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Abstract

As Large Language Models (LLMs) scale, the
question is not just how large they become, but
how much of their capacity is effectively uti-
lized. Existing scaling laws relate model size to
loss, yet overlook how components exploit their
latent space. In this work, we focus on Feed-
Forward Networks (FFNs) and recast width
selection as a spectral utilization optimization
problem. Using a lightweight diagnostic suite:
Hard Rank (participation ratio), Soft Rank
(Shannon Rank), Spectral Concentration, and
the composite Spectral Utilization Index (SUI),
we quantify how many latent directions are
meaningfully activated across LLaMA, GPT-
2, and nGPT families. Our key finding is an
Asymmetric Spectral Scaling Law: soft rank
follows an almost perfect power law with FFN
width, while hard rank grows only sublinearly,
with high variance. This asymmetry suggests
that widening FFNs mostly adds low-energy
tail directions, while dominant-mode subspaces
saturate early. Moreover, at larger widths, vari-
ance further collapses into a narrow subspace,
leaving much of the latent space under-utilized.
These results recast FFN width selection as
a principled trade-off between tail capacity
and dominant-mode capacity, offering concrete
guidance for inference-efficient LLM design.

1 Introduction

As Large Language Models (LLMs) continue to
grow in scale and complexity, a central blind spot
remains: How effectively is their internal capacity
utilized? Existing empirical scaling laws (Kumar
et al., 2025; Tao et al., 2024; Sardana et al., 2024;
Kaplan et al., 2020) relate model performance to
factors such as width, depth, and data size, but they
offer little insight into how different architectural
components exploit, or potentially squander, the
high-dimensional latent space. These laws treat
models as black boxes, abstracting away the inter-
nal dynamics of transformer blocks and leaving
open questions about representational usage.
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Figure 1: Spectral rank vs. FFN hidden dimension in
LLaMA-130M base model, with width sweep D = ad
(total parameters therefore differ across «v). Log-Log
fits: Soft rank follows a linear power-law fit (5=1.06,
R?=0.93), while hard rank grows sublinearly (/3=0.60,
R?=0.68), indicating width mainly adds low-energy
tail directions rather than enlarging the high-energy
dominant-mode subspace.

Among transformer components, FFNs domi-
nate the parameter budges as they can account for
as much as 67% of the total parameters in decoder-
only models (Pires et al., 2023; Geva et al., 2021).
Yet, FFN width is typically set by rules of thumb
rather than design principles, e.g., 4 expansion in
GPT-2 (Radford et al., 2019) and 2.67 x in LLaMA
(Touvron et al., 2023). Even in recent LLMs such
as Qwen (Hui et al., 2024), the FFN width varies
substantially across model sizes (/=2.4-5.8 %) un-
derscoring the lack of theoretical grounding.

Despite their prevalence, we still lack a clear
understanding of how FFN width affects effective
capacity usage. This raises three questions: Is in-
creasing FFN width always beneficial for expres-
sivity? How many latent directions are actually
used in practice? Can we quantify representational
efficiency beyond FLOPs and loss?

We address these questions by reframing FFN
width selection as a spectral utilization problem.
The intuition is straightforward: if wider FFNs
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truly expand usable capacity, then their spectrum
should reflect growth in the effective dimensional-
ity of the subspace the model exploits. To test this,
we conduct a layer-wise spectral audit across GPT-
2, LLaMA, and nGPT (Loshchilov et al., 2025)
backbones, analyzing the eigenspectrum of post-
activation covariance over training steps and layers.

We quantify utilization using four lightweight,
differentiable metrics: Hard Rank (participation
ratio) to capture the dimensionality of the high-
energy, or the dominant, mode (Gao et al., 2017);
Soft Rank (Shannon Rank) to quantify uniformity
across all directions (De Domenico and Biamonte,
2016); Spectral Concentration (eigenvalue early
enrichment) to quantify how much variance is cap-
tured by leading eigenvalues (Marbut et al., 2023);
and finally Spectral Utilization Index (SUI), a com-
posite metric that harmonically combines hard and
soft rank to balance dominant-mode and tail usage

Through systematic analysis across
the FFN width sweep D=ad, where
a € {1,2,2.67,4,5,6,7,8}, and model sizes
ranging from 70M to 250M parameters, we
uncover an Asymmetric Spectral Scaling Law
that fundamentally changes our understanding of
capacity allocation. The power law (Log-Log) fits
reveal a striking asymmetry (Figure 1): While soft
spectral rank scales near-perfectly with FFN width
(8 — 1, R? — 1), hard spectral rank, measuring
the dominant subspace, plateaus early with weak,
noisy scaling (8 =~ 0.5, R% ~ 0.5).

This asymmetry highlights that widening FFNs
operates through tail-first growth: predominantly
adding low-energy directions while the high-energy
mode saturates early. In other words, capacity in-
creases, but it is increasingly allocated to directions
that carry little variance. This effect resembles the
well-known spectral bias in function space, where
low input frequencies are learned before high ones
(Rahaman et al., 2019). Both perspectives point to
the same underlying principle: capacity is allocated
unevenly across modes, though expressed in differ-
ent bases (Fourier vs. activation eigenspectrum).

Contributions.This work makes four main con-
tributions: Conceptual. We reframe FFN width
selection, traditionally treated as an implementa-
tion detail, as a problem of spectral utilization, and
introduce the first principled framework for under-
standing how FFN capacity is allocated with their
width scaling. Theoretical. We uncover Asymmet-
ric Spectral Scaling Laws that capture divergent
growth between soft and hard spectral ranks. These

laws reveal that FFN widening follows a tail-first
growth pattern, explaining why naive width scaling
can yields diminishing returns. Methodological.
We develop a lightweight, differentiable diagnostic
suite for tracking layerwise representational usage
during training. This includes a closed-form estima-
tor, Kefr = 14+ (D —1)-SUI, which links utilization
to effective dimension. Empirical. Across diverse
architectures and scales, we show that (i) soft/hard
rank asymmetry persist across model families, (ii)
optimal widths are consistently narrower than those
used in practice, (iii) LayerNorm placement crit-
ically shapes utilization: Post-LN suppresses tail
capacity scaling, whereas Mix-LN (Li et al., 2025)
improves dominant-mode scaling while preserving
near-linear tail growth.

2 Related Work

Cost-aware neural scaling. The foundational
work (Kaplan et al., 2020) established the power-
law relations between loss and compute, later re-
fined by the Chinchilla laws (Hoffmann et al.,
2022), which showed that many models are
compute-suboptimal, too wide and under-trained
for their budgets. Follow-up studies (Sardana et al.,
2024) extended this perspective to deployment: un-
der heavy traffic, the compute-optimal point shifts
toward smaller models trained on more tokens, low-
ering inference cost. Paquette et al. (2024) map the
regimes where capacity, optimizer noise, or embed-
ding quality dominate under fixed budgets.

Other orthogonal cost factors have also been
identified: vocabulary should scale with width
(Tao et al., 2024); reduced numerical precision ef-
fectively shrinks parameter count (Kumar et al.,
2025); and robust estimation methods enable reli-
able scaling-law fits from small pilot runs (Choshen
et al., 2024). These studies map efficiency trade-
offs along multiple axes—compute, traffic, vocab-
ulary, and precision. Our spectral-utilization laws
introduce a complementary axis: they target latent-
space usage, capturing how width is actually em-
ployed rather than measured by FLOPs alone.

Universality and representational capacity.
After normalizing for efficiency offsets, check-
points spanning models from GPT-2 to PaLM have
been shown to collapse onto a single sigmoidal
curve, suggesting a shared scaling trajectory across
architectures (Ruan et al., 2024). The Physics of
LMs series reports a related regularity for factual
knowledge: a < 2 bits/parameter ceiling that ap-
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pears largely architecture-agnostic (Allen-Zhu and
Li, 2025). Earlier work traced such apparent univer-
sality to heavy-tailed eigenspectra and implicit self-
regularization (Martin and Mahoney, 2021). More
recent analyses refine this view: small singular val-
ues have been shown to encode critical information
in pretrained Transformers (Staats et al., 2024),
while spectral collapse has been linked to over-
smoothing dynamics in attention stacks (Dovonon
et al., 2024).

Architectural and domain-specific scaling
Scaling exponents are not architecture-agnostic.
Tay et al. (2022) show that the most effective in-
ductive bias shifts with scale: Switch-Transformers
(Fedus et al., 2022) dominate in smaller parame-
ter regimes, Performers (Choromanski et al., 2020)
at mid-scale, and vanilla attention at large scale.
Cabannes et al. (2024) derive exact scaling laws
for associative-memory matrices, while Shi et al.
(2024) explain why larger models can underper-
form on time-series tasks by introducing a look-
back-aware law. Fort (2025) frames adversarial
robustness as a scaling phenomenon, showing that
resistance to attack remains nearly constant across
two orders of magnitude in model size. Finally,
Lyu et al. (2025) present an analytically solvable
attention mechanism that yields closed-form power
laws, providing a theoretical baseline.

These threads underscore that scaling is multi-
faceted, bending with inductive bias, data modality,
precision, and security constraints, precisely the
facets our spectral scaling laws aim to highlight
across GPT-2, LLaMA, and nGPT.

3 Method

In this section, we explain our methodology for
extracting layer-wise covariance spectra from FFN
internal representation, and describe the four spec-
tral metrics that quantify spectral utilization, and
capture various aspect of spectrum (e.g., uniformity
vs spikes). We finish with the end-to-end algorithm
and a short complexity analysis.

3.1 Preliminaries and Eigendecomposition

Notation Let an L-layer transformer be given.
Each transformer consist of an FFN layer whose
hidden width is D; the width multiplier (relative
to the model’s embedding size d) is denoted o =
D/d. Formally, FFN with gating activation (e.g.,
SwiGLU in LLaMA (Touvron et al., 2023)) repre-
sented as FEN(z) = Waown(0(Waae) © (Wyp)),

where ©® represents element-wise multiplication
and o is activation function such as SiLU (Elfwing
et al., 2018). The pre-activation (output of the first
linear projection) and pos-activation (before the
down-projection) is represented as PreAct(X) =
Waatex and PostAct(X) = o((Waaex) © (Wyp)).

Activation sampling and co-variance matrix
formation During training step ¢ we sample a mini-
batch of N tokens from each FFN layer’s (¢) post-
activation X éﬁg € RV*P We compute the covari-
ance using all N tokens without any sub-sampling
or statistical approximations to capture the true
behavior of the model. Further, we compute an
unbiased covariance matrix for all tokens in the
batch as follows:

(X —p)"(X —p)

Y —
N -1

e RP*P. (1)

For each covariance matrix, we perform eigen-
decomposition to obtain the eigenvalues v = Av.
The eigenvalues are sorted in descending order:
A1 > A2 > ... > Ap > 0. All subsequent metrics
depend only on this spectrum.

3.2 Spectral Rank Metrics

When a feed-forward block is widened, the key
question shifts from how many parameters did we
add? to how many of those additional directions
does the model actually use? To quantify this no-
tion of use, we analyze the eigenspectrum of the
post-activation covariance matrix and distill it into
four metrics, each lies in the range [0, 1] and can
be computed in O(D) time (Table 1).

Hard spectral rank. Participation Ratio (PR)
acts as a hard counter of dominant directions. Since
PR squares the first spectral moment and divides by
the second, it is particularly sensitive to prominent
eigenvalues: even a single large spike can signif-
icantly cap its value, whereas numerous smaller
eigenvalues have minimal impact (Gao et al., 2017;
Hu and Sompolinsky, 2022). Hence, PR effectively
rounds off all but the strongest axes, a hard spike-
sensitive estimate.

Soft Spectral Rank. It complements PR by mea-
suring the Shannon entropy of the full eigenvalue
distribution (Skean et al., 2025; Wei et al., 2024,
Garrido et al., 2023; De Domenico and Biamonte,
2016; Anand et al., 2011; Passerini and Severini,
2008), by converting eigenspectrum into a probabil-
ity distributions as p; = A;/ >, A;. Normalizing
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Table 1: Spectral utilization metrics for characterizing the FFN latent space utilization. Hard and Soft Rank capture
absolute participation and entropy-based ranks in the native [1, D] scale, while their normalized forms yield bounded
[0, 1] utilization scores. Spectral concentration measures front-loading of variance, SUI balances hard and soft ranks,
and eDim translates spectral patterns into an interpretable effective dimension.

Metric Definition Range Qualitative signal Interpretation Cost
,\ ~
Hard Spectral Rank PR = (Z ) ,PR = [0,1] Spikes — collapse Dominant spikes o(D)*
~ eR -1 . S . .
Soft Spectral Rank eR = exp ( Z pilog p,) eR = [0,1]  Long tails — dilution ~ Uniformity of spread ~ O(D)
Spectral Concentration SC = 2 X Z Z’ 1hi_k [0,1] Strength of spikes Front-loadedness O(D)
D D ,\ D ’ )
k=1 =1

I 2PR - eR . I .

Spectral Utilization Index SUI = PR+ R [0,1]  Penalizes both extremes ~ Balanced utilization =~ O(1)"
e

Effective dimension eDim =1+ (D — 1)SUI (1, D] # active PCs # active dimensions ~ O(1)

*Once eigenvalues are sorted; fOnce ranks known

to [0, 1] yields a smooth measure of dimensional-
ity that captures long-tail variance patterns. Thus,
while hard rank is sensitive to dominant peaks,
soft rank responds to tail behavior. Describing
the pair as hard and soft therefore captures their
complementary sensitivities: former reacts sharply
to collapse (variance concentrated in a few axes),
whereas the latter flags spectral dilution, variance
diffused so widely that no direction carries signifi-
cant weight.

Spectral Utilization Index SUI combines hard
and soft spectral ranks into a unified measure of
spectral utilization. Hard and soft ranks indepen-
dently capture opposing failure modes—spectral
collapse versus dilution. To effectively combine
these metrics, we adopt their harmonic mean, as it
strongly penalizes imbalance: the harmonic mean
sharply drops if either input is low, ensuring SUI
attains high scores only when both metrics indi-
cate balanced utilization. By rewarding spectra that
avoid extremes and peak when a moderate num-
ber of principal directions carry most variance, SUI
thus provides a robust, intuitive, and parameter-free
indicator of overall spectral behavior.

Spectral concentration. Practitioners not just
about how many directions are active, but also
about where the variance is concentrated. Spec-
tral concentration measures the area between the
cumulative eigen-spectrum and a uniform base-
line (Marbut et al., 2023), where a higher value
indicates that variance predominantly concentrates
within the leading principal components, whereas
lower value implies a more uniform distribution
of variance across the spectrum. Thus, unlike pre-
vious metrics, it distinguishes spectra that utilize

different fractions of the available latent space.

Finally, we convert SUI into an integer-valued
measure called Effective Dimension (eDim), which
directly represents the approximate number of ac-
tive principal components. This makes interpre-
tation more intuitive, particularly it simplifies ab-
stract ratio into an absolute counts over abstract
ratios and simplifies comparisons across layers of
varying widths.

Why these specific metrics? The hard and soft
ranks offer complementary perspectives on spec-
tral utilization: one highlights spectra dominated
by a few large eigenvalues, while the other captures
cases with many small eigenvalues spread over a
long tail. Spectral concentration metric comple-
ments these ranks by pinpointing precisely where
variance accumulates. SUI unifies the two ranks
into a single robust metric, penalizing both spec-
tral extremes, and eDim further translates this into
an intuitive count of active principal components.
Collectively, these metrics map each layer onto
an interpretable three-dimensional spectrum: col-
lapse versus dilution, front-loaded versus dispersed
variance, and overall spectral efficiency.

4 Experimental Results

In this section, we present our empirical findings
on the spectral scaling laws in by varying the hid-
den dimension sizes of FFNs. We primarily use
Hard and Soft utilization to investigate how each
scales with the hidden dimension D for three sizes
of LLaMA models (70M, 130M, 250M). To study
how effectively FFNs leverage increasing hidden di-
mensions, we trained LLaMA models from scratch
on C4 datasets. For each scale, we varied the hid-

35051



-- SRank «D"5 (R2=0.770) &
-- HRank «D'#! (R?=0.243) *7dad-

-
<
[N
=)
el

e

,ﬁ
o
©

5
%

Soft and Hard Spectral Rank
3
\ \
1 L]
=
Soft and Hard Spectral Rank

500 1000 2000 3000 1000
FFN Hidden Dimension (D)

(2) LLaMA-70M (PreLN)

ok i Foa

........ ;

2000 3000
FFN Hidden Dimension (D)

(b) LLaMA-130M (PreLN)

-- SRank «D'% (R2=0.930) Qr - ---- SRank «D®¥"? (R2=0.859) %gsa’
-- HRank «D%%* (R2=0.684) w*gi (W
- d

-- HRank oD% (R?=0.268) %,/'
- adib
LI T
- q2.67d
‘/ﬁld

.
b3

7d

Soft and Hard Spectral Rank
=

5000 7000 1000 2000 3000 5000 7000
FFN Hidden Dimension (D)

(¢) LLaMA-250M (PreLN)

Figure 2: Asymmetric spectral scaling with FFN width in LLaMA-style Pre-LN models. Soft rank (SRank, red)
and hard rank (HRank, blue) vs. FFN hidden dimension D on log-log axes for (a) 70M, (b) 130M, and (c) 250M
backbones (fixed d, width sweep D € {1,2,2.67,4,5,6,7,8}). Dashed lines are power-law fits; annotations mark
ad. Soft-rank exponents cluster near unity (3 = {0.873,1.069,0.872}; R? = {0.770,0.980, 0.850}), while hard-
rank exponents are smaller and noisier (3 = {0.441,0.604, 0.407}; R? = {0.248,0.684, 0.268}). All networks are
trained from scratch; markers show layer median values, and error bars indicate across-layer variability.

den dimension D across 8 values, D=ad, where
a€{1,2,2.67,4,5,6,7,8}

4.1 Asymmetric Spectral Scaling Laws

Asymmetric scaling across widths. Across all
three backbones LLaMA networks (Figure 2), the
soft spectral rank follows a near-linear power law
with width, whereas the hard spectral rank grows
sublinearly and with greater variability. Quantita-
tively, SRank slopes are 5 ~ 0.88 (70M), 8 =~ 1.07
(130M), and 8 ~ 0.87 (250M), all with strong
fits (R? ~ 0.77,0.93,0.86). In contrast, HRank
slopes are much smaller (8 ~ 0.44,0.60,0.41)
and substantially noisier (R? ~ 0.24,0.68,0.27).
The persistent vertical separation between SRank
and HRank trends spans orders of magnitude, in-
dicating that widening FFNs consistently inflates
entropy-sensitive spectral rank more than the core
participation-ratio-defined subspace.

Tail-first growth. The disparity in slopes and
lower R? values for HRank point to a tail-first al-
location of capacity: as width D increases, models
primarily populate low-energy directions (raising
SRank), while the high-energy subspace expands
slowly and irregularly (limited HRank gains). The
130M case comes closest to linear SRank scaling
(B =~ 1.07, R? ~ 0.93), yet even here the hard-rank
response remains sublinear (5 ~ 0.60). This asym-
metry supports the interpretation that width first
buys coverage of many fine-grained, low-variance
modes before it substantially grows the dominant,
high-variance core.

Design implications. Because widening pre-
dominantly enlarges the low-energy tail, returns
on the dominant-mode subspace diminish with D.

Practically, this suggests width schedules should
avoid excessive tail growth, favoring tail-aware
pruning (to preserve core modes and trim diffuse
directions) and MoE designs that allocate experts
to tail capacity rather than uniformly inflating a sin-
gle dense FFN. In short, width is best understood
not as a monotone “bigger is better” knob, but as a
trade-off between tail coverage and core strength.

4.2 Spectral Rank Utilization

From capacity to efficiency. Normalizing ranks
by D turns them into utilization fractions, HR
and SR. Across scales, HR declines reli-
ably with width, confirming that the high-energy
mode occupies a shrinking share of dimensions
as D grows (e.g., slopes around —0.5 across
70M/130M/250M). By contrast, SR is nearly scale-
invariant (slopes = 0), showing that the low-energy
tail keeps pace with widening.

Consistency with the asymmetric law. Al-
gebraically, if SRank o< DA~ and HRank
o DPhaa<l then % x DPBsor=1 ~ DO and
%ﬁ‘nk oc DBmra=1 | exactly matching the observed
near-flat soft utilization and negative hard utiliza-
tion slopes. Put simply, widening allocates capac-
ity tail-first: coverage expands, but the fraction
devoted to the core contracts.

Failure modes in utilization space. This view
cleanly separates two regimes. Spectral dilution
arises when SR remains flat (or slightly increasing)
while HR falls, most visible at 130M. Spectral
collapse appears when both utilizations decrease,
pronounced at large D for 250M. These patterns
are consistent across backbones and independent of
absolute width, making them a compact efficiency
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Figure 3: Spectral-rank utilization vs. FFN width in LLaMA-style Pre-LN models. We plot soft-rank utilization
(SRank/(D — 1), red) and hard-rank utilization (HRank/(D — 1), blue) vs. FEN hidden dimension D on log-log
axes for 70M, 130M, and 250M backbones (fixed depth; width sweep D = ad,a € {1,2,2.67,4,5,6,7,8}).
Dashed lines show power-law fits, highlighting that SRank scales nearly linearly with width while HRank grows
more slowly and with higher variability. All networks are trained from scratch; markers indicate layer median, and
error bars denote across-layer variability.

Table 2: Summary of spectral-utilization metrics and fitted scaling exponents. The right-most columns list the
power-law slope for HardRank and SoftRank, quantifying how sharply each metric saturates as width increases.

D=768 D=2048 D=3072 D=4608 Scaling Laws Parameters

HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank(3,R?)  SRank(8,R?)

70M 0011 0.18 0021 17 0007 0113 0013 27 0006 0121 0011 36 0003 0078 0005 25 -072 0864 -0.172 0410
130M 0016 0.182 0029 23 0018 0259 0034 71 0009 0182 0017 54 0007 0190 0013 60 -0475 0.606 0007 0.001
250M  0.030 0272 0054 42 0012 0226 0024 49 0012 0232 0022 69 0005 0156 0009 44 0928 0923 -0261 0.730
diagnostic. eigenvalue distribution via a truncated power-law:

Composite diagnostics. Table 2 shows that
SUI decreases monotonically for every checkpoint
(e.g., 70 M: 0.021 — 0.005), while eDim satu-
rates around 40-50 regardless of D. Because SUI
penalizes a drop in either rank, its steady decline
confirms that no part of the spectrum scales pro-
portionally with width.

Implications for model design. Our findings
suggest three key principles for efficient model de-
sign: (1) Stop widening early—for Pre-LN LLaMA,
increasing D beyond ~3,000 yields diminishing
spectral returns; (2) Monitor SUI during training—it
offers a one-line diagnostic that flags wasted pa-
rameters before full convergence; and (3) Layer-
wise adaptation beats uniform scaling—the hetero-
geneous behavior across checkpoints suggests allo-
cating width dynamically, pruning collapsing lay-
ers and selectively widening those still far from
dilution. By grounding width decisions in spectral
utilization rather than parameter counts, practition-
ers can trim model size without sacrificing repre-
sentational power, a crucial step towards efficient-
inference at scale.

4.3 Scaling Laws for Spectral Concentration

We investigate the spectral concentration of FFNs
activation covariance matrices by modeling their

A x k7% k=1,..., D, where the exponent o
controls how variance is distributed across eigen-
directions. While traditional rank-based metrics
(e.g., Hard and Soft Spectral Ranks) integrate in-
formation from all eigenvalues, they often over-
look crucial details in the distribution’s shape, such
as distinguishing between sharply peaked spectra
with extensive flat tails and those smoothly decay-
ing. The proposed power-law scaling framework di-
rectly addresses this limitation, isolating the shape
characteristics of spectral distributions. Higher val-
ues of « yield spectra sharply concentrated (front-
loaded) among leading directions, indicating incip-
ient collapse, whereas lower values produce more
uniform (diluted) distributions, indicative of subop-
timal variance allocation (Fig. 4).

Empirically, several robust trends emerge from
our analysis. Spectral concentration, monotoni-
cally increases with «: as « rises from 0.8 to 2.0,
it grows consistently from around 0.57 to nearly
0.99 (Table 3). Once eigenvalues decay faster than
k~2, variance is predominantly concentrated in the
initial directions, becoming effectively dimension-
invariant and independent of model width. This in-
variance enables meaningful comparisons of FFN
efficiency across models of different sizes by align-
ing them on a common spectral utilization axis.
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Figure 4: Power-law templates for spectral concentration. Cumulative-variance curves generated from synthetic
power-law spectra A\, o< &k~ for three latent sizes (D = 768, 2048, 3072). Larger exponents («v) front-load variance
and push the curve upward. Coloured call-outs report the concentration value reached by benchmark cut-offs.

Table 3: Quantitative summary of the curves in Fig 4. For each « and hidden size D we list the variance carried by
the top-1 eigenvalue, and cumulative variance captured by the first 10%, 25% and 50% principal components, along
with the concentration score. The results show sharp transition around o ~ 1.2: below it at least half the spectrum
is needed to explain 80% of the variance (dilution), above it fewer than 10% directions suffice (collapse).

Top-1 eigenvalue Variance @ 10% dimensions

Variance @ 25% dimensions

Variance @ 50% dimensions  Spectral Concentration

a

768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072
08 6.9% 5.4% 49%  519% 54.3% 55.2% 68.4%  70.0% 70.5% 83.1%  84.0% 84.3% 057 0.59 0.59
1.0 138% 122% 11.6% 682% 72.0% 73.3% 80.8% 83.1% 83.9% 90.4%  91.6% 919%  0.72  0.76 0.77
1.2 234% 222% 21.8% 81.9% 859% 87.2% 90.1% 92.3% 93.0% 95.4%  96.4% 96.7% 085 0.88 0.89
1.5 394% 389% 388% 93.9% 96.3% 97.0% 972% 98.3% 98.6% 98.8%  99.3% 994% 095 097 0.97
20 608% 60.8% 60.8% 99.3% 99.7% 99.8% 99.8%  99.9% 99.9% 99.9% 100.0% 100.0% 0.99 1.00 1.00

For larger o > 1.5, over 90% of variance resides
within merely the top 10% of principal components
(Table 3). Conversely, at smaller values (a = 0.8),
capturing the same variance requires more than
50% of components, leading to a state we term
”spectral dilution.” Notably, activations in prevalent
models such as LLaMA typically exhibit interme-
diate spectral concentration (o ~ 1.1-1.3), thereby
balancing effective dimensionality and representa-
tional compactness, avoiding the extremes of either
spectral dilution or collapse.

4.4 Spectral Scaling Dynamics

As shown in Figure 5, during the first 2K to 3K
training steps the spectral landscape is still fluid:
both Hard- and Soft-Rank curves rise steeply and
the fitted 3 coefficients fluctuate, accompanied by
low R?. This early volatility warns against draw-
ing scaling-law conclusions from partially trained
checkpoints. Around step 5K the exponents set-
tle and R? surpasses 0.6, suggesting that a stable
power-law relation has emerged. Averaged over
the final 1K steps we obtain SBhaq = —0.38 and
Bsort = +0.07.

A further observation is that the rank trajectories
in panels (c) and (d) preserve their vertical ordering
throughout training: wider configurations always

sit above narrower ones for Soft-Rank and below
for Hard-Rank. Hence the eventual utilization hier-
archy is determined surprisingly early, suggesting
that practitioners can estimate the utility of a width
choice long before full convergence.

5 Case Study for Spectral Rank Scaling
and Utilization

5.1 LayerNorm and Spectral Rank

Pre-LN shows the classic asymmetry. With Pre-
LN, soft-rank scales close to linearly with width
(B =~ 0.88 at 70M; 8 =~ 1.07 at 130M, high
R?), while hard-rank is clearly sublinear (8 ~
0.45/0.60, lower R?). This is the baseline tail-first
growth: widening expands low-energy directions,
while the high-energy core lags behind (Table 4).
Post-LN suppresses tail growth. Shifting Lay-
erNorm after the sub-blocks lowers soft-rank slopes
to ~ 0.71 — 0.82 with stronger R?, effectively
dampening tail inflation. Hard-rank slopes rise
modestly to ~ 0.52 — 0.56 with better B2, suggest-
ing more orderly,but still sublinear,growth of the
dominant subspace. Intuitively, normalizing after
each transformation curbs variance spread, limiting
activation of faint directions as width increases.
Mix-LN balances core and tail. Mix-LN re-
stores near-linear soft-rank scaling (6 ~ 0.97 —

35054



ing Factor for HardRank Evolution of Scaling Factor for SoftRank

kS

U,
0.4+ l \
—05- L/mx 16l = -0.491¢

20K 0 5K

ol L
0 5K 20K

15K

10K
Training Steps

(a) Hard Rank 8 (b) Soft Rank 3

R

HardRank

Evolution of HardRank During Training Evol

o MNC immf» WA ewant

— D=768
— D=2048

lution of SoftRank During Training

=

SoftRank

—— D=768
—— D=2048
—— D=3072

D=4608

— D=3072

1077 < D=4608
0 5K 15K 20K 0 5K 10K 15K 20K

Training Steps

(d) Soft Rank 8

10K
Training Steps

(c) Hard Rank 3

Figure 5: Training-time evolution of spectral scaling laws (Rank utilization) for LLaMA-130M (Pre-LN). (a) and (b)
track, at every logged step, the power-law exponent /3 (blue, left axis) obtained by regressing log(Hard /Soft Rank)
against log Dppn across the width multipliers; the red curve (right axis) is the corresponding coefficient of
determination R2. (c) and (d) show the raw layer-averaged Hard- and Soft-Rank trajectories for each width to
illustrate the data being fit. Shaded bands are +1 s.d. over layers.

Table 4: Spectral rank scaling across normalization schemes

PreLLN PostLN MixLN
Model Hard Rank Soft Rank Hard Rank Soft Rank Hard Rank Soft Rank
0.451+£0.778 0.879+0.490 0.556+0.358 0.712+0.273 |0-593 £0.668| 0.972+0.477
LLaMA-70M 5 ) 5 5 )
(R*=0.251) (R?*=0.763) (R?>=0.706) (R?>=0.872) |(R?=0.440)| (R?=0.805)
LLaMA.130y 0-604£0.411 1.069+0.202 0.521+£0.294 0.818+£0.372 062640484  1.096 & 0.484
(R? =0.684) (R?2=0.930) (R2=0.758) (R?>=0.829) (R?=0.626) (R?>=0.837)

1.10, high R?) while maintaining hard-rank growth
above Pre-LN/Post-LN levels (8 ~ 0.59 — 0.63,
moderate R?). In effect, it preserves tail cover-
age while also improving dominant-mode scaling,
avoiding both the over-tailing of Pre-LN and the
excessive tail suppression of Post-LN.

5.2 LLaMA-250M PostLN

Spectral collapse in Post-LayerNorm blocks. We
observe a strong correlation between spectral
health and the performance of LLaMA-250M when
the FFN width is increased. In the vanilla Post-
LayerNorm setup, spectral dynamics remain stable
only for the narrowest FFN width (1d). However,
scaling the width to 2.67d or 4d leads to a rapid col-
lapse of spectral diversity: the hard-rank plunges
to < 1073 and the concentration saturates to =~ 1.0
within the first few thousand steps (Figure 6a). This
spectral collapse signifies that most of the variance
is funneled into one or two dominant directions,
leaving the majority of the ~ 3000 latent dimen-
sions inactive. As a result, model performance
deteriorates sharply, with test perplexity exceeding
consistent with the figures reported in Table 5.
Weight Normalization enables high-rank spectra
and best perplexity. Employing weight normal-
ization (WNorm) (Salimans and Kingma, 2016)
within each FFN significantly mitigates this col-

lapse. The hard-rank stabilizes in the 1072-10~!
range, while spectral concentration settles around
0.25-0.3, indicating that hundreds of latent direc-
tions carry meaningful variance. This richer and
more distributed latent basis translates into notably
better performance: perplexities of 25.1 (at 2.67d)
and 24.3 (at 4d), both outperforming the vanilla 1d
baseline (27.1). These results affirm that maintain-
ing a non-degenerate spectrum not only prevents
collapse but actively enhances downstream predic-
tive performance.

Table 5: Vanilla PostLN in LLaMa-250M becomes un-
stable at higher FFN dimensions, causing spikes in PPL
values. Adding Weight Normalization or Hyperspher-
ical Normalization to the FFN linear layers stabilizes
training (former outperforms the latter across all scales).

PostLLN 1d 2.67d 4d

Vanilla 27.10 1427.91 1431.01
WeightNorm 28.89  25.08  24.27
HypersphericalNorm  31.66 27.92 26.48

5.3 Hyperspherical Normalization

Hyperspherical normalization (HNorm) also pre-
vents collapse and promotes training stability but
results in more conservative spectral utilization
(Loshchilov et al., 2025; Lee et al., 2025; Karras
et al., 2024; Wang and Isola, 2020; Liu et al., 2017).
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(b) LLaMA-250M (PostLN) +WNorm
Figure 6: LLaMA models

(a) GPT-2 (GeLU)

(b) GPT-2 (SiLU)

(c) LLaMA-250M (PostLN) + HNorm

L

(¢) nGPT-2 (SiLU)

Figure 7: GPT-2 vs nGPT

The hard-rank remains roughly an order of magni-
tude above the collapse threshold, yet ~30% lower
than the WNorm trace. Spectral concentration is
marginally higher, suggesting a somewhat narrower
effective basis. Consequently, while HNorm yields
stable performance (27.9 at 2.67d and 26.5 at 4d), it
does not match the perplexity gains achieved with
WNorm. These findings highlight that collapse pre-
vention is a necessary condition, but further lifting
the rank and ensuring richer variance distribution is
critical for unlocking full potential of wider FFNs.

Activation gating and normalization in GPT2.
Figure 7 tracks the spectral evolution, and Table 6
shows perplexity outcomes of GPT-2 variants using
different activation and normalization schemes un-
der two FFN widths (1d and 2.67d). The baseline
GPT-2 with GeLU shows early hard-rank growth
that quickly saturates around 102, while spectral
concentration remains high (= 0.7). This indicates
a narrow set of dominant directions and leads to
moderate perplexity (14.07 at 2.67d), with limited
gain over the 1d baseline (15.63).

The nGPT configuration augments SwiGLU
with hyperspherical weight and activation normal-
ization and a learnable residual eigen-learning rate
(eigen-LR) (Loshchilov et al., 2025). This combi-
nation substantially enhances spectral health: hard-
rank remains two orders of magnitude above col-

Table 6: Perplexity (PPL) comparison of GPT-2 and
nGPT (Loshchilov et al., 2025) with different activation
functions and FFN dimensions.

GPT-2(GeGLU) GPT-2(SwiGLU) nGPT(SwiGLU)
Id  267d 1d  267d 1d  2.67d

PPL 1563 14.07 15.60 14.05 15.01  13.60

lapse, soft-rank saturates earlier with less fluctu-
ation, and concentration reduces to ~ 0.4—a 20%
improvement over GPT-2. These gains are mir-
rored in performance, with perplexity dropping to
13.60 at 2.67d and stabilising to 15.01 at 1d, out-
performing both prior setups.

6 Conclusion

We reframed FFN width selection as a spectral uti-
lization problem, showing that widening follows
a consistent tail-first pattern: soft-rank utilization
remains near-linear while hard-rank utilization de-
clines. This asymmetry, formalized as spectral
scaling laws, reveals two efficiency failures, spec-
tral dilution and spectral collapse, that limit naive
width growth. LayerNorm placement modulates
these dynamics: Pre-LN amplifies tails, Post-LN
suppresses them, and Mix-LN balances both. To-
gether, these results highlight spectral utilization
as a new efficiency axis, motivating width-efficient
designs via layer-wise scheduling and pruning.
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Limitations

The study is limited to English decoder-only mod-
els up to 250M parameters and does not vali-
date spectral behavior in multilingual or encoder-
decoder settings. While spectral metrics correlate
with perplexity, causality remains unproven, and
finer-grained subspace analysis may be needed be-
yond scalar metrics like SUI. Additionally, eigen-
computations could pose challenges at extreme
scales.
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Table 7: Evaluation perplexity (PPL) for LLaMA models across different normalization positioning and FFN
dimensions. The columns 1d, 2.67d, 4d, and 6d represent different FFN width, where d is the model dimension.
The unusually high PPL in PostLN LLaMA-250M indicate training instability.

PreLLN PostLN MixLLN
1d 2.67d 4d 6d 1d 2.67d 4d 6d 1d 2.67d 4d 6d

LLAMA-70M 386 342 324 311 382 336 323 31.1 387 339 320 307
LLAMA-130M 29.6 264 258 246 292 267 258 251 292 268 253 243
LLAMA-250M 26.7 245 233 225 27.1 1427.9 1431.0 1436.7 26.8 242 23.0 225

Model

1d 2.67d 4d 6d 1d 2.67d ad 6d

(a) LLaMA-70M (PreLN) (b) LLaMA-130M (PreLLN)
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Figure 8: LLaMA models
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