
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11110–11138
November 4-9, 2025 ©2025 Association for Computational Linguistics

Efficient Unstructured Pruning of Mamba State-Space Models for
Resource-Constrained Environments

Ibne Farabi Shihab*†1 and Sanjeda Akter*1 and Anuj Sharma2

1Department of Computer Science, Iowa State University
2Department of Civil, Construction & Environmental Engineering, Iowa State University

ishihab@iastate.edu

Abstract

As AI deployment shifts to edge devices,
efficient sequence modeling becomes criti-
cal. State-space models (SSMs), particularly
Mamba, rival Transformers with linear-time
complexity and strong performance across
tasks, yet their large parameter counts hin-
der resource-constrained use. We propose a
novel unstructured pruning framework tailored
for Mamba, achieving up to 70% parameter
reduction with only 3–9% performance loss.
Unlike Transformer-focused pruning, our ap-
proach leverages Mamba’s recurrent dynamics
through: (1) pruning based on weight and gra-
dient importance to preserve critical parame-
ters, (2) a gradual pruning process to ensure
model stability, and (3) a global strategy opti-
mizing parameter allocation across the model.
Extensive experiments on WikiText-103, Long
Range Arena, and ETT benchmarks show sig-
nificant efficiency gains, with 1.77× faster in-
ference and 46% less memory. Our component
analysis reveals Mamba’s robustness, enabling
practical deployment while requiring careful
use to avoid biases in sensitive applications.

1 Introduction

Sequence modeling has been revolutionized by
attention-based Transformers (Vaswani et al., 2017;
Devlin et al., 2018; Brown et al., 2020), yet these
architectures struggle with quadratic computational
complexity (Tay et al., 2022a), limiting their use in
long-context tasks and resource-constrained envi-
ronments. State-space models (SSMs) (Gu et al.,
2020a, 2021; Gupta et al., 2022) offer a promis-
ing alternative with linear-time complexity while
effectively modeling long-range dependencies.

The Mamba architecture (Gu and Dao, 2023)
distinguishes itself through its selective mechanism
that dynamically controls information flow based

*Equal contribution.
†Corresponding author: ishihab@iastate.edu.

on input data. This has led to state-of-the-art per-
formance across language modeling (Merity et al.,
2016), time-series forecasting (Zhou et al., 2021),
audio processing (Goel et al., 2022), and long-
context understanding (Tay et al., 2020). Mamba’s
recurrent formulation avoids memory-intensive at-
tention matrices, enabling efficient computation
through convolution-like operations. This favor-
able scaling has spurred extensions to vision (Zhu
et al., 2024), multimodal processing (Qiao et al.,
2024), and genomics (Nguyen et al., 2023).

Despite these advances, deploying Mamba mod-
els in resource-constrained environments remains
challenging due to their millions of parameters
(Deng et al., 2020). Neural network pruning of-
fers a potential solution, but techniques developed
for CNNs (Li et al., 2016; He et al., 2018) or Trans-
formers (Michel et al., 2019; Voita et al., 2019)
don’t directly transfer to Mamba’s unique recur-
rent structure and state-space dynamics (Liu et al.,
2021; Bellec et al., 2018).

We introduce a systematic unstructured prun-
ing framework tailored to Mamba’s architecture,
enabling deployment in resource-constrained set-
tings like edge computing and mobile devices. Our
approach combines three innovations: (1) gradient-
aware magnitude pruning that identifies less im-
portant parameters while preserving model expres-
siveness; (2) an iterative pruning process to ensure
model stability during sparsity increases; and (3)
a global pruning strategy that optimizes parameter
allocation across the entire model. Experiments on
WikiText-103 (Merity et al., 2016), Long Range
Arena (Tay et al., 2020), and ETT (Zhou et al.,
2021) demonstrate up to 70% parameter reduction
with only 3-9% performance degradation.

Our contributions include:

• A gradient-aware magnitude pruning tech-
nique specifically designed for Mamba

• An iterative pruning schedule ensuring model

11110

stability during sparsity increases

• A global pruning strategy that outperforms
layer-wise approaches

• Detailed analysis of pruning effects on
Mamba’s components

• Significant efficiency gains across diverse
tasks

Our findings reveal that Mamba’s selective mech-
anism and structured dynamics make it particularly
amenable to pruning, with certain components (e.g.,
state-space parameters) being more critical than
others (e.g., linear projections). These insights
enhance Mamba’s deployability while deepening
our understanding of state-space modeling archi-
tectures.

2 Related Work

Our work builds on advancements in state-space
models (SSMs) and neural network pruning, tai-
loring these techniques to the unique properties of
the Mamba architecture. Below, we summarize the
most relevant literature, with a broader review of
sequence modeling architectures provided in Ap-
pendix F.

Neural Network Pruning. Pruning reduces
model size by removing redundant parameters,
with early work using second-order derivatives (Le-
Cun et al., 1990; Hassibi et al., 1993) and later
approaches focusing on magnitude-based pruning
(Han et al., 2015; Zhu and Gupta, 2017). The lot-
tery ticket hypothesis (Frankle and Carbin, 2018)
showed that sparse subnetworks can match dense
model performance. Pruning has been applied
to CNNs (Li et al., 2016; He et al., 2018) and
Transformers (Michel et al., 2019; Voita et al.,
2019), but these methods do not account for the
recurrent dynamics of SSMs (Liu et al., 2021).
Recent advances in large language model prun-
ing include simple weight-magnitude methods like
Wanda (Sun et al., 2024), which are effective for
Transformers but don’t address the unique stabil-
ity requirements of recurrent state-space models.
Gradient-based pruning (Lee et al., 2018; Wang
et al., 2020a; Molchanov et al., 2019), which con-
siders both weight magnitude and gradient informa-
tion, shows promise but has not been extensively
explored for SSMs.

Our approach bridges this gap by developing
a gradient-aware pruning framework for Mamba,

leveraging its selective mechanism and structured
dynamics to achieve significant parameter reduc-
tion while preserving performance. Unlike prior
work, we address the stability requirements of
SSMs and optimize pruning globally, offering in-
sights into Mamba’s architectural redundancy.

3 Methodology

To enable efficient deployment of Mamba state-
space models in resource-constrained environ-
ments, we propose a comprehensive unstructured
pruning framework tailored to their unique archi-
tecture, figure 1 illustrates the framework work-
flow. Our approach addresses the challenges of
preserving Mamba’s selective mechanism and sta-
ble recurrent dynamics while significantly reducing
parameter counts. Figure 2 provides an overview
of our approach.

3.1 Pruning Methods

3.1.1 Gradient-Aware Magnitude Pruning
The core of our pruning strategy is a gradient-aware
magnitude pruning technique that identifies param-
eters with minimal impact on model performance.
While this approach builds upon insights from pre-
vious gradient-based pruning methods like SNIP
(Lee et al., 2018) and magnitude pruning (Han et al.,
2015), our formulation and application are specifi-
cally tailored to Mamba’s unique architecture. Un-
like traditional magnitude-based pruning, which
solely considers weight magnitude, our method
incorporates gradient information to assess a pa-
rameter’s contribution to the loss function, ensuring
that critical parameters are preserved. For each pa-
rameter wij in the Mamba model, we compute an
importance score S(wij) defined as:

S(wij) = |wij | ·
∣∣∣∣
∂L
∂wij

∣∣∣∣
α

(1)

Here, |wij | is the absolute weight magnitude,
∂L
∂wij

is the gradient of the loss L with respect to
wij , and α is a tunable hyperparameter that bal-
ances the influence of magnitude and gradient. A
value of α = 0 reduces to pure magnitude pruning,
while α > 0 emphasizes parameters with signif-
icant impact on the loss. Through extensive hy-
perparameter sweeps (detailed in Appendix D), we
find that α ≈ 1.0 provides a robust default across
tasks, as it equally weighs magnitude and gradient
contributions, though task-specific tuning can yield
further improvements (e.g., α ≈ 0.8 for time-series

11111

Figure 1: Detailed workflow illustrating our unstructured pruning framework for Mamba models. It includes (1)
gradient-aware magnitude pruning with importance scores that balance weight magnitude and gradient information,
(2) an iterative cubic pruning schedule that gradually increases sparsity, and (3) stability-preserving mechanisms
that maintain eigenvalue bounds. This process optimizes global parameter allocation to achieve 50–70% parameter
reduction with minimal performance loss.

forecasting). The impact of different α values on
performance across tasks is presented in Appendix
D.

The importance scores are computed during
training, leveraging the model’s gradients from
backpropagation. Parameters with the lowest
scores are masked (set to zero) to create sparsity,
and the mask is applied during both training and
inference to reduce computational overhead. This
gradient-aware approach is particularly suited to
Mamba’s architecture, where parameters in the se-
lective mechanism (e.g., ∆, Alog) play a critical
role in dynamic information flow, requiring careful
preservation to maintain expressiveness.

3.1.2 Iterative Pruning Schedule

Rather than pruning all parameters at once, we em-
ploy an iterative schedule that gradually increases

sparsity over training. Building upon the cubic
pruning schedule proposed by Zhu et al. (Zhu and
Gupta, 2017), we adapt this approach specifically
for Mamba’s recurrent dynamics and selective at-
tention mechanism. This gradual pruning allows
the remaining parameters to compensate for the
pruned ones, leading to better recovery of perfor-
mance. Given an initial sparsity level s0 (usually 0),
a final target sparsity level sf , and pruning starting
at iteration t0 and continuing until total training it-
eration T , the sparsity at iteration t follows a cubic
progression:

st = sf + (s0 − sf) ·
(
1− t− t0

T − t0

)3

,

for t ∈ [t0, T]

(2)

Here, t0 is the iteration to start pruning (typi-

11112

1.0 0.5 0.0 0.5 1.0
Weight Magnitude |w|

0

5

10

15

20

25

30

Gr
ad

ie
nt

 M
ag

ni
tu

de
 |

L/
w|

Pruned
(S(w) <)

Retained
(S(w) >)

1. Gradient-Aware
Magnitude Pruning

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ar

sit
y

Le
ve

l

2. Iterative Pruning
Schedule

One-shot
Linear
Cubic (Ours)

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Model Layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ar

sit
y

Le
ve

l

3. Global vs.
Layer-wise Pruning

Layer-wise
Global (Ours)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Im
po

rta
nc

e
Sc

or
e

Figure 2: Our unstructured pruning framework for Mamba models combines (1) gradient-aware magnitude pruning,
(2) an iterative cubic pruning schedule, and (3) global parameter allocation. The diagram illustrates importance
distribution, sparsity progression, and performance trade-offs.

cally after 25% of training), T is the total training
iterations, and the cubic term ensures a gradual ini-
tial phase followed by accelerated pruning. This
schedule starts slowly, allowing the model to con-
verge toward important parameter configurations,
and then accelerates to reach the target sparsity.
Our empirical findings (detailed in Appendix D)
demonstrate that this cubic schedule is particularly
effective for Mamba models compared to linear
or exponential alternatives. A comparative analy-
sis of different pruning schedules can be found in
Appendix D.

3.1.3 Global Pruning Strategy

Traditional pruning methods often apply layer-wise
thresholds, which can lead to suboptimal parame-
ter allocation by treating each layer independently
(Han et al., 2015). In contrast, our global pruning
strategy computes a single importance threshold
across all parameters in the Mamba model, allow-
ing for flexible and efficient distribution of spar-
sity. After computing importance scores S(wij)
for all parameters, we sort them globally and mask
the lowest-scoring parameters to achieve the target
sparsity level. This global approach is particularly
effective for Mamba, as its architecture exhibits
varying parameter importance across layers and
components (e.g., state-space vs. linear projec-
tions). For example, earlier layers, which capture
foundational features, often retain more parame-
ters than later layers, as shown in Appendix D.1.
Global pruning outperforms layer-wise pruning by
up to 0.5 perplexity points on language modeling
tasks (see Appendix D), as it optimizes the over-
all model capacity rather than enforcing uniform
sparsity per layer.

3.1.4 Eigenvalue Stability Preservation
A key challenge in pruning state-space models is
maintaining eigenvalue stability. The eigenvalues
λi of the state transition matrices in SSMs must
satisfy |λi| < 1 to ensure stable recurrent dynam-
ics. While vanilla SSMs can enforce this through
parameterization, selective SSMs like Mamba have
data-dependent transitions that complicate stability
control during pruning. To address this, we incor-
porate an eigenvalue stability check in our pruning
method. For each state dimension i and input posi-
tion j, we compute a stability score:

Sstab(i, j) = max(0, |λi,j | − (1− ϵ)) (3)

where λi,j is the eigenvalue of the transition ma-
trix for state dimension i at position j, and ϵ is a
small positive value (typically 0.01) providing a
safety margin. Parameters that minimize Sstab are
preferentially retained to maintain stability. In prac-
tice, this is implemented as a corrective mechanism
that adjusts the pruning mask post-hoc if stabil-
ity violations are detected, preventing the removal
of parameters critical for maintaining eigenvalue
bounds (see Algorithm 1 in Appendix E.6 for de-
tails). This stability-aware pruning ensures that the
model’s recurrent dynamics remain well-behaved
even at high sparsity levels.

Our pruning framework is implemented in Py-
Torch, wrapping the Mamba model with a pruning
mask that enables sparse matrix operations during
training and inference. The importance scores are
computed using gradients from a single forward-
backward pass per pruning step, minimizing com-
putational overhead. We use the AdamW optimizer
(Loshchilov and Hutter, 2017) for fine-tuning after
each pruning step, with a learning rate schedule

11113

that decreases linearly from 10−4 to 10−6. The
hyperparameter α is tuned via a grid search over
[0, 0.5, 1.0, 2.0], with task-specific sweeps detailed
in Appendix D. Sparse operations leverage Py-
Torch’s sparse tensor support, reducing memory
usage by up to 54% at 50% sparsity (see Appendix
D.1). The framework is compatible with various
Mamba variants (e.g., Vision Mamba (Zhu et al.,
2024), Hyena (Poli et al., 2023)), demonstrating its
generality across state-space architectures.

3.2 Theoretical Foundations
Our pruning approach is grounded in theoretical in-
sights about Mamba’s architecture and the unique
challenges of pruning recurrent state-space mod-
els. These insights inform both the design of our
framework and explain its effectiveness.

3.2.1 Parameter Importance Distribution
The distribution of parameter importance in
Mamba follows a power law, with a small frac-
tion of parameters contributing disproportionately
to model performance. Our analysis shows that ap-
proximately 20% of parameters account for 80% of
the total importance score, creating a natural oppor-
tunity for high-sparsity pruning. This power law
distribution arises from Mamba’s selective mecha-
nism, which creates context-dependent parameter
activation patterns where different inputs activate
distinct parameter subsets.

Unlike Transformers, where attention weights
tend to be distributed more uniformly, Mamba’s
recurrent structure leads to more concentrated pa-
rameter importance as many parameters serve sim-
ilar roles. The state-space parameters (A, B, C,
D matrices) exhibit higher importance and enable
targeted pruning. The effective rank of activation
matrices is lower than in Transformers, indicating
greater redundancy exploitable by pruning.

3.2.2 Eigenvalue Stability Theory
For recurrent models like Mamba, maintaining
eigenvalue stability during pruning is essential. Us-
ing matrix perturbation theory, we can quantify
the maximal eigenvalue shift when pruning a state
transition matrix A to its pruned counterpart Ã:

max
i
|λi(A)− λi(Ã)| ≤ C · s · ∥Ā∥F (4)

where s is sparsity, ∥Ā∥F is the Frobenius norm,
and C depends on matrix structure. At 50% spar-
sity, our method ensures the maximum shift is

≤ 0.05, preserving the stability necessary for effec-
tive sequence modeling.

3.3 Mamba-Specific Adaptations

While the pruning techniques described above build
on established principles, their effectiveness in
our framework comes from specific adaptations
to Mamba’s unique architecture, directly address-
ing its recurrent dynamics, selective gating, and
stability requirements. These adaptations substanti-
ate our claim that this is a Mamba-tailored pruning
framework.

3.3.1 Importance Scoring for Recurrent
Dynamics

Standard gradient-based importance scores like
SNIP are typically computed in a single forward-
backward pass. For a recurrent model like Mamba,
this fails to capture a parameter’s influence across
an entire sequence. We adapt the gradient calcula-
tion to account for this temporal dependency. The
gradient ∂L

∂wij
used in Equation 1 is accumulated

over multiple time steps of the recurrent computa-
tion, providing a more holistic measure of a param-
eter’s contribution to the sequence-level loss:

SSSM(wij) = |wij | ·
∣∣∣∣∣

T∑

t=1

∂L
∂wij (t)

∣∣∣∣∣

α

(5)

where the gradient is accumulated across T
time steps, capturing how parameters influence the
model across the entire sequence rather than at iso-
lated points.

3.3.2 Preserving the Selective Mechanism
Mamba’s performance relies heavily on its selec-
tive gating mechanism, which is data-dependent.
We found that conventional importance scores sys-
tematically underestimated the importance of gat-
ing parameters that enable this selectivity. To
address this, we introduce a correction factor to
the importance score for gating parameters, which
scales their importance based on the diversity of
their activation patterns across different inputs.
This ensures that parameters critical for dynamic,
input-dependent information routing are preserved.

3.3.3 Stability-Aware Scheduling
The cubic pruning schedule is adapted to prevent
the destabilization of Mamba’s recurrent dynamics.
After each pruning step, the fine-tuning process

11114

incorporates a stability-focused objective that ex-
plicitly penalizes eigenvalues of the state transition
matrix that drift outside the unit circle:

Lstable = Ltask+λ·
∑

i

max(0, |λi|−(1−ϵ))2 (6)

This dual-objective fine-tuning allows the model
to recover task performance while ensuring its re-
current states remain stable, a critical consideration
absent in frameworks designed for non-recurrent
models. Further theoretical details on these adapta-
tions are available in Appendix E.8.

4 Results

We evaluate our unstructured pruning framework
on Mamba models across diverse tasks, including
language modeling, long-range understanding, and
time-series forecasting, using benchmark datasets
such as WikiText-103 (Merity et al., 2016), Long
Range Arena (Tay et al., 2020), and ETT (Zhou
et al., 2021). Our experiments demonstrate that the
proposed approach achieves up to 70% parameter
reduction with minimal performance degradation,
significantly outperforming baseline pruning meth-
ods. We also analyze computational efficiency and
robustness, highlighting the practical benefits for
resource-constrained deployment. A component-
wise analysis reveals critical insights into Mamba’s
pruning characteristics. Extended results, includ-
ing fine-grained ablations and cross-dataset perfor-
mance, are provided in Appendix D.

4.1 Language Modeling Performance

We assess our pruning framework on language
modeling using WikiText-103 and PG-19 datasets,
comparing pruned Mamba models to dense base-
lines and conventional magnitude-based pruning
(Han et al., 2015). Table 1 summarizes the results
for Mamba-Small (130M parameters) and Mamba-
Base (370M parameters).

At 50% sparsity, our pruned Mamba models
maintain perplexity within 0.8–0.9 points of the
dense baselines, with Mamba-Small showing only
a 3.3% increase on WikiText-103 while halving
parameters and reducing inference time by 43%.
At 70% sparsity, performance remains competi-
tive, with a 9.1% perplexity increase for Mamba-
Small. Compared to magnitude-based pruning, our
approach reduces perplexity by up to 0.9 points,
demonstrating the effectiveness of gradient-aware

ListOps

Text

Retrieval

Image

Path-X

50%60%70%80%90%100%

Strong Performance
on Path-X (Long-Range)

Performance on Long Range Arena Tasks

Mamba-Base (Dense)
Mamba-Base (50% Pruned, Ours)
Transformer-Base

Figure 3: Performance comparison of dense Mamba-
Base, pruned Mamba (50%), and Transformer models
across Long Range Arena tasks.

pruning. Notably, our pruned Mamba-Base with
50% sparsity outperforms a dense Transformer-
Base of comparable size (20.7 vs. 21.2 perplexity),
highlighting Mamba’s efficiency even after signifi-
cant pruning.

4.2 Long-Range Task Performance

We evaluate long-range dependency modeling on
the Long Range Arena (LRA) benchmark (Tay
et al., 2020), which includes tasks like ListOps,
Text Classification, and Path-X. Table 2 presents
accuracy results for Mamba-Base across these chal-
lenging tasks.

Our pruned models at 50% sparsity maintain
performance within 0.8% of the dense baseline
(82.3% vs. 83.1% average accuracy), outperform-
ing magnitude-based pruning by 1.1% overall. The
Path-X task, which tests extremely long-range
dependencies, shows only a 0.6% drop at 50%
sparsity, compared to 1.7% for magnitude prun-
ing, underscoring our method’s ability to preserve
Mamba’s selective mechanism. At 70% sparsity,
performance degrades gracefully, with our pruned
model maintaining an average accuracy of 81.3%,
still substantially outperforming a dense Trans-
former (77.6%). Figure 3 visualizes these compar-
isons, highlighting Mamba’s robustness for long-
context tasks even after aggressive pruning.

4.3 Time-Series Forecasting

We evaluate time-series forecasting on the ETT
benchmark (Zhou et al., 2021), reporting Mean
Squared Error (MSE) for various prediction hori-
zons. Table 6 shows results for Mamba-Base across
different forecasting scenarios. More detailed vi-
sualizations and extended analysis of time-series
forecasting results are presented in Appendix D.1.

11115

Table 1: Language modeling perplexity and inference time on WikiText-103 and PG-19 for models with varying
parameter counts and sparsity levels.

Model Params (M) WikiText PG-19 Inference (ms/token)

Mamba-Small 130 24.1 31.2 0.85
Magnitude-Pruned (50%) 65 25.8 33.5 0.51
Ours-Pruned (50%) 65 24.9 32.1 0.48
Ours-Pruned (70%) 39 26.3 34.0 0.40

Mamba-Base 370 19.8 26.3 1.45
Magnitude-Pruned (50%) 185 21.5 28.4 0.87
Ours-Pruned (50%) 185 20.7 27.2 0.82
Ours-Pruned (70%) 111 21.7 28.7 0.68

Transformer-Base 360 21.2 28.1 2.20

Table 2: Accuracy (%) on Long Range Arena tasks for different model configurations.

Model ListOps Text Retrieval Image Path-X Avg

Dense 62.5 93.2 88.7 79.1 91.8 83.1
Magnitude-Pruned (50%) 60.4 91.8 87.0 76.5 90.1 81.2
Ours-Pruned (50%) 61.8 92.6 87.9 78.2 91.2 82.3
Ours-Pruned (70%) 60.9 91.5 86.8 77.0 90.5 81.3

Transformer 55.3 88.9 84.2 71.2 88.2 77.6

At 50% sparsity, our approach increases MSE by
only 2.4% on average (0.343 vs. 0.335), compared
to 6.6% for magnitude pruning (0.357), with the
performance gap widening at longer horizons (e.g.,
336h). This is particularly significant as longer
horizons require capturing more complex tempo-
ral dependencies. At 70% sparsity, MSE remains
within 6% of the dense baseline, demonstrating
robust temporal dependency modeling even with
substantial parameter reduction. Pruned Mamba
models consistently outperform dense Transform-
ers across all horizons, reinforcing their suitability
for time-series tasks even after significant parame-
ter reduction.

4.4 Component-Wise Analysis

To understand Mamba’s pruning characteristics, we
analyze the impact of pruning specific components
(state-space parameters, linear projections) at 50%
sparsity, as shown in Table 3. Detailed component
sensitivity analysis and visualizations are provided
in Appendix E.3.

Pruning state-space (SSM) parameters, which
govern Mamba’s selective mechanism and dynam-
ics, results in a modest 0.4-point perplexity in-
crease, indicating their robustness. In contrast,

Table 3: Impact of pruning Mamba-Base components
on WikiText-103 perplexity at 50% sparsity within the
specified component.

Pruned Com-
ponent

Params Saved (%) Perplexity

None (Dense) 0% 19.8
SSM Parame-
ters Only

15% 20.2

Linear Projec-
tions Only

33% 21.8

Both (Uni-
form)

48% 21.3

Both (Our
Allocation)

48% 20.7

pruning linear projections causes a 2.0-point in-
crease, suggesting significantly higher sensitivity.
Uniform pruning of both components yields sub-
optimal results (21.3 perplexity), while our non-
uniform allocation—applying higher sparsity to lin-
ear projections (approximately 60%) and lower to
SSM parameters (approximately 30%)—achieves
the best performance (20.7 perplexity). This anal-
ysis, extended in Appendix D, highlights the im-

11116

portance of preserving SSM parameters, particu-
larly those controlling the selective mechanism, for
maintaining model performance during pruning.

4.5 Computational Efficiency
We quantify efficiency gains in terms of throughput,
memory usage, and FLOPs for Mamba-Base, as
shown in Table 4.

At 50% sparsity, our approach achieves 1.77x
higher throughput and 46% lower memory usage,
with FLOPs reduced by 48%. These efficiency
gains translate directly to faster inference and re-
duced resource requirements. At 70% sparsity,
throughput increases to 2.45x, and memory usage
drops to 36% of the dense model. These substan-
tial improvements, detailed further in Appendix
D.1, enable deployment on resource-constrained
devices, such as edge systems with limited memory
and processing capabilities.

Memory usage is reported for PyTorch’s sparse
COO tensor format, which stores non-zero values
and their indices. At 70% sparsity with 32-bit floats
and 64-bit indices, the theoretical memory required
is approximately

0.3N · 4 + 2 · 0.3N · 8 = 0.3N (4 + 16)

= 0.3N · 20 = 6.0N.

which is 45% of the dense model’s 4×N mem-
ory. Our reported 36% is an empirical measure-
ment reflecting additional framework-level opti-
mizations, including memory-efficient sparse ker-
nels, shared index storage for similar sparsity pat-
terns, and optimized memory alignment. In prac-
tice, these optimizations enable better memory effi-
ciency than the theoretical calculation would sug-
gest, as verified through profiling with PyTorch’s
memory_snapshot() during inference.

5 Comparative Analysis and Ablation
Studies

5.1 Robustness Evaluation
We assess the robustness of pruned models to input
perturbations (word swaps, insertions) on a text
classification task, as shown in Table 7.

Surprisingly, our pruned models at 50% sparsity
exhibit better robustness than the dense baseline,
with a 16.6% average accuracy drop compared to
19.8% for the dense model and 21.7% for magni-
tude pruning. This suggests that our gradient-aware
pruning enhances Mamba’s stability under input
variations, likely due to preferentially preserving

parameters critical to dynamic behavior while re-
moving those that might amplify noise or perturba-
tions. This finding aligns with observations in other
domains where targeted sparsity can function as a
form of regularization, improving generalization
to distribution shifts (see Appendix D.1 for further
analysis).

Enhanced Robustness on Language Modeling.
We further explore robustness on the language
modeling task using WikiText-103 data (Table 5).
When tested against common perturbations such
as input noise, dropout, and adversarial attacks,
our pruned models with 50% sparsity outperform
the baseline by 2.3% on average (calculated as the
mean of the differences: 86.7-84.2=2.5%, 91.2-
89.1=2.1%, 93.5-91.3=2.2%), despite being signifi-
cantly smaller.

This robustness improvement parallels findings
in transformer architectures (Hendrycks et al.,
2020), where moderate pruning has been shown
to improve generalization by reducing overfitting.
However, our results suggest that Mamba mod-
els benefit even more substantially from pruning-
induced regularization. We hypothesize this is due
to Mamba’s recurrent structure and selective atten-
tion mechanism, which may be particularly prone
to overfitting when overparameterized. By remov-
ing redundant parameters, pruning appears to en-
force more efficient information routing through
the state-space dynamics.

The selective gating in Mamba determines which
information to retain or discard at each time step,
and our pruning approach seems to sharpen this
selectivity, making the model more resilient to
input perturbations. Furthermore, our stability-
aware pruning ensures that the remaining parame-
ters maintain well-behaved dynamics, potentially
creating more generalizable internal representa-
tions. These findings suggest that beyond efficiency
gains, pruning may serve as an effective regulariza-
tion technique specifically tailored to state-space
models (see Appendix E.6 for extended analyses
of robustness across different perturbation types).

5.2 Ablation Studies

Our ablation studies, summarized in Table 9, con-
firm the effectiveness of our design choices. On
WikiText-103, global pruning outperforms a layer-
wise strategy, a balanced gradient-magnitude im-
portance score (α = 1.0) is superior to pure
magnitude-based pruning, and a cubic schedule

11117

Table 4: Computational efficiency metrics for Mamba-Base at different sparsity levels relative to dense baseline.

Model Params Throughput Memory FLOPs

Dense 1.00x 1.00x 1.00x 1.00x
50% Pruned 0.50x 1.77x 0.54x* 0.52x
70% Pruned 0.30x 2.45x 0.36x* 0.33x

Table 5: Robustness evaluation on WikiText-103 lan-
guage modeling under different perturbation types.

Model Input
Noise

Token
Dropout

Token
Swap

Mamba
(Dense)

84.2% 89.1% 91.3%

Mamba
(50%
Sparse)

86.7% 91.2% 93.5%

for increasing sparsity yields better performance
than linear or exponential schedules. These results,
detailed in Appendix D, validate our framework’s
components.

5.3 Comparison with State-of-the-Art
Compression Methods

We compare our unstructured pruning against lead-
ing pruning and alternative compression baselines.

Pruning baselines. On WikiText-103 with
Mamba-Base at 50% sparsity (Table 10), our
method attains perplexity 20.7, outperforming
LTH (21.3) and LLM-oriented pruning like
Wanda (Sun et al., 2024) (21.9). Methods such
as SNIP and GraSP—effective for Transform-
ers—underperform here, underscoring the need for
approaches tailored to Mamba’s state-space dynam-
ics, especially on long-range tasks where stability
preservation is crucial.

Alternative compression. Relative to structured
pruning and 8-bit PTQ (Table 12, App. G), our ap-
proach best preserves accuracy. Structured pruning
is hardware-friendly but removes entire channels,
disrupting interdependent SSM parameters; PTQ
reduces memory but degrades performance via pre-
cision loss in recurrent updates. A hybrid (ours +
quantization) offers the strongest efficiency, with a
small accuracy trade-off versus pruning alone.

6 Discussion

Our unstructured, gradient-aware pruning frame-
work enables efficient deployment of Mamba state-

space models, achieving ∼70% parameter reduc-
tion with >95% performance retention across di-
verse sequence tasks, while delivering practical
gains—1.77× higher throughput and 46% lower
memory at 50% sparsity (Table 4). By combining
gradient-aware scoring, iterative cubic scheduling,
and global optimization, we outperform traditional
pruning baselines and preserve Mamba’s core ca-
pabilities. Analysis reveals that Mamba’s selective
mechanism and state-space dynamics are highly
amenable to pruning: state-space parameters (e.g.,
∆, Alog) are more critical than linear projections
(Table 3), consistent with our theory (Appendix C)
showing a power-law distribution of parameter im-
portance. Stability analysis (Figure 4) indicates
that maintaining eigenvalue stability supports ro-
bust long-context modeling even at high sparsity.
Compared to pruned Transformers (Michel et al.,
2019; Voita et al., 2019), pruned Mamba models
exhibit stronger efficiency–performance trade-offs
(Table 1). Notably, we observe enhanced robust-
ness to input perturbations (Table 7), suggesting
pruning acts as beneficial regularization—echoing
observations in other architectures (Hendrycks and
Dietterich, 2019) but appearing more pronounced
in Mamba due to its dynamic, selective parame-
terization. These properties make pruned Mamba
models attractive for edge and embedded deploy-
ments (e.g., on-device language processing, real-
time analytics), especially when paired with com-
pilers/runtimes that exploit sparsity (e.g., TVM)
and hardware with sparse tensor support.

References
Guillaume Bellec, David Kappel, Wolfgang Maass, and

Robert Legenstein. 2018. Deep rewiring: Training
very sparse deep networks. International Conference
on Learning Representations (ICLR).

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

11118

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

Tom Brown and 1 others. 2020. Language models are
few-shot learners. Advances in Neural Information
Processing Systems, 33:1877–1901.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, and 1 others. 2021. Rethinking atten-
tion with performers. In International Conference on
Learning Representations.

Tri Dao, Shiyi Fu, Zhengxin Chen, Orhan Firat, Kwon-
joon Lee, and Albert Gu. 2024. Transformers and
state space models: A detailed analysis through
the lens of spectral properties. arXiv preprint
arXiv:2401.18062.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan
Xie. 2020. Model compression and hardware accel-
eration for neural networks: A comprehensive survey.
Proceedings of the IEEE, 108(4):485–532.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. International Conference on Learning
Representations (ICLR).

Karan Goel, Albert Gu, Chris Donahue, and Christopher
Ré. 2022. S4nd: Modeling images and videos as
multidimensional signals using state spaces. arXiv
preprint arXiv:2210.06583.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2020a. Hippo: Recurrent memory
with optimal polynomial projections. Advances in
Neural Information Processing Systems, 33:1474–
1487.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Ef-
ficiently modeling long sequences with structured
state spaces. International Conference on Learning
Representations (ICLR).

Albert Gu, Caglar Gulcehre, Tom Paine, Matt Hoffman,
and Razvan Pascanu. 2020b. Improving the gating
mechanism of recurrent neural networks. In Inter-
national Conference on Machine Learning, pages
3800–3809. PMLR.

Ankit Gupta, Aditya Kusupati, Haricharan Simhadri,
Harsh Pathak, Aniruddha Kembhavi, and Jitendra
Malik. 2022. Diagonal state spaces are as ef-
fective as structured state spaces. arXiv preprint
arXiv:2203.14343.

Song Han, Huizi Mao, and William J Dally. 2016. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. International Conference on Learning Represen-
tations (ICLR).

Song Han, Jeff Pool, John Tran, and William J Dally.
2015. Learning both weights and connections for
efficient neural networks. Advances in Neural Infor-
mation Processing Systems, 28.

Ramin Hasani, Mathias Lechner, Alexander Amini,
Lucas Liebenwein, Max Tschernuth, Joshua Tenen-
baum, and Daniela Rus. 2022. Liquid structural state-
space models. arXiv preprint arXiv:2209.12951.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon: Extensions and perfor-
mance comparisons. Advances in Neural Information
Processing Systems, 6.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. 2018. Amc: Automl for model com-
pression and acceleration on mobile devices. Pro-
ceedings of the European Conference on Computer
Vision (ECCV), pages 784–800.

Dan Hendrycks and Thomas Dietterich. 2019. Bench-
marking neural network robustness to common cor-
ruptions and perturbations. International Conference
on Learning Representations (ICLR).

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference
and training in neural networks. Journal of Machine
Learning Research, 22(241):1–124.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713.

11119

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2017. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. In International
Conference on Learning Representations.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. Advances in Neural Informa-
tion Processing Systems, 2.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Snip: Single-shot network pruning based
on connection sensitivity. International Conference
on Learning Representations (ICLR).

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. 2018a. Measuring the intrinsic dimension
of objective landscapes. In International Conference
on Learning Representations.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. International Conference on Learn-
ing Representations (ICLR).

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018b. Visualizing the loss land-
scape of neural nets. In Advances in Neural Informa-
tion Processing Systems, volume 31.

Shaobo Liu, Ang Li, Bowen Feng, Feng Zhang, and
Zewen Zhang. 2021. Practical issues in recurrent
neural network pruning. Frontiers in Computer Sci-
ence, 3:685573.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. International Confer-
ence on Learning Representations (ICLR).

Weizhe Ma, Sharan Narang, Sreyas Bodapati, Anirudh
Madaan, Hao Zhou, Daniel Kirchner, Christopher
Akiki, Helen Firoozi, Kathy Lee, Collin Schulman,
and 1 others. 2024. Luna: Language understand-
ing with natural state space models. arXiv preprint
arXiv:2403.07919.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in Neural Information Processing Systems, 32.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Irene
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11264–11272.

Jason Nguyen, Gunnar Rätsch Azis, and Konstantin
Rohr. 2023. Hyenadna: Long-range genomic se-
quence modeling at single nucleotide resolution.
arXiv preprint arXiv:2306.15794.

Tri Nguyen, Smit Baguley, Anthony Dao, Karan Goel,
Hamza Hassani, and Albert Gu. 2022. S4nd: Mod-
eling images and videos as multidimensional signals
using state spaces. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 1–13.

Bo Peng, Eric Alcaide, Kamalraj Kanakarajan, and
Mathieu Ravaut. 2023. Rwkv: Reinventing
rnns for the transformer era. arXiv preprint
arXiv:2305.13048.

Michael Poli, Stefano Massaroli, Hugo Larochelle, and
Stefano Ermon. 2023. Hyena hierarchy: Towards
larger convolutional language models. International
Conference on Machine Learning (ICML), pages
27837–27859.

Yanyuan Qiao, Donghai Gong, Aozhu Liu, Chunyuan
Li, Yin Bi, Ting Yao, Wei Chen, and Dongmei
Zhang. 2024. Vl-mamba: Exploring state space
models for multimodal learning. arXiv preprint
arXiv:2403.09626.

Victor Sanh, Thomas Wolf, and Alexander M Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Process-
ing Systems, volume 33, pages 20378–20389.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3645–3650.

Jiawei Sun, Husheng Wang, Shuai Liu, Ke Ren, Mingyu
Gao, Chenjuan Xu, and Bin Guo. 2024. Simple and
effective gradient-based pruning for large language
models. arXiv preprint arXiv:2402.05519.

Yutao Sun, Li Dong, Xipeng Qiu, and Tianyu Yang.
2023. Retentive network: A successor to trans-
former for large language models. arXiv preprint
arXiv:2307.08621.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2020. Long
range arena: A benchmark for efficient transformers.
International Conference on Learning Representa-
tions (ICLR).

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022a. Efficient transformers: A survey.
ACM Computing Surveys, 55(6):1–35.

Yi Tay, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni,
Dara Bahri, Harsh Mehta, Zhen Schuhmann, Don-
ald Metzler Cohan, and Neil Da. 2022b. Transformer
memory as a differentiable search index. In Neural
Information Processing Systems.

Szymon Tworkowski, Konrad Przybysz, Tomasz Kor-
bak, Pedro Rodriguez, Wojciech Rozemłyn, Kamil
Rakowski, Maciej Grzelak, Albert Webson, Ma-
ciej Szafraniec, Robin Sorsch, and 1 others. 2024.

11120

https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355

Mambaformer: Efficient language modeling with se-
lective state spaces and attention. arXiv preprint
arXiv:2312.00752.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5797–5808.

Chaoqi Wang, Guodong Zhang, and Roger Grosse.
2020a. Picking winning tickets before training by
preserving gradient flow. International Conference
on Learning Representations (ICLR).

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020b. Linformer: Self-attention with
linear complexity. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 9532–
9544.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and 1 others. 2020. Big bird: Transform-
ers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pages
17283–17297.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2021. Informer: Beyond efficient transformer for
long sequence time-series forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(12):11106–11115.

Michael H Zhu and Suyog Gupta. 2017. To
prune, or not to prune: Exploring the efficacy of
pruning for model compression. arXiv preprint
arXiv:1710.01878.

Yupeng Zhu, Huang Hu, Dongchen He, Zhe Gan, Zhiqi
Wang, Lijuan Wang, Zicheng Zhang, Jianfeng Liu,
Guangxing Cheng, Qi Tian, Dacheng Yu, and Xing-
gang Wang. 2024. Vision mamba: Efficient visual
representation learning with bidirectional state space
model. arXiv preprint arXiv:2401.09417.

11121

Appendix

A Limitations and Future work

Limitations. The iterative pruning schedule in-
creases training time by roughly 1.7–2.5× com-
pared to standard training (Zhu and Gupta,
2017)—a one-off but nontrivial cost for large
models—and realized inference gains depend on
platform-level support for sparse tensors (Hoefler
et al., 2021). Our experiments cover models up
to 370M parameters; billion-parameter regimes re-
main to be validated. While unstructured sparsity
delivered the best accuracy in our setting, struc-
tured pruning and quantization offer different trade-
offs in hardware compatibility (Appendix G).

Future Work. Promising directions include com-
bining pruning with quantization for multiplicative
efficiency gains (Han et al., 2016), distilling knowl-
edge from dense to sparse Mamba variants (Hin-
ton et al., 2015), exploring hybrid SSM–attention
designs (Dao et al., 2024), automating hyperpa-
rameters (e.g., α) to streamline pruning, probing
theoretical links between prunability and general-
ization (Frankle and Carbin, 2018), and leveraging
hardware-level sparse accelerators for additional
real-world speedups (Hoefler et al., 2021).

B Ethics Statement

Our pruning framework for Mamba state-space
models enhances efficiency for deployment in
resource-constrained environments, potentially
broadening access to advanced AI in low-resource
settings, such as mobile devices and edge com-
puting systems. This democratization of AI could
benefit underserved communities by enabling ap-
plications like real-time language processing and
time-series forecasting in areas with limited compu-
tational infrastructure. However, deploying these
models in sensitive applications, such as natural
language processing, requires caution to avoid am-
plifying biases present in training datasets like
WikiText-103, which is predominantly English-
centric and may underrepresent diverse linguistic
or cultural perspectives (Bender et al., 2021). We
recommend thorough bias audits and fairness eval-
uations before deployment in such contexts.

The iterative pruning process increases training
time by approximately 1.7-2.5x compared to stan-
dard training, contributing to higher energy con-
sumption. To mitigate this, we have optimized the

pruning schedule to reduce computational over-
head (Appendix E.2), and future work will ex-
plore quantization to further minimize environ-
mental impact (Strubell et al., 2019). Addition-
ally, our open-source implementation aims to pro-
mote transparency and equitable access to the pro-
posed methods, ensuring that the benefits of effi-
cient AI are shared widely. Researchers and prac-
titioners should remain vigilant about the ethical
implications of deploying pruned models, particu-
larly in ensuring robustness against adversarial in-
puts, as our robustness analysis (Table 7) suggests
improved stability but not complete immunity to
perturbations.

B.1 Reproducibility Details

To facilitate replication of our experiments, we pro-
vide comprehensive details on hyperparameters and
computational resources. The full list of datasets
and model architectures used in our evaluation is
detailed in Appendix B.1. All datasets used are
publicly available.

Experiments were conducted on NVIDIA A100
GPUs (40GB) using PyTorch 2.0 with sparse ten-
sor support. Training Mamba-Base on WikiText-
103 required approximately 72 hours for the dense
model and 180 hours with pruning (2.5x overhead,
mitigated as described in Appendix E.2). Inference
times are reported in Table 1.

Our implementation is available at [URL
redacted for anonymity], to be released pub-
licly upon acceptance. The repository includes
PyTorch code for the pruning framework, train-
ing scripts, and instructions for reproducing results
across all datasets. We also provide pre-trained
model checkpoints and pruning masks to facilitate
further research.

C Theoretical Insights

Our empirical analysis reveals several important
properties of Mamba that explain its amenability
to pruning. These insights derive from extensive
experiments analyzing parameter importance dis-
tribution and eigenvalue stability across different
sparsity levels and components of the architecture.

C.1 Parameter Importance Distribution

The distribution of parameter importance in
Mamba models follows a power law, with a small
fraction of parameters contributing disproportion-
ately to model performance. Figure 5 shows the

11122

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real Part

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Im

ag
in

ar
y

Pa
rt

Unit Circle
| | = 1

A: Eigenvalue Distribution

Dense Model
Naive Pruning
Our Pruning

0 10 20 30 40 50
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
at

e
Re

sp
on

se

B: State Response to Step Input

Dense Model
Naive Pruning (Unstable)
Our Pruning (Stable)
Step Input

Figure 4: Stability analysis showing (A) eigenvalue distribution before/after pruning and (B) state response to step
inputs at different sparsity levels.

Table 6: MSE on ETT datasets for different forecasting horizons and model configurations.

Model 24h 48h 168h 336h Avg

Dense 0.312 0.329 0.343 0.372 0.335
Magnitude-Pruned (50%) 0.328 0.346 0.361 0.394 0.357
Ours-Pruned (50%) 0.319 0.338 0.352 0.383 0.343
Ours-Pruned (70%) 0.325 0.344 0.360 0.391 0.355

Transformer 0.348 0.372 0.398 0.430 0.384

cumulative distribution of parameter importance
on WikiText-103 (Merity et al., 2016).

This power law distribution creates opportunities
for significant pruning without loss of capacity (Gu
and Dao, 2023). Our analysis shows that approx-
imately 20% of the parameters account for 80%
of the total importance score, enabling the 70-80%
pruning rates achieved in our experiments while
maintaining performance. The selective mecha-
nism of Mamba is particularly important here, as
it creates context-dependent parameter activation
patterns where different inputs activate distinct pa-
rameter subsets (Gu and Dao, 2023).

Unlike Transformers, where attention weights
tend to be distributed more uniformly, Mamba’s re-
current structure leads to more concentrated param-
eter importance as many parameters serve similar
roles (Gu et al., 2021). The state-space parameters
(A, B, C, D matrices) exhibit higher importance and
enable targeted pruning (Gu and Dao, 2023). The
effective rank of activation matrices is lower than
in Transformers, indicating greater redundancy ex-
ploitable by pruning (Gu and Dao, 2023).

C.2 Eigenvalue Stability Analysis
The stability of recurrent dynamics under pruning
is essential for maintaining Mamba’s performance,
especially for long sequences. We analyze this by
examining how pruning affects the eigenvalues of
state transition matrices.

For a state transition matrix A and its pruned
counterpart Ã, we quantify the maximal eigenvalue
shift using matrix perturbation theory:

max
i
|λi(A)− λi(Ã)| ≤ C · s · ∥Ā∥F (7)

where s is sparsity, ∥Ā∥F is the Frobenius norm,
and C depends on matrix structure. At 50% spar-
sity, the maximum shift is ≤ 0.05, preserving sta-
bility (as shown in Figure 4 in the main text). This
informs our stability score Sstab component in the
pruning algorithm.

The eigenvalue analysis in Figure 6 provides
deeper insights into how pruning affects the stabil-
ity of Mamba’s recurrent dynamics. As shown, our
pruning approach maintains eigenvalue magnitudes

11123

Table 7: Text classification accuracy (%) under perturbations for different Mamba-Base configurations.

Model Clean Word Swap Word Insert Avg Drop

Dense 93.2 71.5 75.3 19.8
Magnitude-Pruned (50%) 91.5 67.3 72.4 21.7
Ours-Pruned (50%) 92.6 74.2 77.8 16.6

Table 8: Key hyperparameters for reproducibility.

Hyperparameter Category Parameter Value / Range

Pruning Gradient Exponent (α) {0, 0.5, 1.0, 2.0} (Default: 1.0)
Target Sparsity (sf) 50%, 70%
Schedule Cubic, starting at 25% of training

Training Optimizer AdamW
Learning Rate Linear decay from 10−4 to 10−6

Fine-tuning Steps 5,000 per pruning iteration

Stability Eigenvalue Threshold (ϵ) 0.01

within the unit circle even at high sparsity levels,
with the maximum perturbation following the theo-
retical bound closely. This stability preservation is
crucial for maintaining Mamba’s performance on
long-sequence tasks.

C.3 Component-Wise Analysis

Our analysis of Mamba’s components reveals dis-
tinct pruning characteristics:

The Selective Mechanism parameters (input-
dependent S, ∆ projections) are most critical,
with pruning beyond 60% causing significant per-
formance degradation. These parameters enable
Mamba’s context-dependent processing and ex-
hibit superior robustness compared to Transform-
ers (Michel et al., 2019), with selective mechanism
parameters being more sensitive.

The State-Space parameters (A, B, C, D ma-
trices) exhibit moderate importance and can be
pruned by 70-75% with proper regularization.
These parameters control the recurrent dynamics
and long-range dependencies, requiring stability
preservation measures during pruning.

The Linear Projection parameters (in-
put/output projections, mixing matrices) show
the lowest criticality and can be pruned by up to
80-85% with minimal performance impact. These
components exhibit high redundancy and primarily
serve to project between the model dimension and
state dimension.

Figure 7 shows Mamba’s superior robustness

compared to Transformers when subjected to ran-
dom parameter masking. While Transformers ex-
hibit sharp performance drops beyond 30% random
pruning, Mamba models maintain reasonable per-
formance up to 50% random pruning, suggesting
inherent architectural robustness. This resilience
further supports our finding that Mamba’s struc-
tured dynamics and selective mechanisms create
natural redundancy that can be leveraged for effi-
cient pruning.

These theoretical insights informed our tailored
approach to pruning Mamba models, enabling effi-
cient and effective sparsification while preserving
the essential dynamics that drive Mamba’s perfor-
mance.

D Fine-Grained Ablations and Extended
Results

The results of our ablation studies are summarized
in Table 9 in the main text (Section 5.2). Our abla-
tion experiments confirm that global pruning out-
performs layer-wise pruning, a balanced gradient-
magnitude importance score (α = 1.0) is supe-
rior to pure magnitude-based pruning, and a cubic
schedule for increasing sparsity yields better per-
formance than linear or exponential schedules.

D.1 Extended Results

This section includes detailed cross-dataset results
and supplementary figures.

11124

10 4 10 3 10 2 10 1 100

Importance Score (log scale)

101

102

103

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

A: Parameter Importance Distribution

0 20 40 60 80 100
Parameter Percentile (%)

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Im
po

rta
nc

e
(%

)

20% of parameters
account for 80%
of importance

B: Cumulative Importance

1 2 3 4 5 6 7 8
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

C: Layer-wise Distribution

Figure 5: Parameter importance distribution showing (A) log-scale histogram, (B) cumulative distribution, and (C)
layer-wise patterns.

0.10 0.05 0.00 0.05 0.10
Eigenvalue Shift Magnitude

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

A: Eigenvalue Shift Distribution
30% Sparsity
50% Sparsity
70% Sparsity

0.0 0.2 0.4 0.6 0.8
Sparsity Level

0.00

0.01

0.02

0.03

0.04

M
ax

 E
ig

en
va

lu
e

Sh
ift

B: Max Eigenvalue Perturbation
Theoretical Bound
Empirical Max

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Max Eigenvalue Shift

19.0

19.5

20.0

20.5

21.0

21.5

M
od

el
 P

er
pl

ex
ity

C: Impact on Model Perplexity

Figure 6: Eigenvalue perturbation analysis showing (A) distribution of shifts at different sparsity levels, (B)
maximum perturbation vs. sparsity, and (C) impact on model perplexity.

D.1.1 Cross-Dataset Performance

Table 11 presents performance metrics for Mamba-
Base at 50% sparsity across various datasets.

The cross-dataset evaluation reveals consistent
patterns in the effectiveness of our pruning ap-
proach across diverse domains. For language mod-
eling tasks, our method consistently achieves 50%
parameter reduction with only a 4-5% relative de-
crease in performance across all datasets, compared
to 8-10% degradation with standard magnitude
pruning. This consistency across datasets of vary-
ing complexity (from The Pile to PG-19) demon-
strates the robustness of our approach to different
linguistic distributions and contexts.

Long-range sequence tasks show particularly
strong results, with our pruning method maintain-
ing performance within 0.7 percentage points of
dense models on Path-X, compared to 1.7 points
for magnitude pruning. This suggests our approach
better preserves the selective state-space mecha-
nisms critical for modeling dependencies in long
sequences. The ListOps task, which requires hierar-
chical reasoning, shows slightly larger degradation
(0.7%) but still outperforms magnitude pruning by

1.4 percentage points.

For time-series forecasting, our pruned models
achieve MSE values within 2.7% of dense mod-
els, compared to 5.2% degradation for magnitude
pruning. This trend holds across different fore-
casting horizons, with performance gaps widening
for longer-range predictions (96h vs. 48h), high-
lighting our method’s advantage in preserving long-
range dependencies.

Audio processing tasks show remarkable re-
silience to pruning, with our method maintain-
ing performance within 0.4-0.8 percentage points
across all datasets. Speech Commands, which in-
volves simple classification, shows the smallest
degradation (0.4%), while LibriSpeech, which re-
quires more complex sequence modeling, shows
slightly larger impacts (0.3% WER increase).
These results suggest that audio tasks may be par-
ticularly amenable to pruning due to inherent re-
dundancy in audio representations.

Vision tasks exhibit slightly larger performance
drops compared to other domains (0.6-0.8 percent-
age points), but still significantly outperform mag-
nitude pruning. The more complex the task, the

11125

0 20 40 60 80
Sparsity (%)

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Structured pruning
maintains accuracy
at higher sparsity

A: Structured vs Random Masking
Structured (Ours)
Random

0 10 20 30 40 50
Adversarial Masking (%)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce

Mamba more robust
to adversarial masking

B: Robustness to Adversarial Masking
Mamba
Transformer

Figure 7: Performance comparison under different masking strategies for structured vs. random patterns across
model architectures.

Table 9: Ablation studies on WikiText-103 for Mamba-Base at 50% sparsity. Our proposed methods are highlighted
in bold.

Ablation Study Configuration Perplexity

Pruning Strategy Layer-Wise 21.2
Global (Ours) 20.7

Gradient Exponent (α) 0.0 (Magnitude) 21.5
1.0 (Ours) 20.7

Pruning Schedule Linear 21.4
Exponential 21.1
Cubic (Ours) 20.7

larger the gap between our method and magnitude
pruning—for instance, in semantic segmentation
(ADE20K), our approach outperforms magnitude
pruning by 1.8 percentage points, compared to 1.2
points for classification tasks. This suggests that
tasks requiring fine-grained spatial understanding
benefit more from our gradient-aware approach.

Across all domains, we observe that the perfor-
mance gap between our method and magnitude
pruning widens as task complexity increases, indi-
cating that gradient information becomes increas-
ingly valuable for identifying critical parameters in
more challenging contexts.

D.1.2 Supplementary Figures
Figure 13 reveals the non-uniform distribution of
parameters retained after pruning across different
layers and component types. Several important pat-
terns emerge from this analysis. First, we observe
that earlier layers (layers 1-3) retain approximately

10-15% more parameters than later layers, consis-
tent with findings in other architectures where early
feature extraction requires more capacity. Second,
within each layer, SSM parameters show signifi-
cantly higher retention rates (65-75%) compared
to linear projection parameters (30-40%), confirm-
ing our hypothesis that state-space components are
more critical to model performance.

A notable finding is the differential impact across
SSM component types: state transition parame-
ters (A matrices) show the highest retention rates
(70-80%), followed by input projection parame-
ters (B matrices, 60-70%), and finally output pro-
jection parameters (C matrices, 50-60%). This
ordering aligns with theoretical understanding of
SSMs, where state transitions most directly influ-
ence the model’s ability to capture temporal de-
pendencies. The selective mechanism parameters
(∆ projections) also show high retention rates (65-
75%), demonstrating their importance for Mamba’s

11126

Table 10: Comparison with state-of-the-art pruning methods on WikiText-103 for Mamba-Base at 50% sparsity.
Our method is highlighted in bold.

Pruning Method Perplexity

SNIP (Lee et al., 2018) 22.5
Movement Pruning (Sanh et al., 2020) 22.1
Wanda (Sun et al., 2024) 21.9
GraSP (Wang et al., 2020a) 21.8
Structured Pruning (Li et al., 2016) 21.6
Magnitude Pruning (Han et al., 2015) 21.5
Lottery Ticket (LTH) (Frankle and Carbin, 2018) 21.3
Ours 20.7

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

19

20

21

22

23

24

W
ik

iTe
xt

-1
03

 P
er

pl
ex

ity

19.8

20.7

20.9
21.0

21.9

Comparison of Pruning Schedules (50% Sparsity)
One-shot (21.9)
Linear Schedule (21.0)
Exponential Schedule (20.9)
Cubic Schedule (Ours, 20.7)
Dense Baseline (19.8)

Figure 8: Comparison of different pruning schedules
showing sparsity progression, performance impact, and
parameter adaptation dynamics.

data-dependent processing.
The parameter distribution also reveals interest-

ing patterns across attention heads within each
layer. We find that different heads specialize in
capturing different dependency ranges, with some
heads showing near-zero pruning while others are
pruned more aggressively. This supports the hy-
pothesis that Mamba’s selective attention mecha-
nism creates specialization across different compo-
nents, with our gradient-aware pruning preserving
this functional diversity.

Figure 14 extends our robustness analysis by
examining how different levels of sparsity affect
Mamba’s resilience to various input perturbations.
The figure shows accuracy retention (as a percent-
age of clean performance) across five perturbation
types at sparsity levels ranging from 0% (dense) to
80%.

Our pruned models demonstrate superior robust-
ness to the dense baseline at moderate sparsity lev-
els (30-50%), with a peak improvement of 2.8% at
50% sparsity. This unexpected enhancement can

0.0 0.2 0.4 0.6 0.8
Sparsity Level

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n
(%

)
Higher Sensitivity

Lower Sensitivity

Sensitivity of Different Mamba Components to Pruning
State-Space Parameters
Linear Projections
Layer Normalization
Target Sparsity (50%)

Figure 9: Component-wise sensitivity analysis showing
performance impact and recovery dynamics for different
component types.

be attributed to the regularizing effect of pruning,
which reduces the model’s tendency to overfit to
specific input patterns. The improvement is most
pronounced for synonym substitutions and word
insertions (3.5-4.0% gain), suggesting that pruning
helps the model focus on semantic understanding
rather than exact token matching.

As sparsity increases beyond 60%, robustness
advantages diminish and eventually reverse, with
dramatic drops at extreme sparsity (>75%). This
indicates a "sweet spot" around 50% sparsity where
the regularization benefits of pruning outweigh the
capacity reduction. The robustness curves also
reveal that different perturbation types exhibit dif-
ferent sensitivity patterns: character-level perturba-
tions show earlier degradation as sparsity increases
compared to word-level perturbations, suggesting
that character-level processing requires more model
capacity.

Interestingly, models pruned with our gradient-
aware method maintain significantly better robust-
ness compared to magnitude-pruned models at all

11127

SSM
Parameters

Linear
Projections

Embeddings Layer
Norm

Output
Head

0

20

40

60

80

100

Sp
ar

sit
y

Le
ve

l (
%

)

70% 70% 70% 70% 70%

30%

85%

60%

10%

75%

A: Component-Specific Sparsity
Uniform
Optimized

Perplexity Accuracy Throughput Memory
0.90

0.95

1.00

1.05

1.10

1.15

Re
la

tiv
e

Pe
rfo

rm
an

ce

1.00 1.00 1.00 1.00

0.96

1.04

1.02

0.98

 Better Better Better Worse

B: Performance Comparison
Uniform
Optimized

SSM

30.0%

Linear

40.0%

Embed
20.0%

LN

1.0%

Output

9.0%

60.0% 15.0%

20.0%
3.0%2.0%

C: Parameter Distribution

Original
After Pruning

Figure 10: Optimized non-uniform pruning allocation showing component-specific sparsity levels and performance
comparisons.

0.0 0.2 0.4 0.6 0.8
Sparsity Level

15

20

25

30

35

40

45

50

W
ik

iTe
xt

-1
03

 P
er

pl
ex

ity

50% Sparsity

Significant
Degradation

WikiText-103 Perplexity vs. Sparsity Level
Mamba-Small (130M params)
Mamba-Base (370M params)
Mamba-Large (1.4B params)
Our Pruning Method
Magnitude Pruning

Figure 11: Performance analysis with increasing spar-
sity: (A) perplexity vs. sparsity, (B) parameter impor-
tance distribution, and (C) critical sparsity threshold
identification.

sparsity levels, with gaps widening at higher spar-
sity. This confirms that our pruning approach better
preserves the model’s generalization capabilities
by retaining parameters critical for capturing un-
derlying patterns rather than memorizing specific
inputs.

E Additional Analysis and
Implementation Details

E.1 Stability Threshold and Sensitivity

The stability threshold ϵ in our stability score cal-
culation (Section 3.1.4) serves as a safety margin
to ensure eigenvalues remain within the unit cir-
cle. Through empirical testing across different
Mamba models, we find that values in the range
ϵ ∈ [0.005, 0.02] work well, with ϵ = 0.01 provid-
ing a good balance between stability enforcement
and pruning flexibility.

To assess the impact of this threshold, we con-
ducted experiments varying ϵ from 0.001 to 0.05
on the WikiText-103 dataset. As shown in Fig-
ure 15, performance remains relatively stable for

24 48 168 336
Prediction Horizon (hours)

0.32

0.34

0.36

0.38

0.40

0.42

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Longer horizons highlight
the advantage of our pruning

Transformer performs worse
across all horizons

Time-Series Forecasting Performance on ETT Dataset
Mamba-Small (Dense)
Mamba-Small (50% Magnitude Pruning)
Mamba-Small (50% Our Pruning)
Mamba-Base (Dense)
Mamba-Base (50% Magnitude Pruning)
Mamba-Base (50% Our Pruning)
Transformer

Figure 12: Time-series forecasting results showing MSE
across horizons and performance retention at different
sparsity levels.

ϵ ∈ [0.005, 0.02], with degradation at extremely
low values (insufficient stability guarantees) or
high values (overly restrictive pruning). The correc-
tive adjustments from our stability check typically
affect only a small portion of parameters (1-3% on
average), primarily in the Alog projections, acting
as a safeguard rather than fundamentally altering
the pruning mask selection.

E.2 Reducing Computational Overhead

The computational cost of gradient-aware pruning
comes from two main factors: (1) gradient calcu-
lations for importance scores and (2) the iterative
nature of the pruning process. To address these con-
cerns, we explored several optimization strategies:

Rather than computing gradients for every iter-
ation, we found that accumulating gradients over
5-10 batches before updating importance scores
yields similar results while reducing computational
overhead by 3-5x for this component. Instead
of pruning at every step of the schedule, apply-
ing pruning every k iterations (where k scales

11128

Table 11: Performance metrics for Mamba-Base at 50% sparsity across diverse datasets and tasks.

Dataset Metric Dense Magnitude Ours
Model Pruning (50% Sparse)

Language
WikiText-103 Perplexity 19.8 21.5 20.7
PG-19 Perplexity 26.3 28.4 27.2
The Pile Perplexity 15.6 17.2 16.3

Long-Range
ListOps Accuracy 62.5% 60.4% 61.8%
Text Classification Accuracy 93.2% 91.8% 92.6%
Path-X Accuracy 91.8% 90.1% 91.2%

Time-Series
ETT-h1 (48h) MSE 0.329 0.346 0.338
ETT-m1 (96h) MSE 0.372 0.395 0.381

Audio
Speech Commands Accuracy 98.2% 97.0% 97.8%
LibriSpeech (clean) WER 3.2% 3.9% 3.5%
GTZAN Accuracy 87.5% 84.8% 86.7%

Vision
CIFAR-100 Accuracy 84.1% 82.3% 83.5%
ImageNet (subset) Accuracy 76.8% 74.2% 75.9%
ADE20K mIoU 45.3% 42.7% 44.5%

0 5 10 15 20 25
Layer

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ar

am
et

er
s R

et
ai

ne
d

Earlier layers retain
more parameters

SSM parameters preferentially
retained across all layers

Distribution of Remaining Parameters After 50% Global Pruning
Overall Target (50% Retained)
Average Parameters Retained
SSM Parameters (Retained)
Linear Projections (Retained)

Figure 13: Parameter distribution post-pruning for
Mamba-Base at 50% sparsity, showing higher reten-
tion in early layers and SSM parameters.

with batch size) maintains comparable performance
while significantly reducing training time. For
our experiments, pruning every 50-100 iterations
worked well for large batch sizes. We also experi-
mented with more aggressive cubic schedules that
complete pruning in 60% of training rather than
75%, finding a modest 0.5-1.0% performance drop
but a 20% reduction in additional training time.

With these optimizations, we reduced the train-
ing overhead from the reported 2.5x to approxi-
mately 1.7x while maintaining performance within

Dense Random Pruned
(50%)

Magnitude Pruned
(50%)

Our Pruning
(50%)

Model

0

20

40

60

80

100

Te
xt

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Avg. Drop:
19.8%

Avg. Drop:
25.6%

Avg. Drop:
21.6%

Avg. Drop:
16.6%

Our pruned model shows
improved robustness

Robustness to Input Perturbations
Clean
Word Swap
Word Insert

Figure 14: Robustness to perturbations across sparsity
levels for various input perturbation types.

0.5% of our primary results. For deployment sce-
narios where training efficiency is paramount, these
trade-offs provide practical alternatives.

E.3 Component Sensitivity Analysis

Our component-wise analysis revealed intriguing
differences in pruning sensitivity across Mamba’s
components. While Alog projections showed the
highest sensitivity, C projections were notably
more resilient to pruning.

We hypothesize that C projections are less sen-
sitive because they serve primarily as output trans-

11129

10 3 10 2 10 1

 Value

0

50

100

150

200

250

300

350

400

Pe
rp

le
xi

ty

Too low
(unstable)

Too high
(restrictive)Optimal

A: Perplexity vs Value

10 3 10 2 10 1

 Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Af
fe

ct
ed

 P
ar

am
et

er
s (

%
)

B: Parameters Requiring Correction

1.0 0.5 0.0 0.5 1.0
Real Part

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

in
ar

y
Pa

rt

C: Eigenvalue Distributions

 = 0.01
 = 0.05

Original
 = 0.01
 = 0.05

Figure 15: Impact of stability threshold ϵ on model performance, parameter correction rates, and eigenvalue
distributions.

1 2 3 4 5 6 7 8
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Pruning Threshold

Pruned

Retained

A: Importance Score Distribution by Layer

0.0 0.2 0.4 0.6 0.8 1.0
Importance Score

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

B: SSM vs. Linear Projection Parameters
SSM Parameters
Linear Projections
Pruning Threshold

Figure 16: Distribution of parameter importance scores across model components and their evolution during training.

formations from the state space to the output space,
without directly affecting the recurrent dynam-
ics. In contrast, Alog projections directly influence
eigenvalues and thus the temporal dependencies
the model can capture. B projections, which map
inputs to the state space, show moderate sensitiv-
ity as they affect what information enters the state
space but not how it evolves.

Quantitatively, we observe that C projections
can tolerate up to 80% sparsity with only a 2.3%
performance drop, while Alog projections show a
12.7% drop at the same sparsity level. This sug-
gests that different components could be pruned at
different rates for optimal efficiency-performance
trade-offs.

E.4 Adaptive Gating and Pruning

The cross-architecture experiments (Appendix E.7)
demonstrate that models with adaptive gating mech-
anisms (Mamba and GSS) show better pruning tol-
erance than fixed-dynamics SSMs. Our analysis
confirms that the adaptive gating parameters them-

selves are indeed critical for maintaining perfor-
mance under pruning.

When we specifically analyzed the pruning
masks across different model components, we
found that the adaptive gating parameters (specifi-
cally the ∆ projection in Mamba) consistently re-
tained more parameters (35-40% higher density)
than other components at the same global sparsity
level. This pattern was consistent across all datasets
and sparsity levels, suggesting the fundamental im-
portance of these parameters.

Furthermore, when we artificially constrained
the pruning to maintain equal sparsity across all
component types (rather than using global pruning),
performance degraded by 4.7% on average. This
provides strong evidence that the adaptive gating
mechanism is indeed the most pruning-sensitive
component, requiring more parameters to main-
tain selective information flow—a key characteris-
tic that distinguishes Mamba from fixed-dynamics
predecessors like S4 and S5.

11130

E.5 Comparison with State-of-the-Art
Pruning Methods

Detailed results of our comparative analysis with
state-of-the-art pruning methods are summarized in
Table 10 in the main text (Section 5.3). Figure 17
provides a visual representation of these results
showing perplexity, inference speed, and memory
usage across different techniques.

E.6 Understanding Robustness Improvements

The improved robustness of pruned Mamba models
to input perturbations is an intriguing finding that
warranted deeper investigation. To understand this
phenomenon, we conducted a series of experiments
analyzing the impact of pruning on model general-
ization, noise sensitivity, and gating patterns.

E.6.1 Regularization Effects
We measured the difference between training and
validation performance across sparsity levels, find-
ing that at 50% sparsity, the generalization gap
(difference between train and validation perplex-
ity) decreases by 14.3% compared to the dense
model. This confirms that pruning acts as a form of
regularization, similar to weight decay or dropout,
but with the added benefit of permanent parameter
reduction.

Furthermore, we analyzed the effective model ca-
pacity using intrinsic dimension measurements (Li
et al., 2018a), finding that pruned models exhibit re-
duced effective dimensionality despite maintaining
performance. This suggests that pruning removes
redundant dimensions that might amplify noise or
overfit to training data.

E.6.2 Selective Gating Analysis
To validate our hypothesis that pruning enhances
Mamba’s selective gating mechanism, we analyzed
pre- and post-pruning gating patterns by visualizing
the distribution of gate activations across 1,000 in-
put examples. Figure 18B shows that pruned mod-
els exhibit more consistent gating patterns when
presented with perturbed inputs.

Specifically, the average standard deviation of
gating values across perturbations decreased by
37% in pruned models. When analyzing the
Kullback-Leibler divergence between gate activa-
tion distributions for clean versus perturbed inputs,
pruned models showed 41% lower divergence com-
pared to dense models. This provides strong ev-
idence that pruning enhances the stability of the
selective mechanism.

We also examined which parameters are prefer-
entially retained during pruning, finding that gates
controlling long-term information flow had higher
average importance scores (and thus higher reten-
tion rates) than those managing short-term depen-
dencies. This suggests that pruning biases the
model toward stable, longer-term dependencies that
are more robust to local perturbations.

E.6.3 Loss Landscape Analysis

To further understand the improved robustness, we
visualized the loss landscape around converged
model weights using the method of (Li et al.,
2018b). As shown in Figure 18C, pruned models
consistently exhibit wider and smoother minima
compared to dense models. Prior work has estab-
lished that wider optima correlate with better gen-
eralization and robustness to input perturbations
(Keskar et al., 2017).

The loss barriers between clean and perturbed in-
puts were 26% lower in pruned models, indicating
smoother transitions between similar inputs. This
likely contributes to the improved perturbation ro-
bustness observed in our experiments.

These findings collectively explain why pruned
Mamba models exhibit enhanced robustness: prun-
ing acts as an effective regularizer, creates wider
optima, and stabilizes the selective gating mecha-
nism, allowing the model to focus on stable, gen-
eralizable patterns rather than memorizing specific
input sequences.

E.7 Comprehensive Cross-Architecture
Comparison

To provide a more comprehensive cross-
architecture comparison, we extended our
evaluation to include recent efficient Transformer
variants and additional state-space models. Fig-
ure 19 shows comparative performance across
architecture families at different sparsity levels.

E.7.1 Additional Architecture Families

Beyond the architectures mentioned earlier, we
evaluated:

• Efficient Transformers: Performer (Choro-
manski et al., 2021), Linformer (Wang et al.,
2020b), BigBird (Zaheer et al., 2020), and
Reformer (Kitaev et al., 2020), which use var-
ious approximation techniques to reduce the
quadratic complexity of self-attention.

11131

Mag
nit

ud
e

Mov
em

en
t

Lot
ter

y

Tic
ket SN

IP
GraS

P

Str
uct

ure
d

Ours
20.0

20.5

21.0

21.5

22.0

22.5

23.0

Pe
rp

le
xi

ty
 (l

ow
er

 is
 b

et
te

r)

21.5

22.1

21.3

22.5

21.8
21.6

20.7

A: WikiText-103 Perplexity

Mag
nit

ud
e

Mov
em

en
t

Lot
ter

y

Tic
ket SN

IP
GraS

P

Str
uct

ure
d

Ours
0.0

0.2

0.4

0.6

0.8

In
fe

re
nc

e
Sp

ee
d

(to
ke

ns
/s

ec
)

B: Relative Inference Speed

Mag
nit

ud
e

Mov
em

en
t

Lot
ter

y

Tic
ket SN

IP
GraS

P

Str
uct

ure
d

Ours
0

1

2

3

4

M
em

or
y

Us
ag

e
(G

B)

C: Memory Usage

Figure 17: Comparison of pruning methods for Mamba-Base at 50% sparsity showing perplexity, inference speed,
and memory usage.

0 25 50 75 100 125 150 175 200
Sequence Position

0

2

4

6

8

10

Ne
ur

on
 In

de
x

Dense: Noisy Pruned: Focused

A: Activation Patterns

0.0 0.2 0.4 0.6 0.8 1.0
Gate Activation Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

Shift

Shift

B: Gating Value Distributions
Dense (Clean)
Dense (Perturbed)
Pruned (Clean)
Pruned (Perturbed)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter Direction 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Pa
ra

m
et

er
 D

ire
ct

io
n

2

Narrow Basin

Wide Basin

C: Loss Landscape
Dense Minimum
Pruned Minimum

Figure 18: Analysis of robustness improvements showing activation patterns, gating behavior, and loss landscape
changes after pruning.

• Hybrid Architectures: MambaFormer
(Tworkowski et al., 2024), Luna (Ma et al.,
2024), and Sequencer (Tay et al., 2022b),
which combine SSM and attention mecha-
nisms.

• Alternative SSMs: Liquid S4 (Hasani et al.,
2022), LSSL (Gu et al., 2020b), and S4ND
(Nguyen et al., 2022) for multi-dimensional
data.

E.7.2 Key Findings
The extended comparison revealed several impor-
tant insights:

• Pruning Tolerance: Efficient Transformers
show improved pruning tolerance compared to
vanilla Transformers, but still underperform
SSMs. At 50% sparsity, Performer retains
86.7% of dense performance vs. 91.4% for
Mamba and 82.5% for vanilla Transformer.

• Architecture-Specific Patterns: Linear at-
tention variants (Performer, Linformer) ex-
hibit better pruning tolerance than models

using sparse attention patterns (BigBird, Re-
former). This suggests that models with more
distributed computation better accommodate
parameter removal.

• Hybrid Models: MambaFormer and Luna
show interesting hybrid behaviors, with SSM
components exhibiting Mamba-like pruning
tolerance while attention components show
Transformer-like sensitivity. Overall, these
models retain 88.2% performance at 50% spar-
sity.

• Efficiency Frontier: When comparing
FLOPs vs. accuracy (Figure 19B), pruned
Mamba models consistently define the Pareto
frontier, with 50% pruned Mamba outperform-
ing all efficient Transformer variants at equiv-
alent computation budgets.

E.7.3 Cross-Architecture Transfer
We performed pruning transfer experiments, where
importance scores computed on one architecture
were transferred to another. The performance re-
tention followed clear architectural boundaries:

11132

0 20 40 60 80
Sparsity (%)

60

70

80

90

100

Pe
rfo

rm
an

ce
 R

et
en

tio
n

(%
)

A: Performance Retention vs. Sparsity

Mamba
Other SSMs
Hybrid Models
Efficient Transformers
Vanilla Transformer

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Relative FLOPs

88

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

Mamba
(50% Sparse)

Mamba
(Dense)

Performer

Linformer

BigBird

Reformer

Transformer
(Dense)

B: FLOPs vs. Accuracy

Mamba
Efficient Transformers
Vanilla Transformer

SSM
Parameters

Linear
Projections

Embedding
Layer

Output
Head

0

2

4

6

8

10

12

14

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n
(%

)

C: Component-Wise Sensitivity
Mamba
Other SSMs
Efficient Transformers
Vanilla Transformer

Figure 19: Extended architecture comparison showing performance retention across model families and their
efficiency characteristics.

Algorithm 1 Stability-Aware Pruning for Mamba
Models

1: Input: Mamba model θ, target sparsity sf ,
gradient exponent α

2: Output: Pruned model θ′ with sparsity sf
3: Initialize pruning mask M ← 1 (all ones)
4: for pruning step t = 1 to T do
5: Compute current sparsity target st using cu-

bic schedule
6: Forward pass with current model θ ⊙M
7: Backward pass to compute gradients∇θL
8: Compute importance scores S(wij) =

|wij | · |∇wijL|α
9: Sort parameters by importance scores

10: Create new mask M ′ by zeroing lowest (st ·
100)% of parameters

11: Check eigenvalue stability of state matrices
with new mask

12: if stability violation detected then
13: Adjust mask M ′ to preserve stability-

critical parameters
14: end if
15: Update mask M ←M ′

16: Fine-tune model θ ⊙M for K steps
17: end for
18: return θ′ = θ ⊙M

within-family transfers (e.g., Mamba to S4) re-
tained 75-85% performance, cross-family trans-
fers between similar paradigms (e.g., Mamba to
Luna) retained 60-70%, and transfers across fun-
damentally different architectures (e.g., Mamba to
Transformer) retained only 30-45%.

This finding reinforces that pruning strategies
are architecture-dependent, with importance pat-
terns reflecting fundamental architectural proper-
ties rather than dataset-specific characteristics. It

also suggests potential knowledge transfer between
related architectures, which could accelerate prun-
ing for new architectural variants.

E.8 Adaptation of Pruning Components to
Mamba’s Architecture

While our pruning framework builds upon estab-
lished techniques, each component has been specif-
ically adapted to address Mamba’s unique architec-
tural properties. This section details these adapta-
tions and their theoretical motivations.

E.8.1 Gradient-Aware Pruning for State
Selection

The gradient-aware pruning technique we employ
is fundamentally different from its application in
feed-forward networks like SNIP (Lee et al., 2018).
In Mamba, the gradient computation must account
for the recurrent computation path through the state
space, which creates complex interdependencies
between parameters.

Our approach extends SNIP by incorporating re-
current gradients through multiple time steps, cap-
turing parameter importance across the temporal
dimension. Specifically, for recurrent components,
we compute importance scores by:

SSSM(wij) = |wij | ·
∣∣∣∣∣

T∑

t=1

∂L
∂wij (t)

∣∣∣∣∣

α

(8)

where the gradient is accumulated across T time
steps. This modification is crucial for Mamba, as
it captures how parameters influence the model
across the entire sequence rather than at isolated
points.

For the selective gating mechanism in Mamba,
we found that conventional importance scoring
underestimated the impact of gating parameters

11133

that control state selection. We therefore intro-
duced a correction factor that accounts for the data-
dependent nature of these parameters:

Sgate(wij) = |wij | ·
∣∣∣∣
∂L
∂wij

∣∣∣∣
α

· ϕ(D(wij)) (9)

where D(wij) measures the diversity of gate ac-
tivations across samples, and ϕ is a scaling function
that increases importance for parameters that en-
able diverse selective behaviors. Empirically, this
modification improved performance by up to 0.7
perplexity points compared to the original gradient-
based importance.

E.8.2 Cubic Scheduling and Recurrent
Dynamics

The cubic pruning schedule, while inspired by pre-
vious work (Zhu and Gupta, 2017), was specifically
modified to accommodate Mamba’s recurrent dy-
namics. Standard pruning schedules can destabilize
recurrent models due to their sensitivity to parame-
ter changes that affect eigenvalues.

Our cubic schedule incorporates a stabilization
phase between pruning steps, where the model is
fine-tuned with a specialized stability-focused ob-
jective:

Lstable = Ltask + λ ·
∑

i

max(0, |λi| − (1− ϵ))2

(10)
where λi are the eigenvalues of the state transi-

tion matrices. This additional term penalizes un-
stable eigenvalues, allowing the model to adapt its
recurrent dynamics between pruning steps. The
stability-focused fine-tuning period increases with
pruning magnitude, with larger pruning steps re-
quiring longer stabilization periods.

This adaptation is essential for Mamba—when
we attempted to use standard cubic scheduling with-
out the stability component, performance degraded
by up to 3.2 perplexity points due to destabilized
recurrent dynamics. Our modified schedule main-
tains stable eigenvalues throughout the pruning pro-
cess, as visualized in Figure 20.

E.8.3 Global Pruning for Selective
Mechanism Preservation

Our global pruning strategy is specifically designed
to preserve Mamba’s selective information flow
mechanism. Unlike conventional global pruning,
which treats all parameters equally, our approach

incorporates architectural inductive biases about
Mamba’s component interactions.

Specifically, we extended global pruning with
what we term a "component interaction graph," a
conceptual model of how different parameters af-
fect each other through the forward computation
path. Parameters with high centrality in this inter-
action graph receive adjusted importance scores:

Sglobal(wij) = S(wij) · (1 + β · C(wij)) (11)

where C(wij) is the centrality of parameter wij

in the interaction graph, and β is a scaling factor.
This adjustment ensures that parameters critical
to multiple computational paths are preferentially
retained, preserving Mamba’s core selective mech-
anism.

This Mamba-specific adaptation improved per-
formance by 0.8 perplexity points compared to stan-
dard global pruning and 1.4 points compared to
layer-wise pruning. The improvement was particu-
larly significant for long-range understanding tasks
(2.1% higher accuracy on Path-X), demonstrating
that this adaptation specifically preserves Mamba’s
ability to model long-range dependencies.

E.9 Theoretical Foundations of Eigenvalue
Stability in Pruned SSMs

The eigenvalue stability preservation in our prun-
ing method builds upon established matrix pertur-
bation theory, but extends it to address the unique
challenges posed by Mamba’s selective state-space
mechanism. This section provides deeper theoret-
ical insights into how pruning affects stability in
data-dependent state-space models.

E.9.1 Selective SSM Stability Theory
In standard SSMs, the state transition is governed
by a fixed matrix A, and stability is ensured by
constraining ||λ(A)|| < 1. However, Mamba in-
troduces selective dynamics where the effective
transition matrix becomes input-dependent:

Aeff(x) = D∆(x)(e
Alog) (12)

where D∆(x) is a diagonal matrix of input-
dependent timescales. This introduces a fundamen-
tal challenge: stability must be preserved across all
possible inputs, not just for a fixed matrix.

We model the effect of pruning as a perturba-
tion to both the base transition parameters and the
selective mechanism:

11134

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real Part

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y
Pa

rt

A: Standard Schedule
(Unstable)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real Part

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y
Pa

rt

B: Our Stable Schedule

0 20 40 60 80 100
Pruning Progress (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ax

 E
ig

en
va

lu
e

M
ag

ni
tu

de

Stability Threshold

Unstable

Stable

C: Stability Metric Over Time
Standard Schedule
Our Stable Schedule

Figure 20: Eigenvalue trajectories during pruning with and without stability constraints, showing the effectiveness
of our stability-preserving approach.

Ãeff(x) = D∆̃(x)(e
Ãlog) (13)

where the tilde represents pruned parameters.
The stability condition becomes:

max
x∈X
||λ(Ãeff(x))|| < 1 (14)

To develop theoretical guarantees, we derived a
novel bound on the worst-case eigenvalue perturba-
tion for selective SSMs:

Theorem 1. Given a Mamba model with selective
state transition Aeff(x) and a pruning mask M with
sparsity s, the maximum eigenvalue perturbation
is bounded by:

max
x∈X

∥∥∥λ
(
Aeff(x)

)∥∥∥ ≤ C · s · κ(V) ·
(

γA · ∥Alog∥F + γ∆ · ∥∆∥F
)

(15)
where C is a constant, κ(V) is the condition

number of the eigenvector matrix, and γA, γ∆ are
sensitivity coefficients for the base and selective
components.

This theorem, proven using a combination of
matrix perturbation theory and input-dependent
sensitivity analysis, provides a tighter bound than
standard perturbation results by accounting for the
interaction between selective dynamics and state
transitions.

E.9.2 Selective Sensitivity Analysis
We further developed a framework to analyze
component-specific sensitivity to pruning, based
on the selective mechanism’s influence. The sensi-
tivity coefficient γ∆ for the selective mechanism is
given by:

γ∆ = max
x∈X

∣∣∣∣
∂||λ(Aeff(x))||

∂∆(x)

∣∣∣∣ (16)

Through empirical measurement across multiple
datasets, we found that γ∆ is typically 2-3× larger
than γA, explaining why the selective mechanism
parameters are more sensitive to pruning. This
finding directed our stability preservation algorithm
to focus more on maintaining stability in selective
components than in base state transitions.

E.9.3 Optimality of Stability-Aware Pruning
We established a theoretical connection between
our stability-aware pruning and optimal sparsity
allocation by formulating pruning as a constrained
optimization problem:

min
M
L(M ⊙ θ) s.t. ∥M∥0 ≤ (1− s) · |θ|,

max
x∈X

∥∥∥λ
(
AM

eff(x)
)∥∥∥ < 1− ϵ

(17)
Using Lagrangian relaxation and approxima-

tion theory, we proved that our stability-aware
pruning approach achieves a solution within a
bounded approximation factor of the optimal
stability-constrained pruning allocation.

These theoretical foundations extend beyond
standard matrix perturbation theory by specifically
addressing the challenges of selective state-space
models, providing principled justification for our
stability preservation mechanisms and explaining
the empirical success of our approach in maintain-
ing Mamba’s performance under high sparsity.

F Extended Related Work

This section expands the Related Work. Early
sequence models used RNNs (Hochreiter and

11135

0.2 0.4 0.6 0.8 1.0
Sensitivity Coefficient ()

 (Selective)

A_log

B

C

Linear
Projections

A: Sensitivity by Component Type

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity Coefficient ()

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Correlation: 0.90

B: Sensitivity vs. Importance Score

 (Selective)
A_log
B
C
Linear Projections

0 20 40 60 80
Sparsity (%)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Se
ns

iti
vi

ty
 C

oe
ffi

cie
nt

 (
)

50
%

 S
pa

rs
ity

C: Sensitivity vs. Sparsity Level
 (Selective)

A_log
B
C
Linear Projections

Figure 21: Sensitivity coefficients across model components and their correlation with importance scores and
sparsity levels.

Schmidhuber, 1997), with LSTMs (Hochreiter
and Schmidhuber, 1997) and GRUs (Cho et al.,
2014) addressing vanishing gradients. Transform-
ers (Vaswani et al., 2017) surpassed RNNs but face
quadratic complexity (Tay et al., 2022a). Alterna-
tives like RetNet (Sun et al., 2023), RWKV (Peng
et al., 2023), and hybrid models (Dao et al., 2024)
balance efficiency and performance. SSMs, includ-
ing S4 (Gu et al., 2021), DSS (Gupta et al., 2022),
and Mamba (Gu and Dao, 2023), offer linear-time
complexity, with Mamba’s selective mechanism
excelling on dense data (Merity et al., 2016; Tay
et al., 2020).

Pruning has been applied to CNNs (Li et al.,
2016) and Transformers (Michel et al., 2019), but
SSM-specific pruning is underexplored due to sta-
bility needs (Bellec et al., 2018). Our work ad-
dresses this gap.

G Comparison with Alternative
Compression Methods

To provide a comprehensive evaluation of our un-
structured pruning framework for Mamba state-
space models, we compare it with two promi-
nent alternative compression techniques: struc-
tured pruning and quantization. These methods
are widely used to reduce model size and com-
putational complexity, particularly for resource-
constrained environments. This section details the
experimental setup, results, and theoretical insights
from these comparisons, complementing the state-
of-the-art pruning comparisons in Appendix E.5.

G.1 Experimental Setup
We extend our evaluation on the Mamba-Base
model (370M parameters) across three benchmark
tasks: language modeling (WikiText-103 (Merity
et al., 2016)), long-range dependency modeling

(Long Range Arena, LRA (Tay et al., 2020)), and
time-series forecasting (ETT (Zhou et al., 2021)).
The baseline is our unstructured pruning framework
(50% and 70% sparsity), as described in Section
3.1. We compare it with:

• Structured Pruning: We implement channel-
wise pruning, which removes entire channels
or neurons from Mamba’s state-space and lin-
ear projection layers, similar to approaches
used for CNNs (Li et al., 2016) and Trans-
formers (Michel et al., 2019). Pruning targets
50% and 70% parameter reduction, with im-
portance scores based on the L1-norm of chan-
nel weights. Fine-tuning follows the same pro-
tocol as our unstructured pruning (5,000 steps
with AdamW (Loshchilov and Hutter, 2017)).

• Quantization: We apply post-training quanti-
zation (PTQ) to reduce Mamba’s weights to
8-bit integers using symmetric linear quanti-
zation (Jacob et al., 2018). For a fair com-
parison, we also evaluate a hybrid approach
combining 50% unstructured pruning with 8-
bit quantization. Quantization is applied to
all weights except layer normalization param-
eters to maintain numerical stability.

Metrics: We report performance metrics (per-
plexity for WikiText-103, average accuracy for
LRA, MSE for ETT), inference time (ms/token),
memory usage (relative to dense model), and
FLOPs (relative to dense model). Experiments are
conducted on NVIDIA A100 GPUs (40GB) using
PyTorch 2.0 with sparse tensor support for pruning
and TorchScript for quantization. Hyperparameters
(e.g., learning rate, fine-tuning steps) align with
those in Appendix B.1.

11136

G.2 Results

Table 12 summarizes the comparison across the
three tasks at 50% and 70% parameter reduction
(or equivalent for quantization).

G.2.1 Unstructured Pruning (Ours)

Our unstructured pruning achieves the best per-
formance across all tasks at both 50% and 70%
sparsity, with perplexity increases of 4.5% and
9.6% on WikiText-103, accuracy drops of 0.8%
and 1.8% on LRA, and MSE increases of 2.4% and
6.0% on ETT. Inference time decreases by 43%
(50% sparsity) and 53% (70% sparsity), with mem-
ory usage reduced to 54% and 36% of the dense
model, respectively. The gradient-aware approach
and eigenvalue stability preservation ensure min-
imal disruption to Mamba’s selective mechanism
and recurrent dynamics.

G.2.2 Structured Pruning

Structured pruning underperforms our approach,
with larger performance degradation: 11.6% per-
plexity increase at 50% and 20.2% at 70% on
WikiText-103, 2.3% and 4.7% accuracy drops on
LRA, and 8.1% and 13.7% MSE increases on ETT.
While structured pruning slightly improves infer-
ence time (46% reduction at 50%, 55% at 70%) due
to regular sparsity patterns, it disrupts Mamba’s
state-space dynamics by removing entire channels,
particularly in the selective mechanism (∆, Alog).
This leads to instability in long-range tasks (e.g.,
3.1% drop on Path-X at 50% sparsity vs. 0.6% for
ours), as confirmed by eigenvalue analysis show-
ing 0.12 maximum perturbation vs. 0.05 for our
method (Appendix E.9).

G.2.3 Quantization

8-bit quantization maintains the full parameter
count but reduces memory usage by 40% through
lower bit-precision. However, it results in mod-
erate performance degradation: 7.6% perplexity
increase on WikiText-103, 1.6% accuracy drop on
LRA, and 4.8% MSE increase on ETT. Inference
time improves modestly (34% reduction) due to
optimized integer operations, but benefits are lim-
ited without hardware-specific acceleration (e.g.,
INT8 support). Quantization affects numerical pre-
cision in Mamba’s state-space parameters, leading
to cumulative errors in recurrent computations, par-
ticularly for long sequences (e.g., 2.4% accuracy
drop on Path-X vs. 0.6% for our pruning).

G.2.4 Hybrid Pruning + Quantization
Combining our 50% unstructured pruning with 8-
bit quantization yields synergistic benefits, achiev-
ing performance close to our pruning alone (5.6%
perplexity increase, 1.0% accuracy drop, 3.3%
MSE increase) while further reducing memory us-
age (50% at 50% sparsity, 32% at 70%) and infer-
ence time (48% and 57% reductions). The hybrid
approach mitigates quantization’s precision loss
by pruning less critical parameters first, preserv-
ing key state-space dynamics. At 70% sparsity,
performance degrades slightly more (11.1% per-
plexity increase), suggesting diminishing returns at
extreme compression levels.

G.3 Theoretical Considerations
Structured Pruning: Structured pruning removes
entire structural units (e.g., channels), which sim-
plifies hardware acceleration but risks disrupting
Mamba’s recurrent dynamics. The state-space ma-
trices (A, B, C) are highly interdependent, and
removing entire dimensions alters eigenvalue prop-
erties, as shown in Appendix E.9. Our unstructured
pruning, by contrast, allows fine-grained parame-
ter removal, preserving stability through targeted
eigenvalue checks (Equation 3).

Quantization: Quantization reduces numerical
precision, which can destabilize Mamba’s recur-
rent computations due to error accumulation in
state transitions. The selective mechanism (∆)
is particularly sensitive to quantization noise, as
small changes in timescale parameters can signif-
icantly alter information flow. Our pruning ap-
proach avoids this by maintaining full precision
for retained parameters, with sparsity providing
comparable memory savings.

Hybrid Approach: Combining pruning and
quantization leverages the strengths of both: prun-
ing removes redundant parameters to maintain per-
formance, while quantization reduces the memory
footprint of remaining weights. The hybrid ap-
proach aligns with findings in Transformer com-
pression (Han et al., 2016), but our stability-aware
pruning ensures Mamba’s recurrent dynamics re-
main intact, unlike Transformer-focused hybrids
that ignore eigenvalue constraints.

G.4 Practical Implications
• Unstructured Pruning: Best for

performance-critical applications, offer-
ing the highest accuracy retention and robust
generalization (Appendix E.6). However, it

11137

Table 12: Comparison of unstructured pruning, structured pruning, quantization, and hybrid pruning+quantization
for Mamba-Base across tasks at 50% and 70% parameter reduction (or equivalent for quantization).

Method Params WikiText LRA ETT Inference Memory
(M) Perplexity Accuracy (%) MSE (ms/token) (Rel.)

50% Reduction
Dense 370 19.8 83.1 0.335 1.45 1.00x
Unstructured (Ours) 185 20.7 82.3 0.343 0.82 0.54x
Structured 185 22.1 80.8 0.362 0.78 0.52x
Quantization (8-bit) 370* 21.3 81.5 0.351 0.95 0.60x
Hybrid (Ours + 8-bit) 185* 20.9 82.1 0.346 0.76 0.50x

70% Reduction
Unstructured (Ours) 111 21.7 81.3 0.355 0.68 0.36x
Structured 111 23.8 79.2 0.381 0.65 0.34x
Quantization (8-bit) 370* 21.3 81.5 0.351 0.95 0.60x
Hybrid (Ours + 8-bit) 111* 22.0 81.0 0.359 0.62 0.32x
*Quantized models maintain parameter count but reduce bit-precision, with effective memory reduction.

requires sparse tensor support, which may not
be fully optimized on all hardware (Hoefler
et al., 2021).

• Structured Pruning: Suitable for hardware
with strong support for regular sparsity (e.g.,
TPUs), but its performance degradation limits
its use in tasks requiring long-range dependen-
cies (e.g., LRA Path-X).

• Quantization: Ideal for memory-constrained
devices with INT8 acceleration, but its stan-
dalone performance is inferior to pruning. It
is most effective in hybrid settings.

• Hybrid Approach: Offers the best efficiency-
performance trade-off for edge deployment,
achieving near-unstructured pruning perfor-
mance with quantization-level memory sav-
ings. However, it requires careful calibration
to avoid cumulative errors.

11138

