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Abstract

We introduce seqBench, a parametrized bench-
mark for probing sequential reasoning limits
in Large Language Models (LLMs) through
precise, multi-dimensional control over several
key complexity dimensions. seqBench allows
systematic variation of (1) the logical depth,
defined as the number of sequential actions re-
quired to solve the task; (2) the number of back-
tracking steps along the optimal path, quantify-
ing how often the agent must revisit prior states
to satisfy deferred preconditions (e.g., retriev-
ing a key after encountering a locked door); and
(3) the noise ratio, defined as the ratio between
supporting and distracting facts about the en-
vironment. Our evaluations on state-of-the-art
LLMs reveal a universal failure pattern: accu-
racy collapses exponentially beyond a model-
specific logical depth. Unlike existing bench-
marks, seqBench’s fine-grained control facili-
tates targeted analyses of these reasoning fail-
ures, illuminating universal scaling laws and
statistical limits, as detailed in this paper along-
side its generation methodology and evalua-
tion metrics. We find that even top-performing
models systematically fail on seqBench’s struc-
tured reasoning tasks despite minimal search
complexity, underscoring key limitations in
their commonsense reasoning capabilities. De-
signed for future evolution to keep pace with
advancing models, the seqBench datasets are
publicly released to spur deeper scientific in-
quiry into LLM reasoning, aiming to establish
a clearer understanding of their true potential
and current boundaries for robust real-world
application.

Large Language Models (LLMs) have shown
remarkable performance (Vaswani et al., 2017;
Brown et al., 2020; Lieber et al., 2021; Rae et al.,
2021; Smith et al., 2022; Thoppilan et al., 2022;
Hoffmann et al., 2022; Du et al., 2021; Fedus et al.,
2022; Zoph et al., 2022) on a wide range of tasks

* denotes equal contribution.

and benchmarks spanning diverse human-like capa-
bilities; however, these successes can obscure fun-
damental limitations in sequential reasoning that
still persist. Arguably, reasoning captures a more
pure form of intelligence, going beyond mere pat-
tern matching or fact memorization, and is thus a
critical capability to understand and enhance in AI
systems. Recent studies show that state-of-the-art
LLMs (OpenAI, 2025; Google DeepMind, 2025;
Meta AI, 2025; Mistral AI, 2024; Anthropic, 2025)
excel at complex benchmarks, yet stumble upon
simple common-sense inferences trivial for an adult
human (Nezhurina et al., 2025; Han et al., 2024;
Sharma, 2024; Berglund et al., 2024; Yang et al.,
2019). Most existing benchmarks saturate quickly,
leaving little room for fine-grained attribution stud-
ies to perform systemic probes of LLM failure
modes. Consequently, a robust understanding of
why and under what circumstances these models
fail, especially on problems requiring sequential
reasoning, remains elusive.

This gap, we argue, stems from the lack of
evaluation benchmarks allowing systematic, multi-
dimensional control over key independent factors
that influence a task’s overall reasoning difficulty.
Most benchmarks (Cobbe et al., 2021; Hendrycks
et al., 2021; Srivastava et al., 2023; Weston et al.,
2015; Clark et al., 2018; Dua et al., 2019; Rein
et al., 2023), despite their evaluation merits, of-
ten do not support a systematic variation of cru-
cial complexity dimensions. This makes it diffi-
cult to isolate the specific conditions under which
reasoning in LLMs falter. For instance, discern-
ing whether a failure is due to the length of the
required reasoning chain, the necessity to revise
intermediate conclusions, or the density of distract-
ing information is often not quantitatively possible.
While prompting strategies like chain-of-thought
(CoT) and model scaling have boosted aggregate
performance, they often obscure sharp performance
cliffs that can emerge when these underlying com-
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plexity dimensions are varied independently (Wei
et al., 2023; Kojima et al., 2022). Without such
systematic control, disentangling inherent architec-
tural limitations from those addressable via scal-
ing (model size, data, or compute), fine-tuning,
or prompting techniques is challenging. A fine-
grained understanding of these performance bound-
aries is crucial for developing more robust and reli-
able reasoning systems.

To complement recent efforts (Sprague et al.,
2024; Tyagi et al., 2024; Kuratov et al., 2024; Tang
and Kejriwal, 2025; Mirzaee et al., 2021; Tikhonov,
2024; Mirzaee and Kordjamshidi, 2022; Shi et al.,
2022) in evaluating reasoning, and to address the
need for more controlled analysis, we introduce
seqBench, a tunable benchmark designed explic-
itly to probe and analyze sequential reasoning capa-
bilities in language models. The dataset comprises
synthetic yet linguistically grounded pathfinding
task configurations on two-dimensional grids. Solv-
ing each problem requires sequential inference over
relevant and distracting structured facts. Each in-
stance is automatically verifiable and parameter-
ized by controllable factors that directly address
the previously identified gaps: (1) logical depth
(total number of actions in the ground-truth solu-
tion, reflecting the length of the reasoning chain);
(2) backtracking count (number of locked-door de-
tours on the optimal path, requiring revision of
tentative solution paths); and (3) noise ratio (pro-
portion of distracting vs. supporting facts, testing
robustness to irrelevant information). Performance
against these dimensions can be quantified with
fine-grained metrics (e.g., via progress ratio as we
define here). We observe that beyond a certain
logical depth, Pass@1 success collapses to near
zero for all models (see Figure 1). These features
enable precise attribution studies of model failure
modes, offering insights into the brittle boundaries
of current LLM generalization.

Furthermore, the seqBench benchmark is built
upon a scalable data generation framework, allow-
ing it to evolve alongside increasingly capable mod-
els to help with both model training and evaluation.
Through evaluations on popular LLMs, we reveal
that top-performing LLMs exhibit steep universal
declines as either of the three complexity dimen-
sions increases, while remaining comparatively ro-
bust to fact shuffle, despite the underlying logical
structure being unchanged.

Contributions. Our main contributions are:
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Figure 1: Performance collapse of various models
with increasing logical depth L for a pathfinding task
(N,M = 40,B = 2 keys, Noise Ratio N = 0.0). Suc-
cess rates (Pass@1) are shown on linear (top panel) and
logarithmic (bottom panel) y-axes, averaged from 5 run-
s/problem across 40 problems per unit L-bin. All evalu-
ations used Temperature=1.0 and top-p=0.95 (Gemini-
2.5-flash: ’auto’ thinking). The displayed fits employ a
Weighted Least Squares (WLS) (Carroll and Ruppert,
2017) method on log-success rates. Weights are derived
from inverse squared residuals of a preliminary Ordi-
nary Least Squares (OLS) fit. (In the supplementary
section, we have added Figure 16 to show a similar pat-
tern is observed in recently released OpenAI models.)

1. seqBench: A Tunable Benchmark for Se-
quential Reasoning. We introduce an open-
source framework for generating pathfinding
tasks with fine-grained, orthogonal control
over logical depth, backtracking steps, and
noise ratio. We also evaluate secondary fac-
tors like fact ordering (shuffle ratio; See sup-
plementary material for details).

2. Comprehensive LLM Attribution Study.
Using seqBench, we demonstrate the signifi-
cant impact of these controlled complexities
on LLM performance, revealing sharp perfor-
mance cliffs in state-of-the-art models even
when search complexity is minimal.
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Figure 2: On the left: Llama-4 Maverick-17B-128E-
Instruct Model’s performance (pass@1 success rate)
versus number of actions in the ground truth path of the
pathfinding problems (N,M = 40,B = 2 keys, Noise
Ratio N = 0.0) is shown. This Pass@1 success rate
across 5 runs per problem is averaged over the problem
instances sampled from different actions count bins of
width equal to 1. On the right: The mean of progress ra-
tio across all problems as well as mean of precision and
recall is shown to highlight models gradually increasing
struggle in completing the path. The Temperature is set
to 1.0 and the top-p is set to 0.95 in all runs.

The seqBench dataset is publicly available1 under
the CC BY 4.0 license to facilitate benchmarking.

1 Methods

1.1 Dataset Generation

The seqBench dataset consists of spatial pathfind-
ing tasks. Task instance generation, detailed below
(Algorithm 1; See Appendix A for details), is pred-
icated on the precise independent control of the
three key complexity dimensions introduced ear-
lier: Logical Depth (L), Backtracking Count (B),
and Noise Ratio (N ). This allows the creation of
instances with specific values for these parameters,
enabling targeted studies of their impact on LLM
reasoning.

Task instances are produced in a multi-stage

1https://huggingface.co/datasets/emnlp-submi
ssion/seqBench

process. Initially, primary generation parame-
ters—maze dimensions (N,M ), target backtracks
(Btarget), and target noise ratio (Ntarget)—are speci-
fied. An acyclic maze graph (Mg) is formed on an
N ×M grid using Kruskal’s algorithm (Kleinberg
and Tardos, 2006). Our "Rewind Construction"
method (Algorithm 1) then embeds Btarget back-
tracking maneuvers by working backward from a
goal to strategically place keys and locked doors,
yielding the instance’s actual backtracking count
B. Finally, a natural language fact list (F) is
derived from the maze, and distracting facts are
added according to Ntarget to achieve the final
noise ratio N . The logical depth L (optimal path
length) emerges from these generative steps, influ-
enced by N,M,Btarget, and construction stochas-
ticity. While L is not a direct input to the gener-
ation algorithm, the process is designed to yield
a wide spectrum of logical depths. Each gener-
ated instance is then precisely annotated with its
emergent L value, alongside its effective B and
N values. This annotation effectively makes L a
key, selectable parameter for users of the seqBench
dataset, enabling them to choose or filter tasks by
their desired logical depth. Our rewind construc-
tion method guarantees task solvability. The full
seqBench benchmark is constructed by systemat-
ically applying this instance generation process
(detailed in Algorithm 1) across a wide range of
initial parameters. This includes varied grid sizes
(e.g., N ∈ {5..50},M ≈ N ) and target backtracks
(Btarget ∈ {0..7}), yielding a large and diverse data
pool. For each (N,M,Btarget) configuration, multi-
ple unique base mazes are generated, to which dif-
ferent noise ratios (e.g., Ntarget ∈ {0..1}) are sub-
sequently applied. It is important to note that the
algorithm constrains backtracking complexity to a
simple dependency chain. In this setting, retriev-
ing the key for each locked door involves at most
one backtracking step to pick up its corresponding
key, without requiring the unlocking of additional
doors along the optimal path. Combined with the
uniform random placement of keys, this design en-
sures a well-balanced distribution of backtracking
difficulty across the generated instances for each
logical depth L. Nevertheless, the same backward-
in-time construction can be extended to generate
tasks with higher backtracking complexity—for ex-
ample, doors that require multiple keys, or interme-
diate doors that must be unlocked en route to other
keys. Such extensions would introduce richer tree-
structured dependency graphs and allow seqBench
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to probe model performance under more complex
long-horizon reasoning regimes. The creation of
this comprehensive data pool was computationally
efficient, requiring approximately an hour of com-
putation on a standard laptop while using minimal
memory. The publicly released benchmark com-
prises a substantial collection of these generated
instances, each annotated with its specific emer-
gent logical depth L, effective backtracking count
B, and noise ratio N . This rich annotation is key,
enabling researchers to readily select or filter task
subsets by these dimensions for targeted studies
(e.g., as done for Figure 1, where instances were
sampled into L-bins with other parameters fixed).
For the experiments presented in this paper, spe-
cific subsets were drawn from this benchmark pool,
often involving further filtering or parameter ad-
justments tailored to the objectives of each study;
precise details for each experiment are provided
in the relevant sections and figure captions. Full
details on path derivation, fact compilation, and
overall dataset generation parameters are provided
in the Appendix A.

1.2 Prompt Construction and Model
Configuration

Our evaluation uses a standardized prompt tem-
plate with four components: (i) task instructions
and action schema, (ii) three few-shot examples of
increasing complexity (simple navigation, single-
key, and multi-key backtracking), (iii) optional rea-
soning guidance, and (iv) the problem’s natural-
language facts. All models are queried using tem-
perature T=1.0, nucleus sampling p=0.95, and
maximum allowed setting in terms of output token
limits on a per model basis. For each instance, we
compute 5 independent runs to establish robust per-
formance statistics. The complete prompt structure,
shown in Figure 6, is provided in the Appendix B.

1.3 Evaluation Metrics

To analyze not just success but also how models fail,
we employ several complementary metrics. Suc-
cess Rate (Pass@1) measures the proportion of
runs where the predicted action sequence exactly
matches the ground truth. The Progress Ratio
(Tyagi et al., 2024), calculated as k/n (where n is
the total ground-truth actions and k is the number
correctly executed before the first error), pinpoints
the breakdown position in reasoning. We also use
Precision and Recall. Precision is the proportion
of predicted actions that are correct, while Recall

Algorithm 1: Rewind Construction of Path
Skeleton

Input :Grid N ×M , Target backtracks B
Output :Maze graph Mg, Locked doors DL,

Key info KI , Path skeleton ΠS

1 Mg ← Acyclic graph on grid (Kruskal’s);
2 x← Cgoal ← Random goal cell in Mg;
3 DL,KI ← ∅, ∅; b← 0;
4 ΠS ← [(Cgoal,GOAL)];
5 while b < B do
6 ckey ← Random cell in Mg accessible

from x (path avoids DL for this step);
7 πseg ← Unique path in Mg from x to

ckey;
8 if ∃e ∈ πseg such that e /∈ DL then
9 d← Randomly select such an edge

e;
10 DL ← DL ∪ {d};
11 Kid ← New unique key ID;
12 KI [Kid]← {opens : d, loc : ckey};
13 ΠS .prepend((ckey,PICKUP Kid),

(d,UNLOCK Kid),
(πseg,MOVE));

14 x← ckey; b← b+ 1;
15 end
16 else
17 Break
18 end
19 end
20 ΠS .prepend((x,START));
21 return Mg,DL,KI ,ΠS ;

is the proportion of ground-truth actions that were
correctly predicted. Low precision indicates hallu-
cinated actions, while low recall signifies missed
necessary actions. Additionally, we visualize error
locations via a Violation Map. This multi-faceted
approach reveals each model’s effective "reasoning
horizon"—the maximum sequence length it can
reliably traverse. Further details on all metrics and
visualizations are provided in the supplementary
material.

2 Benchmarking Results

2.1 Evaluated Models

We evaluate a diverse set of transformer-based
LLMs across different model families and param-
eter scales. Our analysis includes Gemini models
(2.5-flash-preview, 2.0-flash), Meta’s Llama fam-
ily (4-Maverick-17B, 3.3-70B, 3.2-3B), Google’s
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Figure 3: Performance as a function of the number of required backtracking steps, operationalized via the number of
locked doors with distributed keys along the optimal path. Holding all other complexity factors constant, all models
exhibit a clear decline in both progress ratio and success rate as backtracking demands increase. Additionally,
we report the corresponding rise in output token counts per model, highlighting the increased reasoning burden
associated with longer dependency chains. Fixed experimental parameters in this figure are the same as those in
Figure 1. (for each point 100 problems sampled from L = [40, 60])

Gemma-2-27b, and Alibaba’s Qwen models (2.5-
Coder-32B, 2.5-7B). [Note: GPT-5 was released
during the preparation of this paper’s final version.
Our analysis shows that this model exhibits the
same performance degradation, as shown in Fig-
ure 16]. Access to some open-weight models and
benchmarking infrastructure was facilitated by plat-
forms such as Together AI2 and Google AI Studio3.
Problem instances for varying logical depths (L)
were generated by sampling 40 problems for each
L, using a fixed maze size of 40× 40 and 2 keys,
unless otherwise specified for specific experiments
(e.g., when varying the number of keys for back-
tracking analysis). All models were evaluated using
the standardized prompt template (see Figure 6),
the inference settings detailed in Section 1.2, and a
common response parsing methodology. For each
task instance, we perform 5 independent runs to
establish robust performance statistics, primarily
analyzing Pass@1 success rates.

2.2 Universal Performance Collapse with
Increasing Logical Depth

A central finding of our study is the universal col-
lapse in reasoning performance observed across
all evaluated LLMs when confronted with tasks
requiring increasing sequential inference steps. As
illustrated in Figure 1, Pass@1 success rates ex-
hibit a consistent and sharp exponential decay as
the ground-truth path length (L) increases. Perfor-
mance rapidly approaches near-zero past a model-
specific point in this decay. To quantify and com-
pare this exponential decay, we fit an exponential
decay curve P (L) = exp(−L/L0) to the success

2https://www.together.ai/
3https://aistudio.google.com/

rates, deriving a characteristic path length L0. This
L0 value, representing the path length at which
performance drops by a factor of e−1, serves as
a robust metric for each model’s sequential rea-
soning horizon. Plotting success rates on a semi-
logarithmic (log-y) scale against L reveals an ap-
proximately linear decay trend across the evalu-
ated regime. This log-linear relationship suggests
that errors may accumulate with a degree of inde-
pendence at each reasoning step, eventually over-
whelming the model’s capacity for coherent infer-
ence. The observed L0 values vary significantly,
from 85.7 for Gemini-2.5-Flash down to 1.6 for
Llama-3.2-3B (Figure 1), underscoring a funda-
mental bottleneck in current transformer architec-
tures for extended multi-step reasoning.

2.3 Impact of Independently Controlled
Complexity Dimensions

Beyond the universal impact of logical depth (L)
discussed in Section 2.2, our benchmark’s ability
to independently vary key complexity dimensions
allows for targeted analysis of their distinct impacts
on LLM reasoning performance. We highlight the
effects of noise, backtracking, and fact ordering,
primarily focusing on Pass@1 success rates, mean
progress ratios, and response token counts.

Impact of Backtracking Requirements. In-
creasing the number of required backtrack-
ing steps—operationalized via key-door mecha-
nisms—also leads to a clear and significant decline
in Pass@1 success rates and mean progress ratios
across all evaluated models as shown in Figure 3.
Gemini 2.5 Flash-preview maintains the highest
performance but still exhibits a notable drop as
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Figure 4: Performance as a function of contextual noise for Gemini 2.5 flash and Llama-4 Maverick-17B-128E-
Instruct models. As noise increases through the inclusion of distracting or irrelevant facts, both models exhibit a
clear and consistent decline in performance. Fixed experimental parameters in this figure are the same as those in
Figure 1 (for each point 100 problems sampled from L = [40, 60] and number of keys is equal to 2).

backtracking count increases from 0 to 5. This
decline in reasoning accuracy is generally accom-
panied by an increase or sustained high level in the
mean number of response tokens (Figure 3, right
panel). For example, models like Llama-4 Mav-
erick and Gemini 2.5 Flash-preview show a clear
upward trend or maintain high token counts as back-
tracking complexity rises, reflecting the increased
reasoning effort or path length articulated by the
models when managing more complex sequential
dependencies.

Sensitivity to Noise Ratio. Model performance
is highly sensitive to the noise ratio—the propor-
tion of distracting versus supporting facts. As
demonstrated in Figure 4 for Gemini 2.5 Flash
and Llama-4 Maverick, increasing the proportion
of irrelevant facts consistently and significantly
degrades both Pass@1 success rates and mean
progress ratios. For instance, Gemini 2.5 Flash’s
Pass@1 success rate drops from over 0.7 at zero
noise to approximately 0.2 at a noise ratio of
1.0. Llama-4 Maverick, starting with lower per-
formance, also shows a consistent decline. Inter-
estingly, for these two models, the number of CoT
(output) tokens remains relatively stable despite
the increasing noise and degrading performance
(Figure 4, right panel), suggesting that models do
not necessarily "work harder" (in terms of output
length) when faced with more distractors, but their
accuracy suffers.

Fact Ordering (Shuffle Ratio). In contrast to the
strong effects of noise and backtracking, shuffle ra-
tio (entropy of fact presentation order) within the
prompt appears to play a secondary role when var-

ied in isolation. Our experiments, exemplified by
the performance of Gemini 2.5 Flash and Llama-4
Maverick (see Appendix C Figure 14 for details),
show that complete shuffling of facts (randomiz-
ing their presentation order without adding or re-
moving any information) has a minimal impact on
Pass@1 success rates and mean progress ratios.
Output token counts also remain stable. This sug-
gests a relative robustness to presentation order as
long as all necessary information is present and
distinguishable. However, as details provided in
supplementary material, when high noise and high
shuffle co-occur, the combined effect can be more
detrimental than either factor alone, though noise
remains the dominant degrading factor.

2.4 Characterizing Key Failure Modes and
Error Patterns

A Key Failure Mode: Omission of Critical Steps.
Beyond simply taking illegal shortcuts, detailed
analysis reveals that LLMs often fail by omit-
ting critical sub-goals necessary for task comple-
tion. Figure 2 (bottom panel) provides a quantita-
tive view for Llama-4 Maverick (Meta AI, 2025),
showing that while precision generally remains
high (models infrequently hallucinate non-existent
rooms or facts), recall and progress ratio plum-
met with increasing path length (L). This indi-
cates that models predominantly fail by missing
necessary actions or entire crucial sub-sequences.
For a qualitative example, even capable models
like Gemini-2.5-Flash can neglect essential detours,
such as collecting a required key, thereby violat-
ing sequential dependencies and rendering the task
unsolvable (illustrative examples are provided in
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the Appendix B.4; see Figures 8 and 9). This pat-
tern highlights a fundamental breakdown in robust
multi-step planning and execution.

Path-Length Dependent First Errors: The Bur-
den of Anticipated Complexity. The propensity
for models to make critical errors is not uniformly
distributed across the reasoning process, nor is it
solely a feature of late-stage reasoning fatigue. Ex-
amining the distribution of steps at which the first
constraint violations occur reveals a counterintu-
itive pattern: as the total required path length (L) of
a problem increases, models tend to fail more fre-
quently even at the earliest steps of the reasoning
chain. This leftward shift in the first-error distri-
bution also observed under increasing noise, (Ap-
pendix B.4; Figures 10 and 11) contradicts a sim-
ple cumulative error model where each step carries
a fixed, independent failure probability. Instead, an
error at an early step (e.g., step 5) becomes sub-
stantially more likely when the model is attempting
to solve an 80-step problem versus a 20-step prob-
lem. This suggests that the overall anticipated com-
plexity of the full problem influences reasoning
quality from the very outset, indicating a struggle
with global planning or maintaining coherence over
longer horizons, rather than just an accumulation
of local errors. This phenomenon may help explain
why prompting techniques that decompose long
problems into smaller, manageable sub-problems
often succeed.

2.5 Disparity: Information Retention vs.
Reasoning Capacity

On seqBench tasks, this disparity is quantitatively
striking. While modern LLMs boast million-token
contexts, their effective sequential reasoning depth
typically remains on the order of hundreds of ac-
tions (Figure 1). This functional limit, even at sev-
eral hundred actions (e.g., 300 actions, with each
like (’move_to’, ’A12’) being 5-7 tokens, to-
taling 1.5k-2.1k tokens), still consumes a minute
fraction of their nominal context. Consequently,
the ratio of context capacity to reasoning tokens
often spans from several hundred-fold (e.g., 500:1
for 300 actions consuming 2k tokens within a 1M
context) to potentially higher values given fewer
limiting actions or larger model contexts. This
striking gap suggests that while transformers can
store and retrieve vast information, their ability to
reliably chain it for coherent, multi-step inference
appears surprisingly constrained.

2.6 Challenging the Conventional
Performance Hierarchy

While metrics like average L0 provide a general
ranking of model capabilities, our fine-grained anal-
ysis reveals instances that challenge a simple linear
performance hierarchy. Scatter plots of progress
ratios across different models on identical tasks
(see Appendix C Figure 13) show intriguing cases
where models with lower overall L0 values (i.e.,
typically weaker models) occasionally solve spe-
cific complex problems perfectly, while models
with higher average L0 values fail on those same
instances. These performance inversions suggest
that sequential reasoning failures may not solely
stem from insufficient scale (parameters or general
training) but could also arise from more nuanced
reasoning limitations.

3 Related Work

Recent advancements in benchmarks evaluating
sequential reasoning capabilities of LLMs have il-
luminated various strengths and limitations across
different dimensions of complexity. These bench-
marks typically differ in how they isolate and quan-
tify reasoning challenges, such as logical deduction,
retrieval difficulty, combinatorial complexity, and
sensitivity to irrelevant information. ZebraLogic
(Lin et al., 2025), for instance, targets formal deduc-
tive inference through logic-grid puzzles framed as
constraint-satisfaction problems (csp, 2008). While
valuable for probing deduction, its core methodol-
ogy leads to a search space that grows factorially
with puzzle size (Sempolinski, 2009). This makes
it challenging to disentangle intrinsic reasoning
failures from the sheer combinatorial complexity
of the search. As the ZebraLogic authors them-
selves acknowledge: “solving ZebraLogic puzzles
for large instances may become intractable... the
required number of reasoning tokens may increase
exponentially with the size of the puzzle.” This in-
herent characteristic means that for larger puzzles,
performance is primarily dictated by the manage-
ability of the search space rather than the limits
of sequential reasoning depth. GridPuzzle (Tyagi
et al., 2024) complements this by providing a de-
tailed error taxonomy for grid puzzles, focusing
on what kinds of reasoning mistakes LLMs make.
However, like ZebraLogic, it doesn’t offer indepen-
dent control over key complexity dimensions such
as logical depth, backtracking needs, or noise, sep-
arate from the puzzle’s inherent search complexity.
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Other benchmarks conflate reasoning with differ-
ent cognitive demands. BABILong (Kuratov et al.,
2024) tests models on extremely long contexts (up
to 50M tokens), primarily assessing the ability to re-
trieve "needles" (facts) from a "haystack" (distract-
ing text that does not contribute to solving the task).
While valuable for evaluating long-context process-
ing, this design makes it hard to disentangle re-
trieval failures from reasoning breakdowns, as per-
formance is often dictated by finding the relevant
information rather than reasoning over it. MuSR
(Sprague et al., 2024) embeds reasoning tasks
within lengthy narratives (e.g., murder mysteries),
mixing information extraction challenges with com-
plex, domain-specific reasoning structures. This
realism obscures which specific aspect—extraction
or reasoning depth—causes model failures. Dyna-
bAbI (Tamari et al., 2021) offers a dynamic frame-
work for compositional generalization but focuses
on qualitative combinations rather than system-
atically varying quantitative complexity metrics
needed to find precise failure points.

Spatial reasoning benchmarks, while relevant,
also target different aspects. GRASP (Tang and
Kejriwal, 2025) assesses practical spatial planning
efficiency (like obstacle avoidance) in 2D grids,
a different skill than the abstract sequential rea-
soning seqBench isolates. SPARTQA (Mirzaee
et al., 2021) focuses on specialized spatial rela-
tional complexity (transitivity, symmetry) using
coupled dimensions, preventing independent analy-
sis of factors like path length. SpaRTUN (Mirzaee
and Kordjamshidi, 2022) uses synthetic data pri-
marily for transfer learning in Spatial Question
Answering (SQA), aiming to improve model per-
formance rather than serve as a diagnostic tool with
controllable complexity. Similarly, StepGame (Shi
et al., 2022) demonstrates performance decay with
more reasoning steps in SQA but lacks the fine-
grained, orthogonal controls over distinct complex-
ity factors provided by seqBench.

In contrast, seqBench takes a targeted diagnos-
tic approach. By deliberately simplifying the spa-
tial environment to minimize search complexity,
it isolates sequential reasoning. Its core contribu-
tion lies in the independent, fine-grained control
over (1) logical depth (the number of sequential
actions required to solve the task), (2) backtrack-
ing count (the number of backtracking steps along
the optimal path), and (3) noise ratio (the ratio of
supporting to distracting facts). This orthogonal
parameterization allows us to precisely pinpoint

when and why sequential reasoning capabilities de-
grade, revealing fundamental performance cliffs
even when search and retrieval demands are triv-
ial. seqBench thus offers a complementary tool for
understanding the specific limitations of sequential
inference in LLMs.

4 Limitations

While seqBench offers precise control over key
reasoning complexities, our study has limitations
that open avenues for future research:

1. Generalizability and Task Design Fidelity:
Our current findings are rooted in synthetic
spatial pathfinding tasks. While this allows for
controlled experimentation, future work must
extend seqBench’s methodology to more di-
verse reasoning domains (e.g., mathematical
proofs) and incorporate greater linguistic di-
versity (e.g., ambiguity) to assess the broader
applicability of the observed phenomena of
performance collapse (quantified by L0) and
failure patterns. Moreover, this work did
not investigate whether similar failure modes
arise when the problem is also presented vi-
sually (e.g., as maze images). Multimodal
capabilities could influence spatial reasoning
outcomes, and we have already extended the
benchmark by releasing maze image genera-
tion code alongside the HuggingFace dataset.
This dataset can also be used to help train
multimodal reasoning models.

2. Model Scope and Understanding Deeper
Failure Dynamics: Our current evalua-
tion, while covering diverse public mod-
els, should be expanded to a wider ar-
ray of LLMs—including recent proprietary
and newer open-source variants (e.g., GPT,
Claude, DeepSeek series)—to rigorously as-
sess the universality of our findings on
the characteristic length L0 and failure pat-
terns. Furthermore, while seqBench effec-
tively characterizes how reasoning perfor-
mance degrades with logical depth (i.e., by de-
termining L0), two complementary research
thrusts are crucial for understanding why.
First, systematic investigation is needed to
disentangle how L0 is influenced by factors
such as model architecture, scale (parameters,
training data, compute), fine-tuning strategies,
and inference-time computation (e.g., chain-
of-thought depth). Second, deeper analysis is
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required to explain the precise mechanisms
underlying the observed exponential perfor-
mance collapse characterized by L0 and to
account for other non-trivial error patterns,
such as path-length dependent first errors. Ad-
ditionally, the evaluation presented here does
not consider how agentic systems capable of
tool use perform as the reasoning complexity
is tuned across various dimensions. Explor-
ing such setups, where the LLM can external-
ize sub-problems, invoke tools, or backtrack
programmatically, could provide valuable in-
sights into whether the same exponential fail-
ure modes persist. In particular, one can de-
fine sequential problems where the degree of
backtracking or sequential tool use can be sys-
tematically varied, and to test whether similar
performance drop emerge as the dependency
chain grows. We highlight this as a promising
direction for future research.

3. Impact of Prompting: Our current study em-
ployed standardized prompts and inference
settings. A crucial next step is a robust sen-
sitivity analysis to determine overall decay
behavior are influenced by different prompt-
ing strategies (e.g., zero-shot vs. few-shot,
decomposition techniques), varied decoding
parameters (temperature, top-p), and interac-
tive mechanisms such as self-verification or
self-correction. Investigating the potential of
these techniques to mitigate the observed se-
quential inference failures, particularly given
seqBench’s minimal search complexity, re-
mains a key avenue for future research.

Addressing these points by leveraging frameworks
like seqBench will be vital for developing LLMs
with more robust and generalizable sequential rea-
soning capabilities, and for understanding their fun-
damental performance limits.

5 Conclusion

We introduced seqBench, a novel benchmark
framework designed for the precise attribution of
sequential reasoning failures in Large Language
Models. seqBench’s core strength lies in its unique
capability for fine-grained, independent control
over fundamental complexity dimensions; most no-
tably, logical depth (L), backtracking requirements,
and noise ratio, its provision of automatically verifi-
able solutions, and critically minimizing confound-
ing factors like search complexity. This design

allows seqBench to isolate and rigorously evaluate
the sequential inference capabilities of LLMs, en-
abling the automatic quantification of fine-grained
performance metrics (such as progress ratio) and
providing a clear lens into mechanisms often ob-
scured in most other benchmarks. The framework’s
inherent scalability and open-source nature posi-
tion it as a durable tool for assessing and driving
progress in current and future generations of mod-
els, ultimately aiming to enhance their utility for
complex, real-world problems that often span multi-
ple domains. Our comprehensive evaluations using
seqBench reveal that reasoning accuracy consis-
tently collapses exponentially with increasing logi-
cal depth across a diverse range of state-of-the-art
LLMs. This collapse is characterized by a model-
specific parameter L0 (Section 2.2), indicating an
inherent architectural bottleneck in maintaining co-
herent multi-step inference. In alignment with the
goal of advancing NLP’s reach and fostering its
responsible application in other fields by offering
this precise analysis, seqBench provides a valuable
resource. It encourages a shift beyond aggregate
benchmark scores towards a more nuanced under-
standing of model capabilities, an essential step
for rigorously assessing the true impact and poten-
tial risks of applying LLMs in new domains. The
insights gleaned from seqBench can inform both
NLP developers in building more robust models,
and experts in other disciplines in setting realistic
expectations and co-designing NLP solutions that
are genuinely fit for purpose. Targeted improve-
ments, guided by such fundamental understanding,
are key to enhancing the robustness of sequential
reasoning, making LLMs more reliable partners in
interdisciplinary endeavors. Future work should
leverage these insights to develop models that can
overcome the observed performance cliffs and ex-
tend their effective reasoning horizons, thereby un-
locking their transformative potential in diverse
interdisciplinary applications—such as navigating
complex scientific literature, supporting intricate
legal analysis, or enabling robust multi-step plan-
ning in critical autonomous systems. Focusing on
commonsense reasoning is paramount for NLP to
achieve transformative societal impact, moving be-
yond incremental improvements to genuine break-
throughs.
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Appendices

A Dataset Generation Details

The seqBench benchmark generates pathfinding
tasks by systematically controlling several com-
plexity dimensions. As described in Section 1
(main paper), Algorithm 1 is central to this pro-
cess. This appendix provides further details on the
generation phases, natural language encoding of
tasks, and specific dataset parameters.

A.1 Generation Phases

The generation process, guided by Algorithm 1,
involves three main phases:

1. Base Maze Construction: An initial N ×
M grid is populated, and an acyclic maze
graph (Mg) is formed using Kruskal’s algo-
rithm (Kleinberg and Tardos, 2006). This en-
sures a simply connected environment where
a unique path exists between any two cells if
all internal "walls" (potential door locations)
were open. The overall process results in maze
instances like the one visualized in Figure 5.

2. Rewind Construction for Path Skeleton
and Key/Door Placement: This phase im-
plements the "Rewind Construction" (Algo-
rithm 1 in the main paper). Starting from a
randomly selected goal cell (Cgoal), the algo-
rithm works backward to define a solvable
path skeleton (ΠS). It iteratively:

(a) Selects a cell ckey that would be a preced-
ing point on a path towards the current
cell x (initially Cgoal).

(b) Identifies the unique path segment πseg
in Mg from x to ckey.

(c) Randomly selects an edge d on this seg-
ment πseg to become a locked door. This
edge d is added to the set of locked doors
DL.

(d) A new unique key Kid is conceptu-
ally placed at ckey, and its information
(which door it opens, its location) is
stored in KI .

(e) The conceptual steps (moving along πseg,
unlocking door d with Kid, picking up
Kid at ckey) are prepended (in reverse
logical order) to the path skeleton ΠS .

(f) The current cell x is updated to ckey, and
the process repeats until the target num-

ber of backtracks (B) is achieved or no
valid placements remain.

This backward construction ensures solvabil-
ity and controlled backtracking complexity.
The final agent starting position is the cell x
at the end of this phase.

3. Fact Compilation and Noise Injec-
tion: Based on the final maze structure
(Mg,DL,KI ), a set of natural language
facts F is compiled. This includes facts
describing room connections, key locations,
and door states. Distracting facts are then
introduced based on the target noise ratio N .
These distractors might describe non-existent
connections, spurious keys, or misleading
adjacencies, chosen to be plausible yet
incorrect.

Figure 5: Example visualization of a 6 × 6 seqBench
maze instance. Red rectangles denote locked doors,
dashed lines indicate the locations of keys correspond-
ing to those doors, and triangles mark the start (upward-
pointing) and goal (downward-pointing) positions. This
illustrates the spatial nature of the tasks.

A.2 Natural Language Encoding
Each task instance is translated into a set of atomic
natural language facts. We use a consistent tem-
plating approach:

• Room Connections: "Room A1 and B1 are
connected by an open door."
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• Locked Connections: "Room C3 and D3 are
connected by a closed and locked door."

• Key Requirements: "The locked door be-
tween C3 and D3 requires key 5." (Key IDs
are simple integers).

• Key Placements: "Key 5 is in room E4."
(Room IDs use spreadsheet-like notation, e.g.,
A1, B2).

• Starting Position: "Bob is in room A2."

• Goal Position: "Alice is in room D5."

The full set of facts for a given problem constitutes
its description.

A.3 Dataset Parameters and Scope
The seqBench dataset was generated using the fol-
lowing parameter ranges based on the generation
configuration:

• Grid Sizes (N ×M ): N ×M where N and
M range from 5 to 50 (e.g., [5,5], [6,6], ...,
[50,50]), with M = N for all configurations.

• Target Backtracking Steps (B): Values from
0 to 7. This controls the number of key-door
mechanisms deliberately placed on the opti-
mal path.

• Noise Ratio (N ): Values from 0.0 (no dis-
tracting facts) to 1.0 (equal number of sup-
porting and distracting facts), typically in in-
crements of 0.2.

• Instances per Configuration: For each pri-
mary configuration, defined by a specific grid
size (N,M ) and a specific target backtrack-
ing step count (B ∈ {0..7}), 400 unique base
maze instances were generated.

• Logical Depth (L): As an emergent prop-
erty, L varies. Experiments typically se-
lect problems from these generated instances
that fall into specific L bins (e.g., L ∈
[10, 11), [11, 12), . . .).

This generation pipeline, leveraging the described
parameter ranges and variations, can produce a vast
and diverse set of problem instances. The publicly
released seqBench dataset, used for the analyses
in this paper (see main paper for access link), com-
prises 7,079 such curated instances. This collection
offers a rich resource for studying the combined
effects of the controlled complexity dimensions.

B Prompt Design and Model
Configuration Details

This appendix provides the complete details of the
prompt structure and model configurations used
for evaluating LLMs on the seqBench benchmark.
The overall prompt, illustrated in Figure 6, con-
catenates four main components which are detailed
below.

B.1 Overall Prompt Components

The prompt presented to the LLMs consists of the
following components:

1. System Instructions and Task Definition
(Component 1): Outlines the agent’s task,
the structure of the maze description, valid
actions and their syntax, key operational con-
straints, and the required output format.

2. Few-Shot Examples (Component 2): Three
examples are provided to illustrate the task,
ranging in complexity. One of these examples
(a simple navigation task) is detailed in Fig-
ure 6. The verbatim text for all three examples
is provided in Figure 7 for completeness.

3. Reasoning Guidance and Self-Assessment
(Component 3): Offers step-by-step algorith-
mic tips for solving the task and requests the
model to provide a self-assessment of its con-
fidence and the perceived difficulty of the in-
stance.

4. Problem Instance Facts (Component 4):
The specific natural language facts describ-
ing the current maze configuration for the task
instance. As illustrated in Figure 6, these facts
are appended after the preceding components
and are followed by the line "YOUR SOLU-
TION:" to prompt the model. These facts are
generated using the templates described in Ap-
pendix A.

B.2 Evaluation Metrics and Error Analysis
Details

This section provides further details on specific as-
pects of our evaluation metrics and observed error
categories, complementing the overview of metrics
in Section 1 of the main paper and the discussion
of failure modes in Section 2 of the main paper.
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Figure 6: The complete prompt structure passed to the LLMs. This includes: Component 1 (System Instructions
and Task Definition), one of the three Few-Shot Examples (Component 2, specifically a simple navigation task),
Component 3 (Reasoning Guidance), and an illustration of where the Problem Instance Facts (Component 4) are
inserted. For clarity and completeness, the full verbatim text for all three few-shot examples (Component 2) is
provided in 7.

Observed Violation Categories. Failures in
model solutions on seqBench tasks can be cate-
gorized into several types. Understanding these
categories is crucial for interpreting model perfor-
mance and failure modes. Key types of violations
observed include:

• Adjacency errors (e.g., attempting to move
between unconnected rooms).

• Locked door errors (e.g., navigating through
locked doors without the correct key or with-
out unlocking them).

• Key usage errors (e.g., attempting to use keys
not yet collected, or using the wrong key for a
door).

• Path inefficiency (e.g., taking unnecessary de-
tours or redundant actions; while not always
a hard violation that stops progress, this con-
tributes to solutions not matching the optimal
path and thus failing Pass@1).

• Missed critical actions (e.g., failing to pick up
a necessary key or unlock a required door).

This is a key failure mode discussed in the
main paper (Section 2.4) and is often reflected
in metrics like low recall or a low progress
ratio if the omission occurs early and prevents
further correct steps.

Identifying these distinct categories of errors pro-
vides a more granular understanding of why mod-
els fail on sequential reasoning tasks and helps in
the interpretation of aggregate performance metrics
reported in the main paper.

B.3 Violation Map: Qualitative Examples of
Model Failures

This section provides qualitative examples of char-
acteristic model failures to illustrate common error
types. These examples visually support the dis-
cussion of failure modes in the main paper (Sec-
tion 2.4, "A Key Failure Mode: Omission of Criti-
cal Steps"). Figure 8 illustrates a significant error
by Gemini-2.5-Flash on a complex task, where the
model generates an illegal path, bypassing neces-
sary steps and locked doors. This exemplifies a
breakdown in multi-step planning. Additionally,
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1. Example 1 (Simple Navigation): This example, as shown in Figure 6, involves navigating a maze
with only open doors.

EXAMPLE:
INPUT:
Maze Structure: Room C4 and C3 are connected by an open door. Room C3 and D3 are

connected by an open door. Room D5 and E5 are connected by an open door.
Room A2 and A1 are connected by an open door. Room A3 and B3 are connected
by an open door. Room A1 and B1 are connected by an open door. Room A4 and
A3 are connected by an open door. Room E5 and E4 are connected by an open
door. Room D4 and D3 are connected by an open door. Room A5 and B5 are
connected by an open door. Room D4 and E4 are connected by an open door. Bob
is in room D5. Alice is in room C4.

OUTPUT:
Solution: [('start ', 'D5 '), ('move_to ', 'E5 '), ('move_to ', 'E4 '), ('move_to ', '

D4 '), ('move_to ', 'D3 '), ('move_to ', 'C3 '), ('move_to ', 'C4 '), ('rescue ', '
Alice ')]

2. Example 2 (Single-Key Backtracking): This example introduces a single locked door and a
corresponding key.

EXAMPLE:
INPUT:
Maze Structure: Room A1 and A2 are connected by an open door. Room A2 and B2 are

connected by an open door. Room B1 and B2 are connected by an open door.
Room B1 and C1 are connected by an open door. Room C1 and C2 are connected
by a closed and locked door. Door between C1 and C2 requires key 1. Key 1 is
in room A2. Bob is in room A1. Alice is in room C2.

OUTPUT:
Solution: [('start ', 'A1 '), ('move_to ', 'A2 '), ('pick_up_key ', '1'), ('move_to ',

'B2 '), ('move_to ', 'B1 '), ('move_to ', 'C1 '), ('use_key ', '1'), ('
unlock_and_open_door_to ', 'C2 '), ('move_to ', 'C2 '), ('rescue ', 'Alice ')]

3. Example 3 (Multi-Key Backtracking): This example presents a more complex scenario with
multiple locked doors and keys, requiring more extensive backtracking.

EXAMPLE:
INPUT:
Maze Structure: Room B5 and B4 are connected by a closed and locked door. The

locked door between B5 and B4 requires key 3. Key 3 is in room B5. Room B5
and C5 are connected by a closed and locked door. The locked door between B5
and C5 requires key 16. Key 16 is in room C5. Room B4 and C4 are connected

by an open door. Room C4 and C3 are connected by an open door. Room C3 and
D3 are connected by a closed and locked door. The locked door between C3 and
D3 requires key 10. Key 10 is in room C4. Room D5 and D4 are connected by

an open door. Room D4 and D3 are connected by an open door. Room A5 and B5
are connected by an open door. Bob is in room C5. Alice is in room D5.

OUTPUT:
Solution: [('start ', 'C5 '), ('pick_up_key ', '16'), ('use_key ', '16'), ('

unlock_and_open_door_to ', 'B5 '), ('move_to ', 'B5 '), ('pick_up_key ', '3'), ('
use_key ', '3'), ('unlock_and_open_door_to ', 'B4 '), ('move_to ', 'B4 '), ('
move_to ', 'C4 '), ('pick_up_key ', '10'), ('move_to ', 'C3 '), ('use_key ', '10')
, ('unlock_and_open_door_to ', 'D3 '), ('move_to ', 'D3 '), ('move_to ', 'D4 '),
('move_to ', 'D5 '), ('rescue ', 'Alice ')]

Figure 7: Few-shot examples provided to guide the LLMs in the maze-solving task. These examples demonstrate
simple navigation, single-key backtracking, and multi-key backtracking scenarios. The three examples illustrate
increasing levels of complexity.

Figure 9 shows another common ’adjacency error,’
where a model attempts to jump between uncon-

nected rooms. This type of error reveals a critical
lapse in grounding its generated actions within the
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spatial adjacencies explicitly stated by the task’s
input facts.

B.4 Quantitative Analysis of Error Patterns

To understand how and when models begin to fail
within a reasoning sequence, we analyze the dis-
tribution of the first violation step. We record the
time step at which the initial violation occurs in
a model’s generated path. Aggregating this step-
indexed data across multiple instances allows us
to create temporal distributions of errors. These
distributions help determine whether errors tend
to cluster early in the reasoning process (poten-
tially indicating issues with initial planning or un-
derstanding of the overall problem complexity) or
accumulate later (suggesting difficulties in main-
taining long chains of inference or context). This
analysis complements the discussion in the main
paper (Section 2.4, "Path-Length Dependent First
Errors: The Burden of Anticipated Complexity").

Figure 10 shows how the distribution of these
first-error positions shifts with the overall problem
complexity, represented by logical depth (L). As
detailed in the main paper, an increase in L tends to
cause errors to occur earlier in the reasoning chain.

Similarly, Figure 11 illustrates how the introduc-
tion of contextual noise (distracting facts) affects
the point of failure. Increased noise also tends to
precipitate earlier errors in the reasoning sequence,
as discussed in the main paper in relation to sensi-
tivity to noise (Section 2.3) and its impact on error
patterns (Section 2.4).

C Supplementary Figures

This appendix provides supplementary figures that
offer further visual support for analyses presented
in the main paper. These figures illustrate the im-
pact of various complexity dimensions and provide
comparative views of model performance, elaborat-
ing on points made throughout Section 2 (Bench-
marking Results) of the main paper.

Figure 12 details the performance of Llama-4
Maverick-17B-128E-Instruct under varying levels
of noise and fact shuffling. This supports the discus-
sion in the main paper (Section 2.3, on how these
factors, especially in combination, affect success
rates, with noise being a dominant factor.

To illustrate the performance consistency and
disparities across different models, as detailed in
Section 2.6, Figure 13 presents scatter and density
plots of mean progress ratios. These plots clearly

demonstrate that model performance hierarchies
are not strictly linear. They reveal ’performance
inversions’—instances, also noted in Section 2.6,
where models with typically lower overall perfor-
mance (e.g., lower average L0) occasionally solve
specific complex problems that models with higher
average L0 values fail on.

Figure 14 isolates the impact of shuffle ratio on
model performance when other factors like noise
are controlled. This visualization corresponds to
the findings discussed in the main paper (Sec-
tion 2.3, "Fact Ordering (Shuffle Ratio)") that sim-
ple reordering of facts has a minimal impact on the
performance of the evaluated models under low-
noise conditions.

Figure 16 is added in this revised version of the
supplementary section to reflect that even the most
recent SOTA models released by OpenAI suffer
from the same performance drop observed in the
main paper.
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Figure 8: Illustrative failure case for Gemini-2.5-Flash on a 40x40 task with 2 locked doors on the optimal path. Left:
Optimal path (yellow). Right: Model’s generated path showing an illegal adjacency jump (red arrow), bypassing
multiple rooms and a locked door, despite only supporting facts being provided. This highlights a breakdown in
multi-step planning.

Figure 9: Illustrative failure case of an ’adjacency error’ in model-generated pathfinding on a 20x20 task with 2
locked doors on the optimal path. The left panel displays the optimal path (yellow) to the target (triangle). The
right panel shows a suboptimal path (purple) generated by the model. This example highlights a common error
where, after a sequence of actions (in this scenario, following a key acquisition), the model fails to navigate through
valid connections. Instead, it attempts to ’jump’ directly between two unconnected rooms. This violation of room
adjacency constraints is a key challenge in model performance.
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Figure 10: Distribution of first-violation steps for Gemini-2.5-Flash across varying logical depths (L). As L (total
required path length) increases, the distribution of first errors tends to shift leftward, indicating that models are more
likely to fail at earlier steps in longer problems. This suggests that anticipated global complexity impacts reasoning
from the outset. Experimental parameters in this figure are the same as those in Figure 1.
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Figure 11: Impact of increasing noise ratio on the distribution of failure steps for Gemini 2.5 Flash. As noise
(proportion of distracting facts) increases, failures tend to occur earlier in the reasoning chain. This reflects increased
difficulty in isolating relevant information and maintaining focus. Fixed experimental parameters in this figure are
the same as those in Figure 1.
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Figure 12: Pass@1 success rate for Llama-4 Maverick-17B-128E-Instruct versus solution length (L) under different
noise and shuffle ratios. Left: Linear scale. Right: Log-linear scale. Performance degrades with increased noise but
is less affected by shuffle ratios. Fixed experimental parameters in this figure are the same as those in Figure 1.

Figure 13: Scatter and density plots of progress ratios per task instance, comparing model pairs on the tasks.
These plots illustrate performance agreement and disparities on the same instances of pathfinding tasks. Notably,
Gemini-2.5-Flash (example) often succeeds on instances where other models achieve near-zero progress. Data from
experiments in Figure 1 (main paper).
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Figure 14: Impact of shuffle ratio on Pass@1 success rate. Varying the degree of mixing (shuffle) between supporting
and distracting facts shows minimal impact on performance for Gemini 2.5 Flash and Llama-4 Maverick, suggesting
robustness to fact order when noise is controlled. The generation and sampling of maze instances for these tasks
follow the same methodology detailed for experiments in the main paper (Figures 3 and 4).

Figure 15: The impact of including different number of reference examples in the prompt as part of in-context
learning. Increasing the number of examples leads to slight improvements in performance. The experimental
parameters used here are the same as ones in Figure 1.
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Figure 16: This figure is added to reflect that the recent closed (GPT-5) and open sourced models (OSS-20B/120B)
released by OpenAI also follow the same universal failure patterns highlighted in this paper. The data used here as
well as experimental settings is the same as the one used in Figure 1 of the main paper. We include Llama-4-Maverick
which is also used in Figure 1 as the benchmark reference.
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