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Abstract
Vision Language Models (VLMs) struggle
with long-form videos due to the quadratic
complexity of attention mechanisms. We pro-
pose Language-Guided Temporal Token Prun-
ing (LGTTP), which leverages temporal cues
from queries to adaptively prune video to-
kens, preserving contextual continuity while
reducing computational overhead. Unlike uni-
form pruning or keyframe selection, LGTTP
retains higher token density in temporally rel-
evant segments. Our model-agnostic frame-
work integrates with TimeChat and LLaVA-
Video, achieving a 65% reduction in compu-
tation while preserving 97-99% of the origi-
nal performance. On QVHighlights, LGTTP
improves HIT@1 by +9.5%, and on Charades-
STA, it retains 99.6% of R@1. It excels on
queries with explicit temporal markers and re-
mains effective across general video under-
standing tasks. The code is available at:
https://github.com/yogesh-iitj/LGTTP.

1 Introduction

Vision Language Models like TimeChat (Ren
et al., 2024), LLaVA-Video (Zhang et al., 2024),
and VideoLLaVA (Lin et al., 2023a) have demon-
strated exceptional capabilities across various
video understanding tasks, from highlight detec-
tion to temporal grounding and video question an-
swering. However, these models face substantial
computational inefficiency when processing long-
form videos, as they typically encode every frame
into visual tokens and process the entire token se-
quence for each query. The computational com-
plexity grows quadratically with sequence length
due to the attention mechanism, making efficient
token management a critical challenge for practi-
cal deployment. Real-world video queries often
target specific temporal segments, making full se-
quence processing inefficient.

Current efficiency approaches fall into two cat-
egories with significant limitations: (1) vision to-

ken pruning methods like PruMerge (Shang et al.,
2024) and ToMe (Bolya et al., 2023), which re-
duce spatial redundancy within individual frames
but fail to capture temporal connections; and (2)
keyframe selection methods like KeyVideoLLM
(Liang et al., 2024) and VideoTree (Wang et al.,
2024), which disrupt temporal context by com-
pletely discarding intermediate frames. These lim-
itations are particularly problematic for temporal
understanding tasks that rely on maintaining tem-
poral coherence across frames, such as highlight
detection and temporal grounding. Moreover, uni-
form pruning overlooks the dynamic relevance of
frames across time, leading to suboptimal reten-
tion of critical moments. This motivates the need
for query-aware pruning strategies that adaptively
preserve temporally salient content.

We propose Language-Guided Temporal Token
Pruning (LGTTP), a model-agnostic approach that
addresses these limitations by adaptively assign-
ing pruning rates based on temporal cues extracted
from queries. LGTTP integrates effectively with
both TimeChat and LLaVA-Video architectures,
showing particular strength with models that have
built-in temporal awareness. By leveraging tem-
poral elements, LGTTP preserves tokens most rel-
evant to temporal queries while reducing compu-
tational requirements by 65% and maintaining 97-
99% of original performance. This enables effi-
cient long-form video processing without compro-
mising temporal coherence or task accuracy.

Specifically, our contributions include: (i) A
model-agnostic framework that extracts temporal
cues from natural language queries to guide to-
ken pruning. (ii) A method to integrate LGTTP
with VideoLLM architectures, with particular opti-
mization for temporally-aware models. (iii) Com-
prehensive evaluation across video understand-
ing benchmarks, demonstrating that LGTTP main-
tains near-original performance while significantly
reducing computational requirements.
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Figure 1: Given a target video and a natural language query, LGTTP identifies frames for pruning based on tem-
poral relevance. Representations of the pruned frames are discarded, and only the remaining tokens are forwarded
to the Large Language Model for downstream processing.

2 Language-Guided Temporal Token
Pruning (LGTTP) Framework

Overview and Motivation. As shown in Figure 1,
LGTTP addresses a fundamental efficiency chal-
lenge in VideoLLMs: not all frames are equally
relevant to a given query, particularly for tem-
poral understanding tasks. While existing ap-
proaches either prune tokens uniformly or select
entire keyframes, LGTTP adaptively preserves the
most temporally relevant tokens while maintaining
contextual continuity. Our approach consists of
the following main components: temporal cue ex-
traction from queries, temporally-aware relevance
prediction for different models, and adaptive token
pruning based on predicted relevance. By leverag-
ing temporal indicators in queries, we can concen-
trate computational resources on the most relevant
segments of the video.
Temporal Cue Extraction. Natural language
queries often contain rich temporal information
that guides our pruning strategy. Given a query
Q, we extract temporal information through two
stages: First, we identify temporal markers (e.g.,
“before,” “after,” “during”) using pattern match-
ing and a fine-tuned classifier, categorizing them
into Precedence, Subsequence, or Co-occurrence
relationships. Second, we extract reference events
and their potential temporal positions, for exam-
ple, from “after talking to the coach," we identify
“talking to the coach" as occurring earlier in the

video. This temporal knowledge helps prioritize
frames likely to contain moments of interest.

Adaptation to VideoLLM Architectures.
LGTTP integrates with various VideoLLM
architectures according to their temporal
awareness capabilities. Given input sampled
frames f1, f2, ..., fN , different models gener-
ate initial embeddings E = {e1, e2, ..., eN}
through their respective vision encoders. We
then create temporally-adapted embeddings
E′ = {e′1, e′2, ..., e′N} based on the model’s
capabilities. For timestamp-aware models like
TimeChat, we leverage existing timestamp bind-
ings. where the embeddings already incorporate
temporal information.

For models using temporal instructions (e.g.,
LLaVA-Video), we add lightweight temporal po-
sition embeddings based on normalized frame po-
sitions, where each frame embedding ei is aug-
mented with Ptemp(i/N) to create the adapted
embeddings e′i = ei + Ptemp(i/N). Here,
Ptemp(x) = Wp · x + bp is a learned linear func-
tion that maps normalized positions to temporal
features, where Wp ∈ Rd×1 and bp ∈ Rd.

For standard VLMs without explicit tempo-
ral awareness, we introduce a temporal adapter
that projects frame indices into positional embed-
dings, computing adapted embeddings as e′i =
ei + Atemp(i) for each frame i. The tem-
poral adapter function Atemp(i) = scale ×
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MLP(temporal_embed(i)) combines an embed-
ding layer with a two-layer MLP and a learnable
scaling factor.

After obtaining temporally-adapted embed-
dings E′, we compute relevance scores by process-
ing the query embedding eq = Ftext(Q) and cal-
culating:

Lbase = a · cos_sim(E′, eq) + b, (1)

where a and b are learnable parameters. We
then incorporate extracted temporal cues through
a weighting mechanism:

Ltemp = Lbase ⊙Wtemp, (2)

where Wtemp prioritizes frames based on identi-
fied temporal relationships.

Following, we explain the temporal weights
Wtemp = {w1, w2, ..., wN} generation.
Temporal Weight Generation. The extracted
temporal markers and reference events are con-
verted into frame-wise temporal weights Wtemp =
{w1, w2, ..., wN} that guide the pruning process.
Our weighting strategy mirrors human temporal
reasoning, focusing attention on relevant segments
while preserving broader context.

For Precedence markers (“before,” “prior to”),
we apply linearly decreasing weights that priori-
tize earlier frames while preserving later context:

wi = 1.5− i− 1

N − 1
for i = 1, 2, ..., N. (3)

This linear decay ensures that frames closer to
the beginning receive higher retention rates (up to
1.5× baseline), while later frames maintain mini-
mum context (down to 0.5× baseline).

For Subsequence markers (“after,” “following”),
we employ the inverse pattern to emphasize later
temporal segments:

wi = 0.5 +
i− 1

N − 1
for i = 1, 2, ..., N. (4)

The linear increase reflects the temporal logic that
events “after” a reference point are more likely to
occur in later portions of the video.

For Co-occurrence markers (“during,” “while”),
we use a Gaussian-like distribution centered on
middle frames, motivated by the observation that
co-occurring events often happen in the central
portion of video segments:

wi = exp

(
−λ ·

∣∣∣∣
i− 1

N − 1
− 0.5

∣∣∣∣
)
, (5)

where λ controls the concentration around the cen-
ter. This exponential decay ensures sharp focus
on central frames while maintaining sufficient con-
text from peripheral frames for temporal coher-
ence.

The weight range of [0.5, 1.5] is chosen to pro-
vide meaningful differentiation while preventing
excessive token elimination that could disrupt con-
textual understanding. For queries without explicit
temporal markers, we maintain uniform weights
wi = 1.0 to avoid introducing bias. When mul-
tiple temporal relationships are detected within a
single query, we combine their weights through
element-wise multiplication followed by normal-
ization to preserve the overall pruning magnitude
while capturing the compound temporal focus.
Temporally-Adaptive Token Pruning. The final
step converts temporal relevance scores into frame-
specific pruning rates:

R = (r1, r2, ..., rN ) = αN · softmax(Ltemp),
(6)

where α controls the overall pruning rate and N is
the frame count. This ensures the average pruning
rate across frames is approximately α, while the
distribution varies based on temporal relevance.

Critically, we employ soft selection rather than
hard keyframe selection. For each frame, we re-
tain:

Ti = max(Tmin, ⌈(1− ri) · Tfull⌉), (7)

tokens, where Tmin is the minimum token count
(typically 10% of the original count Tfull). This
preserves contextual continuity by maintaining
some tokens even from less relevant frames.
Temporal Marker Classification. We develop
our temporal marker classifier using a weakly su-
pervised approach without manual annotation. A
lexicon of temporal expressions (e.g., “before,”
“after,” “during,” “while,” “when”) is constructed
from existing NLP resources, and rule-based pat-
tern matching is applied to identify and classify
markers in queries from QVHighlights, Charades-
STA, and VideoMME.

The resulting dataset trains a 2-layer MLP clas-
sifier atop frozen BERT embeddings. To enhance
robustness, we apply data augmentation (e.g., syn-
onym replacement, word reordering) and include
queries without explicit markers as negative exam-
ples. For queries with implicit temporal cues (e.g.,
“show the beginning”), we use a predefined vocab-
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Method FLOPs Highlight Detection Temporal Grounding
QVHighlights Charades-STA

mAP HIT@1 R@1 (IoU=0.5) R@1 (IoU=0.7)

TimeChat (original) 100 21.7 37.9 46.7 23.7
Random Sampling 35 14.2 25.6 34.5 15.8
ToMe (Bolya et al., 2023) 38 15.5 27.3 36.2 16.9
PruMerge (Shang et al., 2024) 35 16.3 28.9 37.8 17.6
KeyVideoLLM (Liang et al., 2024) 40 13.1 27.0 32.1 14.5
KVTP (Liu et al., 2025) 35 19.6 34.2 42.3 21.2

LGTTP (Ours) 35 21.2 43.7 46.5 23.1

Table 1: Performance comparison on highlight detection and temporal grounding tasks with TimeChat

ulary and relative timeline positions to infer rela-
tionships without manual labeling.

3 Experiments

3.1 Experimental Setup

Datasets: We evaluate LGTTP across multi-
ple video understanding benchmarks: QVHigh-
lights (Lei et al., 2021) for the highlight detection
task with human-written natural language queries;
Charades-STA (Gao et al., 2017) for temporal
grounding that evaluates the ability to locate spe-
cific activities described in text; VideoMME (Fu
et al., 2024) for comprehensive video question
answering that tests general understanding capa-
bilities across diverse scenarios; and EgoSchema
(Zhang et al., 2023) for egocentric video un-
derstanding with narrative-style queries capturing
first-person perspectives.
Baselines: We compare LGTTP against: Original
unmodified models. Random token sampling, Uni-
form pruning methods: PruMerge (Shang et al.,
2024) and ToMe (Bolya et al., 2023), Keyframe
selection: KeyVideoLLM (Liang et al., 2024),
KVTP (Liu et al., 2025): A recent state-of-the-art
approach for video token pruning.

3.2 Implementation Details

We implement LGTTP by integrating it with
TimeChat and LLaVA-Video pipelines. For base
token pruning, we adopt PruMerge due to its ef-
fectiveness in preserving important visual informa-
tion, though our approach is compatible with other
pruning methods.
Training Configuration. The temporal adapter is
trained using Xavier uniform initialization for lin-
ear layers and N (0, 0.02) for embeddings. We use
AdamW optimizer with learning rate 1×10−4 and
weight decay 0.01 for 20 epochs. We set λ = 2.0.
The vision encoder and LLM remain frozen during

adapter training. We trained a lightweight Tem-
poral Marker Classifier and Temporal Adapters,
keeping the LLMs’ weights frozen throughout.
Integration Details. The adapter is inserted af-
ter the vision encoder but before the linear pro-
jection to LLM space. For temporal cue extrac-
tion, we use a 2-layer MLP classifier trained on
automatically labeled queries from QVHighlights,
Charades-STA, and VideoMME.

3.3 Results and Discussion

Performance on Temporal Tasks. Table 1
shows LGTTP’s performance on highlight de-
tection (QVHighlights) and temporal grounding
(Charades-STA) when integrated with TimeChat.
Our approach maintains near-original perfor-
mance (within 0.5-0.8%) despite reducing com-
putation by 65%. On QVHighlights, LGTTP
achieves 21.2% mAP and 43.7% HIT@1, signif-
icantly outperforming other efficiency methods,
including KVTP (34.2% HIT@1). For tempo-
ral grounding on Charades-STA, LGTTP achieves
46.5% R@1 at IoU=0.5, matching the original
model’s performance while using only 35% of the
computation. This demonstrates LGTTP’s partic-
ular strength in preserving critical temporal rela-
tionships when pruning tokens.
Performance on General Video Understanding.
Table 2 shows LGTTP’s effectiveness when in-
tegrated with LLaVA-Video on question answer-
ing and egocentric understanding tasks. Notably,
LGTTP maintains performance within 0.6-1.1%
of the original models across both 7B and 72B
variants. On VideoMME, LGTTP achieves 62.0%
accuracy with the 7B model, which is effectively
on par with the unpruned model (62.6%). This in-
dicates that LGTTP’s temporal awareness benefits
extend beyond explicit temporal tasks to general
video understanding, where maintaining context
across frames remains important.
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Method FLOPs Video Question Answering Egocentric Understanding
VideoMME EgoSchema

7B 72B 7B 72B

LLaVA-Video (original) 100 62.6 69.5 54.2 65.8

Random Sampling 35 58.3 62.4 50.7 60.5
ToMe (Bolya et al., 2023) 38 58.9 62.9 51.5 61.2
PruMerge (Shang et al., 2024) 35 59.8 64.5 52.5 63.1
KeyVideoLLM (Liang et al., 2024) 40 51.3 60.5 46.8 55.2
KVTP (Liu et al., 2025) 35 61.8 66.3 52.4 63.6

LGTTP (Ours) 35 62.0 67.1 53.1 64.0

Table 2: Performance on video question answering and egocentric understanding tasks.

Query-Dependent Performance. A key obser-
vation is that LGTTP’s advantage varies with
query type. For queries with explicit temporal
markers like “before/after," LGTTP outperforms
KVTP by 7.2% HIT@1 on QVHighlights. For
“during/while" markers, the advantage is 5.8%,
while for queries without explicit temporal mark-
ers, it maintains a 2.3% improvement. This grada-
tion confirms our hypothesis that language-guided
pruning is most beneficial when temporal relation-
ships are explicitly expressed, though it provides
benefits across all query types.
Efficiency-Performance Balance. Across all ex-
periments, LGTTP achieves an optimal efficiency-
performance balance. On highlight detection, it
retains 97.7% of the original mAP performance,
while on temporal grounding, it maintains 99.6%
of R@1 (IoU=0.5) performance. For video QA
tasks, it preserves 99.0% of the accuracy, all
while reducing computation by 65%. This makes
LGTTP well-suited for deployment in resource-
constrained settings.

3.4 Ablation Studies

Temporal Cue Extraction Impact. Removing
the temporal cue extraction component signifi-
cantly degrades performance, with varying impact
across tasks. For highlight detection, we observe
a -6.5% reduction in HIT@1 on QVHighlights,
while temporal grounding on Charades-STA drops
by -5.1% in R@1. Even general video QA tasks
see a -1.8% reduction in accuracy, demonstrat-
ing that temporal understanding benefits all video
tasks to some degree.
Architectural Integration Strategies. Our com-
parison of different integration approaches reveals
that adaptation strategy matters. The lightweight
temporal adapter approach outperforms simple po-
sition embedding by 2.1% on QVHighlights and

1.5% on VideoMME. This suggests that modeling
temporal relationships requires more sophisticated
integration, especially for models without built-in
temporal awareness.
Soft vs. Hard Selection Effects. The difference
between soft and hard selection is particularly pro-
nounced. When using hard selection (pruning
rate = 0 or 1), performance drops significantly
across all tasks: -9.3% HIT@1 on QVHighlights, -
7.6% R@1 on Charades-STA, and -3.5% accuracy
on VideoMME. These results validate our design
choice to maintain a minimum token threshold for
all frames, preserving contextual continuity that
proves crucial for video understanding.
Pruning Method Integration. LGTTP improves
all baseline pruning methods, but the magnitude
varies. When combined with PruMerge, we see
+14.8% HIT@1 improvement on QVHighlights
and +8.7% R@1 on Charades-STA. With ToMe,
the improvements are +16.4% and +10.3% respec-
tively. This demonstrates LGTTP’s versatility as a
framework that can enhance existing token reduc-
tion methods by adding temporal cues.

4 Conclusion

In this work, we introduced LGTTP, a query-
guided pruning strategy for VideoLLMs that pre-
serves temporal relevance while reducing compu-
tational cost. It consistently outperforms exist-
ing methods across tasks like highlight detection,
temporal grounding, and video QA, enabling ef-
ficient long-form video understanding. Future di-
rections include modeling richer temporal relation-
ships and extending LGTTP to emerging multi-
modal architectures.

5 Limitations

Despite LGTTP’s effectiveness, it has several lim-
itations: (1) Performance depends on the presence
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of temporal cues in queries, with reduced bene-
fits for queries lacking explicit temporal markers;
(2) Our implementation handles basic temporal
relationships but struggles with complex reason-
ing involving multiple temporal constraints; (3)
While the preprocessing overhead is minimal (0.3-
0.5% of total inference time), it requires additional
computational steps; and (4) Optimal integration
requires architecture-specific adaptations, poten-
tially limiting straightforward deployment across
all VideoLLM variants.
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A Appendix

B Related Work

B.1 Video Language Models

Recent advances in video language modeling have
produced a variety of architectures with different
approaches to temporal understanding. TimeChat
(Ren et al., 2024) incorporates explicit timestamp
awareness by binding visual content with corre-
sponding timestamps, enabling accurate temporal
localization. LLaVA-Video (Zhang et al., 2024)

uses a temporal instruction preprompt to inform
the LLM about the video sampling process. Vide-
oLLaVA (Lin et al., 2023a; Cheng et al., 2024)
employs a learnable temporal embedding within
the vision encoder. These temporal modeling
approaches represent different trade-offs between
architectural complexity and temporal reasoning
capability, with timestamp-aware models achiev-
ing superior performance on temporal localization
tasks but requiring more sophisticated training pro-
cedures.

Other approaches like VideoChat (Li et al.,
2023), Vid2Seq (Yang et al., 2023), and Video-
ChatGPT (Maaz et al., 2024) have also shown
promising results in video understanding tasks, but
typically process frames independently, making
them less optimal for capturing fine-grained tem-
poral relationships. The independent frame pro-
cessing paradigm, while computationally simpler,
fails to leverage the rich temporal dependencies
that are crucial for understanding narrative struc-
ture and temporal causality in video content.

B.2 Efficiency Approaches for VLMs
Several approaches have been proposed to address
the computational challenges of vision token pro-
cessing in VLMs. Vision token pruning meth-
ods like PruMerge (Shang et al., 2024), ToMe
(Bolya et al., 2023), FastV (Chen et al., 2024),
Vid-TLDR (Choi et al., 2024), and DynamicViT
(Rao et al., 2021) focus on reducing token counts
based on importance metrics like attention entropy
or attention scores. These methods achieve sig-
nificant computational savings, typically reduc-
ing token counts by 50-80%, but their effective-
ness diminishes on long-form videos where tem-
poral relationships become crucial for understand-
ing narrative flow and causal dependencies. How-
ever, these methods typically operate on individual
frames without considering temporal context, lead-
ing to suboptimal pruning decisions when queries
require understanding of temporal sequences or re-
lationships between distant frames.

Keyframe selection methods like KeyVide-
oLLM (Liang et al., 2024), VideoTree (Wang et al.,
2024), and Koala (Tan et al., 2024) identify and
retain only the most informative frames, but their
hard selection approach disrupts temporal coher-
ence. While these methods can achieve dramatic
efficiency gains by discarding entire frames, the
binary selection process often eliminates contex-
tual information that is essential for maintaining
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temporal understanding, particularly for queries
that span multiple temporal segments. The chal-
lenge becomes more pronounced in videos with
sparse but critical temporal cues, where intermedi-
ate frames may contain subtle but important con-
textual information.

KVTP (Liu et al., 2025) bridges these ap-
proaches by using soft selection to retain some to-
kens from less relevant frames, but it does not ex-
plicitly leverage temporal cues from queries. This
represents a significant limitation when processing
temporally complex queries that contain explicit
temporal markers, as the method cannot adapt its
pruning strategy based on the specific temporal re-
quirements expressed in natural language.

B.3 Video Understanding Tasks and
Benchmarks

The evaluation of VideoLLMs spans multiple spe-
cialized benchmarks. For moment retrieval (Lin
et al., 2023b; Moon et al., 2023; Yang et al.,
2024; Agarwal et al., 2024; Kumar et al., 2025),
QVHighlights (Lei et al., 2021) and Charades-
STA (Gao et al., 2017) are commonly used to
evaluate a model’s ability to locate temporal seg-
ments matching natural language queries. Gen-
eral video understanding capabilities are assessed
on benchmarks like VideoMME (Fu et al., 2024)
and EgoSchema (Zhang et al., 2023), which in-
clude diverse question-answering tasks. Object,
visual relationship, and step localization (Tang
et al., 2019; Kumar and Mishra, 2023; Kumar
et al., 2024) is evaluated on datasets like NeXT-
QA (Xiao et al., 2021), COIN (Tang et al., 2019),
and VidVRD (Shang et al., 2017). These bench-
marks present varying degrees of temporal com-
plexity, ranging from simple activity recognition
to sophisticated reasoning about temporal relation-
ships, causality, and narrative structure.

C Additional Implementation Details

Temporal Adapter. For models without explicit
temporal awareness, the temporal adapter consists
of three components: (1) an embedding layer
(nn.Embedding(128, 768)) that maps frame in-
dices to positional embeddings, where 128 rep-
resents the maximum number of frames and 768
matches the vision encoder output dimension; (2)
a two-layer MLP with LayerNorm and GELU ac-
tivation for feature transformation; and (3) a learn-
able scale parameter (initialized to 0.1) that con-

trols the contribution strength when adding tempo-
ral embeddings to frame embeddings via residual
connection. Metrics: We use task-specific eval-
uation metrics aligned with standard benchmarks.
For highlight detection on QVHighlights, we re-
port mAP and HIT@1. For temporal grounding
on Charades-STA, we measure R@1 at IoU thresh-
olds of 0.5 and 0.7. For video question answer-
ing on VideoMME and egocentric understanding
on EgoSchema, we report accuracy on multiple-
choice questions. Across all experiments, we mea-
sure computational efficiency using FLOPs rela-
tive to the original unmodified models.

D Additional Results

Cross-Model Analysis. Our cross-architecture ex-
periments reveal that LGTTP provides consistent
benefits regardless of the base model, though with
varying magnitudes. The largest improvements
come when integrated with TimeChat (+9.5%
HIT@1 on QVHighlights compared to KVTP),
likely because TimeChat’s timestamp-aware ar-
chitecture provides more precise temporal infor-
mation for LGTTP to leverage. With LLaVA-
Video, gains are more modest but still significant
(+0.8% on VideoMME), showing LGTTP’s effec-
tiveness even with standard temporal modeling ap-
proaches.
End-to-End Latency Analysis. Beyond FLOPs
reduction, we evaluate practical deployment ef-
ficiency by measuring end-to-end latency on
NVIDIA A6000 GPU with 128 frames. LGTTP
achieves the best latency performance with 1.54×
speedup (1.52s vs 2.34s baseline), outperforming
KVTP (1.48×), PruMerge (1.37×), and ToMe
(1.36×). While the latency improvement (35%) is
lower than the theoretical FLOPS reduction (65%)
due to fixed overheads in data loading, tokeniza-
tion, and LLM inference, the 54% throughput in-
crease (0.66 vs 0.43 videos/s) demonstrates signif-
icant practical benefits for real-world deployment.
This latency advantage is particularly valuable for
interactive video applications where response time
is critical, as LGTTP’s temporal-aware pruning re-
duces both computational load and memory band-
width requirements.
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