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Abstract

Recently, researchers have turned to synthetic
tasks for evaluating long-context capabilities
of large language models (LLMs) , as they of-
fer more flexibility than realistic benchmarks
in scaling both input length and dataset size.
However, existing synthetic tasks typically tar-
get narrow skill sets such as retrieving informa-
tion from massive input, limiting their ability
to comprehensively assess model capabilities.
Furthermore, existing benchmarks often pair
each task with a different input context, creat-
ing confounding factors that prevent fair cross-
task comparison. To address these limitations,
we introduce SYNC, a new evaluation suite
of synthetic tasks spanning domains including
graph understanding and translation. Each do-
main includes three tasks designed to test a
wide range of capabilities—from retrieval, to
multi-hop tracking, and to global context un-
derstanding that that requires chain-of-thought
(CoT) reasoning. Crucially, all tasks share the
same context, enabling controlled comparisons
of model performance. We evaluate 14 LLMs
on SYNC and observe substantial performance
drops on more challenging tasks, underscoring
the benchmark’s difficulty. Additional experi-
ments highlight the necessity of CoT reasoning
and demonstrate that SYNC poses a robust
challenge for future models.

1 Introduction

Large language models (LLMs) have extended
their context lengths with recent advances, enabling
them to accommodate more diverse and extensive
user inputs (OpenAI et al., 2024b; AI, 2024). To
understand LLMs’ capabilities when consuming
long contexts, it is crucial to develop benchmarks
with sufficiently long inputs. Early benchmarks for
long-context evaluation primarily focus on realistic
tasks, where data is either sourced from human-
annotated documents (Pang et al., 2022) or exist-
ing text corpora (Shaham et al., 2023; Dong et al.,

2024). While these tasks reflect real-world use
cases, they are limited in flexibility: Once con-
structed, the input contexts in such datasets are
essentially fixed, extending which to longer con-
texts often requires sourcing and annotating new
data samples (Bai et al., 2024b; Wang et al., 2025).
Precisely controlling the difficulty of understand-
ing the contexts is also challenging, as they depend
on the available realistic contexts. As a result, re-
alistic benchmarks are not suitable for controlled
evaluation of models’ long-context capabilities.

Recently, synthetic benchmarks have emerged
as a more scalable way to probe model capabilities
at controllable lengths. A notable example is the
needle-in-a-haystack (NIAH) test, where key-value
pairs to be retrieved are inserted into long passages
of irrelevant text (Kamradt, 2023). While such tests
are simple to construct and offer extremely lengthy
contexts without the need for human annotations,
they only evaluate whether the model is able to
pinpoint the required content. Although extensions
of NIAH have been proposed to test other capabil-
ities (Hsieh et al., 2024), the range of capabilities
evaluated remains narrow. Moreover, existing syn-
thetic benchmarks curate tasks with different input
contexts which become confounding factors when
comparing model performance across tasks to un-
derstand model behaviors.

To address these limitations of existing synthetic
benchmarks, we propose a new benchmark, SYNC,
comprising SYNthetic Contexts for fine-grained
comparisons of LLMs’ long-context capabilities.1

SYNC features synthetic contexts covering two do-
mains: graph understanding and unseen language
translation. Three tasks are composed for each do-
main and designed to evaluate a broader range of
capabilities, from simple information retrieval to
multi-hop state tracking, and to global context un-

1Our data and data generation code are available at https:
//shuyangcao.github.io/projects/sync/.
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derstanding that requires synthesizing and reason-
ing across multiple pieces of information scattered
throughout the long context.

For example, in graph understanding tasks, the
LLM is first tasked with finding nodes connected
to a given node to examine its retrieval capabil-
ity. To assess multi-hop state tracking, the model
must then determine the shortest path between two
given nodes. Finally, to demonstrate global con-
text understanding, the LLM is queried to find the
longest path within the graph, a task requiring a
holistic comprehension of the entire graph struc-
ture. Importantly, by presenting tasks of varying
complexity under the same context that describes
the graph or translation rules, we ensure that dif-
ferences in model performance across tasks are
solely attributed to the task difficulty. This design
choice allows us to accurately assess the models’
capabilities associated with different tasks without
introducing confounding factors that arise when
each task has a different context.

On SYNC, we evaluate 12 open-source and 2
proprietary LLMs that support a context length of
128K or longer, which reveals a consistent degra-
dation in performance as the complexity of tasks
increases. Notably, on the most challenging tasks
requiring global context understanding, no model
surpasses 25% accuracy. Compared with exist-
ing synthetic benchmarks, SYNC proves to be
more effective in differentiating model capabili-
ties, offering clearer alignment between task diffi-
culty and performance. We further conduct experi-
ments without the usage of chain-of-thought (CoT),
where models struggle to maintain reasonable per-
formance, which indicates the necessity of CoT on
SYNC and again demonstrates the difficulty of our
tasks. Additionally, we examine the correlation
between our tasks and realistic tasks, revealing that
identifying the shortest path in a graph can be a
good predictor of real-world performance.

Our contributions can be summarized as follows:

1. We propose a new long-context evaluation
benchmark, SYNC, which comprises syn-
thetic contexts including graphs and unseen
languages. Tasks requiring different levels of
capabilities are designed based on the same
contexts, enabling accurate assessment of
model capabilities.

2. We benchmark 14 LLMs (12 open-source and
2 proprietary) on SYNC, revealing that ex-

isting LLMs face a challenge when handling
tasks beyond retrieval on long contexts.

3. We conduct thorough analyses of our bench-
mark, including comparisons with existing
synthetic benchmarks, an investigation into
the effect of chain-of-thought reasoning, and
a study of correlation between our tasks and
realistic tasks. These analyses validate the
difficulty of SYNC, illustrate the benefit of
shared contexts, and indicate that our tasks
can predict real-world performance.

2 Related Work

Early long-context evaluation benchmarks (Sha-
ham et al., 2023; Tay et al., 2021) are gradually
falling behind the advancements of LLMs with
long context windows (Ainslie et al., 2023; Liu
et al., 2023a; Chen et al., 2023; Peng et al., 2023;
Team et al., 2024), due to the insufficient coverage
of model context lengths (128K and longer) by the
included data (Kočiský et al., 2018; Zhong et al.,
2021; Huang et al., 2021; Wang et al., 2022). Re-
cent benchmarks aim to address this gap by devel-
oping tasks featuring significantly longer contexts.

Realistic Tasks. Realistic tasks assess the prac-
tical performance of LLMs in applications closely
aligned with real-world scenarios. Unlike synthetic
tasks, these provide a more representative evalua-
tion of long-context capabilities. However, realistic
tasks are challenging to construct, and controlling
the length and complexity of data points can be
difficult.

Several benchmarks have emerged to compre-
hensively evaluate LLMs across diverse realis-
tic applications. For instance, NovelQA (Wang
et al., 2025), LongBench (Bai et al., 2024a),
Nocha (Karpinska et al., 2024), ∞Bench (Zhang
et al., 2024b), BABILong (Kuratov et al., 2024),
BAMBOO (Dong et al., 2024), Loong (Wang et al.,
2024), and LongCite (Zhang et al., 2024a) empha-
size question-answering tasks involving lengthy
narratives or multiple documents. For long-
document summarization, benchmarks such as L-
Eval (An et al., 2024) and LooGLE (Li et al.,
2024a) provide a variety of relevant tasks. Fur-
thermore, benchmarks like LongBench v2 (Bai
et al., 2024b) and Long Code Arena (Bogomolov
et al., 2024) assess repo-level code understanding,
while LOFT (Lee et al., 2024) evaluates retrieval-
augmented generation (RAG) tasks in extensive
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contexts. Finally, LongICLBench (Li et al., 2024b)
and ManyICLBench (Zou et al., 2025) specifically
target the evaluation of long-context models in
many-shot in-context learning scenarios.

Synthetic Tasks. Synthetic tasks are specifically
designed to rigorously test LLMs through artifi-
cially constructed contexts. Their primary advan-
tage is the ease of generating data points, enabling
precise control over context length and difficulty.

One of the most widely used synthetic tasks is
Needle-in-a-Haystack (NIAH) (Kamradt, 2023),
where models must retrieve a fact statement em-
bedded within a large volume of random text. Syn-
thetic tasks have also been incorporated into bench-
marks that simutaineously contain realistic tasks,
such as LongBench v2 (Bai et al., 2024a) and
HELMET (Yen et al., 2024), yet they are mostly
retrieval tasks similar to NIAH. Beyond extend-
ing NIAH, RULER (Hsieh et al., 2024) introduces
tasks demanding more complex capabilities, such
as state tracking.

Despite these efforts, current synthetic tasks re-
main limited in scope, primarily assessing retrieval
capabilities. A broader limitation in multi-task
benchmarks is the use of varying input contexts
across tasks, which introduces confounding factors
that hinder fair comparisons of model proficiency
across different capabilities.

3 SYNC Task Creation

In this section, we introduce our benchmark,
SYNC, a suite of synthetic tasks designed to evalu-
ate varying capabilities of LLMs when processing
long contexts. SYNC spans two domains: graph
understanding (§3.1) and unseen language trans-
lation (§3.2). The domains are selected based on
three criteria: (1) the domains can accommodate
tasks that challenge different levels of model capa-
bilities and can be adapted in difficulty for future
models, (2) automatic sample construction is feasi-
ble, and (3) automatic evaluation is reliable. The
contexts for these tasks are formed by descriptions
of graphs and translation rules, respectively, and
are supplemented with task-irrelevant information
to increase the context length. For each domain,
we consider three tasks of increasing complexity,
evaluating the model’s capabilities in information
retrieval, state tracking, and global context under-
standing. We discuss key properties that distin-
guish our tasks from existing synthetic benchmarks
in §3.3, including (1) targeting capabilities of vary-

Context
You will answer a given question based on a
directed acyclic graph. The edges of the graph
are hidden within the following text. Make
sure to memorize them. The nodes in the graph
are: Node 1, Node 2, Node 3, Node 4, Node 5.
[haystack] There is a directed edge from Node
1 to Node 2. [haystack] There is a directed
edge from Node 2 to Node 3. [haystack] There
is a directed edge from Node 2 to Node 4. ...

Task Query
[Retrieval] Connected Node: What are the nodes
with directed edges from Node 1?
[Tracking] Shortest Path: What is the shortest path
from Node 1 to Node 3?
[Global] Longest Path: What is the longest path
in the graph?

Table 1: Example of graph understanding tasks. The
context interleaves essential graph details with haystack
to extend the context length.

ing levels; and (2) sharing contexts for controlled
comparison.

3.1 Tasks on Graph Understanding

We generate random directed acyclic graphs
(DAGs) based on the number of nodes and the edge
density (i.e., the probability that an edge exists
between two nodes). To adjust the difficulty, we
change the number of nodes in each graph. Each
graph is presented to the model by listing its nodes
and edges, as shown in Table 1. To extend the con-
text length without overly increasing task complex-
ity, we follow the needle-in-the-haystack approach
and interleave the graph description with redundant
but topically consistent information. Specifically,
we repeatedly state that there is no self-cycle at
each node (e.g., “There is no directed edge from
Node 1 to Node 1”). Since the models are informed
that the graphs are acyclic, the haystack does not
provide extra clues for solving the tasks.

The Connected Node task requires the model to
identify all nodes that have outgoing directed edges
from a queried node. For each graph, a node is
randomly selected as the query. This task tests the
model’s ability to retrieve relevant information with
the query node as the key. For evaluation, we check
if the set of nodes in the model response exactly
match the reference set.

In the Shortest Path task, the model must find the
shortest path from a given node to another. Intu-
itively, to effectively solve the problem, the model
should maintain the state of its exploration in the
graph, which keeps track of the explored and unex-
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Context
Answer the question based on the given
languages. These languages are created for
special purposes and do not exist in the
real world. Their vocabularies and bilingual
dictionaries are as follows. Note that
the vocabularies might be duplicated. The
vocabulary of LL0: eszyci, dppu, ... [haystack]
Dictionary from LL0 to LL1: dpamn -> aqdek;
czrzib -> rqntu; ybzol -> ucc; ... [haystack]
The vocabulary of LL1: ubmcrdu, erwkyr, ...
[haystack] Dictionary from LL1 to LL2: ...

Task Query
[Retrieval] Single-hop Translation: What is the
translation of “lrg eafi axry ikxxqq viw” from
LL1 to LL2?
[Tracking] Multi-hop Translation: What is the
translation of “ayg nrhu lsloiv mzg phx” from
LL0 to LL2?
[Global] Letter Coverage: Find the three words in
LL0 such that the union of the first letters
of all their translations contains the maximum
number of distinct letters.

Table 2: Example of translation-based tasks. Vocabular-
ies are repeated to construct the haystack.

plored nodes during reasoning. If multiple short-
est path exist, the model is allowed to return any
valid shortest path. The model generated path is
examined for the existence of each edge and the
optimality of the path length. Note that the queried
node pairs are chosen such that either no shortest
path exists or the shortest path length is greater than
1, as a path length of 1 reduces the task to simple
retrieval.

Finally, we test the model’s global understanding
of the graph by asking the model to extract the
Longest Path from the whole graph. Similar to
Shortest Path, the model must generate a path with
fully valid edges and its length must match the
length of the reference longest path.

3.2 Tasks on Unseen Language Translation
We also explore a domain closer to natural lan-
guage by simulating translation between synthetic
languages. For each language, we generate a vo-
cabulary by randomly determining word lengths
and selecting letters from the English alphabet. The
translation rules are provided as a sequence of bilin-
gual dictionaries. For instance, given three con-
structed languages L0, L1, and L2, two bilingual
dictionaries are created to map L0 to L1 and L1
to L2. Each dictionary entry is limited to word-to-
word translation, because phrase-level translation
proves to be too difficult for existing models in
our pilot experiment. The difficulty of the task can

be controlled by varying the number of languages
constructed. Each bilingual dictionary, contain-
ing task-relevant information, appears only once
in the context, while the vocabularies of created
languages are taken as haystack.
In Single-hop Translation, the model is provided
with a source text (more than one word) in one syn-
thetic language and must translate it into another
language. Importantly, there exists a direct bilin-
gual dictionary between the selected source and
target languages, so that the model can solve the
task by retrieving corresponding translations using
words in the source text as keys.
A more challenging task, Multi-hop Translation,
further requires the model to perform a sequence of
translations across multiple languages. Without a
direct bilingual dictionary between the source and
target languages, the model must correctly apply
consecutive bilingual dictionaries while keeping
track of the translated outputs across the interme-
diate languages. Both single-hop and multi-hop
translation are evaluated with exact match of the
reference target text.
Letter Coverage. In this task, the model needs to
identify three words in the source language, such
that the union of the first letters of all their transla-
tions across every language contains the maximum
number of distinct letters. This task evaluates the
model’s ability to fully understand and leverage all
provided translation rules. During evaluation, we
obtain all translated words for the model-selected
words and compare the size of the union of first
letters with the reference value (exact match of the
size).

3.3 Properties of SYNC
We highlight several important properties of SYNC
that differentiates it from existing synthetic bench-
marks for long-context evaluation.

Varying Levels of Capabilities. Each domain
contains tasks that differs in the number of hops
and the hop range, which estimate the levels of
capabilities required for task solving. A hop refers
to one piece of information within the context that
is needed to solve the task. When multiple hops
must be chained to correctly solve the task, the
distance between consecutive hops is the hop range.
A higher hop count requires the model to identify
more pieces of information, while a large hop range
tests the model’s ability to combine information
scattered across a wide range of the context.
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Connected Nodes Shortest Path Longest Path
Model 32K 64K 128K 32K 64K 128K 32K 64K 128K

Llama-3.3-70B-Instruct 98.7 92.7 11.3 57.3 46.0 8.0 18.7 16.0 0.0
Mistral-Large-Instruct 90.0 52.7 12.7 57.3 42.0 8.7 22.0 4.0 0.0
DeepSeek-Distill-Llama-70B 90.7 74.0 2.7 52.7 52.7 0.0 13.3 11.3 0.0
DeepSeek-Distill-Qwen-32B 74.7 56.0 20.0 55.3 37.3 8.7 13.3 10.0 0.0
GPT-4o 94.7 93.3 96.0 77.3 77.3 70.7 9.3 8.0 2.7
Gemini-2.0-Flash 100.0 98.7 88.0 80.0 76.0 71.3 37.3 26.0 26.7

Single-hop Translation Multi-hop Translation Letter Cover
Model 32K 64K 128K 32K 64K 128K 32K 64K 128K

Llama-3.3-70B-Instruct 84.0 86.0 0.0 37.3 33.3 0.0 1.3 1.3 0.0
Mistral-Large-Instruct 68.7 40.7 3.3 18.7 12.7 0.0 1.3 0.0 0.0
DeepSeek-Distill-Llama-70B 82.7 72.0 0.0 38.7 26.7 0.0 1.3 0.7 0.0
DeepSeek-Distill-Qwen-32B 74.0 38.7 8.7 45.3 20.0 0.0 1.3 1.3 0.0
GPT-4o 80.7 78.0 69.3 70.0 71.3 51.3 1.3 0.7 0.0
Gemini-2.0-Flash 98.7 90.7 80.0 93.3 80.7 27.3 0.7 2.0 0.0

Table 3: Performance of models with more than 30B parameters on SYNC. Performance of other models is
reported in Appendix B. The best model in each setup is bolded. Performance is visually represented by a color
scale from white (0) to green (100). From left to right, the tasks demand retrieval, state tracking, and global
context understanding capabilities. Existing LLMs struggle with tasks beyond simple retrieval, suffering significant
degradation on state tracking and global context understanding tasks.

Although NIAH tasks can involve retrieving mul-
tiple values in the context (Kamradt, 2023), their
hop range is effectively zero because each neces-
sary key-value pair can be retrieved independently.
In contrast, our suite spans simple retrieval tasks
to more complex ones (Shortest Path and Multi-
hop Translation) that demand both a higher number
of hops and longer hop ranges. Furthermore, we
include tasks that require understanding all rele-
vant information in the context (Longest Path and
Budget-Aware Translation), maximizing both hops
and ranges. Based on the qualitative analysis of
hop counts and ranges, we categorize our tasks into
retrieval, tracking, and global understanding tasks.

Shared Context across Tasks. Within each do-
main, we reuse the same context for three tasks of
varying difficulty. Sharing the same context decou-
ples the difficulty stemming from the context itself
from the complexity of the task, allowing for a
controlled comparison of model capabilities at dif-
ferent levels. Existing synthetic benchmarks such
as RULER use different contexts for tasks of vary-
ing complexity (Hsieh et al., 2024), which obscures
the assessment of the gap between capabilities.

4 Experiments

Models. We benchmark 14 LLMs, including 12
open-source models and 2 proprietary models, all
of which can consume 128K or more tokens. De-
tails of the models are provided in Appendix A. All
models are evaluated under the 0-shot setting, as

our pilot experiments showed that human-aligned
models perform worse with in-context learning
demonstrations. Due to high computational cost,
for each setup, we ran model inference with greedy
decoding once.

Benchmark Configurations. For graph under-
standing tasks, we generate DAGs with varying
sizes. Specifically, we consider graphs with 10, 15,
and 20 nodes. For each node count configuration,
50 DAGs are generated with an edge density of
0.15, resulting in a total of 150 graphs. To guar-
antee that each graph is topologically unique, we
compute the hash of its canonical form. Node la-
bels are assigned sequentially, starting from 0.

For translation tasks, we construct vocabularies
and bilingual dictionaries with different numbers
of languages. We consider three configurations
with 3, 5, and 7 languages, respectively. For each
configuration, 50 distinct sets of vocabularies and
dictionaries are generated. Each language com-
prises 250 words, with each word having a length
between 3 and 7 letters. Phrases are limited to at
most 5 words, and each bilingual dictionary con-
tains 50 entries.

We insert haystack to create tasks with context
lengths of 32K (32,768), 64K (65,536), and 128K
(131,072) tokens, as counted by the tokenizer of
Mistral-Large-Instruct.

These parameters are freely adjustable to alter
data complexity and diversity. We do not expand
the graph size or increase the number of languages
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further, because the complexity might surpass the
model’s capability for a meaningful evaluation.

5 Results

5.1 Main Results

Table 3 shows the performance of the six models
with more than 30B parameters on SYNC. Re-
sults for other models are provided in Appendix B.
Although current LLMs can consume long con-
texts, they still struggle with tasks beyond sim-
ple retrieval. Among the six LLMs, four achieve
over 70% accuracy on listing connected nodes and
performing single-hop translations with context
lengths up to 64K. However, only the two propri-
etary models, Gemini-2.0-flash and GPT-4o, main-
tain over 70% accuracy on the tracking tasks (i.e.,
Shortest Path and Multi-hop Translation). On the
most challenging global understanding tasks (i.e.,
Longest Path and Letter Coverage), all models
achieve below 40% accuracy.

Open-source models experience catastrophic
degradation at 128K context length. Even Llama-
3.3-70B, which remains stable from 32K to 64K,
suffers a sudden drop at 128K. Upon manual in-
spection, we find that at such extreme lengths,
models often fail to follow prompt instructions,
resulting in invalid responses. We hypothesize that
instruction-following abilities diminish when mod-
els approach their maximum context length, likely
because they have less exposure to very long inputs
during training.

Comparisons with Other Synthetic Tasks. For
comparisons, we include the extraction of corre-
sponding keys with given values from JSON file
(JSON KV) (Liu et al., 2023b; Yen et al., 2024).
We also consider two tasks from RULER (Hsieh
et al., 2024): NIAH tests augmented with multiple
values, which are reported to be more challenging
than other synthetic NIAH tests; and variable track-
ing, which targets the state-tracking capability.

Table 4 presents the performance of GPT-4o and
Gemini-2.0-flash on SYNC and existing synthetic
tasks. The tasks in SYNC are more difficult over-
all, especially for those requiring capabilities be-
yond retrieval. While existing benchmarks extend
standard NIAH with additional key-value pairs and
more distracting content, fundamentally they only
test retrieval. In SYNC, state tracking and global
context understanding tasks require gathering dis-
tant clues and synthesizing them, demanding more

GPT-4o Gemini-2.0-flash
Task 64K 128K 64K 128K

JSON KV 100.0 100.0 98.0 92.0

RULER
NIAH Multi-Value 100.0 99.5 99.8 87.8
Variable Tracking 99.6 99.8 100.0 100.0

SYNC Graph
Connected Nodes 94.0 96.0 92.0 88.0
Shortest Path 76.7 70.7 76.0 71.3

SYNC Translation
Single-hop Trans. 78.0 69.3 90.7 80.0
Multi-hop Trans. 71.3 51.3 80.7 27.3

Table 4: Performance of GPT-4o and Gemini-2.0-flash
on SYNC and other synthetic tasks. We highlight per-
fect performance with green. Within the same bench-
mark, state-tracking tasks that yield higher performance
than retrieval tasks are underlined. Using the same con-
text across tasks mitigates the counfounding effect of
input context on task difficulty, ensuring tasks requiring
more complex capabilities are more challenging.

advanced reasoning. Furthermore, it is notewor-
thy that high performance on our retrieval tasks
relies on the usage of CoT during inference (dis-
cussed in §5.2), whereas existing synthetic tasks
generally do not. This demonstrates that SYNC of-
fers sufficient complexity to challenge future, more
advanced models.

Sharing the same input context across tasks en-
ables controlled comparisons of model capabili-
ties. RULER uses different input contexts for each
task, making task performance attributable to both
the difficulty of understanding the context and the
complexity of the capabilities required to solve the
task. Although state tracking is intuitively more
complex than retrieval, the absolute performance
on RULER’s variable tracking task is often higher
than that on the multi-value NIAH task. On SYNC,
model performance declines as task complexity in-
creases.

Controlled comparisons also allow for precise
analysis of model capabilities. For example,
Gemini-2.0-flash suffers a more significant decline
in multi-hop translation than in single-hop transla-
tion when the same input context increases from
64K to 128K tokens. This reveals that while the
model retains its ability to understand lengthened
contexts and perform retrieval, it lacks the robust
state-tracking capability needed to support multi-
hop reasoning in longer contexts.
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Without CoT, performance decreases substantially on
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Figure 2: Accuracy and average CoT length for each
task in SYNC at 64K context length. Complex tasks
prompt longer CoTs, yet more CoT tokens do not nec-
essarily lead to better performance.

5.2 Analysis of Chain-of-Thought (CoT)

In our main experiments, we allow models to use
CoT in their responses. To study the effects of CoT,
we force the model to output the answer directly
by prepending the answer prefix of each task to the
model response. As shown in Figure 1, both Llama-
3.3-70B and its DeepSeek R1 distilled variant have
significant performance drops without CoT. No-
tably, both models approach 0% accuracy on multi-
hop translations when CoT is disabled, indicating
the necessity of CoT on SYNC.

Figure 2 shows the CoT length and accuracy
across different tasks at a 64K context length. The
average CoT length evidences the proposed task
complexity ordering, as models generally produce
longer CoTs for more complex tasks. For re-
trieval tasks, most models generate fewer than 500
CoT tokens. In contrast, global context understand-
ing tasks often elicit CoTs exceeding 500 tokens,
with DeepSeek-distilled models reaching 1,000 to-
kens, though they still fail to solve these tasks.

We further investigate the scaling effect of CoTs
by forcing models to generate CoTs of different
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Figure 3: Accuracy under enforced CoT length for each
task at 64K context length. DeepSeek-distilled models
show improvements with longer CoT on graph under-
standing tasks, but not on translation tasks.

lengths ranging from 0 to 8192 tokens (Figure 3).
Llama-3.1-8B and Llama-3.3-70B are not explic-
itly trained for long CoTs and therefore do not
consistently benefit from longer reasoning chains
across all tasks. Their DeepSeek-distilled vari-
ants show performance gains with longer CoTs
on the Shortest Path and Longest Path tasks, but
not on translation tasks. Per human inspection,
both models make translation errors at the interme-
diate steps (usually the first step) and do not self
correct. The discrepancy in domain performance
highlights the importance of incorporating multiple
domains in our benchmark. On graph understand-
ing tasks, the performance of DeepSeek-distilled
models plateaus with long CoTs, suggesting that
SYNC has sufficient capacity for evaluating rea-
soning models.

5.3 Correlation with Realistic Tasks

We study the correlation between SYNC and re-
alistic tasks to understand how well our bench-
mark can predict real-world performance. We
leverage the data released by Yen et al. (2024),
which adapts existing datasets for long-context
evaluation. Specifically, we include Natural
Questions (Kwiatkowski et al., 2019) and Hot-
potQA (Yang et al., 2018) in the retrieval-
augmented generation setup, single-document QA
from InfiniteBench (Zhang et al., 2024b) and Nar-
rativeQA (Kočiský et al., 2018), as well as single-
document summarization using InfiniteBench. To
explore in-context learning under long-context con-
ditions, we use BANKING77 (Casanueva et al.,
2020) and CLINC150 (Larson et al., 2019), where
long contexts are formed by the demonstration ex-
amples. Additionally, we take the subsets from
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Figure 4: Spearman rank correlation between synthetic
tasks and realistic tasks. Higher values indicate stronger
alignment in the model rankings produced by two tasks.
Correlations with realistic tasks are aggregated with
macro average, with detailed breakdown in Appendix C.

LongBench v2 covering multi-document QA and
code-based QA (Bai et al., 2024b). We follow
the suggested evaluation metrics paired with the
released data.

We compute the Spearman ranking correlation
between each of the tasks in SYNC (excluding
global context understanding tasks, which most
models fail at) and the aforementioned realistic
tasks. We measure the correlations based on all
14 models at 32K and 64K context lengths, then
take the average across context lengths. We do not
include 128K because most models perform near
zero at that length, making ranking correlations
uninformative. To compare with overall realistic
tasks, we also aggregate correlations across real-
istic tasks. Note that the aggregated realistic task
does not perfectly correlate with itself, as macro
average is employed.

As shown in Figure 4, among all synthetic tasks,
the Shortest Path task in SYNC achieves the high-
est overall correlation with realistic tasks. We think
that the real-world tasks we study might be relying
more on the state tracking capability. Although
other tasks in SYNC do not surpass the NIAH task
augmented with multi values, they still show higher
correlation with realistic tasks than the other base-
line synthetic task. Interestingly, SYNC tasks can
even exceed the aggregated correlation that realis-
tic tasks have with each other, suggesting that our

Shortest Path Longest Path
Model NA IV SO NA IV SO

Llama-3.3-70B-Instruct 8.0 44.7 1.3 5.3 45.3 33.3
Mistral-Large-Instruct 8.7 49.3 0.0 24.0 35.3 36.7
DeepSeek-Llama-70B 4.7 42.0 0.7 0.0 59.3 29.3
GPT-4o 11.3 11.3 0.0 18.0 22.0 52.0
Gemini-2.0-Flash 8.0 16.0 0.0 12.0 15.3 46.7

Table 5: Percentage of different error types on Shortest
Path and Longest Path tasks at 64K context length. NA:
No Answer; IV: Invalid Path; SO: Suboptimal Path.
Invalid Path is the most common error on Shortest Path,
while models start to produce more suboptimal paths on
Longest Path.

tasks can serve as proxies for real-world perfor-
mance.

5.4 Error Analysis

To better understand model behavior, we perform
an error analysis on the Shortest Path and Longest
Path tasks. Table 5 presents the distribution of error
types at a 64K context length, categorized as fol-
lows: (1) No Answer—the model fails to produce
a response (example: the model repeats the con-
text “The longest path in the graph is from Node
9 to Node 0. There is no directed edge from Node
9 to Node 9 ...”); (2) Invalid Path—the predicted
path includes at least one edge not present in the
graph (example: the model generates “Longest
Path: Node 0, Node 9, Node 10, Node 12, Node
3, Node 8, Node 18, Node 11, Node 19” while the
edge from Node 10 to Node 12 does not exist in the
graph); (3) Suboptimal Path—the predicted path is
valid but its length differs from the reference short-
est or longest path (example: the model generates

“Longest Path: Node 19, Node 15, Node 10, Node 8,
Node 7, Node 5, Node 9” while the path length is
shorter than 9, the length of the longest path).

A notable portion of errors falls under No An-
swer, likely due to degraded instruction-following
ability as context length increases. In the Shortest
Path task, suboptimal paths are rare, whereas they
are more common in the Longest Path task, where
the absence of a fixed start or end node expands the
solution space. This pattern suggests that models
often resort to brute-force search rather than em-
ploying more efficient strategies (e.g., linear-time
algorithms for DAGs).

Invalid Path is prevalent in both tasks. While
models can often identify valid local connections,
maintaining correctness over longer chains of rea-
soning remains difficult. Manual inspection of 20
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invalid-path cases revealed that all errors occurred
in the middle of the path, suggesting that while
shallow reasoning is manageable, deeper multi-hop
reasoning still poses a significant challenge.

6 Conclusions

We introduce SYNC, a long-context evaluation
benchmark consisting of synthetic contexts based
on graphs and translation rules. Our benchmark
includes three tasks per constructed context, each
of which targets a specific model capability among
retrieval, state tracking, and global context under-
standing. By eliminating variation in the input con-
text, SYNC achieves more controlled evaluation
of model capabilities. Experiments with 14 LLMs
show that SYNC is more challenging in two ways:
(1) it includes tasks requiring more complex capa-
bilities; (2) chain-of-thought (CoT) reasoning is
needed to solve the tasks in SYNC. We also quan-
titatively illustrate the importance of sharing input
contexts, via comparisons with a popular synthetic
benchmark. Further analyses reveal the potentials
of SYNC for predicting performance of realistic
tasks.

7 Limitations

SYNC includes tasks targeting three capabilities
per domain: retrieval, tracking, and global under-
standing. However, model capabilities can be more
diverse and complex. For example, some capabil-
ities might entangle each other, making it hard to
separate them. We assume that retrieval, tracking,
and global understanding are the most significant
model capability, and we only consider them when
building the benchmark. The tasks in SYNC eval-
uate specific skills of LLMs, such as math and al-
gorithmic reasoning. While these skills are critical
for their performance in many real-world situations,
we recognize that the skills we cover are limited.
We also note that our dataset does not aim to re-
place realistic datasets. Rather, our objective is
to improve existing synthetic datasets and comple-
ment existing LLM evaluation.

Our benchmark is configured into a 0-shot setup,
as we observe degraded performance with few-shot
demonstrations. 0-shot prompting also allows the
usage of longer input contexts. Nevertheless, we
recognize that the 0-shot setup relies on models’
instruction-following capabilities, and therefore
might not be applicable for certain models (e.g.,
base LLMs).

8 Ethical Considerations

In §5.3, tasks in SYNC show higher correlations
with realistic tasks than most baseline synthetic
tasks and even some of the realistic tasks. However,
we note that correlations varies a lot across tasks, as
shown in the detailed breakdown (Figure 5 and 6).
Therefore, performance on SYNC should never
be the single criteria for determining the usage
of models in real-world applications. In addition
to experiments on SYNC, models to be deployed
should also be experimented on proper real-world
tasks to mitigate the potential risks.
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Model # of Para. Context Len

Open-source Models
Llama-3.2-3B-Instruct 3B 131072
Llama-3.1-8B-Instruct 8B 131072
Llama-3.3-70B-Instruct 70B 131072
Mistral-Nemo-Instruct-2407 12B 131072
Mistral-Large-Instruct-2411 123B 131072
Phi-3.5-mini-Instruct 4B 131072
GLM-4-9B-Chat 9B 131072

DeepSeek Distilled Models
DeepSeek-R1-Distill-Llama-8B 8B 131072
DeepSeek-R1-Distill-Llama-70B 70B 131072
DeepSeek-R1-Distill-Qwen-7B 7B 130172
DeepSeek-R1-Distill-Qwen-14B 14B 130172
DeepSeek-R1-Distill-Qwen-32B 32B 130172

Proprietary Models
GPT-4o-2024-11-20 - 128000
Gemini-2.0-flash-001 - 1000000

Table 6: Information about the models used in our ex-
periments. All models support 128K tokens.

their human-aligned variants which can better fol-
low instructions. Besides models that are pre-
trained from scratch, 5 models that are further
fine-tuned with data distilled from DeepSeek-
R1 are tested: DeepSeek-R1-Distill-Llama-8B,
DeepSeek-R1-Distill-Llama-70B, DeepSeek-R1-
Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B,
and DeepSeek-R1-Distill-Qwen-32B (DeepSeek-
AI et al., 2025). We also include 2 proprietary mod-
els, GPT-4o (OpenAI et al., 2024a) and Gemini-
2.0-flash (Team et al., 2024). Table 6 summarizes
these models.

Infrastructure. The inference is performed with
vLLM (Kwon et al., 2023) on 8 A40 GPUs.

Usage of AI Assistant. We use ChatGPT (Ope-
nAI et al., 2024a) for correcting grammar errors in
our writing.

B Additional Results

We provide the full results of all models on the
synthetic tasks in SYNC in Table 7.

C Correlation Breakdown

We report the detailed breakdown of ranking corre-
lation between synthetic tasks and realistic tasks at
32K and 64K context length in Figures 5 and 6.
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Connected
Node

Shortest
Path

Single-hop
Translation

Multi-hop
Translation

NIAH
(Multi Value)

JSON KV

Summarization

RAG QA

Single QA

Multi QA

Code QA

1.00 0.96 0.79 0.74 0.70 0.58 0.93 0.52 0.44 0.54 0.80

0.96 1.00 0.76 0.79 0.74 0.64 0.95 0.59 0.54 0.47 0.82

0.79 0.76 1.00 0.88 0.86 0.61 0.69 0.60 0.53 0.55 0.76

0.74 0.79 0.88 1.00 0.81 0.61 0.76 0.58 0.48 0.52 0.71

0.70 0.74 0.86 0.81 1.00 0.80 0.67 0.71 0.74 0.57 0.79

0.58 0.64 0.61 0.61 0.80 1.00 0.54 0.80 0.71 0.52 0.63

0.93 0.95 0.69 0.76 0.67 0.54 1.00 0.44 0.41 0.49 0.75

0.52 0.59 0.60 0.58 0.71 0.80 0.44 1.00 0.85 0.43 0.79

0.44 0.54 0.53 0.48 0.74 0.71 0.41 0.85 1.00 0.32 0.74

0.54 0.47 0.55 0.52 0.57 0.52 0.49 0.43 0.32 1.00 0.64

0.80 0.82 0.76 0.71 0.79 0.63 0.75 0.79 0.74 0.64 1.00

Figure 5: Spearman rank correlation between synthetic tasks and realistic tasks at 32K.
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Shortest
Path
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Translation

Multi-hop
Translation

NIAH
(Multi Value)

JSON KV

Summarization

RAG QA

Single QA

Multi QA

Code QA

1.00 0.97 0.86 0.84 0.63 0.61 0.89 0.54 0.52 0.64 0.70

0.97 1.00 0.84 0.82 0.62 0.69 0.88 0.54 0.50 0.59 0.75

0.86 0.84 1.00 0.96 0.85 0.83 0.71 0.78 0.75 0.58 0.78

0.84 0.82 0.96 1.00 0.80 0.75 0.79 0.66 0.70 0.57 0.74

0.63 0.62 0.85 0.80 1.00 0.80 0.54 0.80 0.76 0.57 0.71

0.61 0.69 0.83 0.75 0.80 1.00 0.50 0.73 0.68 0.42 0.74

0.89 0.88 0.71 0.79 0.54 0.50 1.00 0.31 0.35 0.54 0.59

0.54 0.54 0.78 0.66 0.80 0.73 0.31 1.00 0.85 0.33 0.64

0.52 0.50 0.75 0.70 0.76 0.68 0.35 0.85 1.00 0.58 0.81

0.64 0.59 0.58 0.57 0.57 0.42 0.54 0.33 0.58 1.00 0.66

0.70 0.75 0.78 0.74 0.71 0.74 0.59 0.64 0.81 0.66 1.00

Figure 6: Spearman rank correlation between synthetic tasks and realistic tasks at 64K.
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Connected Nodes Shortest Path Longest Path
Model 32K 64K 128K 32K 64K 128K 32K 64K 128K

Llama 3.2 3B 14.0 12.0 2.7 12.7 14.0 6.7 0.0 0.0 0.0
Llama 3.1 8B 14.7 12.0 2.7 15.3 20.0 3.3 0.7 0.0 0.0
Llama 3.3 70B 98.7 92.7 11.3 57.3 46.0 8.0 18.7 16.0 0.0
Mistral Nemo 10.7 1.3 8.7 5.3 4.0 1.3 0.0 0.0 0.0
Mistral Large 90.0 52.7 12.7 57.3 42.0 8.7 22.0 4.0 0.0
DeepSeek Llama 8B 45.3 22.0 13.3 16.7 28.7 0.0 1.3 0.7 0.0
DeepSeek Llama 70B 90.7 74.0 2.7 52.7 52.7 0.0 13.3 11.3 0.0
DeepSeek Qwen 7B 8.7 4.7 7.3 2.7 0.0 0.0 0.0 0.0 0.0
DeepSeek Qwen 14B 44.7 21.3 12.7 36.0 20.0 11.3 4.0 2.7 0.0
DeepSeek Qwen 32B 74.7 56.0 20.0 55.3 37.3 8.7 13.3 10.0 0.0
Phi 3.5 mini 12.7 7.3 8.7 12.7 15.3 13.3 0.7 0.0 0.0
GLM 4 9B 29.3 40.7 27.3 20.0 26.0 19.3 0.0 0.0 1.3
GPT-4o 94.7 93.3 96.0 77.3 77.3 70.7 9.3 8.0 2.7
Gemini 2.0 Flash 100.0 98.7 88.0 80.0 76.0 71.3 37.3 26.0 26.7

Single-hop Translation Multi-hop Translation Letter Cover
Model 32K 64K 128K 32K 64K 128K 32K 64K 128K

Llama 3.2 3B 35.3 8.0 1.3 0.0 0.0 0.0 0.0 0.7 0.0
Llama 3.1 8B 76.0 74.7 76.0 39.3 28.0 1.3 0.0 0.0 0.0
Llama 3.3 70B 84.0 86.0 0.0 37.3 33.3 0.0 1.3 1.3 0.0
Mistral Nemo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral Large 68.7 40.7 3.3 18.7 12.7 0.0 1.3 0.0 0.0
DeepSeek Llama 8B 38.7 24.0 0.0 5.3 0.7 0.0 0.7 0.7 0.0
DeepSeek Llama 70B 82.7 72.0 0.0 38.7 26.7 0.0 1.3 0.7 0.0
DeepSeek Qwen 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepSeek Qwen 14B 31.3 20.7 2.7 11.3 6.7 0.0 0.7 2.0 0.0
DeepSeek Qwen 32B 74.0 38.7 8.7 45.3 20.0 0.0 1.3 1.3 0.0
Phi 3.5 mini 6.0 0.7 0.7 0.0 0.0 0.0 0.0 0.7 0.7
GLM 4 9B 86.0 74.0 65.3 48.0 43.3 2.7 0.0 0.0 0.0
GPT-4o 80.7 78.0 69.3 70.0 71.3 51.3 1.3 0.7 0.0
Gemini 2.0 Flash 98.7 90.7 80.0 93.3 80.7 27.3 0.7 2.0 0.0

Table 7: Performance of all models on the synthetic tasks in SYNC. The best model for each task setup is bolded.
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