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Abstract

Large Multimodal Models (LMMs) exhibit
remarkable multi-tasking ability by learning
mixed instruction datasets. However, novel
tasks would be encountered sequentially in dy-
namic world, which urges for equipping LMMs
with multimodal continual instruction learn-
ing (MCIT) ability especially for diverse and
challenging generative tasks. Existing MCIT
methods do not fully exploit the unique at-
tribute of LMMs and often gain performance
at the expense of efficiency. In this paper,
we propose a novel prompt learning frame-
work for MCIT to effectively alleviate for-
getting of previous knowledge while man-
aging computational complexity with natu-
ral image-text supervision. Concretely, we
learn prompts for each task and exploit ef-
ficient prompt fusion for knowledge trans-
fer and prompt selection for complexity man-
agement with dual-modality guidance. Ex-
tensive experiments demonstrate that our ap-
proach achieves substantial +14.26% perfor-
mance gain on MCIT benchmarks with remark-
able ×1.42 inference speed free from growing
computation. Code is available at https://
github.com/AuroraZengfh/ModalPrompt.

1 Introduction

In recent years, large multimodal model (LMM),
which aligns visual encoder (Dosovitskiy et al.,
2021) with large language model (LLM) to handle
multimodal tasks, has gained remarkable perfor-
mance in numerous fields (Li et al., 2023; Liu et al.,
2024b). As models become larger (Dubey et al.,
2024; Zeng et al., 2025b,a), they are expected to
perform lifelong learning like humans and learn
more than one time to handle multiple tasks other
than single tasks (Yao et al., 2022; Dai et al., 2024).

However, while pre-trained models like LLaVA
perform well on mixed datasets, they tend to for-
get older tasks when fine-tuned on new task. Such
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Figure 1: Diagram of model expansion method and our
method. With natural attribute of multimodal guidance,
we enhance MCIT with knowledge transfer and manage
complexity against linear growth.

catastrophic forgetting phenomenon is especially
evident in sequential learning of widely differ-
ing multimodal tasks such as VQA and ground-
ing (Goyal et al., 2017; Deng et al., 2021). This
calls for multimodal continual instruction tun-
ing (MCIT), which aims at sequentially fine-tuning
models with multimodal instruction datasets and
gets superior performance on new tasks while main-
taining ability on previous tasks.

Existing approaches mainly tackle the forgetting
issue by continually extending model with sepa-
rate lightweight component for each task shown in
Fig. 1, and LoRA (Hu et al., 2022) appears to be
the common practice for large models (Wang et al.,
2023). However, they expand model size and infer-
ence time in proportion to the number of tasks since
they ensemble separated components of each task
during inference. As the number of tasks increases,
the cost of storage and inference become unbear-
able, particularly in LMMs and therefore hinder
their practical deployments in real-world scenarios.
Moreover, current methods derived from language
models are not specially designed for LMMs (Hu
et al., 2023; Razdaibiedina et al., 2023) without
fully exploiting information from vision side and
inevitably perform poorly on multimodal bench-
marks. The mentioned shortcomings naturally raise
an open question: Can we establish an effective
MCIT framework designed for LMMs refraining
from growing computational expansion?

In this paper, we investigate how to retain infor-
mation of older tasks from multimodality (i.e., im-
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age and text) to fully exploit LMMs and therefore
improve the performance of multimodal continual
instruction tuning efficiently. Generally speaking,
given that the primary distinction between LLM
and LMM lies in their utilization of image features,
we establish a general prompt learning framework
for multimodal continual instruction tuning with
supervision from multimodality. First, we build
a set of prompts for each task to represent task-
specific knowledge and a lightweight projection
layer is exploited to extract prototype features from
task-specific prompts. When multimodal inputs
come, the off-the-shelf text and visual encoders
are used to obtain multimodal features representing
multimodal distribution of current input. Prototype
and multimodal features are then matched with
similarity denoted as dual-modality guidance. Sec-
ond, to enhance knowledge transfer, prompts that
are most relevant to current task are obtained and
fused through dual-modality guidance to promote
the performance. Third, to address the problem of
computational complexity, prompt selection mech-
anism from dual-modality guidance is developed
to maintain inference efficiency.

Our method has two advantages: (1) guidance
features after tokenization (text) and projection (im-
age) naturally align multimodality information and
are effortless to guide knowledge transfer and selec-
tion of LMMs; (2) computational complexity is in
proportion to token numbers other than task num-
bers, and can therefore manage time consumption
by selecting proper tokens. Extensive evaluation
on MCIT benchmark across diverse multimodal
tasks validates that our method substantially boosts
performance on older tasks and mitigates forgetting
with great training and inference efficiency. Our
contributions are summarized as follows:

• We propose ModalPrompt, the first prompt
learning framework for multimodal continual
instruction tuning to mitigate forgetting with
the advantage of multimodal supervision.

• We construct prompts to retain knowledge of
specific tasks and exploit an effective dual-
modality guided prompt fusion and selection
technique to ensure MCIT ability while man-
aging computational complexity.

• We conduct extensive experiments on contin-
ual instruction tuning benchmark, and the re-
sults substantially outperform existing meth-
ods (+14.26%) with great efficiency.

2 Related Work

Large Multimodal Models (LMMs) (Liu et al.,
2024b,a; Ye et al., 2024), which combine vi-
sion representation with large language mod-
els (LLMs) (Alayrac et al., 2022; Touvron et al.,
2023), have exhibited predominant function in nu-
merous multimodal tasks (Liu et al., 2023; Lu et al.,
2024). They typically contain a LLM decoder with
stacks of transformers to decode embeddings. Usu-
ally, they first process image pixels with a CLIP
image encoder, align features with a linear projec-
tor and then generate responses with concatenation
of both image-text representations in an autoregres-
sive way as LLMs do. As full fine-tuning is time-
consuming and resource-intensive, efficient tuning
is the common practice for instruction tuning of
large models (Han et al., 2024). Methods for param-
eter efficient tuning are mainly three-fold: adapter
learning (Zhang et al., 2021; Satapara and Srijith,
2024; Lee et al., 2024), prompt learning (Zhou
et al., 2022) and LoRA (Hu et al., 2022). They up-
date models with a lightweight module in the form
of intra-block parallel connections, prefixes among
input embeddings and low-rank decomposition, re-
spectively. Specifically, multimodal instruction tun-
ing (Wang et al., 2024b; Liu et al., 2025) has been
a promising direction in promoting performance of
multimodal models with both LoRA (Shen et al.,
2024; Xu et al., 2024) and prompt learning (Khat-
tak et al., 2023). As an orthogonal direction, we
exploit techniques for mitigating catastrophic for-
getting in multimodal foundation models.
Continual Instruction Tuning (Guo et al., 2025b)
goes beyond instruction tuning that adapts large
models to understand and align with human in-
structions. It primarily solves the problem of catas-
trophic forgetting (Zhai et al., 2023; Guo et al.,
2025a,c) when one large foundation model sequen-
tially learns multiple tasks through instruction tun-
ing datasets. With the extensive development of
LMM, much attention and effort have been paid to
multimodal continual instruction tuning (Wu et al.,
2024; Zhang et al., 2024). However, mainstream
methods focus on transferring CIT methods from
language tasks (Wang et al., 2024c,a, 2023) with no
special design for visual features (He et al., 2023).
Recently, a multimodal continual instruction tuning
benchmark named CoIN (Chen et al., 2024) has
been established and MoELoRA (Dou et al., 2023)
is adopted to align previous instructions. However,
it suffers from severe performance drop, highlight-
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Figure 2: Left: prompt fusion module. Prototype features (xt
proto) are obtained from the projection of prompts (Xt
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most similar to current multimodal features are selected to enhance current input. Right: selected prompts and
original multimodal inputs are concatenated and fed into large language model to generate responses.

Notation Explanation

Xt
p Prompts for task t

xtproto Prototype features of prompts for task t

Xv, Xinsturct Image and text inputs of instruction tuning

xv, xinstruct Image and text features of guidance

αt, βt Guidance from image and text modalities

X̃t
p, X̃eval

p Selected prompts for training task t and evaluation

Table 1: Explanations of notations.

ing the necessity for exploration solutions tailored
for multimodal continual instruction tuning.

3 Method: ModalPrompt

Notations. Multimodal continual instruction tun-
ing seeks to address the issue of empowering
LMM with ongoing datasets, where LMM fθ(·)
is pre-trained on large-scale vision-language data
to align image-text features. Given T tasks
{T 1, · · · , T T } with corresponding multimodal
data Dt = {Xt,i

v , Xt,i
instruct, y

t,i}Nt
i=1, t = 1, · · · , T ,

where Xt,i
v , Xt,i

instruct, y
t,i stand for ith sample of

image, text and ground truth for tth dataset (Nt

in total), respectively. A continual learner aims
to fine-tune fθ(·) sequentially on current data Dt

while retaining knowledge on all previous tasks
T <t 1. For clarification, Tab. 1 summarizes nota-
tions that would be used widely in this paper.
Problem setup. In this paper, we focus on multi-
modal continual instruction tuning in a more practi-
cal and challenging setting: (1) Diverse generative
tasks: continual learning procedure is focused on
generative tasks other than simple discriminative
tasks like classification and with existence of vision
information, task type is much more diverse with
abundant scenarios; (2) Free from task identifica-
tion: during inference, the model does not possess

1we use the superscript for all elements from 1 to t.

prior knowledge regarding which specific task cur-
rent question belongs to; (3) Absence of replay
samples: due to data privacy, no raw samples are
replayed to refresh knowledge of previous tasks.
Overview. We present the basic prompt learning
framework for multimodal continual instruction
tuning. As illustrated in right of Fig. 2, the struc-
ture is similar to normal LMM, other than the input
is prefixed with several prompts representing task-
specific knowledge presented on the left. Given a
set of prompts Xt

p with length M attached to each
task t, t ∈ {1, · · · , T} representing task-specific
knowledge in the form of MCIT, we focus on
(1) knowledge transfer and (2) complexity man-
agement, which are connected by dual-modality
guidance. Specifically, with dual-modality guid-
ance matching multimodal input and task-specific
knowledge, we propose multi-task prompt fusion to
enhance knowledge transfer among different tasks
during training in Sec. 3.2 and focus on how to
manage complexity by prompt selection at infer-
ence time in Sec. 3.3.

3.1 Dual-Modality Feature as Guidance
The core for MCIT is how to bring multimodal
knowledge of similar tasks to current input and
generate response reasonably. Given that multi-
modal input naturally brings image-text supervi-
sion, we aim to match input and prompt in multi-
modal space. For image Xv and text Xinstruct in
each input of current task, considering that CLIP
well captures image-text features, we reuse off-the-
shelf vision and text encoder from CLIP to extract
multimodal features of specific input:

xv = Projv(EI(Xv)), xinstruct = ET (Xinstruct), (1)

where EI(·) : Rnv×dv → Rdv , ET (·) : Rnt×dt →
Rdt and Projv(·) : Rdv → Rdt are CLIP vision
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encoder, text encoder and linear projection, respec-
tively. nv, nt,dv and dt are length of image and
text inputs, visual and textual dimension. The uti-
lization can be effortless as they are well-trained
and frozen for feature extraction, and the vision en-
coder has already been used in LMM to extract im-
age features. We give detailed analysis of different
encoders in Appendix C. The extracted text and vi-
sual features is crucial in enhancing continual abil-
ity (Sec. 3.2) and managing complexity (Sec. 3.3)
described subsequently.

3.2 Training: Multi-Task Prompt Fusion

In contrast to class incremental learning (Zhu et al.,
2021; Guo et al., 2024; Wang et al., 2022b) that
learns distinct categories, datasets for MCIT like
multiple types of question-answering tasks share
general knowledge. Without explicit knowledge
sharing among prompts of different tasks, in what
follows, we first propose to transfer similar knowl-
edge of older tasks in training procedure through
multi-task prompt fusion to explicitly enhance
MCIT. As illustrated in left of Fig. 2, prompts of
all previous tasks are frozen for knowledge reuse
and only current prompts are trainable, and we con-
tinually integrate knowledge of older tasks during
sequential instruction tuning of current task with
the aid of dual-modality features.
Prompt fusion for knowledge transfer. When
training the tth task, the trainable prompts are sup-
posed to draw close to vision-language features of
current task and absorb potential knowledge that
may boost the performance. To enhance knowledge
transfer, the dual-modality features could serve as
guiding cues for prompts to accurately get close to
multimodal distributions of current task in feature
space. We propose to build prototype features from
a lightweight projection layer (e.g., MLP) to fur-
ther align task-specific knowledge with guidance
features from input:

xtproto = Projp(X
t
p), (2)

where Projp(·): RM×dt → Rdt projects the
prompts into task-specific prototype features in
image-text feature space. It is effective in distin-
guishing whether prompts of older tasks are favor-
able for current tasks. Then, we explicitly match
prompts and current input by fusing the prompts
with the largest similarity of multimodal supervi-
sion for knowledge transfer. Concretely, we exploit
the similarity between prototype features and dual-

modality features as dual-modality guidance:

αt = sim(xt
proto, xv), βt = sim(xt

proto, xinstruct), (3)

where similarity is a measurement that matches
current multimodal input and task-specific prompts
and we exploit commonly used cosine similarity.
With dual-modality guidance, the model has the
ability to determine which prompts may boost the
performance of evaluated task. We then select the
prompts among {1, · · · , t} with k largest similarity
of multimodal supervision:

X̃t
p = X≤t

p ◦ Ik{α≤t + β≤t}, (4)

where Ik : R(M×t)×dt → R(M×k)×dt represents
selecting the index with the largest k elements, and
◦ means selecting according to index. Note that
in order to optimize parameters of current task,
prompts of current task are always selected during
training and prompts belonging to the same task
are always selected simultaneously.

In summary, we explicitly integrate prompts that
are close to the feature distribution of current task
into training procedure by utilizing supervision
from both modalities that caters for LMMs, and
therefore transfer previous knowledge to boost the
performance of current task.
Training objectives. During training, the inputs
for continual learning of task T t are prefixed with
fused prompts X̃t

p described in Eqn. 4. As shown
in Fig. 2, parameters of large language model θ
are frozen, and the introduced projection layer
along with prompts corresponding to current task
θtp = {θXt

P
, θProjp} are trainable. The optimiza-

tion target for task T t is to find optimal parameters
θtp that minimize the negative log-likelihood lan-
guage loss for LMMs:

Lt
LMM(θtp) = E(Xt

v,X
t
instruct,y

t)∼Dt

[
−

L∑

ℓ=1

log p(yℓ|[X̃t
p, Xv, Xinstruct, y

<ℓ], θ, θ1p, · · · , θtp)
]
.

(5)

where L is the length of each sample pair in the
dataset. The projection layer is optimized to reserve
prototype feature during training process. Since
we are to maximum the dual-modality guidance
to keep knowledge of current task, we addition-
ally design a prototype similarity loss to optimize
prototype features formulated as:

Lt
Proto =

[
1−sim(xt

proto, xv)
]
+
[
1−sim(xt

proto, xinstruct)
]
.

(6)
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Total training objective is a sum of language loss
and prototype similarity loss:

Lt
Total = Lt

Proto + Lt
LMM. (7)

Parameters of current task are frozen afterwards to
retain knowledge of learned tasks when learning
new task.

3.3 Inference: Dual-Modality Prompt
Selection

Another issue for MCIT is growing complexity
with the number of tasks in evaluation. To handle
this, we utilize dual-modality guidance for prompt
selection in inference. As shown in middle of
Fig. 2, by selecting the most relevant prompts, we
convert the problem of computational complexity
from task numbers O(T ) to selected prompt num-
bers O(k), which greatly reduces computation load
and improves efficiency.
Prompt selection for complexity management.
After training on all sequential datasets, the cru-
cial problem for evaluation is that the model has
no ability to recognize which set of prompts pro-
motes particular task and cannot manage computa-
tional complexity with simple ensembling leading
to O(T ) inference complexity. Intuitively, with-
out access to data from older tasks, task-specific
prompts should obtain cues for image-text distribu-
tion and be discriminant about which set of prompts
counts during inference. To achieve this goal, we
measure the similarity between image-text distri-
bution of certain tasks and task-specific prompts
employing dual-modality guidance. The represen-
tations of prototype features and multimodal fea-
ture are similar to Eqn. 2 and Eqn. 3, and differs
in that selected prompts is determined among all T
set of prompts:

X̃eval
p = X≤T

p ◦ Ik{α≤T + β≤T }. (8)

Intuitively, dual-modality guidance could serve
as cues for selecting prompts that are helpful to
current task in feature space, thereby converting
computational complexity from O(T ) to O(k).
Response generation. For each evaluated task,
selected prompts X̃eval

p with multimodal input
{Xv, Xinstruct} are fed into LMM in a prefix way
to generate answers:

f([X̃eval
p ;Xv;Xinstruct]; θ), (9)

where [·; ·] represents concatenation and X̃eval
p is

selected prompts through prompt selection.

Remarks. It can be concluded from above that
the dual-modality guidance plays a crucial role in
prompt learning for CIT and has two advantages:
(1) help transfer knowledge from similar tasks to
boost MCIT performance; (2) manage the inference
speed as the time complexity is in proportion to the
selected prompt numbers other than task numbers.

4 Experiments

We apply LLaVA (Liu et al., 2024b) as base LMM,
and CLIP-Large-336 (Radford et al., 2021) as vi-
sion and text encoder for dual-modality feature
extraction. Prompts can be easily constructed by
extending the vocabulary size of language tok-
enizer. Length for each prompt M is set to 10.
During prompt fusion and selection, we select 3 set
of prompts. More implementation details can be
found in Appendix B.
Datasets. We employ CoIN (Chen et al., 2024), a
MCIT benchmark with numerous vision-language
instruction datasets to evaluate continual instruc-
tion tuning ability. It includes OCRVQA (Mishra
et al., 2019), GQA (Hudson and Manning, 2019),
ImageNet (Deng et al., 2009), ScienceQA (Lu
et al., 2022), Vizwiz (Gurari et al., 2018),
TextVQA (Singh et al., 2019), VQAv2 (Goyal et al.,
2017) and RefCoco (Mao et al., 2016; Kazemzadeh
et al., 2014). Some of these datasets are visual
question answering tasks of different fields, e.g.,
GQA for visual reasoning and ScienceQA for sci-
ence knowledge, and others are classification (Ima-
geNet) and grounding (RefCoco). Following CoIN,
we perform continual instruction tuning in the or-
der of ScienceQA, TextVQA, ImageNet, GQA,
VizWiz, REC, VQAV2 and OCRVQA and eval-
uate the performance after each continual stage.
Compared methods. Apart from MoELoRA (Dou
et al., 2023), we implement three advanced
prompt-based continual learning methods includ-
ing L2P (Zhou et al., 2022), Dualprompt (Wang
et al., 2022a) and CODA-Prompt (Smith et al.,
2023) in the architecture of LMM for comprehen-
sive comparison. We try our best to get optimal
results and briefly introduce compared method and
hyper-parameters in Appendix D.
Evaluation metrics. Denote that At,i(i ≤ t) is
performance of task i after training on task t (T
tasks in total). (1) For final performance evaluation,
we measure each dataset using metrics Last (per-
formance after sequential training on all tasks, i.e.,
AT,i, i = 1, · · · , T ) and Avg (average performance
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Method ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA Average

Multi-task 81.43 61.36 90.05 60.67 52.39 66.14 63.54 61.28 67.10
Zero-shot 67.92 57.71 47.37 61.28 45.17 6.12 52.03 53.58 48.89

L
as

t

Finetune 26.00 25.38 28.51 33.07 26.52 0.10 40.00 52.92 29.06
CODA-Prompt 58.15 50.16 24.04 54.33 48.94 17.83 55.86 54.42 45.46
Dualprompt 56.40 47.12 34.96 42.03 44.14 12.01 54.43 53.36 43.05
L2P 54.42 46.04 30.36 57.09 42.19 9.38 50.45 54.03 42.99
MoELoRA 47.34 32.91 38.73 37.15 42.48 0.97 42.77 57.50 37.48
Ours 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68 55.06 (+9.60)

Av
g

Finetune 13.79 15.74 9.08 28.84 15.20 0.06 40.00 - 17.53
CODA-Prompt 48.84 47.17 18.74 50.77 42.68 15.43 55.86 - 39.93
Dualprompt 42.81 43.41 24.12 40.52 40.39 12.76 54.43 - 36.92
L2P 43.76 41.35 18.28 50.03 38.78 8.77 50.45 - 35.91
MoELoRA 39.12 27.10 20.01 40.65 28.72 1.36 42.77 - 28.53
Ours 68.36 56.30 39.66 61.45 50.02 36.66 66.90 - 54.19 (+14.26)

Table 2: Comprehensive comparison of multimodal continual instruction tuning ability. Performance is measured
with accuracy.

Metrics
Guidance

Image Text Dual ∆

Last 51.95 50.39 55.06 +3.11
Avg 50.35 49.02 54.19 +3.84

Table 3: Effectiveness of guidance from multimodal su-
pervision. Dual-modality similarity guidance achieves
the best results.

across MCIT procedure). (2) For time-dependent
continuous evaluation, we evaluate continuous met-
rics at each incremental stage across all trained
datasets. The metrics include Backward Trans-
fer (B) and Mean Accuracy (M). Zero-shot and
multi-task are also reported to stand for the lower
and upper bounds of the benchmark. Detailed ex-
planations of these metrics are in Appendix A.

4.1 Main Results
Final continual performance. Results of MCIT
benchmark are shown in Tab. 2. It can be con-
cluded that: (1) Existing LoRA-based and prompt-
based methods shows limited promotion in MCIT,
highlighting the necessity of specific methods for
LMMs. By contrast, our method achieves remark-
able improvements with substantial +9.60% and
+14.26% gain, respectively. Notably, the results
after sequential tuning even against multi-task train-
ing, strongly demonstrating the effectiveness of the
dual-modality guided prompt learning framework.
(2) When learning different types of tasks, our ap-
proach undergoes moderate performance drop and
still gets competitive results other than losing the
ability to respond to the task (e.g., the performance
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Figure 3: Impact of prompt/LoRA number. We imple-
ment different number of prompts for each task and
different number of MoE for LoRA.

of MoELoRA drops to near zero when evaluated
on Grounding), indicating the continual learning
ability of the proposed method. (3) Avg of pre-
vious methods drop significantly compared with
Last, and our method has almost no degradation,
consistently achieving superior performance across
the continuous tuning. More comparison results
can be found in Appendix C.
Continuous continual performance. We also
evaluate continuous metrics at each incremental
stage in Tab. 4 to examine time-variant multi-
modal continual instruction tuning performance.
Concretely, compared with previous methods, our
method is especially effective in alleviating catas-
trophic forgetting (BWT) to the most (10.6% mit-
igation) and also gets continuous promotion in
across MCIT (12.9%). It is evident that our method
outperforms state-of-the-art prompt-based method
CODA-Prompt and LoRA-base method MoELoRA
by a substantial margin with respect to both anti-
forgetting and enhancing mean accuracy.
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Method
TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA Average

B2 ↓ M2 ↑ B3 ↓ M3 ↑ B4 ↓ M4 ↑ B5 ↓ M5 ↑ B6 ↓ M6 ↑ B7 ↓ M7 ↑ B8 ↓ M8 ↑ B ↓ M ↑

Finetune 44.30 44.14 65.53 32.52 64.42 22.75 51.98 25.55 67.08 5.71 37.62 23.64 31.16 29.06 51.73 26.19

CODA-Prompt 11.54 57.88 27.70 34.05 14.38 43.44 12.78 42.76 12.72 39.28 14.05 39.42 7.27 45.46 14.34 43.18

MoELoRA 41.31 43.13 52.47 34.08 32.76 41.71 33.81 37.71 41.41 25.59 30.80 34.34 26.12 37.48 36.95 36.29

Ours 6.55 64.50 4.40 56.34 3.16 57.63 4.51 54.15 3.98 50.96 2.02 54.07 1.41 55.06 3.72 (-10.6) 56.10 (+12.9)

Table 4: Continual performance metrics at each incremental stage. Bt and Mt stand for Backward Transfer and
Mean Accuracy at incremental stage t.

Fusion Selection Last Avg B M

✓ 37.36 31.87 27.09 34.94
✓ 44.81 38.24 17.16 40.71
✓ ✓ 55.06 54.19 3.72 56.10

Table 5: Effectiveness of the proposed prompt selec-
tion and fusion for continual learning. Without prompt
selection, we concatenate all prompts like Progressive
Prompts (Razdaibiedina et al., 2023).

4.2 Ablation Study

We conduct numerous ablation studies to carefully
validate the effectiveness of components and hyper-
parameters in the proposed method.
Effectiveness of dual-modality guidance. We
develop the unique dual-modality guidance tai-
lored for LMMs with multimodal information. To
demonstrate the importance of multimodal guid-
ance, we replace it with single-modality guidance.
It is evident in Tab. 3 that either image or text in-
formation solely performs inferior to the proposed
multimodal strategy, and vision information from
multimodal dataset plays an inescapable function
in guiding MCIT especially in datasets that rely
heavily on image scenes. This strongly showcases
that our method improves performance of MCIT by
retaining robust and reliable prototype features in
multimodal feature space and therefore contributes
to all continuous tasks.
Prompt fusion and selection. We design the dual-
modality guidance for knowledge transfer and com-
plexity management, respectively. To validate the
effectiveness of each proposed mechanism, we ab-
late each of them to demonstrate their usefulness. It
is shown in Tab. 5 that both of them play a key role
in the framework and lacking either of them causes
severe performance drop. Specifically, multi-task
prompt fusion is significant in promoting continual
learning in the form of knowledge transfer. Besides,
without selection, knowledge of different types of
tasks would confuse the model and lead to per-
formance drop. All results strongly highlight the
effectiveness of dual-modality guidance in MCIT
framework.

Prototype 

features

Task-specific 

prompts

Multimodal features Task

Figure 4: Left: Similarity between prototype features
and multimodal task features. Larger value indicates
more similar distribution. Right: Selection probability
of each task from prompts. Results are percentage so
the sum of rows equals one. Zoom in for better view.

Number of prompts. The number of prompts rep-
resents prototype features in aligned image-text
space. We vary both numbers of prompt and LoRA
in different methods to investigate the influence of
prompt numbers. Results in Fig. 3 elucidate that in-
creasing prompt numbers brings slight performance
improvement. Considering both effectiveness and
efficiency, we set the number of prompts for each
task to 10 and do not further expand the quantity.

4.3 Further Analysis

Efficiency comparison. As prompt learning serves
as another way to efficiently fine-tune large models,
we compare our approach with LoRA-based (Chen
et al., 2024) and prompt-based (Smith et al., 2023)
method in terms of additional parameters, infer-
ence latency and GPU memory consumption to as-
sess the efficiency. Tab. 6 reveals that our strategy
achieves better results with lower memory, infer-
ence latency and trainable parameters. Specifically,
we merely train 0.27% of total parameters, which
is 5% of MoELoRA and 13% of CODA-Prompt.
Therefore, compared with baseline, our method
achieves faster inference speed (×1.42), reduces
training time (×0.35) and GPU memory consump-
tion (×0.92), firmly substantiating the efficiency of
our approach. The achievements can be attributed
to simple prompt learning implementation and the
prompt selection module that manages the compu-
tational complexity, consequently improving the
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Question: Is that shoe 
behind a dog? Answer 
the question using a 
single word or phrase.

GQA after OCRVQA VizWiz after OCRVQA

Question: what does the 
sky look like in this 
photograph? Answer the 
question using a single 
word or phrase.

       ClearGT

MoELoRA 

Finetune

Ours blueCloudy

blue       NoGT

MoELoRA 

Finetune

Ours YesNo

Yes

TextVQA after OCRVQA

Question: what number 
is on the nose of this 
plane? Answer the 
question using a single 
word or phrase. 

188GT

MoELoRA 

Finetune

Ours 88188

88

Figure 5: Multimodal continual instruction tuning responses of several examples from TextVQA, GQA and VizWiz
after fine-tuning on OCRVQA. Our method successfully mitigate forgetting and gives correct answers.

Method
Memory Training Trainable Throughput

(M ) (Hour) Param (Token/s)

MoELoRA 16784 10.74 4.73% 2.41

CODA-Prompt 16073 5.12 1.97% 2.90

Ours 15517 3.81 0.27% 3.43

∆ ×0.92 ×0.35 ×0.05 ×1.42

Table 6: Efficiency comparison of typical LoRA and
prompt-based method with respect to GPU consumption,
speed and trainable parameters. We average the training
time for one epoch across datasets.

inference efficiency.

Similarity of dual-modality features. The abil-
ity of our framework to learn continually is largely
guaranteed by the prompt selection module and pro-
totype features represented in vision-language fea-
ture space. To further analyze the effectiveness of
the dual-modality guidance tailored for LMMs, we
calculate the similarity matrix between prototype
features and multimodal task features. In Fig. 4,
the similarity heatmap vividly illustrates the vision-
language distributions of continual learning tasks.
First, multimodal features of a few tasks are sim-
ilar, indicating that most multimodal tasks share
common sense and can promote each other mu-
tually. However, some tasks, such as GQA and
OCRVQA, are not similar to other tasks, which
may be due to their task-specific ability not needed
by other common tasks (visual reasoning for GQA
and OCR for OCRVQA); second, the similarity
is asymmetric, which may be attributed to their
task inclusion relationship. For instance, GQA re-
quires higher-level reasoning ability, while some
other tasks may merely need to answer questions
based on visual-language information. Therefore,
features of GQA task (more basically) are similar
to other tasks, but other tasks (more specifically)
are not similar to the prototype of GQA. The vi-
sualization of dual-modality features exhibits the
connection between prior obtained knowledge (pro-

totype features) and given task (multimodal task
features), and therefore contributes fundamentally
to continual learning ability of LMMs.

Selection of prompts. To have an intuitive under-
standing of prompt selection module in addition to
soft distribution construction, we report selection
results of each previous task in percentage under
MCIT setting to figure out the actual selection of
prompts during inference. The results in right of
Fig. 4 expose that the proposed module correctly
matches and prioritizes prompts of the correspond-
ing task as prefixes to enhance MCIT. Moreover,
the module also selects prompts from similar type
of tasks, which also enhances performance. This
strongly indicates that knowledge transfer in tasks
of the same type can mutually promote the perfor-
mance, and our method leverages this characteristic
excellently, demonstrating the robustness and use-
fulness of the learned prototype features.

Visualization. Fig. 5 provides examples during
MCIT procedure to explicitly illustrate the effec-
tiveness of our method. Specifically, existing meth-
ods fail on challenging multimodal generative tasks
especially dependent on vision information. By
contrast, our method can maintain performance
on diverse previous tasks, keep knowledge from
multimodality and answer challenging questions
requiring comprehensive understanding correctly.
For example, in TextVQA, the model identifies
the specific part location of objects (nose of the
plane) and overcomes occlusion; in GQA, it suc-
cessfully distinguishes spatial orientation and there-
fore identifies objects. Moreover, it also deduces
appropriate answers with analogous meanings to
the ground truth based on image and text ques-
tions (e.g., cloudy and clear in VizWiz). The visu-
alizations demonstrate that based on the retained
multimodal knowledge, our model gives the correct
answer for diverse generative tasks, outperforming
traditional existing continual instruction learning
methods without design for vision information.
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5 Conclusion

In this paper, we overcome the obstacle of con-
tinual learning tailored for LMMs with efficiency,
and propose to exploit efficient prompt learning for
continually learning image-text generative tasks
while retaining knowledge of older tasks from mul-
timodal supervision. Specifically, we construct
a set of prompts for each task to represent task-
specific knowledge in feature space. Building upon
dual-modality guidance, we propose prompt fu-
sion to enhance the performance from knowledge
transfer and leverage prompt selection to manage
the computational complexity of the model. Com-
prehensive experiments and analyses validate the
effectiveness and efficiency of our framework.

Limitations

In this article, we propose ModalPrompt, an ap-
proach that exploits effective prompt fusion and
selection with dual-modality guidance to retain per-
formance in multimodal continual instruction tun-
ing. While obtaining impressive continual learning
performance, our method only retains knowledge
of learned tasks and falls short of enhancing un-
seen tasks. However, we argue that it is an underex-
plored field as multimodal continual learning itself
is not fully investigated. We will treat promoting
forward transfer as future direction. Also, we be-
lieve that our model is generalizable and versatile,
and plan to scale model size and application to
other LMMs in future works.
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A Details of Evaluation Metrics

We give a thorough definition and explanation of
the evaluation metrics used in the main experi-
ments.
(1) Average: In addition to Last, which focuses
on performance after tuning on all datasets, we
propose to average performance throughout the en-
tire tuning process. Avgi =

1
T−i

∑T
t=i+1At,i, i =

1, 2, . . . , T − 1. It measures the absolute perfor-
mance of each data across the sequential tuning.
It is vital to keep the performance from dropping
severely when the fine-tuning task varies greatly.
(2) Backward Transfer (BWT): It reflects the
relative variation between current performance
and direct tuning performance, measuring the
catastrophic forgetting on all tasks. Bt =
1

t−1

∑t−1
i=1(Ai,i−At,i), t = 2, · · · , T . Lower BWT

represents better anti-catastrophic forgetting perfor-
mance.
(3) Mean Accuracy (MA): Mt =

1
t

∑t
i=1At,i. It

measures the average performance of all tasks at
each incremental stage and is introduced to evalu-
ate continual learning ability of all previous tasks.
Higher MA stands for better continual learning abil-
ity. The above two metrics are averaged across all
data on each incremental stage except the first one,
i.e., t = 2, . . . , T .

B More Details of Experimental Settings

Continual instruction templates. For continual
instruction tuning, the instructions for each datasets
is shown in Tab. 7. Large language model concate-
nates instructions with image-text pairs in datasets
to generate response accordingly.
Additional Implementation Details. Our frame-
work is constructed depending on deepspeed repos-
itory 2 and Visual Instruction Tuning 3. The in-
structions are from the repository of CoIN 4. In
evaluation of ImageNet, we give option choices
for each question-answer pairs to avoid inaccurate
descriptions. During training, all experiments are
conducted on 48G NVIDIA A6000 and batch size
is adaptively adjusted to maximize the memory
utilization.

C More Experimental Results

Full continual instruction tuning results. We
showcase brief results in the main results. We pro-

2https://github.com/microsoft/DeepSpeed
3https://github.com/haotian-liu/LLaVA
4https://github.com/zackschen/CoIN

Dataset Instruction

ScienceQA
Answer with the option’s letter from

the given choices directly.

TextVQA
Answer the question using a single

word or phrase.

ImageNet
What is the object in the image?

Answer the question using a single word
or phrase.

GQA
Answer the question using a single

word or phrase.

VizWiz
Answer the question using a single

word or phrase.

Grounding
Please provide the bounding box coordinate

of the region this sentence
describes: <description>.

VQAv2
Answer the question using a single

word or phrase.

OCR-VQA
Answer the question using a single

word or phrase.

Table 7: Instructions for each evaluated dataset.

vide detailed continual instruction tuning perfor-
mance during evaluation at each incremental stage.
Upper, middle and bottom of Tab. 10 are full result
comparison of different LMM continual instruction
tuning approaches, including Finetune, MoELoRA
and Ours. It can be concluded that our method
achieves consistent and significant improvements
against previous LoRA based method, validating
the effectiveness of our method. Additional results
of prompt-based methods are also shown in Tab. 11.
It can be concluded that compared with prompt-
based methods, our method also obtains substantial
promotion, further certificating the utility of our
approach.
Influence of different encoders. As stated in the
paper, the dual-modality guidance coming from
frozen CLIP-L plays a vital role in the proposed
approach as the multimodal distribution from input
is crucial to prompt selection and knowledge trans-
fer. To explore the influence of different encoders,
we replace text encoder with simple BPE tokenizer,
and employ stronger vision encoder CLIP/G, re-
spectively. Conclusion from Tab. 8 is that stronger
encoder is slightly better. Yet, we conclude that (1)
guidance merely selects but not represents knowl-
edge and CLIP/L is fairly effective, which can be
validated by Fig. 3 and Tab. 8; (2) as CLIP/L and
image features have already been used in LLaVA,
cost of computing and storage of CLIP-L is ex-
tremely small. Therefore, we use CLIP-L in current
structure.
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Vision Encoder Text Encoder ScienceQA TextVQA GQA VizWiz VQAv2 OCRVQA Average
L

as
t CLIP/L CLIP/L 67.82 56.41 60.76 51.08 66.93 59.52 60.42

CLIP/L BPE 62.42 53.73 62.27 45.92 65.11 62.49 58.66
CLIP/G CLIP/G 68.40 55.94 62.16 50.16 68.54 60.62 60.97

Av
g CLIP/L CLIP/L 67.41 56.37 59.57 50.29 66.93 - 60.11

CLIP/L BPE 61.18 54.04 61.56 43.92 65.11 - 57.16
CLIP/G CLIP/G 68.29 56.11 62.28 49.97 68.54 - 61.04

Table 8: Influence of different encoders for continual instruction tuning on a subset.

Comparison with more methods. We compare
our method with broader continual learning ap-
proaches including Model Tailor (Zhu et al., 2024),
LWF (Li and Hoiem, 2017) and EWC (Kirkpatrick
et al., 2017). Model Tailor maintains continual
learning ability by calculating and enhancing im-
portant parameters for downstream tasks. It mainly
focuses on reducing forgetting when fine-tuning a
small number of downstream tasks and is not specif-
ically designed for sequential adaptation across
various tasks. As shown in Tab. 9, when encoun-
tering larger continual instruction tuning bench-
marks, our method exhibits robust and better per-
formance on the long continual learning process.
Also, when compared with regularization-based ap-
proaches like LWF and EWC, our method obtains
substantial improvements. These additional com-
parison comprehensively shows the advantage and
effectiveness of our proposed method.

Method S T I G V R Q O Avg

LWF 57.42 53.01 31.03 47.10 40.06 17.08 52.17 53.44 43.91

EWC 59.04 52.21 31.06 51.86 42.34 14.36 53.04 53.86 44.72

Model Tailor 77.01 44.09 26.33 47.28 37.16 25.40 54.06 56.73 46.01

Ours 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68 55.06

Table 9: Additional comparison results with broader
methods. S: ScienceQA, T: TextVQA, I: ImageNet,
G: GQA, V: VizWiz, R: REC, Q: VQAV2, O: OCRVQA.

Experiment on other LMMs. We additionally
conduct experiments on Qwen-VL (Bai et al.,
2023), which integrates Q-former to align vision
features with language models, to validate the ef-
fectiveness of the method on different LMM archi-
tectures. Consistent and substantial improvements
in Fig. 6 certificate the adaptability and scalability
of our method on different architectures, strongly
demonstrating the extensibility and generalizabil-
ity of the proposed method across different LMM
architectures.

D Comparing Methods

We briefly introduce methodology of comparing
approaches and then show the hyperparameters of

Figure 6: Results on Qwen-VL architecture.

each method. For practical implementation of exist-
ing methods, we have tried our best to get optimal
results under fair comparison. Hyperparameters
not mentioned are set by default.
MoELoRA leverages experts and gate function
to activate part of parameters for each input. It
learns knowledge of different tasks during training
and mitigates forgetting in evaluation. We use 8
mixture of experts with rank r = 16.
L2P generates a pool of prompts in memory
space. It manages task-invariant and task-specific
knowledge in an explicit way of selecting relevant
prompts for evaluation. We use pool size M = 10
with each length of each prompt Lp = 10 and
select N = 3 for each task.
Dualprompt employs general prompt and expert
prompt to encode task-invariant and task-specific
instructions, and attach them to different layers of
transformer block to meet the demand of knowl-
edge restoration. We select number of general
prompts Lg = 3 and number of expert prompts
Le = 10 practically.
CODA-Prompt proposes to learn a set of input-
conditioned prompts for rehearsal-free continual
learning. We use pool size M = 10 and length of
each prompt Lp = 10.
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Finetune ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 82.45

TextVQA 38.15 50.14

ImageNet 0.96 0.58 96.03

GQA 13.91 15.78 5.67 55.65

VizWiz 8.46 25.17 4.60 38.12 51.42

REC 0.00 0.00 0.00 0.27 0.00 34.00

VQAV2 9.10 27.58 6.62 43.92 19.10 0.03 59.17

OCRVQA 26.00 25.38 28.51 33.07 26.52 0.10 40.00 52.92

MoELoRA ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 75.78

TextVQA 34.47 51.80

ImageNet 22.61 0.04 79.60

GQA 32.37 34.04 42.48 57.95

VizWiz 45.32 38.13 2.63 43.80 58.70

REC 58.76 9.08 5.64 31.87 11.45 36.77

VQAV2 33.01 48.42 10.61 49.78 32.23 1.75 64.58

OCRVQA 47.34 32.91 38.73 37.15 42.48 0.97 42.77 57.50

ModalPrompt ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 77.05

TextVQA 70.50 58.50

ImageNet 68.57 58.18 42.26

GQA 68.82 56.08 43.43 62.17

VizWiz 67.48 55.05 37.60 61.81 48.81

REC 66.58 55.68 35.92 61.95 48.74 36.88

VQAV2 68.12 56.43 40.22 60.92 51.19 36.63 64.99

OCRVQA 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68

Table 10: Detail continual instruction tuning results of Finetune, MoELoRA and our method.
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L2P ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 72.83

TextVQA 68.07 57.16

ImageNet 32.05 26.73 39.43

GQA 47.53 46.02 18.03 60.47

VizWiz 65.94 37.68 1.72 56.29 47.90

REC 5.74 42.96 33.92 39.44 39.64 1.87

VQAV2 32.57 48.65 7.41 47.32 34.52 8.17 59.40

OCRVQA 54.42 46.04 30.36 57.09 42.19 9.38 50.45 54.03

Dualprompt ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 67.16

TextVQA 52.20 53.12

ImageNet 28.49 24.77 46.40

GQA 49.70 47.94 12.06 55.10

VizWiz 57.88 51.17 21.34 48.03 51.62

REC 18.27 39.64 29.77 44.06 35.97 30.82

VQAV2 36.77 49.85 22.48 27.96 41.08 13.51 61.27

OCRVQA 56.40 47.12 34.96 42.03 44.14 12.01 54.43 53.36

CODA-Prompt ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 70.26

TextVQA 58.72 57.05

ImageNet 36.96 34.95 30.26

GQA 50.78 53.52 10.12 59.35

VizWiz 55.37 47.21 6.78 56.43 48.01

REC 33.56 47.67 32.07 44.62 43.39 34.42

VQAV2 48.34 49.54 20.72 47.72 35.73 13.03 60.87

OCRVQA 58.15 50.16 24.04 54.33 48.94 17.83 55.86 54.42

Table 11: Detail continual instruction tuning results of prompt-based methods, inluding L2P, Dualprompt and
CODA-Prompt.
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