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Abstract

Language models are often evaluated with
scalar metrics like accuracy, but such measures
fail to capture how models internally represent
ambiguity, especially when human annotators
disagree. We propose a topological perspec-
tive to analyze how fine-tuned models encode
ambiguity and more generally instances. Ap-
plied to RoBERTa-Large on the MD-Offense
dataset, Mapper, a tool from topological data
analysis, reveals that fine-tuning restructures
embedding space into modular, non-convex re-
gions aligned with model predictions, even for
highly ambiguous cases. Over 98% of con-
nected components exhibit ≥ 90% prediction
purity, yet alignment with ground-truth labels
drops in ambiguous data, surfacing a hidden
tension between structural confidence and label
uncertainty. Unlike traditional tools such as
PCA or UMAP, Mapper captures this geometry
directly uncovering decision regions, boundary
collapses, and overconfident clusters. Our find-
ings position Mapper as a powerful diagnostic
tool for understanding how models resolve am-
biguity. Beyond visualization, it also enables
topological metrics that may inform proactive
modeling strategies in subjective NLP tasks.
For reproducibility, all code and experiment
configurations are released1.

1 Introduction

Ambiguity is a persistent challenge in Natural Lan-
guage Processing (NLP) (Pavlick and Kwiatkowski,
2019) when instances often permit multiple plausi-
ble meanings or evoke differing judgements across
annotators (Wan et al., 2023). This is the case
in offensive language detection or natural lan-
guage inference, where annotators may disagree
(Leonardelli et al., 2021; Nie et al., 2020). While
prior work has focused on modeling the ambi-
guity using soft labels or confidence estimates

1https://github.com/NisrineRair/
tda-nlp-representations

(a) UMAP projection (b) Mapper graph

Figure 1: Illustration of geometric (UMAP) and topolog-
ical (Mapper) views of model representations. Figure(a)
UMAP shows apparent separation between offensive
and non-offensive instances. (b) Mapper reveals a more
fragmented and connected structure, with offensive and
non-offensive regions interwoven, highlighting spatial
organization that UMAP flattens.

(Swayamdipta et al., 2020; Fornaciari et al., 2021),
less is known about how ambiguous examples are
internally structured in representation space.

Fine-tuning of language models is known to
rearrange data within the embedding spaces, in-
creasing cohesion and alignment with task-relevant
categories (Zhou and Srikumar, 2021; Rajaee and
Pilehvar, 2021). These changes are often analyzed
using geometric tools such as PCA and UMAP,
and quantified using metrics like cosine similar-
ity, silhouette score, and anisotropy (Ethayarajh,
2019; Coenen et al., 2019; Cai et al., 2021). Yet
such tools can oversimplify high-dimensional struc-
ture. PCA’s global projections compress variance
into a limited number of axes (Wold et al., 1987),
while UMAP enforces local Euclidean neighbor-
hoods (McInnes et al., 2020), often at the ex-
pense of capturing nonlinear or hierarchical rela-
tionships. In contrast, linguistic embedding space
has been shown to exhibit natural hyperbolic geom-
etry (Nickel and Kiela, 2017), a structure that topo-
logical methods can preserve without relying on
Euclidean assumptions. This is particularly impor-
tant in high-dimensional settings, as dimensionality
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increases, points tend to become nearly equidistant,
blurring the notion of proximity and undermin-
ing the interpretability of distance-based measures
(Donoho, 2000; Aggarwal et al., 2001). As a result,
familiar geometric intuitions about neighborhoods
and separation begin to break down, making it easy
to misread the structure of the embedding space.

This limitation is illustrated in Figure 1a where
UMAP applied to the final-layer [CLS] embed-
dings of a RoBERTa-Large model fine-tuned on
binary offensive language detection, presents the
offensive class as a single, compact cluster. On
the contrary, topological tools construct graphs
based on point connectivity rather than distances,
revealing a more fragmented and nuanced organi-
zation as in Figure 1b, where offensive instances
are spread across multiple distinct yet connected
regions, suggesting that geometric projections may
flatten meaningful topological structure. This ex-
ample highlights a key limitation of classical tools:
visual simplicity can come at the cost of structural
fidelity. This limitation reflects the embedding
space’s non-Euclidean, hyperbolic structure.

In this work, we use Mapper, a topological tool,
to analyze how fine-tuned language models em-
bed ambiguous instances and how this structure
manifests in the geometry of embedding space. Fo-
cusing on offensive language detection, we explore
how fine-tuning reshapes topological organization,
why models exhibit overconfidence in ambiguous
inputs, and how these behaviors relate to human
disagreement. Our results show that fine-tuning im-
poses topological regularity: even instances with
annotation disagreements are mapped into smooth,
consistent regions. Rather than ignoring uncer-
tainty, language models appear to spatially reorga-
nize it, resolving ambiguity into reliable structures.

2 Related Work

Ambiguity, Disagreement, and Uncertainty in
NLP. Ambiguity in NLP has been studied from
multiple angles. Early work often treated disagree-
ment as label noise to be filtered (Zhang et al.,
2017), whereas more recent studies argue that it
reflects genuine linguistic uncertainty and advo-
cate for distributional supervision to capture anno-
tator variability (Pavlick and Kwiatkowski, 2019;
Mostafazadeh Davani et al., 2022). Building on this
perspective, several studies investigated model be-
havior on ambiguous inputs. (Swayamdipta et al.,
2020) show that ambiguous examples exhibit un-

stable training dynamics, while Liu et al. (2023)
argue that models tend to be overconfident on such
inputs, failing to reflect underlying uncertainty in
their predictions. Other research has challenged the
use of majority vote in subjective tasks. Leonardelli
et al. (2023) argue that majority aggregation sup-
presses meaningful disagreement signals, motivat-
ing soft-label and annotator aware modeling. These
approaches assess ambiguity at the output level,
leaving open the question of how it is structurally
encoded within the model.

Fine-Tuning and Embedding Space. Fine-
tuning is known to reshape representation in the
embedding space. Studies using distance-based
metrics show that fine-tuned models for classifica-
tion tasks increase intra-class cohesion and expand
inter-class separation (Zhou and Srikumar, 2021).
Spectral analyses reveal that variance becomes con-
centrated in relevant directions, reducing isotropy
of embedded instances (Cai et al., 2021; Ethayarajh,
2019). Probing classifiers further confirm that lin-
guistic features become more linearly separable af-
ter fine-tuning (Hewitt and Manning, 2019). How-
ever, distance-based metrics oversimplify or dis-
tort high dimensional structure, potentially missing
connectivity patterns and latent organization.

Topological Methods in NLP. Topological Data
Analysis (TDA) provides powerful tools for study-
ing high-dimensional data beyond geometry, focus-
ing on how points connect rather than how far apart
they are. Two key tools are (1) Mapper (Singh
et al., 2007), which constructs graph networks
by projecting data through a lens into lower di-
mensions, and (2) Persistent homology (Carlsson,
2009), which quantifies topological features like
clusters or holes that persist across scales. While
both methods have demonstrated significant suc-
cess in different applications, for example in identi-
fying novel cancer subtypes from gene expression
data (Lum et al., 2013), their application to NLP
remains limited, with few applications that can be
categorized into three main directions: (1) Lexical-
level analysis, Rathore et al. (2023) employed Map-
per to track topological transformations in word em-
bedding spaces during fine-tuning, revealing how
semantic relationships reorganize at different train-
ing stages. (2) Summarizing documents, (Guan
et al., 2016) demonstrated that homological simpli-
fication can remove noise while preserving struc-
tural patterns and effectively extract keyphrases by
preserving the topological structure of document
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semantic graphs using TF-IDF weighted represen-
tations. (3) Model-internal analysis, Fitz et al.
(2024) applied persistent homology to compare the
topological complexity of LSTM and Transformer
activation patterns, finding recurrent architectures
exhibit greater representational redundancy. Com-
plementary, Gardinazzi et al. (2024) utilized zigzag
persistence to track the evolution of topological
features across transformer layers, enabling princi-
pled model pruning based on structural redundancy
analysis. While these prior works demonstrate the
feasibility of topological tools in NLP, they focus
largely on pretrained models, lexical structure, or
model internals.

Prior work offers valuable insights into how
models handle ambiguous data, how fine-tuning
reshapes representation spaces, and how topologi-
cal methods extract structures in high dimensions.
However, these strands remain disconnected. Am-
biguity is typically evaluated at the output level,
fine-tuning effects are described through geometric
metrics, and TDA is rarely applied beyond lexi-
cal or pretrained settings. Our work bridges these
gaps by using Mapper TDA-algorithm to explain
how fine-tuned models internally structure ambigu-
ous instances revealing predictive regularities that
persist even for annotator disagreement.

3 The Mapper Algorithm

This section provides a brief overview of the Map-
per algorithm, the foundation of our topological
analysis. Mapper (Singh et al., 2007) constructs a
graph-based summary of high-dimensional data by
combining filtering, covering, and clustering. This
process reveals global patterns while preserving
local structure, offering a topological perspective
on how data are organized. The algorithm steps,
illustrated in Figure 2, are described below.
Filtering. Because high-dimensional data can be
viewed from many angles, a lens function allows it
to be projected to highlight a specific aspect of in-
terest. Formally, a lens is a function f : Rd → Rk,
mapping each point in the original d-dimensional
space to a k-dimensional space, where k ≪ d.
While any value of k can be used, implementations
typically use k ≤ 3 to balance computational ef-
ficiency with interpretability. The lens function
defines a coordinate system by which the data can
be more easily partitioned in the next step. This
flexibility allows Mapper to be tailored to differ-
ent analysis goals. For example, projecting onto

one or several principal components emphasizes
directions of high variance, while ignoring details
attached on the other directions. The lens can be
any user-defined function, including geometric de-
scriptors such as eccentricity or centrality, density-
based scores, or task-specific measures, depending
on what aspect of the data one aims to reveal.
Covering. The codomain, i.e. the image Rk of the
lens f , is then covered by overlapping hypercubes.
Mapper divides each dimension into r equal-length
intervals, forming a grid of hypercubes that parti-
tion the image of f . This grid defines a covering
U = {Ui}, where each Ui is a hypercube of side
length 1/r. For 1D lens, the covering consists of
intervals, for k = 2 it consists of rectangles, and in
general, for arbitrary k, the covering is a collection
of overlapping hypercubes in Rk. The parameter
r controls the granularity of this partition: higher
values reveal local structure, while lower values
favor generalization. To encourage continuity be-
tween hypercubes, Mapper introduces a fractional
overlap ϵ ∈ [0, 1) between adjacent bins. This ex-
pands each hypercube slightly by an amount ϵ · 1

r
in each dimension, so that neighboring hypercubes
intersect. A point f(x) may therefore fall into mul-
tiple overlapping bins, and the corresponding data
point x will be included in multiple preimage sets
f−1(Ui). This overlap is essential for connectivity,
since it facilitates the linking of topologically re-
lated clusters, preserving continuity and coherence
of the underlying data structure in the final graph.
Clustering. For each hypercube Ui ∈ U , Mapper
identifies the corresponding subset f−1(Ui)∩X in
the original high-dimensional space Rd and applies
a clustering algorithm. Each cluster corresponds
to a node in the resulting Mapper graph. This lo-
cal clustering avoids reliance on global geometry
and is well-suited to nonlinear data. The clustering
algorithm can be chosen based on the task. Com-
mon choices include DBSCAN, HDBSCAN, or
other density or distance-based methods. If a data
point appears in multiple overlapping bins and is as-
signed to several clusters, the corresponding nodes
in the Mapper graph are connected by an edge.
These edges reflect shared membership across clus-
ters and allow Mapper to summarize the data as a
graph that captures both local structure and global
connectivity.
Graph construction. The final output of Mapper
is a graph where each node corresponds to a cluster
and edges connect nodes that share one or more
data points. A graph may contain multiple con-
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Figure 2: Illustration of the Mapper algorithm. A high-dimensional data is first projected using a lens function
(filter) to a low-dimensional space. The projection is covered by overlapping hypercubes (intervals here), and each
preimage is clustered in the original space. Nodes in the resulting graph represent clusters, and edges indicate shared
points due to overlap. Adapted from Figure 1 of Liao et al. (2019), available under CC BY 4.0.

nected components, reflecting distinct regions of
the dataset that remain disconnected under the lens
and clustering choices. Analyzing the size, homo-
geneity, or connectivity of these components can
reveal meaningful structures in the data.
Mapper’s output depends on three key design
choices: the lens function, which determines the
aspect of the data being emphasized, the cover res-
olution and overlap, which control how finely the
space is segmented and how regions connect, and
the clustering algorithm, which determines how
data points are grouped into nodes. Each of these
elements shapes the granularity, connectivity, and
interpretability of the resulting graph. Choosing
values that balance structural detail with readability
is essential. For a broader comparison of these ele-
ments and their impact, see Madukpe et al. (2025).

4 Methodology

4.1 Dataset

We use the MD-Offense dataset (Leonardelli et al.,
2021), designed for the analysis of annotator dis-
agreement in offensive language detection. It
contains 10,753 instances, English tweets anno-
tated by five U.S. annotators per instance. The
data spans three socially and politically salient
domains: COVID-19, the 2020 U.S. presidential
election, and racial justice, providing rich vari-
ability in both content and labeling agreement.
Each instance is assigned a binary label c =
{offensive, non-offensive}, obtained via ma-
jority vote from five annotators, and denoted there-
after ground-truth label. In addition, each instance

is labeled with an agreement level: A++ (5/5), A+
(4/5), or A0 (3/5), which serves as a proxy for lin-
guistic ambiguity (Pavlick and Kwiatkowski, 2019;
Mostafazadeh Davani et al., 2022). A++ exam-
ples are considered unambiguous, while A0 reflects
high annotator disagreement and thus greater am-
biguity. The dataset is split into training, valida-
tion, and test sets, stratified by domain and agree-
ment level, with full distributions provided in Ap-
pendix A. Prior studies report a sharp decline in
classification performance as agreement decreases,
with F1 scores dropping from approximately 0.91
for A++ to 0.62 for A0 (Leonardelli et al., 2021).
We replicate this trend on several models, reported
in Appendix B, underscoring the difficulty of mod-
eling highly ambiguous inputs.

4.2 Model and Embedding Extraction

We focus our analysis on RoBERTa-Large, exam-
ining both its pretrained and fine-tuned represen-
tations. While several encoder-only architectures
were fine-tuned as part of our broader experimen-
tation, we focus our analysis on RoBERTa-Large
due to strong performance across agreement levels
as shown in Appendix B and because focusing on
a single model provides clarity of analysis. This
makes it a suitable choice for showcasing Map-
per’s interpretability rather than conducting model
benchmarking. Fine-tuning was performed on the
full training set using the ground-truth labels, in-
cluding all agreement levels from A0 to A++ to
reflect the complete distribution of annotator dis-
agreement. While prior work has shown that re-
stricting fine-tuning to A+ and/or A++ subsets can
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yield higher classification accuracy (Leonardelli
et al., 2021), our goal is not to optimize predictive
performance but to analyze how models structure
data in representation space. Fine-tuning was per-
formed using standard hyperparameters: 3 training
epochs, a batch size of 8, and a learning rate of
2 ·10−5. To capture model-internal representations,
we extract the [CLS] embedding from the final hid-
den layer for each test instance because it serves
as input to the classifier and encodes task-relevant
information.

4.3 Mapper Parameters

We implemented the Mapper algorithm using the
KeplerMapper Python library (Veen et al., 2019;
van Veen et al., 2021); This library facilitated the
projection, covering, and construction of Mapper
graphs. To analyze and visualize the resulting net-
works, we used the NetworkX library (Hagberg
et al., 2008), which enabled efficient computation
of graph-theoretic and topological metrics.

Lens Function We chose six lens functions that
project high-dimensional instance embeddings of
the [CLS], i.e. d = 1024 into 1D intervals (k = 1).
Each lens captures a distinct geometric or semantic
property of the embedding space. The centroid pro-
jection captures alignment with the decision bound-
ary between offensive and non-offensive classes.
PCA highlights global variance, while eccentricity
defined as the maximum cosine distance to train-
ing points detects peripheral or outlier instances.
The L2 norm reflects activation magnitude, poten-
tially linked to confidence. Two random projec-
tions serve as baselines to distinguish signal from
noise. All lens statistics are computed using the
training set only to avoid data leakage. Full defini-
tions are provided in Appendix C. The use of 1D
lenses simplifies comparisons across ambiguity lev-
els by ensuring consistency in Mapper parameters.
All graphs are constructed using the same num-
ber of intervals, overlap, clustering algorithm, and
layout. While higher-dimensional or task-specific
lenses may uncover richer structures, we defer such
extensions to future work. While our lenses are
geometric, Mapper’s topological structure is not
derived from the projections themselves. The lens
simply partitions the data into overlapping regions,
clustering is then performed in the original high-
dimensional space. As a result, the Mapper graph
reflects how data is connected, not merely how it
appears in projection. This shifts the focus from

geometric simplification to topological structure,
preserving branching, overlaps, and ambiguity pat-
terns often flattened by projection-based methods.

Covering We use a fixed resolution of r = 40
with 30% overlap ( ϵ = 0.3) for all lenses. These
hyperparameters were selected after inspection of
Mapper graphs across lenses and ambiguity levels.
Increasing the number of intervals (e.g., r > 50)
led to overly fragmented graphs with many dis-
connected or singleton nodes, while coarse cov-
erings (e.g., r < 30) oversimplified the structure,
obscuring fine-grained connectivity. A resolution
of r = 40 offered a middle ground between in-
terpretability and granularity to preserve neighbor-
hood structure without excessive redundancy. The
impact of covering resolution on graph topology
is provided in Appendix D. Similarly, for overlap,
we tested values in the range ϵ ∈ [0.2, 0.9]. We
avoided higher overlaps as they introduced visual
artifacts such as redundant nodes due to duplicate
points appearing in adjacent regions, which dis-
torted the underlying topological signal. At the
same time, too little overlap caused artificial frag-
mentation. The choice of ϵ = 0.3 consistently
preserved connectivity without inflating the graph.
Appendix E provides evidence of how overlap set-
tings influence graph structure.

Clustering We use HDBSCAN (McInnes et al.,
2017) as our clustering algorithm to avoid impos-
ing a fixed number of clusters. Unlike methods
such as k-means or agglomerative clustering that
require a global k, HDBSCAN adapts to the lo-
cal density of points in each interval, making it
well-suited for capturing the heterogeneous struc-
tures that Mapper is designed to surface. Fixed-k
clustering often resulted in artificial splits within
homogeneous regions, leading to unstable or redun-
dant nodes. In contrast, HDBSCAN dynamically
adjusts to local structure and identifies outliers as
noise, improving robustness and interpretability.
We use cosine distance, appropriate for normalized
embedding spaces, and set the minimum cluster
size to 2, enabling the detection of fine-grained
patterns without excessive fragmentation. Com-
pared to DBSCAN, HDBSCAN requires less man-
ual tuning and generalizes better to varying densi-
ties across intervals. The proportion of excluded
instances remained moderate and did not meaning-
fully distort the structure for most lenses, as shown
in Appendix F, which reports detailed noise rates
across lenses and ambiguity levels.
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4.4 Topological Metrics
We denote the resulting Mapper graph as G =
(N,E), where N represents the nodes and E the
edges between them. Each node ni ∈ N represents
a cluster containing a subset Xi = {xij} of the
test instance embeddings. The size of each node
is denoted Si = |Xi|. A connected component is
a set of nodes C = {ni} such that all nodes in C
are connected via edges in E. The full set of data
points in a component is denoted XC =

⋃
ni∈C Xi,

with total size |XC | =
∑

ni∈C Si. Based on this
formal structure, we propose the following topo-
logical evaluation metrics.
Component Purity (CP): average purity of nodes
within a connected component C:

CP =
1

|XC |
∑

ni∈C

∑

xi
j∈Xi

[
yij = c

]
, (1)

where yij is the label of sample xij , c is the domi-
nant label (either ground-truth or predicted), and
[P ] is the Iverson bracket, equal to 1 if P is true
and 0 otherwise. CP measures the extent to which a
component is dominated by a single class, account-
ing for the varying sizes of its nodes.
Edge Agreement (EA): proportion of edges whose
endpoints share the same majority class label:

EA =
1

|E|
∑

(ni,nj)∈E

[
maj(ni) = maj(nj)

]
, (2)

where maj(ni) is the majority ground-truth label
among all samples assigned to node ni. EA cap-
tures the global consistency of the Mapper graph
by checking how often directly connected nodes
share the same class.
Majority Match (MM): compares predicted vs.
true majority labels at the component level:

MM =
1

|C|
∑

C∈C

[
majtrue(C) = majpred(C)

]
, (3)

with C the set of connected components in G, and
majtrue(C), majpred(C) denote the ground-truth
and predicted majority labels in XC , respectively.
MM assesses how well the model’s predictions
align with human consensus at a regional level.

5 Results and Discussion

Topological Effects of Fine-Tuning. Fine-
tuning restructures the embedding space not by
collapsing classes into simple, linearly separable

clusters, but by organizing them into modular, non-
convex regions. As shown in Figure 3a, the base
model exhibits a fragmented topology on the A++
subset, with diffuse clusters and inconsistent labels.
Fine-tuning, as shown in Figure 3b, consolidates
these components into more coherent regions that
are better aligned with class boundaries, yet they
remain distributed across disconnected areas.

This modularity persists across ambiguity lev-
els. Both component purity and edge agreement in-
crease after fine-tuning in Figures 5 and 6, indicat-
ing a twofold structural gain: locally, components
become more class-homogeneous, and globally,
neighboring regions exhibit stronger label consis-
tency. These improvements suggest that the model
learns to organize decision boundaries not only
within clusters but also across their connections.
Gains are weakest in the A0 subset, where annota-
tor disagreement limits geometric consolidation.

Mapper thus reveals that fine-tuning encodes
task-relevant structure without enforcing global
convexity. The resulting geometry remains mul-
timodal: the model partitions each class into frag-
mented, task-aligned subregions. This helps ex-
plain why linear probes often fail (Hewitt and
Liang, 2019; Voita and Titov, 2020): although
widely used, they assume unimodal linear separa-
bility and therefore miss the nonlinear, multimodal
structure that persists even after training. This high-
lights the value of topological diagnostics such as
Mapper, which are designed to capture the complex
organization of decision regions.
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Figure 5: CP across agreement levels (Base vs Fine-
Tuned). Distribution of component-level purity scores
using eq. (1) for each agreement test subset (A0, A+,
A++), aggregated across all six 1D lenses. Each point
represents the purity of a connected component in a
Mapper graph. Fine-tuned representations consistently
increase class homogeneity within components, espe-
cially in A+ and A++, where label agreement is stronger.
Full per-lens distributions are provided in Appendix G.
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(a) Before fine-tuning. (b) After fine-tuning on the training set.

Figure 3: Mapper graphs of RoBERTa-Large [CLS] embeddings on the A++ test subset, colored by ground-truth
labels (non-offensive, offensive, mixed). Both graphs use a PCA-1D lens (40 intervals, 30% overlap) and HDBSCAN
clustering. Nodes are considered mixed when no single ground-truth label constitutes a majority among their points.
Fine-tuning produces a more structured topology: label purity increases, fragmented components are reduced, and
class-aligned subregions emerge, suggesting a modular decision space rather than a single global boundary. Note
that visual proximity between nodes does not imply embedding similarity, only edges reflect topological closeness
through shared overlap.

Prediction Aligns with Topological Regions. In
the most ambiguous setting (A0), where label struc-
ture is noisiest, fine-tuned models reveal a striking
behavior: prediction regions become geometrically
coherent. The base model as shown in Figure 4a
produces noisy, fragmented label patterns of em-
beddings. By contrast, the fine-tuned model as
shown in Figure 4b imposes smooth region-level
decisions: most connected components yield a sin-
gle predicted label, suggesting classification oper-
ates at the level of regions, not individual points.
Only one region, in the bottom right of Figure 4b,
shows a gradual transition in predictions: it moves
from non-offensive to offensive through a small
area with mixed labels. This is a rare example
of a visible decision boundary in the embedding
space. Most other regions are sharply separated,
which suggests that the model makes confident, all
or nothing predictions at the level of entire regions,
even when the data is ambiguous.
Table 1 quantifies this trend: after fine-tuning, over
98% of components are prediction-pure, even in
A0 subset. Despite annotator disagreement, the
model confidently projects a single label per re-
gion. Yet predictions are not arbitrary, the majority
match rate MM remains high (77.7% in A0, above
94% in A+/A++), showing that component-level
predictions still align with dominant ground-truth
labels. This behavior highlights two effects. First,

the model appears to projects test instances into
coarse topological regions that reflect its binary
fine-tuning objective. Second, while this reflects
structural confidence, it also explains the model’s
overconfidence in ambiguous regions: predictions
appear to be driven by dominant signals within a
component, even when the underlying labels are
mixed or uncertain. In A0 test subset, the model
confidently assigns a single prediction to all com-
ponents.This region-level coherence is not visible
in scalar metrics such as accuracy or F1 score, but
emerges clearly through Mapper’s topological lens.
Appendix J presents qualitative examples of low-
purity components. More broadly, Mapper pro-
vides a diagnostic tool to investigate how models
group sentences. For instance, whether such group-
ings reflect meaningful features or unintended arti-
facts. While we do not pursue this question here,
our results highlight it as a promising direction for
future work.

Robustness Across Lenses and Models. To en-
sure our findings are not tied to a particular setup,
we conducted two robustness checks. First, apply-
ing 2D lenses produced Mapper graphs and purity
trends indistinguishable from the 1D case, as de-
tailed in Appendix K. Second, repeating the anal-
ysis with other encoder-only models yielded the
same topological patterns observed with RoBERTa-
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(a) Ground-truth labels. (b) Model prediction labels.

Figure 4: Mapper graphs of [CLS] embeddings on the A0 test subset (RoBERTa-Large fine-tuned on the training
set, PCA-1D lens, r = 40, ϵ = 0.3, HDBSCAN). Left: nodes colored by ground-truth labels, right: same graph
colored by model prediction labels, (non-offensive, offensive, mixed). Nodes are considered mixed when no single
ground-truth label constitutes a majority among their points. Although ground-truth labels appear fragmented
(left), the model’s predicted labels (right) exhibit smoother, regionally consistent patterns reflecting the model’s
binary classification training objective. Each topological component tends to predict a consistent class, with fewer
intra-cluster flips. This suggests that the model performs prediction at the level of coarse topological regions, even
in ambiguous data.

Large: modular prediction aligned regions, near-
perfect prediction purity, and the largest prediction
label gap in A0 as shown in Appendix L. Together,
these checks indicate that our observations are not
artifacts of a particular projection or model, but
reflect consistent topological behaviors.
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Figure 6: EA across ambiguity levels (Base vs Fine-
Tuned). Bar plots show the average EA using eq. (2),
computed per Mapper graph and aggregated across
all 1D lenses for each greement test subset (A0, A+,
A++). Fine-tuned embeddings exhibit consistently
higher agreement, especially for less ambiguous sub-
sets (A+ and A++), indicating smoother class-consistent
transitions between neighboring clusters. Error bars
denote standard deviation across lenses. Per-lens edge
agreement results are reported in Appendix H, showing
that the overall trend holds consistently across all lenses.

6 Conclusion

Mapper reveals that fine-tuning not only compacts
and cleans the topology of embedding space, boost-
ing component purity and edge agreement, but
also uncovers a modular, non-convex regions that
align closely with model predictions. This reor-
ganization is most visible in unambiguous data
(A++), where high agreement among annotators
leads to clearly defined, coherent regions. In con-
trast, ambiguous cases (A0) remain fragmented and
structurally noisy, yet are often grouped into con-
fident, homogeneous prediction regions. This sug-
gests that models do not merely reflect label noise,
they impose their own structured certainty, even
in regions where human disagreement dominates.
These findings defy common assumptions about
model failure in ambiguity. Rather than randomly
guessing, models exhibit systematic region-level
behavior, suggesting that ambiguity is encoded and
resolved in consistent, if not always accurate ways.
Whether this resolution reflects true generalization
or an overfit to misleading surface patterns remains
an open question. Topological analysis thus com-
plements scalar metrics by exposing how models
internalize uncertainty and reshape representation
space. It highlights not only where models succeed,
but how they choose to generalize, whether by col-
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Ambiguity CP (GT) (%) CP (Pred) (%) MM (%)
A0 31.5 ± 10.1 98.0 ± 2.4 77.7 ± 20.5
A+ 54.8 ± 15.1 98.0 ± 3.2 94.1 ± 12.0
A++ 81.8 ± 10.6 99.5 ± 1.2 97.1 ± 3.9

Table 1: Percentage of connected components that exceed the 90% purity threshold, computed using ground-truth
labels (CP (GT)) and model predictions labels (CP (Pred)), i.e using eq (1) with corresponding labels. The column
MM reports the proportion of components where the predicted majority label matches the ground-truth majority
label (see eq. (3)). Results are averaged across all 1D lenses and reported as mean ± std. Full per-lens results and
additional details about variation are provided in Appendix I.

lapsing disagreement into a dominant class, or by
carving complex substructures to navigate ambigu-
ous content. Mapper is a promising foundation for
developing more reliable and interpretable NLP
systems. Beyond post-hoc interpretation, these
structures could inform proactive modeling strate-
gies, guiding subset selection, fine-tuning regimes,
or robustness evaluations focused on ambiguous
regions. By linking embedding geometry, predic-
tion consistency, and human disagreement, Mapper
enables a more principled understanding of how
models internalize and act on language represen-
tations. Leveraging these insights to inform both
model development and annotation practices re-
mains a rich direction for future work.
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Limitations

While our topological analysis provides novel in-
sights into how fine-tuned models encode class
structure and ambiguity, several limitations should
be acknowledged.

Mapper Sensitivity and Interpretability. The
Mapper algorithm is highly sensitive to its hyperpa-
rameters, particularly the lens function, cover gran-
ularity, and clustering strategy. Although we use
principled heuristics and conduct lens-wise robust-
ness checks, the interpretability of resulting graphs
still depends on these design choices. Topological
patterns should therefore be interpreted in relative
terms (e.g., trends across training conditions), not
as fixed geometric ground truths.

Task and Dataset Specificity. Our experiments
focus on a single dataset and task (offensive lan-
guage classification on MD-Offense). While this
setup allows controlled analysis, it limits generaliz-
ability. It remains an open question whether similar
topological phenomena, such as disconnected de-
cision regions or regional predictive consistency,
would emerge in other tasks (e.g., natural language
inference, sentiment analysis) or with datasets ex-
hibiting different forms of ambiguity.

Lens Expressiveness and Task-Specificity. Our
analysis primarily relied on simple, interpretable
lenses. While we extended the study to 2D pro-
jections , our focus was on general purpose con-
structions such as PCA, centroid distances, and
eccentricity. Task specific or adaptive lenses for
example, saliency guided projections, uncertainty
aware mappings, or semantics driven nonlinear
transformations may expose different structures,
particularly in regions where ambiguity arises from
subtle pragmatic or contextual cues. Identifying
lens designs tailored to the sources of ambiguity
in language remains an open direction for future
work.

Metric Limitations. The structural metrics we
propose, component purity, edge agreement, and
majority match, capture interpretable geometric
trends, but are Mapper-specific and do not directly
reflect classification accuracy or generalization.
Moreover, they are inherently correlational: im-
provements in structure after fine-tuning may re-
flect better task learning, but could also result from
overfitting or feature collapse.

Toward Generalizable Topological NLP. These
limitations are not unique to our study but reflect
broader challenges in adapting TDA to NLP. They
point to the need for hybrid pipelines combining
topological summaries with statistical validation,
comparisons to alternative graph structures, and
multi-model, multi-task replication.
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Appendix

A Data Representation

Table 2 summarizes the number of samples and the proportion of offensive examples across dataset splits
(train, validation, test) and agreement levels (A0, A+, A++) based on the ground-truth labels. Offensive
content is more frequent in the A0 subsets, which may help explain the higher levels of annotator
disagreement observed in these cases.

Split Agreement Level Total Samples Offensive Ratio (%)
Train A0 1884 45.2

A+ 1930 32.9
A++ 2778 17.1

Validation A0 322 46.9
A+ 317 37.2

A++ 465 25.6
Test A0 856 45.1

A+ 909 39.6
A++ 1292 21.1

Table 2: Distribution of offensive labels across MD-Offense, grouped by split and agreement level.

B Model-Level Summary

Table 3 presents test set performance and embedding structure across ambiguity levels (A0, A+, A++) for
all fine-tuned models. Accuracy and Macro F1 reflect standard classification performance, while silhouette
score variance and Davies–Bouldin index (lower is better) capture structural coherence in embedding
space. All metrics are averaged over three random seeds. Best accuracy values are highlighted in bold.
RoBERTa-Large consistently achieves strong results across ambiguity levels, motivating its selection for
our topological analysis.

Model Agreement Level Accuracy F1 Score Silhouette (±) ↑ DB Index (±) ↓
BERT-Base A0 0.607 0.602 0.327 ± 0.010 5.07 ± 0.39

A+ 0.810 0.801 0.465 ± 0.008 1.54 ± 0.03
A++ 0.934 0.904 0.782 ± 0.014 0.83 ± 0.04

DeBERTa-Base A0 0.602 0.596 0.315 ± 0.002 5.58 ± 0.11
A+ 0.819 0.812 0.478 ± 0.012 1.41 ± 0.02

A++ 0.943 0.916 0.801 ± 0.014 0.73 ± 0.04
DistilBERT A0 0.606 0.598 0.329 ± 0.006 5.43 ± 0.30

A+ 0.811 0.801 0.472 ± 0.012 1.56 ± 0.03
A++ 0.941 0.912 0.789 ± 0.007 0.84 ± 0.02

E5-Base A0 0.612 0.608 0.431 ± 0.003 5.60 ± 0.15
A+ 0.809 0.800 0.489 ± 0.021 1.70 ± 0.11

A++ 0.935 0.906 0.798 ± 0.027 0.92 ± 0.11
MiniLM A0 0.600 0.596 0.312 ± 0.003 4.56 ± 0.13

A+ 0.790 0.783 0.461 ± 0.002 1.43 ± 0.03
A++ 0.942 0.916 0.805 ± 0.009 0.65 ± 0.03

RoBERTa-Large A0 0.615 0.608 0.441 ± 0.001 4.45 ± 0.36
A+ 0.822 0.814 0.502 ± 0.041 1.16 ± 0.06

A++ 0.954 0.932 0.825 ± 0.045 0.51 ± 0.04

Table 3: Test performance and representation metrics for each fine-tuned model.
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C Lens Details

We define the 1D lens functions f(x) : Rd → R used to project test embeddings x ∈ Rd into scalar
values for Mapper analysis. These lens functions serve as the filtering mechanism that guides Mapper’s
overlapping cover of the data space. Each function highlights a specific geometric or semantic property of
the representation space, such as class separation, density, or position relative to cluster centroids. All
lens values are computed using statistics from the training set and rescaled to the [0, 1] interval to ensure
consistent binning and comparability across lenses.

We use a diverse set of lens types: supervised projections based on class centroids, unsupervised
structure via PCA, local and global density indicators like eccentricity or L2 norm, and random directions
that simulate generic perspectives of the space. This variety enables a multifaceted topological analysis,
helping ensure that observed Mapper structures are not artifacts of a particular projection choice.
Let x ∈ Rd be thereafter the embedding of a test instance.

• Centroid Projection (centroid_1d) Projects x onto the vector connecting the means of the embed-
dings (centroids) of the two training classes:

f(x) =
x⊤(µ1 − µ0)

∥µ1 − µ0∥
,

with µ0 and µ1 the centroids, i.e. the mean vectors, of the non-offensive (y = 0) and offensive
(y = 1) training embeddings subsets, respectively:

µy =
1

|Xy|
∑

xi∈Xy

xi,

where Xy ⊂ Rd is the subset of training embeddings labeled either y = 0 or y = 1 . The resulting
scalar f(x) reflects how aligned the embedding of the test instance x is with the class separation
direction.

• PCA First Component (pca_1d) Projects x onto the first principal component u1 of the training set:

f(x) = u⊤1 x,

where u1 ∈ Rd is the direction of maximal variance estimated by applying PCA on the entire training
dataset in the embeddings space. This projection captures the dominant geometric trend in the data
and often reflects task-relevant variation.

• Eccentricity (eccentricity_1d) Measures how distant x is from the training set, using maximum
cosine distance:

f(x) = max
xi∈Xtrain

(
1− x · xi

∥x∥ ∥xi∥

)
,

where Xtrain denotes the set of all training embeddings. High values of f(x) indicate that the test
point is geometrically distant (i.e., eccentric) from the training distribution.

• L2 Norm (l2norm_1d) Measures the Euclidean norm (magnitude) of x :

f(x) = ∥x∥2 =

√√√√
d∑

i=1

x2i .

This lens reflects how far the point lies from the origin in embedding space and may capture
differences in representation scale or intensity.

• Random Projections (random1_1d and random2_1d) Projects x onto random direction

f(x) = r⊤x

where r ∈ Rd is a fixed random unit vector sampled once before projection. This lens selects a
random direction in the embedding space and projects each test point along it. Different random
seeds yield different perspectives of the geometry.
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D Varying Mapper Covering Resolution

Figure 7 shows the effect of increasing the number of intervals r in the Mapper covering on the same
dataset subset (A++) using the random1_1d lens. All graphs were generated with the same HDBSCAN
configuration and a fixed overlap of ϵ = 0.3. As r increases from 10 to 90, the representation space
becomes more finely partitioned. Low values (e.g., 10–20) result in overly coarse graphs that merge
distinct regions and obscure local structure. In contrast, high values (e.g., 80–90) lead to significant
fragmentation, with many disconnected or singleton components. This reflects how excessive resolution
can distort the underlying topological signal. A middle setting, such as r = 30 or 40, consistently offers a
good trade-off between local granularity and global connectivity. While this trend holds across models and
ambiguity levels, the degree of fragmentation also depends on the lens and the noisiness of the embedding
space. These hyperparameter choices are thus best calibrated in relation to both the geometry of the data
and the interpretability needs of the analysis.

E Varying Mapper Overlap

Figure 8 illustrates the effect of increasing Mapper overlap from 10% to 90%, using the random1_1d lens
on the A++ subset and a fixed resolution of r = 40. All graphs were generated with identical HDBSCAN
settings to isolate the effect of overlap alone. At very low values (10%–20%), the covering becomes
overly rigid, leading to severe fragmentation: adjacent regions are treated as disconnected, resulting in
a large number of small or isolated components. As overlap increases to 30%–40%, local continuity
improves and previously disconnected regions begin to merge into coherent graph structures. This is the
range where Mapper begins to meaningfully recover the underlying geometry without inflating the graph.
Beyond 50%, however, the increasing redundancy from duplicated points across overlapping bins causes
a rapid inflation in graph complexity. This leads to spurious edges, tightly packed node clusters, and
unnatural fan-like structures, particularly visible at 80%–90%. These artifacts distort the topology and
reduce interpretability by over-amplifying minor variations. Overall, the 30%–40% overlap range provides
the best trade-off: it allows components to remain connected without over-smoothing the embedding
space. This setting is therefore used consistently in our Mapper analyses.

F HDBSCAN Noise Exclusion by Lens

Table 4 reports the proportion of test points labeled as noise by HDBSCAN across 1D lenses and ambiguity
levels. Eccentricity consistently yields the lowest exclusion rates often under 5%, reflecting its inclusive
behavior due to its definition as the maximum cosine distance to the training set. It captures structurally
atypical inputs without discarding them. Random projections also result in minimal exclusion, as expected
from their agnostic geometric alignment.
In contrast, task-oriented lenses such as centroid_1d and pca_1d exhibit noticeably higher noise after
fine-tuning. These lenses emphasize class-separating directions, and the increase in excluded points likely
reflects sharper representational boundaries introduced during supervised optimization. Ambiguous or
boundary-adjacent instances are more frequently labeled as noise in these projections.
These patterns align with our overall claims: fine-tuning enhances topological regularity but also increases
exclusion in class-aligned projections. Across lenses, noise remains within acceptable bounds and does
not distort Mapper structure. HDBSCAN thus effectively balances robustness and interpretability in our
setup.

G Violin plots per lens for component purity

This figure complements Figure 5 by breaking down purity distributions per lens. Despite variation in
Mapper construction, the core trend holds: fine-tuning improves the local class consistency (purity) of
topological components across all lens types. This robustness supports the interpretation that observed
topological shifts reflect meaningful representational changes rather than artifacts of a specific projection.
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Lens Base Noise (%) Fine-tuned Noise (%)
A0 A+ A++ A0 A+ A++

centroid_1d 20.1% 9.5% 8.3% 26.6% 27.4% 20.0%
pca_1d 20.7% 13.9% 9.3% 26.0% 26.7% 20.3%
eccentricity_1d 10.0% 8.5% 5.7% 3.8% 2.1% 2.1%
l2norm_1d 21.3% 12.4% 19.1% 5.6% 5.8% 9.4%
random1_1d 2.9% 1.7% 1.2% 7.8% 9.2% 10.5%
random2_1d 2.2% 1.9% 2.3% 6.3% 6.5% 7.1%

Table 4: Proportion of test points labeled as noise by HDBSCAN for each 1D lens, reported inline by ambiguity
level (A0, A+, A++). Values correspond to final RoBERTa-Large representations and are not averaged across seeds.

H Edge Agreement per Lens

Figure 10 displays edge agreement scores disaggregated by lens type. While the main paper aggregates
across lenses to report overall trends, this breakdown reveals how lens choice influences topological
structure. All lenses benefit from fine-tuning, but the extent of improvement varies: more structured lenses
like eccentricity_1d and l2norm_1d show clearer class-consistent transitions than random projections.
These differences highlight the importance of lens selection when using Mapper to interpret model
geometry.

I Per-Lens Analysis of Component Purity and Prediction Alignment

Table 5 reports component-level metrics broken down by ambiguity level and Mapper lens type. While
the main paper focuses on averages aggregated across all lenses (Table 1) for robustness, this detailed
view helps interpret the observed variance and highlights lens-specific behavior.

Not all lenses yield equally structured Mapper graphs. For example, pca_1d and centroid_1d
consistently produce high-quality decompositions, with strong purity and high majority match across
ambiguity levels. In contrast, lenses like l2norm_1d or random2_1d sometimes produce overly coarse or
fragmented graphs, especially on ambiguous data (A0). This leads to volatile purity scores and sharp drops
in alignment with ground truth. For example, only 50% majority match for l2norm_1d in A0. Interestingly,
even lenses like eccentricity_1d, which exhibit consistently high prediction purity and perfect majority
match, can do so while capturing only limited ground-truth variation. These cases underscore that high
predictive agreement does not always imply faithful alignment with human annotations, especially in
ambiguous regions.

Such differences illustrate why lens choice matters: while Mapper preserves more structure than
projection-based methods, the specific lens determines which aspects of the geometry are emphasized. This
explains the standard deviations reported in Table 1 and motivates our decision to report aggregated trends
in the main analysis, while offering full per-lens breakdowns here for transparency and interpretability.
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Ambiguity Lens CP (GT) (%) CP (Pred) (%) MM (%)
A0 centroid_1d 40.0 100.0 81.2

pca_1d 42.5 97.5 75.0
eccentricity_1d 28.6 100.0 100.0
l2norm_1d 15.4 100.0 50.0
random1_1d 36.4 95.5 100.0
random2_1d 26.3 94.7 60.0

A+ centroid_1d 50.0 100.0 100.0
pca_1d 60.6 100.0 100.0
eccentricity_1d 33.3 93.3 100.0
l2norm_1d 50.0 100.0 100.0
random1_1d 79.2 100.0 94.7
random2_1d 55.6 94.4 70.0

A++ centroid_1d 82.9 100.0 96.6
pca_1d 89.8 100.0 100.0
eccentricity_1d 66.7 100.0 100.0
l2norm_1d 83.3 100.0 100.0
random1_1d 95.2 100.0 90.0
random2_1d 72.7 97.0 95.8

Table 5: Per-lens breakdown of component-level metrics: percentage of components exceeding the 90% purity
threshold for ground-truth and model predictions, and prediction–label majority match among pure components
(see eq. (3)).
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(a) r = 10 (b) r = 20 (c) r = 30

(d) r = 40 (e) r = 50 (f) r = 60

(g) r = 70 (h) r = 80 (i) r = 90

Figure 7: Effect of increasing the number of intervals r in the Mapper covering. Higher resolution introduces finer
granularity and reveals smaller connected regions, but can also lead to fragmentation and spurious nodes. All graphs
use the same lens and fixed overlap (ϵ = 0.3).
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(a) Overlap 10% (b) Overlap 20% (c) Overlap 30%

(d) Overlap 40% (e) Overlap 50% (f) Overlap 60%

(g) Overlap 70% (h) Overlap 80% (i) Overlap 90%

Figure 8: Effect of varying Mapper overlap ϵ from 0.1 to 0.9 on the A++ subset, using the random1_1d lens and
fixed resolution (r = 40). Low overlap causes fragmentation, while high overlap leads to inflated graphs. Overlap
around 30% provides the best trade-off.
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Figure 9: Component purity distributions across 1D lenses. Each subplot shows the purity of connected components
for base vs fine-Tuned models, separated by ambiguity level (A0, A+, A++). Fine-tuning consistently increases
purity across all lenses, particularly for less ambiguous data (A+ and A++). Improvements are visible even for
random lenses, suggesting the effect is not lens-specific. However, A0 remains harder to organize topologically,
with more dispersed purity scores.
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Figure 10: Edge agreement across lenses for base and fine-tuned RoBERTa-Large models. Each bar reports the
average proportion of edges connecting nodes with the same majority class label, across Mapper graphs constructed
using different 1D lens functions. Fine-tuned models consistently exhibit higher edge agreement across all lenses,
reflecting smoother topological class boundaries.
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J Qualitative Examples from Cluster Analysis

To better understand how models handle ambiguous or low-consensus regions, we examine individual
examples from Mapper components with low ground-truth purity (i.e., clusters mixing offensive and
non-offensive samples). All predictions are from the fine-tuned RoBERTa-Large model.

These examples show that consistent model predictions often emerge even when annotators disagree.
In some cases, this may reflect the model’s reliance on strong surface cues, in others, it may suggest
that distinct linguistic phenomena (e.g., sarcasm, political critique, racial discourse) are projected into
overlapping regions of embedding space.

Mapper allows us to identify and explore such structures. Whether these regions reflect meaningful
generalization or model overconfidence remains an open question. By surfacing how instances are grouped
and predicted together, Mapper provides a useful entry point for deeper error analysis and for assessing
how models internalize disagreement.

Example 1 (Domain 1 - Social Issues/Race)
Text: “Does this black life matter to BLM? [...] BLACK AMERICA, look at what Sharpton is doing
to you, YOU MEAN NOTHING TO HIM.”
Annotations: 1,1,0,1,0 (3 offensive, 2 non-offensive)
Ground-truth label: Offensive (1)
Model prediction label: Non-offensive (0) with 97.2% confidence

Example 2 (Domain 0 - Political Discourse)
Text: “President Trump’s rallies [...] Have you not even seen Dementia-Joe??”
Annotations: 0,0,1,0,1 (2 offensive, 3 non-offensive)
Ground-truth label: Non-offensive (0)
Model prediction label: Non-offensive (0) with 97.1% confidence

Example 3 (Domain 2 - COVID-19/Health)
Text: “We will not survive 2 more years of Gov DeSantis; he’s really out here tryna kill people [...]”
Annotations: 1,1,1,0,0 (3 offensive, 2 non-offensive)
Ground-truth label: Offensive (1)
Model prediction label: Non-offensive (0) with 96.4% confidence

K Robustness with 2D Lenses

While the main study emphasized one-dimensional lenses for their interpretability and exploratory value,
here we provide supplementary results using two-dimensional projections. Consistent with the 1D case,
fine-tuned embeddings yield near-perfect prediction purity, while label purity decreases most sharply in A0.
These trends hold across all five 2D lenses tested (Table 6), with component purity distributions and edge
agreement metrics (Figures 12, 11) confirming that, for this dataset, the structural organization revealed
by Mapper is stable across projection dimensionality. For 2D lenses, we set Mapper hyperparameters to
r = 20 and ϵ = 0.2 to ensure graphs were neither too fragmented nor too connected, following the same
consistency checks as in the 1D case. While additional or task-specific lenses (e.g., 3D or uncertainty-
aware projections) might expose different structures, our results suggest that the core topological behavior
is consistent across 1D and 2D lenses in this setting.
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Ambiguity Lens CP (GT) (%) CP (Pred) (%) MM (%)
A0 cosine_c0_c1 35.4 100.0 88.2

eccentricity_2d 35.4 100.0 88.2
pca_2d 44.2 100.0 68.4
random_2d 25.7 100.0 77.8
umap_2d 39.2 95.9 77.8

A+ cosine_c0_c1 71.9 100.0 100.0
eccentricity_2d 71.9 100.0 100.0
pca_2d 63.8 100.0 94.6
random_2d 69.0 100.0 95.0
umap_2d 66.2 97.5 94.3

A++ cosine_c0_c1 81.1 100.0 100.0
eccentricity_2d 81.1 100.0 100.0
pca_2d 82.0 100.0 100.0
random_2d 73.5 100.0 100.0
umap_2d 86.3 100.0 100.0

Table 6: Percentage of connected components that exceed the 90% purity threshold, computed using ground-truth
labels (CP (GT)) and model predictions labels (CP (Pred)), i.e using eq (1) with corresponding labels. The column
MM reports the proportion of components where the predicted majority label matches the ground-truth majority
label.
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Figure 11: Edge agreement across 2D lenses for base and fine-tuned RoBERTa-Large models. Fine-tuning
consistently increases edge agreement, indicating smoother and more coherent decision boundaries.
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Figure 12: Distribution of component purity across 2D lenses for RoBERTa-Large. Consistent with the 1D case,
fine-tuned embeddings yield near-perfect prediction purity, while label purity decreases most sharply in A0.
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L Robustness Across Models

To test robustness across architectures, we repeated the Mapper analysis on additional encoder-only
models: BERT-Base, DeBERTa-Base, DistilBERT, E5-Base, and MiniLM, alongside RoBERTa-Large.
Table 7 reports component purity aggregated across lenses, with values shown as mean ± standard
deviation. Across all models, the qualitative pattern is consistent: prediction purity remains higher
than label purity, and the largest prediction label gap occurs in A0. This indicates that models tend
to impose coherent predictions at the level of topological regions, following dominant signals within
components rather than the full variability of annotator labels. While smaller models such as BERT-Base
and DistilBERT achieve lower absolute prediction purity, their overall topological organization mirrors
that of RoBERTa-Large, confirming that our findings are not model-specific.

Ambiguity Lens CP (GT) (%) CP (Pred) (%) MM (%)
RoBERTa-Large A0 31.5 ±10.1 98.0 ± 2.4 77.7 ± 20.5

A+ 54.8± 15.1 98.0 ± 3.2 94.1 ± 12.0
A++ 81.8 ±10.6 99.5 ± 1.2 97.1± 3.9

BERT-Base A0 30.2 ± 10.7 59.2 ± 19.0 67.0 ± 4.9
A+ 42.8 ± 18.4 54.2 ± 17.6 77.0 ± 8.2
A++ 68.1 ± 10.2 68.6 ± 7.2 86.3 ± 8.8

DeBERTa-Base A0 31.1 ± 9.1 88.4 ± 10.7 68.2 ± 9.4
A+ 52.9 ± 21.7 95.1 ± 5.5 85.8 ± 9.3
A++ 72.4 ± 15.5 95.0 ± 4.6 82.6 ± 8.5

DistilBERT A0 28.3 ± 12.5 62.8 ± 17.9 54.8 ± 15.4
A+ 48.2 ± 8.2 65.6 ± 6.9 69.1 ± 5.3
A++ 65.0 ± 15.2 66.7 ± 19.7 85.0 ± 10.6

E5-Base A0 31.7 ± 6.2 78.3 ± 14.1 56.3 ± 6.5
A+ 48.5 ± 15.0 80.8 ± 17.1 68.6 ± 12.6
A++ 69.6 ± 10.2 91.1 ± 6.3 74.9 ± 11.5

MiniLM A0 34.5 ± 5.4 83.3 ± 13.2 61.5 ± 2.6
A+ 48.6 ± 15.8 93.0 ± 5.5 77.9 ± 7.1
A++ 73.3 ± 16.8 94.5 ± 4.3 86.5 ± 9.6

Table 7: Percentage of connected components that exceed the 90% purity threshold, computed using ground-truth
labels (CP (GT)) and model predictions labels (CP (Pred)), i.e using eq (1) with corresponding labels. The column
MM reports the proportion of components where the predicted majority label matches the ground-truth majority
label (see eq. (3)). Results are averaged across all 1D lenses.
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