as a coding as-
sistant for writing small snippets in our work. We
use a single NVIDIA A100 GPU with 40 GB mem-
ory and each model takes between 30 minutes to
24 GPU hours to train.

Training with reward buffers We can
train qgpy with reward buffers which cache
R(XZY) VY XZY during the first epoch which
speeds up our training significantly — we find

that training time for subsequent epochs falls by
almost ~ 40% which is particularly beneficial for
training higher values of {/N, K'}. For example,
when we have { N, K} = {5, 16} for MultiNERD,
training ggr v for the first epoch takes ~ 24,000
seconds but the subsequent epochs take only
~ 14,500 seconds each. Note that we do not
perform “on-policy" training (sampling latents
depending on X directly in the training flow).
We depict our complete training and testing
flow diagrammatically in Figure 12 and describe
our testing method with ggry in Algorithm 2,
having previously described our training flow in
Algorithm 1.

A.8 Ablation studies

Evaluating W-GFN (3B) with CoT~ (70B)
As demonstrated previously, adding an out-of-
distribution hint in the input prompt increases per-
formance for CoT reasoning for Llama-3.2 3B.
This is also true for Llama-3.3 70B, interestingly, as
it is expected that language models become better
reasoners with scale (Kojima, 2024). From Table
5, it is demonstrable that W-GFN, with only 3B
parameters, is able to identify out-of-distribution
classes without the need of an explicit hint - further
reinforcing that it learns a true representation of the
training distribution using latent variables rather
than rely on extensive prompt engineering. For
simpler tasks such as MultiNERD, where the out-
of-distribution example is more evident and less
obvious, Llama-3.3 70B performs better than W-
GFN, albeit not by a large margin (W-GFN matches
around 91.13% of the seen setting performance and
80.80% of the unseen setting performance of CoT
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LLM

XZy ~prim(Z|X) @Y qerN(XZ1Y) =
XZy ~ prim(Z|X) @Y} {qcmv (XZ25Y)
4dGFN

I
XZy ~pLLM(Z|X) oY aerN(XZ,Y)=

Lsurs(Z;0)

[fl7f2"'fc]

(a) Training W-GFN. We minimise £su75(Z;0) and learn [ f1.. f¢] to predict out-of-distribution signals.

LLM

(b) Testing W-GEN. [Z§, Z5 ...

XZy ~prim(Z|X)@{Y}
XZy ~ prim(Z|X)@{Y}

4GFN
XZm ~prin(Z|X)a{Y}

Z¢] represents the normalised Z-Scores of KL div between logit normalised values and f..

LI§(XZ:ih)|| 1(XZ:Y1)] A

L[§(XZY5)| f2(XZ;Y>)] z8

I(XZ;Y.) ||fc(XZY)] 3
VZ;€Z

Figure 12: Training and testing for W-GFN

X — ...Which class does the entity [’endemic’] in the sentence ’In another study, it reduced the number of symptomatic
cases after exposure to leptospirosis under heavy rainfall in endemic areas.” represent?

Z|X — The test entity broadly represents a geographical location or region where a disease is consistently

present and prevalent.

Figure 13: The sampled latent refers to classes Location and Disease which can lead to a misclassification by qgr N

when it is asked to distinguish between the two. “

Support Classes | CoT(3B) | W-GFN(3B) | CoT™(70B) | CoT (70B)
Fear, Love, 0.310.02 0.520.01 0.480.02 0.630.02
Gratitude 0.400.02 0.600.08 0.250.03 0.760.02
Admiration, Gratitude, 0.340.02 0.560.02 0.520.03 0.570.03
Anger, Fear 0.29¢.03 0.500.04 0.150.02 0.510.02
Remorse, Love, Sadness, 0.299.03 0.530.05 0.620.02 0.66¢.03
Admiration, Gratitude 0.210.05 0.630.06 0.370.08 0.760.02
Disease, Food, 0.540.01 0.720.01 0.790.03 0.900.02
Cosmos, Location 0.360.04 0.550.05 0.680.01 0.930.03
Banking, Credit Cards, Dining, 0.47¢.02 0.55¢.02 0.780.01 0.800.01
Home, Auto/Commute, Travel, 0.21p.03 0.300.01 0.170.01 0.450.05
Utility, Work, Small Talk, Meta

Table 5: Results with Llama-3.3 70B

with Llama-3.3 70B) considering the overall size
difference and richness of pre-training tasks.

Evaluating CoT~(3B) CoT(3B) refers to the
baseline using Llama-3.2 3B without providing an
out-of-distribution or unseen class hint in the in-
put prompt. We almost universally observe lower
performance for this setting as opposed to provid-
ing a hint - indicating that smaller LLMs gener-
ally fail to detect unseen classes in the open-set
classification setting natively and need to be ex-
plicitly prompted to do so. For CLINC150, the
difference is even more striking as we observe that
with a higher number of classes and noisy few-shot
demonstrations, the model fails to robustly detect
out-of-distribution test examples. We present these

." refers to few-shot demonstrations in the support set.

results for the tasks MultiNERD, GoEmotion and
CLINC150 in Table 6, Table 7 and Table 9 respec-
tively. Similar to CoT ™ (70B), there is a massive
drop in performance once the out-of-distribution
hint is removed which underscores the dependence
of generative LLMs on user prompts.

Using non-anonymised labels We conduct an
additional ablation study on our datasets, eval-
uating model performance when labels are not
anonymised (i.e., original labels). In this setup,
models are evaluated on their ability to explicitly
return either a correct (non-anonymised) support
label or “None of these" for unseen classes. In-
terestingly, we see from Table 8 that W-GFN con-
tinues to outperform all baselines in the datasets
MultiNERD and GoEmotion. This also shows that
anonymised evaluation is a special case of a more
general and challenging classification setting as
generally non-anonymised scores are higher than
the anonymised scores due to semantic information
leaking from the non-anonymised labels. In par-
ticular, note the steadily decreasing scores of Fear,
Love, Gratitude with increasing K — a phenomenon
attributed to increasing memorisation with noisier
few-shot examples (we noticed the model tended
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\ K=4 \ K=8 \ K=16

Support Classes [ CoT™ CoT [ CoT™ CoT [ CoT™ CoT
Cosmos, Food, Mythology 0.370.03 0.370.03 0.390.02 0.400.01 0.390.02 0.41¢.04

0.320.02 0.540.03 0.350.03 0.550.01 0.310.01 0.490.01
Person, Plant, Vehicle 0.320.03 0.320.03 0.319.02 0.340.03 0.320.02 0.380.05

0.299.05  0.640.03 | 0.350.03  0.580.02 | 0.290.01  0.600.01
Location, Disease, Time 0.370.02 0.40¢.00 0.390.02 0.390.02 0.370.01 0.390.02

0.060.02  0.350.03 | 0.130.02  0.450.03 | 0.170.03  0.390.03
Disease, Food, Cosmos, 0.470.02 0.470.04 0.510.03 0.540.01 0.450.03 0.450.04
Location 0.130.01 0.470.03 0.09¢.02 0.360.04 0.160.02 0.330.02
Person, Plant, Time, 0.370,01 0.380,02 0.380,01 0.390.03 0.370,02 0‘430.04
MythOlOgy 0.250.04 0.470.03 0.18¢.02 0.400.04 0.200.02 0.370.01
Plant, Animal, Mythology, 0.380.03 0.390.02 0.40.03 0.400.03 0.350.02 0.350.02
Disease 0.370.03 0.560.04 0.460.02 0.650.02 0.449.04 0.600.01
Animal, Person, Time, 0.520.01 0.460.04 0.450.02 0.43¢.03 0.41¢.02 0.41¢.02
Plant, Disease 0.280.02 0.520,05 0.360,05 0.47(104 0‘30,02 0‘440.03
Plant, Location, Vehicle, 0.440‘02 0.420,04 0 450 01 0~410.08 0.470(02 0‘500.03
Disease, Food 0.140.06 0.390.01 0.290.02 0.520.03 0.169.03 0.420.01
Animal, Mythology, Food, 0.420.01 0.370.03 0.380.05 0.390.02 0.400.01 0.420.02
Location, Person 0.180.02 0.450.05 0.170.01 0.41¢.03 0.180.03 0.380.02

‘ K=4 ‘ K=8 ‘ K=16

Support Classes [ CoT™ CoT [ CoT™ CoT [ CoT™ CoT
Fear, Love, Gratitude 0.310.01 0.340.01 0.290.04 0.310.02 0.250.02 0.270.01

0.230.02 0.590.03 0.100.02 0.400.02 0.080.01 0.100.01
Curiosity, Remorse, 0.22¢.03 0.24¢.03 0.22¢.01 0.230.02 0.21¢.01 0.230.02
Amusement 0.190.02  0.400.03 0.130.01 0.230.02 0.080.01 0.100.02
Gratitude, Anger, Remorse 0.270.01 0.330.01 0.310.02 0.320.02 0.229.02 0.320.03

0.350.05  0.490.03 0.390.01  0.440.01 0.350.05  0.29¢.02
Admiration, Gratitude, Anger, 0.310.03 0.270.01 0.350.02 0.340.02 0.280.01 0.360.02
Fear 0.090.03 0.310.03 0.11¢.02 0.29¢.03 0.090.01 0.21¢.09
Fear, Remorse, Love, 0.25¢.02 0.280.01 0.24¢.04 0.319.01 0.17¢.02 0.230.01
Admiration 0.180.02 0.46¢0.06 0.14¢.02 0.24¢.01 0.12¢.02 0.270.04
Love, Amusement, Curiosily, 0.260.02 0.290.05 0.240.01 0.24¢.02 0.230.02 0.280.02
Sadness 0.130,03 0.38004 0.15(]‘02 0.230.01 0.180_02 0‘110‘03
Fea.r, Remorse, Admiration, 0.280‘02 0.320_03 0.180(01 0.280_00 0.170_01 0.270_(}2
Curiosity, Anger 0.130.03 0.350.03 0.17¢.04 0.130.03 0.15¢.02 0.119.02
Love, Anger, Gratitude, 0.210.02  0.29¢.02 0.230.01  0.29¢.01 0.149.03  0.300.01
Curiosity, Amusement 0.12¢.02 0.380.03 0.140.02 0.170.02 0.150.03 0.16¢.03
Remorse, LOVE, Sadness, 0.260,02 0.230(02 0.210,04 0.290.03 0.140.03 0.280‘02
Admiration, Gratitude 0.130.03 0.310.01 0.14¢.03 0.219.05 0.09¢0.03 0.200.03

Table 6: Chain-of-thought reasoning for NERD (using anonymised labels) without (denoted by CoT ™) and with
(denoted by CoT) providing a hint that an example might belong to an unseen class using Llama-3.2 3B.

Table 7: Chain-of-thought reasoning for GoEmotion (using anonymised labels) without (denoted by CoT~) and
with (denoted by CoT) providing a hint that an example might belong to an unseen class using Llama-3.2 3B.

| K=4 | K=8 | K=16
Support Classes | SFT CoT W-GFN | SFT CoT W-GFN | SFT CoT W-GFN
Person, Plant, Vehicle 0.570.02 0.750.02 0.800.03 | 0.720.03 0.750.03 0.760.02 | 0.650.01 0.800.03 0.800 01
0.000.00  0.400.03 0.88¢.02 0.000.00  0.470.04 0.88¢.01 0.000.00  0.3709.04 0.86¢.02
Fear, Love, Gratitude 0.500.01 0.469.02 0.580.04 | 0.51g9.05 0.51p.03 0.61g.01 | 0.460.02 0.49903 0.61g.01
0.019.01  0.480.02 0.570.01 0.020.02  0.300.02 0.580.02 0.0409.02  0.170.02 0.66¢ 06

Table 8: Using non-anonymised labels for all baselines with using Llama-3.2 3B.

to not follow instructions and directly reply with
a semantically extrapolated non-anonymised class
- for example, instead of recognising an emotion
as out-of-distribution, it returned an answer of As-
tonishment/Surprise etc - which points to overfit-
ting on pre-training data rather than reasoning on a
downstream task).

Impact of using a Wasserstein offset One pos-
sible explanation for more stable training with the
Wasserstein offset can be that gradually adding a
decreasing low reward offset encourages ggr N to
explore earlier transitions with rewards not as sig-
nificantly different as those associated with a much
lower reward gotten after adding a high, negative re-
ward offset. This makes it more capable of general-
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‘ K=4 ‘ K=8 ‘ K=16
Support Classes [ CoT™ CoT [ CoT™ CoT [ CoT™ CoT
Banking, Credit Cards, Dining, 0.430.01 0.419.01 0.49¢.01 0.47¢.02 0.520.01 0.52¢.02
Home, Auto/Commute, Travel, 0.000.00  0.250.02 0.000.00  0.21¢.03 0.000.00  0.190.02

Utility, Work, Small Talk, Meta

Table 9: Chain-of-thought reasoning for CLINC150 (using anonymised labels) without (denoted by CoT ™) and
with (denoted by CoT) providing a hint that an example might belong to an unseen class using Llama-3.2 3B. The

last row denotes the average score across the seen and unseen setting.

isation on state transitions outside the training-time
transitions provided and does not leave “gaps" in
the transition reward landscape. Note that treating
the reward offset as a hyperparameter (we used the
value A = —80) can yield better results — which is
an avenue we did not explore and can be of further
interest to the research community. Another alter-
native can be using a learnable reward offset, but
that would require a learning objective modelled
into the subtrajectory balance loss.

Reward landscapes for latent sequences From
the subtrajectory loss balance in Equation 1, we
depict the term denoting the difference of rewards
given as

R(2147T)
R(Zl;jT)
=log R(z1:T) —log R(21;; T) V {i, j}

log AR = log

in Figure 14 for very long sequences Z. After
normalising by length of the total sequence X 7Y,
note that the overall similarity of the reward land-
scape is very similar for these sequences — which
leads us to believe that a possible further area of
research in tasks requiring long chains of thought
would be to model this reward landscape using a
few sequences using a Gaussian Process and then
sampling from the unnormalised surrogate reward
model which would be computationally faster as
well as cheaper than computing the reward signal
from the pretrained LLM (note that we do not need
the exact log-probabilities — we just need state tran-
sition probabilities to follow the rules of the GFN).
We leave testing this idea to future work in the area.

Areas of further research Some future research
directions to improve reasoning using W-GFNs for
sparse-shot learning and other general tasks are:

* The hidden variable or conditional latent Z| X
is the most important factor for training qgrn
as it enables the model to explore similar
hidden variables. From our analysis, the
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biggest reason for within-distribution or in-
distribution/out-of-distribution misclassifica-
tions were latent variables which contained
information about multiple classes (see Fig-
ure 13 for an example). Intelligently sampling
Z| X while maintaining diversity can thus lead
to a tremendous improvement in performance.

» We directly train the posterior as p(Y|X) o
Ezp(YX, Z)p(Z|X) = Yzqarn(Y|X, Z)
and forego training with a prior function as
we assume that all latents Z|X are equally
likely and distributed uniformly. This works
reasonably well, however, performance can be
enhanced by defining a prior function p(Z|X)
which can “weigh" latents and thus prioritise
latents which are more descriptive of the query
in X. A possible way to achieve this is to
use a similarity-based encoder model such as
RoBERTa (Liu et al., 2019), generative LLM
approaches such as CoT-decoding (Wang and
Zhou, 2024) to measure relevance etc.

* Similarly, to improve performance at infer-
ence, we can apply a form of Bayesian model
averaging wherein we prioritise latents which
are more probable to describe the test exam-
ple by assigning them a higher prior proba-
bility. This has an advantage over uniformly
weighted model averaging (which we adopt
currently) as less likely latents would ideally
have lower priority.

* We use a simple heuristic for detecting out-
of-distribution signals (a median centralised
Z-score), however, this can be extended to
a probabilistic measure where we explicitly
model the posterior probability of log proba-
bilities being out-of-distribution and learn a
more accurate cut-off threshold (train a classi-
fier, for example) to further increase accuracy.



(a) Landscape of log ARy (b) Landscape of log AR>
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Figure 14: Even for very long sequences, log AR on the z-axis has a somewhat consistent reward landscape
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