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Abstract

In this paper, we introduce MIO, a novel foun-
dation model built on multimodal tokens, ca-
pable of understanding and generating speech,
text, images, and videos in an end-to-end, au-
toregressive manner. While the emergence of
large language models (LLMs) and multimodal
large language models (MM-LLMs) propels
advancements in artificial general intelligence
through their versatile capabilities, they still
lack true any-to-any understanding and genera-
tion. Recently, the release of GPT-40 has show-
cased the remarkable potential of any-to-any
LLMs for complex real-world tasks, enabling
omnidirectional input and output across images,
speech, and text. However, it is closed-source
and does not support the generation of multi-
modal interleaved sequences. To address this
gap, we present MIO, which is trained on a mix-
ture of discrete tokens across four modalities
using causal multimodal modeling. MIO un-
dergoes a four-stage training process: (1) align-
ment pre-training, (2) interleaved pre-training,
(3) speech-enhanced pre-training, and (4) com-
prehensive supervised fine-tuning on diverse
textual, visual, and speech tasks. Our experi-
mental results indicate that MIO exhibits com-
petitive, and in some cases superior, perfor-
mance compared to previous dual-modal base-
lines, any-to-any model baselines, and even
modality-specific baselines. Moreover, MIO
demonstrates advanced capabilities inherent
to its any-to-any feature, such as interleaved
video-text generation, chain-of-visual-thought
reasoning, visual guideline generation, instruc-
tional image editing, etc.

1 Introduction

The advent of Large Language Models (LLMs) is
commonly considered the dawn of artificial general
intelligence (AGI) (OpenAl et al., 2023; Bubeck
et al., 2023), given their generalist capabilities
such as complex reasoning (Wei et al., 2022), role
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playing (Wang et al., 2023b), and creative writ-
ing (Wang et al., 2024a). However, original LLMs
lack multimodal understanding capabilities. Conse-
quently, numerous multimodal LLMs (MM-LLM:s)
have been proposed, allowing LLMs to understand
images (Li et al., 2023b; Alayrac et al., 2022), au-
dio (Borsos et al., 2023; Rubenstein et al., 2023;
Tang et al., 2023; Das et al., 2024), and other
modalities (Lyu et al., 2023; Zhang et al., 2023d;
Moon et al., 2023). These MM-LLMs typically
involve an external multimodal encoder, such as
EVA-CLIP (Sun et al., 2023b) or CLAP (Elizalde
et al., 2022), with an alignment module such as
Q-Former (Li et al., 2023b) or MLP (Liu et al.,
2023) for multimodal understanding. These mod-
ules align non-textual-modality data features into
the embedding space of the LLM backbone.
Another line of work involves building any-to-
any and end-to-end MM-LLMs that can input and
output non-textual modality data. Typically, there
are four approaches: (1) Discrete-In-Discrete-Out
(DIDO): Non-textual modality data is discretized
using vector quantization techniques (van den Oord
et al., 2017; Esser et al., 2020) and then fed into
LLMs (Ge et al., 2023b; Zhan et al., 2024; Liu et al.,
2024). (2) Continuous-In-Discrete-Out (CIDO):
The LLM backbones intake densely encoded non-
textual modality data features and generate their
quantized representations (Diao et al., 2023; Team
et al., 2023). (3) Continuous-In-Continuous-Out
(CICO): The LLMs both understand and generate
non-textual modality data in their densely encoded
representations (Sun et al., 2023c,a; Dong et al.,
2023; Zheng et al., 2023; Wu et al., 2023). (4) Au-
toregression + Diffusion (AR + Diff): The autore-
gressive and diffusion modeling are integrated in
a unified LLM (Zhou et al., 2024; Xie et al., 2024,
Li et al., 2024b). Although these works have suc-
ceeded in building MM-LLMs unifying understand-
ing and generation, they exhibit some drawbacks,
as illustrated in Table 1. For example, Emul (Sun
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Models Emu?2 SEED- AnyGPT CM3Leon Gemini Transfusion MIO
(Sunetal., LLaMA (Zhan et al., (Yuetal., 2023), (Reidetal., (Zhouetal.,, (ours)
2023a) (Geetal.,, 2024) Chameleon 2024) 2024)
2023b) (Team, 2024)
I/0 Consistency X X
Uni. Bi. SFT X X
Multi-Task SFT X X
Speech I/0 XIX XIX / XIX X X /
Video I/0 / / XIX XIX X X /
Voice Output X X X X X X
MM. Inter. Output | X X X X X
Modeling CICO DIDO DIDO DIDO CIDO AR+Diff DIDO

Table 1: The comparison between previous models and MIO (ours). I/O Consistency indicates whether the model
ensures that the input and output representations for the same data remain consistent. Uni. Bi. SFT refers to
whether the model undergoes a unified (Uni.) supervised fine-tuning (SFT) for both multimodal understanding and
generation (Bi.=Bidirectional). Multi-Task SFT assesses whether the model undergoes a comprehensive SFT that
includes diverse tasks, with at least visual question answering tasks. MM. Inter. Output evaluates whether the
model supports the generation of multimodal interleaved (MM. Inter.) sequences. We refer readers to §1 for the

definitions of the different modeling approaches.

et al., 2023c) and Emu2 (Sun et al., 2023a) explore
the autoregressive modeling of three modalities:
text, images, and videos. SEED-LLaMA (Ge et al.,
2023b) proposes a new image quantizer aligned
with LLMs’ embedding space and trains the MM-
LLMs on images and videos. However, neither
considers the speech modality, which is hetero-
geneous from visual modalities like videos and
images. Although AnyGPT (Zhan et al., 2024)
has explored settings involving four modalities, in-
cluding text, image, speech, and music, it lacks
video-related abilities, voice synthesis, and compre-
hensive multi-task supervised fine-tuning, leading
to limited multimodal instruction-following and
reasoning capabilities. Furthermore, AR + Diff ap-
proaches, such as Transfusion (Zhou et al., 2024),
suffer from limited multimodal understanding ca-
pabilities because the multimodal inputs are noised
for denoising modeling, and the image tokenizer
used (VAE (Kingma and Welling, 2013)) is suitable
for image generation rather than understanding.

Moreover, most of current MM-LLMs are dual-
modal, combining text with another modality, such
as images. Although previous works, such as Meta-
Transformer (Zhang et al., 2023d) and Unified-10
2 (Lu et al., 2023), have explored omni-multimodal
understanding settings with more than two non-
textual modalities, they lag significantly behind
their dual-modal counterparts, especially in terms
of multimodal instruction-following capabilities.
Moreover, these MM-LLMs are typically focused
on understanding only, neglecting the important
aspect of multimodal generation. Several works

have enabled LLMs to call external tools to address
this issue. For example, HuggingGPT (Shen et al.,
2023) generates textual image descriptions for ex-
ternal diffusion models to synthesize images. GPT-
4 (OpenAl et al., 2023) can utilize either an image
generator like DALL-E 3 (Betker et al., 2024) or
a text-to-speech (TTS) tool like Whisper (Radford
et al., 2022) to support multimodal generation.'
However, these methods are not end-to-end, rely-
ing on the text modality as an interface.

Recently, the release of GPT-40 has demon-
strated the capabilities of any-to-any and end-to-
end foundation models.” It is the first foundational
model to accept multimodal tokens as inputs and
generate multimodal tokens in a unified model
while also demonstrating strong abilities in com-
plex multimodal instruction-following, reasoning,
planning, and other generalist capabilities. Further-
more, as the scaling up of LLMs in the community
depletes high-quality language tokens, GPT-40 ver-
ifies a new source of data for LLM training: mul-
timodal tokens. This approach suggests that the
next generation AGI could derive more knowledge
from multimodal tokens when language tokens are
exhausted. However, GPT-4o0 is closed source and
focuses on end-to-end support for speech I/O, im-
age /O, 3D generation, and video understanding.
Its open-source “alternatives”, such as VITA (Fu
et al., 2024), still lack the ability to generate data
of all supported modalities, particularly for the gen-
eration of multimodal interleaved sequences.

"https://openai.com/index/chatgpt-can-now-see-hear-and-
speak/

*https://openai.com/index/hello-gpt-4o/
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To address the aforementioned issues, we in-
troduce MIO (Multimodal Input and Output, or
Multimodal Interleaved Output), the first open-
source any-to-any foundation model that unifies
multimodal understanding and generation across
four modalities—text, image, speech (with voice),
and video, while enabling the generation of multi-
modal interleaved sequences. Specifically, MIO
is built on discrete multimodal tokens that cap-
ture both semantic representations through con-
trastive loss and low-level features via reconstruc-
tion loss (Ge et al., 2023a; Zhang et al., 2023b)
from raw multimodal data. Due to the consistent
data format shared with textual corpora, the model
can treat non-textual modalities as “foreign lan-
guages”, allowing it to be trained with next-token
prediction. Note that since the representation of
an image remains the same whether it is used as
an input or an output, our model supports multi-
modal interleaved sequence generation, where an
image functions for both understanding and genera-
tion. Moreover, we employ three-stage pre-training
with an additional SFT stage to effectively train the
model for modality scaling.

Our experimental results show that MIO, trained
on a mixture of four modalities, demonstrates com-
petitive performance compared to its dual-modal
counterparts and previous any-to-any multimodal
language model baselines. Additionally, MIO is the
first model to demonstrate interleaved video-text
generation, chain-of-visual-thought reasoning, and
other emergent abilities relying on any-to-any and
multimodal interleaved output features (c.f,,§E.5).

2 Method

Firstly, we elaborate on our modeling approach,
which supports multimodal token input and output,
as well as causal language modeling (CausalLM),
in §2.1. Secondly, we describe our three-stage pre-
training in §2.2. Thirdly, we provide details of
our supervised fine-tuning on diverse multimodal
understanding and generation tasks in §2.3.

2.1 Modeling

As illustrated in Figure 1, the framework of MIO in-
volves three parts: (1) multimodal tokenization, (2)
causal multimodal modeling, and (3) multimodal
de-tokenization.

Multimodal Tokenization. In our work, we use
SEED-Tokenizer (Ge et al., 2023a) as our image to-
kenizer and SpeechTokenizer (Zhang et al., 2023b)

as our speech tokenizer. SEED-Tokenizer encodes
images using a ViT (Dosovitskiy et al., 2021) de-
rived from BLIP-2 (Li et al., 2023b), and then con-
verts the encoded features into fewer tokens with
causal semantics via Q-Former (Li et al., 2023b).
These features are subsequently quantized into dis-
crete tokens that are well-aligned with the language
model backbone’s textual space. The codebook
size for these discrete image tokens is 8192. SEED-
Tokenizer transforms each image into a 224x224
resolution and quantizes it into 32 tokens. We use
two special tokens, <image> and </image>, to in-
dicate the start and end of an image.

As for videos, we first apply specific frame-
cutting methods to convert videos into image se-
quences. In our training data processing proce-
dures, the number of frames for each video is dy-
namically determined by its duration, the length of
its context, or its scene switching® to (1) avoid ex-
ceeding the LLLM backbone’s context window limit,
and (2) capture complete but concise information
of the video. Each frame is then tokenized in the
same manner as an image.

In terms of speech, SpeechTokenizer (Zhang
et al., 2023b) leverages an 8-layer RVQ (Lee et al.,
2022) to tokenize speech into tokens with 8 code-
books, with each codebook derived from one layer.
Since the first layer’s quantization output is distilled
from HuBERT (Hsu et al., 2021), which encodes
more semantic information, SpeechTokenizer can
separate content tokens and timbre tokens from a
quantized speech. The first-layer quantization is
treated as content quantization, while the remain-
ing layers’ quantization is treated as timbre quan-
tization. SpeechTokenizer encodes speech into
50 tokens per second for each codebook, result-
ing in 400 tokens per second with all eight code-
books. To improve context efficiency, we drop
the last four layers’ codebooks and only use the
content codebook and the first three timbre code-
books. Our vocabulary size for the speech modality
is 1024 x 4 = 4096.

Since the open-source pretraining-level speech
data is collected from individuals with diverse
voices, the timbre tokens exhibit a relatively ran-
dom and noisy pattern, while the content tokens
are more fixed-pattern and better aligned with the
corresponding transcriptions. Given these priors
in speech tokens, it is important to choose the
proper interleaving mode of speech tokens (Copet

3https://github.com/Breakthrough/PySceneDetect
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-
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Training Recipe

Expanded Vocabulary

Masked Packing

Stage |: Alignment Pre-Training

Stage |I: Interleaved Pre-Training

Stage |lI: Speech-Enhanced Pre-Training

Supervised Fine-Tuning

Figure 1: The framework of MIO and its training recipe.

et al., 2023). We denote the four codebooks as A,
B, C, and D, where A is the codebook for con-
tent tokens and the remaining three are for tim-
bre tokens. For simplicity, assuming that we have
only two tokens for each codebook in a tokenized
speech sequence (i.e., ajag, bi1bs, c1co, and did>),
there are two interleaving patterns for causal mul-
timodal modeling: (1) sequential interleaving pat-
tern: ajagbibacicadids and (2) alternating inter-
leaving pattern: a1bjcidiazbacads.

In our preliminary experiments, we observed that
text-to-speech generation (TTS) training is difficult
to converge when using the alternating interleav-
ing pattern because the noisy and random timbre
tokens (byc1dy) tend to mislead the continuations.
Moreover, the speech-to-text understanding (ASR)
performance improves much more slowly during
training with the alternating interleaving pattern
due to the sparsity of semantic information in the
timbre tokens. Thus, we drop the timbre tokens
for speech understanding and use the sequential
interleaving pattern for speech generation. We use
<spch> and </spch> as special tokens to indicate
the start and end of the speech token sequence.

Causal Multimodal Modeling. As illustrated in
Figure 1, the speech and images, including video
frames, are tokenized by SpeechTokenizer (Zhang
et al.,, 2023b) and SEED-Tokenizer (Ge et al.,
2023a), respectively. We add the 4096 speech
tokens and 8192 image tokens to the LLM’s vo-
cabulary. In addition, we introduce four new spe-
cial tokens, namely <image>, </image>, <spch>,
and </spch>, to the vocabulary. Consequently, the
embedding layer of the LLM backbone and the

language modeling head are extended by 4096 +
8192 + 4 = 12292 to support the embedding and
generation of these new tokens. The image tokens
contain causal semantics due to the use of a Causal
Q-Former (Ge et al., 2023a), and the speech to-
kens are intrinsically causal due to their temporal
nature. Therefore, these multimodal tokens are as
suitable for autoregressive training as textual to-
kens, allowing us to unify the training objectives
for understanding and generation of multimodal to-
kens into next-token-prediction with cross-entropy
loss. The training objective is thus:

T
L==> log P(w; | z<;0) e

t=1

where x; denotes the discrete multimodal tokens,
and 6 denotes the LLLM backbone parameters. We
use Yi-6B-Base (Al et al., 2024) for initialization.

Furthermore, to eliminate the computational in-
efficiency caused by <pad> tokens, we use the
masked packing strategy (Lu et al., 2023; Liu et al.,
2024; Dehghani et al., 2023). The samples are
concatenated along the sequence length until the
context window is full. Then, we construct the
causal attention mask for the tokens of each sample
and mask out all the tokens of the other samples.

Multimodal De-Tokenization. After the gener-
ation of multimodal tokens, it is essential to use
modality-specific decoders to reconstruct the im-
ages or speech from the codes. Specifically, for im-
age tokens, we directly utilize SEED-Tokenizer’s
decoder, which involves an MLP projection to
convert the discrete codes into dense latents.
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These latents condition an off-the-shelf diffusion
model (Rombach et al., 2022) to generate the im-
ages in the pixel space (Ge et al., 2023a). The
vanilla SpeechTokenizer (Zhang et al., 2023b) in-
volves generating timbre tokens through a non-
autoregressive model outside the language model,
and then feeding the concatenated content and tim-
bre tokens into the SpeechTokenizer decoder to
synthesize speech. In our work, to inject the timbre
priors into the multimodal language model itself,
the timbre tokens are also generated by the autore-
gressive language model.

2.2 Pre-Training

As shown in Table 9, we use a three-stage strategy
for pre-training, with each stage targeting differ-
ent objectives. The three stages are: (1) Align-
ment Pre-training: This stage focuses on learn-
ing a multimodal representation more aligned with
the language space. (2) Interleaved Pre-training:
This stage aims to obtain a multimodal repre-
sentation with richer contextual semantics. (3)
Speech-enhanced Pre-training: This stage specifi-
cally enhances the model’s speech-related capabili-
ties, while concurrently replaying data from other
modalities. For more details on the pre-training
data and its processing procedures, we refer the
readers to Appendix A.

Stage I: Alignment Pre-Training. To fully lever-
age the superior capabilities of the pre-trained LLM
backbone, it is essential to align the non-textual
modality data representations with text. There are
two types of pre-training data for image-text mul-
timodal learning: (1) Image-text paired data: This
data has well-aligned dependencies between im-
ages and text. (2) Image-text interleaved data: This
data features more natural and contextual depen-
dencies but is less aligned. Note that in our set-
ting, video-text paired and interleaved data can
be treated as image-text interleaved data, with
videos being sequential images interleaved with
text. Therefore, in this stage, we exclude the image-
text interleaved data and video data to ensure the
most aligned pattern between images and text.

Stage II: Interleaved Pre-Training. In this
stage, we extend the data used for pre-training to in-
clude image-text interleaved data (including video-
text data) as a novel image-text dependency pattern.
The image-text interleaving pattern has a differ-
ent nature compared to pairing patterns. Although
(Li et al., 2023b) and (Sun et al., 2023c) argued

that interleaved image-text data mainly serves for
multimodal in-context learning, we argue that it is
also essential for context-aware image generation
where images are generated based on specific con-
text, rather than a precise description of the image
content. For example, in image-text interleaved
data, the text serves as the image’s preceding or
continuing context, rather than its description. This
pattern significantly differs from the previous de-
scriptive image generation demonstrated in image-
text paired data, where images are generated based
on precise and detailed text that clearly describe the
content of the images (Team et al., 2023). There-
fore, context-aware image generation is essential
for tasks like chain-of-visual-thought reasoning or
visual storytelling (Team et al., 2023; Huang et al.,
2016), where images are generated without textual
descriptions. Due to the lack of benchmarks and
evaluation metrics for context-aware image gen-
eration, we provide some demonstrations in §E.5
to showcase the potential of our model in visual
storytelling, interleaved video-text generation, in-
structional image editing, chain-of-visual-thought
reasoning, multimodal in-context learning, etc.
Moreover, in this stage, due to the extensive
training on image-text paired data in Stage I, we
can reduce its mixing ratio to the minimal essential
scale for replay to avoid catastrophic forgetting.
This allows us to increase the batch size for image-
text interleaved data, video data, and speech data.

Stage II1: Speech-Enhanced Pre-Training. The
speech tokenizer that we use generates 200 tokens
for each second of audio. Given that the duration
of a speech sample can be 15 seconds, this results
in around 3,000 tokens per sample. In comparison,
the image tokenizer produces only 32 tokens per
image. This creates a significant disparity in the
number of tokens among different modalities. Con-
sequently, our training data is dominated by speech
tokens. If we mix all the different modalities ac-
cording to their original proportions for training,
the model would likely become overly focused on
speech, at the expense of other modalities.

To address this issue, we implement a three-stage
strategy that gradually increases the proportion of
speech tokens. In Stage I, speech-text data accounts
for 12.5% of the training tokens, which rises to
37.5% in Stage II, and finally reaches 75.0% in
Stage III. This incremental increase in the propor-
tion of speech tokens ensures that the model’s per-
formance in non-speech modalities is not compro-
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mised by the speech modality, while also allowing
for the optimization of the model’s speech abilities.

Furthermore, we keep the data mixing ratio for
other modalities of pre-training data at the minimal
essential scales for replay, and we only use the high-
quality subsets of them in this stage. This stage
requires significantly fewer compute resources, due
to the foundation laid in the previous stages.

We refer the reader to Appendix B for details
about the hyperparameters and prompt templates.

2.3 Supervised Fine-Tuning

As shown in Table 10, our model undergoes com-
prehensive and systematic supervised fine-tuning
(SFT) with 16 different tasks and 34 diverse open-
source datasets. The chat template used for SFT
is the same as that used for Yi-6B-Chat (Al et al.,
2024), and only the assistant responses are super-
vised. We refer the reader to Appendix C for details
about the hyperparameters and prompt templates.

3 Experiments

In this section, we first report our scores on MME-
Unify (Xie et al., 2025), a widely used leader-
board for evaluating the multimodal performance
of any-to-any MLLMs. Subsequently, we present
our quantitative evaluation across various domains:
image-related tasks (§3.2), speech-related tasks
(8§3.3), and video-related tasks (§3.4). Due to the
lack of benchmarks for several advanced and emer-
gent abilities of any-to-any multimodal LLMs, we
provide qualitative demonstrations (§E.5) demon-
strating these capabilities. The decoding hyperpa-
rameters and prompt templates are shown in Ap-
pendix D.

3.1 Scores on MME-Unify

We report our scores on a well-recognized third-
party leaderboard for unified models, i.e., MME-
Unify (Xie et al., 2025), in Table 2. According to
the Overall metric on this leaderboard, our MIO
model surpasses models such as Janus-Pro (Chen
et al., 2025a) [2] and achieves multimodal uni-
fied modeling capabilities second only to Gemini-
2.0-Flash, on the condition that MIO covers a
broader range of tasks compared to Gemini-2.0-
Flash, demonstrating MIO’s top-tier multimodal
unified modeling capabilities. Furthermore, MIO
exhibits impressive multimodal understanding ca-
pabilities, ranking highly among unified MLLMs
according to the Understanding metric, and demon-

strates exceptionally leading performance in gen-
eration tasks, as evidenced by the Generation met-
ric. Additionally, MIO extends its capabilities to
include speech support, a feature not offered by
many competing models. However, we observe
that MIO demonstrates limited performance on the
unified tasks. This is primarily because the unified
tasks in MME-Unify involve single-choice ques-
tions with images as options, a type of data that
MIQ’s training lacks.

3.2 Image-Related Tasks

Image Understanding. We compare our models
with Emu (Sun et al., 2023c), SEED-LLaMA (Ge
et al, 2023b), AnyGPT (Zhan et al., 2024),
Flamingo (Alayrac et al., 2022), Kosmos-1 (Huang
et al., 2023), MetaLM (Hao et al., 2022),
IDEFICS (Laurencon et al., 2023), CM3Leon (Yu
et al., 2023), and InstructBLIP (Dai et al., 2023).
We evaluate our models in diverse tasks: (1) im-
age captioning on MS-COCO (Lin et al., 2014)
Karpathy test split with CIDEr score (Vedantam
et al., 2014) as the metric, (2) three visual question-
answering benchmarks, i.e., VQAv2 (Goyal et al.,
2016) (test-dev split), OK-VQA (Marino et al.,
2019) (val split), and VizWiz (Gurari et al., 2018),
with VQA accuracy as the metric, and (3) SEED-
Bench (Li et al., 2023a), a comprehensive visual
question-answering benchmark including 9 dimen-
sions with MCQ accuracy as the metric. The scores
for all baselines are copied from their reports. As
shown in Table 3, our MIO-Instruct is ranked in
the top group among all baselines, demonstrating
its competitive image understanding performance.
Although SEED-LLaMA achieved better scores,
we additionally support the speech modality. It is
noteworthy that MIO, with a size of approximately
7 billion parameters, outperforms several larger
models such as Emu-14B and even IDEFICS-80B.

Image Generation. We compare our models
with Emu (Sun et al., 2023c), SEED-LLaMA (Ge
et al., 2023b), GILL (Koh et al., 2023), and
AnyGPT (Zhan et al., 2024) for image generation.
We use two benchmarks: MS-COCO (Lin et al.,
2014) Karpathy test split and Flickr30K (Plummer
et al., 2015). Following GILL (Koh et al., 2023)
and SEED-LLaMA (Ge et al., 2023b), we use
CLIP-I as the metric that evaluates the similarity
between the generated and the ground-truth images
with the CLIP image encoder (Radford et al., 2021).
As shown in Table 4 and 13, the pre-trained and
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Model ‘ Overall Understanding Generation Unify
Gemini2.0-flash-exp 45.6 65.2 29.8 40.7
MIO-Instruct 37.2 41.5 53.5 16.6
SEED-LLaMA 28.5 39.5 23.5 22.3
Anole 18.6 13.6 20.0 223
VILA-U 18.6 40.0 15.8 -
Janus-Pro 18.1 48.4 5.9 -
Janus-Flow 16.3 43.4 5.5 -
Emu3 13.8 33.2 8.2 -
Show-o 12.7 31.0 7.3 -

Table 2: Scores on MME-Unify (Xie et al., 2025). “-” indicates that the model lacks the capability to complete the
specified task. Understanding tasks involve single image perception & understanding, multiple & interleaved image-
text understanding, and video perception & understanding. Generation tasks include conditional image-to-video
generation, fine-grained image reconstruction, text-guided image editing, text-to-image generation, text-to-video
generation, and video prediction. Unified tasks encompass image editing and explaining, common sense question
answering, auxiliary lines, SpotDiff, and visual chain-of-thought reasoning. Arrange from top to bottom based on
the overall score from highest to lowest.

Models Imagen  Speech \ COCO(T) VQAV2(T) OKVQA(T) VizWiz(T) SEED Bench(?)
Emu-Base (14B) v X 1124 52.0 38.2 34.2 473
Emu-I (14B) X X 120.4 57.2 434 32.2 58.0
SEED-LLaMA-I (8B) v X 124.5 66.2 459 55.1 51.5
AnyGPT (8B) v v 107.5 - - - -
Flamingo (9B) X X 79.4 51.8 44.7 28.8 42.7
Flamingo (80B) X X 84.3 56.3 31.6 -
Kosmos-1 (1.6B) X X 84.7 51.0 - 29.2 -
MetalLM (1.7B) X X 82.2 41.1 114 - -
IDEFICS-I (80B) X X 117.2 374 36.9 26.2 53.2
CM3Leon (7B) v X 61.6 47.6 23.8 37.6 -
InstructBLIP (8.1B) X X - - - 34.5 58.8
MIO-Instruct (7B) v v \ 120.4 65.5 39.9 53.5 54.4

Table 3: Experimental results for image understanding abilities. “Imagen” denotes whether the model is capable
of generating images. “Speech” denotes whether the model supports speech modality. “I”” denotes the instruction
tuned version. The metrics used are CIDEr for COCO, MCQ accuracy for the SEED Bench, and VQA accuracy for
the other tasks, following the standard procedures.

Models MS-COCO(1)  Flickr30K(1) 3.3 Speech-Related Tasks
SEFEH]SL-ILI?_,?IS[ A gggs gggi We evaluate the speech understanding and gen-
SEED-LLaMA-I 70.68 66.55 eration abilities of MIO on ASR and TTS tasks.
GILL 67.45 65.16 Wav2vec 2.0 (Baevski et al., 2020), Whisper Large
AnyGPT 65.00 -
5 s o V2 (Radford et al., 2023), and AnyGPT (Zhan
MIO-Base N T . .
MIO-Instruct 67.76 68.97 et al., 2024) are the baselines for ASR tasks, while

VALL-E (Wang et al., 2023a), USLM (Zhang et al.,

Table 4: Image generation evaluation by CLIP-I score.

instruction-tuned model of MIO both have compet-
itive image generation abilities. Note that beyond
single image generation, our model can also exhibit
multi-image generation capabilities such as gener-
ating visual stories, image sequences, and visual
thoughts as illustrated in §E.5.

2023b) , and AnyGPT (Zhan et al., 2024) are
the baselines for TTS tasks. The test set used
for ASR evaluation is LibriSpeech (Panayotov
et al., 2015), while the test set used for TTS eval-
uation is VCTK (Veaux et al., 2017) following
AnyGPT (Zhan et al., 2024)’s practice. The Whis-
per medium model is used to transcribe the speech
generated for the TTS task. The WER (word er-
ror rate) is computed by comparing the generated
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Models ASR |  Models TTS
Wav2vec 2.7 VALL-E 79

Whisper 2.7 USLM 6.5

AnyGPT 8.5 AnyGPT 8.5
MIO-Base 6.3 MIO-Base 12.0

MIO-Instruct 10.3 MIO-Instruct 4.2

Table 5: Speech ability evaluation by WER ().

Models MSVDQA  MSRVTT-QA
Flamingo (9B) 30.2 13.7
BLIP-2 (4.1B) 33.7 16.2

InstructBLIP (8.1B) 41.8 22.1
Emu-Instruct (14B) 324 14.0
SEED-LLaMA-I (8B) 40.9 30.8
MIO-Instruct 42.6 35.5

Table 6: Video understanding evaluation using accuracy.

transcribed text with the ground-truth transcription
after text normalization®.

As shown in Table 5, our models exhibit speech
performance comparable to the speech-specific
baselines and outperform the AnyGPT baseline.
It is important to note that although AnyGPT is
capable of generating content tokens for speech, it
lacks the ability to generate timbre tokens, which
necessitates the use of an additional voice cloning
model. In contrast, our models generate both con-
tent and timbre tokens, making the TTS tasks more
challenging for our models compared to AnyGPT.
Nonetheless, after instruction tuning, our model
still achieves better TTS performance. More evalu-
ations of the TTS and Speech-to-Speech generation
performance are provided in Appendix E.3 and E.2.

3.4 Video-Related Tasks

We compare MIO with Flamingo (Alayrac et al.,
2022), BLIP-2 (Li et al., 2023b), InstructBLIP (Dai
et al., 2023), Emu (Sun et al., 2023c), and SEED-
LLaMA (Ge et al., 2023b) for video understanding.
The models are evaluated on MSVDQA (Chen and
Dolan, 2011a) and MSRVTT-QA (Xu et al., 2017).
The results are presented in Table 6. Our model
achieves highest scores compared to all baselines.
Due to the lack of video generation benchmarks in
our setting, we provide examples in §E.5. These
results demonstrate superior performance of our
models in both video understanding and generation.

4https ://github.com/openai/whisper/blob/main/
whisper/normalizers/english.py

Models MMLU(T)
LLAMA-1-7B-Base 33.0
LLAMA-2-7B-Chat 479
SEED-LLAMA-8B-1 36.1

AnyGPT-Base 26.4
AnyGPT-Chat 274
MIO-Instruct 45.7

Table 7: Language-only evaluation.

Models | OmniBench(t)
Gemini-1.5-Pro 42.67
Reka-Core-20240501 31.52
AnyGPT (8B) 17.77
video-SALMONN (13B) 34.11
Unified-IO 2 (6.8B) 34.24
MIO-Instruct (7B) | 36.96

Table 8: Results for trimodal understanding.

3.5 Language-only Tasks

We evaluate our models on MMLU (Hendrycks
et al., 2021). The baselines are two LLaMA vari-
ants (Touvron et al., 2023a,b), the instruction-
tuned SEED-LLaMA (Ge et al., 2023b), and
AnyGPT (Zhan et al., 2024). For the MMLU bench-
mark, we conduct zero-shot evaluation experiments
using the official evaluation code. The experimen-
tal results are shown in Table 7. We can observe
that our models have superior language-only per-
formance compared with all any-to-any MM-LLM
baselines and even surpass LLaMA-1-7B-Base, an
advanced pure language model.

3.6 Ablation Studies

Generality for Trimodal Understanding. We
evaluate our model using OmniBench (Li et al.,
2024c), which incorporates text, image, and speech
modalities as inputs, requiring the model to choose
one of four options as the correct answer to deter-
mine accuracy. Although MIO acquires its multi-
modal understanding abilities via dual-modal train-
ing, the results in Table 8 indicate that MIO exhibits
superior trimodal comprehension abilities.

Please refer to Appendix E.6 for more ablations
including the effect of different image tokenizers.

4 Related Works

With the success of LLMs, MM-LLMs have
emerged, extending LLMs to handle images,
speech, and video (Liu et al., 2023; Li et al., 2024a,
2023b; Bai et al., 2023; Team, 2025; OpenAl, 2023;
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Shi et al., 2025; Chen et al., 2025b). These mod-
els typically align image features with text embed-
dings. For instance, BLIP-2 (Li et al., 2023b) uses
CLIP-ViT and a Q-Former for alignment, while
LLaVA (Liu et al., 2023; Li et al., 2024a) uses
linear projections. These models perform well in
visual question answering and commonsense rea-
soning. Recent models like LLaSM (Shu et al.,
2023) and Qwen2.5-VL (Team, 2025) extend to
speech and video. However, most focus on un-
derstanding rather than generation, limiting their
utility in fully multimodal tasks.

To address this, recent work explores any-to-any
MM-LLMs that generate outputs across modal-
ities without intermediate language. Key ap-
proaches include Discrete-In-Discrete-Out (DIDO),
Continuous-In-Discrete-Out (CIDO), Continuous-
In-Continuous-Out (CICO), and Autoregressive
+ Diffusion (AR + Diff), discussed in §1.
DIDO is used in SEED-LLaMA (Ge et al.,
2023b), AnyGPT (Zhan et al., 2024), and
Chameleon (Team, 2024); CIDO in DaVinCi (Diao
et al., 2023), Gemini (Team et al., 2023), and
Unified-10 2 (Lu et al., 2023); CICO in Emu (Sun
etal., 2023c,a) and DreamLLLM (Dong et al., 2023);
AR + Diff in Transfusion (Zhou et al., 2024), Show-
o (Xie et al., 2024), and MAR (Li et al., 2024b).

However, these models have limitations. Dream-
LLM (CICO, (Dong et al., 2023)) and CIDO mod-
els suffer from inconsistencies between input and
output forms for multimodal data, making it hard to
generate interleaved multimodal sequences where
an image functions in a coupled way as both input
and output. Emu2 (CICO, (Sun et al., 2023a))
faces challenges with MSE loss for training contin-
uous outputs, as well as with the uni-modal assump-
tion of the Gaussian distribution in the MSE loss.
Transfusion (AR + Diff, (Zhou et al., 2024)) ap-
plies noise to images from the input side to support
multimodal generation with diffusion modeling,
and relies on VAE (Kingma and Welling, 2013)
rather than CLIP (Radford et al., 2021) features for
denoising, which largely trade off the multimodal
understanding abilities. To mitigate these issues,
we adopt the DIDO approach. A comprehensive
comparison of our models with other any-to-any
MM-LLMs is presented in Table 1.

5 Conclusion

In conclusion, MIO represents an advancement in
the realm of multimodal foundation models. By

employing a rigorous four-stage training process,
MIO successfully integrates and aligns discrete to-
kens across text, image, video, and speech modali-
ties. This comprehensive approach enables MIO to
understand and generate multimodal content in an
end-to-end, autoregressive manner, addressing the
limitations of current multimodal large language
models. Our experimental results showcase its
competitive performance across a variety of bench-
marks compared to the dual-modality baselines
and other any-to-any multimodal large language
models. With the any-to-any and multimodal inter-
leaved output features, MIO exhibits novel emer-
gent abilities such as interleaved video-text genera-
tion, chain-of-visual-thought reasoning, etc.

Limitations

While MIO demonstrates advancements in multi-
modal understanding and generation, it has certain
limitations. First, the model’s performance is con-
strained by the quality and diversity of the training
data, particularly for speech and video modalities,
where open-source datasets may not fully capture
the range of real-world scenarios. Second, the com-
putational complexity of handling four modalities
simultaneously requires substantial resources, po-
tentially limiting scalability and accessibility for
smaller research groups. Third, while MIO ex-
cels in multimodal interleaved sequence generation,
the evaluation of such capabilities lacks standard-
ized benchmarks, making it challenging to quan-
titatively compare with other models. Finally, the
model’s ability to handle extremely long-context
multimodal sequences or highly specialized tasks
may be limited due to the fixed context window. Fu-
ture work could address these by expanding dataset
diversity, optimizing computational efficiency, and
developing tailored evaluation metrics for advanced
multimodal tasks.
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A Pre-training Data

Pre-training Data Sources.
data sources involve six types:

The pre-training

1. Image-text paired data: SBU (Ordonez et al.,
2011), CC3M (Sharma et al., 2018), LAION-
COCO (LAION, 2022), and JourneyDB (Pan
et al., 2023), where JourneyDB only serves
for image generation.

2. Language-only data: RefinedWeb (Penedo
et al., 2023).

3. Image-text interleaved data: OBELICS (Lau-
rencon et al., 2023), MMC4-core-ff (Zhu et al.,
2023).

4. Video-text paired data: WebVid-10M (Bain
etal., 2021).

5. Video-text interleaved data: HowTo-
100M (Miech et al., 2019), Youtube-
Temporal-180M (Zellers et al., 2021).

6. Speech-text paired data: Libriheavy (Kang
et al., 2023).

Pre-training Data Processing. We have differ-
ent data processing procedures for different data
types illustrated in §A following Emu (Sun et al.,
2023c) and Qwen-VL (Bai et al., 2023):

1. Image-text paired data: we remove pairs with
more than 2:1 aspect ratio or smaller than
224 x 224 resolution of the image. We re-
move pairs with more than 0.27 CLIP scores.
We remove non-English pairs. We randomly
place the image or text at the forefront for
generating captions based on images and vice
versa.

2. Language-only data: we use the same data
processing pipeline as used in Yi (Al et al.,
2024).

3. Image-text interleaved data: we filter the data
using a CLIP score threshold of 0.25, and
follow the same procedure as illustrated in
Emu (Sun et al., 2023c).

4. Video-text paired data: we randomly place the
frames or text at the forefront for generating
captions based on frames and vice versa. 60%
of the pairs are text-to-video, while 40% of
the pairs are video-to-text. We sample 4 to 8
frames of each video for training according to
the text lengths.

5. Video-text interleaved data: We first use
PySceneDetect to extract key frames from the
video based on scene changes, following the
practice of Stable Video Diffusion (Blattmann
et al., 2023). Then, for each video clip be-
tween two key frames, we extract a cen-
tral frame for textual caption generation with
BLIP-2 (Li et al., 2023b). Additionally, the
video clips between key frames are processed
using ASR (automatic speech recognition)
tools to extract subtitles. The ASR text and
captions are then integrated and refined us-
ing Yi-34B-Chat (Al et al., 2024), resulting
in a single text segment. These text segments,
along with the key frames and central frames,
form the video-text interleaved data.

6. Speech-text paired data: we remove speechs
with more than 15 seconds.

B Pre-training Details

Hyperparameters. We enable Flash Atten-
tion (Dao et al., 2022; Dao, 2023) during pre-
training. Gradient clipping is set to 1.0 for all
stages. The maximum sequence length for train-
ing is 2800 tokens. We use a cosine learning rate
scheduler with a peak learning rate of 3e-5 and
a warmup ratio of 0.03. The optimizer used is
AdamW (Loshchilov and Hutter, 2017).

Prompt Templates. The prompt template is only
necessary for paired datasets. For image-text paired
data, we use the prompt templates of “{image} The
caption of this image is: {caption}” and “Please
generate an image of “{caption}”: {image}”. For
video-text paired data: we use the prompt tem-
plates of “Please describe the following video:
{image} {description}” and “Please generate a
video for “{description}”: {video}”. For speech-
text paired data: we use the prompt templates of
“{speech} Transcribe this speech: {transcription}”
and “Please generate a speech of “{transcription}”:
{speech}” during Stage I and Stage II. While for
Stage III, we change the ASR prompt template
into ‘{speech} The transcription of this speech is:
{transcription}”.

C Supervised Fine-Tuning Details

Supervised Fine-Tuning Data. As shown in Ta-
ble 10, we use 16 tasks with 34 datasets for a com-
prehensive supervised fine-tuning.
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Pre-training Stage Stage 1 Stage 11 Stage 111
Objective Multimodal Alignment Multimodal Interleaving Speech Enhancement
SBU, CC3M, SBU, CC3M, COIM
Image-Text Pair LAION-COCO, LAION-COCO,
LAION-COCO
JourneyDB JourneyDB
Language-Only ‘ RefinedWeb RefinedWeb RefinedWeb
OBELICS
I -Text Int - ’ -core-
mage-Text Inter MMCAcore ff MMC4-core-ff
Video-Text Pair | - WebVid-10M WebVid-10M
HowTo-100M, HowTo-100M,
Video-Text Inter - YT-Temporal- YT-Temporal-
180M 180M
Speech-Text Pair Libriheavy Libriheavy Libriheavy
GPUs 128 A800-80GB 128 A800-80GB 8 A800-80GB
Training Steps 24,800 12,800 32,200
Batch Size 12:2:0:2 2:2:6:6 2:1:1:12

Table 9: Pre-training stages and their details. We use “Inter” to denote “Interleaved” for short. We provide batch
sizes for each data type per GPU in image-text pair data:language-only data:(image-text interleaved data + video
data):speech-text pair data. See Appendix A and Appendix B for more details including pre-training data sources,
data cleaning procedures, pre-training hyperparameters, etc.

Prompt Templates. The chat template is the
same as used in Yi (Al et al., 2024). The sys-
tem prompt is unified as: “You are MIO, an Al
assistant capable of understanding and generating
images, text, videos, and speech, selecting the ap-
propriate modality according to the context.” ex-
cept for speech generation and TTS whose system
prompts are “You are MIO, an Al assistant capable
of understanding images, text, videos, and speech,
and generating speech. Please respond to the user
with speech only, starting with <spch> and ending
with </spch>.” to avoid randomness of the output
modality.

Hyperparameters. Similar to pre-training (c.f.,
Appendix B), we enable Flash Attention (Dao et al.,
2022; Dao, 2023) during supervised fine-tuning.
Gradient clipping is set to 1.0. The maximum se-
quence length for training is 2800 tokens. We use
a cosine learning rate scheduler with a peak learn-
ing rate of 3e-5 and a warmup ratio of 0.03. The
optimizer used is AdamW (Loshchilov and Hutter,
2017).

D Evaluation Details.

Hyperparameters. The decoding strategies and
hyperparameters are quite important for a supe-
rior performance. As shown in Table 11, we use

different sets of parameters for different output
modalities.

Prompt Templates. The prompt templates used
for evaluating pre-training checkpoints are the
same as used during pre-training. For SFT check-
point evaluation, we list the prompt templates in
Table 12.

E More Experiments

E.1 Image Generation Evaluation

In Table 13, we compute two additional auto-
matic metrics for evaluating image generation, i.e.,
SSIM (Wang et al., 2004) and Aesthetic Predictor
v2.57 for the evaluation of structural integrity and
aesthetics, respectively. SSIM (Structural Similar-
ity Index Measure) evaluates the perceptual similar-
ity between the generated images and the ground-
truth images, focusing on luminance, contrast, and
structure, with scores ranging from -1 (dissimi-
lar) to 1 (identical). Aesthetic Predictor V2.5 is
a SigLIP (Zhai et al., 2023)-based predictor that
evaluates the aesthetics of an image on a scale from
1 to 10 (10 is the best). In addition, we randomly
select 100 image descriptions from MS-COCO test

Shttps://github.com/discus0434/aesthetic-predictor-v2-
5?tab=readme-ov-file
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Task

Dataset

|
Language Only \ OpenHermes (Teknium, 2023)
Multimodal ICL \ MMICL (Zhao et al., 2023)
Multimodal CoT ‘ ScienceQA (Lu et al., 2022)
Chart Understanding | Geol70K (Gao et al., 2023)
Instructiona! Image ‘ InstructPix2Pix (Brooks et al., 2023), MagicBrush (Zhang et al., 2024)
Generation
ASR LibriSpeech (Panayotov et al., 2015), GigaSpeech (Chen et al., 2021), Common
Voice (Ardila et al., 2020)
Video Dialogue \ VideoChat2-IT (Li et al., 2023c¢)
Image QA Vision-Flan (Xu et al., 2023), VizWiz (Gurari et al., 2018), LAION-GPT4V ,
LLaVAR (Zhang et al., 2023c), OCR-VQA (Mishra et al., 2019), VQA (Goyal
et al., 2016), TextVQA (Singh et al., 2019), OK-VQA (Marino et al., 2019),
Mantis-Instruct (Jiang et al., 2024)

Speech Generation

Speechlnstruct (Zhang et al., 2023a)

Speech Understanding

Speechlnstruct (Zhang et al., 2023a)

Image Captioning

Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

Descriptive Image
Generation

Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

GigaSpeech (Chen et al., 2021), Common Voice (Ardila et al., 2020)

Video Generation

MSR-VTT (Xu et al., 2016), MSVD (Chen and Dolan, 2011b)

|
|
|
TTS |
|
|

Video Understanding MSR-VTT (Xu et al., 2016), MSVD (Chen and Dolan, 2011b),
MSVD-QA (Chen and Dolan, 2011a), MSRVTT-QA (Xu et al., 2017)
Visual Storytelling VIST (Huang et al., 2016)

Table 10: Supervised Fine-Tuning Data. “ICL” denotes In-Context Learning, and “CoT” denotes Chain of Thought.

set, and used each model to generate images ac-
cordingly for human preference evaluation. We ask
3 annotators to rank 3 images generated by the 3
models: “given the image description, which im-
age is preferred?” The average ranking of MIO’s,
AnyGPT’s, and Emu’s generated images are 1.2
(MIO), 2.9 (AnyGPT), 1.9 (Emu). MIO aligns the
best with the human preference. The percentage
agreement between the three annotators (calculated
as the number of cases with identical rankings by
all annotators divided by 100) is 82.3%, indicating
a high consistency in the human evaluation.

E.2 Speech-to-Speech Evaluation

Since there is a lack of speech to speech evaluation
benchmarks, we randomly sample some conver-
sations from the moss-002-sft dataset® and con-
vert them into speech-to-speech format. Follow-
ing the evaluation procedures outlined in LLaMA-
Omni (Fang et al., 2024), we use the content score
metric obtained from GPT-40 (OpenAl et al., 2024)
to assess whether the model’s response effectively
addresses the user’s instructions. The results are

®https://huggingface.co/datasets/fnlp/moss-002-sft-data

shown in Table 14.

Though the content score of MIO is slightly
lower than LLaMA-Omni and AnyGPT, both
LLaMA-Omni and AnyGPT first generate text
replies and then convert these into voice. However,
our model, MIO, is capable of directly generating
speech responses to speech queries.

E.3 TTS Evaluation

We select two additional benchmarks, Lib-
riSpeech test-clean (Panayotov et al., 2015) and
GLOBE (Wang et al., 2024b), to evaluate the per-
formance of TTS between our model and AnyGPT.
For fair comparison, we don’t specify the in-
put voice prompt during evaluation of MIO and
AnyGPT. WER (Word Error Rate) and speaker sim-
ilarity are employed as the automatic metrics. The
results are shown in Table 16. The results show that
MIO performs significantly better than AnyGPT
on both WER and speaker similarity across both
benchmarks.

Additionally, we conduct a human evaluation
to assess the speech quality of the outputs from
MIO and AnyGPT. In this evaluation, participants
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Output Modality | Text Image Speech Video

Beam size 5 1 1 1
Do Sampling False = True True True
Top-P - 0.7 0.7 0.7
Repetition Penalty | 1.0 1.0 1.15 1.15
Temperature 1.0 1.0 1.0 1.0
Guidance Scale 1.0 1.0 1.0 1.0

Table 11: Decoding Hyperparameters.

Task ‘ Prompt Template
Image Captioning ‘ Provide a one-sentence caption for the provided image. {image}
Image QA ‘ (We use the prompt templates in LMMs-Eval (Li* et al., 2024)).

. Please generate an image according to the given description.
Image Generation g g & & p

{description}
ASR ‘ Please transcribe this speech.{speech_token}
TTS Please generate a speech according to the given transcription. Start with
<spch>. {transcription}
Text-only The following are multiple.choice ques.tions (with answers) about
{subject} {question}
The goal is to use the visual information available in the image to
Video QA provide an accurate answer to the question. This requires careful

observation, attention to detail, and sometimes a bit of creative
thinking.{video} Question: {question} Answer:

Table 12: Prompt templates used for evaluating instruction-tuned models.

Loss Curves

—— Stagel
Stage2
12 4 —— Stage3

10

Loss

24 e e v ——

T T T T T T T
0 5000 10000 15000 20000 25000 30000
Step

Figure 2: Loss curves of pretraing stages.
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Dataset MS-COCO Flickr30K MS-COCO Subset
Metric | SSIM (1) Aesthetic (1) | SSIM (1) Aesthetic (1) | Human Avg. Ranking ({)
Emu 0.1749 3.733 0.1451 3.893 1.9
AnyGPT | 0.1960 3.954 0.1585 4.251 2.9
MIO 0.2307 4.019 0.1727 4.326 1.2

Table 13: Image generation evaluation by SSIM, Aesthetic Predictor V2.5, and human preference.

Model Supported Content Score
Workflow (1-5 points) (1)
MIO $2s 1.4
LLaMA-Omni
(Fang et al., 2024) S2=2s 24
AnyGPT s2t—t2s 1.8

Table 14: Speech-to-Speech performance. “s2s” means “speech-to-speech”, while “s2t” and “t2s” denote “speech-

to-text” and “text-to-speech”, respectively.

MIO Win  54%
Tie 25%
MIO Lose 21%

Table 15: Human evaluation for the TTS performance.

are provided with the target speech, the speech
generated by AnyGPT, and the speech generated
by our model. They are tasked with determining
which one sounded more natural and closer to the
target speech. Evaluators could choose one of the
two generated speeches or indicate that they find
them equally natural. Each evaluation is rated by
three independent human evaluators, and we report
the average scores. The results are shown in Table
15. MIO significantly outperforms AnyGPT in the
human evaluation, consistent with the results from
the automatic evaluation.

E.4 Loss Curves

We plot the loss curves for each stage in Fig-
ure 2. We can observe that when introducing a
new data type (i.e., image-text interleaved data)
in stage 2, the training loss suddenly increases.
However, in the third pretraining stage, i.e., the
speech-enhancement stage, the training loss tran-
sitions more smoothly. Despite the fluctuations in
loss between stages, which do have some impact
on downstream performance during the fluctuation
periods, we find that with continued training, the
model’s loss quickly recovers to its previous conver-
gence level and continues optimizing effectively.

VQGAN-1024

VQGAN-8192 SEED-Tokenizer

n eagle flying away after eatin fish
in a eagle-feeding session in an island near Langkawi.

Figure 3: Comparing different image tokenizers for
image generation within a controlled setting (limited to
3K training steps).

E.5 Demonstrations.

We illustrate the basic and advanced abilities of
MIO in Figure 5 and 4. The basic abilities of MIO
involve image understanding and generation, video
understanding and generation, ASR, and TTS. The
advanced abilities of MIO are based on its any-to-
any and multimodal interleaved sequence gener-
ation features. These abilities involve visual sto-
rytelling (i.e., interleaved video-text generation),
chain of visual thought, speech-in-speech-out, in-
structional image editing, visual guideline genera-
tion, etc. Figure 6 shows more demonstrations in-
cluding multimodal chain of thought and in-context
learning.
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Model GLOBE

WER (})

LibriSpeech test-clean

Speech Similarity (1) | WER (]) Speech Similarity (1)

MIO
AnyGPT

9.8
27.9

67.8
67.3

75.1
71.3

10.3
28.1

Table 16: More automatic evaluations for the TTS performance.
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Figure 4: Demonstrations of MIO’s advanced abilities. Yellow : inputs; Green : outputs.

E.6 More Ablation Studies.

Effect of Different Image Tokenizers. The im-
age tokenizer has a significant impact on image
modality alignment. In Figure 3, we compare the
image generation performance under a controlled
setting after training for 3K steps in Stage I, using
various image tokenizers. The image tokenizers for
comparison include a VQGAN (Esser et al., 2020)
with a vocabulary size of 1024 (VQGAN-1024),
as well as the VQGAN-Gumbel with a vocabu-
lary size of 8192 (VQGAN-8192)’. Our results
indicate that the SEED-Tokenizer, which captures
more semantic and higher-level image information,
exhibits faster convergence. In contrast, both VQ-
GAN tokenizers show slower convergence due to
their lower-level image information.

"https://github.com/Comp Vis/taming-transformers
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Bird eye panoramic view of busiest Asian cargo port with hundreds of ships loading export and
import goods and thousands of containers in harbor.
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Figure 5: Demonstrations of MIO’s basic abilities. Yellow : inputs; Green : outputs.
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Figure 6: Multimodal Chain-of-Thought and Multimodal In-Context Learning Demos. Yellow : inputs; Green :
outputs.
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