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Abstract

Large Language Models (LLMs) have demon-
strated an impressive ability to retrieve and
summarize complex information, but their re-
liability in conflicting contexts remains poorly
understood. We introduce an adversarial exten-
sion of the Needle-in-a-Haystack framework in
which three mutually exclusive “needles” are
embedded within long documents. By system-
atically manipulating factors such as position,
repetition, layout, and domain relevance, we
evaluate how LLMs handle contradictions. We
find that models almost always fail to signal
uncertainty and instead confidently select a sin-
gle answer, exhibiting strong and consistent
biases toward repetition, recency, and particu-
lar surface forms. We further analyze whether
these patterns persist across model families and
sizes, and we evaluate both probability-based
and generation-based retrieval. Our framework
highlights critical limitations in the robustness
of current LLMs—including commercial sys-
tems—to contradiction. These limitations re-
veal potential shortcomings in RAG systems’
ability to handle noisy or manipulated inputs
and exposes risks for deployment in high-stakes
applications.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in processing and
retrieving information from long documents (Tay
et al., 2020; Xu et al., 2023; Liu et al., 2024). The
ability to effectively process information within ex-
tended contexts has been crucial for a wide range
of applications, e.g. question answering, and docu-
ment summarization, often via retrieval-augmented
generation (RAG) (Lewis et al., 2020; Gao et al.,
2023).

However, a critical challenge arises when LLMs
are faced with inconsistencies or contradictions
within their input context (Chen et al., 2024). Real-
world documents often contain conflicting informa-

Figure 1: Actual examples from our experiments illus-
trating how Qwen2.5-32B employs contradictory rea-
soning strategies. The haystacks represent the same
document containing conflicting information presented
in different configurations (e.g. see Figure 2). Qwen
favors recency in one instance and repetition in the other.
Note that this example is atypical in that most LLMs we
tried do not identify the conflict at all.

tion due to updates, errors, differing perspectives,
or adversarial attacks. The ability of an LLM to
identify and resolve such conflicts, or at least to
indicate uncertainty, is vital for its reliability and
trustworthiness. As shown in Figure 1, even a mid-
sized model like Qwen2.5-32B outputs opposing
reasoning strategies depending on how its input is
structured.

In the current paper, we investigate how LLMs
behave when presented with explicit contradictory
knowledge in their context. We introduce an eval-
uation framework that extends the classic Needle-
in-a-Haystack (NIAH) test (Kamradt, 2023) where
a single relevant statement (“needle”) is hidden in
a long distractor text (“haystack”), to a more ad-
versarial setting with multiple conflicting needles.
Specifically, three mutually exclusive candidate
statements are embedded in haystacks constructed
with different configurations. We set out to answer
the following research questions:
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Domain Question Candidate Needles

Geography What is the capital of Xaltruvia?
Dralveth, Fyrundell, ZequarithHistory Which treaty resolved the Xaltruvian conflict?

Biology In which genus is Xaltruvia classified?

Table 1: Domains and the questions used in our experiments. Each question is paired with three mutually exclusive
pseudo-answers (needles).

• RQ1: To what extent are current LLMs able
to identify inconsistent information in an in-
formation retrieval setting?

• RQ2: When models fail to identify inconsis-
tent information, which factors influence their
choice of which information to rely on?

• RQ3: If we model one LLM’s behavior,
to what extent does it predict the behav-
iors of other LLMs—within and across fami-
lies/sizes?

By systematically manipulating factors such as
the position and frequency of conflicting state-
ments, the layout and the domain of the docu-
ment, we aim to provide a comprehensive anal-
ysis of how LLMs prioritize and select information
when confronted with contradictions. Our con-
tributions are threefold: (i) we introduce a novel
contradictory “multi-needle” evaluation framework
for stress-testing LLMs with conflicting in-context
information, (ii) we quantify the factors that affect
which of the multiple conflicting pieces of informa-
tion the LLMs pick, and (iii) we analyze the extent
to which selection behavior generalizes across mod-
els, highlighting both shared patterns and important
model-specific biases.

Our findings reveal that most current LLMs, in-
cluding smaller commercial models, tend to confi-
dently resolve contradictions by arbitrarily favoring
one alternative, with systematic biases towards po-
sition, repetition, and surface-form features, while
often failing to indicate uncertainty. These results
point to fundamental limitations in current LLMs’
abilities to reason under conflicting information—a
critical consideration for reliable deployment in
real-world applications.

2 Literature Review

Early benchmarks like the Long Range Arena (Tay
et al., 2020) and NIAH (Kamradt, 2023) tested re-
trieval of a single known item from lengthy distrac-
tors, revealing that model performance drops when

relevant information is not located at the input’s
boundaries. The “Lost in the Middle” study by Liu
et al. (2024) showed that many models exhibit a
distinctive U-shaped accuracy curve when the rele-
vant passage’s position is varied—performance is
highest when information appears at the beginning
(primacy effect) or end (recency effect), and lowest
in the middle.

More recent benchmarks like LongBench (Bai
et al., 2024) and L-Eval (An et al., 2024) systemat-
ically evaluated long-context understanding across
diverse tasks, confirming that model accuracy con-
sistently degrades as input length increases.

NoCha (Karpinska et al., 2024) introduced a
challenging claim verification benchmark over
book-length narratives, where each false claim min-
imally contradicts a true one. Results reveal that
even the commercial models like GPT-4 struggle
to maintain consistency under contradiction. Pham
et al. (2024) proposed WhoQA, a benchmark that
tests LLMs under entity-based ambiguities, show-
ing that models often produce confident but incor-
rect answers when facing conflicting entity refer-
ences. Similarly, Neeman et al. (2023) introduced
DisentQA, a framework that evaluates models’ abil-
ity to disentangle parametric (internal) knowledge
from contextual (retrieved) information using a
counterfactual QA setup, enhancing robustness to
knowledge conflicts.

3 Framework

We construct haystacks from Wikipedia articles,
with needles consisting of statements inserted at
different locations. Figure 2 shows an example. In
all cases, we provide three contradictory needles
giving the answer to the question as Fyrundell,
Zequarith and Dralveth (Table 1).1

We would like to note that, unlike the other
NIAH-based evaluation frameworks, there is no
“correct” answer in our setup. Instead, we are inter-

1Pseudo-words that are confirmed not to have any hits on
Google at the time of experiments.
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Code Hypothesis

H1 Repetition increases selection likelihood.
H2 Position bias—models favor earlier/later needles.
H3 Needle identity affects selection likelihood.
H4 Needle identity effects vary by domain.
H5 Layout modulates repetition effects.
H6 Layout modulates position effects.
H7 Position and repetition interact.
H8 Semantic relatedness modulates repetition effects.

Table 2: Summary of hypotheses tested in the study.

ested in (a) whether the LLM identifies that there is
no single answer to the question, or (b) if not, how
does the LLM select between the different options?

3.1 Haystack Construction
Unlike the earlier extensions of NIAH, we use sub-
stantially more variables to systematically assess
how different factors influence the probability as-
signed by the model to each of the possible answers.
We define two sets of experimental factors—needle-
level variables that vary across the three inserted
needles within a document, and haystack-level
moderators that define the configurations of the
haystacks.

Needle-level variables When inserting needles,
we manipulate the following variables:

• Repetition count: The number of times a
given needle appears in the haystack. The
values in our experiments are 1, 2 or 5 times.

• Position index: The order in which a par-
ticular needle appears in the document (as
number 1, 2 or 3). Note that repeated needles
are placed in sequence, so there is always a
well-defined order between needles.

• Needle identity: The form of the needle. One
of Fyrundell, Zequarith and Dralveth.

Haystack-level moderators These variables are
constant for all three needles in a document:

• Layout strategy: The spatial arrangement of
needle insertions, defined by a combination
of two factors: i) position which refers to the
general region of the haystack where needles
are inserted: at the beginning, middle, or end
of the document; ii) grouping which defines
how close the needles are: in sequential, they
appear consecutively; in 5%, each is separated
by 5% of the document length.

Figure 2: A sample haystack

Additionally, the even layout distributes nee-
dles at 25%, 50%, and 75% of the document,
serving as a neutral baseline for comparing
clustered versus spread-out configurations.

• Question type: The domain of the question
associated with the needle set. Each question
belongs to one of three categories: Geography,
History, or Biology.

• Semantic relatedness: A binary variable indi-
cating whether the haystack domain matches
the needle’s question domain. See Appendix
A for the list of Wikipedia articles used.

In order to fit within the context windows of
all models we study, we limit the haystack size to
5,000 words (amounting to about 7,000 tokens) 2.

3.2 Hypotheses

Using the needle- and haystack-level variables de-
fined above, we test the following hypotheses about
LLM behavior in conflicting-information scenar-
ios, summarized in Table 2. These hypotheses are
designed to systematically probe the influence of in-
formation presentation (repetition, position, layout)

2We truncated the Wikipedia excerpts at the nearest sen-
tence boundary to preserve fluency.
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Variable Values (reference value) Interpretation

H1: Repetition 2x, 5x (ref = 1x) How the likelihood of selection changes when a
needle is repeated more than once.

H2: Position 2nd, 3rd (ref = 1st) How the likelihood of selection changes depend-
ing on a needle’s position in the document.

H3: Needle ID Fyrundell, Zequarith (ref = Dralveth) How the likelihood of selection affects across
different fabricated needle names.

H4: Needle × Domain All needle × question type combinations
(ref = Dralveth × Geography)

How the effect of needle identity changes under
different question domains.

H5: Repetition × Layout All repetition × layout combinations
(ref= 1x × beginning-sequential)

How the effect of repetition changes under differ-
ent layouts.

H6: Position × Layout All position × layout combinations (ref=
1st × beginning-sequential)

How the effect of position changes under differ-
ent layouts.

H7: Position × Repetition All position × repetition combinations
(ref= 1x × 1st)

How the effect of repetition changes depending
on a needle’s position.

H8: Semantic × Repetition All repetition × semantic closeness com-
binations (ref = 1x × unrelated)

How the effect of repetition changes under differ-
ent semantic relatedness conditions.

Table 3: Summary of variables, reference levels, and interpretations in the conditional logistic regression models.

and content characteristics (identity, domain, relat-
edness) on model choice in conflicting-information
scenarios.

3.3 Evaluation Approaches

Since our framework sits at the intersection of long-
context retrieval and multiple-choice selection –
with three mutually exclusive candidate answers,
none of which is objectively correct – we lever-
age this structure to evaluate model behavior using
both probability-based and generation-based ap-
proaches.

• Probability-based approach Our primary
evaluation method is based on the log-
probabilities that the model assigns to each
candidate needle when prompted with a ques-
tion. Specifically, for each haystack, we com-
pute the likelihood of each needle being the an-
swer and normalize across the three options:

p(x|c) = pLLM(x|c)/
∑

x′∈X
pLLM(x

′|c)

given prompt c and the needle set X . In this
approach, the needle with the highest condi-
tional probability is considered as the model’s
selected answer.

• Generation-based approach In addition to
probability-based modeling, we also con-
duct generation-based experiments. For each
haystack, we prompt the model with the cor-
responding question and record its generated
output (via greedy decoding). We then label
the generated answer as: (i) single if exactly

one needle is mentioned in the answer; (ii)
mixed if more than one needle is mentioned
as plausible responses; and (iii) refused if the
model declines to answer, expresses uncer-
tainty, or indicates that the information is un-
available.

There is yet to be a consensus on the best method
for evaluating LLM understanding (Lyu et al.,
2024; Wang et al., 2024a,b). Generation-based
evaluation has the advantage of closely mirroring
real-world user scenarios; hence, it is practically
appealing. However, it has been repeatedly shown
that language models can produce different answers
depending on whether they are prompted to provide
the answer through “introspection,” or whether the
answer is computed directly from token probabili-
ties during generation (Song et al., 2025).

Probability-based evaluation, in contrast, ex-
poses the model’s internal knowledge and prefer-
ences (Hu and Levy, 2023). Moreover, since there
is no objectively correct needle in our experimental
setup, computing the probability distribution over
all needles allows for comparisons of model behav-
iors under different configurations. For these rea-
sons, our main results are based on the probability-
based selection of needles. However, we conducted
the generation-based experiments and reported the
results in the Appendix E. We further discuss the
differences and implications of these evaluation
approaches in detail in Section 6.

4 Experimental Setting

We quantify the effect of each factor using condi-
tional logistic regression, applied separately to each

34353



Hyp.Variable Qwen
2.5-3B

Qwen
2.5-7B

Qwen
2.5-32B

Gemma
2-9b

Gemma
2-27b

Llama
3.2-3B

Llama
3.1-8B

Llama
3.3-70B

H1 2x 17.86** 5.04** 10.48** 14.83** 3.33** 5.79** 26.42** 3.63**
5x 21.19** 5.64** 8.00** 25.89** 7.66** 12.29** 63.05** 2.34**

H2 2nd 3.63** 0.78 7.86** 0.83 2.20** 4.22** 1.45 0.51**
3rd 0.77 1.02 6.23** 0.12** 1.45 0.97 0.12** 0.22**

H3 Fyrundell 0.42** 0.79 0.41** 0.94 1.48** 0.62** 0.42** 2.20**
Zequarith 1.70** 0.57** 0.36** 0.96 0.99 0.24** 0.08** 1.05

H4

Fyrundell × HIST 5.46** 0.58** 0.22** 0.20** 0.42** 1.15 1.16 1.11
Fyrundell × BIO 0.38** 0.24** 0.23** 1.37 0.71 0.73 5.67** 1.88**
Zequarith × HIST 0.70* 0.22** 2.67** 0.15** 0.36** 0.46** 2.77** 2.15**
Zequarith × BIO 0.11** 0.41** 4.25** 1.76** 0.95 0.17** 1.51 2.28**

H5

2x × Clust@45-55 0.19** 0.67 0.26** 1.00 1.13 0.93 1.41 0.94
2x × Clust@50 0.23** 0.68 1.08 0.97 1.05 0.58 1.44 0.44*
2x × End-Seq 0.34** 1.02 1.29 1.19 1.30 2.30* 2.31* 1.17
2x × Even 0.34** 1.44 0.33** 1.80 0.71 0.87 0.61 0.66
2x × beg-5%-apart 0.46* 1.18 0.48 0.91 1.22 0.95 0.95 0.89
2x × end-5%-apart 0.19** 0.97 0.41* 1.44 0.91 1.17 0.94 0.80
5x × Clust@45-55 0.19** 1.14 0.46* 0.51 0.66 0.64 0.75 1.74
5x × Clust@50 0.33** 0.90 2.06 1.59 1.11 1.13 8.80** 0.83
5x × End-Seq 1.18 1.18 3.42** 6.57** 0.77 0.92 1.15 1.76
5x × Even 0.42* 1.89 0.59 1.20 0.43* 0.54 0.31** 0.67
5x × beg-5%-apart 0.67 1.40 0.79 0.47 0.57 0.70 0.89 0.54
5x × end-5%-apart 0.34** 0.75 0.91 0.75 0.18* 0.57 0.34* 0.76

H6

2nd × Clust@45-55 1.65 1.53 0.91 3.04** 6.15** 0.56 0.36** 0.95
2nd × Clust@50 0.67 0.88 1.25 1.05 0.62 1.08 0.70 0.70
2nd × End-Seq 1.93 3.12** 0.36** 0.37** 0.20** 1.12 0.27** 0.34**
2nd × Even 1.17 1.23 0.43* 7.59** 6.53** 1.21 1.55 0.81
2nd × beg-5%-apart 1.16 2.79** 0.93 1.57 1.42 2.26* 3.72** 0.35**
2nd × end-5%-apart 0.51* 1.79* 0.30** 0.59 0.23* 1.25 0.45* 0.19**
3rd × Clust@45-55 6.96** 0.55* 1.82 12.53** 1.18 5.81** 5.70** 0.32**
3rd × Clust@50 2.72** 1.02 2.41* 2.07 0.27** 4.56** 2.07 1.14
3rd × End-Seq 31.88** 2.20** 0.72 6.19** 4.30** 15.86** 12.73** 1.21
3rd × Even 7.74** 1.49 0.56 67.08** 3.76** 7.55** 48.10** 1.73*
3rd × beg-5%-apart 0.77 2.32** 1.24 1.20 4.36** 6.42** 18.58** 0.52*
3rd × end-5%-apart 13.01** 2.62** 1.66 64.92** 28.04** 79.24** 114.27** 6.04**

H7

2nd × 2x 0.33** 1.20 0.94 0.37** 1.54 0.53* 0.20** 0.71
2nd × 5x 0.36** 1.32 1.22 0.63 0.76 0.77 0.38** 1.10
3rd × 2x 0.81 0.92 2.92** 0.77 2.19* 1.34 0.32** 1.16
3rd × 5x 0.76 0.99 2.07* 1.38 1.68 1.00 0.61 1.79*

H8 2x × Related 0.64* 0.93 0.54** 0.33** 0.79 1.21 0.67* 1.88**
5x × Related 0.81 1.51* 0.53** 0.32** 0.88 1.18 0.45** 2.12**

Table 4: Odds ratios from conditional logistic regression for probability-based needle selection.

model’s outputs. Following the grouped-data setup
in statsmodels, each haystack forms a group with
three data points—one per needle—labeled to indi-
cate the selected candidate. Coefficients are expo-
nentiated and reported as odds ratios: values above
1 indicate increased selection likelihood relative to
the reference; values below 1 indicate decreased
likelihood. Statistical significance follows standard
thresholds (* p < 0.05, ** p < 0.01).

To assess model fit, we compared conditional
logistic regression models with only main effects
to full models with the interaction terms, using
Akaike (AIC) and Bayesian (BIC) Information Cri-
teria. In all cases, the full models showed substan-
tially lower AIC and BIC scores (see Appendix C),
supporting the inclusion of interactions and indicat-

ing improved fit without overfitting. The variables
and their interpretations of the logistic regression
model is provided in Table 3.

We evaluate eight open-source and four commer-
cial OpenAI models that are listed in Appendix B.
All experiments with the open-source models were
run on two H100 GPUs using a local cluster and
the total computational budget was approximately
120 GPU hours. On the other hand, the OpenAI ex-
periments cost around $3. In the probability-based
approach, we compute the log probability of the ex-
act token sequence for each needle. For generation-
based evaluation, we use the same prompt and gen-
erate answers via greedy decoding, with annota-
tions as described in Section 3.3. The prompts’ con-
figuration was as follows: “<haystack> <question>
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Answer:”. Due to API limitations, the commercial
models were evaluated using only the generation-
based approach.

Generalization Furthermore, to verify the robust-
ness of our findings , we conducted an additional
set of experiments on three other needle configura-
tions, e.g. different needle sets including real-world
entities, different domains and questions, evaluated
on a subset of the models. Due to space constraints,
we present a summary of these results in our main
discussion, with detailed results provided in Ap-
pendix F.

5 Results and Discussion

5.1 Evaluation of the Hypotheses

The Impact of Repetition (H1, H5, H7, H8)
Repetition reliably raises the chance that a needle
is selected, confirming H1. Even with conflicts in
the context, models lean toward what they see more
often: in the probability-based results, the 5× condi-
tion is strongest for Llama-3.1-8B (OR=63.05) and
remains large for Gemma-2-9b (25.89) and Qwen
2.5-3B (21.19), but is more modest for Qwen2.5-
7B (5.64) and Llama-3.3-70B (2.34), indicating
that this bias does not grow monotonically with
size (e.g., Qwen2.5-32B = 8.00 vs. Qwen 2.5-3B =
21.19). Layout modulates this tendency to various
degrees (H5): end-oriented clustering can amplify
it (e.g., 5××End-Seq in Qwen2.5-32B and Gemma-
2-9b), whereas neutral “Even” placements often
dampen it. Position interacts with repetition as well
(H7): repeating a needle in the second slot typically
lowers its odds, while the third slot can either help
or hurt depending on the model. Finally, semantic
relatedness (H8) usually narrows the repetition ad-
vantage (e.g., Gemma-2-9b, Qwen2.5-32B), though
a few models show the opposite pattern (notably
Llama-3.3-70B and Qwen2.5-7B). Taken together,
repetition has a strong effect, yet not uniform, that
is shaped by where and how needles appear, and
by how closely they match the question’s topic.

The Impact of Position (H2, H6, H7) Position
matters, but not in a single direction across mod-
els, partially supporting H2. Some models clearly
favor later placements (e.g., Qwen2.5-32B prefers
the 2nd and 3rd positions), while others penalize
the last item (e.g., Gemma-2-9b, Llama-3.1-8B,
Llama-3.3-70B). These patterns do not suggest a
general “recency” effect. If anything, the second
position is often advantaged over the first for sev-

eral models. Layout helps explain when recency
emerges (H6): when the last needle truly sits at the
end (e.g., end-sequential or end–5%-apart layouts),
third-position odds can spike dramatically; by con-
trast, the same position can be suppressed in other
layouts (e.g., second×End-Seq). As noted above,
repetition and position interact (H7), with repeti-
tion at the second slot frequently weakened and the
third slot showing model-specific boosts or drops.
In short, position exerts consistent influence, but its
direction is conditional on layout and its interplay
with repetition.

The Impact of Needle Identity (H3 and H4)
Surface form also shapes selection, confirming
H3. The fabricated names are not neutral: for
instance, “Fyrundell” is down-weighted in sev-
eral models (Qwen 2.5-3B, Qwen2.5-32B, Llama-
3.2-3B, Llama-3.1-8B), while “Zequarith” is es-
pecially disfavored in the Llama family, yet pre-
ferred in Qwen 2.5-3B. Domain further modu-
lates these identity effects (H4): the same surface
form can flip from penalty to boost depending on
whether the question is historical, biological, or
geographic (e.g., History reduces “Zequarith” in
Gemma-2-9b but raises it in Qwen2.5-32B). To-
gether, these results suggest that beyond repeti-
tion and position, models carry stable—but model-
specific—preferences for particular strings, and
that those preferences interact with topic.

We further illustrate these findings by plotting
needle selection rates across different domains for
each model in Figure 4. The observed dependence
on surface form, together with domain-specific
modulation, may present challenges in specialized
fields where terminology is complex and highly
precise. In such contexts, LLMs may overlook crit-
ical information simply due to a bias against less
familiar or uncommon terms.

5.2 Performance of the Commercial Models

We further evaluate four commercial models from
OpenAI: GPT-4o, GPT-4.1, GPT-4o-mini, and
GPT-4.1-nano. Because the API does not give
access to token-level probabilities, these models
are evaluated using the generation-based approach
only (same prompt as open-source models; greedy
decoding) and we, again, fit conditional logistic
regression to the resulting selections.

In a preliminary experiment with the first 50
haystacks, the larger models (GPT-4o and GPT-4.1)
consistently detected the presence of contradictory
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Model Consist. Single Mixed Refused

Qwen 2.5-3B 53.1% 94% 5.4% 0.6%
Qwen2.5-7B 54.8% 76.4% 14.6% 9.0%
Qwen2.5-32B 53.3% 64.6% 22.2% 13.2%
Llama-3.2-3B 54.8% 69.6% 24.6% 5.8%
Llama-3.1-8B 85.7% 76.9% 22.2% 0.9%
Llama-3.3-70B 68.1% 69.0% 30.7% 0.3%
Gemma-2-9b 84.1% 98.2% 0.7% 1.1%
Gemma-2-27b 89.0% 92.5% 7.3% 0.2%
GPT-4o-mini - 88.3% 11.7% 0%
GPT-4.1-nano - 97.0% 3.0% 0%

Overall 67.9% 82.6% 14.2% 3.1%

Table 5: Comparison of probability and generation-
based predictions, including response types in the latter
approach. Consistency reflects cases where both meth-
ods selected the same needle; mixed outputs count as
consistent if the first-mentioned needle matches.

information and typically refused to commit to a
single answer. Given this consistent behavior and
budget limits, we did not experiment with these
models further.

On the other hand, the smaller variants (GPT-
4o-mini and GPT-4.1-nano) rarely signaled conflict
and predominantly selected a single needle. Their
odds ratios (Table 6) show a strong frequency ef-
fect (H1; e.g., GPT-4o-mini: 2× = 35.38∗∗, 5×
= 28.39∗∗; GPT-4.1-nano: 5× = 9.96∗∗), model-
specific position patterns rather than a uniform re-
cency effect (H2; GPT-4.1-nano penalizes later
positions, while GPT-4o-mini penalizes 2nd but
boosts 3rd), and substantial modulation by layout
(H5), often in opposite directions across the two
models (e.g., 2××Clust@50: 6.65∗∗ vs. 0.10∗∗).
Relatedness can weaken repetition for GPT-4.1-
nano (H8; 5××Related = 0.53∗∗), with weaker
trends for GPT-4o-mini.

5.3 Inter-Model Analysis

To assess similarity in needle selection across
models, we compute the pairwise symmetrized
Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) between their predicted answer dis-
tributions for each haystack. Each model assigns
a probability distribution over the three candidate
needles per document, reflecting its response to
the contradictory input. This allows us to examine
how consistently different models exhibit biases.
Let p = [p1, p2, p3] and q = [q1, q2, q3] denote
the probability vectors for two models on the same
document.

Hyp. Variable GPT-4.1-nano GPT-4o-mini

H1 2x 1.51 35.38**
5x 9.96** 28.39**

H2 2nd 0.03** 0.07**
3rd 0.31** 3.43**

H3 Fyrundell 0.79 1.03
Zequarith 0.89 0.71*

H4

Fyrundell × HIST 0.88 1.53*
Fyrundell × BIO 0.82 1.08
Zequarith × HIST 0.65* 1.32
Zequarith × BIO 0.98 1.66*

H5

2x × Clust@45-55 6.73** 0.31
2x × Clust@50 6.65** 0.10**
2x × End-Seq 6.38** 0.31
2x × Even 3.15** 0.11**
2x × beg-5%-apart 2.88** 0.17**
2x × end-5%-apart 3.44** 0.09**
5x × Clust@45-55 2.18 0.42
5x × Clust@50 2.44 0.19**
5x × End-Seq 1.35 0.30
5x × Even 1.27 0.12**
5x × beg-5%-apart 0.72 0.42
5x × end-5%-apart 1.88 0.13**

H6

2nd × Clust@45-55 0.69 2.09
2nd × Clust@50 8.17** 1.74
2nd × End-Seq 2.71* 1.90
2nd × Even 2.25 0.56
2nd × beg-5%-apart 6.28** 0.63
2nd × end-5%-apart 9.17** 6.49**
3rd × Clust@45-55 0.13** 0.61
3rd × Clust@50 0.87 0.21**
3rd × End-Seq 1.05 0.11**
3rd × Even 0.49* 0.01**
3rd × beg-5%-apart 5.20** 0.01**
3rd × end-5%-apart 1.11 0.66

H7

2nd × 2x 2.93** 2.96**
2nd × 5x 8.42** 3.88**
3rd × 2x 1.80 4.02**
3rd × 5x 2.53* 8.87**

H8 2x × Related 1.12 0.96
5x × Related 0.53** 1.24

Table 6: Odds ratios from conditional logistic regres-
sion for generation-based needle selection for OpenAI
models.

The (asymmetric) KL divergence is defined as:

DKL(p∥q) =
3∑

i=1

pi log
pi
qi

We use the symmetrized KL divergence to mea-
sure the dissimilarity between models (though it’s
important to note that KL divergence is not a true
metric as it doesn’t satisfy the triangle inequality):

DSKL(p,q) = DKL(p∥q) +DKL(q∥p)

We compute DSKL for each model–haystack pair
and report the mean across configurations as a sum-
mary of pairwise model similarity (Figure 3) where
lower values indicate more similar selection behav-
ior; higher values reflect greater differences.
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Figure 3: Inter-model similarity via symmetrized KL
across all configurations; lower values indicate higher
similarity.

The analysis of model similarity reveals distinct
patterns related to both model family and size. We
present two focused analyses: intra-family agree-
ment and agreement among similar-sized mod-
els. The model families include Llama (3 models),
Gemma (2 models), and Qwen2.5 (3 models), and
the model sizes are grouped into tiny (2B and 3B -
2 models), small (7B, 8B and 9B - 3 models), and
medium (27-32B - 2 models).

Within-family agreement: Model behavior
demonstrates a notable dependence on the LLM
family. Llama models show the highest consistency
in predicted distributions (mean SKL = 1.03), with
Gemma models also exhibiting relatively strong
agreement (1.10). In contrast, Qwen2.5 models
display greater internal variation (3.09), indicating
that these models display considerably different
tendencies in their needle selection.

Agreement among similar-sized models: Ex-
amining cross-family agreement by model size, we
observe the greatest similarity among the small-
sized models (7B–9B; mean SKL = 1.72). Tiny
models (2B–3B) show moderate agreement (1.94),
while medium-sized models (27B–32B) exhibit the
least similarity (2.56). Notably, Gemma-2-9B and
Llama-3.1-8B present a high degree of similarity
(0.79), despite belonging to different families.

Generalization of the results: To further vali-
date our results, we ran a subset of models on three
additional setups: (C2) a second synthetic triplet on
the same haystacks, (C3) the economy and sports
domains, and (C4) a real-world case with known

entities (France, Sweden, Italy). Details and re-
sults for these configurations appear in Appendix F.
Findings are consistent across configurations. Rep-
etition (H1) consistently boosts selection, while Po-
sition (H2) effects are stable within model and are
modulated by layout and repetition (H6–H7). Sur-
face form (H3) continues to influence preferences,
with interactions by domain (H4). Full results are
provided in Table 13.

6 Comparing generation and
probability-based approaches

So far, we have focused on probability-based nee-
dle selection via normalized likelihood. We now
turn to a generation-based approach, which reflects
model behavior in open-ended text generation.

6.1 Consistency between the approaches

We compared the selected needles in both ap-
proaches. Table 5 summarizes the relationship
between probability-based and generation-based
evaluation outcomes, focusing on two main aspects:
the type of generative response (single, mixed, or
refused) and the consistency between the model’s
most probable selection and its generated answer.

The first pattern we observe is that the over-
whelming majority of model generations produce
a single response. Single-needle outputs account
for 98.2% in Gemma-2-9b, and 92.5% even in a
mid-sized model Gemma-2-27b, with 80% on av-
erage. Mixed responses are much less frequent,
ranging from 1% to 30% depending on the model,
while refusals are extremely rare (less than 1% for
half of the models). Surprisingly, the two com-
mercial models also follow this suit and produced
no refusals, with 92.6% single responses on aver-
age. This is concerning, as it suggests that even
when presented with explicit conflicting informa-
tion, these models rarely signal any ambiguity or
uncertainty in their output. Instead, they over-
whelmingly opt for a confident, singular answer,
potentially giving a false impression of reliability
and obscuring the underlying contradictions within
the input (see Figure 1 for an actual example).

On the other hand, the agreement between the
probability-based and generation-based outputs is
relatively low, averaging 67.9%. This finding sup-
ports the previous observation by (Song et al.,
2025) that LLMs may exhibit different behaviors
when evaluated through distinct methodological
approaches. To better understand if the internal
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biases observed in the probability-based approach
remain, we conducted the same logistic regression
analysis on the generated outputs.

6.2 Logistic regression results for
generation-based responses

In this logistic regression analysis, we used the
instances where the generated text mentioned only
one needle. The results are presented in Table 12
(and Table 6 for the commercial models).3

Overall, the generation-based results largely mir-
ror the findings from the probability-based analysis.
Key trends observed in the probability-based mod-
eling are consistently reflected in the generated out-
puts, suggesting that the LLMs’ underlying biases
are expressed similarly in both their probabilistic
tendencies and their explicit text generation.

Specifically, in both settings, repetition yields a
large and statistically significant effect on selection
likelihood across models, confirming a strong rep-
etition bias under open-ended generation. In the
probability-based results, 5x repetition is substan-
tial for Llama-3.1-8B (OR=63.05**), Gemma-2-9b
(OR=25.89**), and Qwen 2.5-3B (OR=21.19**).
In generation-based modeling (single-needle), mag-
nitudes differ by configuration: 5x repetition
reaches OR=181.012** for Gemma-2-9b and
OR=138.498** for Llama-3.3-70B, with similarly
large effects for Qwen 2.5-3B (OR=92.454**) and
Llama-3.1-8B (OR=89.37**). Position effects vary
across approaches: the probability model shows
later-position advantages for some models (e.g.,
Qwen-2.5-32B: 2nd OR=7.86**; 3rd OR=6.23**),
while the generation-based results highlight strong
boosts for later positions in Qwen 2.5-3B (2nd
OR=10.85**; 3rd OR=24.754**) and Gemma-
2-9b (2nd OR=13.353**; 3rd OR=51.359**),
with others penalizing later slots (e.g., Llama-
3.2-3B: 3rd OR=0.049*; Qwen-2.5-32B: 2nd
OR=0.168**). Surface-form preferences show par-
allel tendencies: “Fyrundell” and “Zequarith” are
down-weighted in Llama-3.1-8B (OR=0.391** and
OR=0.107**, respectively), and “Zequarith” is re-
duced in Llama-3.2-3B (OR=0.457**), while pat-
terns for other families vary by model and domain.

While the direction of effects generally
agrees across methods, the magnitudes can di-
verge—sometimes larger under generation (as in
certain repetition–layout combinations for Llama-

3We also tested a setting that considers the first-mentioned
needle in mixed responses. Results were similar, with consis-
tent main effects.

3.1-8B), sometimes comparable or smaller (as with
Gemma-2-9b). These differences likely reflect
configuration-dependent dynamics in generation
and the restriction to single-needle mentions in this
analysis. Despite such magnitude shifts, the consis-
tent presence and direction of repetition, position,
and identity effects across both approaches rein-
force the robustness of these biases in LLMs.

7 Conclusion

We introduced a framework for evaluating how
LLMs handle conflicting information in long con-
texts by extending the NIAH setup with mutually
exclusive “needles.” Across four configurations
(synthetic/real entities; multiple domains), mod-
els rarely express uncertainty and instead commit
to a single answer; selection is strongly driven by
repetition, while position effects are model-specific
and shaped by layout, and surface form further
shifts preferences.

This suggests that LLMs still lack mechanisms
for recognizing and signaling ambiguity—an im-
portant limitation for RAG and other long-context
applications. Future work should explore training
objectives or prompting strategies that better equip
LLMs to detect and express uncertainty.

Limitations

Our study has several limitations. First, the open-
source models we evaluated are only up to 70B
parameters, all in English. This might not capture
the full range of behaviors seen in larger models or
those trained on different languages. Second, our
haystacks are built from a fixed set of Wikipedia
articles and use fabricated statements to simulate
contradictions. While this design allows for con-
trolled comparisons, a more detailed analysis, for
instance, one with more levels of repetition or var-
ied types of contradictory information, would offer
a more comprehensive view. Broader evaluation,
however, was limited by resource constraints, as
the number of configurations expands drastically
with each addition. Finally, this paper serves as
a diagnostic tool and does not attempt to provide
solutions for the observed biases.
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A Haystack texts

For constructing the haystack documents in the
matching condition, we used Wikipedia articles
from three relevant domains: capital cities (Ge-
ography), peace treaties (History), and botanical
taxonomy (Biology). For the mismatching con-
dition, we selected articles from unrelated topics:
Formula 1, rock music, and economic crises. Ta-
ble 7 lists the specific Wikipedia articles and their
URLs used in each domain. The selected articles
are among the longest Wikipedia articles and ex-
ceed the haystack length used in our experiments.
Wikipedia text is available under the Creative Com-
mons Attribution–ShareAlike license (CC BY-SA
4.0).

Domain Condition Wikipedia Article

Geography Related Capital city
History Related Treaty
Biology Related Species

Geography Unrelated 2012 Formula One
History Unrelated Rock music
Biology Unrelated Euro area crisis

Table 7: Wikipedia articles used to construct haystack
texts for each domain under matching and mismatching
conditions.

B Models

Table 8 lists the baseline models used in our paper,
along with their corresponding repository names on
Hugging Face’s model hub4. Overall, we evaluated
three LLM families Qwen2.5 (Yang et al., 2025),
Gemma-2 (Team et al., 2024), and Llama 3.* (Meta,
2024).

Model Name HuggingFace Repository
Gemma-2-9B google/Gemma-2-9b-it
Gemma-2-27B google/Gemma-2-27b-it
Qwen 2.5-3B Qwen/Qwen2.5-3B
Qwen-2.5-7B Qwen/Qwen2.5-7B
Qwen-2.5-32B Qwen/Qwen2.5-32B
Llama-3.2-3B meta-llama/Llama-3.2-3B-Instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct
Llama-3.3-70B meta-llama/Llama-3.3-70B-Instruct

GPT-4o-mini gpt-4o-mini-2025-04-14
GPT-4.1-nano gpt-4.1-nano-2025-04-14

Table 8: HuggingFace/OpenAI identifiers of the models
used in our evaluation.

4https://huggingface.co/models
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Model Probability-based Generation-based

AICmain BICmain AICfull BICfull AICmain BICmain AICfull BICfull

Gemma-2-9B 2974.54 3007.40 1935.65 2154.67 2784.06 2816.80 1799.14 2017.42
Gemma-2-27B 3342.27 3375.12 2385.39 2604.40 2870.04 2902.43 1888.33 2104.23
Qwen 2.5-3B 3393.24 3426.09 2130.51 2349.52 1981.81 2014.29 1597.56 1814.10
Qwen-2.5-7B 2736.05 2768.90 2367.87 2586.89 1756.78 1788.02 1534.07 1742.32
Qwen-2.5-32B 2831.70 2864.55 1920.50 2139.52 1328.05 1358.28 1131.39 1332.94
Llama-3.2-3B 2690.79 2723.65 1979.98 2198.99 1571.17 1601.85 1288.31 1492.84
Llama-3.1-8B 2543.53 2576.38 1998.75 2217.77 1743.61 1774.89 1424.57 1633.06
Llama-3.3-70B 3159.92 3192.77 2630.01 2849.03 1857.30 1887.92 1213.54 1417.71
GPT-4.1-nano - - - - 2159.29 2192.15 1896.10 2115.11
GPT-4o-mini - - - - 2371.17 2404.02 1897.97 2116.98

Table 9: Model selection criteria (AIC/BIC) for main effects and full conditional logistic regression models, shown
separately for probability-based and generation-based evaluations. Lower values indicate better model fit.

Figure 4: Needle selection rates by question type across models. The vertical line indicates the expected selection
rate under a uniform distribution (33%).

The Wikipedia articles are processed using
the WIKIPEDIAAPI5 and Spacy’s (Honnibal and
Montani, 2017) EN_CORE_WEB_SM is used as
the sentence-tokenizer to determine the sentence
boundaries.

C Details of the Conditional Logistic
Regression experiments

Model fitting was performed using the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Fletcher, 2000), with a maximum of 2000 itera-
tions to ensure convergence.

To evaluate model fit and justify model complex-
ity, we compared conditional logistic regression
models including only main effects to full models
including all main effects and interaction terms.
Model fit was assessed using Akaike Information
Criterion (AIC) and Bayesian Information Crite-
rion (BIC), calculated as:

5https://pypi.org/project/Wikipedia-API/

AIC = 2k − 2 logL

BIC = k ln(n)− 2 logL

where k is the number of model parameters, L
is the maximized likelihood, and n is the number
of choice sets.

As can be seen in Table 9, including interaction
terms resulted in substantially lower AIC and BIC
values, indicating that the added complexity of the
full model improves fit to the data and is statisti-
cally justified. These results support the inclusion
of interaction terms in our primary analyses.

D Descriptive Plots

To complement the statistical analysis presented in
Section 5, here we present complementary descrip-
tive plots of the selection behavior observed in the
LLMs when the probability-based approach was
employed. These visualizations aim to provide a
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Figure 5: Heatmaps show the selection likelihood of each needle position (1st, 2nd, 3rd) across different layout
strategies, for each evaluated model.

more intuitive understanding of how LLMs handle
contradictory information and exhibit biases under
various conditions.

Figure 4 illustrates the observed needle selection
rates for different question types across the various
language models. As clearly can be seen in the fig-
ure, the selection rates are non-uniform, indicating
a clear preference towards certain needles in certain
domains. This potentially highlights a concerning
bias towards specific surface forms of information,
which could lead to undesired behaviors, especially
in specialized domains.

On the other hand, Figure 5 presents a series of
heatmaps that visualize the selection likelihood of
needles based on their specific position (1st, 2nd,
or 3rd), modulated by different layouts. Differ-
ent models react distinctly to the various layouts.
For example, Qwen2.5-7B exhibits minimal po-
sitional bias, with selection likelihoods for each
position remaining relatively uniform across lay-
outs. Conversely, there are extreme cases, such as
Gemma-2-27B-Instruct, which almost exclusively
selects the last needle in the end-5% layout (96%
likelihood for the last position). Other models also
show strong preferences in this layout, though less
prominent; for instance, Llama-3.2-3B selects the
last needle in 80.2% of the time, and Llama 3.1 8B
does so 69.7% of the time. This highlights signif-
icant model-specific behaviors and the impact of
layout on positional biases.

E Statistical results based on generation
experiments

This appendix presents detailed statistical results
from our generation-based experiments. These
analyses mirror those in the main paper (Section 6)
but are based on model outputs generated via
greedy decoding. Specifically, we focus on sin-
gle responses—cases where the respective LLM
mentioned only one needle in its generated text.
The number of examples used per model in this
condition is listed in Table 10.

Table 12 reports odds ratios from conditional
logistic regression for each hypothesis. The re-
sults largely confirm the trends observed in the
probability-based setting. In particular, repetition
and recency effects (H1 and H2) are strong and
consistent across models. Notably, some models
exhibit extremely large odds ratios (e.g., for 5x rep-
etition in the Gemma and Llama families), indicat-
ing even a more pronounced bias toward repeated
content.

F Extended Configurations

Beyond the haystack configuration discussed in the
main text, we evaluate three additional configura-
tions that vary entity sets and domains to validate
the robustness of the results:

• C2 uses the synthetic needles Fenvirox, Vren-
zalik, and Qorandel with the same three do-
mains as C1: Geography (What is the capi-
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Model Data Size (N)

Gemma-2-9B 1732
Gemma-2-27B 1632
Qwen 2.5-3B 1658
Qwen-2.5-7B 1348
Qwen-2.5-32B 1140
Llama-3.2-3B 1228
Llama-3.1-8B 1356
Llama-3.3-70B 1217
GPT-4.1-nano 1703
GPT-4o-mini 1557

Table 10: Number of examples used per model for con-
ditional logistic regression in the generation setting.

Domain Condition Wikipedia Article

Geography Related Capital city
History Related Treaty
Biology Related Species
Economy Related Currency
Sports Related Association football
Eurovision Related Eurovision Song Contest

Geography Unrelated 2012 F1 Championship
History Unrelated Rock music
Biology Unrelated Euro area crisis
Economy Unrelated Guitar
Sports Unrelated The Avengers (2012 film)
Eurovision Unrelated Soybean

Table 11: Wikipedia articles used to construct haystack
texts for the extended configurations (C2–C4) under
matching and mismatching conditions.

tal of Xaltruvia?), History (Which treaty re-
solved the Xaltruvian conflict?), and Biol-
ogy/Scientific (In which genus is Xaltruvia
classified?)

• C3 reuses the C2 needles in two new domains:
Economy (What is the official currency of Or-
tazea?) and Sports (Which team won the 2025
Ortazean Premier League?)

• C4 employs real entities—France, Sweden,
and Italy—within a Eurovision prompt (Who
won the Eurovision Song Contest 2025?).

Representative haystack sources for related and
unrelated conditions used across C2–C4 are listed
in Table 11.
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Hyp.Variable Qwen
2.5-3B

Qwen
2.5-7B

Qwen
2.5-32B

Gemma
2-9b

Gemma
2-27b

Llama
3.2-3B

Llama
3.1-8B

Llama
3.3-70B

H1 2x 24.351** 19.785** 30.246** 7.19** 8.921** 57.71** 24.502** 69.007**
5x 92.454** 18.892** 5.875** 181.012** 9.626** 62.62** 89.37** 138.498**

H2 2nd 10.85** 1.783 0.168** 13.353** 1.737* 1.738 2.008 5.643*
3rd 24.754** 1.641 1.856 51.359** 2.072** 0.049* 1.247 2.446

H3 Fyrundell 0.567** 2.019** 1.3 0.522** 0.998 0.89 0.391** 0.59**
Zequarith 0.854 1.009 0.69 0.556** 0.776 0.457** 0.107** 0.74

H4

Fyrundell × HIST 2.303** 0.332** 0.711 1.188 1.639* 4.487** 4.431** 2.609**
Fyrundell × BIO 1.765* 0.351** 0.62 2.294** 1.699* 2.517** 5.825** 1.002
Zequarith × HIST 5.762** 0.598* 1.379 1.024 0.527** 13.092** 3.9** 1.847*
Zequarith × BIO 5.442** 0.415** 1.186 2.782** 1.383 12.219** 1.116 0.642

H5

2x × middle-5% 0.459 1.192 0.624 0.877 1.347 0.201 0.844 0.136
2x × middle-seq 0.316* 0.946 2.237 2.416 6.577** 0.133 2.427 0.2
2x × end-seq 1.341 3.231* 1.042 31.458** 2.413* 0.109 1.109 0.075**
2x × Even 0.142** 1.168 0.119** 2.617* 0.519* 0.127 0.61 0.039**
2x × beg-5% 1.781 0.615 0.442 1.188 0.888 0.096* 0.386 12.693
2x × end-5% 0.355* 0.428 0.105** 1.002 2.374 0.103* 0.632 0.027**
5x × middle-5% 0.178 1.764 5.528** 0.508 5.452** 0.001 1.658 0.264
5x × middle-seq 0.055** 2.851* 4.378* 1.278 20.937** 0.001 5.337* 0.991
5x × end-seq 82.482 2.371 6.758** 2675.696 15.007** 0.001 1.609 0.136
5x × Even 0.02** 4.277** 1.358 0.29* 0.226** 0.0* 0.412 0.023**
5x × beg-5% 0.417 1.86 1.393 0.258* 0.378** 0.0 0.297* 8.599
5x × end-5% 0.018** 1.882 2.111 0.112** 0.199* 0.0* 0.322* 0.013**

H6

2nd × middle-5% 0.277* 0.512 1.339 0.326* 2.492** 1.933 2.996 0.769
2nd × middle-seq 0.251* 0.341* 1.35 0.488 11.473** 2.617 5.533* 0.591
2nd × end-seq 0.083** 0.099** 6.787** 0.33 0.808 0.492 1.38 0.51
2nd × Even 0.101** 1.695 1.514 0.409 6.031** 0.288* 0.693 0.017**
2nd × beg-5% 0.188** 1.597 21.29** 0.045** 0.899 0.731 0.607 0.0
2nd × end-5% 0.016** 0.052** 1.271 0.003** 0.001** 0.389 0.057** 0.01**
3rd × middle-5% 0.219* 0.433 0.385 0.126** 0.549 7.838 6.916** 0.791
3rd × middle-seq 0.093** 0.725 0.274* 0.136** 0.754 29.529** 3.421 2.735
3rd × end-seq 0.035** 0.201** 4.38* 2.652 1.095 1.961 0.861 2.567
3rd × Even 0.014** 1.392 1.549 0.129** 3.358** 77.176** 2.173 0.074**
3rd × beg-5% 0.004** 6.292** 13.635** 0.001** 1.403 16.758* 0.967 0.0
3rd × end-5% 0.014** 0.628 0.576 0.003** 0.013** 19.654* 0.129** 0.412

H7

2nd × 2x 0.927 0.597 3.003* 0.718 0.582 1.149 0.314** 1.258
2nd × 5x 1.15 0.401* 3.541** 0.229** 1.021 1.497 0.253** 2.24
3rd × 2x 1.286 0.454* 0.449 1.265 0.332** 0.92 0.395* 2.053
3rd × 5x 1.288 0.688 0.207** 0.493 0.639 0.738 0.539 1.275

H8 2x × Related 0.969 0.725 1.806* 0.458** 0.953 0.86 1.059 1.063
5x × Related 0.485* 0.607* 2.845** 0.353** 1.137 1.085 0.543* 1.597

Table 12: Odds ratios from conditional logistic regression based on generated outputs with single needle mentions.
Higher values indicate increased likelihood of being selected relative to the reference condition.
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Table 13: Odds Ratios of the selected models across four configurations
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