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Abstract

Large Vision-Language Models (LVLMs)
have achieved strong performance on vision-
language tasks, particularly Visual Question
Answering (VQA). While prior work has ex-
plored unimodal biases in VQA, the problem
of selection bias in Multiple-Choice Question
Answering (MCQA), where models may fa-
vor specific option tokens (e.g., "A") or posi-
tions, remains underexplored. In this paper,
we investigate both the presence and nature of
selection bias in LVLMs through fine-grained
MCQA benchmarks spanning easy, medium,
and hard difficulty levels, defined by the seman-
tic similarity of the options. We further propose
an inference-time logit-level debiasing method
that estimates an ensemble bias vector from
general and contextual prompts and applies
confidence-adaptive corrections to the model’s
output. Our method mitigates bias without re-
training and is compatible with frozen LVLMs.
Extensive experiments across several state-of-
the-art models reveal consistent selection biases
that intensify with task difficulty, and show that
our mitigation approach significantly reduces
bias while improving accuracy in challenging
settings. This work offers new insights into the
limitations of LVLMs in MCQA and presents a
practical approach to improve their robustness
in fine-grained visual reasoning. Datasets and
code are available at: https://github.com/
Atabuzzaman/Selection-Bias-of-LVLMs

1 Introduction

Large Vision-Language Models (LVLMs) (Liu
et al., 2024a,b; Li et al., 2023; Dai et al., 2023;
Deitke et al., 2024; Team, 2025; Chen et al., 2024c;
OpenAI, 2024; Chen et al., 2025) have achieved
impressive performance across a wide range of mul-
timodal tasks, including visual question answering
(VQA), image captioning, and visual reasoning.

*The proposed bias mitigation method was fully created
and implemented by this author.
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(a) Illustration of selection bias (positional and token identity)
in LVLM predictions (red) for visual multiple-choice question
answering. Answer preferences change with option order and
token labels. Correct answers are in green.
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(b) As task difficulty increases, Qwen2.5-VL-3B-Instruct ex-
hibits stronger selection biases favoring option ID "A" in easy
tasks (token bias) and first-position options "A" and "D" in
"ABCD" and "DCBA" orderings, respectively, in hard tasks
(positional bias).

Figure 1: (a) Top: Visual illustration of selection bias
in LVLMs. (b) Bottom: Amplification of token and
positional biases in the Qwen2.5-VL-3B-Instruct model
across increasing task difficulty.

These models exhibit strong zero-shot generaliza-
tion, attributed to pretraining on large-scale vision-
language corpora and subsequent instruction tun-
ing. However, despite their overall success, recent
studies have revealed that LVLMs, like their text-
only counterparts, are prone to various forms of
bias that compromise the fairness, interpretability,
and robustness of their outputs (Adila et al., 2024).

One such underexplored phenomenon is selec-
tion bias in MCQA. Unlike open-ended VQA for-
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Blackbird

B. This image shows a Yellow-headed Blackbird bird which has a black body, bright yellow head…

C. This is a Rolls-Royce Phantom Drophead Coupe Convertible 2012 car which has a distinctive…

D. This image shows a hot and sour soup food item which has a rich broth, egg strands, tofu, and …

A. This image shows a Yellow-headed Blackbird bird which has a black body, bright yellow head…

B. This image shows a Brown Creeper bird with small, dark eyes, a slender, upturned beak, and…

C. This image shows a Florida Jay bird which has a small, blue-gray body, a white chest and belly…

D. This image shows a Tree Sparrow bird which has a brown and white body, a chestnut cap …

A. This image shows a Rusty Blackbird bird which has rusty-brown plumage in non-breeding…
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C. This image shows a Brewer Blackbird bird which has a sleek black body, iridescent feathers…

D. This image shows a Yellow-headed Blackbird bird which has a black body, bright yellow head…

A. This is a Spyker C8 Coupe 2009 car which has a distinctive propeller logo, sleek aerodynamic …
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Figure 2: Examples from our fine-grained visual multiple-choice question answering benchmark for the "Yellow-
headed Blackbird" class across three difficulty levels: easy, medium, and hard. Each example presents a multiple-
choice question requiring the model to match an image with the most appropriate textual description. The easy task
includes distractors (incorrect options) from different domains (e.g., vehicles, food), making the correct choice easily
distinguishable. The medium task increases difficulty by using distractors from the same domain (i.e., birds) with
less similar visual characteristics. The hard task presents the most visually similar bird species (e.g., blackbirds with
subtle distinctions), demanding fine-grained reasoning. This structured difficulty progression enables systematic
evaluation of LVLMs’ reasoning capabilities and their susceptibility to selection biases, especially when class names
are explicitly included or excluded in the options.

mats, MCQA requires models to select one option
among predefined choices (e.g., A/B/C/D), intro-
ducing the possibility of preference for certain op-
tion positions or tokens. Similar forms of bias,
such as position bias and token prior bias, have
been documented in large language models (LLMs)
(Pezeshkpour and Hruschka, 2024; Zheng et al.,
2023), but their manifestation in LVLMs remains
relatively unexamined. Our preliminary findings
suggest that LVLMs exhibit consistent preferences
for specific options (e.g., choosing "A" or "D" dis-
proportionately), especially in scenarios where an-
swer candidates are semantically or visually similar
(Figure 1). This can result in unstable or unreliable
predictions that are influenced more by formatting
than content (Adila et al., 2024; Zong et al., 2024).

In this paper, we investigate the presence and
nature of MCQA selection bias in LVLMs. We
identify multiple sources of bias, including option
position bias and token-level prior heuristics that
models rely on instead of grounded visual reason-
ing. To study these phenomena in depth, we in-
troduce new benchmark datasets designed specifi-
cally to evaluate LVLMs’ MCQA selection behav-
ior. Our dataset is constructed from fine-grained
visual classification tasks and includes three levels
of difficulty (Easy, Medium, and Hard) based on
the semantic similarity between the correct option

and distractor (or incorrect) options (Figure 2). We
also incorporate variations with and without class
names in the options to test the LVLM’s reliance
on surface-level cues and prior domain knowledge.

To mitigate the selection bias, we propose an
inference-time logit correction mechanism that ad-
justs the model’s output distribution over MCQ
options based on an empirically estimated bias vec-
tor. Our method does not require retraining and
is fully compatible with frozen pretrained LVLMs.
It constructs an ensemble bias vector from both
general prompts (capturing structural biases) and
contextual prompts (reflecting task-specific tenden-
cies), and adaptively corrects the model’s logits
at inference based on prediction confidence. This
approach counteracts option-token and positional
biases while preserving the model’s ability to rea-
son over visual and semantic content.

Through extensive experiments on several state-
of-the-art (SOTA) LVLMs, we show that our fine-
grained MCQA benchmarks reveal consistent and
intensifying selection biases, particularly when vi-
sual evidence is inconclusive and options are fine-
grained. We further demonstrate that our logit-
based debiasing method improves model accuracy
in challenging settings, enhances answer consis-
tency under option reordering, and reduces reliance
on spurious token and position priors.
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Our main contributions are as follows:
• We propose benchmark datasets to study the

selection bias of LVLMs across three diffi-
culty level tasks: easy, medium, and hard.

• Our datasets feature options with and without
class names, revealing the nature of selection
bias at each difficulty level and allowing inves-
tigation of LVLM behavior with and without
prior domain knowledge.

• We propose an inference-time logit debias-
ing method that mitigates selection bias by
correcting biased option-token distributions
using an ensemble bias vector and confidence-
adaptive scaling.

2 Related Work

Several studies have explored the selection bias
of LLMs (Robinson and Wingate, 2023; Zheng
et al., 2023, 2024; Pezeshkpour and Hruschka,
2024; Xue et al., 2024; Shi et al., 2024; Balepur
et al., 2025; Wang et al., 2025). Robinson and
Wingate (2023) showed that LLMs behave differ-
ently when prompted with option IDs compared to
cloze-style prompts without IDs. They also eval-
uated the effect of varying the position of option
IDs on model performance. Zheng et al. (2023) &
Wang et al. (2024a) found that GPT-4 tends to fa-
vor the first-presented answers, potentially leading
to unfair evaluation outcomes. Xue et al. (2024)
argued that selection bias arises from the model’s
inability to effectively associate option IDs with
the corresponding option text. Pezeshkpour and Hr-
uschka (2024) observed that LLMs are sensitive to
changes in option order in MCQs and attributed this
to positional bias and uncertainty. Li et al. (2024)
highlighted selection bias in knowledge-intensive
scenarios where long-form generation (LFG) is re-
quired. Zheng et al. (2024) introduced PriDe and
demonstrated that removing option IDs shifts the
main source of bias to the model’s prior token bias,
which can be mitigated through targeted debias-
ing. Yang et al. (2024) addressed bias by remov-
ing neurons responsible for biased behavior. Zhou
et al. (2024) proposed UniBias, an inference-only
approach that identifies and eliminates biased feed-
forward network (FFN) vectors and attention heads.
Wei et al. (2024) quantified the effects of token and
option order on selection bias and mitigated them
through weight and probability calibration. Guda
et al. (2025) introduced a majority-voting method
that reduces computational overhead while main-

taining effective bias mitigation. Finally, Yang et al.
(2025b) proposed a causal debiasing technique that
steers key component activations toward unbiased
directions, applying stronger interventions to com-
ponents with higher causal influence.

Recently, researchers have addressed various
types of biases in Large Vision-Language Mod-
els (LVLMs) using techniques such as data aug-
mentation (Gokhale et al., 2020), model edit-
ing (Cheng et al., 2023; Wang et al., 2024b), and
post-processing of outputs (Wang et al., 2021;
Zhang et al., 2024). Zhang et al. (2024) proposed
two strategies to mitigate language prior bias in
classification tasks through output probability cali-
bration. Chen et al. (2024a) assessed and mitigated
LVLM bias in the VQA task by intervening in both
questions and images using causal graphs. Chen
et al. (2024b) proposed DCVC, a trainable output
calibration network with virtual counterfactual aug-
mentation, to reduce language bias in social intelli-
gence QA. Tan et al. (2024) found that multimodal
LLMs favor content at the beginning and end of
contexts, and improved inference by strategically
placing key elements. Zong et al. (2024) identified
permutation vulnerabilities in LVLM-based MCQs
such as position bias and weak option-content links
and introduced mitigation techniques like majority
voting, confidence voting, and context calibration.
Adila et al. (2024) proposed inference-type activa-
tion steering to reduce selection bias in LVLMs.
However, effectively mitigating MCQA selection
bias using pretrained LVLMs while preserving
model capabilities and performance remains largely
unexplored. In particular, how such biases evolve
across tasks of increasing difficulty, from easy to
medium to hard, has not been systematically stud-
ied or addressed.

3 Dataset Curation

To evaluate the selection bias of LVLMs in the
MCQA setting, we curate benchmark datasets that
systematically test models under varying degrees
of semantic similarity and domain familiarity. Our
goal is to assess how effectively these models can
select correct descriptive class text when presented
with highly similar distractors (incorrect options),
and to what extent their predictions are influenced
by spurious correlations or prior knowledge.

Each MCQ in our dataset includes one correct
class description and three incorrect class descrip-
tions (distractors) as options, selected based on
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(a) The LLaVA-v1.5-13B model shows balanced selection in
easy tasks but develops strong token bias in hard tasks, with
dramatic preference for option ID "A" (reaching nearly 3x the
true frequency) when difficulty increases.
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(b) The InternVL2_5-8B model demonstrates balanced behav-
ior across difficulty levels, with predictions closely matching
the true distribution in easy and medium tasks. In hard tasks,
it shows moderate token bias toward "A" but maintains better
distribution consistency between ABCD and DCBA orderings.

Figure 3: Selection bias comparison across two LVLMs
on the CUB dataset under the "without class name"
setting, organized by increasing task difficulty (easy,
medium, hard). Each plot shows distributions for
ground truth (True) and model predictions under two op-
tion orderings: standard (ABCD) and reversed (DCBA).
The comparison reveals how position and token biases
emerge and intensify with task difficulty, with varying
patterns across architectures.

their cosine similarity to the correct description
using CLIP’s text encoder (Radford et al., 2021).
By controlling this similarity, we categorize each
question into one of three difficulty levels:

Easy: Distractors are drawn from unrelated or
semantically dissimilar classes. The differences
between the correct option and the distractors are
clear, even without domain-specific knowledge.

Medium: Distractors are from the same do-
main but moderately different from the target class.
These options require more reasoning to eliminate.

Hard: Distractors are highly similar to the tar-
get class in terms of textual and semantic content,
making them challenging to differentiate. These
examples often require fine-grained understanding
and detailed visual-textual alignment.

To further analyze how LVLM bias behavior
changes when models can or cannot rely on domain
knowledge, we create two versions of each MCQ:

With Class Name: Class names are explic-
itly mentioned in the options. This version tests
whether the model can leverage prior domain
knowledge to reduce selection bias and improve
prediction accuracy.

Without Class Name: Class names are removed
from the options, forcing the model to rely on fine-
grained visual grounding and descriptive reasoning
rather than recalling known labels, potentially in-
creasing susceptibility to selection bias.

To ensure diverse coverage across semantic cat-
egories, we construct our benchmark using six
fine-grained classification datasets: CUB-200-2011
(Wah et al., 2011) (200 bird species), Stanford
Dogs (Khosla et al., 2011) (120 dog breeds),
FGVC Aircraft (Maji et al., 2013) (70/102 air-
craft variants), Stanford Cars (Krause et al., 2013)
(196 car models), Food-101 (Bossard et al., 2014)
(101 food categories; referred to as Food-101 or
Food throughout this paper), and iNaturalist-2021
(Di Cecco et al., 2021) (9962/10,000 species-level
classes). Class descriptions are collected from
Atabuzzaman et al. (2025); Kim and Ji (2024).

Using these class descriptions, for each image-
class pair, we construct three difficulty-specific
MCQs (easy, medium, hard) with two variants each,
one with the class name included and one without.
This results in six unique MCQs per image. For
example, a dataset with 200 (e.g., CUB) classes
would yield 200× 3× 2 = 1,200 MCQs. In total,
our dataset contains 63,894 MCQs across 10,649
diverse classes.

To validate our difficulty categorization, we com-
pute the average and standard deviation of co-
sine similarity scores between correct and incor-
rect options across all difficulty levels. As ex-
pected, easy tasks show low similarity, medium
tasks show moderate similarity, and hard tasks con-
tain high-similarity incorrect options. Table 5 (Ap-
pendix A.1) reports these statistics, confirming that
our dataset reliably separates difficulty levels based
on semantic similarity.

To enable effective detection of positional bias,
we balance the position of the correct answer (A–D)
across MCQs. Table 6 (Appendix A.1) shows that
all datasets maintain balanced correct answer po-
sition distributions across both settings (with and
without class names), ensuring that any observed
positional preferences reflect model bias rather than
dataset imbalance.

4 Selection Bias of LVLMs

In this section, we investigate the presence and
nature of selection bias in LVLMs when applied
to MCQA tasks. Our analysis focuses on three
leading models: LLaVA-v1.5-13B (Liu et al.,
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2024b), InternVL2_5-8B (Chen et al., 2024c), and
Qwen2.5-VL-3B-Instruct (Team, 2025). We iden-
tify consistent and model-specific selection biases
that emerge during visual reasoning, particularly
as task difficulty increases.

To disentangle token identity bias from po-
sitional bias, we design a comparative evalua-
tion using both standard ("ABCD") and reversed
("DCBA") option orderings. As shown in Figures 1
and 3, all models exhibit relatively balanced option
selection in easy tasks, with predicted distributions
closely matching the ground-truth answer distribu-
tion. However, as difficulty increases to medium
and hard levels, distinct and intensified bias pat-
terns emerge. These patterns suggest that models
begin to rely more heavily on heuristic behaviors,
such as defaulting to specific token IDs—under
semantic ambiguity, where fine-grained descrip-
tions make it harder to distinguish between closely
related classes.

Token Bias Intensifies with Task Difficulty in
LLaVA-v1.5-13B. Figure 3a shows that LLaVA-
v1.5-13B exhibits strong token bias in hard tasks,
with the "A" option being selected nearly three
times more often than expected. Crucially, this
preference persists regardless of the option’s ac-
tual position, indicating that the model defaults
to the "A" token ID when uncertain. This behav-
ior suggests the presence of a learned token-based
prior that increasingly influences predictions as the
model struggles with fine-grained visual-textual
alignment. While the bias is negligible in easy
tasks, it becomes dominant in hard tasks.

InternVL2_5-8B Exhibits More Balanced To-
ken Selection Under Difficulty. Figure 3b demon-
strates that InternVL2_5-8B maintains more bal-
anced token selection behavior across all levels of
difficulty. Even in hard tasks where other models
exhibit strong biases, InternVL2_5-8B’s predic-
tions remain relatively aligned with the true answer
distribution. Moreover, the model shows consistent
behavior across both standard and reversed option
formats, suggesting more robust reasoning and less
susceptibility to token or positional artifacts. Nev-
ertheless, InternVL still exhibits slight token ("A")
bias amplification under difficulty, indicating that
even stronger models fall back on heuristics when
tasks become challenging.

Qwen2.5-VL-3B-Instruct Reveals Complex
Interaction Between Token and Positional Bias.
Figure 1b reveals that Qwen2.5-VL-3B-Instruct
presents the most intricate bias behavior. The

model exhibits a strong interaction between token
identity and option position, particularly in hard
tasks. In easy and medium tasks, Qwen2.5-VL-3B-
Instruct shows mild bias toward "A" even when it
appears last. However, in hard tasks, the bias pat-
tern changes significantly: option "C" in the ABCD
format becomes dominant, while option "D" when
placed first in the DCBA format receives excessive
selection. This suggests a conflation of positional
and token-specific preferences. The interaction
indicates the presence of multiple, competing bi-
ases within the model’s decision-making process.
The severe collapse to specific options under fine-
grained semantic ambiguity implies heightened sen-
sitivity to both token identity and position when
semantic distinctions between options are subtle.

Our findings highlight important limitations in
current LVLMs, particularly in fine-grained rea-
soning under semantic ambiguity. The variation
in bias patterns across architectures suggests that
each model encodes different shortcuts or priors.
Furthermore, the consistent amplification of bias
with increasing task difficulty aligns with observa-
tions from the LLM literature (Pezeshkpour and
Hruschka, 2024), where uncertainty leads mod-
els to default to preferred positions. In our case,
LVLMs exhibit both token and positional selec-
tion biases, revealing critical challenges in their
reasoning reliability when fine-grained visual
reasoning is required and MCQ options are se-
mantically similar and fine-grained.

5 Selection Bias Mitigation

To mitigate selection biases (positional and token)
in LVLMs during MCQA tasks, we propose a bias
mitigation framework comprising two main com-
ponents: (1) ensemble bias vector estimation and
(2) adaptive logit correction at inference time.

Ensemble Bias Vector Estimation. LVLMs of-
ten exhibit preferences toward certain answer to-
kens (e.g., "A", "B", "C", "D") due to training arti-
facts or prompt structures. To capture and correct
for these biases, we estimate two types of bias vec-
tors: general bias and contextual bias.

General Bias Vector. The general bias vec-
tor Bgen ∈ R4 captures systematic biases that
arise from model architecture, token position, or
prompt format. It is computed by prompting the
model with multiple semantically empty templates
{Q1, Q2, . . . , Qn}, where each question has ran-
domized answer option orders but lacks meaningful
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Figure 4: Illustration of our training-free ensemble debiasing framework for LVLM-based MCQA. We estimate
general and contextual bias vectors, average them, and apply adaptive logit correction based on model confidence to
reduce selection bias and improve prediction accuracy.

content. The model’s output logits for each prompt
are converted into probability distributions using
softmax, and the results are averaged:

Bgen =
1

n

n∑

i=1

softmax(fθ(Qi)). (1)

This estimates structural bias independent of task
semantics, content, or reasoning cues.

Contextual Bias Vector. The contextual bias
vector Bctx ∈ R4 measures how the model’s predic-
tions are skewed on a representative sample of ac-
tual data. Given a small (10%), randomly selected
subset of real MCQ examples {(Qj , Aj)}mj=1, we
take the model’s output logits and average the re-
sulting probability distributions:

Bctx =
1

m

m∑

j=1

softmax(fθ(Qj)). (2)

This captures biases conditioned on realistic visual
and textual inputs. Before combining, each bias
vector is zero-centered by subtracting its mean to
redistribute probabilities without introducing new
preference directions.

Final Ensemble Bias Vector. The two compo-
nents are averaged to produce the final ensemble
bias vector:

B =
Bgen +Bctx

2
. (3)

Adaptive Logit Correction. During inference,
the model outputs a logit vector L ∈ R4 for the
four answer choices. We debias these logits using
the ensemble bias vector:

L′ = L− αadp ·B, (4)

where αadp is a confidence-adaptive scaling factor
defined as:

αadp =
α

1 + exp(conf − τ)
. (5)

Here, α is a global scaling hyperparameter (default
1.0), and τ is a threshold for model confidence
(default 2.0). The confidence is computed as:

conf = max(L)− mean(L). (6)

This adaptive debiasing applies stronger correc-
tion when the model is uncertain (low confidence)
and more conservative adjustment when the model
is confident, helping prevent over-correction while
mitigating selection biases.

6 Experiments and Evaluation

In this section, we evaluate the extent of MCQA se-
lection bias in LVLMs and assess the effectiveness
of our proposed selection bias mitigation method.
We benchmark model performance across differ-
ent difficulty levels using our curated datasets with
Qwen2.5-VL-3B-Instruct and 7B-Instruct (referred
to as Qwen2.5-VL-3B or Qwen2.5-VL-7B through-
out this paper, respectively), InternVL2_5-8B, and
LLaVA-v1.5-13B. We use 5 images per class for
experiments at each difficulty level. For example,
in the CUB "without class name" easy category,
there are 200 classes, resulting in a total of 1,000
(200 × 5) images for evaluation.

6.1 LVLMs’ Performance on MCQA Tasks
Table 1 presents a comprehensive comparison of
LVLM performance on our curated fine-grained
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Class Name Dataset (Difficulty) Qwen2.5-VL-7B Qwen2.5-VL-3B InternVL2_5-8B LLaVA-v1.5-13B

With

Aircraft (Easy) 100.0 (100.0) 100.0 (83.71) 100.0 (100.0) 100.0 (91.43)
Aircraft (Medium) 99.71 (100.0) 98.00 (43.14) 95.71 (95.43) 48.86 (42.29)
Aircraft (Hard) 71.14 (71.43) 65.71 (37.71) 51.14 (50.86) 21.71 (23.71)

Cars (Easy) 100.0 (100.0) 100.0 (81.43) 100.0 (100.0) 100.0 (94.08)
Cars (Medium) 99.90 (99.59) 99.69 (85.41) 99.59 (99.49) 84.69 (68.98)
Cars (Hard) 82.14 (80.51) 76.84 (55.71) 57.04 (58.57) 29.90 (35.51)

CUB (Easy) 100.0 (99.90) 100.0 (93.40) 100.0 (100.0) 99.70 (86.40)
CUB (Medium) 99.90 (99.70) 99.70 (84.90) 100.0 (99.50) 62.70 (51.50)
CUB (Hard) 76.70 (72.10) 69.60 (48.00) 60.50 (66.00) 28.30 (33.70)

Dogs (Easy) 100.0 (100.0) 100.0 (73.17) 100.0 (100.0) 98.50 (68.33)
Dogs (Medium) 98.50 (98.67) 96.83 (67.33) 96.67 (99.17) 45.00 (44.17)
Dogs (Hard) 76.83 (77.50) 71.00 (49.83) 62.50 (55.83) 29.17 (31.67)

Food (Easy) 100.0 (99.01) 100.0 (79.41) 100.0 (100.0) 99.80 (91.29)
Food (Medium) 98.22 (97.62) 98.02 (72.87) 98.22 (98.61) 89.90 (77.62)
Food (Hard) 89.11 (85.94) 83.17 (58.42) 84.55 (81.39) 54.46 (58.42)

iNaturalist (Easy) 98.88 (95.18) 97.99 (76.56) 98.83 (98.59) 68.61 (58.36)
iNaturalist (Medium) 87.95 (85.87) 84.11 (60.45) 84.38 (84.56) 45.44 (40.40)
iNaturalist (Hard) 47.29 (44.87) 41.91 (31.88) 25.06 (40.87) 25.46 (27.04)

Without

Aircraft (Easy) 100.0 (100.0) 100.0 (86.29) 100.0 (100.0) 100.0 (99.43)
Aircraft (Medium) 84.57 (79.43) 80.57 (42.57) 69.43 (75.71) 38.57 (33.43)
Aircraft (Hard) 53.71 (52.86) 45.14 (33.71) 40.29 (45.14) 38.86 (36.29)

Cars (Easy) 100.0 (100.0) 100.0 (79.90) 100.0 (100.0) 99.90 (98.98)
Cars (Medium) 99.49 (98.47) 99.49 (74.80) 95.41 (96.84) 84.49 (66.73)
Cars (Hard) 70.00 (67.86) 63.37 (44.49) 54.69 (56.43) 40.41 (35.61)

CUB (Easy) 100.0 (100.0) 100.0 (92.60) 100.0 (100.0) 100.0 (94.70)
CUB (Medium) 99.40 (99.00) 99.10 (88.60) 98.70 (99.10) 91.80 (82.80)
CUB (Hard) 64.90 (63.30) 61.80 (46.40) 62.20 (61.00) 37.50 (34.70)

Dogs (Easy) 100.0 (100.0) 100.0 (70.33) 100.0 (100.0) 99.83 (93.50)
Dogs (Medium) 93.50 (93.83) 93.00 (64.83) 86.67 (89.83) 64.50 (50.33)
Dogs (Hard) 64.00 (59.83) 58.00 (43.50) 56.83 (55.67) 34.67 (33.00)

Food (Easy) 100.0 (99.80) 100.0 (76.24) 100.0 (100.0) 99.80 (88.32)
Food (Medium) 97.62 (97.03) 98.02 (80.99) 98.02 (97.82) 91.09 (78.02)
Food (Hard) 87.33 (84.95) 81.39 (63.56) 80.59 (84.75) 48.91 (50.30)

iNaturalist (Easy) 95.75 (93.95) 94.64 (80.50) 96.31 (95.69) 90.95 (68.79)
iNaturalist (Medium) 83.62 (81.76) 82.21 (65.33) 81.06 (80.21) 69.30 (56.87)
iNaturalist (Hard) 41.84 (40.20) 37.54 (29.88) 37.89 (37.74) 25.04 (25.84)

Table 1: Accuracy (%) comparison of LVLMs across different dataset difficulty levels, with and without class names
included in the option descriptions. Values in parentheses correspond to results under the "DCBA" option ordering;
all others use the standard "ABCD" format.

MCQA benchmarks, covering six datasets across
three difficulty levels, with and without class names
included in the option descriptions. We evaluate
four prominent LVLM models: Qwen2.5-VL-3B-
Instruct, Qwen2.5-VL-7B-Instruct, InternVL2_5-
8B, and LLaVA-v1.5-13B.

As expected, all models achieve near-perfect ac-
curacy on easy tasks, confirming their ability to
solve non-ambiguous MCQs regardless of format,
though LLaVA-v1.5-13B shows notably lower per-
formance on the iNaturalist dataset. However, per-
formance diverges substantially on medium and
hard tasks, particularly when class names are ex-
cluded. Qwen2.5-VL-7B-Instruct consistently out-
performs others across all datasets and difficulty

levels, demonstrating robustness under increas-
ingly fine-grained conditions. InternVL2_5-8B
also performs competitively, especially on medium
tasks. LLaVA-v1.5-13B, while strong on easy
tasks, shows a notable accuracy drop on hard tasks,
where the options are semantically fine-grained.

The inclusion of class names generally improves
performance across all models, though to varying
degrees. Additionally, results in the reversed op-
tion format (DCBA), shown in parentheses, indi-
cate that certain models, most notably LLaVA-v1.5-
13B, are more sensitive to selection biases. These
findings underscore the importance of evaluating
both content and structural factors in fine-grained
MCQA tasks and highlight the varying degrees of
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bias susceptibility across LVLM architectures.

Class
Name

Dataset
(Difficulty)

Qwen2.5-VL
-7B

LLaVA-v1.5
-13B

With

Aircr. (M.) – 67.71 (+18.86)
Aircr. (H.) 71.71 (+0.57) 21.71 (+00.00)

Cars (M.) – 93.47 (+8.78)
Cars (H.) 83.67 (+1.53) 35.31 (+5.41)

CUB (M.) – 69.50 (+6.80)
CUB (H.) 76.00 (-0.70) 30.00(+1.70)

Dogs (M.) – 66.33 (+21.33)
Dogs (H.) 78.67 (+1.84) 34.50 (+5.33)

Food (M.) – 92.67 (+2.77)
Food (H.) 89.70 (+0.59) 60.99 (+6.53)

W/o

Aircr. (M.) 84.00 (-0.57) 48.86 (+10.29)
Aircr. (H.) 54.86 (+1.15) 42.29 (+3.43)

Cars (M.) – 87.04 (+2.55)
Cars (H.) 70.82 (+0.82) 42.24 (+1.83)

CUB (M.) – 93.50 (+1.70)
CUB (H.) 65.60 (+0.70) 38.60 (+1.10)

Dogs (M.) 94.50 (+1.00) 72.00 (+7.50)
Dogs (H.) 64.33 (+0.33) 37.17 (+2.50)

Food (M.) 97.62 (+0.00) 95.84 (+4.75)
Food (H.) 89.11 (+1.78) 51.88 (+2.97)

Table 2: Accuracy (%) of our proposed selection bias
mitigation method across multiple datasets and difficulty
levels. Results are shown for Qwen2.5-VL-7B-Instruct
and LLaVA-v1.5-13B under both class name ("With")
and without class name ("W/o") settings. Numbers
in parentheses indicate absolute gains over the stan-
dard “ABCD” format baseline. “–” denotes settings
with near-saturated baseline accuracy (≥98%) where
further improvement is not meaningful. M. and H. de-
note medium and hard difficulty, respectively. Aircr.
represents FGVC Aircraft dataset.

6.2 Bias Mitigation Results

Table 2 reports the performance of our proposed
selection bias mitigation method on our curated
fine-grained MCQA benchmarks: FGVC Aircraft,
Stanford Cars, CUB, Stanford Dogs, and Food-101,
under medium (M.) and hard (H.) difficulty levels.
Results are shown for Qwen2.5-VL-7B-Instruct
and LLaVA-v1.5-13B in both settings: with and
without class names included in the option descrip-
tions of the MCQs.

Since most LVLMs achieve 100% accuracy on
easy tasks in our benchmarks across all MCQA
formats (e.g., ABCD, DCBA), we omit those cases
from Table 2. However, we verify that our miti-
gation method does not degrade performance in
these cases. For instance, on CUB with class name
using LLaVA-v1.5-13B, the model retains 100%
accuracy even after applying mitigation.

We focus on Qwen2.5-VL-7B-Instruct and
LLaVA-v1.5-13B as representative models due to
their contrasting baseline performance: Qwen2.5-
VL-7B achieves the highest accuracy overall, while
LLaVA-v1.5-13B performs relatively poorly. This
contrast enables us to evaluate the robustness and
generalizability of our mitigation strategy across
both strong and weak model conditions.

Our method consistently improves accuracy
in most medium and hard settings, particularly
under the "without class name" (W/o) condi-
tion, where selection biases are more pronounced.
LLaVA-v1.5-13B exhibits substantial gains, such
as +21.33% on Dogs (Medium) and +6.53%
on Food (Hard). Qwen2.5-VL-7B-Instruct also
shows improvements, including +1.15% on Air-
craft (Hard) and +1.84% on Dogs (Hard). In
medium-difficulty cases where baseline accuracy
is already near-saturated (≥98%), gains are negli-
gible or omitted. Only a few settings show minor
accuracy drops (e.g., CUB (Hard task) with class
names on Qwen2.5-VL-7B-Instruct), suggesting
model- and dataset-specific variability.

Overall, these results demonstrate that our logit-
based mitigation method effectively reduces selec-
tion bias without compromising accuracy, and often
significantly improves it in challenging scenarios
across our curated benchmarks.

Class
Name Dataset Model ABCD

(DCBA)
1234

(4321)

With

CUB
LLaVA-13B 28.30

(33.70)
27.20

(29.00)

Qwen2.5-7B 76.70
(72.10)

75.60
(66.80)

Cars
LLaVA-13B 29.90

(35.51)
25.20

(25.71)

Qwen2.5-7B 82.14
(80.51)

82.65
(78.98)

W/o

CUB
LLaVA-13B 37.50

(34.70)
27.00

(27.10)

Qwen2.5-7B 64.90
(63.30)

64.60
(59.90)

Cars
LLaVA-13B 40.41

(35.61)
26.12

(26.73)

Qwen2.5-7B 70.00
(67.86)

65.92
(62.86)

Table 3: Accuracy (%) comparison between alphabetic
(ABCD/DCBA) and numeric (1234/4321) option identi-
fiers across different models and datasets for hard tasks.
Parentheses show results with reversed order. For some
datasets, we observe performance degradation with nu-
meric option identifiers.
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6.3 Alternative Option IDs

We investigate alternative option identifiers to pro-
vide crucial insights into whether biases stem from
specific token identity versus structural position-
ing effects. Our experiments with numeric iden-
tifiers (1/2/3/4), shown in Table 3, reveal that bi-
ases persist regardless of the identifier type. For
example, LLaVA-v1.5-13B exhibits a token bias
toward ‘A’ in ABCD and DCBA formats, while
in 1234 and 4321 formats, it prefers option ‘1’,
indicating consistent token-level bias. Qwen2.5-
VL-7B-Instruct similarly displays both token and
position biases across all formats. Notably, per-
formance drops significantly when using numeric
formats (1234/4321). These findings suggest that
LVLMs exhibit systematic preferences influenced
by both token identity and structural positioning in
the prompt format.

6.4 Generalizability of the Mitigation Method

We assess the generalizability of our proposed bias
mitigation method beyond templated formats to
strengthen its robustness. Specifically, we use the
Qwen3-32B (Yang et al., 2025a) language model to
regenerate questions and options in a more natural
MCQ style, given the original question, options,
and correct answer. For these experiments, we use
the CUB (without class name) and Dogs (with class
name) datasets. Unlike our main benchmarks, we
do not explicitly control the difficulty level in these
regenerated samples. However, the experimental
results in Table 4 indicate a comparable level of
difficulty. Below is an example of a regenerated
MCQ from the CUB (without class name) dataset
for the “Black-footed Albatross” class.

Multiple Choice Question

Question: What color is the majority of the
bird’s body in the image?

A. Dark brown
B. Yellow
C. Blue
D. Red

Correct Answer: A

For these experiments, we use the LLaVA-v1.5-
13B model and report accuracy in the standard
“ABCD” format. As shown in Table 4, our pro-
posed mitigation method effectively reduces se-
lection bias on newly generated benchmarks that

do not follow templated MCQA formats, yielding
performance gains of 1.17–5.00%. These results
suggest that the mitigation approach addresses un-
derlying model behaviors that persist independently
of specific question templates.

Dataset
(Difficulty)

Without
Mitigation

With
Mitigation

CUB w/o name (M.) 90.40 91.70 (+1.30)
CUB w/o name (H.) 49.50 54.50 (+5.00)
Dogs with name (M.) 81.50 82.67 (+1.17)
Dogs with name (H.) 45.83 48.00 (+2.17)

Table 4: Accuracy (%) of the LLaVA-v1.5-13B model
on beyond-template MCQA tasks, with and without
the proposed bias mitigation method. Results show
consistent improvements across all datasets, with larger
gains on hard (H.) tasks compared to medium (M.) tasks.

We deliberately adopt a templated format
(“Which description matches this object?”) to iso-
late selection bias under controlled conditions. By
standardizing the question structure while varying
distractor difficulty across diverse domains (birds,
dogs, aircraft, cars, food), we can precisely mea-
sure token- and position-based biases without intro-
ducing confounding variables from question phras-
ing. Importantly, many real-world applications,
such as educational assessments, standardized tests,
and evaluation systems, employ structured MCQA
formats, making our findings directly applicable.

7 Conclusion

We present a systematic analysis of selection bias
in Large Vision-Language Models (LVLMs) within
the multiple-choice question answering (MCQA)
setting. Our findings show that selection bias,
driven by both token identity and positional pref-
erences, intensifies with increasing task difficulty,
particularly when MCQ options are fine-grained.
While stronger models tend to exhibit reduced bias
compared to weaker models, none are entirely im-
mune, underscoring a fundamental limitation in cur-
rent LVLM reasoning capabilities. To address this,
we introduce a simple yet effective inference-time
logit debiasing method that mitigates these biases
without requiring model retraining. Our approach
improves accuracy and consistency across varied
input configurations and difficulty levels. This
work highlights the importance of fine-grained,
difficulty-aware benchmarks for revealing nuanced
model behaviors and guiding future improvements.
In future work, we aim to extend our framework to
encompass a broader range of multimodal tasks.
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8 Limitations

Our work specifically targets selection bias in
MCQA, allowing focused investigation of these
mechanisms while not addressing other bias forms
such as modality imbalance or cultural bias. Our
mitigation approach is designed for MCQA tasks
rather than open-ended generation, enabling pre-
cise logit-level corrections for multiple-choice se-
lection behavior. We curated comprehensive bench-
marks within classification-type datasets to sys-
tematically analyze how selection biases manifest
across diverse domains and difficulty levels. This
targeted approach provides foundational insights
into selection bias mechanisms in LVLMs. Future
work will extend these findings to broader bias
types and generative tasks, and will provide more
comprehensive analysis of model-specific attention
patterns across different architectures..
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A Appendix

This section contains the following topics.

• Dataset Statistics (Appendix A.1)
• Visualization of LVLMs’ Selection Bias (Ap-

pendix A.2)

A.1 Dataset Statistics

To construct each MCQ, we utilize existing fine-
grained image classification datasets, including
CUB, Stanford Dogs, FGVC Aircraft, Stanford

Cars, Food-101, and iNaturalist. Each image is
paired with a curated class description. Class de-
scriptions are collected from Atabuzzaman et al.
(2025). For the iNaturalist dataset, we collect class
descriptions from Kim and Ji (2024) and use com-
mon names of species instead of scientific class
names. Upon analysis, we found 38 species with
duplicate common names, resulting in 9,962 unique
classes.

We analyze the datasets by reporting the aver-
age and standard deviation of semantic similarity
scores across the three difficulty levels in Table
5. As expected, the Easy set exhibits low average
similarity, the Medium set falls in the mid-range,
and the Hard set shows high similarity between
the target and distractors. These statistics validate
our difficulty categorization and provide a quantita-
tive basis for evaluating model performance across
different levels of semantic and visual ambiguity.

Answer Option Distribution. Table 6 presents
the distribution of correct answer positions (A–D)
across our benchmark datasets, segmented by
dataset (CUB, FGVC Aircraft, Stanford Cars, Stan-
ford Dogs, Food-101, and iNaturalist), difficulty
level (Easy, Medium, Hard), and the presence or
absence of class names in the answer options. Each
row corresponds to a specific configuration, and
the columns report how many times each option ID
(A, B, C, D) is the correct answer.

To ensure fair evaluation of selection bias, we
constructed all datasets to maintain a near-balanced
distribution of correct answers across the four op-
tion IDs. This prevents any skew that could arise
from inherent imbalances in the dataset and helps
isolate model behavior due to selection bias rather
than label distribution.

Each difficulty level contains both "with class
name" and "without class name" variants, allow-
ing us to assess the role of explicit label cues in
model predictions. For example, in the CUB (Easy)
category, the correct answer is evenly distributed
across the four choices (A–D) for both versions.
Similar patterns are preserved across other datasets
and difficulty levels.

Across all datasets and configurations, the to-
tal number of multiple-choice questions is 63,894,
with each variant carefully designed to mitigate
structural bias in the ground-truth distribution. This
careful balancing enables controlled investigation
of the positional and token-level biases of LVLMs
during multiple-choice question answering.
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Dataset Class Names Difficulty Domain Avg. Sim. Std. Dev.

CUB

Without
Easy Diff. 0.2241 0.0409

Medium Same 0.4259 0.0472
Hard Same 0.8461 0.0573

With
Easy Diff. 0.1864 0.0408

Medium Same 0.3696 0.0347
Hard Same 0.7831 0.0707

Dogs

Without
Easy Diff. 0.1736 0.0311

Medium Same 0.5574 0.0557
Hard Same 0.8855 0.0536

With
Easy Diff. 0.1382 0.0354

Medium Same 0.3854 0.0573
Hard Same 0.7981 0.0546

Aircraft

Without
Easy Diff. 0.1478 0.0427

Medium Same 0.6971 0.0509
Hard Same 0.9413 0.0369

With
Easy Diff. 0.1623 0.0397

Medium Same 0.4875 0.0531
Hard Same 0.8256 0.0437

Cars

Without
Easy Diff. 0.1444 0.0366

Medium Same 0.6458 0.0462
Hard Same 0.9203 0.0356

With
Easy Diff. 0.1350 0.0357

Medium Same 0.3571 0.0502
Hard Same 0.8237 0.0732

Food

Without
Easy Diff. 0.1969 0.0402

Medium Same 0.3228 0.0529
Hard Same 0.6942 0.0615

With
Easy Diff. 0.1873 0.0377

Medium Same 0.3856 0.0434
Hard Same 0.7066 0.0532

iNaturalist

Without
Easy Diff. 0.1308 0.0490

Medium Same 0.3438 0.1173
Hard Same 0.8408 0.0708

With
Easy Diff. 0.0888 0.0334

Medium Same 0.2844 0.1431
Hard Same 0.7813 0.0818

Table 5: Average similarity and standard deviation between the ground truth and distractor options across difficulty
levels (Easy, Medium, Hard) on fine-grained datasets, with and without class names. Easy distractors are from
different domains; Medium and Hard are from the same domain. Std. is computed among the distractors.

A.2 Visualization of LVLMs’ Selection Bias

Figure 5 provides a comparative visualization
of selection bias exhibited by three state-of-the-
art Large Vision-Language Models (LVLMs):
Qwen2.5-VL-3B-Instruct, LLaVA-v1.5-13B, and
InternVL2_5-8B on the CUB dataset under the
"without class name" setting. The bar plots illus-
trate how each model’s answer distribution changes
across task difficulty levels (Easy, Medium, Hard)
and under different option orderings (standard
ABCD vs. reversed DCBA). As the task becomes
more difficult, Qwen2.5-VL-3B shows increasing
bias toward specific token identities and positions,
such as a consistent preference for option “A” or the

first-position choice. The LLaVA-v1.5-13B model
shows balanced selection in easy tasks but develops
strong token bias in hard tasks, exhibiting a dra-
matic preference for option ID “A” (nearly three
times the true frequency) as uncertainty increases.
In contrast, InternVL2_5-8B demonstrates more
stable behavior across conditions, maintaining a
distribution that closely aligns with the ground
truth, especially in Medium tasks. These visual-
izations highlight both shared and model-specific
patterns of bias, reinforcing the importance of task
difficulty and option formatting when evaluating
LVLM behavior.
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Category Class Name Option IDs Total
A B C D

CUB (Easy) Without 42 54 54 50 200
With 42 54 54 50 200

CUB (Medium+Hard) Without 112 90 94 104 400
With 100 95 103 102 400

Aircraft (Easy) Without 21 20 18 11 70
With 21 20 18 11 70

Aircraft (Medium+Hard) Without 36 41 25 38 140
With 28 43 37 32 140

Cars (Easy) Without 56 54 38 48 196
With 56 54 38 48 196

Cars (Medium+Hard) Without 85 99 108 100 392
With 92 106 97 97 392

Dogs (Easy) Without 28 25 28 39 120
With 28 25 28 39 120

Dogs (Medium+Hard) Without 72 54 57 57 240
With 60 71 59 50 240

Food (Easy) Without 24 26 27 24 101
With 24 26 27 24 101

Food (Medium+Hard) Without 53 48 52 49 202
With 50 49 49 54 202

iNaturalist (Easy) Without 2491 2474 2439 2558 9962
With 2491 2474 2439 2558 9962

iNaturalist (Medium) Without 2545 2505 2417 2495 9962
With 2498 2533 2430 2501 9962

iNaturalist (Hard) Without 2469 2508 2453 2532 9962
With 2469 2508 2453 2532 9962

Total = 63894

Table 6: Distribution of correct answer options (A–D) across datasets for Easy, Medium, and Hard categories. For
brevity, we merge Medium and Hard into a single row for smaller datasets. Each dataset maintains a balanced
distribution of answer options across all categories, both with and without the class name.
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Qwen2.5-VL-3B-Instruct Selection Bias on CUB Dataset (Without Class Name)

(a) Qwen2.5-VL-3B-Instruct exhibits stronger selection biases—favoring option ID “A” in Easy tasks (token bias) and the
first-position options “A” and “D” in “ABCD” and “DCBA” orderings, respectively, in Hard tasks (positional bias).
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LLaVA-v1.5-13B Selection Bias on CUB Dataset (Without Class Name)

(b) LLaVA-v1.5-13B model shows balanced selection in Easy tasks but develops strong token bias in Hard tasks, with
dramatic preference for the option ID "A" (reaching nearly 3x the true frequency) when difficulty increases.
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(c) InternVL2_5-8B model demonstrates the most balanced behavior across difficulty levels, with predictions closely
matching the true distribution in Easy and Medium tasks. In Hard tasks, it shows moderate token bias ("A") but maintains
better distribution consistency between ABCD and DCBA orderings.

Figure 5: Selection bias comparison across LVLMs on the CUB dataset under the "without class name" setting,
organized by increasing task difficulty (Easy, Medium, Hard). Each plot shows distributions for ground truth (True)
and model predictions under two option orderings: standard (ABCD) and reversed (DCBA). The comparison reveals
how position and token biases emerge and intensify with task difficulty, with varying patterns across architectures.
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