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Abstract
Codes serve as the fundamental language for
human to communicate with machines, and
various Transformer-based models are trained
to process codes in recent advancements. A
unique symmetry of code is its semantic-
preserving permutation, which allows certain
lines to be rearranged without altering the over-
all meaning. To capture such symmetry, we
propose a novel attention mechanism that incor-
porates semantic-preserving permutation equiv-
ariance, called the SPE attention. By leveraging
the symmetry relationships within code, we in-
troduce a directed layered graph to represent
the code structure, and this graph is then sum-
marized into a symmetry mask. The SPE atten-
tion integrates those symmetry masks, granting
semantic-preserving permutations equivariance
to the model. Experiments on various code re-
lated tasks, including code summarization and
error detection, demonstrate the effectiveness
of the proposed SPE attention.

1 Introduction

The attention mechanism (Vaswani et al., 2017)
have demonstrated significant success in many
transformer-based models (Yenduri et al., 2023;
Touvron et al., 2023) on processing natural lan-
guages. As a specialized form of language, code is
frequently analyzed by these models in various
research studies. Many large language models
(LLMs) have fine-tuned versions specifically de-
signed for code related tasks, such as Code-Llama
(Rozière et al., 2024) from the Llama family (Tou-
vron et al., 2023) and Codex (Chen et al., 2021)
from OpenAI’s GPT family (Yenduri et al., 2023).
Those models have numerous applications, includ-
ing automated code generation, debugging, and
code optimization. Such tools can drastically im-
prove the efficiency of programming.

From the perspective of geometric deep learning,
there is one key difference between a paragraph of
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def ____(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

def ____(rent, salary, lottery):

income = rent + salary 𝑐2

bonus = lottery 𝑐1

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

yearly_income lottery_report

LLM LLM

Figure 1: For two function that have same semantics,
the predicted function names by the CodeLlama are
different due to the lack of the permutation equivariance.

natural language and a code block: Certain lines of
code can be permuted without altering their seman-
tics, forming a unique symmetry as the semantic-
preserving permutation, which generally do not
exist in natural languages. Therefore, it is natu-
ral to make use of such permutation information
into model designs to make models equivariant to
semantic-preserving permutation, where the equiv-
ariance refers to the model capacity to incorporate
and preserve certain symmetries.

However, most attention-based models, in-
cluding LLMs, fail to possess such semantic-
persevering permutation equivariance. To see that,
as illustrated in Figure 1. we have a code block
C that computes the yearly income. It is easy to
see that swapping the first two lines in C does not
change the semantics. However, the predicted func-
tion names by the CodeLlama for the two code
snippets are different, potentially leading to errors
in some cases.

The lack of equivariance in current attention-
based models is largely due to how positional en-
coding is integrated (Vaswani et al., 2017). When
two embeddings are swapped, the corresponding
positional encodings remain unchanged. Therefore,
the sum of the embeddings and positional encod-
ings cannot be the equivariant.
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However, directly eliminating positional encod-
ing is not a viable solution, as it would render the
attention mechanism equivariant to all the permu-
tations, including those that alter the underlying
semantics of codes. Consequently, achieving the
equivariance within the existing network architec-
tures presents a significant challenge.

To address this challenge, in this paper, we pro-
pose a Semantic-preserving Permutation Equivari-
ant (SPE) attention to empower attention layers
with the equivariance to semantic-preserving per-
mutations, while maintaining positional informa-
tion. In the proposed SPE attention, we first intro-
duce a novel representation of code: the directed
layered graph. This representation is specifically
crafted to capture semantic-preserving permuta-
tions, enabling us to easily distinguish between
permutations that preserve symmetries and those
that do not. Additionally, such directed layered
graph are more efficient to compute comparing to
previous representation (Pei et al., 2023). We fur-
ther summarize the directed layered graph of a code
block into a symmetry mask. The symmetry mask
has an important property that it is equivariant only
to the semantic-preserving permutations. Then the
proposed SPE attention combines such masks with
the attention score and we prove that the SPE atten-
tion is indeed equivariant to semantic-preserving
permutations.

To employ such SPE Attention, the model takes
the tokenized text of the code along with this pre-
calculated symmetry mask. After embedding layer
and resetting the positional encoding at the begin-
ning of each line, we utilize the SPE attention to
process the embedded text of the code, granting
semantic-preserving permutation equivariance to
output features. We repeat the process for all SPE
attention layers. After the last SPE attention layer,
pooling is performed, and the final output is invari-
ant for classification.

To summarize, our contributions are three-fold.

1. We introduce a novel SPE attention mecha-
nism by integrating attention scores with a
symmetry mask that captures the symmetry of
code blocks.

2. We derive such symmetry mask from a novel
representation of code, directed layered graph.
This representation is closely tied to the se-
mantically preserving permutations, and the
symmetry mask is equivariant to such permu-
tations.

3. Empirical evaluations on several code related
tasks, including code summarization and er-
ror detection, demonstrate that the proposed
SPE attention could help improve the model
performance.

2 Related Works

2.1 Equivariant Neural Networks

When known symmetries are present in the data,
incorporating equivariance into models often yields
better performance improvements than relying
solely on data augmentation (Gerken et al., 2022)
Group Equivariant Convolutional Neural Networks
(Cohen and Welling, 2016a) (G-CNNs) and follow-
up methods (Cohen and Welling, 2016b; Cohen
et al., 2018) are widely used for processing im-
ages that exhibit rotation and reflection symmetries,
and showed siginificant improvements over non-
equivariant convolutional networks. When process-
ing graphs, Graph Neural Networks (GNN) can
take advantages of node permutation equivariance
(Satorras et al., 2021). Neural Functional (Zhou
et al., 2023) aims to directly learn from the weights
of neural networks.

2.2 Code Processing

There are some large language models (Rozière
et al., 2024; Chen et al., 2021) specifically fine-
tuned for code-related tasks. Other than large lan-
guage models, several models are also designed
specifically for these tasks, such as code2vec (Alon
et al., 2018) and DOBF (Rozière et al., 2021). How-
ever, for the utilization of the equivariance for code
processing, to the best of our knowledge, SYMC
(Pei et al., 2023) is the only one related work to
ours. The SYMC method gathers information from
the dependency relationship of codes, and formu-
late a permutation bias term. Adding such permuta-
tion bias to the attention layer grants equivariance
to the code. The SYMC method achieves better
performance over non-equivariant models that have
much larger model size. Despite sharing the same
initiative, there are some key differences between
the SYMC method and the our proposed SPE atten-
tion, including different representation of codes.

2.3 Representation of Codes

The representation of codes has gained significant
attention in recent years, driven by the need to
leverage structural information for various soft-
ware analysis tasks. Early approaches primarily
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utilize abstract syntax trees (ASTs) (Song et al.,
2024) to represent code structures, allowing the
extraction of syntactic features and enabling tasks
such as code similarity evaluation. Recent advance-
ments have expanded the scope of graph-based
representations to larger programs composed of
several code blocks, by incorporating control flow
graphs (CFGs) (Huang et al., 2023). This represen-
tation captures the dynamic relationships between
code blocks within a program. In terms of equiv-
ariance, the program interpretation graph (PIGs)
(Pei et al., 2023) is used in the SYMC method,
where dependency pairs are computed by consider-
ing all possible permutation. As discussed above,
such representation is very inefficient. The SYMC
method avoids this issue by relaxing the definition
and using the program dependency graph (Ferrante
et al., 1987) instead. Different from those works, in
this paper we propose a more efficient directed lay-
ered graph, strongly related to semantic-preserving
permutations.

3 Preliminary

3.1 Permutation Group

In this section, we provide a brief definition of the
permutation groups. A more detailed and formal
explanation can be found in Appendix A.2.

Abstractly, groups capture mathematical symme-
tries: Each element of a group can transform an
object in a structured way. In this work, we focus
on the permutation group Sn, which consists of all
possible ways to reorder n elements.

To define Sn, we first introduce the concept
of cycle notation. A cycle c is represented as
c = (a1 a2 . . . ak), which maps each element
to the next element in a circular fashion. Specif-
ically, for i such that 1 ≤ i ≤ k − 1, we have
c(ai) = ai+1, and for the last element, c(ak) = a1.
A permutation ρ ∈ Sn can be uniquely represented
in disjoint cycle notations, and acts on a sequence
of code lines by rearranging their positions.

For example, consider three code lines C =
(‘a=1’, ‘b=2’, ‘b=a+3’). The first exam-
ple permutation ρ = (132) acts on C by sending
position 1 to 3, 3 to 2, and 2 to 1. The result is
ρC = (‘b=2’, ‘b=a+3’, ‘a=1’). A sec-
ond example is φ = (13)(2). It acts on C by
swapping the first and third lines while leaving
the second line unchanged, resulting in φC =
(‘b=a+3’, ‘b=2’, ‘a=1’). The unmoved
action, such as the (2) in φ can often be abbrevi-

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income + bonus 𝑐4

income = income * 12 𝑐3

return income 𝑐5

def earnings(rent, salary, lottery):

income = rent + salary 𝑐2

bonus = lottery 𝑐1

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

Original Code 𝑪
Permuted by 𝜌 = 12

Semantically Symmetric

Permuted by 𝜌 = 34
Not Semantically Symmetric

Figure 2: The original function in the middle computes
the yearly earnings. On the left, we apply ρ1 = (12),
switching line 1 and line 2. On the right, we apply
ρ2 = (34). The first permutation preserve sematic while
the second one do not.

ated, resulted in φ = (13).
Unlike many equivariant models (Cohen and

Welling, 2016a,b), general permutation equivari-
ance is undesired here. For example, if an error
detection model M is equivariant to all permuta-
tions, M would make the same prediction for C
and ρ(C), destined to make mistake if ρ changes
the semantic of C. Therefore, we only need the
equivariance to “nice" permutations, which do not
alter semantics of codes. In the next section, we
formulate our interested subset of permutations,
namely semantic-preserving permutations.

3.2 Semantic-Preserving Permutation of
Codes

Given a code block C with n lines, we denote the
code in the i-th line by ci, and C can be viewed
as a ordered set C = {ci}ni=1. Permutation on C
can be viewed as acting on the indices of lines, i.e.,
ρC = {cρi}ni=1.

Due to the nature of codes, certain lines can
be permuted without changing the semantic of
this code block C. The main criterion for iden-
tifying semantics is the dependency relationship
among all lines, easily accessed using various pars-
ing tools, such as JavaLang1 for Java codes and
the ast package2 for Python codes. If line cm
depends on line cn, we denote the dependence
relationship by (n,m), and the collection of all
such pairs by Cde = {(n,m)|cm depends on cn}.
The permutation ρ acts on Cde by permuting in-
dices of each dependency pairs, i.e., ρCde =
{(ρ(n), ρ(m))|(n,m) ∈ Cde}.

It is crucial to distinguish between ρCde and
(ρC)de. The expression (ρC)de means permuting
the code first based on the permutation, then ex-
tracting the dependency pairs from the resulted
code block ρC. It is possible that some depen-

1https://pypi.org/project/javalang/
2https://docs.python.org/3/library/ast
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dency pairs are swapped, removed, or added after
applying permutations to the code. Therefore, for
a general ρ ∈ Sn, ρCde and (ρC)de are not always
equal to each other.

Definition 3.1. Two blocks of codes C and D,
both with n lines, are semantically symmetric if
there is a unique permutation ρ such that D =
ρC and Dde = ρCde. Such permutation ρ is called
a semantic-preserving permutation.

In essence, two code blocks, C and D, are se-
mantically symmetric if D is a permuted version
of C and all the dependency pairs are preserved by
such permutations. We provide an example in Fig-
ure 2. For the code C, permuting by ρ1 = (12) pre-
served all dependency pairs, thus it is a semantic-
preserving permutation. On the other hand, the
permutation ρ2 = (34) alters the semantics, as line
c4 depends on line c3 before the permutation, but
this dependency is reversed afterwards.

4 Methodology

In this section, we present the proposed SPE atten-
tion for achieving semantic-preserving permutation
equivariance in attention layers. Without loss of
generality, we consider a code block C = {ci}ni=1

where each line consists of a single token for sim-
plicity. In practice, all operations described below
can be expanded to match the full token sequence
length of each line.

4.1 Semantic-Preserving Permutation
Equivariance

In this section, we aim to define the desired prop-
erty of equivariance. As the only symmetry we
are interested is permutation, we first define the
general Sn-equivariance.

Definition 4.1. A neural network f is Sn-
equivariant if

f(ρx) = ρf(x)

for all ρ in the permutation group Sn. For the
special case of f(ρx) = f(x), we say that f is
invariant.

It is well established that the standard self-
attention mechanism is Sn-equivariant (Pei et al.,
2023). Given a code block C, we denote by Pn

the subset of Sn that preserves semantics. It is
important that we only need the equivariance to
the permutations that preserve semantics, which is
defined as follows.

𝑐1 𝑐2

𝑐3

𝑐5

𝑐4

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

Code 𝐶 DLG

0𝑡ℎ layer

1𝑠𝑡 layer

2𝑛𝑑 layer

3𝑟𝑑 layer

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income + bonus 𝑐4

income = income * 12 𝑐3

return income 𝑐5

Code 𝜌𝐶

𝑐1 𝑐2

𝑐4

𝑐5

𝑐3

0𝑡ℎ layer

1𝑠𝑡 layer

2𝑛𝑑 layer

3𝑟𝑑 layer

DLG

Figure 3: For two code blocks, we generate directed
layered graph accordingly based on the dependency
pairs. Comparing to the DLG on the top, the DLG on
the bottom swaps c3 and c4.

Definition 4.2. A model f is semantic-preserving
permutation equivariant or equivalently Pn-
equivariant if the following two conditions hold.

1. For all ρ ∈ Pn, f(ρx) = ρf(x).

2. For ρ ∈ Sn/Pn, f(ρx) ̸= ρf(x).

Similarly, a model f is Pn-invariant if the following
two conditions are satisfied.

1. For all ρ ∈ Pn, f(ρx) = f(x).

2. For ρ ∈ Sn/Pn, f(ρx) ̸= f(x).

We expect our model to be Pn-equivariant for
reasons discussed in Sec. 3.2. Thus, we omit Pn

and only say equivariant/invariant for the rest of the
paper, unless we want to emphasize the difference
between Pn and Sn.

To address code related tasks such as error de-
tection and function name prediction, the model is
designed to be invariant in their final output and
equivariant before the last layer. This approach
has proven to be effective in several equivariant
neural networks (Cohen and Welling, 2016a; Zhou
et al., 2023). As long as the intermediate features
are equivariant, the invariance can be achieved by
simply performing the average or max pooling on
the equivariant features.
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4.2 Directed Layered Graph

Given a code block C, there are currently many
tools to extract the dependency pair between each
line. Based on the collection of all dependency
pairs, we can construct a directed layered graph
(DLG) from them as follows.

1. For all the lines ci that do not depend on any
other lines, they are put in the the zeroth layer
of the DLG. These are commonly referred to
as the source nodes.

2. If cj depends on ci, there is a directed edge
(i, j) from ci to cj in DLG.

3. For any other lines ci, we compute the longest
path from ci to any source nodes, denoted by
q. We put ci in the q-th layer. We denote the
layer of each ci by L(ci).

For a permutation ρ ∈ Sn, ρ can also act on
nodes and edges by permuting index. That is ,
ρci = cρ(i) and ρ(i, j) = (ρi, ρj).

As shown in the following theorem,3 the DLG
has a strong correspondence to the permutation
equivariance of C.

Theorem 4.3. Given a code block C, ρ is a
semantic-preserving permutation for C if and only
if ci and ρci are on the same layer for all ci ≤ n.

Therefore, determining whether ρ is a permuta-
tion that preserves the symmetries of C is straight-
forward. One can simply examine the DLG of C
and ρC to see if any of the nodes moves to a dif-
ferent layer. If such movement happens anywhere,
then ρ /∈ Pn.

According to the DLGs shown in Figure 3 that is
based on Figure 2, we can see that these two blocks
of codes are not equivariant by simply observing
that c4 and c3 are moved to different layers. Among
all the possible permutations, permutations that do
not alter semantics are Pn = {(12), (132)}.

4.3 Symmetry Masks and SPE Attention

Given the DLG, we aim to design the SPE attention
based on a proposed mask called symmetry mask,
which is defined as follows.

Definition 4.4. Based on the DLG, the symmetry
mask MC ∈ Rn×n of a code block C with n lines
is defined as

3All proofs are presented in Appendix D.

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐1 𝑐2

𝑐3

𝑐5

𝑐4

0𝑡ℎ layer

1𝑠𝑡 layer

2𝑛𝑑 layer

3𝑟𝑑 layer

DLG
Symmetry

Mask

Figure 4: From the DLG, we generate corresponding
symmetry mask. The crossed-out gray cell stands for
zero. The green cells is kept based on the first principle
in Def. 4.4, and the blue cells is kept based on the
second principle in Def. 4.4.

1. If line i and j belong to the same layer in
DLG, the (i, j)-th and (j, i)-th entries of MC

are set to 1.

2. If there is a directed arrow from i to j in DLG,
the (i, j)-th entry of MC is set to 1.

3. All other entries in MC are set to zero.

The design of the symmetry mask is fairly
straightforward to interpret. That is, we only keep
the entries that are on the same layer, or have di-
rect dependency relationships, while all the other
entries are masked. An example of generating the
symmetric mask is shown in Figure 4. For the
symmetry mask, we have the following property.

Proposition 4.5. The symmetry mask is equivari-
ant to semantic-preserving permutations. That is,
for any ρ ∈ Pn,

ρMC = MρC ,

where MρC is to perform ρ on the square matrix
MC by permuting rows and columns simultane-
ously.

Given a code block C with the symmetry mask
MC , the SPE attention is formulated as

SPE-Att(C) = softmax
(
(QCK

⊤
C )⊙MC√
dk

)
VC ,

where QC , KC , and VC denote the query, key, and
value of C, respectively, dk is the dimension of
KC , and ⊙ denotes the element-wise product or
Hadamard product between two matrices.

For the SPE attention, we have the following
properties.

6571



Dependency Pairs

𝐶𝑑𝑒 ={ 𝑖, 𝑗  | 𝑐𝑖 depends on 𝑐𝑖}

Code blocks

𝐶 = 𝑐𝑖 𝑖=1
𝑛

Equivariant 

Features

Invariant 

Output

Code

Parser

DLG Symmetry Masks 𝑀𝐶  

Tokenize 

and Embed

SPE Attentions

SPE-Att 𝐶
Pooling and 

Linear Layers

Figure 5: An illustration of the proposed SPE attention.

Theorem 4.6. Given a code block C and its corre-
sponding masks MC , we have the following prop-
erties.

1. SPE-Att(C) is equivariant to Pn. That is, for
any ρ ∈ Pn, ρSPE-Att(C) = SPE-Att(ρC).

2. It is not equivariant to Sn. That is, for any
ρ ∈ Sn/Pn, ρSPE-Att(C) ̸= SPE-Att(ρC).

Thm. 4.6 shows that the proposed SPE attention
is only equivariant to the semantic-preserving per-
mutations. Note that applying the transpose of the
symmetry mask also grants desired equivariance as
in Thm. 4.6.

In the proof of Thm. 4.6, we use a fact from
(Pei et al., 2023) that the conventional attention
mechanism is permutation equivariant. However,
positional encoding will break the equivariance
property when added or multiplied to the embed-
ding of C.4 To mitigate this issue, we reset the
positional encoding at the beginning of each line
of the code (i.e., ci). This approach maintains the
positional information for each individual line. At
the same time, it does not compromise the equiv-
ariance property between lines. This balance is
crucial for effectively capturing both the structure
and symmetry of the code, which enhances the
overall performance. The complete framework of
the proposed SPE attention network is illustrated
in Figure 5.

The proposed SPE attention mechanism can be
seamlessly integrated into a multi-head attention
framework. For each head, we have the option
to apply the symmetry mask, the transpose of the
symmetry mask, or no masks at all. To ensure the
equivariance to semantic-preserving permutations,

4We prove it in Appendix D.

it is sufficient for at least one head to apply either
the symmetry mask or its transpose.

5 Experiment

In this section, we empirically evaluate the pro-
posed SPE attention.

5.1 Experimental Setup

Tasks. Following (Zhang et al., 2024; Pei et al.,
2023; Jin et al., 2022), we evaluate SPE attention
on two types of tasks: (i) Error detection, which
aims to determine whether the provided code block
contains a bug. We follow (Pei et al., 2023) to use
Defect4J (Just et al., 2014), a collection of over 170
types of bugs across 17 open-source projects, for
evaluation. We label each function based on the
existence of bugs and split all these functions into
training (70%) and testing (30%) split with a strict
non-overlapping. (ii) Function name prediction,
which is a multiple binary classification task that
predicts the summarization of the function behavior.
Specifically, we tokenize the function names and
formulate the function name prediction as a multi-
label classification problem, as the strategies in (Jin
et al., 2022). We use datasets from various code
languages, including Open Source Java (Allamanis
et al., 2016) for Java and Python 150K (Raychev
et al., 2016) for Python. For Python 150K, we
adopt its default training and testing splits. As
Open Source Java doesn’t have a default split, we
split it randomly into training (70%) and testing
(30%).

Baseline and Evaluation Metrics. We compare
SPE with several open-source large language mod-
els specialized for code, including: CodeBERT
(Feng et al., 2020), CodeLlama (Rozière et al.,
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Figure 6: Performance comparison on the Java Error
Detection task of various models based on F1 Score and
Violation Rate. The area of each circle corresponds to
the model size.

2024), code2seq (Alon et al., 2018), code2vec
(Alon et al., 2018), CodeT5 (Wang et al., 2021),
DOBF (Rozière et al., 2021), GraphCodeBERT
(Guo et al., 2020), UnixCoder (Guo et al., 2022),
and WizardCoder (Luo et al., 2023). For LLMs, we
generate answers based on the fixed prompt tem-
plate with further details provided in Appendix B.
Moreover, SPE is compared with SYMC (Pei et al.,
2023), which adds a bias term to the attention based
on the dependency of the code, as discussed in Sec.
2.2. To ensure a fair evaluation, we adopt F1 score
used in (Jin et al., 2022) as the evaluation metric.
Specifically, let W be the ground truth token set,
W ′ be the predicted token set, we compute the F1
score by the harmonic mean of precision W∩W ′

|W ′|
and recall W∩W ′

|W | . Additionally, we evaluate equiv-
ariance by calculating the violation rate. This met-
ric measures the model’s consistency under input
permutations. For each sample in the test set, we
randomly apply a semantic-preserving permutation
to the input and generate predictions for both the
original and permuted code. A violation is recorded
if the outputs differ after the permutations.

Implementation Details. We construct the SPE
model with eight multi-head SPE attention layers
and a two-layer linear classifier. To encourage vari-
ation among attention heads, for each layer, we
apply the symmetry masks to six heads, the trans-
pose symmetry mask to three heads, and standard
attention to the rest three heads. After the attention
layers, average pooling is performed, followed by
two linear layers. We collect all tokens {ti}ki=0

of function names in the training set, and set the
length of the final output features as k. The further
details of the model and training are provided in
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Figure 7: Performance comparison on the Java Func-
tion Name Detection task of various models based on
F1 Score and Violation Rate. The area of each circle
corresponds to the model size.

Appendix B.

5.2 Java Error Detection
Figure 6 shows the comparison of F1 score and
violation rate for the error detection task on the De-
fect4J dataset. As can be seen, SPE shows a much
higher F1 score than previous non-equivariant mod-
els with a relatively small trainable parameter count.
For example, SPE outperforms CodeLlama by
20.27, but only requires 67.7M (1% of 7B) param-
eters, indicating the effectiveness and parameter
efficiency of SPE Attention. Moreover, SPE shows
a 0% violation, indicating a strict equivariance of
the SPE model. Based on Figure 6, models with
a lower violation rate tend to achieve a higher F1
score. This observation aligns with findings from
equivariant studies (Gerken et al., 2022; Cohen and
Welling, 2016a), further highlighting the effective-
ness of equivariance. Compared with SYMC, SPE
achieves an improvement with the same number
of parameters in the F1 score by a large margin of
+2.5. This significant improvement validates the
effectiveness of incorporating a symmetry mask in
the SPE attention.

5.3 Java Function Name Prediction
Figure 7 shows the comparison of F1 score and vio-
lation rate for the function name prediction task on
the Open Source Java dataset. As can be seen, SPE
demonstrates superior performance, achieving the
highest F1 score among the models evaluated, de-
spite having a relatively small trainable parameter
count of 68.4M. Notably, SPE outperforms CodeL-
lama by 7.3 points while using only 1% of CodeL-
lama’s 7B parameters, validating its efficiency and
effectiveness. Moreover, SPE maintains a 0% vi-
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Table 1: Comparison of F1 score for the function name
prediction task on the Python 150K dataset.

Model #Parameters F1 Score

code2seq 6.3 M 27.3

CodeLlama 7 B 32.9

SYMC 72.9M 33.2

SPE 72.9M 37.1

olation rate, indicating strict equivariance, which
is crucial for maintaining consistent predictions.
Similar to the error detection task, models with a
lower violation rate tend to achieve a higher F1
score. This further emphasizes the benefits of im-
plementing equivariance in code processing mod-
els. Compared to SYMC, SPE shows a significant
improvement in F1 score, with an increase of 2.7
points, using the same number of parameters. This
substantial enhancement underscores the advan-
tage of incorporating a symmetry mask in the SPE
model’s attention mechanism.

5.4 Python Function Name Prediction
Table 1 shows the comparison of F1 scores for the
function name prediction task on the Python 150K
dataset. As shown, SPE brings significant improve-
ment to SYMC by a large margin of 3.9 in F1 score,
validating the effectiveness of SPE Attention. Com-
pared to larger models (i.e., CodeLlama with 7B
parameters), SPE achieves a higher performance
(+4.2) with significantly fewer parameters. Over-
all, the results on the Python task align well with
those in Java, showing a superior performance of
SPE across various languages and tasks.

5.5 Graph Computation Time
To compare computational efficiency, we collected
average computation times for the Program Inter-
pretation Graph (PIG), and Program Dependency
Graph (PDG) used in SYMC (Pei et al., 2023) with
the Python 150K dataset. The times were averaged
over fifty file reads.

The PIG is generated by considering all possible
execution paths within a code block, recording an
edge whenever two lines are dependent in any ex-
ecution path. As shown in Table 2, collecting the
PIG requires 750 times more time than collecting
the DPG. During implementation, SYMC was com-
pelled to use the PDG as an over-approximation
of equivariance (Pei et al., 2023). In contrast, our

Table 2: Average computation time for obtaining the
Directed Layered Graph (DLG) in our work, compared
to the Program Interpretation Graph (PIG) and the Pro-
gram Dependency Graph (PDG) used in SYMC.

Graph Representation DLG PIG PDG

Computation Time 0.0554 s 42.0709 s 0.0553 s

Table 3: F1 Score of SPE and two variants of SPE on
the Python150K dataset.

Models Performance

SPE (all) 38.2
SPE (w.o. pe) 22.5

SPE 39.0

approach does not necessitate such a theoretical
relaxation, and our graph is as efficient as the PDG.

5.6 Ablation Study

We conduct experiments for the function name pre-
diction task to investigate the effect of two com-
ponents of our model: (i) SPE (all), which applies
the symmetry masks to all of the attention heads.
(ii) SPE (w.o. pe), where we train the model by us-
ing the input without this sentence-level positional
encoding. Table 3 shows the F1 Score compari-
son between SPE and the two variants. As can be
seen, SPE performs slightly better than SPE (all),
indicating that increasing the diversity of heads can
boost performance. Moreover, the performance of
SPE (w.o. pe) drops significantly compared to SPE,
showing that sentence-level position information is
still necessary in the SPE model.

6 Conclusion

In this paper, we highlight a unique symme-
try in codes: the semantic-preserving permuta-
tions. We incorporate semantic-preserving permu-
tations equivariance to an attention computation by
utilizing symmetry masks from a novel directed
layered graph. We show that such directed lay-
ered graph has a strong connection with the pos-
sible semantic-preserving permutations on a code
block. We provide a theoretical proof demonstrat-
ing that this SPE attention mechanism is equivari-
ant to semantic-preserving permutations, and em-
pirically show its superiority over existing methods.
Furthermore, we establish that the directed layered
graph offers better computational efficiency.
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Appendix

A Details of Definitions

A.1 Groups and representations

Definition A.1. Let G be a set and ∗ be an operation. Then, (G, ∗) is a group if the following holds:

1. There exists a e ∈ G, such that for any g ∈ G, g ∗ e = e ∗ g = g. We call this e the identity.

2. For any element g ∈ G, there exists h ∈ G such that g ∗ h = h ∗ g = e. We call this the inverse
element, and denote it as −h or h−1 depending on the context of the operation.

3. G is closed under this operation. That is, for any g1, g2 ∈ G, g1 ∗ g2 is always in G.

4. For any g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k.

After defining a group (G, ∗), it is common to simply refer to it as G when the operation is clear from the
context.

Definition A.2. Given a group (G, ∗), a representation or a group action of G on a vector space V is a
map ρ with inputs in G. For any g ∈ G, ρ(g) is a linear map on V . Furthermore, ρ(g1g2) = ρ(g1)ρ(g2).
We denote the representation by (ρ, V ) or simply ρ.

As mention in Sec. 3, we focus on permutation group (Sn, ∗). Here we take S3 as an example

A.2 Example Permutation Group: S3

The group S3 has 3! = 6 element. Each element can be thought as an unique permutation on 3 elements.
For example, (123) means 1 moves 2, 2 moves 3 and 3 moves to 1. (12)(3) or simply (12) means 1
goes to 2, 2 goes to 1, and 3 stays unchanged. The identity elements is e, keeping everything unchanged.
Multiplication of two permutation means doing both permutation consecutively, performing the one on
the right first. For example, (123) ∗ (12) means 1 goes to 2 by the right permutation, and 2 goes to 1
by the left permutation. 2 goes to 1 by the right permutation, and 2 goes to 3 by the left permutation. 3
goes to 3 by the right permutation, and 3 goes to 1 by the left permutation. Thus, the result permutation
(123) ∗ (12) = (13). Here, we present a complete multiplication table (also known as the Cayley table)
for S3.

∗ e (12) (23) (13) (123) (132)

e e (12) (23) (13) (123) (132)

(12) (12) e (123) (132) (23) (13)

(23) (23) (132) e (123) (13) (12)

(13) (13) (123) (132) e (12) (23)

(123) (123) (13) (12) (23) (132) e

(132) (132) (23) (13) (12) e (123)

B Additional Model Details

We use the tokenizer of CodeLlama, and the SPE model is trained from scratch, composed of 8 SPE
attention layers, with 12 heads. The attention embedding dimension is 768. We trained on the training set
for 20 epochs, with the Adam optimizer and learning rate of 1e-4.

For generative models, we use a fixed prompt: I have a segment of Python function code and need help
determining a suitable name for it. Analyze the function’s logic, inputs/outputs, and purpose, then suggest
a suitable full name. Then, generate a common abbreviation (if applicable) based on the full name. Return
the format: [full_name] [abbreviation], with each enclosed in separate brackets. Only provide the two
names, no additional text. Here is the code: TEXT OF CODE.
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Table 4: The performance of different models in terms of F1 score and violation rate for the error detection task on
the Defect4J dataset. A violation of 0% indicates equivariance.

Model #Parameters F1 Score Violation (%)

CodeBERT 476M 62.2 4.1

CodeLlama 7B 51.03 3.4

CodeT5 770M 63.3 6

DOBF 428M 62.4 2.7

GPT-4 N/A 51.56 13.5

GraphCodeBERT 481M 61.7 1.3

UnixCoder 504M 67.1 2.9

WizardCoder 3B 49.24 6.8

SYMC 67.7M 68.8 0

SPE 67.7M 71.3 0

C Additional Experiment Results

In Sec.5, we provided visualizations of models performance and violation rate in Figure 6 and 7. In the
table below, we provide numerical values, as well as performance on GPT-4.

C.1 Performance under the permutation attack
On top of the violation rate, we adapt the ”permutation attack“(Zong et al., 2024) in Table 6: we apply
random semantic-preserving permutations to the codes and record the lowest F1 Score amoung all
permutations. We only consider four random permutations for efficiency. According to the results shown
in the table below, we can see that the higher the "violation rate" is, the more vulnerable the model is to
permutation attacks. Due to the permutation equivariance, the proposed SPE attention is robust to such
attack, and the predictions are very consistent.

C.2 Finetuned Models
The pretrained models are not finetuned, as they have already been tuned on general code datasets. To
evaluate whether finetuning would help reducing the violation rate, we further fine-tuned the code llama
model for comparison. As shown in the following table, our SPE attention still outperforms the finetuned
version of code llama, and the Violation Rate of code llama is minimally affected by fine-tuning.

D Proofs

In this section, we provide a complete proof for our theorems in the main paper.

Proposition D.1. Adding traditional positional encoding is not equivariant. Resetting the positional
encoding at the beginning for each line is equivariant.

Proof. The proof of the first claim is rather straight-forward. We denote the input embedding as x and the
positional encoding as e. We denote the i-th embedding or positional encoding as x(i) or e(i) respectively.
The design of positional encoding assures that e(i) = e(j) if and only if i = j. For any permutation ρ,
given a index i, we observe that x(ρ(i)) = ρ(x(i)), but e(ρ(i)) ̸= ρ(e(i)). Therefore the addition is not
equivariant.

To prove the second claim, assume the positional encoding reset at the beginning of each options. Then,
if a option is permuted to a new place, its corresponding positional encoding is the same. Additionally, it
is trivial that the embedding of options is not changed by the permutation either. Therefore, the sum of
reset positional encoding and input is equivariant.
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Table 5: The performance of different models in terms of F1 score and violation rate for the function name prediction
task on the Open Source Java dataset.

Model #Parameters F1 Score Violation (%)

code2seq 6.3 M 25.5 61

code2vec 348 M 17.7 52

CodeLlama 7 B 31.7 18

CodeT5 770 M 25.4 16

DOBF 428 M 16.3 41

GGNN 53 M 1.6 7

GPT-4 N/A 30.3 43

GraphCodeBERT 481 M 20.8 31

WizardCoder 3B 33.9 14

SYMC 68.4M 36.3 0

SPE 68.4M 39.0 0

Table 6: The performance (%) of different models under permutation attack

Tasks code2seq CodeLlama SPE

Java Name Prediction 13.4 (-12.1) 26.2 (-5.5) 39.0 (-0.0)
Python Name Prediction 14.9 (-12.4) 26.5 (-6.4) 37.1 (-0.0)

Table 7: The F1-Score of different tasks, with the violation rate (%) in parentheses

Tasks Original CodeLlama CodeLlama Finetuned SPE Attention

Java Error Detection 51.0 (3.4) 55.4 (3.2) 71.3 (0)
Java Name Prediction 31.7 (18) 34.4 (16.8) 39.0 (0)

Python Name Prediction 32.9 (14.2) 35.8 (16.1) 37.1 (0)

Theorem D.2. (Same as Theorem 4.3)
A permutation ρ of C is semantic-preserving if and only if ci and ρci are on the same layer for all

ci ≤ n.

Proof. We show the if statement first. Let ρ be a semantic-preserving permutation. Then, by definition,
all dependency pairs are preserved by this permutation. Based on the construction of the DLG, since all
dependency pairs is unchanged, we still have the same source nodes, and the longest distance is unaffected.
Therefore, the DLG is the same. The only possible difference is that the same node might be put into the
same layer in different order, thus the permutation on that layer.

To show the only if statement, we instead show the contra-positive. If ρ is not a semantic-preserving
permutation. Then, one of the following three cases will happen after permutation: 1. a source node
depends on other nodes. 2. A node previously dependent to other nodes becomes a source node. 3. The
longest path to a specific code is changed, due to the change in dependency pairs. Regardless of which
case, the directed layered graph is always changed, and affected nodes are moved to a different layer.

Now, we prove Theorem 4.6. First, we need the following lemma.

Lemma D.3. Our symmetry mask is equivariant only to Pn.
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Proof. The construction of such symmetry mask is a one-to-one correspondence with the DLG. Combining
with the previous theorem, this proof is trivial.

Theorem D.4. (Same as theorem 4.6)
The combination of the symmetry mask and the attention is equivariant only to Pn.

Proof. The previous theorem already showed that the symmetry mask is equivariant only to Pn. Combined
with the fact that attention is equivariant to Sn, it is easy to see that the combination of these two is
equivariant to Pn.

E Visualization of DLG

In this section, based on the example in Figure 3, we provide more visualization of the DLG in Figure 8.
The only two permutations that preserved semantics are the permutation (12) and (132). Their DLGs
differ from the original code’s DLG only by permuting c1 and c2 in the first layer. All other permutations
change the semantics of the code. For example, we visualize the permutation (13) in Figure 8 by swapping
c1 and c3. In the original C, (2, 3) ∈ Cde. However, this dependency vanishes after permutation, as c2
and c3 no longer depend on each other. The resulting DLG is completely different from the original DLG.

𝑐1 𝑐2

𝑐3

𝑐5

𝑐4

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

Code 𝐶 DLG

0𝑡ℎ layer

1𝑠𝑡 layer

2𝑛𝑑 layer

3𝑟𝑑 layer

def earnings(rent, salary, lottery):

bonus = lottery 𝑐1

income = rent + salary 𝑐2

income = income + bonus 𝑐4

income = income * 12 𝑐3

return income 𝑐5

Code 𝜌𝐶

𝑐1 𝑐2

𝑐4

𝑐5
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2𝑛𝑑 layer

3𝑟𝑑 layer
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Permutation 13

DLG

0𝑡ℎ layer

1𝑠𝑡 layer

2𝑛𝑑 layer

def ____(rent, salary, lottery):

income = income * 12 𝑐3

income = rent + salary 𝑐2

bonus = lottery 𝑐1

income = income + bonus 𝑐4

return income 𝑐5

𝑐1𝑐2

𝑐3

𝑐5

𝑐4

Permutation 12 DLG

0𝑡ℎ layer
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Permutation 132  DLG

def ____(rent, salary, lottery):

income = rent + salary 𝑐2

bonus = lottery 𝑐1

income = income * 12 𝑐3

income = income + bonus 𝑐4

return income 𝑐5

def ____(rent, salary, lottery):

income = rent + salary 𝑐2

income = income * 12 𝑐3

bonus = lottery 𝑐1

income = income + bonus 𝑐4

return income 𝑐5

𝑐1𝑐2

𝑐3

𝑐5

𝑐4

0𝑡ℎ layer
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2𝑛𝑑 layer
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Figure 8: DLGs of the original code and its permuted versions. Green DLGs are different with the blue DLG with
permutation on the 0-th layer, while red DLGs are different with permutations between layers.
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