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Abstract

While densely annotated image captions signif-
icantly facilitate the learning of robust vision-
language alignment, methodologies for system-
atically optimizing human annotation efforts
remain underexplored. We introduce CHAIN-
OF-TALKERS (COTALK), an AI-in-the-loop
methodology designed to maximize the number
of annotated samples and improve their compre-
hensiveness under fixed budget constraints (e.g.,
total human annotation time). The framework
is built upon two key insights. First, sequential
annotation reduces redundant workload com-
pared to conventional parallel annotation, as
subsequent annotators only need to annotate the

“residual”—the missing visual information that
previous annotations have not covered. Second,
humans process textual input faster by reading
while outputting annotations with much higher
throughput via talking; thus a multimodal inter-
face enables optimized efficiency. We evaluate
our framework from two aspects: intrinsic eval-
uations that assess the comprehensiveness of se-
mantic units, obtained by parsing detailed cap-
tions into object-attribute trees and analyzing
their effective connections; extrinsic evaluation
measures the practical usage of the annotated
captions in facilitating vision-language align-
ment. Experiments with eight participants show
our CHAIN-OF-TALKERS (CoTalk) improves
annotation speed (0.42 vs. 0.30 units/sec) and
retrieval performance (41.13% vs. 40.52%)
over the parallel method.

1 Introduction

Language is central to human–AI interaction, while
vision enables high-bandwidth perception of the
world. Aligning these modalities semantically is
essential for AI systems to interpret multimodal
information effectively. Typically, this alignment
is achieved by learning from images paired with
human-generated captions. Early datasets, such as
COCO (Chen et al., 2015), provide brief single-
sentence captions per image, offering basic align-

Figure 1: Comparison between Existing Annotation
Frameworks and CHAIN-OF-TALKERS (COTALK):
Traditional methods require annotators to independently
type complete image descriptions. In contrast, COTALK
has the first annotator provide a complete spoken anno-
tation, while subsequent annotators focus solely on the

“residual”—the overlooked details.

ment but limited comprehensiveness. Recently,
research has shifted toward creating denser cap-
tions, significantly improving vision-language mod-
els through enhanced semantic grounding, inter-
pretability, and downstream task performance (Cho
et al., 2025; Shabbir et al., 2025).

Currently, annotation interfaces commonly dis-
play images to annotators who examine visual
content and generate captions by typing (Garg
et al., 2024; Hua et al., 2024). Parallel annota-
tion, wherein multiple annotators independently
describe the same image, aims to boost com-
prehensiveness by aggregating diverse perspec-
tives (Deitke et al., 2024; Athar et al., 2024; Onoe
et al., 2024; Hu et al., 2024). Despite their sim-
plicity and ease of use, these methods are largely
heuristic, lacking rigorous theoretical justification
or systematic validation. In this paper, we identify
two fundamental limitations of current annotation
practices and propose a novel, systematically vali-
dated methodology to overcome these issues.

Our first insight addresses the inefficiency
caused by redundancy in parallel annotations,
where multiple annotators independently describe
the same visual content, leading to substantial
overlap (e.g., PixomoCap (Deitke et al., 2024)
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cross-annotation overlap is 71.36% as measured by
Sentence-BERT (Reimers and Gurevych, 2019)).
Our second insight is that speech-based annota-
tion significantly surpasses typing in speed and effi-
ciency. This is supported by prior research demon-
strating that the average throughput for spoken
words (161.2 words per minute, WPM) substan-
tially exceeds that of typing (53.46 WPM) (Ruan
et al., 2016).

Building on these insights, we introduce CHAIN-
OF-TALKERS (COTALK), an novel AI-in-the-
loop annotation framework (illustrated in Figure 1).
Annotators sequentially contribute descriptions:
the first provides a comprehensive initial descrip-
tion from scratch, while subsequent annotators in-
crementally add only the “residual”, the missing vi-
sual details. Each annotator reads previous annota-
tions and communicates additional details through
speech, which are automatically transcribed and
synthesized into coherent text by a Large Language
Model (LLM). This sequential, multimodal process
significantly reduces redundancy and maximizes
annotation comprehensiveness.

The design of COTALK is theoretically grounded
in an information-theoretic evaluation framework
for image captions (Chen et al., 2024), which pro-
vides rigorous guidelines for developing efficient
annotation methodologies. To validate our method,
we conduct comprehensive assessments of human-
generated annotations through both intrinsic and
extrinsic evaluations.

Intrinsic Evaluation. Traditional metrics such
as caption length are biased by linguistic style,
and model-based measures (e.g., CLIP-Score (Hes-
sel et al., 2021), CLIP-IMAGE-Score (Ge et al.,
2024)) strongly depend on the performance of the
underlying model, limiting their interpretability.
To overcome this, we introduce an alternative eval-
uation based on semantic units—object-attribute
pairs extracted by LLMs from detailed captions
to construct semantic trees. The number of effec-
tive object-attribute connections represents anno-
tation comprehensiveness. Using this metric, we
demonstrate that COTALK achieves superior an-
notation comprehensiveness, generating 36.72 se-
mantic units per image compared to 33.61 with
parallel annotation. It also reduces annotation time
by approximately 48%, increasing the annotation
speed from 0.30 to 0.42 semantic units per second.
Additionally, we verify that speech-based annota-
tion is not only faster but also captures richer detail
compared to typing, and reading previous anno-

tations leads to better comprehension than audi-
tory reviews alone. Since speech-based annotation
reaches a speed of 0.40 semantic units per second,
significantly faster than typing at 0.17. Meanwhile,
reading prior annotations takes 55.20 seconds with
100% accuracy, compared to 70.20 seconds and
94% accuracy for auditory reviews.

Extrinsic Evaluation. To validate the practi-
cal utility of COTALK, we employ retrieval-based
evaluation, a robust proxy for annotation quality
relevant to real-world vision-language tasks. By
fine-tuning a CLIP model (Radford et al., 2021)
separately using captions generated via COTALK

and parallel annotation methods, we systematically
compare their downstream retrieval performances
across multiple benchmarks. Our results demon-
strate that COTALK consistently yields superior
retrieval accuracy, achieving an average of 41.13%
across three datasets and six retrieval tasks, sur-
passing parallel annotations (40.52%). This high-
lights COTALK’s ability to produce more seman-
tically rich and practically valuable annotations,
underscoring its effectiveness in enhancing vision-
language model performance.

2 Methodology

2.1 Preliminary

Chen et al. (2024) propose an information-
theoretic framework for image captioning, system-
atically defining key criteria for high-quality an-
notations (Figure 2). The framework introduces a
semantic space S ∈ [0, 1]n, where each dimension
corresponds to a semantic unit ωi in Ω = {ωi}ni−1,
representing the probability of that unit appearing
in the image. The caption generation process is
modeled as a function fθ, simulating human anno-
tation. For n annotators, individual annotation pro-
cesses are denoted f1, . . . , fn, producing annota-
tions Ỹ k for the k-th annotator. These annotations
are mapped to the semantic space as vectors Y via a
transformation h(·). In this binary semantic space,
a value of 1 indicates the presence of a semantic
unit, while 0 indicates its absence. The overlap
between the source semantics X and received se-
mantics Y defines their semantic consistency. The
semantic-level error is given by Z = Y −X , cap-
turing the discrepancy between the intended se-
mantics and the annotated interpretation, thereby
reflecting annotation quality.

Chen et al. (2024) then proposes three core ob-
jectives to guide high-quality captioning:
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Figure 2: Overview of our formulation. Some latent variable X in a latent semantic space S generates image X̃ in
data space D. The image X is then annotated by f producing a caption Ỹ which can be mapped back to the original
latent space as Y . The semantic-level error measures the annotation quality. The annotation function f can take
several forms: in single annotation, a single annotator provides a complete image description; in parallel annotation,
multiple annotators independently generate captions that are later merged; and in our sequential annotation, the first
annotator provides an initial description, with subsequent annotators incrementally enriching it.

(1) Information Sufficiency. Jsuf(θ) =
I(Y ;X): ensures the caption captures task-
relevant semantics by maximizing mutual infor-
mation;

(2) Minimal Redundancy. Jmin(θ) = −H(Ỹ ):
promotes conciseness by minimizing entropy, re-
ducing repetitive or irrelevant content;

(3) Human Comprehensibility. Jint(θ) =
−D(P

Ỹ
||Plang): measures alignment with natural

language through distribution distance, enhancing
readability. These objectives are integrated into a
unified optimization function:

J(θ) = Jsuf(θ)− βJmin(θ)− γJint(θ), (1)

where β and γ are tunable weights. This formu-
lation offers a flexible and principled approach to
both analyzing and optimizing image captioning
systems.

2.2 Human Annotation
Traditional human annotation typically involves
a single annotator, denoted as f1, producing the
annotation Ỹ 1. Thus, the result of single-round
annotation is defined as:

Ỹsingle = Ỹ 1. (2)

In addition to annotation content, time is a cru-
cial factor. The total annotation time in a single
round comprises two components: T X̃

in , the time
spent observing the image, and Tout, the time spent
generating the annotation. The total time can be
expressed as: Tsingle = T X̃

in + T Ỹ 1

out .

2.3 Parallel Annotation
Due to the high reliance on a single annotator,
single-round annotation often results in inconsis-

tent quality. To address this, parallel annotation is
introduced, where multiple annotators work inde-
pendently to produce separate outputs (Deitke et al.,
2024; Onoe et al., 2024). These outputs are then ag-
gregated into a unified annotation using a merging
function. We define this aggregation process as the
LLM merger σ(·), which consolidates individual
annotations into a single, coherent result.

Formally, fk (k = 1, . . . , n) generates a descrip-
tion based directly on the image. The annotation is
denoted as Ỹ k.

After all n annotators have completed their anno-
tations, the LLM merges all the annotations from
the different annotators together.

ỸPar = Ỹ n
σ = σ(Ỹ 1, . . . , Ỹ n), (3)

then the final semantic unit of the parallel process
can be determined as YPar = Y n

σ = h(Ỹ n
σ )

The total time cost for the parallel annotation
process is: TPar = n · T X̃

in +
∑n

i=1 T
Ỹ i

out .

2.4 Chain-of-Talkers Annotation
We introduce the Chain-of-Talkers (CoTalk)
method, designed to reduce human annotation time
while maintaining high annotation quality. CoTalk
is according to two key insights: (1) sequential
annotation can be more efficient than parallel an-
notation, and (2) generating annotations via speech
(talk) is faster than typing, while comprehending
prior annotations is quicker through text than audio.

At a system level, CoTalk adopts a sequential an-
notation strategy, where only the first annotator de-
scribes the entire image, and subsequent annotators
contribute only residual information—i.e., addi-
tions or corrections according to what has already
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been annotated. At the individual level, CoTalk
leverages a cross-modal approach: prior annota-
tions are consumed as text, and new annotations
are generated through talk. This framework is illus-
trated in Figure 1.

Formally, fk (k = 2, . . . , n) generates a talk de-
scription based on previous annotation produced by
fk−1 (when k = 1, the description is based directly
on the image). After converting the talk to text, the
resulting annotation is denoted as Ỹ k.

Ỹ k = fk(Ỹ k−1
σ , X̃), (4)

After each annotator completes their annotation,
the LLM merges the current annotation with the
previously aggregated annotations.

ỸCoTalk = Ỹ k
σ = σ(Ỹ k−1

σ , Ỹ k), (5)

This process continues until an annotator deter-
mines that no further information is necessary and
the annotation is complete.

To account for time, we introduce T Ỹ k−1
σ

in , repre-
senting the time of fk required to read the previ-
ous annotation. The total time cost for the CoTalk
method is: TCoTalk = n·T X̃

in +
∑n

i=1(T
Ỹ i−1
σ

in +T Ỹ i

out ).

3 Theoretical Analysis

3.1 CoTalk is Pareto Optimal
In this section, we compare the CoTalk method
with parallel annotation and one-round human an-
notation to highlight its advantages in both quality
and efficiency. Annotation quality is evaluated us-
ing Jθ(defined in Equation 1), while efficiency is
quantified as:

E =
J(θ)

T
, (6)

where T denotes the total annotation time. Then,
we first demonstrate that CoTalk achieves higher in-
formational sufficiency with minimal redundancy,
indicating superior annotation quality. Subse-
quently, we show that for annotations of compa-
rable quality, CoTalk requires a lower annotation
budget, thereby achieving Pareto optimality in the
quality-efficiency trade-off.

Before proceeding with the analysis, we intro-
duce the following assumption:

Assumption 1 (Diminishing semantic contri-
bution in CoTalk annotations) In CoTalk, the
amount of new semantic content added by each
successive annotator decreases due to the influence
of prior annotations, resulting in Y k

CoTalk > Y k+1
CoTalk.

Assumption 2 (Effective and Correlated
Merging of Annotations) In both CoTalk and par-
allel annotation, the merging function σ(·) effec-
tively eliminates redundancy and accurately inte-
grates semantic units. In addition, it exhibits a pos-
itive input-output correlation: greater input yields
more output, as shown in C.

We now present theorems according to the as-
sumptions:

Theorem 1 (CoTalk Enhances Annotation
Quality): As defined in Equation 1, high quality
annotation is characterized by high information suf-
ficiency, minimal redundancy, and strong human
comprehensibility.

Information Sufficiency: Information suffi-
ciency is defined as the completeness of semantic
unit coverage, representing how thoroughly anno-
tations capture the semantic content of an image.
Under Assumptions 1-2, CoTalk demonstrates su-
perior information sufficiency compared to single-
round and parallel annotation. In single-round an-
notation, a single annotator provides limited se-
mantic coverage. While parallel annotation im-
proves coverage by aggregating multiple indepen-
dent annotations, it suffers from redundancy, as
each annotator samples from the entire semantic
space. In contrast, CoTalk allows each annota-
tor to build on the previous ones; the fk samples
from the residual semantic space Y−Y k−1

σ , focus-
ing only on what has not yet been covered. This
targeted supplementation reduces redundancy and
increases semantic completeness. Consequently,
the incremental information gain per round, de-
fined as ∆I(Y k

σ ;X) = I(Y k
σ ;X) − I(Y k−1

σ ;X),
is greater for CoTalk than for parallel annotation
when k >= 2:

∆ICoTalk(Y
k
σ ;X) > ∆Ipar(Y

k
σ ;X) (7)

This indicates that CoTalk accumulates semantic in-
formation more efficiently over successive rounds,
thereby achieving higher information sufficiency.

Minimal Redundancy: Single-round annota-
tion inherently contains no redundancy, as it in-
volves only one annotator. In contrast, under As-
sumption 2, both CoTalk and parallel annotation
involve multiple annotators and rely on LLMs to
merge their outputs. While parallel annotation
gathers full independent annotations from each an-
notator, CoTalk captures more refined "residual"
inputs—focused supplements according to prior
contributions. Given that LLMs typically produce
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Figure 3: Semantic Unit Tree: The first layer is a virtual
root node representing the image. The second layer
contains all objects in the image, and the third layer
captures the attributes of each object.

output proportional to input length, and that word
count serves as a proxy for redundancy (being di-
rectly related to entropy H(Y ), we can compare
the overall entropy of the merged outputs. Ac-
cording to Shannon’s estimate of 11.82 bits per
English word, higher word counts imply higher
redundancy (Grignetti, 1964). Since CoTalk re-
duces redundancy through sequential refinement, it
achieves lower overall entropy than parallel anno-
tation:

JCoTalk
min (θ) ≈ J

Single
min (θ) > JPar

min(θ), (8)

indicating that CoTalk minimizes redundancy more
effectively than parallel annotation, matching the
minimal redundancy of single-round annotation
while achieving greater information coverage.

Human Comprehensibility: Under Assump-
tion 2, we assume that the merging process is loss-
less. Since all three annotation methods, CoTalk,
parallel, and single-round, rely on human annota-
tors to generate content, their outputs are expected
to maintain similar levels of interpretability. There-
fore, the human comprehensibility of CoTalk is
equivalent to that of the other two methods:

JCoTalk
int (θ) = J

Single
int (θ) = JPar

int (θ) (9)

According to the above results, we conclude that
CoTalk achieves higher information content, lower
redundancy, and comparable human comprehen-
sibility relative to parallel and single-round anno-
tations. Therefore, it offers superior annotation
quality, denoted as JCoTalk

θ .
Theorem 2 (CoTalk boosts efficiency): Build-

ing on Theorems 1, we establish that CoTalk yields
the highest annotation quality. We now compare
the efficiency of CoTalk, parallel annotation, and

single-round annotation by evaluating the time re-
quired to achieve equivalent semantic unit cover-
age. Since single-round annotation provides signif-
icantly lower information sufficiency, we focus on
comparing CoTalk and parallel annotation. Assume
parallel annotation can match CoTalk’s semantic
coverage using m rounds, while CoTalk requires
only n rounds (m > n, as implied by Equation 7).
The total annotation time is then:

Tn
CoTalk = n · T X̃

in +
n∑

i=1

(T Ỹ i−1
σ

in + T Ỹ i

out ),

Tm
Par = m · T X̃

in +
m∑

i=1

T Ỹ i

out (10)

Here, T Ỹ i

out = |Y i|
vout

denotes the time for producing

annotations, and T Ỹ σi−1

in = |Y σi−1|
vtext

in
represents the

time for reviewing prior annotations. The variables
vout and vtext

in refer to the speech annotation and
reading comprehension speeds, respectively. Since
vout > vtext

in (Ruan et al., 2016; Brysbaert, 2019), it
follows that TCoTalk < TPar when n = 2, as shown
in Proof B. Moreover, the primary time overhead in
CoTalk stems from reading prior annotations. How-
ever, as semantic coverage increases, the reading
time increase per round progressively decreases.
In contrast, parallel annotation suffers from grow-
ing redundancy, which scales with semantic cov-
erage and leads to increasing time consumption.
Hence: Tn

CoTalk < Tm
Par. demonstrating that CoTalk

achieves the same semantic coverage with lower
time costs. Consequently, its efficiency surpasses
that of both parallel and single-round methods:
ECoTalk > EPar > ESingle. In summary, CoTalk not
only ensures high annotation quality through im-
proved information sufficiency and reduced redun-
dancy, but also maximizes efficiency—minimizing
time and labor, and closely approaching Pareto
Optimality.

3.2 CoTalk is Faster in Input and Output
CoTalk employs a cross-modal interface, using text
for input and talking for output, in contrast to tra-
ditional single-modality parallel approaches. In
this section, we evaluate the efficiency of different
input-output modality combinations to determine
the most effective configuration.

First, talking for output is faster: The time for
talking output can be expressed as: T talking

out , and the
time for text output can be defined as: T typing

out . Ex-
isting research shows that talking speed is 161.20
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Figure 4: CoTalk Example: The first annotator provides a full image description, while subsequent annotators
review and add missing details. As the sequence continues, the number of new semantic units gradually declines.

WPM, three times faster than typing, with 20.4%
lower error rates (Ruan et al., 2016), we can directly
conclude that vtalking

out > v
typing
out .

Next, text for input is faster: Since eyes spend
10% to 20% time rereading during text input, while
replaying audio for review is more time consuming
compared to rereading text (Zhan and Shen, 2015).
We can conclude that vrereading > vrelistening. More-
over, we can define the time for listening input as:
T

listening
in = Tlistening + Trelistening, and the time for

text input can be expressed as: T reading
in = Treading +

Trereading. The reading comprehension speed for
text is 236 WPM, exceeding the 161 WPM speed to
understand talking (Brysbaert, 2019), which means
that vreading > vlistening. Therefore, we can achieve
that vreading

in > v
listening
in .

From the above results, we conclude that in
CoTalk, using multimodal input and output can
save more time compared to a single modality ap-
proach. Specifically, for annotators’ output, talking
should be adopted due to its higher speed and accu-
racy. On the other hand, for understanding previous
annotations, text is more effective.

4 Experiments

Our experiments aim to validate the effectiveness of
different annotation strategies: CoTalk and parallel
annotations, as well as to identify the optimal input-
output modality for individual annotators, namely
talk or text. Finally, we perform an in-depth analy-
sis of the collected human annotation.

4.1 Evaluation Metrics

To assess the quality differences among various an-
notation methods, we conduct a quantitative com-
parison using both extrinsic and intrinsic metrics.

4.1.1 Intrinsic Metric

Section 2.1 establishes that semantic units serve
as a reliable indicator of annotation quality: more
units correspond to higher-quality annotations. We
further formalize the function h(·), which maps an-
notations to semantic units. Specifically, we utilize
LLMs to extract these units and organize them into
a hierarchical tree, where the root is a virtual node
labeled "Image", the second level contains entities,
and subsequent levels represent their associated at-
tributes. The total number of edges quantifies the
semantic units. For example, in Figure 3, “Termi-
nal” has five semantic units.

Building on semantic units, we quantitatively
compare CoTalk and parallel annotation in terms
of quality and efficiency. As shown in Table 1,
two-person CoTalk yields higher-quality annota-
tions (36.72 units/image vs. 33.61) and reduces
per-annotator time by 48%. To assess redundancy,
we measure the overlap between outputs from the
first and second annotators. Redundancy is defined
as the repetition rate of semantic units, including ex-
act matches and semantically similar phrases (e.g.,
“black car” vs. “black vehicle”) exceeding a sim-
ilarity threshold using Sentence-BERT (Reimers
and Gurevych, 2019). CoTalk shows lower redun-
dancy (29.76%) compared to parallel annotation
(69.12%), highlighting the inefficiencies of inde-
pendent annotation without shared context.
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Table 1: Information on different methods. Redundancy
refers to internal components within each annotation
method.

Method #Semantic Units Time Speed(units/s) Duplication ↓
Parallel 33.61 118.30 0.30 69.12

CoTalk 36.72 88.43 0.42 29.76

Table 2: Comparison of quality and efficiency between
speaking and typing, and comprehension between lis-
tening and reading.

Method # Semantic Units Time Speed(units/s)
Talking 46.65 116.65 0.40
Typing 33.15 199.15 0.17

Accuracy Time # Frequency
Listening 94.00 70.20

2.22
Reading 100.00 55.20

4.1.2 Extrinsic Metric
Extrinsic Metric assesses the practical effectiveness
of annotation methods. We focus on image-text
retrieval, a task closely aligned with the goal of
maximizing mutual information in InfoNCE. In
information theory, higher mutual information in-
dicates better cross-modal predictability. There-
fore, stronger retrieval performance, reflects more
informative and semantically aligned annotations.
To evaluate this, we fine-tune Long-CLIP (Zhang
et al., 2024) using annotations generated by CoTalk
and parallel methods, then test the models on the
remote sensing benchmarks: RSICD (Lu et al.,
2017), RSITMD (Yuan et al., 2021), and UCM-
Captions (Qu et al., 2016). As shown in Table 3, the
model trained with CoTalk annotations achieves the
highest average retrieval score (41.13%), outper-
forming the model trained with parallel annotations
(40.52%). More details are in I.1.

With intrinsic and extrinsic metrics, CoTalk an-
notation consistently outperforms parallel annota-
tion in quality, efficiency, and redundancy.

4.2 Qualitative Analysis

From a qualitative perspective, we explore the con-
cept of “residual” within the CoTalk annotation.
Annotators typically focus on entities overlooked
by previous annotators, followed by missing at-
tributes of these entities, as illustrated in Figure 4.
These attributes, such as color, position (relative
and absolute), quantity, shape, and size, align with
our defined semantic units. Notably, annotators
rarely correct prior annotations, probably because
of the high accuracy of initial inputs. Instead, each

Table 3: Validate annotation quality by evaluating per-
formance in downstream retrieval tasks.

Method RSICD RSITMD UCM-Captions Average ↑
Zero-shot 21.24 31.10 65.01 37.94

Parallel 22.57±0.06 33.97±0.05 65.01±0.07 40.52

CoTalk 23.63 ± 0.05 33.83 ± 0.09 65.94 ± 0.06 41.13

Table 4: The Relationship Between Annotation Quality
and Annotation Cycles: Annotation quality is analyzed
in relation to annotation cycles, where each cycle corre-
sponds to approximately 10 minutes of annotation.

Cycle # Amount # Semantic units Time Speed(units/s)

1 4 104 745.14 0.14
2 8 289 628.26 0.46
3 9 308 770.00 0.40
4 6 180 720.00 0.25

annotation round adds new entities or attributes,
embodying the concept of “residual” in CoTalk
and enriching the description without redundancy.

4.3 Talking is Faster for Output, Reading is
Faster for Input

After establishing CoTalk as an effective frame-
work for multi-annotator collaboration, we evaluate
which input and output modalities best maximize
annotator efficiency, comparing speech and text in
both input (viewing prior annotations) and output
(producing new annotations) modes.

4.3.1 Annotation Output: Talk vs. Type
To compare the quality and efficiency of talking
versus text annotation, we recruit eight experienced
annotators, divided into two groups of four. Within
each group, two annotators leverage talk input,
while the other two use text input via keyboard
to annotate the same set of images. The results are
averaged across the annotation methods for com-
parison. As shown in Table 2, talking yields an
average of 13.50 more units per image than typing,
suggesting greater detail and completeness. Addi-
tionally, talking requires 116.65 seconds per image,
41% faster than the 199.15 seconds needed for typ-
ing, demonstrating a clear efficiency advantage.

4.3.2 Annotation Input: Read vs. Listen
To compare comprehension from speech and text,
we perform an experiment using various images
and LLM-generated questions according to human
annotations. Eight annotators answer five questions
per image in both text and audio formats. As Table
2 shows, reading is on average 15 seconds faster
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Figure 5: Consistency Analysis of Intrinsic Metric se-
mantic units and Extrinsic Metric by finetuning the
Long-CLIP with fixed ratio data reduced. Each point
represents its score minus the score from the full dataset.

and 6.38% more accurate. Listeners need 2.2 re-
plays on average for detailed information, while
rereading text takes less time. The gap widens in
complex scenes (e.g., urban or industrial).

These findings suggest that relying solely on
speech (talking) or text for both input and output is
suboptimal. Instead, a hybrid approach using text
for input and speech for output can achieve both
higher annotation quality and greater efficiency.

4.4 Further Analysis

4.4.1 Consistency between Extrinsic and
Intrinsic Metrics

Given the strength of extrinsic metrics in evaluating
annotation quality, we test whether intrinsic met-
rics, specifically semantic unit count, serve as reli-
able proxies. We fine-tune Long CLIP (Zhang et al.,
2024) on full CoTalk annotations, then reduce se-
mantic units per image by fixed ratios and evaluate
on remote sensing retrieval benchmarks. As shown
in Figure 5, performance decreases steadily with
fewer units, averaging a 2.07% decline when only
20% remain. This trend confirms that the amount
of semantic units directly impacts annotation in-
formativeness and model performance, which is
consistent with extrinsic metric. The results also
underscore the value of dense captions for robust
vision-language alignment. More details are in I.2.

4.4.2 Annotator Ability Over Time
We recruit untrained annotators for CoTalk and
analyze their initial annotation cycles (10 min-
utes each) to gauge ability and learning curves.
As shown in Table 4, novices match experienced
speeds (0.46 units/s) after one session, suggesting
rapid adaptation via previous examples and famil-
iarity with the task. However, the speed drops from
0.40 to 0.25 units in round four, indicating fatigue
or reduced efficiency over time, which highlights

Figure 6: The relationship between images with varying
semantic unit counts and the number of required anno-
tators (yellow), and the change in annotation speed at
different positions in CoTalk (blue).

the importance of considering session duration and
rest intervals in future workflow designs.

4.4.3 Full Image Annotation: Annotator
Count and Speed

Multiple annotators sequentially annotate each im-
age using CoTalk until the last annotator deems it
sufficiently detailed. We record annotation speed
and the number of annotators per image. As shown
in Figure 6 (blue), speed decreases as early annota-
tors cover obvious content, leaving finer details for
later ones. On average, 3.2 annotators are enough
per image (Figure 6, yellow). Moreover, images
with more units need more annotators, making se-
mantic unit count a strong complexity indicator.
For images with 60 or fewer units, two annotators
suffice; more complex ones need at least three.

Given these findings, intrinsic and extrinsic met-
rics align, since fewer semantic units lead to lower
retrieval performance. Furthermore, novice annota-
tors in CoTalk quickly perform as well as experi-
enced ones. Although annotation speed slows over
iterations, only 3.2 annotators are needed on aver-
age to produce a sufficiently detailed annotation.

5 Conclusion

Our work presented two key insights: sequential
annotation minimized redundancy compared to par-
allel approaches, and humans achieved higher ef-
ficiency by reading text input and talking output.
Building on these, we proposed Chain-of-Talkers
(CoTalk), a cross-modal, sequential collaboration
framework that enhanced human annotation for im-
age captioning. Both theoretical and empirical anal-
ysis confirmed that CoTalk significantly improved
caption quality within fixed budget constraints.
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Limitations

Although CoTalk has proven effective in enhanc-
ing image caption quality and efficiency, several
limitations remain worth discussing.

Assumptions on Human Ability. Our compari-
son of information sufficiency, human comprehen-
sibility, and efficiency between sequential annota-
tion and CoTalk assumes consistent annotator abil-
ities. However, in practice, annotator capabilities
often vary. In sequential annotation, later annota-
tors may identify more residual information than
earlier ones, while in parallel annotation, annota-
tors may differ significantly in annotation time and
quality for the same image. Additionally, we as-
sume all annotations are accurate, but in reality,
factors such as annotator ability and attention may
cause deviations between the annotated semantic
units and the true content of the image.

Assumptions on Model Ability. CoTalk relies
on large models to merge annotations from multi-
ple annotators. While our theoretical analysis as-
sumes that these models can accurately consolidate
diverse inputs without information loss, practical
challenges may arise—particularly when annota-
tors provide contradictory descriptions or inconsis-
tent expressions for the same object. Additionally,
CoTalk employs a speech-to-text model to tran-
scribe annotator speech. Although state-of-the-art
models such as (An et al., 2024; Radford et al.,
2022) achieve high accuracy, transcription errors
can still occur, especially with unclear or imprecise
speech. Further exploration and careful selection
of robust language and speech-to-text models are
critical to improving CoTalk’s overall reliability.

Ethics Statement

In developing and evaluating the Chain-of-Talkers
(CoTalk) framework for image captioning annota-
tion, we upheld rigorous ethical standards to ensure
integrity, fairness, and accountability throughout
the research process.

Participant Welfare and Informed Consent:
All human annotators were fully informed about
the nature, purpose, and procedures of the anno-
tation tasks. Participation was entirely voluntary,
and written informed consent was obtained from
each individual. Annotators were informed of how
their data would be utilized for research purposes.
We ensured the privacy and anonymity of all par-
ticipants by removing personal identifiers from the
data and results.

Data Integrity and Transparency: We main-
tained strict data integrity, accurately recording
annotation data without manipulation or fabrica-
tion. Secure data management practices were im-
plemented to prevent data loss or unauthorized ac-
cess. All relevant data, results, and methodologies
are reported transparently to enable reproducibility
and facilitate verification by other researchers.

Broader Impact: The CoTalk framework en-
hances annotation quality and efficiency, benefit-
ing downstream tasks such as image retrieval and
visual understanding. However, annotations may
still reflect annotator biases or image-related im-
balances, potentially influencing model behavior.
High-quality annotations can also be misused in
sensitive domains like surveillance. We urge re-
sponsible use of CoTalk, with attention to fairness,
privacy, and application-specific risks.
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Appendix

A Related Work

A growing trend in image captioning research was
the emphasis on generating more comprehensive
captions (Cho et al., 2025; Bolya et al., 2025; Shab-
bir et al., 2025; Hua et al., 2024; Athar et al., 2024;
Singla et al., 2024; Ma et al., 2024; Nguyen et al.,
2023), aiming for higher information sufficiency
through broader semantic coverage. Recently, nu-
merous dense captioning datasets emerged, includ-
ing high-quality manually annotated datasets (Onoe
et al., 2024; Deitke et al., 2024; Hu et al., 2023)
and pseudo-labeled datasets generated by mod-
els (Yao et al., 2025; Ou et al., 2025; Liu et al.,
2025; Ge et al., 2024; Singla et al., 2024; Chen
et al., 2023). Although some approaches incorpo-
rated prior knowledge (Ou et al., 2025; Li et al.,
2024) or utilized visual models for secondary cor-
rection (Ge et al., 2024; Li et al., 2023), the quality
of model-generated detailed captions remained no-
tably inferior to that of human annotations.

However, traditional human annotation was
labor-intensive, and the associated time and co-
ordination costs significantly constrained scalabil-
ity and efficiency. While several studies demon-
strated that involving multiple annotators improved
the detail and accuracy of descriptions (Hu et al.,
2023; Onoe et al., 2024), these benefits came at
the expense of a higher annotation overhead. To
improve annotation efficiency, some studies intro-
duced models to assist human annotators. For ex-
ample, models could first identify key objects or
generate preliminary descriptions, which were then
refined by humans (Cho et al., 2025; Garg et al.,
2024). However, these approaches still relied on
traditional typing for annotation, which remained
time-consuming. More recently, several works ex-
plored using speech input to accelerate annotation,
reducing typing time costs and mitigating issues
such as annotator manipulation during large-model-
assisted labeling (Deitke et al., 2024; Athar et al.,
2024). Nonetheless, most of these methods re-
lied on merging multi-person speech annotations,
which often introduced redundancy and partially
offset the efficiency gains.

To overcome these limitations, we proposed
CoTalk, a human-AI collaborative annotation
framework based on two key insights. First, se-
quential annotation, where subsequent annotators
provided “residual” supplements to previous anno-
tations, yielded higher quality and efficiency than

parallel annotation. Second, combining text-based
input with talk-based output in this sequential set-
ting optimized both speed and accuracy, outper-
forming traditional single-modality approaches.

B Proof for Theorem

Proof 1 When the number of annotators in CoTalk
is n = 2, under the same semantic unit coverage,
the total time for parallel annotation exceeds that
of CoTalk annotation, indicating that CoTalk is
more efficient. Before proceeding, we review the
necessary assumptions: (1) Taggers have equal
abilities, therefore the number of semantic units
supplemented by the second annotator Ỹ 2

CoTalk is
less than the number initially annotated by the first
Ỹ 1

CoTalk; (2) According to Equation 7, the number
of annotators in parallel annotation m is greater
than in CoTalk n, i.e., (m > n), with both m and
n as integers; (3) Prior research shows that the out-
put speed for voice annotation vout is faster than
the reading comprehension speed vtext

in (Ruan et al.,
2016; Brysbaert, 2019). Given n = 2, the CoTalk
annotation time is:

T 2
CoTalk = 2 · T X̃

in + T
Ỹ 1

CoTalk
in +

2∑

i=1

T
Ỹ i

CoTalk
out (11)

For parallel annotation:

Tm
Par = m · T X̃

in +

m∑

i=1

T
Ỹ i

Par
out (12)

where m > n. Considering an extreme case where
m = 3 means that the number of effective seman-
tic units completed by three parallel annotators is
the same as the two annotators in CoTalk, and as-
suming (according to premise 1) that all annotators
have the same ability, each parallel annotator com-
pletes Y 1

par semantic units. Therefore, the time for
parallel annotation becomes:

T 3
Par = 3 · T X̃

in + 3 · T Ỹ 1
Par

out (13)

The time difference between parallel and CoTalk
annotation for the same number of semantic units
is:

∆T (n = 2,m = 3) = T 3
Par − T 2

CoTalk (14)

Expanding:

∆T = T X̃
in + 2 · T Ỹ 1

Par
out − T

Ỹ 2
Cotalk

out − T
Ỹ 1

CoTalk
in (15)
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Table 5: The simulation results of sequence and parallel on large model

Model

RSICD RSITMD UCM-Captions

Image to Text
Average

Text to Image
Average

Image to Text
Average

Text to Image
Average

Image to Text
Average

Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot 9.70 23.88 38.15 23.91 5.13 19.11 29.85 18.03 13.50 33.63 45.58 30.90 10.52 31.57 47.10 29.73 39.50 80.00 90.48 69.99 28.38 59.68 77.19 55.08

Parallel 10.06 25.62 37.69 24.46 6.21 20.60 32.84 19.88 15.93 36.73 47.57 33.41 12.27 35.58 50.31 32.72 41.43 79.52 91.43 70.79 30.24 64.19 82.76 59.06

CoTalk 10.25 25.53 38.33 24.70 6.78 21.82 33.97 20.86 15.49 38.05 49.78 34.44 12.88 36.86 52.05 33.93 40.00 79.52 91.90 70.47 31.56 64.19 82.23 59.33

Figure 7: Proof of Assumption 2: The Merging Function
Demonstrates a Positive Input-Output Correlation.

∆T = T X̃
in +

2 · |Ỹ 1
Par| − |Ỹ 2

CoTalk|
vout

− |Ỹ 1
CoTalk|
vtext

in
(16)

Since vout < vtext
in , it follows that:

Ỹ 1
CoTalk
vtext

in
<

Ỹ 1
CoTalk
vout

(17)

thus:

∆T > T X̃
in +

Ỹ 1
CoTalk − Ỹ 2

CoTalk
vout

> 0 (18)

Given that taggers have identical abilities Ỹ 1
par =

Ỹ 1
CoTalk and Ỹ 1

CoTalk > Ỹ 2
CoTalk, the positive time

difference ∆T is established. Moreover, as m in-
creases, the total time for parallel annotation grows.
Therefore, for any m > n, the time difference sat-
isfies:

∆T (n = 2,m > n) = Tm
Par − T 2

CoTalk > 0 (19)

confirming that CoTalk annotation remains more
efficient than parallel annotation under these base
conditions.

Table 6: The analysis of the detail in LLM merging

# Object Num # Attribute Num Redundancy Rate (%)

First Annotator 10.53 26.02
19.36

Second Annotator 3.41 8.34

Combined 12.51 31.17 /

Table 7: Robustness to Annotator Variance Analysis

Level High High + Medium High + Medium + Low

# Object Num 14.60 14.75 17.00

# Attribute Num 37.35 42.65 46.30

# Semantic Units 51.95 57.40 63.30

C Support for Assumption

Support for LLM input-output consistency: To
validate the consistency of σ(·), specifically, that
more input yields more output. We merge multi-
person annotations at the sentence level. Token
counts exclude prompt tokens, considering only
those from the annotated sentences to be merged.
As shown in Figure 7, output tokens increase with
input tokens, which is consistent with the hypothe-
sis.

Support for Effective Merging of Annotations:
To validate this assumption empirically, we conduct
a manual analysis of human-annotated examples.
It shows that 28.64% of later annotators add new
objects, while 71.36% enrich existing objects with
additional attributes. Importantly, no corrections to
previous annotations are observed.

To address rare annotation conflicts, we specify
in the prompt (Table 11) that the later annotator’s
input takes precedence, as it incorporates correc-
tions with full knowledge of prior annotations and
thus reflects higher confidence. We also simulate
conflicting cases and find that the LLM resolves
them with 100% accuracy.
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Table 8: The complete experimental results of Extrinsic Metric in the Ret-3 dataset benchmark evaluation.

Model

RSICD RSITMD UCM-Captions

Image to Text Text to Image
Average

Image to Text Text to Image
Average

Image to Text Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot 9.70 23.88 38.15 5.13 19.11 29.85 20.97 13.50 33.63 45.58 10.52 31.57 47.10 30.32 39.50 80.00 90.48 28.38 59.68 77.19 62.54

Parallel 9.79 26.19 38.46 6.19 20.96 33.83 22.57 16.24 36.73 48.76 13.52 36.61 52.02 33.97 44.57 76.48 90.10 32.26 64.83 81.80 65.01

CoTalk 10.41 27.32 39.65 6.49 22.5 35.38 23.63 15.49 35.62 48.27 13.17 37.35 53.04 33.83 46.67 78.38 89.24 32.41 64.77 84.19 65.94

Table 9: Consistency analysis of Intrinsic Metrics Complete data results.

Percentage

RSICD RSITMD UCM-Captions

Image to Text Text to Image
Average

Image to Text Text to Image
Average

Image to Text Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

100% 11.25 27.45 40.35 6.42 21.08 33.69 23.38 17.04 35.18 49.12 13.45 36.24 51.63 33.78 43.33 79.52 91.9 34.75 63.13 81.17 65.63

80% 11.80 27.17 40.53 6.26 20.64 32.58 23.17 17.48 34.73 47.57 12.69 36.10 50.45 33.17 41.9 77.62 90.48 33.16 61.27 81.70 64.36

70% 11.34 26.53 40.62 6.19 20.51 32.70 22.98 16.37 34.51 46.90 12.65 35.91 52.01 33.06 43.81 77.62 90.95 30.50 59.68 81.70 64.04

50% 10.61 27.17 40.71 5.79 19.87 32.20 22.73 16.59 34.73 47.57 12.51 35.35 51.01 32.96 40.48 78.57 90.48 31.03 62.60 80.90 64.01

30% 10.43 27.08 40.44 5.47 19.01 30.97 22.23 15.49 34.73 46.90 11.18 35.06 51.20 32.43 38.10 78.57 90.95 28.91 61.01 79.84 62.90

20% 10.16 25.62 39.98 4.75 18.38 30.35 21.54 15.27 34.29 46.68 10.05 35.49 50.87 32.11 41.43 75.71 88.57 30.50 61.01 80.37 62.93

D Simulation

Due to the high cost of manual annotation, we uti-
lize only 427 samples from the full CoTalk dataset
for our experiments. To supplement this, we simu-
late data generation using LLMs. Specifically, we
apply the model to the entire DOTA training set,
approximately three times larger than the original
CoTalk dataset, to generate annotations following
both the CoTalk and parallel annotation methods,
as shown in Table 15. We then fine-tune the Long-
CLIP-L model on the resulting datasets using three
V100 GPUs, with a batch size of 16, a learning rate
of 1e-6, and for 4 epochs.

We evaluate the models on remote sensing re-
trieval tasks, with the results summarized in Table 5.
CoTalk achieves an average score of 40.62% across
six tasks and three datasets, outperforming both the
parallel method (40.05%) and the zero-shot base-
line (37.64%). Notably, CoTalk surpasses both
baselines in almost every task.

E Complete Experimental Results

The comprehensive experimental results, including
both internal and external metrics, for the image-

text retrieval downstream task evaluated on the Ret-
3 dataset are summarized in table 8 and table 9.

F Prompt

F.1 Merge Annotation
From the theoretical framework, Assumption 2
concerns the role of the LLM. We assume effec-
tive integration should: (a) reduce redundancy, (b)
accurately merge semantic units, and (c) main-
tain input–output consistency (Appendix C). In
practice, Table 6, manual annotation experiments
show 19.36% redundancy between the first and sec-
ond annotators. After LLM integration with our
prompts, this redundancy is reduced, as the com-
bined output contains fewer semantic units than
the sum of individual annotations—supporting (a).
The merged results also show improved semantic
quality, validating (b) and demonstrating the robust-
ness of our prompt design.

Both CoTalk and parallel annotation require a
large model to integrate individual annotations.
This section provides a detailed analysis of the
merging process. With the instructions in Table 10
and Table 11, we design specific prompts to guide
the LLMs in merging image captions from both
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annotation methods, ultimately producing semanti-
cally rich descriptions.

F.2 Comparison of Talk and Text in
Annotation Input

To verify that reading comprehension is faster than
listening comprehension, we utilize a text-based
LLM to generate questions according to fundamen-
tal facts. Participants answer these questions under
both reading and listening conditions. The prompts,
detailed in Table 12, are designed to generate high-
quality questions with varying levels of difficulty,
gradually incorporating finer-grained image con-
tent to ensure scientific rigor and experimental va-
lidity.

F.3 Derive the Semantic Units

For the intrinsic evaluation of image caption qual-
ity, we employ a text-based LLM to decompose
image captions into their semantic units and assess
them according to the number of semantic units
identified. Following the procedure outlined in Ta-
ble 13 and Table 14, we first perform necessary
simplification and standardization of the combined
text from Section F.1, then systematically split it to
extract all the semantic units contained within the
captions.

G Robustness to Annotator Variance

To verify whether our CoTalk pipeline can handle
large-scale annotation with high inter-annotation
difference, we simulate annotators of varying com-
petence using Qwen2.5VL (32B). Models with dif-
ferent input resolutions (100%, 75%, and 50%) rep-
resent high, medium, and low competence, respec-
tively. Following the CoTalk framework, these sim-
ulated annotators annotate sequentially, as shown
in the table 7. Results indicate that even low-
competence annotators can contribute effectively:
the number of semantic units increases from 51.95
with high-competence annotators to 57.40 after
adding medium-competence input, and further to
63.30 with the inclusion of low-competence anno-
tations. The trend also intuitively holds when pro-
gressing from low- to high-competence annotators.
This demonstrates that CoTalk enables efficient an-
notation even among annotators with significant
capability differences. We will include this experi-
ment in the final revised version.

H Annotation Interface

H.1 Annotation Interface 1: The first-person
Annotation Interface of the CoTalk
framework

The first annotator is tasked with generating de-
tailed image captions that comprehensively de-
scribe the visual content. These captions are pro-
vided via voice input, transcribed into text, and
then standardized using a large language model
for storage. Each caption should aim to cover all
identifiable entities in the image along with their
attributes, including—but not limited to—absolute
and relative positions, color, quantity, size, shape,
and material. Details are shown in Table 15 (up).

H.2 Annotation Interface 2: The Suquential
Subsequent Annotation Interface of
CoTalk Framework

In CoTalk, subsequent annotators review the im-
age and previously merged captions, generated
by a large model, to identify omissions and cor-
rect errors. They contribute additional information
through voice input, guided by a comprehensive
understanding of both the image and the existing
annotations.Details are shown in Table 15 (down).

I Detailed Experimental Process

I.1 Extrinsic Metric

We evaluate the practicality of each annotation
method using extrinsic metrics that indirectly re-
flect annotation quality, employing a retrieval task
for this purpose. Specifically, we fine-tune the
Long-CLIP model on datasets annotated by CoTalk
and a parallel method. Long-CLIP is selected for
its extended input capacity of 248 tokens, nearly
four times that of the original CLIP (77 tokens),
making it well-suited for capturing detailed annota-
tions.

We fine-tune the Long-CLIP-L model using
three V100 GPUs, with a batch size of 16, a learn-
ing rate of 1e-6, and 12 epochs. Each epoch takes
approximately 18 seconds. To ensure robust results,
we run five trials with different random seeds per
dataset and report the average performance.

After training, we evaluate the model on a re-
mote sensing retrieval dataset. As shown in Table
8, CoTalk achieves 65.94% across six tasks and
three datasets, outperforming the parallel method
(65.01%) and the zero-shot baseline (62.54%).
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Prompt for Merging Parallel Annotation

System Message:
Input:
You are a text integration expert. Here are the parallel annotations of two annotators. Please help me merge their
annotations to form a summary annotation.

Guidelines:
• Rule 1: For parts with the same semantic meaning in caption1 and caption2, adopt a merging strategy and avoid

repeating the same content.
• Rule 2: For parts unique to caption1 or caption2, incorporate them into the final description at an appropriate

position.
• Rule 3: For parts where caption1 and caption2 contradict each other, select one caption’s description for the

consolidation, and do not include any reference to caption1 or caption2 in the description.
• Rule 4: During the merging process, avoid redundant mentions of caption1 and caption2. No intermediate

reasoning is needed; just provide the final consolidated result.

Remember, your output should be a high-quality caption that is concise, informative, and coherent!

User:
### Caption 1: {first person annotation}
### Caption 2: {parallel person annotation}

Assistant Generation Prefix:
Here’s the merged parallel caption:

Table 10: An Example implementation of the merging parallel annotation function σmerge via prompting LLMs.

Prompt for Merging Sequential Annotation

System Message:
Input:
You are a text integration expert. Caption1 is the original annotation result, and Caption2 is the annotator’s supplementa-
tion and correction.

Guidelines:
• Rule 1: Caption2 will include corrections to Caption1, possibly revising parts of the description in Caption1, as

well as supplementing areas where Caption1’s description was insufficient.
• Rule 2: For parts with the same semantic meaning in Caption1 and Caption2, adopt a merging strategy and avoid

repeating the same content.
• Rule 3: For parts that are missing in Caption1 but present in Caption2, incorporate the relevant parts from

Caption2 into Caption1 at an appropriate position.
• Rule 4: If there is a conflict between the descriptions in Caption1 and Caption2, prioritize the description in

Caption2 and replace the corresponding part in Caption1.

Remember, your output should be a high-quality caption that is concise, informative, and coherent!

User:
### Caption 1: {first person annotation}
### Caption 2: {sequential person annotation}

Assistant Generation Prefix:
Here’s the merged sequential caption:

Table 11: An Example implementation of the merging sequential annotation function σmerge with prompting LLMs.
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Prompt for faster input of text than talk problem acquisition

System Message:
Input:
You are an annotation question-generation assistant. Given a segment of annotation text, please design questions
according to the following rules:

Guidelines:
• Rule 1: Generate a total of 5 questions.
• Rule 2: The five questions should cover the beginning, middle, and later parts of the annotation text.
• Rule 3: Design the questions in the order of the text and number them sequentially (Q1–Q5).
• Rule 4: The five questions should progress from general to detailed, starting with broad questions and moving to

fine-grained ones.
• Rule 5: The questions can be about objects or their attributes (e.g., color, quantity, location, shape, size, etc.).

Example:
• Question 1: What kind of image is this describing?
• Question 2: What color is the sea surface?
• Question 3: What’s in the top left corner of the picture?
• Question 4: Where is the parking lot located in the picture?
• Question 5: Do all houses have swimming pools?

User:
### Annotation Text: {caption}

Assistant Generation Prefix:
Here are the generated questions:

Table 12: An Example implementation of the generated questions via prompting LLMs.

Prompt for Denoising and simplifying annotations

Prompt for Denoising and simplifying annotations
System Message:
Input:
Please help me improve the following text according to the steps below.

Guidelines:
• Rule 1: Correct obvious types.
• Rule 2: Remove meaningless connecting words such as "then", "and", "furthermore" and "next".
• Rule 3: Format the output according to the sample provided.

User:
### Annotation Text: {merged caption}

Assistant Generation Prefix:
Here’s the processed caption:

Table 13: Prompt for Denoising and simplifying annotations.
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Prompt for Deriving the minimal Semantic Units

Assistant Generation Prefix:
Here’s the processed caption:

System Message:
Input:
Please help me extract and segment the semantic units according to the following rules and referring to the output
example:

Guidelines:
• Unit Definition: Semantic unit = object name + associated attributes; A single sentence may contain multiple

independent units; Each unit must contain only one object name.
• Attribute Specifications: Valid attributes: absolute_location (position in the overall image), rela-

tive_location(Position relative to other objects), colour, amount (Explicitly extract indefinite articles "a"/"an" as
standalone attributes. Include numerical values e.g., "two", "three" and quantifiers (e.g., "some", "several")), size, shape,
material, object description, other(All other unclassified attributes are ’other’, If there are multiple, please separate them
with commas),Omit any attributes that do not exist; Prohibit attribute overlap or duplication; Pronoun-based locations
(e.g., "this", "that") must be replaced with specific referenced objects.

• Extraction Principles: Prioritize extracting the "name" field separately; Create independent units for multiple
objects sharing attributes; Absolute and relative locations cannot coexist in the same unit; Omit unspecified/ambiguous
attributes.

• Output Requirements: Present only final results without reasoning processes.

Example:
• Input Example 1: The sea surface appears green, with a patch of green seaweed visible under the bridge in the

upper right area.
• Output Example 1:
[

{
"name": "sea surface",
"attributes": {

"colour": "green",
"other": ["appears"]

}
},
{

"name": "seaweed",
"attributes": {

"amount": "a patch of",
"colour": "green",
"relative_location": "under the bridge in the upper right area",
"other": ["visible"]

}
}

]
. . .

User:
### Caption: {processed caption}

Assistant Generation Prefix:
Here are the Semantic Units:

Table 14: Prompt for Deriving the minimal Semantic Units.
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Figure 8: The first-person annotation interface.

Figure 9: The Suquential Subsequent Annotation Interface.
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Guidelines for Image Annotation

First-Person:
System Message:
Input:
You will be provided with an image. Your task is to generate a detailed and informative caption for the image, adhering
to the following guidelines:
Guidelines:

• Rule 1: The caption should be as comprehensive as possible. Identify and describe all discernible entities in
the image along with their attributes. Attributes may include (but are not limited to): Absolute position (via image
orientation), Relative position (in reference to other objects), Color, quantity, size, shape, material, etc. Avoid describing
entities that cannot be clearly identified.

• Rule 2: Structure the caption in the following order: First: Begin with a global description of the entire image;
Second, Provide a description of the objects located at the center of the image. Last, Describe the entire image
systematically, starting from the upper-left corner and proceeding in a structured manner with the spatial relationships
between objects.

• Rule 3: If there are more than 10 instances of a particular object type, leverage approximate quantifiers (e.g.,
many, some, a row, a column, a cluster, etc.) instead of exact counts.

• Rule 4: Ensure the caption is concise but information-rich. Each sentence should contain meaningful and
non-redundant information. Avoid vague, repetitive, or empty expressions.

Subsequent-Person:
System Message:
Input:
You will be provided with an image and its corresponding caption. Your task is to review and revise the caption to
ensure it accurately and comprehensively reflects the content of the image, following the rules below:
Guidelines:

• Rule 1: Examine whether the caption includes all identifiable entities present in the image, along with their
corresponding attributes. Attributes may include (but are not limited to): Absolute position (according to image
orientation) Relative position (with respect to other objects) Color, quantity, size, shape, material, etc. If any entity is
missing, add it along with its attributes. If any attribute of a described entity is missing, supplement it accordingly.

• Rule 2: If the caption contains any inaccuracies (e.g., incorrect quantity, color, or other attributes of an entity),
make the necessary corrections.

• Rule 3: Output only the revised caption. Do not include or refer to the original caption in your response.

Table 15: Guidelines for Image Annotation.

I.2 Consistency between Extrinsic and
Intrinsic Metrics

To verify the consistency between intrinsic indica-
tors (i.e., the number of semantic units) and extrin-
sic indicators (i.e., downstream task performance),
we reduce the number of semantic units in the
CoTalk-annotated dataset of 429 images, at fixed
ratios. Specifically, for each image, we randomly
remove 20%, 30%, 50%, 70%, or 80% of its Se-
mantic Units. For example, if an image originally
has 10 Semantic Units and 20% are removed, 2 are
randomly deleted, and the remaining 8 are merged
into a single text input for subsequent fine-tuning
of the Long-CLIP model.

We fine-tune Long-CLIP-L using three V100
GPUs with a batch size of 16, a learning rate of
1e-6, and 12 epochs. To ensure stability, we repeat
each experiment using five different random seeds
per dataset and report the average results.

We evaluate performance on the RSICD,

RSITMD, and UCM-Captions datasets. As shown
in Table 9, retrieval performance declines as fewer
Semantic Units are retained, confirming the align-
ment between intrinsic and extrinsic indicators.
This supports the use of Semantic Units as an ef-
fective measure of annotation quality and practical
utility. Notably, when more than 50% of semantic
units are removed, the performance drop becomes
more pronounced, indicating the importance of de-
tailed captions for vision-language alignment.

J CoTalk Examples

This section presents representative image samples
manually annotated to demonstrate the labeling pro-
cess. As illustrated in Figure 10, the examples span
typical scenes: (1) bridges and adjacent suburban
waters, (2) parking lots and their environments, (3)
port piers with coastal landscapes. These samples
reflect both the annotation quality and the integra-
tion of large model predictions.
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Figure 10: Examples of image annotation of bridge periphery (top), parking lot periphery (middle) and port coast
(bottom).

4465


