Cache-Efficient Posterior Sampling for Reinforcement Learning with
LLM-Derived Priors Across Discrete and Continuous Domains

Ibne Farabi Shihab*™! and Sanjeda Akter*! and Anuj Sharma?

'Department of Computer Science, Iowa State University
2Department of Civil, Construction & Environmental Engineering, Iowa State University
ishihab@iastate.edu

Abstract

Integrating large language models (LLMs)
as action proposers in reinforcement learn-
ing (RL) boosts performance in text-based
environments but incurs high computational
costs. We introduce a cache-efficient frame-
work for Bayesian RL with LLM-derived ac-
tion suggestions, reducing costs while main-
taining near-optimal performance. Our ap-
proach features a meta-learned adaptive cache,
optimized via meta-learning based on policy
performance, enabling efficient inference in
text-based games (e.g., TextWorld, ALFWorld)
and robotic control tasks (e.g., MuJoCo, Meta-
World). It achieves a 3.8—4.7x reduction in
LLM queries, 4.0-12.0x lower median laten-
cies (85-93ms on consumer hardware), and
retains 96-98% of uncached performance. The-
oretical KL-divergence bounds ensure reliable
cached decisions, validated empirically across
tasks with 90.4-95.6% success rates in text en-
vironments. For offline RL, our CQL-Prior
variant improves performance by 14-29% and
reduces training time by 38-40%. Evalua-
tions across eight diverse tasks demonstrate the
framework’s generalizability and practicality
for resource-constrained settings, making LLM-
guided RL viable for text-based and robotic
applications.

1 Introduction

Reinforcement learning (RL) excels in structured
domains like board games (Silver et al., 2016), strat-
egy games (Vinyals et al., 2019), and robotic con-
trol (Levine, 2018), but struggles with open-ended
tasks due to poor sample efficiency and high com-
putational costs (Dulac-Arnold et al., 2015; Cobbe
etal., 2019). Large language models (LLMs), trans-
formative in natural language processing (NLP) for
tasks like dialogue and reasoning (Brown et al.,
2020), offer a solution by serving as policy priors

“Equal contribution.
TCorresponding author: ishihab@iastate.edu.

or action proposers in RL (Ahn et al., 2022; Huang
et al., 2022a; Ma et al., 2023; Carta et al., 2023;
Yao et al., 2023). However, LLM-guided RL in-
curs high inference costs, as querying LLMs for
every decision is computationally expensive, limit-
ing scalability in NLP applications like text-based
games (Coté et al., 2019) or interactive agents
(Shridhar et al., 2020) on consumer hardware (Hu
et al., 2022; Du et al., 2023).

We propose a cache-efficient posterior sampling
framework, grounded in the Control-as-Inference
paradigm (Levine, 2018), to address these chal-
lenges. Our meta-learned caching mechanism,
optimized via gradient-based meta-learning (Finn
et al., 2017), stores and reuses LLM outputs across
semantically similar states, reducing queries by
3.8—4.7x while retaining 96-98% of full-query
performance. Regularized by KL divergence
(Ghavamzadeh et al., 2015), the cache ensures fi-
delity to optimal policies. We extend the soft actor-
critic algorithm (Haarnoja et al., 2018) to integrate
LLM-proposed symbolic actions into continuous
control, and introduce a 5-shot fine-tuning protocol
to align LLMs with tasks. The core components
of our framework are designed to be general, al-
lowing for instantiation in both online and offline
reinforcement learning settings. Unlike prior work
focused on convergence without efficiency (Yan
et al., 2024), our approach, including a quantized
LLM, enables low-latency RL on consumer-grade
GPUs.

Our contributions are: (1) a unified, meta-
learned caching framework for efficient LLM-
guided RL applicable to both online and offline
settings, across discrete (e.g., TextWorld) and con-
tinuous (e.g., MuJoCo (Todorov et al., 2012)) do-
mains; (2) theoretical KL-divergence guarantees
(Theorem 1) that bound the error introduced by
the cache; (3) a 5-shot fine-tuning protocol and
an extended soft actor-critic algorithm for robust
LLM-RL integration; and (4) comprehensive vali-

11063

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11063-11091
November 4-9, 2025 ©2025 Association for Computational Linguistics

dation on eight diverse tasks, including an offline
CQL-Prior variant that reduces training time by
38-40% while improving performance by 14-29%.
By amortizing LLM computation, we enable scal-
able NLP applications like dialogue agents and
text-driven robotics.

2 Related Work

LLMs in Reinforcement Learning. Large lan-
guage models (LLMs) enhance RL by improv-
ing exploration and reasoning in tasks like text-
based games and dialogue agents (Ahn et al., 2022;
Huang et al., 2022a; Ma et al., 2023; Yao et al.,
2023). LLMs serve as action proposers (Carta et al.,
2023), reward modelers (Kwon et al., 2023), plan-
ners (Hao et al., 2023), or world models (Wang
et al., 2023). These methods, while effective, re-
quire frequent LLM queries, creating computa-
tional bottlenecks for NLP applications (Wei et al.,
2022). Unlike prior work, including convergence-
focused approaches (Yan et al., 2024), our meta-
learned caching reuses LLM outputs across similar
states, reducing queries by 3.8-4.7 x. Unlike NLP
caching like speculative decoding (Leviathan et al.,
2023), our caching adapts to RL dynamics, a novel
contribution for efficient LLM-guided RL.

Comparison with Systems Caching. While in-
spired by general caching principles, our work dif-
fers fundamentally from classic systems caching al-
gorithms like Adaptive Replacement Cache (ARC)
(Megiddo and Modha, 2003). Systems caches op-
erate on fixed-size memory blocks and optimize
for generic metrics like hit rate based on recency
and frequency. In contrast, our cache is (1) seman-
tic, operating on high-dimensional embeddings of
dynamically generated state descriptions; (2) goal-
driven, with parameters meta-learned to optimize a
downstream RL policy objective, not just hit rate;
and (3) content-addressable, retrieving priors based
on learned vector similarity rather than memory ad-
dresses. These distinctions are crucial for handling
the unstructured and semantic nature of LLM-RL
interactions. While fundamentally different, future
hybrid systems could potentially integrate classic
recency/frequency signals from ARC alongside our
semantic, goal-driven cache to handle extremely
large and diverse state spaces.

Model-Based RL and Planning. Our cached
posteriors resemble world models (Hafner et al.,
2023) and value-guided planning (Chua et al., 2018;
Janner et al., 2022), which use learned dynamics

to guide exploration. However, model-based RL
suffers from compounding errors in long horizons,
whereas our non-autoregressive posterior sampling
provides one-step guidance with KL-divergence
bounds (Appendix D). Our approach complements
these methods by focusing on efficient LLM knowl-
edge reuse, particularly for text-based tasks like
ALFWorld (Shridhar et al., 2020).

Meta-Learning and Adaptation. Meta-
learning enhances RL adaptation (Finn et al., 2017;
Rakelly et al., 2019). We extend meta-learning to
optimize cache parameters, treating them as meta-
parameters for agent performance. Unlike tradi-
tional meta-RL, which targets policy initialization,
our caching adapts LLLM priors, enabling efficient
NLP and RL integration.

Bayesian RL and Posterior Sampling. Draw-
ing from Bayesian RL (Ghavamzadeh et al.,
2016) and posterior sampling (Ghavamzadeh et al.,
2015), we use cached LLM priors in a Control-as-
Inference framework (Levine, 2018). This balances
exploration and exploitation with theoretical guar-
antees, unlike prior LLM-RL lacking efficiency
mechanisms.

Prior state encoding in model-based RL (Poly-
doros and Nalpantidis, 2017) focuses on general
mappings, while Yan et al. (Yan et al., 2024) priori-
tize convergence without semantic grounding. Our
state abstraction pipeline, integrating LLM priors
and human annotations, creates semantically mean-
ingful representations for language-guided control
(Section 4), enhancing NLP-relevant tasks like text-
based games and dialogue agents.

3 Problem Formulation

3.1 Markov Decision Process

Definition 1 (MDP). The environment is modelled
as the tuple

M = <87A5P7T7’Y>5
where

» S is the (possibly unbounded) state space, con-
sisting of textual descriptions s € V°° or con-
tinuous embeddings;

* A = Agym X Acons is a hybrid action space.
Each action is the pair a = (Ggym, u), where
asym € Agm is a symbolic action (e.g.,
natural-language text proposed by an LLM)
and u € Acony C R™ is a continuous control
vector;

11064

e P:SXxAxS—10,1], P(s'| s,a) is the
transition kernel;

e r: S8 x A—Ris the reward function,
* v € [0,1) is the discount factor.

3.2 Bayesian Control as Inference

Following the control as inference view (Levine,
2018), the optimal policy is obtained as the poste-
rior

m™(a|s)=pla]s 0=1)

1
xpO=1|s,a)pals) O

where O = 1 denotes the event of optimality.
We assume

p(O=1]s,0) x exp(1Q*(s,0)), @

with temperature o« > 0, and place a structured
prior over symbolic actions via an LLM,

plals) = 75" (aym | 5).

Implementation details—few shot fine-tuning, the
caching mechanism that yields ppyrior, and the full
action selection procedure—are given in Section 4
and Appendix B.7.

3.3 Learning Objective

Our goal is to learn a policy 7 that maximizes the
expected discounted return

oo

J(m) = EW[ZVtr(st,at)], 3)

t=0

while simultaneously reducing the computational
cost of repeated LLM inference through an efficient
cache. The resulting optimization problem thus bal-
ances task performance with inference efficiency, a
combination that distinguishes our approach.

4 Method

4.1 Framework Overview and State
Abstraction

Our framework (Figure 1) provides a general
pipeline for efficient LLM-guidance that we ap-
ply to both online and offline RL. The pipeline
operates within the MDP defined in Section 3. Raw
states s are first transformed into language descrip-
tions ¢(s) via a learned state abstraction module.
An LLM, which has been efficiently aligned to the
task’s semantics via a 5-shot fine-tuning protocol;

we use this because it hits the "sweet spot" of per-
formance vs. annotation cost, providing significant
alignment with minimal overhead (Table 6). See
Appendix B.3 for details, then generates a prior dis-
tribution over symbolic actions pprior(@sym|(s)).
This prior is stored in and retrieved from a meta-
learned cache C. Finally, the cached prior is inte-
grated into a policy to select actions, either through
posterior sampling in the online case or as a reg-
ularizer in the offline case. Cache parameters are
continuously optimized via meta-learning to bal-
ance performance and computational cost.

To enable cross-domain applicability (text and
continuous), we abstract raw states s € S into tex-
tual descriptions ¢(s) (Yao et al., 2023). For text-
based environments, ¢ simply extracts relevant tex-
tual observations. For continuous domains, where
raw states are numerical vectors, we train ¢ using a
three-stage pipeline: human annotation, contrastive
learning to expand annotations to unlabeled states
based on similarity, and joint optimization of the
abstraction model ¢ balancing supervised accuracy,
downstream RL performance, and description di-
versity.

4.2 Meta-Learned Caching and Posterior
Sampling

A core contribution of our work is a meta-learned
caching mechanism designed to amortize the high
computational cost of LLM inference.

4.2.1 Cache Operation

The cache C stores key-value pairs (z;, p;), where
z; 1s the d-dimensional embedding of a previously
seen state s; generated by a state encoder f,,, and
p; 1s the corresponding prior distribution over sym-
bolic actions, WI;LM(-|5¢), generated by the LLM.
When a new state s; is encountered, it is encoded
into an embedding z;. If a sufficiently similar em-
bedding z; (where cosine similarity sim(z;, 2;) ex-
ceeds a threshold 9) exists in the cache, the cor-
responding prior p; is retrieved directly (a ‘cache
hit’), avoiding an expensive LLM query. Otherwise
(a ‘cache miss’), the LLM is queried to generate a
new prior, which is then added to the cache. Fig-
ure 2 illustrates this process.

4.2.2 Adaptive Cache Optimization

Rather than using fixed hyperparameters, we treat
the cache parameters (capacity K, similarity thresh-
old 4, refresh rate) as meta-parameters that are
optimized online. Deriving the true gradient of

11065

Meta Learning

!

State
Abstraction

Feed data t

Current

State
State | pm)

Text

Initial
Finetune

5 shot
Example

LLM

S
Description Priors Priors P .
— Cachin osterior
— == | sampiing

4o o
o

n

p°lie %

L/
\y!
Next
Iteration

Next
State

| = A
Cached Q_N§ A

Figure 1: Our three-stage state abstraction pipeline: (A) Human annotation, (B) Contrastive expansion of labels,
and (C) Joint optimization for accuracy, RL performance, and diversity.

Encode state s,
to embedding z,

Similar

embedding Yes

Query LLM for zin (Hit) | Retrieve cached ‘
new prior p; cache? prior p;
(sim(z,, z) > =
&)
Add (z, p))
to cache
Use Prior ~/

Combine with
Q-values to
select action

Figure 2: Cache workflow: An incoming state is en-
coded and checked against the cache. A hit reuses a
stored prior; a miss queries the LLM and updates the
cache.

the policy objective with respect to the cache pa-
rameters is intractable due to the non-differentiable
nature of cache hits and misses. Therefore, we em-
ploy a principled surrogate gradient heuristic, de-
tailed in Algorithm 1, which adapts the parameters
based on intuitive and empirically validated policy
performance metrics. We use surrogate gradients
because the true gradient is intractable; this princi-
pled heuristic is empirically shown (Appendix B.2)
to correlate with policy improvement, offering a
pragmatic and effective solution.

This surrogate gradient approach reduces the
computational overhead of adaptation by approxi-
mately 87% compared to finite-difference methods
(Finn et al., 2017) and allows the cache to adapt to
task characteristics, leading to a 3.8x reduction in
LLM queries. Figure 3 shows the typical evolution

of parameters during training.

—— Cache Size (K)

—&— Similarity Threshold (0)

—a Refresh Rate (7)

O | | | |
0 20 40 60 80

Training Steps (thousands)

100

Parameter Value (normalized)

Figure 3: Evolution of normalized cache parameters
(K, 6, r) in TextWorld. The parameters adapt to learning
dynamics, with cache size and refresh rate increasing
while the similarity threshold slightly decreases.

4.2.3 Posterior Policy Integration

The posterior policy integrates the retrieved prior
Pprior (@sym|s) from the cache with learned Q-values

Q(s,a):
F(G’S) X ﬁprior(asym’3> : eXp(Q(Sa a)/T(t)>'

We normalize this expression to obtain the final
policy distribution. A key feature is the adaptive
temperature schedule 7(¢) = 0.8¢=29"(*), where
h(t) is the cache hit rate. This is used to create
a self-regulating system where the agent naturally
becomes more exploitative as its cached knowl-
edge becomes more reliable, improving sample ef-
ficiency. This dynamically adjusts the exploration-
exploitation balance: as the cache becomes more
effective (higher h(t)), the temperature decreases,
promoting exploitation of known good actions in-
formed by both the LLM prior and learned Q-
values.

11066

Algorithm 1 Efficient Adaptive Caching via Surrogate Gradients

1: Input: Initial cache parameters Ky, dg, ro; learning rates nx, 7s, 7y; surrogate gradient weights

AK 5 Agy Are

2: Output: Continuously adapted parameters Ky, 0, .
3: for each training iteration ¢ do

4: Collect a batch of experience B; = {(s;, ai, 75, ;) } using the current policy and cache parameters.
5: Compute policy performance metrics: average TD error €; from Q-learning updates, cache hit rate
hy, policy variability v; = std(Q(s;, a;)) for (s;,a;) € B; (measuring the standard deviation of
Q-values in the batch).
6: Compute surrogate gradients for cache parameters based on heuristics linking parameters to
performance:
7: VidJ =~ -k lf_(i” (Larger cache needed if hit rate is low, as this suggests the cache is too small
to cover the state space.)
8: VsJ ~ —)\5(% (The similarity threshold § is lowered if the TD error €; is high, indicating that
the cached priors are poor generalizations and a stricter match is needed.)
9: V,J = 4+A\v; (Higher refresh rate if policy variability is high, indicating potential staleness.)
10: Update cache parameters using gradient ascent on the meta-reward (approximated by surrogate
gradients):
11: Kt+1:Kt+77KVKJ
12: 01 = 0 + nsVsJ
13: Ti41 =T+ T]TVTJ

14: Project parameters back into valid ranges: K € [Kpin, Kmax)> 0 € [Omin; Omax)s 7 € [min, Tmax]-
(e.g., K € [100,1000], 6 € [0.5,0.99], r € [0.01,0.2]).

15: end for

4.3 Symbolic-Continuous Integration

To handle hybrid action spaces A = Agym X Acont,
we extend the soft actor-critic framework (Haarnoja
et al., 2018). The policy factorizes as 7(dsym, v |
s) = m(asym | s) - mo(u | 8, asym). This allows
symbolic guidance from the LLM prior to influence
continuous control, as illustrated in Figure 4. Al-
ternative formulations and implementation details
are provided in Appendix C.

4.4 Alternative Policy Formulations

Beyond our primary posterior sampling ap-
proach, we also formulate alternatives: (1) a KL-
regularized policy optimization variant that explic-
itly balances LLM prior fidelity with task opti-
mization (Appendix C), and (2) an extension to
offline reinforcement learning through CQL-Prior
that integrates our caching framework with Con-
servative Q-Learning, reducing training time by
38-40% while improving performance by 14-29%
compared to standard CQL (detailed results in Ap-
pendix E.4).

4.5 KL-Regularized Policy Optimization

While our primary approach employs posterior
sampling for action selection, we also formulate

the symbolic action component as an explicit KL-
regularized policy optimization problem that bal-
ances LLM prior fidelity with task optimization.
This formulation provides stronger theoretical guar-
antees particularly in environments with sparse re-
wards. The full implementation details and advan-
tages are described in Appendix C.

4.6 Extension to Offline Reinforcement
Learning

Our cache-efficient posterior sampling framework
naturally extends to offline RL contexts, where
learning occurs from a fixed dataset without en-
vironment interaction. We introduce CQL-Prior,
which integrates our cached LLM priors with Con-
servative Q-Learning (Kumar et al., 2020). Our
CQL-Prior variant directly integrates the same
meta-learned caching mechanism and state abstrac-
tion pipeline used in the online setting. The key
adaptation is how the retrieved cached prior, ppyior,
is incorporated as a regularizer within the CQL ob-
jective to guide policy learning on a fixed dataset,
addressing distributional shift while maintaining
computational efficiency.

11067

{ State s

/

Cached LLM Continuous Policy
Prior p(asym|s) mo(uls, Gsym)

Action agym uous Action u

|
\ /

Final Action }

{ Sample Symbolic } Sample Contin- }

a = (asyma)

Figure 4: Hybrid action selection: A symbolic action is
sampled from the LLM prior, which then conditions the
policy for sampling the continuous action component.

4.6.1 Formulation

The CQL-Prior objective augments the standard
CQL loss with a KL.-regularized term that incorpo-
rates our cached LLM priors:

Leqprior(Q) = L10(Q) + o Esup logz exp(Q(s,a)) — Eansy[Qs, a)]}
= BEsD [Eang [Q(s: u)H

4

where Lp is the standard TD loss, 73 is the be-

havior policy from which the offline dataset D was

collected, and ppyior is our cached LLM prior. This

formulation has two key advantages over standard
CQL:

1. The LLM prior term upweights actions that
align with LLM-suggested behaviors while still
maintaining the conservatism of CQL.

2. Our caching mechanism significantly reduces
computational overhead during training.

These ablation results highlight that the incorpo-
ration of LLM priors yields a 27% performance
improvement over standard CQL. Our adaptive
caching mechanism reduces LLM queries by 74%
compared to uncached priors while maintaining
performance advantages, and adaptive caching out-
performs static caching in both performance (7%
higher) and query efficiency (16% fewer queries).

4.6.2 Empirical Validation

We evaluated CQL-Prior against standard offline
RL baselines across multiple environments using
datasets collected with a random policy (Random),
a medium-quality policy (Medium), and an expert
policy (Expert). Table 1 presents the normalized
performance (relative to expert policy) and training
time comparison.
As shown in Table 1, CQL-Prior achieves:

* Performance improvement: 14-29% higher
normalized performance than standard CQL
across different datasets, with particularly
strong gains on random datasets where ex-
ploration is limited.

* Training time reduction: 38-40% reduction
in training time compared to standard CQL,
consistent with our claimed 35-40% reduction.
This efficiency comes from two sources: (1)
faster convergence due to better prior informa-
tion, and (2) computational savings from the
caching mechanism.

Figure 5 illustrates the training convergence of
CQL-Prior compared to standard CQL across train-
ing epochs.

3]

g

E o8] ;‘]
;q‘i) 0.6 : PQT -Prior o
heoj 04 [! [
g 02l —— Standard CQL 1
= v —— CQL-Prior (Ours)

E 0 . = ; ;

5] 0 100 200 300 400 500
~ Training Epochs

Figure 5: Training convergence on ALFWorld-Random.
CQL-Prior (red) converges 39% faster and achieves 29%
higher final performance than standard CQL (blue).

4.6.3 Ablation Study

We conducted an ablation study to isolate the contri-
butions of different components of CQL-Prior. Ta-
ble 2 shows the results on the ALFWorld-Random
dataset.

The empirical results presented demonstrate that
our CQL-Prior approach effectively combines the
benefits of conservative offline learning with the
guidance of cached LLM priors, achieving both
superior performance and training efficiency across
diverse environments and datasets.

11068

Table 1: Offline RL comparison: Normalized performance (vs. expert) and training time (hours to converge). Our

CQL-Prior shows significant gains.

ALFWorld-Random

ALFWorld-Medium MuJoCo-Medium

Method Perf. Time (h) Perf. Time (h) Perf. Time (h)
Behavior Cloning 0.31 1.2 0.57 1.2 0.42 1.0
Standard CQL 0.48 6.8 0.72 6.5 0.68 5.2
CQL+ILQL 0.53 7.2 0.76 7.0 0.71 5.9
TD3+BC 0.44 54 0.69 5.1 0.74 4.8
CQL-Prior (Ours) 0.62 4.1 0.81 3.9 0.76 3.2

Table 2: Ablation study of CQL-Prior components on ALFWorld-Random dataset.

Method Variant Normalized Performance Training Time (h) LLM Queries
CQL (No Prior) 0.48 6.8 -

CQL + Uncached Prior 0.61 6.2 1.00x
CQL + Static Cache Prior 0.58 4.3 0.31x
CQL + Our Adaptive Cache Prior 0.62 4.1 0.26x

5 Theoretical Analysis

Let Dxr(p(+|s) || p*(:|s)) be the KL divergence
between the cached and true posterior policies. Our
main theoretical result bounds this divergence:

Theorem 1. Ler «'(s) = |/1ogpprior(:|s) —
10g Pprior(+|$)||c be the state-dependent bound on
cached prior error and e, = ||Q(s,) —Q* (s,)| o
the Q-function approximation error. Let (s) be
the state visitation density under policy p. Then:

K'(s) +es/7(t)
1 —exp(—+K'(s) — €s/7(t))

Dre(B(:|s) [1p"(-[s)) <

' (1 * Elﬁ(u)ﬂ)

This bound provides a direct link between cache
accuracy (x'), value estimation quality (), and
policy divergence. The practical implications are
threefold: The bound ensures that our cached pol-
icy remains close to the optimal policy in terms
of expected behavior, as a small KL. divergence
implies similar action distributions. Through the
state visitation term p(s), the bound allows larger
approximation errors in rarely visited states while
maintaining tight control in critical states. The de-
composition into cache error (') and Q-function
error (es) enables targeted optimization of each
component.

Empirically, we found that maintaining this
bound correlates strongly with task performance - a

20% reduction in the weighted KL divergence typi-
cally yields a 15-18% improvement in success rate
or cumulative reward. See Appendix E for detailed
analysis linking the bound to policy performance
metrics.

6 Experimental Results

We evaluate our cache-efficient posterior sam-
pling framework across eight diverse environments:
TextWorld, ALFWorld, BabyAl, WebShop (text-
based tasks), and MetaWorld, MuJoCo HalfChee-
tah, Walker2d, Ant (continuous control tasks). Our
method is compared against baselines including
Direct LLM, ReAct, RAP, SAC, and Dreamer-V3,
with additional comparisons to contemporary meth-
ods (e.g., Voyager-MC) in Appendix H. We report
success rate (%) for text-based tasks and average
return for continuous control tasks, averaged over
10 seeds with 95% confidence intervals. Statis-
tical significance is assessed using Welch’s t-test
(p < 0.01). Additional metrics, including LLM
query count, latency, and cache hit rate, are de-
tailed in Appendix J. Experimental setup, hyper-
parameters, and hardware details are provided in
Appendix F.

6.1 Head-to-Head Method Comparison

To quantify our advances over existing LLM-
guided RL methods, we conducted a direct compar-
ison with approaches proposed by Yan et al. (Yan

11069

Table 3: Head-to-head comparison with prior LLM-guided RL methods on ALFWorld.

Method ALFWorld Success LLM Queries Latency (ms)
DQN-Prior (Yan et al., 2024) 0.88 0.92x 828
CQL-Prior (Yan et al., 2024) 0.86 0.95x 842
GFlan-Prior (Yan et al., 2024) 0.89 0.90x 835
Static Cache (DQN-Prior + LRU) 0.85 0.50x% 450
Ours (Cached) 0.91 0.23x 85-93

et al., 2024) on ALFWorld, as shown in Table 3.

Our approach demonstrates clear advantages: (1)
higher success rates (0.91 vs. 0.89), (2) 9x lower
latency (85-93ms vs. 828-842ms), and (3) 74-78%
fewer LLM queries than existing methods. Even
compared to a static cache implementation, our
meta-learned approach provides 4.8x better latency
with improved performance. This efficiency stems
from our adaptive caching mechanism combined
with temperature scheduling, representing a sig-
nificant advancement in making LL.M-guided RL
practical for real-time applications.

6.2 Main Results

Table 4 presents results on text-based tasks. Our
method achieves success rates of 92.5-95.6%, out-
performing Direct LLM (68.7-75.1%) and Re-
Act (80.2-85.4%) while using 3.8-4.7x fewer
LLM queries. Compared to RAP, our approach re-
tains 96-98% of the performance with significantly
lower latency (4.0-12.0x speedup, see Table 3).
Cache hit rates range from 78-82%, demonstrat-
ing the effectiveness of our meta-learned caching
mechanism.

Table 6 shows results on continuous control
tasks. Our method yields returns of 480.2-684.2,
closely matching SAC (490.7-692.1) and Dreamer-
V3 (500.3-710.8) while reducing LLM queries by
4.0—4.5x%. The hybrid action space extension (Sec-
tion 4.4) enables competitive performance with
high cache hit rates (80—-82%, Appendix J.3). La-
tency profiles (Appendix F.7) confirm 4.0-12.0x
speedups over non-cached baselines.

6.3 Fine-Tuning Results

To evaluate our 5-shot fine-tuning protocol, we
compare 0-shot, 5-shot, and 10-shot settings across
all environments. Table 5 reports success rate (%)
for text-based tasks and average return for contin-
uous control tasks. The 5-shot approach achieves
90.4-95.6% success rates and 480.2—-684.2 returns,

improving significantly over 0-shot (68.7-75.1%,
320.6-512.4) and approaching 10-shot perfor-
mance (91.9-96.7%, 490.7-710.8) with minimal
fine-tuning cost. These results confirm the proto-
col’s efficiency in aligning LLM priors with control
tasks. Full fine-tuning details and additional met-
rics are provided in Table 12 (Appendix E.5).
Tables 4 and 6 demonstrate that our method con-
sistently achieves higher success rates and average
returns with 3.7-4.8x fewer LLM queries compared
to baselines. Applying our caching mechanism
to baselines (e.g., ReAct+Cache, SayCan+Cache)
reduces queries but incurs a 4-7% performance
penalty, underscoring the robustness of our inte-
grated design. The computational profile includes:

e Training: 5-shot fine-tuning (8-12 min/task,
11.2GB VRAM)

* Inference: 14.6GB peak memory (7GB LLM,
5GB cache, 2.6GB other)

e Meta-optimization: 2.1% training overhead,
amortized within 2000 steps

Further details, including ablations, scaling
analysis, and latency measurements, are in Ap-
pendix F.6 and Appendix J.3.

7 Discussion

Our work demonstrates that principled caching can
make LLM-guided RL practical and efficient. The
proposed meta-learned caching approach shows
promising scalability, reducing LLM queries by
3.8-4.7x while maintaining 96-98% of uncached
performance. This enables deployment on con-
sumer hardware with latencies of 85-93ms compat-
ible with interactive applications. Our theoretical
KL-divergence bounds provide guarantees on deci-
sion quality, distinguishing our work from purely
heuristic methods. The framework’s strong per-
formance across both text-based and continuous
control domains suggests a promising path toward

11070

< w |

S 95| .

I °

(a7

2 90| . .

g

v 85 8

gb A

< R0} :

Qé ° Ours

g 75 1 [Baselines

5 4 Reasoning Baselines

o u ¢ Planning Baselines

QQ_‘) 70 C T L I I T [— 1
102 103

Latency (ms, log scale)

Figure 6: Performance vs. Latency. Our method (blue circle) achieves high performance at low latency, occupying
the ideal top-left quadrant. Baselines with complex reasoning (ReAct, RAP) are slower.

Table 4: Success rate (%) on text-based tasks (10 seeds, 95% CI). Our method matches top performance with

3.8-4.7x fewer LLM queries.

Environment Direct LLM ReAct RAP Ours Queries ({)
TextWorld 723+21 827+1.8 942+13 925+14 3.8%
ALFWorld 687+23 802+20 928+15 904+1.6 4.2%
BabyAlI 7514+20 854+1.7 967+1.1 956+1.2 4.7%
WebShop 705+£22 819+£19 945+14 932+13 4.0x

unifying symbolic and continuous control under a
single Bayesian framework.

However, several limitations warrant consider-
ation. The framework’s effectiveness is contin-
gent on the quality of the learned state abstrac-
tion, which currently relies on a semi-supervised
pipeline with initial human annotation. Cache stal-
eness also presents a challenge, as priors can be-
come outdated during rapid policy shifts, although
this is partially mitigated by our adaptive refreshing
mechanism (Algorithm 1). The framework’s perfor-
mance may also degrade in highly stochastic envi-
ronments where semantically similar states require
different actions. While our evaluation environ-
ments are standard benchmarks, their complexity
may not fully capture the challenges of large-scale
3D navigation or real-world embodied interaction,
which remain important avenues for future work
on benchmarks like Habitat (Savva et al., 2019) or
ManiSkill (Mu et al., 2021). Finally, our theoret-
ical guarantees (Theorem 1) rely on assumptions
of bounded errors that, while empirically validated
(Appendix E.2), may not hold universally, and the
meta-learning process itself introduces a degree of

tuning complexity (Appendix D.3). Future work
could address these limitations by exploring un-
supervised abstraction learning and more sophisti-
cated cache management for extremely large state
spaces, such as distributed caching (Appendix I).

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, and 1 others. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Xi Chen, Zi Chen, Peter Cui, Chelsea
Finn, Keerthana Fu, Keerthana Gopalakrishnan, and
1 others. 2023. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv
preprint arXiv:2307.15818.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Ar-
avind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey

11071

Wu, Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877-1901.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
In International Conference on Machine Learning,

pages 3676-3713. PMLR.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. 2021. Decision
transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Process-
ing Systems (NeurlPS), 34:15084-15097.

Kurtland Chua, Roberto Calandra, Rowan McAllister,
and Sergey Levine. 2018. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics
models. Advances in Neural Information Processing
Systems (NeurlPS), 31.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim,
and John Schulman. 2019. Quantifying generaliza-
tion in reinforcement learning. International Confer-
ence on Machine Learning, pages 1282—1289.

Marc-Alexandre C6té and 1 others. 2019. Textworld:
A learning environment for text-based games. arXiv
preprint arXiv:1806.11532.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Co-
las, Trevor Darrell, Pieter Abbeel, Abhishek Gupta,
and Jacob Andreas. 2023. Guiding pretraining in
reinforcement learning with large language models.
In International Conference on Machine Learning,
pages 8657-8677. PMLR.

Gabriel Dulac-Arnold, Richard Evans, Hado van Has-
selt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas
Degris, and Ben Coppin. 2015. Deep reinforce-
ment learning in large discrete action spaces. arXiv
preprint arXiv:1512.07679.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126—-1135. PMLR.

Mohammad Ghavamzadeh, Yaakov Engel, and Michal
Valko. 2016. Bayesian policy gradient and actor-
critic algorithms. Journal of Machine Learning Re-
search, 17(66):1-53.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau,
and Aviv Tamar. 2015. Bayesian reinforcement learn-
ing: A survey. Foundations and Trends® in Machine
Learning, 8(5-6):359-483.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on
machine learning, pages 1861-1870. Pmlir.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba,
and Timothy Lillicrap. 2023. Mastering di-
verse domains through world models. arXiv
preprint arXiv:2301.04104. Available at
https://arxiv.org/abs/2301.04104.

Nicklas Hansen, Haochen Wang, and Xiaoxing Su. 2023.
Temporal difference learning for model predictive
control. arXiv preprint arXiv:2302.11429. Available
at https://arxiv.org/abs/2302.11429.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. International Conference on Ma-
chine Learning.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, Pierre Ser-
manet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter.
2022b. Inner monologue: Embodied reasoning
through planning with language models. Preprint,
arXiv:2207.05608.

Michael Janner, Qiyang Li, and Sergey Levine. 2022.
Planning with diffusion for flexible behavior synthe-
sis. International Conference on Machine Learning.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. 2020. Conservative g-learning for offline
reinforcement learning. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 33:1179-1191.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models. arXiv preprint arXiv:2303.00001. Available
at https://arxiv.org/abs/2303.00001.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Sergey Levine. 2018. Reinforcement learning and
control as probabilistic inference. arXiv preprint
arXiv:1805.00909.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eu-
reka: Human-level reward design via coding large
language models. arXiv preprint arXiv:2310.12931.

11072

https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608

Nimrod Megiddo and Dharmendra S Modha. 2003.
{ARC}: A {Self-Tuning}, low overhead replace-
ment cache. In 2nd USENIX Conference on File and
Storage Technologies (FAST 03).

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang,
Xuanlin Li, Stone Gray, Andrew Viswanath, Pete
Roberson, Shixiang Zhao, Juan Li, Hao Gao, Jia-
hong Zhang, Zilin Wang, Peter Liang, and Sergey
Levine. 2021. Maniskill: Generalizable manipula-
tion skill benchmark with large-scale demonstrations.
Advances in Neural Information Processing Systems
(NeurlPS) Datasets and Benchmarks Track, 34.

I Made Aswin Nahrendra, Christian Tirtawardhana,
Byeongho Yu, Eungchang Mason Lee, and Hyun
Myung. 2022. Retro-rl: Reinforcing nominal con-
troller with deep reinforcement learning for tilting-
rotor drones. IEEE Robotics and Automation Letters,
7(4):9004-9011.

Alex Nichol and John Schulman. 2018. Reptile: a
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999.

Athanasios S Polydoros and Lazaros Nalpantidis. 2017.
Survey of model-based reinforcement learning: Ap-
plications on robotics. Journal of Intelligent &
Robotic Systems, 86:153—-173.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey
Levine, and Deirdre Quillen. 2019. Efficient off-
policy meta-reinforcement learning via probabilistic
context variables. International Conference on Ma-
chine Learning (ICML), 97:5331-5340. Available at
http://proceedings.mlr.press/v97/rakelly 19a.html.

Manolis Savva, Abhishek Kadian, Oleksandr
Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, and Jitendra
Malik. 2019. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
9339-9347.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, and Marc Lanctot. 2016. Mastering
the game of Go with deep neural networks and tree
search. Nature, 529(7587):484—489.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012.
Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intel-
ligent robots and systems, pages 5026-5033. IEEE.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michael Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, and 1 others. 2019. AlphaStar: Mastering
the real-time strategy game StarCraft II. DeepMind
Blog, 2.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. Advances
in Neural Information Processing Systems, 35:24824—
24837.

Zeyuan Xu, Hado van Hasselt, and David Silver. 2018.
Meta-gradient reinforcement learning. Advances in

Neural Information Processing Systems (NeurlPS),
31:2439-2449.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang,
Haifeng Zhang, Haitham Bou Ammar, and Jun
Wang. 2024. Efficient reinforcement learning
with large language model priors. arXiv preprint
arXiv:2410.07927.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang,
Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song,
Haocheng Feng, Li Shen, and 1 others. 2024. Mul-
berry: Empowering mllm with ol-like reasoning
and reflection via collective monte carlo tree search.
arXiv preprint arXiv:2412.18319.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu,
and Chuang Gan. 2023. Building cooperative em-
bodied agents modularly with large language models.
arXiv preprint arXiv:2307.02485.

11073

Appendix

This appendix provides supplementary material, in-
cluding detailed descriptions of methods moved
from the main paper, additional experimental re-
sults, proofs, and implementation details.

.1 Broader Impacts

Our cache-efficient framework for LLM-guided
reinforcement learning enhances computational
efficiency, enabling deployment on resource-
constrained consumer hardware. This democra-
tizes access to advanced RL systems, potentially
benefiting applications in education, personalized
assistants, and small-scale automation. However,
increased efficiency in RL could amplify risks of
misuse in autonomous systems, such as unintended
consequences in high-stakes automation. To miti-
gate this, we advocate for responsible deployment
with robust safety constraints. Future work (Ap-
pendix I) will explore integrating ethical guidelines
into our framework to ensure safe and equitable
use.

A Reproducibility Statement

To ensure reproducibility, we release our code,
models, and experimental setups at (omitted for
anonymity). The repository includes the imple-
mentation of the adaptive cache, learned state ab-
straction models for all tested domains, prompt
templates, configuration files, and pre-trained mod-
els for immediate use. A quick-start Colab demo
is also provided to illustrate the core components
with minimal setup. Hyperparameters and network
architectures are detailed in the appendix and code-
base (Appendix H).

All datasets and models used in our experi-
ments are publicly available under permissive li-
censes. Specifically, TextWorld and ALFWorld
are licensed under the MIT License, MuJoCo is
licensed under the Apache License 2.0, and the
Qwen-7B model is licensed under the Apache Li-
cense 2.0.

B Problem Formulation Details

B.1 MDP Formulation Details

The MDP formulation from Section 3 uses the
state transition probability function P(s’ | s,a),
which gives the probability of transitioning to state
s’ when taking action «a in state s. The reward
function : § x A — R maps state-action pairs

to scalar rewards, providing immediate feedback
for each decision. This formulation is chosen to
align with the standard notation in the reinforce-
ment learning literature and to make explicit the
probabilistic nature of state transitions.

B.2 LLM as an Action Prior (Details from
Section 3.3)

Our approach formalizes LLM integration by defin-
ing a structured prior over symbolic actions, dis-
tinct from methods that treat LLM outputs as direct
decisions or weak suggestions (Yao et al., 2024).
Through a rule-based projection function, we es-
tablish a principled mapping from free-form text to
executable actions.

To leverage the rich prior knowledge of LLMs,
we define a prior over symbolic actions:
WIgLM(asym | 5) =3, p(asym | 0) LLMy (o | prompt(¢(s)))

where ¢ : S — T maps states to textual prompts
in a text space 7, LLMy(o | -) is a parameterized
language model outputting free-form text o, and
p(asym | o) is a rule-based projection mapping
LLM outputs to executable symbolic actions. The
joint policy is factorized as:

LLM

70,6 (Asym, u | 8) = T (asym | 8) - mo(u | s, asym)

where 7p(u | S, asym) is a learned continuous
control policy, typically a Gaussian distribution for
continuous action spaces.

B.3 Few-Shot Fine-Tuning of LLLM Priors

We propose a computationally efficient 5-shot fine-
tuning protocol that surpasses both zero-shot appli-
cation and extensive fine-tuning approaches. This
meta-learning formulation enables rapid adaptation
of LLM action priors while preserving generaliza-
tion capabilities across diverse tasks.

To adapt LLM priors to task-specific require-
ments, we fine-tune the state-to-prompt mapping ¢
using K = 5 expert demonstrations {(s;, a;)}?zl.
The fine-tuning objective is:

5

¢ = argmin Y 7§ (- | 55) — (a3 ;
j=1

+ dent H (7™M (- | 55))

where d(a7) is a Dirac delta distribution centered
on the expert action, is the entropy, and Mgyt > 0
promotes exploration. The fine-tuned ¢’ is used for
LLM queries. The base ¢ itself can be meta-learned

11074

Table 5: Performance of different fine-tuning strategies (0, 5, and 10-shot). The 5-shot approach offers a strong
balance of performance and cost. Results are success rate (%) or average return (10 seeds, 95% CI).

Environment 0-Shot 5-Shot 10-Shot
TextWorld (Success Rate, %) 723 +2.1 925+ 14 93.8+1.2
ALFWorld (Success Rate, %) 68.7 +2.3 904 +1.6 919+ 13
BabyAlI (Success Rate, %) 75.1+2.0 942 4+ 1.2 950+ 1.1
WebShop (Success Rate, %) 705 £2.2 91.8 £1.5 932 +13
MetaWorld (Return) 320.6 £ 154 480.2 £10.8 490.7 £10.2
HalfCheetah (Return) 5124 +£18.7 6842+ 125 692.1 +11.8
Walker2d (Return) 450.8 +17.2 6205+ 119 6303+ 114
Ant (Return) 380.2 +£16.5 5509+ 11.3 5604+ 109

Table 6: Average return on continuous control tasks (10 seeds, 95% CI). Our method matches SOTA baselines with

4.0—4.5x fewer LLM queries.
Environment Direct LLM RAP SAC Dreamer-V3
Ours
MetaWorld 3206 £ 154 460.8 4+ 11.2 490.7+10.2 5003 +£9.8
480.2 £+ 10.8
HalfCheetah 5124 +£18.7 650.3 £13.1 692.1 £11.8 710.8+11.0
684.2 £ 12.5
Walker2d 450.8 £17.2 590.6 £124 6303114 645.7+10.9
620.5+11.9
Ant 380.2 £16.5 5209 +11.8 5604 +10.9 5752 +10.3
5509 +£11.3

across tasks (Finn et al., 2017) for faster adaptation,
although in this work we focus on fine-tuning per
task distribution.

B.4 Meta-Learned Caching Mechanism

We develop a meta-learned caching system that op-
timizes cache parameters (capacity K, similarity
threshold ¢, refresh rate r) using meta-optimization
based on policy performance metrics. This ap-
proach goes beyond simple adaptive updates by
learning optimal caching strategies through princi-
pled optimization.

A state encoder f, : § — R¢ maps states to a
latent embedding space, and the cache is:

¢ = {(z PN s}

where z; = fy(s;) and K is the cache capacity.
For a query state s with embedding z = fy(s), we
retrieve the cached prior from the nearest neighbor
z; if the cosine similarity exceeds a threshold d:

Z -z
LS4

S 20) = [

Cache parameters (capacity K, similarity threshold
d, refresh rate r) are meta-optimized using policy
gradients derived from the meta-reward Rpen =
0.5 Reask + 0.5 Reompute, allowing the cache to adapt
its behavior to balance performance and efficiency
for the specific task distribution.

B.5 Meta-Learning Uniqueness

Our meta-optimization approach provides unique
capabilities that cannot be easily replicated in base-
line methods:

¢ End-to-end Differentiability: Unlike discrete
reasoning in baselines (ReAct, RAP), our frame-
work maintains a differentiable path from cache
parameters to policy performance.

» State-Dependent Adaptation: Cache parame-
ters adapt to state characteristics and visitation
patterns, while baselines require fixed global pa-
rameters.

* Policy-Cache Integration: Temperature sched-
ule 7(t) couples cache effectiveness with explo-

11075

ration, a mechanism absent in methods separating
reasoning from actions.

Detailed experimental validation of these capa-
bilities, including ablation studies and efficiency
analyses, can be found in Appendix J.

B.6 Direct Posterior Inference with
KL-Regularization

We formulate posterior sampling with theoretical
guarantees through a KL-regularized objective that
improves upon simple action selection methods,
that is missing in the previous literature. This
approach establishes formal connections to vari-
ational inference (Ghavamzadeh et al., 2015) while
balancing LLM prior fidelity with task-specific op-

timization.

We perform direct posterior inference to sample
from p(a | s,0 = 1). Using Bayes’ rule from
Section 3:

pla|s,0=1) < p(O=1] 5,a) 75" (asym |)

- mo(u | S, asym)

where p(O = 1| s,a) x exp(Q*(s,a)/a). In
practice, we use the learned Q-function Q?(s, a)
as an estimate. We approximate the posterior by
sampling k& symbolic action candidates Cy(s) =
{@sym,1;- -, asym i} from the potentially cached
prior ﬁ{;,LM(| s), reweighting them by estimated
Q-values Q?(s, Asym,i, U), and sampling continu-
ous actions from my. The effective policy being
sampled from is approximately:

* . V 1
7 (et 9) % 7 o |)0 (1075,
: 7r9(u | saasym)

This action selection process is equivalent to
optimizing the following KL-regularized objective
(Levine, 2018; Ghavamzadeh et al., 2015):

" = argmax E(q)s) [Qe(s,a)}

— aKL (77(| s)

AN sy mal-| s,))

ensuring the policy balances LLM priors (poten-
tially approximated via cache) with task-specific
Q-values.

B.7 Action Selection Procedure

At each timestep ¢, the agent selects an action
a¢ = (asym,u) via the following two-stage poste-
rior sampling mechanism grounded in the Control-
as-Inference framework:

1. State Encoding and Caching. Encode the cur-
rent state s; into a latent vector z; — f¢(st).
Check the cache C for a prior corresponding to
an embedding z; such that sim(z, z;) > 0. If
found, retrieve the cached prior #*"M (agyy, |
s;). Otherwise (cache miss), query the LLM
using the fine-tuned prompt mapping ¢’(s¢)
to get the prior WLLM(aSym | s¢), and add
(z¢, ™“EM (. | s4)) to the cache (potentially evict-
ing an older entry based on an LRU policy if
capacity K is reached). Let the retrieved or
newly computed prior be XM (- | s4).

2. Symbolic Candidate Sampling. Sample a set
of k symbolic action candidates (typically k is
small, e.g., k = 5):

sy} ~ AN 5)

Ck(st) = {asym,la o
3. Posterior Weighting. For each candidate
asym,i € Ci(se), estimate its expected Q-
value Q9 (s, sym,;) (by marginalizing over u ~
7o (+|S¢, asym,i) if needed, or using a critic that
estimates (Q)(s, asym) directly). Compute the
posterior weights using the current temperature

7(t):
LLM(

70,6(Asym, w | 8) = 75 (asym |) - 7o (u | 5, Asym)

Normalize weights: w; = w;/ Zle wj.

4. Symbolic Action Sampling. Sample one sym-
bolic action asym ~ Categorical(w1, . . ., Wy,).

5. Continuous Control Sampling. Sample the
continuous control action using the learned con-
ditional policy:

u~ mo(u | S¢, Asym)

6. Execute. The joint action a; = (asym, u) is ex-
ecuted in the environment. The resulting transi-
tion (s, ag, ¢, S¢+1) 18 stored in a replay buffer
for training the Q-function Q7 and the policy
.

C Alternative Policy Formulations

C.1 KL-Regularized Policy Optimization
Details

In addition to the posterior sampling approach de-
scribed in the main text, we formulate an alterna-
tive policy optimization objective that explicitly

11076

balances LLM prior fidelity with task optimization
through KL-regularization:

mgx Eﬂ(asymls) [Q(Sv Asym;, u)}

— aKL (m(asym | 8) || Pprior(asym | 5))

where « is a temperature parameter controlling
the strength of the regularization. This formulation
provides several advantages over pure posterior
sampling:

1. Explicit Optimization: The KL-regularized
objective can be optimized directly using
gradient-based methods, providing more sta-
ble learning especially in sparse reward envi-
ronments.

2. Theoretical Connections: This formula-
tion establishes formal connections to vari-
ational inference, maximum entropy RL, and
information-theoretic exploration techniques.

3. Customizable Regularization: The tempera-
ture parameter « allows precise control over
the trade-off between prior fidelity and reward
maximization, with higher values leading to
policies that more closely follow the LLM
prior.

C.2 Implementation Details

The gradients of the KL-regularized objective are
computed as:

V()J(G) = ESND7 Asym~Tg l:VQ lOg e (asym | S) .

(Q(S> Asym, U) — alog M) :|

Pprior (@sym | 5)

where D is the replay buffer distribution. To
practically implement this, we:

1. Parameterize the symbolic action policy
7o (asym | $) as a categorical distribution with
a neural network mapping state embeddings
to action logits.

2. Estimate the KL-divergence using Monte
Carlo sampling over the action space, which
is tractable for the discrete symbolic action
component.

3. Adapt the REINFORCE algorithm with a
value baseline to reduce gradient variance,
computed from the critic’s state value esti-
mates.

In practice, we find that initializing o = 1.0
and then annealing it toward a = 0.5 over the
course of training works well. This encourages
the policy to initially follow the LLM prior closely
(exploration) and gradually prioritize high-reward
actions (exploitation).

C.3 Hybrid Action Space Handling

For environments with hybrid action spaces (sym-
bolic and continuous components), we factorize
the joint policy as:

T(asym, u | §) = T(asym | §) - T(w | S, Gsym)

The continuous component 7(u | s, agym) is
parameterized as a Gaussian distribution with state-
and-symbolic-action-dependent mean and variance,
similar to standard SAC. The key difference is that
this conditional policy takes both the state s and
the sampled symbolic action asyr, as inputs.

The continuous component is trained using a
variant of the SAC objective:

I (9) = Es~p, Asym ~T EuNﬂg(<\S,asyn;) [

Q(s, asym,u) — alogmo(u | s, asym)]

This formulation allows fine-grained control at
the symbolic level while preserving SAC’s sample
efficiency for the continuous control component.

C.4 Empirical Comparison

We empirically compared our primary posterior
sampling approach against this KL-regularized for-
mulation across environments. Table 7 shows the
results.

The two formulations achieve similar perfor-
mance across all environments, with differences
of less than 1%. However, we found the KL-
regularized approach provides more stable learning
in sparse reward settings (e.g., ALFWorld), while
the posterior sampling approach converges slightly
faster in dense reward environments.

The posterior sampling approach was chosen
as our primary method in the main text due to
its conceptual simplicity and directness in imple-
menting the Control-as-Inference framework. How-
ever, both formulations benefit equally from our
meta-learned caching mechanism, demonstrating
the broad applicability of our framework.

11077

Table 7: Performance comparison between posterior sampling and KL-regularized formulations.

Environment Posterior Sampling KIL-Regularized Relative Difference

TextWorld 0.925 £0.014
ALFWorld 0.904 £ 0.016
BabyAlI 0.956 £ 0.012
HalfCheetah 684.2 £ 12.5
Walker2d 620.5 +11.9

0.918 £0.015 -0.8%
0.912 £0.014 +0.9%
0.951 £0.013 -0.5%
690.5 £ 12.2 +0.9%
625.1 £11.7 +0.7%

D Method Details

D.1 State Abstraction Pipeline (Details from
Section 4.2)

To enable LLM-guided RL across domains, we ab-
stract raw states s € S into textual descriptions
o(s) (Yao et al., 2023). For text-based environ-
ments (e.g., TextWorld), ¢ simply extracts relevant
textual observations. For continuous domains (e.g.,
MulJoCo), where raw states are numerical vectors,
we train a dedicated abstraction model ¢ using a
three-stage pipeline (Figure 1):

1. Annotation: Collect a small dataset (200-300
pairs) of human-annotated (state, description)
pairs. Annotations focus on decision-relevant
features (e.g., "the agent is moving quickly to-
wards the goal”, "the block is near the target lo-
cation"). This typically requires around 8 hours
of human effort per new environment type.

2. Contrastive Expansion: Propagate these an-
notations to unlabeled states using contrastive
self-supervised learning. We train an embed-
ding model such that similar states (in the raw
numerical space) are mapped to nearby points
in the embedding space. We then assign descrip-
tions to unlabeled states based on the descrip-
tions of their nearest annotated neighbors in the
embedding space. The contrastive loss is:

exp(sim(s;, 55)/7)
> i €XD(sim(si, 55)/T)’

Lecontrastive = — 10

where sim is cosine similarity and 7 = 0.07
is a temperature parameter. This expands the
effective dataset size by 10-20x.

3. Joint Optimization: Fine-tune the abstrac-
tion model ¢ (typically a sequence-to-sequence
model, e.g., a small transformer or RNN) using
a combined loss function:

Ly = Lsup(¢(s),desc(s)) + Are LrL(7(- | ¢(s)))
+ Adiv Laiv (6())

where L, is a standard supervised cross-
entropy loss against the (expanded) annotated
descriptions, Lgry is a policy gradient term re-
warding descriptions that lead to better down-
stream RL performance, and Lg;y encourages di-
versity in generated descriptions to avoid mode
collapse. We use Ar. = 0.5 and A\gy = 0.2.

The abstraction model typically consists of a 3-
layer MLP encoder (256 units per layer) for con-
tinuous states and a 4-layer transformer decoder (4
attention heads, 256 dimensions) to generate the
textual description. This pipeline produces abstrac-
tions that are not only descriptive but also useful
for the LLM prior and subsequent RL task.

D.2 Surrogate Gradient Heuristic Validation

To validate the effectiveness of our surrogate gra-
dient heuristics (Algorithm 1), we analyzed the
correlation between the magnitude of the param-
eter updates and subsequent policy improvement
across several runs in the ALFWorld environment.
We found a moderate negative correlation (Pear-
son’s r = -0.47) between the average magnitude
of the similarity threshold update (Ad) and the
change in success rate over the next 1000 steps.
This indicates that larger adjustments to the cache’s
generalization boundary (triggered by high TD er-
ror) are associated with periods of faster learning.
Similarly, a positive correlation (r = 0.39) was ob-
served between updates to the refresh rate (Ar)
and policy entropy, suggesting the heuristic effec-
tively responds to changes in policy exploration.
While not a formal proof, this empirical evidence
supports that our surrogate gradients provide mean-
ingful, task-aligned updates.

D.3 Cross-Environment Robustness of
Adaptive Parameters (Details from
Section 4.6.1)

Our adaptive caching mechanism relies on sur-
rogate gradient parameters (Ax, As, A, in Algo-

11078

rithm 1) that scale the heuristic gradients. We opti-
mized these initially on ALFWorld and evaluated
their robustness across other environments by test-
ing performance when these meta-parameters were
varied.

Table 8 shows that performance remains high
(typically >90% of optimal) even when meta-
parameters are halved or doubled. The similarity
threshold adaptation (\5) shows the most sensitiv-
ity, indicating its importance. Continuous control
tasks appear slightly more sensitive than text tasks.
Transfer experiments confirmed this robustness: pa-
rameters optimized on ALFWorld achieved 97-98%
performance on other text tasks and 93-95% on
continuous tasks. This suggests the adaptive mech-
anism captures fundamental principles of efficient
caching in LLM-RL systems, making it suitable
for deployment without extensive meta-parameter
tuning per environment.

D.4 Concrete Cache Examples

To make the caching mechanism more concrete,
Table 9 provides examples of cache hits and misses
from the ALFWorld environment. The cache stores
priors for states based on the semantic similarity of
their textual abstractions.

D.5 Meta-Reward Weighting Sensitivity

The meta-reward function Ryeta = Wiask Rask +
Weompute [ecompute USES weights to balance task per-
formance and computational efficiency. Our main
experiments use a balanced weighting (wgpg =
0.5, Weompute = 0.5). To address feedback from
Reviewer 4Cdk, we performed a sensitivity anal-
ysis on these weights in the ALFWorld environ-
ment. Table 10 shows that while the choice of
weights influences the trade-off, the adaptive mech-
anism remains effective across a range of values. A
performance-focused weighting (0.8/0.2) slightly
improves the success rate at the cost of more
LLM queries, while an efficiency-focused weight-
ing (0.2/0.8) reduces queries at the cost of a minor
performance drop. The balanced 0.5/0.5 weighting
provides a strong compromise, validating its choice
for our main experiments.

E Theoretical Analysis Details
E.1 KL Divergence Bound Validation Figure

Figure 7 shows the empirical validation of the KL
divergence bound presented in Theorem 1. We sim-
ulated different levels of abstraction noise (affect-

ing /(s)) in the MuJoCo HalfCheetah environment
and measured the actual KL divergence between
the policy using cached priors and the policy using
exact priors, comparing it against the computed
theoretical bound based on measured €, and '(s).

E.1.1 Theoretical Bound Parameter Evolution
E.2 Theoretical Assumptions Validation

Our theoretical KL divergence bound relies on as-
sumptions about bounded errors (¢) and bounded
cache approximation error (x'). Figure 8 empir-
ically tracks these parameters during training in
ALFWorld.

The Q-approximation error €/« (estimated via
Bellman residuals relative to the temperature) starts
high but decreases rapidly due to Q-learning. The
cache error ' (estimated via max log-ratio between
cached and fresh priors) starts lower and decreases
more gradually as the cache adapts and represen-
tations improve. Both parameters remain bounded
and decrease over training, supporting the validity
of the bound.

Table 11 compares the tightness of our bound
with alternatives. Our formulation provides a good
balance between tightness and reliability (100%
validity).

The corollary regarding convergence (Sec-
tion E.3) relies on the cache accuracy «’ improving
over time (x},; < Bk}, 8 < 1), which is encour-
aged by our adaptive cache refreshing strategy trig-
gered by policy variability or high TD errors.

E.3 Convergence Corollary

Corollary 2. If the Q-function satisfies soft Bell-
man consistency (making the Q-update a contrac-
tion mapping with rate n < 1) and the state-
dependent cache retrieval accuracy '(s) is ac-
tively managed through periodic refreshing such
that B, 5[k}, 1(5)] < BE,(s)[K1 ()] where B < 1,
then as t — oo and T(t) — Tiin, the expected KL
divergence converges to a bound proportional to

B, %(S)Bt# ‘ (1 + Eﬁffts()s)]ﬂ

This corollary establishes that our method con-
verges towards the KL-regularized optimal policy,
provided the Q-learning process converges and the
weighted cache accuracy improves over time (or
at least remains bounded). Our adaptive cache re-
freshing mechanism, which prioritizes states with
high visitation density u(s), ensures this condi-
tion holds by preferentially updating frequently
visited states. This state-dependent approach pro-

11079

Table 8: Sensitivity of performance to adaptive cache meta-parameters (Ax, A5, A,-) across environments. Values
show normalized performance (relative to default parameters tuned on ALFWorld) when each meta-parameter is
varied independently by 0.5x or 2x. High robustness is observed.

Environment 05X A 2%xAg 05xXAs 2xXAs 05x A 2X A\
TextWorld 0.95 0.96 0.92 0.94 0.97 0.98
ALFWorld (Tuning Env) 0.96 0.98 0.94 0.97 0.97 0.99
BabyAlI 0.95 0.97 0.93 0.95 0.96 0.98
HalfCheetah 0.94 0.95 0.91 0.93 0.98 0.97
Walker2d 0.93 0.94 0.90 0.92 0.97 0.96
Ant 0.93 0.95 0.91 0.93 0.96 0.95
Average Sensitivity -6% -4% -8% -6% -3% -3%

Table 9: Cache hit/miss examples from ALFWorld, determined by the cosine similarity of state embeddings.

Query State Description Cached State Description Similarity | Decision
"You are in a kitchen. You see | "You are in a kitchen. You see 0.98 Cache Hit
a clean apple on the counter. | a clean apple on a countertop.
The fridge is closed." A fridge is closed."
"You are holding a dirty plate. | "You are holding a dirty plate. 0.96 Cache Hit
The sink is in front of you and | The sink is nearby and has
contains soap." soap in it."
"You are in a living room. | "You are in a bedroom. The 0.31 Cache Miss
The television is on. The re- | bed is unmade. A lamp is on
mote is on the coffee table." | the nightstand."
"You are facing a closed safe. | "You are facing a closed 0.65 Cache Miss
You are holding a key." safe. You are not holding any-

thing."

vides significantly tighter convergence guarantees
than uniform refresh strategies, as demonstrated by
our empirical evaluation showing a 23% reduction
in the weighted error E,(;)[+(s)].

E.4 Extension to Offline Reinforcement
Learning

Our cache-efficient posterior sampling framework
naturally extends to offline RL contexts, where
learning occurs from a fixed dataset without en-
vironment interaction. We introduce CQL-Prior,
which integrates our cached LLM priors with Con-
servative Q-Learning (Kumar et al., 2020). This
approach addresses distributional shift challenges
through a modified loss function that penalizes
out-of-distribution actions while preferentially up-
weighting high-value actions aligned with cached
LLM priors. Our experiments show this can reduce
training time by 35-40% compared to standard of-
fline RL methods.

F Experimental Setup Details

F.1 Baseline Implementation Details

We carefully implemented all baselines to ensure
fair comparison:

¢ ReAct (Yao et al., 2023): Uses Qwen-7B with
the same quantization as our method. No caching
mechanism. Follows original prompting strategy.

* RAP (Hao et al., 2023): Uses Qwen-7B. Imple-
ments planning tree with depth 3, beam width
5.

* Direct LLM: Uses Qwen-7B with greedy decod-
ing (temperature 0.0).

* Simple LRU Cache: Our architecture but with
standard LRU caching (capacity 1000).

* SAC (Haarnoja et al., 2018): Standard imple-
mentation with same network architectures as
our continuous control components.

11080

Table 10: Meta-reward weight sensitivity on ALFWorld. The balanced 0.5/0.5 weighting shows the best trade-off

between success rate and query efficiency.

Weight (Rask) | Weight (Rcompute) | Success Rate (%) | Query Reduction
0.8 0.2 91.8 0.31x
0.5 0.5 91.2 0.24x
0.2 0.8 89.5 0.19x

= 15)
'
3

X
Q 1

8

o

0]

%" 0.5
.QZ —— Measured KL

_-=A - a- Theoretical Bound (Thm 1)
d 0 lr/x T T
0 0.2 06 0.8 1

Abstraction Noise Level (0,,0is¢)

Figure 7: Validating our KL-divergence bound (Thm. 1) on HalfCheetah. The measured KL divergence consistently
stays below the theoretical bound, even with increasing abstraction noise.

1 \ : ‘
—e— Q-error (¢/a)
—=— Cache error (k') |

o
co
T

i
H~ (@)

Error Parameter Values
©
[\

O 1 | L 1
0 20 40 60 80 100

Training Progress (%)

Figure 8: Error parameters for our theoretical bound
during training in ALFWorld. Both Q-error (¢/«) and
cache error (k') decrease over time, supporting our the-
oretical assumptions.

All LLM-based methods use identical hardware
(single NVIDIA RTX 3090) and the same fine-
tuning protocol for fairness. Hyperparameters fol-
low original papers unless noted otherwise.

F.2 Environments

We evaluate on a diverse set of environments:

¢ Text-Based:
— TextWorld (Coté et al., 2019): Procedu-

rally generated text adventure games fo-
cusing on instruction following and ob-
ject manipulation. Used ‘cooking’ theme.
State: Text description. Action: Text
command (e.g., "go north", "take ap-
ple™).

— ALFWorld (Co6té et al., 2019): Embod-
ied household tasks (e.g., "put a clean
plate in the microwave") simulated in
text. State: Text observation. Action:
High-level text command (e.g., "go to
sink 1", "clean apple 1"). Used standard
suite of tasks.

¢ Continuous Control:

— MulJoCo (Todorov et al., 2012): Standard
benchmarks (HalfCheetah-v3, Walker2d-
v3, Ant-v3) requiring locomotion control.
State: Numerical vector (joint positions,
velocities). Action: Continuous torque
vector.

For continuous environments, state abstraction (Ap-
pendix D.1) maps numerical states to text descrip-
tions like "The cheetah is running fast and upright"
or "The arm is close to the red block".

11081

Table 11: Comparison of theoretical bound tightness across different bound formulations evaluated mid-training in
ALFWorld.

Bound Method Bound Value Measured KL Gap Ratio Valid (%)
Naive Additive (2" + 2¢/7) 1.14 0.43 2.65 100%
Uniform Bound (Previous Thm 1) 0.63 0.43 1.47 100%
State-Dependent Bound (Thm 1) 0.51 0.43 1.19 100%
Variational Refinement 0.52 0.43 1.21 99.8%
Jensen Interpolation 0.49 0.43 1.14 98.5%
F.3 LLM and RL Setup — No-Prior DQN: Standard DQN without
« LLMs: Qwen-7B, Qwen-14B, Qwen-32B. LLM guidance.
Main results use Qwen-7B for efficiency com- — Direct LLM: Action selected directly
parison. Models accessed via local inference from LLM output (argmax) without RL.
APL — Uncached-Prior: Our posterior sampling

method but querying LLM every step.

— ReAct (Yao et al., 2023): LLM generates
reasoning trace and action.

— RAP (Hao et al., 2023): LLM generates

* Few-Shot Learning: 5-shot fine-tuning im-
plemented using Unsloth on the state-to-
prompt mapping ¢. Examples selected based
on diversity and task relevance. Quantization:

4-bit via Unsloth reasoning tree for planning.
— Chain-of-Thought: Action selection with
* RL Algorithms: DQN for discrete text en- exp]icit reasoning chains.
vironments (TextWorld, ALFWorld, BabyAl, ~ Voyager-MC (Wang et al., 2023): Ad-
WebShop); Soft Actor-Critic (SAC) for contin-

vanced planning and skill learning with
uous control (MuJoCo, Fetch, Kitchen). Stan- LLMs.

dard implementations used. _ Tnner-Monologue-2 (Huang et al,

» Caching Parameters: Tested cache sizes 2022b): Structured reasoning integrating
K e {100,500, 1000}; similarity thresholds feedback.
d € {0.8,0.9,0.95}; refresh rates r adapted
by Algorithm 1. Main results use adaptively
tuned parameters starting from K = 500,06 = - SAC (Haarnoja et al., 2018): Standard
0.8,7 =0.1. Soft Actor-Critic.

— PETS (Chua et al., 2018): Model-based
planning (MPC).

— Decision Transformer (Chen et al.,

¢ Continuous Control:

* Hardware: Latency tests on single NVIDIA
RTX 3090 (24GB VRAM). Batched inference

used for LLM queries. 2021): Sequence modeling for control.

e Metrics: Cumulative reward/Success rate, — SayCan (Ahn et al., 2022): LLM pro-
LLM query count (normalized to Direct LLM poses high-level actions, low-level policy
baseline), cache hit rate, KL divergence (pol- executes.
icy vs. prior), convergence speed (steps to — Dreamer-V3 (Hafner et al., 2023): World
95% max performance), inference latency model-based RL.

(ms). — Diffuser (Janner et al., 2022): Diffusion

« Statistics: Results averaged over 10 random model for trajectory planning.
seeds. Mean and 95% confidence intervals — ValueDiffuser (Hansen et al., 2023): Dif-
reported. Welch’s t-test (p < 0.01) used for fusion model incorporating value func-
significance testing. tions.

— Inner-Monologue-2 (Huang et al,
F.4 Baselines 2022b): Also applied to continuous
* Text Environments: domains.

11082

* Cached Baselines: We implemented cached
versions (ReAct+Cache, RAP+Cache, Say-
Can+Cache) by adding our adaptive caching
mechanism to store and retrieve their re-
spective LLM outputs (e.g., reasoning traces,
action proposals) based on state similarity.
Cache parameters were tuned for each base-
line.

F.5 Few-Shot Learning Details

We evaluated the impact of the number of few-shot
examples (K) used for fine-tuning the LLM prior
generation on three representative environments.

Table 12 shows that performance generally in-
creases with K, but gains diminish significantly
after K = 5. Using 5 shots provided a 15-18% im-
provement over zero-shot while keeping the context
manageable for the LLM and fine-tuning efficient.
This small number of examples helps align the
generic LLM prior with the specific task’s action
space and state nuances.

F.6 Latency Distribution Analysis

Figure 9 shows a detailed analysis of the latency
distribution across different methods. Our cached
approach significantly reduces both the median la-
tency and its variance compared to all baselines.
The bimodal nature of our method’s distribution
(showing separate peaks for cache hits vs. misses)
demonstrates the efficiency advantage of cache hits,
which account for 78.4% of queries in this experi-
ment.

The latency breakdown reveals that cache hits
(78.4% of queries) achieve an average latency of
just 18.7ms, with cache misses averaging 349ms,
resulting in the weighted average of 89ms reported
in Table 15. This represents a 4.2x improvement
over Direct LLM methods and a 10-12x improve-
ment over reasoning-based methods (ReAct, RAP).

This performance is achieved through a combi-
nation of:

* Efficient key-value cache storage using a quan-
tized embedding model (4-bit) that requires
only 67MB of GPU memory

* Optimized nearest-neighbor search using
FAISS with GPU acceleration

 Lazy cache updates that defer expensive LLM
calls to background processes when possible

* Adaptive threshold adjustment that maintains
high cache hit rates (Section 4.2)

The practical implication is that our method can
run on a single consumer GPU at speeds com-
patible with many real-time applications (>10Hz),
while even the fastest baseline LLM methods strug-
gle to achieve 3Hz.

F.7 Single-GPU Latency Profile

Figure 10 shows the step-by-step latency profile for
our cached method on a single consumer GPU.
The profile shows mostly low-latency steps due
to cache hits, interspersed with occasional higher-
latency steps corresponding to cache misses that
require a full LLM query. This demonstrates the
practical benefit of caching for reducing average
latency and making the system more responsive.

F.8 Adaptive Temperature and Sample
Efficiency

Our adaptive temperature schedule 7(¢) =
0.8e~20%) improves sample efficiency by dynam-
ically balancing exploration and exploitation based
on cache effectiveness.

Figures 11 and 12 illustrate this mechanism. The
adaptive temperature leads to faster learning com-
pared to fixed temperature or simple time-based
annealing schedules.

F.9 Expanded Baseline Comparisons

Table 13 compares against very recent LLM-RL
systems. Our method compares favorably, achiev-
ing top performance with significantly lower LLM
query counts compared to planning-based (Voy-
ager) or reasoning-based (Inner-Monologue) meth-
ods. It also outperforms efficiency-focused meth-
ods like distillation (RT-X) and memory augmen-
tation (RETRO-RL) by dynamically adapting via
the cache rather than relying on static distillation
or retrieval.

F.10 Comparison with Diffusion-Based and
Planning-Based Methods

We compare against generative diffusion mod-
els (Diffuser (Janner et al., 2022), ValueDiffuser
(Hansen et al., 2023)) and planning methods (PETS
(Chua et al., 2018), LMP) in continuous control.
Our approach achieves higher returns and bet-
ter sample efficiency than diffusion methods (Ta-
ble 14). While PETS has low latency due to
short planning horizons, our method is significantly
faster than LMP and comparable to Diffuser, with-
out requiring an accurate learned dynamics model
like planning methods. Our explicit prior-posterior

11083

Table 12: Performance comparison with different few-shot learning configurations (KX examples). Values are
averaged across representative environments (ALFWorld, HalfCheetah). 5-shot provides a good balance.

Method (K shots) TextWorld ALFWorld HalfCheetah
Zero-shot (K = 0) 0.72+0.05 0.79+0.04 635 + 32
I-shot (K =1) 0.76 £0.04 0.83 £0.03 681 =29
3-shot (K = 3) 0.81 £0.03 0.88 +0.03 723 £ 28
5-shot (Ours, K =5) 0.84+0.03 0.92 +0.02 755 £ 27
10-shot (K = 10) 0.85+0.03 0.93+0.02 762 + 26
1072
| —— Ours (Cached)
1H —— Direct LLM |
e ReAct
> _ RAP
A 0.5 i
| | | | | | | I /\ | /\

00 100 200 300 400 500 600 700 800 900 1,0001,1001,200

Inference Latency (ms)

Figure 9: Our cached sampling shows a bimodal curve: low latency for cache hits (~20ms) and standard LLM
latency for misses (~345ms). Baselines are slower overall, with reasoning-based methods (ReAct, RAP) being the

most latency-heavy due to multi-step prompting.

decomposition offers more interpretability and tar-
geted optimization (caching) compared to the im-
plicit distributions learned by diffusion models.

G Novelty and Positioning Details

Our work’s novelty lies in the synergistic combi-
nation of several components within a principled
framework:

1. Principled Approximate Bayesian Infer-
ence: We ground LLM-guided RL in Control-as-
Inference, explicitly modeling the LLM as a prior
and the policy as a posterior. Our KL divergence
bound (Theorem 1) provides a theoretical guaran-
tee on the quality of the approximation introduced
by caching, linking cache accuracy (') and value
estimation error (€) to policy divergence. This con-
trasts with methods focusing only on empirical
results or asymptotic convergence proofs without
quantifying approximation errors (Yan et al., 2024).

2. Adaptive Caching as Meta-Learning: We
treat cache parameters (K, d,r) not as fixed hy-
perparameters, but as meta-parameters optimized
online using policy performance feedback via ef-

ficient surrogate gradients (Algorithm 1). This al-
lows the cache to dynamically adapt its behavior
(e.g., size, retrieval strictness, refresh rate) to the
current learning phase and task complexity, going
beyond standard LRU or fixed caches (Zhang et al.,
2023) and extending meta-RL principles (Xu et al.,
2018; Nichol and Schulman, 2018) to optimize
computational resource allocation.

3. Learned Cross-Domain State Abstractions:
Our three-stage pipeline (Appendix D.1) learns to
map diverse raw states (text, vectors) into infor-
mative textual descriptions suitable for LLM pro-
cessing. By combining contrastive learning for
broad coverage and RL-guided fine-tuning for task
relevance, we create abstractions that enable effec-
tive LLM prior generation across both symbolic
and continuous domains, a key element for unify-
ing these traditionally separate areas. 4. Unified
Discrete-Continuous Treatment: The hybrid ac-
tion space formulation (Section 3) and the exten-
sion of SAC to incorporate symbolic actions con-
ditioned on the LLLM posterior (Section 4) provide
a consistent mathematical framework for applying
LLM priors in both text-based games and contin-

11084

o Ours (Cached, per step)

/g 400 | --- Direct LLM (avg)
= R o] e s - ReAct (avg)
5 RAP (avg)
w2
2
> 200 - |
Q
=
&
< . ©0000000° 0000%0 0004000%00 000°%000%0000000® 009000005000 90,0 o
3 o %0 . . .

0 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
Step count during an episode
Figure 10: Step-by-step latency profile for our cached approach (blue dots) on a single NVIDIA RTX 3090 GPU
with Qwen-7B, compared to average latencies of baseline methods (dashed lines). Cache hits result in low latency

(85ms), while infrequent cache misses (spikes) require full LLM inference (380ms).

Table 13: Comparison with contemporary LLM-based reinforcement learning approaches.

Method TextWorld ALFWorld HalfCheetah LLM Compute
Queries
Voyager-MC (Wang 0.81 0.88 — 1.43x 1.68x
et al., 2023)
Inner-Monologue-2 0.80 0.89 742 1.21x 1.55%
(Huang et al., 2022b)
RT-X (distilled) (Bro- 0.79 0.87 738 0.45x% 0.92x
han et al., 2023)
RETRO-RL (mem- 0.78 0.85 735 0.38x 0.85x%
ory) (Nahrendra
et al., 2022)
Ours (Full, 7B 0.84 0.92 755 0.23x 1.27x
LLM)
uous robotic control, demonstrating broader appli- A = 0.05, \s = 0.1, A\, = 0.02.
cability than domain-specific methods. 5. Demon-
strated Practicality: We show significant compu- * Adaptive Cache Learning Rates: 7x =
tational gains (3.8-4.7x fewer queries, 4-12x lower le—=3,m5 = 5e — 4,1, = le — 4.

latency) while maintaining high performance (96-
98% of uncached) on consumer-grade hardware
(Table 15), making advanced LLM-RL practically

e Initial Cache Parameters: Ky = 500, g =
0.8, rg = 0.1.

feasible. » Parameter Ranges (Projection): K ¢
These contributions collectively advance LLM- [100, 1000], § € [0.5,0.99], € [0.01,0.2].

RL by providing a scalable, theoretically grounded,

and practically efficient framework applicable * Posterior Sampling Temperature (Sec-

across diverse domains. tion 4): 7(t) = 0.8¢200() min 7 = 0.1.

; . Fixed baseli =0.8.
H Implementation Details and pred baseime T

Hyperparameters * Control-as-Inference Temperature (Ap-

We provide key hyperparameters and implementa- pendix B.6): a = 1.0.

tion choices for reproducibility: * KL-Regularized Policy Temperature (Ap-

* Surrogate Gradient Weights (Algorithm 1): pendix C): o = 1.0, tuned via grid search
11085

Table 14: Comparison with diffusion and planning methods on HalfCheetah.

Method Avg. Return Sample Eff. (vs. SAC) Inference (ms)

SAC (Haarnoja et al., 2018) 735 1.00x 5

Diffuser (Janner et al., 2022) 732 2.12x 145

ValueDiffuser (Hansen et al., 2023) 740 2.25% 160

PETS (Chua et al., 2018) (H=20) 715 1.80x 120

LMP (planning-based) 728 1.95x% 380

Ours (cached) 755 2.30x 89 (85-93)
1 inputs processed via GRU (hidden dim
ke — 128) before MLP.
= 0.8) T w i — SAC Actor (mp): 3-layer MLP [256, 256,
- 061 _,.;f/ | ActionDim*2] outputting mean and log-
% ‘ o’ stddev for Gaussian policy.
& 04f /X 2 « LLM Prompting: Prompts included task de-
2 ,(—e— Adaptive 7(t) (Ours) scription, current state abstraction ¢(s), and
§ 0.2 4 -#- Fixed7 =08 | available actions. 5-shot examples prepended
2 0 [Tlme'bflsed Anr?eal‘ng for fine-tuning context. Max sequence length

0 10 20 30 40 50 512 tokens.

Environment Steps (thousands)

Figure 11: Sample efficiency comparison on ALFWorld.
Our adaptive temperature strategy based on cache hit
rate (blue) achieves higher success rates earlier in train-
ing compared to fixed-temperature (red) or standard
time-based annealing (green), demonstrating a 17%
improvement in sample efficiency.

* Memory Usage: Peak memory usage of
14.6GB GPU VRAM was measured on an
RTX 3090 during ALFWorld evaluation, with
approximately 7GB for Qwen-7B, 5GB for
cache and replay buffers, and 2.6GB for mis-
cellaneous operations including network pa-
rameters and temporary computations.

Code implementation uses PyTorch. All experi-
on ALFWorld over {0.1,0.5,1.0,2.0,5.0} to ments report mean and 95% CI over 10 seeds.

balance prior fidelity and task performance.

I

* RL Algorithm Hyperparameters: Standard
values used for DQN (e.g., e-greedy explo-
ration decaying from 1.0 to 0.1, target net-
work update frequency 1000 steps, learning
rate le-4) and SAC (e.g., learning rates 3e-4
for actor/critic/alpha, target smoothing coeff
0.005, reward scale 1.0). Adam optimizer
used. Replay buffer size 1e6. Batch size 256.

« State/Abstraction Network Architectures:

— State Encoder (fy): 3-layer MLP [256,
256, d], where d = 128 for text, d = 64
for continuous. ReLLU activations.

— Abstraction Decoder (¢ for continuous):
4-layer Transformer decoder (4 heads,
256 dim), standard positional embed-
dings.

— Q-Networks (DQN/SAC Ceritic): 3-layer
MLP [256, 256, ActionDim/1]. Text

11086

Future Work Details

Expanding on the directions mentioned in Sec-
tion 7:

1. Advanced Abstraction Learning: Develop

unsupervised methods using techniques like
mutual information maximization between
states and abstractions, or by training abstrac-
tions jointly with world models, removing the
need for initial human annotation.

2. Distributed Cache Systems: Exploration

of distributed caching architectures that al-
low multiple agents to share and benefit
from a common knowledge repository. This
would extend our meta-learned caching mech-
anism to multi-agent settings through a dis-
tributed hash table with consistency guar-
antees that preserve our theoretical KL-
divergence bounds. Initial simulations sug-
gest cache hit rates could improve by 37-45%

0.6

0.4

Cache Hit Rate h(t)

$ 0.2

. 0.8 —l____.____-l————l-----l————JlO.S
=
5]
3
<
oy
=)
5
H
0 \ ! \ ! \ ! \ 1 L
0 5 10 15 20 25 30 35 40 45

0
50

Training Steps (thousands)

—e— Temperature 7(t)

- #- Cache Hit Rate h(t)

Figure 12: Adaptive temperature (blue, left axis) and cache hit rate (red, right axis) during training in ALFWorld. As
training progresses, temperature decreases while hit rate increases, indicating a shift from exploration to exploitation.

with 8 collaborating agents while reducing
per-agent LLM query costs by up to 5.2x. Im-
plementing hierarchical caching with locality-
sensitive hashing and Merkle-tree verification
would enable efficient consensus on cached
priors while managing staleness, particularly
important given our corollary’s requirement
that x}_ ; < Bk} for convergence guarantees.

Dynamic Precision Control: Adapt the fi-
delity of cached priors. Store high-probability,
frequently used priors at full precision, but
compress less critical or older priors (e.g., us-
ing quantization or distillation into smaller
networks) based on estimated importance
(e.g., using Q-value magnitude or visit fre-
quency), dynamically managing the trade-off
between cache size, retrieval speed, and ap-
proximation error &’

Cross-Domain Transfer: Systematically
investigate transferring cached knowl-
edge. Train an agent in one domain (e.g.,
TextWorld), then initialize the cache for
a related domain (e.g., ALFWorld) and
measure learning acceleration. This requires
robust cross-domain state abstractions and
potentially techniques to map or adapt cached
priors between slightly different action
spaces.

Theoretical Refinements: Develop tighter
KL bounds accounting for state-dependent er-
rors (k'(s), €(s)) and the non-stationary inter-

action between Q-learning and caching. Ex-
plore connections to PAC-Bayes bounds more
formally to provide generalization guarantees
for the cached policy. Analyze the conver-
gence dynamics of the adaptive temperature
7(t) coupled with the policy updates.

J Extended Experimental Results and
Analysis

This section consolidates additional experimental
results and analyses referenced in the main paper,
including performance distributions, sample effi-
ciency, latency profiles, and ablation studies.

J.1 Performance Distribution Analysis

Figure 13 shows the detailed performance distri-
bution with standard errors across our tested en-
vironments. Our cached approach maintains per-
formance that is statistically equivalent to the un-
cached version in all environments, while signif-
icantly outperforming baselines in text-based en-
vironments. In continuous control, our method
achieves comparable or better performance than
specialized baselines like SAC and Dreamer-V3.
The small standard errors (+£0.02-0.03 for suc-
cess rates, £25-30 for returns) demonstrate the sta-
bility and reliability of our approach across multi-
ple runs. Statistical significance testing (Welch’s
t-test) confirms that the performance differences
between our cached approach and the uncached
version are not statistically significant (p > 0.05),
while the improvements over baselines like Direct
LLM and Static Cache approaches are significant

11087

Reward Distribution with Standard Error

TextWorld ALFWorld
1.0 1.0 0.9+0.0 0.9%0.0
0.80.0 0.8:£0.0 0.9+0.0
0.8£0.0
0.8 0.8
8)
= -
& z
o 0.6 » 0.6
g 0.4+0.1 g 0.4+0.1
204 704
02 0.2
0.0 S s N o 0.0 S < N .
s s %Vg & &3’6 & %?'0 S
& & R 3 & S & &
S & S & (¢ & S &
& N Sl & & & Sad &
& N & N 5 N & *
9 & o KN & s oS ‘5@
S & 4 o Sa >
& & & &
A4 Q'x‘e’ ? Q.@
fCheetah alker2d
00 755:0£27.0 765.0+3dal e 0228.0 748.0+25.0 800 745.0%25.0 755.0:28 1" ——— 730.0+26.0
700 700
s 600 . 600
2 500 2 500
& 2
% 400 % 400
§ 5 300
E 300 :%
200 200
100 100
0 S S N & 0 D S > &
S S 9 g S S 9 R
& & & & & & & &
(il id S g & & B
& N Sl & A\ & Sad &f
S o o ¢ S & g
o7 & & N o & < «°
o Iy é& o S é\y
® Q'x‘e’ Q Q’ée

Figure 13: Bars show mean performance over 10 seeds with standard error. Our cached method matches uncached
performance, outperforms baselines in text tasks, and competes with SAC and Dreamer-V3 in control settings.

11088

(p < 0.01).

J.2 Sample Efficiency Analysis

Beyond computational efficiency, our approach
demonstrates significant improvements in sam-
ple efficiency across environments. Our adaptive
temperature scheduling approach requires 43.6%
fewer environment interactions to reach 95% per-
formance compared to standard RL methods with-
out LLM priors, and 17.3% fewer steps than with
fixed temperature. This represents a substantial im-
provement in sample efficiency that complements
our computational efficiency gains. The improve-
ment is statistically significant (p < 0.01, Welch’s
t-test).

The adaptive temperature schedule 7(t) =
0.8e~20h(1) improves sample efficiency by dynam-
ically balancing exploration and exploitation based
on cache effectiveness. As the cache hit rate h(t)
increases, indicating more reliable prior knowledge,
the temperature decreases to favor exploitation of
known good actions. This mechanism leads to
faster learning compared to fixed temperature or
simple time-based annealing schedules.

J.3 Single-GPU Latency Analysis

Our median latency measurements on a sin-
gle consumer-grade GPU (NVIDIA RTX 3090)
demonstrate significant performance improve-
ments: 85-93ms compared to 367-1104ms for base-
line methods—a 4.0-12.0x speedup. High cache
hit rates (78-82%) ensure that higher latency cache
misses (382-389ms) occur infrequently.

The latency distribution shows a bimodal pat-
tern, with the left peak representing cache hits (ap-
proximately 80% of queries) and the right peak
representing cache misses. The clear separation be-
tween these modes highlights the efficiency benefit
of high cache hit rates.

Our approach achieves
through:

this performance

* Efficient key-value cache storage using quantized
embeddings (4-bit)

* Optimized nearest-neighbor search using FAISS
with GPU acceleration

* Lazy cache updates that defer expensive LLM
calls to background processes

» Adaptive threshold adjustment maintaining high
cache hit rates

The practical implication is that our method can
run on a single consumer GPU at speeds com-
patible with many real-time applications (>10Hz),
while even the fastest baseline LLM methods strug-
gle to achieve 3Hz.

J.4 Query Reduction Analysis

Our expanded evaluation includes additional en-
vironments beyond those in the main paper. The
query reduction range of 3.7-4.8x reported here
reflects these additional tests:

» TextWorld and ALFWorld: 3.8-4.2x (matching
main results)

* MuJoCo environments: 4.3-4.7x (matching main
results)

¢ Additional environments:

— MetaWorld: 3.7-4.1x (slightly lower due to
task diversity)

— BabyAl: 4.5-4.8x (higher due to structured
state space)

This analysis shows that while query reduction
varies across domains, the benefits remain substan-
tial even in more diverse settings. The slight varia-
tions from the main paper’s 3.8-4.7x range are due
to these additional environments testing boundary
conditions of our approach.

J.5 Environment Details

To provide context for our scalability claims, we
quantify the complexity of our evaluation environ-
ments:

o TextWorld:

— State space: Combinatorial (>10° unique
descriptions)

— Action space: 20-30 valid actions per state
— Episode length: 50-100 steps

— Key challenge: Sparse rewards, language
understanding

* ALFWorld:

— State space: Partially observable, text +
symbolic (>10% combinations)

— Action space: 40-50 high-level actions
— Episode length: 100-200 steps

— Key challenge: Long-horizon planning, ob-
ject manipulation

11089

Table 15: Single-GPU inference latency comparison with Qwen-7B (ms per step).

Method Median 95th Percentile Cache Hit (%) Cache Miss (%)
Direct LLM 367 392 - -

ReAct (Yao et al., 2023) 891 1243 - -

RAP (Hao et al., 2023) 1104 1477 - -
Uncached Posterior 378 405 - -

Ours (Cached) 85-93 382-389 78-82 18-22

* MuJoCo (HalfCheetah):

— State space: Continuous (R!7)
— Action space: Continuous (R%)
— Episode length: 1000 steps

— Key challenge: Continuous control, dynam-
ics learning

While these environments present significant
challenges in terms of state/action space size and
horizon length, we acknowledge they represent
moderate complexity compared to frontier chal-
lenges like large-scale 3D navigation or multi-agent
coordination. Our results should be interpreted
within this context.

J.6 Ablation Studies and Component Analysis

To understand the contribution of each component,
we conducted comprehensive ablation studies. Ta-
ble 16 summarizes the impact of removing or modi-
fying key elements of our system. The results show
that meta-learned caching is crucial for maintain-
ing high performance and query efficiency, outper-
forming both fixed and LRU-based caching. State
abstraction and adaptive temperature scheduling
also provide significant gains.

Removing meta-learning for cache parameters
leads to a 5% drop in performance and higher query
counts, while omitting state abstraction or using
only simple LRU caching results in even larger
performance degradation. These results highlight
the necessity of each component for achieving both
efficiency and effectiveness.

J.7 Baseline Implementation Details

All baselines were implemented for fair compari-
son. ReAct and RAP use Qwen-7B with the same
quantization as our method, with no caching. Sim-
ple LRU Cache uses our architecture but with stan-
dard LRU caching (capacity 1000). SAC uses the
same network architectures as our continuous con-
trol components. All LLM-based methods use iden-

tical hardware and fine-tuning protocols, and hy-
perparameters follow original papers unless noted
otherwise.

Ethics Statement

Our research introduces a cache-efficient poste-
rior sampling framework for large language model
(LLM)-guided reinforcement learning (RL), aimed
at improving computational efficiency and enabling
deployment on resource-constrained hardware. We
are committed to ensuring that our work adheres
to the highest ethical standards, and we outline be-
low the ethical considerations, potential societal
impacts, and mitigation strategies associated with
our study.

Data and Model Usage

Our experiments utilize publicly available datasets
(e.g., TextWorld, ALFWorld, MuJoCo) and mod-
els (e.g., Qwen-7B), all licensed under permissive
terms (MIT License, Apache License 2.0). Human
annotations for state abstraction were collected
from a small, consented group of volunteers, en-
suring no personally identifiable information was
stored or used. All data handling complies with ap-
plicable data protection regulations, and our code-
base, released for reproducibility, includes docu-
mentation to ensure proper use of these resources.

Environmental Impact

The computational efficiency of our caching mech-
anism reduces LLM queries by 3.8-4.7 x, lowering
energy consumption compared to baseline meth-
ods. Training was conducted on consumer-grade
GPUs (11.2-14.6GB VRAM), minimizing reliance
on high-energy data centers. We report training
times (8—12 minutes for fine-tuning, 3.2—4.1 hours
for offline RL) to provide transparency on resource
usage. Future work will explore further optimiza-
tions to reduce the carbon footprint of RL training.

11090

Table 16: Ablation study results across environments. Each row removes or modifies a component of our full

system.
Variant Success Rate LLM Queries Training Time
Full System 0.91 0.23x 1.00x
No Meta-Learning 0.86 0.26x 0.95x
Fixed Temperature 0.88 0.24x 1.02x
No State Abstraction 0.82 0.29% 1.12x
Simple LRU Only 0.83 0.31x 0.93x

Societal Impacts

Our framework democratizes access to advanced
RL systems by enabling deployment on consumer
hardware, potentially benefiting applications in ed-
ucation (e.g., interactive learning tools), personal-
ized assistants, and small-scale automation. These
advancements could enhance accessibility for un-
derserved communities or resource-limited regions.
However, we acknowledge potential risks, such
as misuse in autonomous systems leading to unin-
tended consequences in high-stakes settings (e.g.,
automation errors). To mitigate this, we advocate
for deploying our framework with robust safety
constraints, such as human-in-the-loop oversight
and fail-safe mechanisms, particularly for real-
world applications.

Bias and Fairness

The LLM priors used in our framework may inherit
biases present in their training data, which could
affect action proposals in NLP tasks like dialogue
or text-based games. While our 5-shot fine-tuning
protocol mitigates task-specific biases, we recog-
nize that biased outputs could perpetuate unfair
outcomes in downstream applications. To address
this, we recommend thorough bias audits of LLM
outputs during deployment and encourage the use
of diverse fine-tuning datasets to ensure equitable
performance across user groups.

Limitations and Risks

Our framework relies on the quality of state abstrac-
tions and LLM priors, which may underperform in
highly stochastic or complex environments, poten-
tially leading to suboptimal decisions. Cache stale-
ness during rapid policy shifts could also introduce
errors. We transparently report these limitations
(Section 7, Appendix G) and propose future work
on unsupervised abstraction learning and adaptive
cache refreshing to address them. Additionally,

while our KL-divergence bounds provide theoreti-
cal guarantees, they rely on assumptions that may
not hold in all real-world scenarios, necessitating
careful validation.

Responsible Deployment

To ensure responsible use, we provide clear docu-
mentation on the intended scope of our framework
(e.g., text-based games, robotic control) and cau-
tion against untested applications in safety-critical
domains without further evaluation. We encourage
researchers and practitioners to integrate ethical
guidelines, such as those from the ACL Code of
Ethics, into deployment pipelines. Our released
code includes usage guidelines to prevent unin-
tended harm and promote transparency.

11091

