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Abstract

Channel prediction can greatly reduce the pi-
lot overhead and is a critical technology in the
fifth-generation (5G) and the coming 6G wire-
less communications systems. Conventional
model-based channel prediction methods suf-
fer from limited accuracy due to imperfect
temporal modeling, while existing AI-based
methods suffer from limited generalization due
to inadequate training strategies. Recently,
large language models (LLMs) have demon-
strated remarkable generalization and genera-
tion capabilities across diverse domains such as
computer vision, quantitative economics, and
bioinformatics, which motivates us to apply
LLMs in channel prediction. In this paper,
we formulate the ‘channel sentence’ based on
channel correlation, where the channel is re-
garded as a ‘word’. Subsequently, we propose
a generative pre-trained language model for
channel prediction (CP-GPT). We collect 12M
channel data according to the 3GPP 38.901
protocol and train CP-GPT based on the trans-
former decoder architecture. Moreover, we de-
sign two pre-training tasks based on the char-
acteristics of wireless channels to enhance CP-
GPT’s understanding of communications chan-
nels. We further propose a comprehensive
benchmark to rigorously evaluate the capabil-
ities of CP-GPT across multiple dimensions.
The simulation results demonstrate that CP-
GPT has successfully learned various channel
characteristics and exhibits impressive capabil-
ities across numerous downstream tasks.

1 Introduction

With the rapid advancement of artificial intelli-
gence technologies, numerous data-driven appli-
cations have emerged in areas like smart cities, in-
telligent manufacturing, autonomous driving, and
remote healthcare, in which massive amounts of
data need to be exchanged among ubiquitous edge
devices. To accommodate vast data traffic, commu-
nications systems should support ultra-high data

rates, for which the prerequisite is the accurate
acquisition of the wireless channels (Khan et al.,
2022). In general, the acquisition of channels is
based on transmitting substantial pilots (Manasa
and Venugopal, 2024). When the data volume in-
creases, the pilot overhead often grows proportion-
ally. Therefore, efficient channel prediction (Zeng
et al., 2024; Kim et al., 2020) methods are often
adopted to reduce the pilot overhead.

Existing channel prediction methods can be pri-
marily categorized into model-based channel pre-
diction and AI-based channel prediction. Model-
based channel prediction methods typically rely
on time-series modeling such as autoregressive,
to capture channel variations. However, model-
based approaches cannot provide satisfactory per-
formance due to idealized assumptions in channel
model (Ozawa et al., 2015). On the other side,
AI-based channel prediction methods excavate tem-
poral patterns in channel variations (Stenhammar
et al., 2024) to predict future channels. However,
existing AI-based approaches exhibit critical limita-
tions in generalization as they are typically trained
under specific communications scenarios, which
leads to significant performance degradation when
deployed in new environments.

Recently, large language models (LLMs) (Zhou
et al., 2024a) have demonstrated remarkable gener-
alization and generation capabilities across diverse
domains such as computer vision (CV), quantita-
tive economics, and bioinformatics, which moti-
vates us to explore LLMs for channel prediction.
In fact, at the premier global event 2025 Mobile
World Congress (MWC25) (GSMA, 2025), sev-
eral well-known organizations, including Huawei
and ZTE, presented their outlooks on the deep in-
tegration of LLMs with communications systems
such as LLM-aided semantic communications and
LLM-aided communications networks, which in-
dicates strong potential for LLMs’ application in
communications systems.
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In this paper, we conceptualize wireless chan-
nels as the inherent ‘word’ of communications sys-
tems and propose a generative pre-trained language
model for channel prediction (CP-GPT). The main
contributions include:

• We propose a novel channel-to-language
analogy and design an LLM-based frame-
work for channel prediction: Since the re-
lationship between wireless channels and lan-
guage has not yet been explicitly investigated,
we propose to treat the channel as a ‘word’ in
the context of wireless communications. We
introduce the concept of an end-of-channel-
sentence (EOCS) to construct ‘channel sen-
tences’ based on channel correlation. Further-
more, we design a framework to train an LLM
for channel prediction.

• We design two pre-training tasks to en-
hance channel understanding: Based on a
comprehensive knowledge of wireless com-
munications, we design two specific pre-
training tasks: the next channel prediction
(NCP) task and the masked channel recon-
struction (MCR) task. The NCP task en-
hances the network’s understanding of the
time-varying characteristics, while the MCR
task enhances the representation ability of the
channel embedding layer.

• We propose a benchmark to evaluate the
performance of CP-GPT: We propose a com-
prehensive benchmark to assess the perfor-
mance of the LLM in channel prediction,
which includes five channel-related tasks: few-
shot channel prediction, channel prediction
under different time intervals, channel predic-
tion under different antenna numbers, cross-
antenna channel prediction, and cross fre-
quency channel prediction.

2 Related Work

2.1 Channel prediction

Channel prediction is a promising technology
aimed at reducing the channel acquisition over-
head by predicting future channels based on his-
torical channels. Existing studies on channel
prediction can be categorized into two main ap-
proaches: model-based methods (Ozawa et al.,
2015; Löschenbrand et al., 2023; Kim et al., 2020;
Wang et al., 2023; Huang et al., 2024; Yin et al.,

2020) and AI-based methods (Jiang and Schotten,
2019; Helmy et al., 2023; Jiang and Schotten, 2020;
Jiang et al., 2022; Zhou et al., 2022).

2.1.1 Model-based channel prediction
Model-based channel prediction mainly relies on
mathematical modeling and statistical signal pro-
cessing. Specifically, model based channel predic-
tion first builds a parametric model for the channel
sequences, and then estimates the model’s parame-
ters from past channels. Next it uses the established
model to predict future channels. For instance, au-
toregressive (AR) modeling predicts future chan-
nels by representing each channel as a weighted
sum of previous channels, where the weights are
estimated from historical channels (Ozawa et al.,
2015). The Wiener filter utilizes frequency-domain
analysis and statistical channel models to minimize
mean-square prediction error of channels (Löschen-
brand et al., 2023). The Kalman filter leverages
state-space models and updates channel prediction
results recursively by fusing model predictions with
real-time observations (Kim et al., 2020). However,
model-based channel prediction methods have two
main limitations: (i) model-based channel predic-
tion typically relies on explicit assumptions about
the temporal evolution of wireless channels, yet
real-world channels are often governed by complex
and unknown dynamics that cannot be accurately
captured by such models; (ii) the estimation of
model parameters usually involves high computa-
tional complexity, especially in 5G and 6G systems
with large antenna arrays.

2.1.2 AI-based channel prediction
AI-based methods usually predict channels us-
ing temporal neural networks, particularly recur-
rent neural network (RNN) (Elman, 1990) and
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) network, which have demon-
strated remarkable success in capturing temporal
dependencies and patterns. In (Jiang and Schot-
ten, 2019), the authors apply an RNN to build a
frequency domain channel predictor for wideband
communications. In (Helmy et al., 2023), the au-
thors propose a channel prediction scheme based
on LSTM model to compensate for the negative
effects of imperfect channels, which can improve
the system secrecy performance in high mobility
scenarios. However, existing AI-based channel pre-
diction schemes often lack generalization ability
due to limited training strategies. Recently, the
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Figure 1: The wireless channel based on multiple prop-
agation paths.

LLM has demonstrated remarkable generation and
generalization capabilities in fields of NLP and CV,
which inspires us to analogize channel prediction
with language modeling.

2.2 LLMs in Communications Systems

Recently, large language models have been prelim-
inarily used in communications systems for seman-
tic transmission (Xie et al., 2024; Guo et al., 2025;
Hong et al., 2024; Ni et al., 2025; Jiang et al., 2024;
Tang et al., 2024; Yang et al., 2024) and network
optimization (Lee and Park, 2024; Liu et al., 2024;
Patel et al., 2024; Noh et al., 2025; Sun et al., 2024;
Habib et al., 2025; Zhou et al., 2024b).

2.2.1 LLM-aided semantic communications
In (Xie et al., 2024), the authors leverage LLMs to
extract semantic information from different modali-
ties of transmitted content. By effectively exchang-
ing the semantics behind the data, the transmission
efficiency can be significantly improved. In (Jiang
et al., 2024), the authors employ CoDi (Tang et al.,
2024) to transform multimodal data into text, which
enables semantic transmission rooted in textual in-
formation.

2.2.2 LLM-aided network optimization in
communications systems

Network optimization commonly involves highly
nonconvex and combinatorial problems. Tradi-
tional solutions for network optimization are often
computationally intensive and may not yield glob-
ally optimal solutions. By leveraging the strong
mathematical reasoning and generalization abili-
ties of LLMs, it becomes possible to discover more
efficient or near-optimal solutions for network opti-
mization. In (Lee and Park, 2024), the authors show
that carefully crafted prompts allow the LLM to

address resource allocation challenges in commu-
nications systems and improve system efficiency.
In (Liu et al., 2024), the authors model the com-
munications resource allocation problem as an op-
timization problem and utilize LLMs to solve the
optimization problem. While LLMs have achieved
notable results in semantic communications and
network optimization, their potential for channel
prediction has yet to be explored.

3 Channel Prediction

In this section, we introduce the background knowl-
edge of wireless communications and the definition
of channel prediction task.

3.1 Wireless Channel

In wireless communications systems, signals trans-
mitted from the base station (BS) experience var-
ious propagation phenomena as shown in Figure
1, including line-of-sight (LOS) transmission, re-
flection, diffraction, and scattering before arriving
at the receiver (Rappaport, 2002). Hence, the re-
ceived signals often differ considerably from the
original transmitted signals. Denote the transmit
signal as X, then the received signal is

Y = HX+N, (1)

where H represents the channel that characterizes
the process of signal propagation and N represents
the noise. In order to accurately recover the origi-
nal signal X at the receiver, the value of H should
be acquired. Theoretically, the channel H can
be modeled using electromagnetic theory (Wang
et al., 2025) as described in Appendix A. How-
ever, in practical scenarios, obtaining the channel
parameters through electromagnetic computations
is virtually impossible due to extremely high com-
putational complexity and significant amount of
time required for such calculations. Hence, rather
than electromagnetic calculations, practical sys-
tems typically adopt pilot-based channel estimation
approaches.

3.2 Channel Estimation

Channel estimation is typically implemented
by transmitting known pilot signals alongside
data (Harkat et al., 2022) as shown in Figure 2(a).
The process is described as follows:

• The transmitter periodically sends predefined
pilot signals Xp.
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Concept Wireless Communication Natural Language

Basic unit Channel instance (Ht) Word
Sequence Channel sequence (H1, . . . ,HT ) Sentence
Context Communication environment Linguistic context (background)
Information convey User message/data Intended meaning/content
Variation/dynamics Fading, mobility Style, tone, expression
Uncertainty Interference, noise Ambiguity, linguistic noise

Table 1: Analogy between wireless communications and natural language.

(a) Transmit signals including pilot and data. The green part
represents the pilots, and the blue part represents the data to
be transmitted.
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(b) Illustration of channel prediction, where Xpt denotes the
pilot, Ht denotes the channel, and Dt denotes the data.

Figure 2: The data structure in wireless communications
and the channel prediction pipeline.

• The receiver obtains the received pilots Yp.

• The channel H is estimated as:

Ĥ = YpX
−1
p . (2)

• The transmitter sends the data D, which is
unknown to the receiver. After transmission
over the channel, the receiver observes the
received signal Yd.

• Within an extremely short time interval, the
channel can be regarded as quasi-static. Thus,
the channel experienced by the transmitted
data D is assumed to be identical to that expe-
rienced by the transmitted pilot Xp.

• The receiver utilizes the estimated channel Ĥ
to recover the transmitted signals:

D̂ = Ĥ−1Yd, (3)

where D̂ represents the estimate of the trans-
mitted data. The accuracy of D̂ directly de-
pends on the accuracy of the channel estimate
Ĥ. A more accurate channel estimate leads to

smaller errors in D̂, thereby reducing symbol
error rates and supporting higher data trans-
mission rates.

In each period, the receivers perform the
above channel estimation and signal recovery pro-
cess. Since wireless channels typically vary over
time (Yadav et al., 2021), pilot signals Xp need
to be inserted in each period to enable accurate
channel estimation at the receiver. However, as the
demand for data transmission continues to grow,
frequently inserting a large number of pilot signals
Xp can significantly reduce actual data transmis-
sion rate. Therefore, if future channels can be pre-
dicted based on past channels, the pilot overhead
can be reduced, thereby increasing data transmis-
sion rates.

3.3 Channel Prediction Task Definition

As shown in Figure 2(b), channel prediction uti-
lizes the past channels (H1,H2, . . . ,HT ) to pre-
dict the future channel HT+1:T+K , which can be
mathematically represented as

P (HT+1, . . . ,HT+K | H1,H2, . . . ,HT ). (4)

Through channel prediction, the pilot overhead can
be reduced by K

K+T .

4 The Generative Pre-Trained Language
Model for Channel Prediction
(CP-GPT)

In this section, we introduce an analogy framework
between wireless channels and natural language
and present a detailed description of the proposed
CP-GPT.

4.1 Analogy between Wireless Channels and
Natural Language

In natural language, humans convey their thoughts
and intentions through words. In wireless com-
munications systems, users exchange information
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Figure 3: The analogy between wireless communica-
tions and natural language.

over wireless channels. Therefore, we can analo-
gize channels to ‘words’ in wireless communica-
tion systems.

In natural language, a sentence has several words
where each word is arranged in a specific order to
form a meaningful information flow. Similarly, a
sequence of channels over time characterizes the
evolution of wireless propagation. Therefore, we
can analogize the channel sequences to ‘sentences’.

Moreover, in natural language, the context or
background settings in which a sentence is con-
structed play a crucial role in shaping the meaning
of the words and sentences. Similarly, the physi-
cal environment including obstacles, scatterers, and
user mobility directly affects the characteristics and
thr evolution of channel. Therefore, the physical
environment can be analogized to linguistic context
in natural language. A comprehensive summary of
the analogy between wireless channels and natural
language is provided in Table 1 and Figure 3.

Based on the analogy between wireless channels
and natural language, we then design the CP-GPT
using the LLM.

4.2 CP-GPT

As shown in Figure 4, the CP-GPT includes three
parts: channel embedding, transformer decoder,
and channel reconstruction network. Since channel
is naturally a vector, there is no need to adopt a
tokenizer. However, in different environments, the
channel amplitudes often exhibit significant vari-
ations. To enable stable training across diverse
environments, we normalize the channel sequence.
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Figure 4: The structure of the proposed CP-GPT.

Figure 5: The similarity curve of the channel sequences.

4.3 Channel Normalization
Given a sequence of T channel matrices
{H1,H2, . . . ,HT }, where each Ht ∈ CNr×Nt ,
the normalization process is:

1. Compute the Frobenius norm of H1:

∥H1∥F =

√√√√
Nr∑

i=1

Nt∑

j=1

|h(1)ij |2. (5)

2. Normalize all channels by H1’s norm:

H̃m =
Hm

∥H1∥F
, ∀m = 1, . . . ,M. (6)

4.4 End of Channel Sequence
Similar to word correlations in sentences, adjacent
channel matrices exhibit strong temporal correla-
tions. Mathematically, as for the channel sequence
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{H1,H2, . . . ,HT }, the correlation coefficient be-
tween Ht and Ht+∆t is:

ρ(∆t) =
E[vec(Ht)

Hvec(Ht+∆t)]

∥Ht∥F ∥Ht+∆t∥F
. (7)

As shown in Figure 5, nearby channels have higher
correlation coefficients, and the correlation de-
creases with the increasing of time intervals. More-
over, the decay follows a fluctuating pattern. We
then propose to truncate the channel sequence
based on the correlation between the channel and
H1. Specifically, if the correlation between HT

and H1 is lower than the threshold τ and the cor-
relations between Ht (t < T ) and H1 are greater
than τ , then HT is the end of this channel sequence.

4.5 Channel Embedding
To enhance channel representation, we design a
dual-path residual embedding architecture:

E = fθ1(H) + gθ2(H), (8)

where fθ1 represents the linear embedding layer
and gθ2represents the auxiliary embedding layer
trained by masked channel reconstruction.

4.6 Pre-training Tasks
We adopt two pre-training tasks to train CP-GPT:
the next channel prediction (NCP) task and the
masked channel reconstruction (MCR) task.

4.6.1 Next channel prediction (NCP)
The next channel prediction task includes pre-
dicting the next channel matrix and predicting
the next channel’s angle. Given true next chan-
nel Ht+1 ∈ CNr×Nt and the model prediction
Ĥt+1 = fθ(Ht−k:t), the loss function of NCP is

LNCP = λ1

∥∥∥Ĥt+1 −Ht+1

∥∥∥
2

F

+ λ2


1− ⟨vec(Ĥt+1), vec(Ht+1)⟩∥∥∥Ĥt+1

∥∥∥
F
∥Ht+1∥F


 ,

(9)

where λ1 + λ2 = 1.

4.6.2 Masked channel reconstruction (MCR)
The input channel is randomly masked by

H̃ = M⊙H, Mij ∼ Bernoulli(p), (10)

where M ∈ RN×N is a binary mask matrix whose
elements Mij are independently sampled from the

Bernoulli distribution with parameter p. Then the
masked channel is sent to the auxiliary channel em-
bedding layer. Next, the embedding of the masked
channel is input into the channel reconstruction net-
work where the output is the reconstructed channel.
The loss function of MCR is

LMCR = ∥gθ2(H̃)−H∥2F . (11)

4.6.3 Unified loss function

The loss function encompasses both the NCP loss
and the MCR loss is

LCP-GPT = β1LNCP + β2LMCR, (12)

where β1 + β2 = 1.

5 Pre-training Dataset

We adopt MATLAB to generate the time-varying
CSI data under 3GPP 38.901 standard (3gp, 2019).
Specifically, we collect channels with frequency
bands ranging from 0.5 GHz to 100 GHz, and ter-
minal movement speeds ranging from 0 km/h to 30
km/h. For each speed and frequency point, we col-
lect five types of channels: CDL-A, CDL-B, CDL-
C, CDL-D, and CDL-E. The base station uses an
8x8 dual-polarized planar array, and the user em-
ploys a 2× 2 planar array. A total of 12M training
data is generated.

6 Channel Prediction Benchmark

In this section, we present a comprehensive bench-
mark designed to evaluate channel prediction mod-
els across various dimensions critical for practi-
cal communication systems. Specifically, we fo-
cus on five key aspects: (i) the few-shot capability
of CP-GPT; (ii) the impact of different time slot
intervals on prediction accuracy; (iii) the perfor-
mance under varying numbers of antennas; (iv)
the cross-frequency prediction capability; (v) the
cross-antenna prediction capability. Each aspect is
accompanied by detailed evaluation schemes and
datasets to ensure rigorous and reproducible results.

6.1 Few-shot Capability

We construct a few-shot benchmark to evaluate CP-
GPT on data from novel scenarios and frequency
bands that are not included in the pre-training
dataset, supporting both finetuning and evaluation.
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(a) Layer-4 features (b) Layer-8 features (c) Layer-12 features

(d) Layer-16 features (e) Layer-20 features (f) Layer-24 features

Figure 6: The clustering results of different layers.

6.2 Impact of Time Slot Intervals
The time slot interval is a crucial factor in channel
prediction, as it directly affects the model’s ability
to capture temporal variations of the channel. To
evaluate this effect, we provide datasets with differ-
ent time slot intervals, i.e., 1 ms, 2 ms, 3 ms, 4 ms,
5 ms, and 6 ms and use normalized mean squared
error (NMSE) as the standard evaluation metric.

6.3 Performance under Different Numbers of
Antennas

With the advent of 5G and 6G communications
systems, antenna arrays have evolved from single-
antenna to dozens or even hundreds of antennas.
We provide a benchmark with datasets featuring
different antenna configurations, ranging from a
few antennas to hundreds of antennas, and adopt
NMSE as the evaluation metric, supporting both
finetuning and evaluation.

6.4 Cross-Frequency Channel Prediction
Capability

In wireless communications with Frequency Di-
vision Duplex (FDD) mode (Xu et al., 2023), the
uplink and downlink signals are transmitted on dif-
ferent frequency bands, which typically requires
separate channel estimation for each band. Since
the uplink and downlink frequencies are often rela-
tively close, the uplink channel and downlink chan-
nel exhibit substantial correlation. Therefore, it
is possible to predict the downlink channel based

on the uplink channel which can save the pilot
overhead. To evaluate this capability, we construct
a benchmark for the cross-frequency prediction
task, where CP-GPT is finetuned and evaluated on
datasets containing channels measured at multiple
frequencies.

6.5 Cross-Antenna Channel Prediction
Capability

In systems with a large number of antennas, cross-
antenna prediction is essential to predict the chan-
nel at unobserved antennas based on measure-
ments from observed antennas (Zhang et al., 2021).
We construct a cross-antenna prediction bench-
mark, where CP-GPT is finetuned and evaluated
on datasets with different array configurations and
antenna sampling densities.

7 Evaluation of CP-GPT

The proposed CP-GPT has 24 decoder layers with
16 attention heads. The hidden dimension is 1024.
In total, CP-GPT has 343M parameters. We train
CP-GPT for 10 epochs on eight NVIDIA 3090
GPUs using DeepSpeed ZeRO-2, with a learning
rate of 4× 10−6 and a warm-up phase during the
first 10% of training steps.

7.1 What Does The CP-GPT Learn
After completing the pre-training, we investigate
the internal workings of the CP-GPT to uncover
what it has indeed learned. As depicted in Figure

13424



Methods Time General. ↓ Antenna General. ↓ Few-Shot ↓ Cross-Antenna ↓ Cross-Frequency ↓

Baseline(500) 0.342 0.254 0.238 0.244 0.279
CP-GPT(500) 0.0470 0.0340 0.00572 0.0349 0.0508
Baseline(2k) 0.1117 0.0524 0.0875 0.0845 0.0771
CP-GPT(2k) 0.00986 0.00456 0.00133 0.00848 0.00924

Table 2: The prediction NMSE of the proposed CP-GPT on the benchmarks. ‘Baseline(500 or 2k)’ denotes the
baseline trained with 500 or 2000 samples; ‘CP-GPT(500 or 2k)’ represents the proposed CP-GPT fine-tuned with
500 or 2k samples. Traits with indicate that the lower the score, the better the performance.

Figure 7: The abilities of the proposed CP-GPT in dif-
ferent downstream tasks.

6, we cluster the output features from several lay-
ers of CP-GPT by UMAP (McInnes et al., 2018).
Clustering analysis demonstrates a clear separation
of the features into two distinct groups in Figure
6(f): one located in the upper left quadrant and
the other in the lower right quadrant. The cluster-
ing results reveal two groups that predominantly
correspond to LOS and NLOS channels, respec-
tively. This finding indicates that the model has
autonomously learned to distinguish between these
two fundamental channel characteristics, without
any explicit prior information about LOS or NLOS
properties (Atzeni et al., 2017). The ability to cap-
ture such underlying distinctions suggests that CP-
GPT has developed a certain level of understanding
of channel characteristics, which is beneficial to
improve the accuracy and robustness of channel
prediction.

7.2 Performance on Benchmark

We test CP-GPT’s performance on the benchmark
proposed in Section 6. Specifically, we evaluate
CP-GPT’s performance using 500 and 2000 sam-
ples as the adaptation set. We adopt a network

with four decoder layers without pre-training as
the baseline. As shown in Figure 7 and Table 2,
CP-GPT significantly outperforms the baseline on
all benchmarks. In particular, on the few-shot chan-
nel prediction task with 2000 samples, CP-GPT
attains an NMSE as low as 0.00133, which signifi-
cantly outperforms the baseline with an NMSE of
0.0875. Such superior performance highlights the
strong few-shot ability of CP-GPT as well as the
effectiveness of the pre-training strategy.

Additional experimental details and methodolo-
gies can be found in Appendix B. This comprehen-
sive analysis affirms the robustness and adaptability
of CP-GPT in various scenarios, highlighting its
potential for broad application in AI-driven channel
prediction and beyond.

8 Conclusion

In this work, we propose a novel channel-to-
language analogy and designing an LLM-based
framework for channel prediction. By treating wire-
less channels as linguistic units and introducing
the concept of an EOCS, we enable the construc-
tion of ‘channel sentences’ that capture temporal
correlations in wireless environments. Based on
this perspective, we present a unified framework
named CP-GPT to train the LLM for channel pre-
diction. We design two dedicated pre-training tasks,
NCP and MCR. The NCP task enables CP-GPT
to better capture the temporal dynamics of wire-
less channels, while the MCR task enhances the
expressive power of the channel embedding layer
by enabling robust channel feature reconstruction.
Additionally, we propose a comprehensive bench-
mark to evaluate LLM-based channel prediction,
which encompasses five representative tasks: few-
shot channel prediction, channel prediction under
different time intervals, channel prediction under
different antenna numbers, cross-antenna channel
prediction, and cross-frequency channel prediction.
Extensive experiments demonstrate the effective-
ness and strong generalization ability of CP-GPT.
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Limitations

This work is primarily evaluated on synthetic
channel data generated according to 3GPP stan-
dards, which may not fully reflect real-world prop-
agation conditions due to the absence of com-
mercial network data, as large-scale real-world
datasets are often held by mobile network oper-
ators such as AT&T, Vodafone Group, and Tel-
stra and are difficult for researchers to access.
Nevertheless, we open-source CP-GPT’s weights,
inference code, and fine-tuning code at https:
//github.com/linb20/CP-GPT to facilitate vali-
dation by researchers and mobile network oper-
ators. In addition, we are making efforts to col-
laborate with mobile network operators to collect
additional real-world measurement data.
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A Channel Model Illustration

For a system with Nt transmit antennas and Nr

receive antennas, the time-domain channel matrix
Hn at the n-th sample interval is modeled as:

Hn =
√
NrNt

Lc−1∑

l=0

αlg(nT − τl)

× ar(ϕr,l, θr,l)a
∗
t (ϕt,l, θt,l),

(13)

where Lc represents the total number of multipath
components, αl represents the complex gain of
the l-th path, τl represents the propagation delay
associated with the l-th path, g(·) represents the
pulse-shaping filter evaluated at time nT − τl, ϕr,l

represents the azimuth angle of arrival (AoA) of
the l-th path, θr,l represent the elevation AoA of
the l-th path, ϕt,l represents the azimuth angle of
departure (AoD) of the l-th path, θt,l represents the
elevation AoD of the l-th path, ar(ϕr,l, θr,l) repre-
sents the receive steering vector, and at(ϕt,l, θt,l)
represents the transmit steering vector. For a uni-
form planar array (UPA) with Nx and Ny elements
along the x and y axes, the steering vector can be
calculated by

aUPA(ϕ, θ) = ax(ϕ, θ)⊗ ay(ϕ, θ), (14)
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Figure 8: Performance of the proposed CP-GPT in the
few-shot benchmark.

ax(ϕ, θ) =
1√
Nx




1

ej
2πdx sin θ cosϕ

λ

...

ej
2πdx(Nx−1) sin θ cosϕ

λ



, (15)

ay(ϕ, θ) =
1√
Ny




1

ej
2πdy sin θ sinϕ

λ

...

ej
2πdy(Ny−1) sin θ sinϕ

λ



, (16)

where λ represents the wavelength, dx and dy rep-
resent the antenna spacings along the x and y axes.

B Ablation Studies and Details of
Channel Prediction Benchmark

B.1 Ablation Studies on MCR

We conducted comparative experiments between
CP-GPT trained with “NCP only” and CP-GPT
trained with “NCP + MCR”. The results are sum-
marized in Table 3. It can be seen that introducing
MCR consistently reduces the NMSE in both zero-
shot and few-shot settings.

B.2 Few-Shot Performance

Few-shot evaluation is conducted on data that is
strictly excluded from the pre-training process to
rigorously assess the generalization ability of CP-
GPT. Specifically, frequency points used for pre-
training are {0.5, 1.0, 1.5, . . . , 100} GHz, whereas
those for testing are {0.75, 1.25, 1.75, . . . } GHz,
ensuring no overlap between the two sets. The
dimension of input antennas is set to 128.

The fine-tuning results of CP-GPT are shown in
Figure 8. It can be observed that CP-GPT achieves
a prediction accuracy of NMSE 0.01 with only 350
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Group SFT
Samples

CP-GPT Baseline

2ms 3ms 4ms 5ms 6ms 2ms 3ms 4ms 5ms 6ms

Small

100 0.0742 0.1035 0.1445 0.2275 0.2852 0.6055 0.6250 0.6953 0.7930 0.8516
150 0.0669 0.0913 0.1260 0.2012 0.2500 0.5508 0.5664 0.6602 0.7422 0.7773
200 0.0603 0.0801 0.1045 0.1592 0.1768 0.5195 0.5391 0.6133 0.6875 0.7188
250 0.0493 0.0654 0.0830 0.1279 0.1377 0.4141 0.4434 0.5078 0.5508 0.6094
300 0.0420 0.0554 0.0713 0.1060 0.1138 0.3789 0.4004 0.4531 0.5078 0.5469
350 0.0393 0.0520 0.0669 0.0991 0.1035 0.3555 0.3867 0.4453 0.4883 0.5234
400 0.0356 0.0457 0.0566 0.0806 0.0859 0.3516 0.3809 0.4258 0.4648 0.5078
450 0.0334 0.0437 0.0544 0.0742 0.0786 0.3066 0.3438 0.4023 0.4336 0.4492
500 0.0283 0.0356 0.0442 0.0601 0.0669 0.2734 0.3027 0.3457 0.3809 0.4063

Medium

1000 0.0159 0.0188 0.0210 0.0269 0.0308 0.1777 0.1953 0.2188 0.2324 0.2422
2000 0.0099 0.0111 0.0121 0.0144 0.0167 0.1133 0.1250 0.1348 0.1426 0.1592
3000 0.0080 0.0085 0.0095 0.0107 0.0126 0.0947 0.1016 0.1123 0.1191 0.1309
4000 0.0070 0.0073 0.0080 0.0092 0.0106 0.0854 0.0977 0.1069 0.1094 0.1187
5000 0.0064 0.0067 0.0070 0.0082 0.0093 0.0845 0.0913 0.0972 0.1040 0.1167

Table 4: The performance of CP-GPT under different time intervals. Here, tms denotes the time interval between
input channels.

Group SFT
Samples

Nseen = 2 Nseen = 4 Nseen = 6 Nseen = 8 Nseen = 10

CP-GPT Base. CP-GPT Base. CP-GPT Base. CP-GPT Base. CP-GPT Base.

Small

100 0.155 273 0.566 406 0.121 094 0.574 219 0.132 812 0.589 844 0.128 906 0.589 844 0.125 977 0.593 750
150 0.140 625 0.558 594 0.113 281 0.554 688 0.126 953 0.574 219 0.122 559 0.566 406 0.118 652 0.570 312
200 0.125 000 0.523 438 0.100 586 0.523 438 0.110 352 0.546 875 0.104 980 0.539 062 0.100 586 0.550 781
250 0.101 562 0.402 344 0.083 496 0.410 156 0.090 820 0.417 969 0.084 961 0.414 062 0.082 520 0.412 109
300 0.091 309 0.371 094 0.075 684 0.380 859 0.082 520 0.396 484 0.076 172 0.396 484 0.074 219 0.394 531
350 0.080 566 0.355 469 0.065 918 0.367 188 0.069 824 0.376 953 0.064 941 0.369 141 0.063 965 0.371 094
400 0.074 219 0.349 609 0.060 303 0.355 469 0.063 965 0.361 328 0.059 814 0.363 281 0.057 861 0.376 953
450 0.063 477 0.296 875 0.054 932 0.298 828 0.058 838 0.306 641 0.055 420 0.306 641 0.053 223 0.300 781
500 0.056 396 0.273 438 0.049 072 0.277 344 0.052 246 0.281 250 0.048 828 0.279 297 0.047 363 0.285 156

Medium

1000 0.027 222 0.157 227 0.023 926 0.163 086 0.023 926 0.166 016 0.023 804 0.166 992 0.022 827 0.171 875
2000 0.013 672 0.090 820 0.012 390 0.095 215 0.012 329 0.097 168 0.012 024 0.096 191 0.011 841 0.098 633
3000 0.010 010 0.071 777 0.009 216 0.075 195 0.009 216 0.078 125 0.008 850 0.079 590 0.008 911 0.081 055
4000 0.008 118 0.064 941 0.007 599 0.065 430 0.007 660 0.066 895 0.007 446 0.068 848 0.007 599 0.071 777
5000 0.006 989 0.057 129 0.006 653 0.061 279 0.006 744 0.062 988 0.006 622 0.062 988 0.006 805 0.065 430

Table 5: The performance of CP-GPT for cross-frequency channel prediction. Here, Nseen represents the input
channel sequence length.
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Figure 9: Performance of the proposed CP-GPT with
different time intervals.

fine-tuning samples. In wireless communications
systems, the transmission bandwidth is typically di-
vided into multiple narrow frequency bands called
subcarriers. Notably, if 512 subcarriers are used for
signal transmission, then the base station can ob-
tain 512 channel samples from a single user within
one time slot, which implies that obtaining 350
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Figure 10: Performance of the proposed CP-GPT with
different antenna configurations.

channel samples within a cell is feasible for the
communications systems.

Furthermore, CP-GPT demonstrates a significant
improvement of two orders of magnitude in per-
formance compared to the baseline that is trained
from scratch. This highlights the effectiveness of
CP-GPT’s pre-training and fine-tuning strategy in
few-shot applications.
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Group SFT
Samples

CP-GPT Baseline

Na = 8 Na = 16 Na = 32 Na = 64 Na = 8 Na = 16 Na = 32 Na = 64

Small

100 0.6680 0.2578 0.0688 0.0486 0.8398 0.6172 0.5625 0.5586
150 0.6523 0.2432 0.0649 0.0449 0.8086 0.5938 0.5391 0.5273
200 0.6250 0.2324 0.0605 0.0413 0.7812 0.5859 0.5195 0.5234
250 0.5742 0.1934 0.0508 0.0369 0.6719 0.4375 0.3711 0.3672
300 0.5430 0.1758 0.0464 0.0320 0.6289 0.4063 0.3320 0.3379
350 0.5234 0.1689 0.0449 0.0308 0.6250 0.3926 0.3242 0.3223
400 0.5039 0.1572 0.0427 0.0288 0.6055 0.3770 0.3184 0.3184
450 0.4629 0.1367 0.0393 0.0281 0.5234 0.3223 0.2617 0.2598
500 0.4434 0.1187 0.0349 0.0242 0.4844 0.2949 0.2441 0.2471

Medium

1000 0.3125 0.0605 0.0217 0.0153 0.3105 0.1826 0.1563 0.1553
2000 0.1660 0.0306 0.0119 0.0092 0.1738 0.1201 0.1021 0.1016
3000 0.1084 0.0217 0.0085 0.0070 0.1318 0.0957 0.0845 0.0835
4000 0.0796 0.0167 0.0068 0.0059 0.1152 0.0879 0.0767 0.0771
5000 0.0623 0.0139 0.0059 0.0052 0.1021 0.0801 0.0708 0.0688

Table 6: The performance of CP-GPT for cross-antenna channel prediction. Here, Na denotes the input antenna
dimension, while the output dimension is fixed at 128 antennas.

Figure 11: Cross-frequency channel prediction descrip-
tion.

B.3 Generalization Across Different Time
Intervals

To further investigate the generalization capabil-
ity of CP-GPT across different time intervals, we
construct datasets with time intervals ranging from
2 ms to 6 ms and fine-tuned CP-GPT on these
datasets. As shown in Figure 9 and Table 4, CP-
GPT demonstrates strong generalization over se-
quential inputs with different time intervals, achiev-
ing NMSE on the order of 1 × 10−2. Notably,
CP-GPT outperforms baseline by an order of mag-
nitude in channel prediction accuracy. This high-
lights the robustness of CP-GPT in handling tem-
poral data with diverse time intervals.

B.4 Performance under Different Numbers of
Antennas

The number of antennas can differ across base sta-
tions. We then evaluate CP-GPT’s ability to adapt
to different antenna configurations. We conduct
experiments with antenna numbers 128, 64, 32, 16,
8, and 4, respectively. The results are illustrated
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Figure 12: Performance of the proposed CP-GPT in the
cross-frequency channel prediction task.

in Figure 10. It can be seen that CP-GPT achieves
an NMSE of 0.01 with 16, 32, and 64 antennas
using only 1000 training samples. Compared to the
baseline, CP-GPT demonstrates a significant im-
provement of one order of magnitude in prediction
accuracy. This further validates the robustness and
adaptability of CP-GPT in diverse antenna configu-
rations with limited training data.

B.5 Cross-Frequency Channel Prediction
Capability

There are two typical communication modes in
wireless communication systems: time division du-
plex (TDD) and frequency division duplex (FDD).
In systems with TDD mode, channel reciprocity
allows the downlink channel to be inferred from the
uplink channel. Hence, channel estimation needs
to be performed only for the uplink. In contrast,
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Figure 13: Cross-antenna channel prediction descrip-
tion.

in systems with FDD mode, the uplink and down-
link channels operate in different frequency bands,
which breaks the channel reciprocity assumption.
As a result, both the uplink and downlink channels
must be estimated separately, which leads to in-
creased pilot overhead. Therefore, cross-frequency
channel prediction as shown in Figure 11 is a cru-
cial technique in FDD mode, as it enables the pre-
diction of downlink channels from uplink channels
to save the pilots.

To evaluate CP-GPT’s capability in cross-
frequency channel prediction, we conduct fine-
tuning datasets containing samples from multiple
frequency bands. We then fine-tune CP-GPT on
the cross-frequency dataset. As shown in Figure 12
and Table 5, CP-GPT achieves an NMSE on the
order of 1× 10−2 and outperforms the baseline by
about an order of magnitude.

B.6 Cross-Antenna Channel Prediction
Capability

As the size of antenna arrays increases, the pilot
overhead of channel acquisition grows proportion-
ally. Cross-antenna channel prediction, which in-
volves predicting the channels of partial antennas
from those of other partial antennas as shown in
Figure 13, has emerged as an effective method to
reduce the pilot overhead for channel acquisition.

Figure 14 and Table 6 demonstrate CP-GPT’s
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Figure 14: Performance of the proposed CP-GPT in the
cross-antenna channel prediction task.

performance in cross-antenna prediction. With only
500 samples, CP-GPT achieves an NMSE of 1×
10−2 when predicting the channels of 128 antennas
from the other 32 antennas. Furthermore, when
predicting the channels of all 128 antennas from
only 16, 32, and 64 antennas, CP-GPT outperforms
baseline methods by approximately an order of
magnitude.
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