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Abstract
Multi-modal entity alignment (MMEA) aims to
identify equivalent entities between two multi-
modal knowledge graphs (MMKGs). Existing
methods have made substantial advancements
in enhancing multi-modal fusion. However,
the intrinsic noise within modalities, such as
the inconsistency in visual modality and re-
dundant attributes, has not been thoroughly
investigated. Excessive noise not only weak-
ens semantic representation but also increases
the risk of overfitting in attention-based fu-
sion methods. To address this, we propose
LGEA (LLM-Guided Entity Alignment), a
novel LLM-guided MMEA framework that pri-
oritizes noise reduction before fusion. Specifi-
cally, LGEA introduces two key strategies: (1)
fine-grained visual filtering to remove irrele-
vant images at the semantic level, and (2) con-
textual summarization of attribute information
to enhance entity semantics. To our knowl-
edge, we are the first work to apply LLMs
for both visual filtering and attribute-level se-
mantic enhancement in MMEA. Experiments
on multiple benchmarks, including the noisy
FBYG dataset, show that LGEA sets a new
state-of-the-art (SOTA) in robust multi-modal
alignment, highlighting the potential of noise-
aware strategies as a promising direction for
future MMEA research 1.

1 Introduction

Multi-Modal Knowledge Graphs (MMKGs) have
emerged as a key approach to modeling real-world
information. Compared to typical KGs that focus
on structured data, MMKGs incorporate images,
texts, and triples to support multi-perspective un-
derstanding. This fusion boosts their utility in tasks
like recommender systems and visual question an-
swering (Wu et al., 2024). However, constructing
MMKGs is challenging due to the need to inte-
grate heterogeneous data from different modalities,

*Corresponding author. † Equal contribution.
1Our code: https://github.com/alusang/LGEA-framework

making Multi-Modal Entity Alignment (MMEA) a
crucial task.

Early MMEA methods significantly improved
the accuracy of alignment results by optimizing
multi-modal fusion and textual modality alignment.
MEAformer (Chen et al., 2023a) dynamically de-
termines modal coefficients by leveraging a trans-
former to extract relevant information from mul-
tiple modalities. Recently, AMF2SEA (Li et al.,
2025) adapts to variations in image style by ex-
amining the influence of multi-modal feature fu-
sion strategies at the entity level. TMEA (Chen
et al., 2024) addresses the issue of insufficient cross-
modal information by incorporating large language
models (LLMs) for attribute preprocessing, leverag-
ing variational autoencoders to reconstruct incom-
plete features, and applying cross-attention with
orthogonal constraints for refined alignment.

Most existing MMEA methods have primarily
focused on designing fusion mechanisms across
modalities, while the issue of noise filtering has
received only limited attention. Noise widely ex-
ists in multimodal data and can directly reduce the
accuracy of entity alignment if not properly ad-
dressed. In this work, noise is defined as irrelevant,
ambiguous, or inaccurate information originating
from any modality, which may affect alignment
performance. In the visual modality, noise often
appears as entity-irrelevant or ambiguous image
content, such as background clutter or unrelated
objects. In the attribute modality, noise may take
the form of redundant, irrelevant, or inaccurate
attribute information, such as repeated values or
non-discriminative descriptions.

Although previous MMEA methods have ver-
ified the importance of image noise filtering,
ontology-based methods are coarse-grained and
require high human annotation costs. For ex-
ample, Masked-MMEA (Shi et al., 2022) and
AMF2SEA (Li et al., 2025) independently em-
ployed pre-trained vision-language models for im-
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age classification and compared the class conflict
dictionary (CCD) to mask images identified as
noise. Therefore, these methods have two primary
limitations: (i) Limited granularity - even when
images are classified as the same type, they may
still exhibit semantic differences from their corre-
sponding entities; (ii) Over-reliance on pre-defined
ontologies and manually constructed CCDs - hin-
dering their generalization to open-domain scenar-
ios and unseen environments. We also observe that
noise filtering, even in a simple form, consistently
improves alignment performance.

TMEA feeds raw attribute–value pairs directly
into LLMs for alignment, but this approach
faces two key challenges. First, in datasets like
YAGO15K, certain attributes (e.g., wasBornOn-
Date, diedOnDate) often appear multiple times for
the same entity, making pairwise comparison prone
to redundant matches based on trivial or duplicated
values. Second, the attribute space is dominated by
sparse numeric or temporal data, such as coordi-
nates or timestamps, which carry limited semantic
depth, making it difficult for LLMs to reliably dis-
tinguish entities through direct value comparison.

To tackle these challenges, we propose LGEA
(LLM-Guided Entity Alignment), a novel frame-
work for MMEA that addresses modality noise
through LLM-guided semantic filtering and repre-
sentation enhancement, rather than relying solely
on fusion strategies. LGEA is composed of two
key components: First, we design a fine-grained
visual filtering strategy at the semantic level guided
by LLMs. Instead of using fixed rules, we gener-
ate image captions via BLIP (Li et al., 2022), a
vision-language model capable of producing nat-
ural descriptions, and let LLMs assess their rele-
vance to entity context, enabling more accurate fil-
tering through language-based reasoning. Second,
we leverage LLMs to summarize entity attributes
into coherent textual descriptions, capturing richer
contextual semantics and improving the general-
ization of entity representations across different
MMKGs. Our main contributions are summarized
as follows:

• LLM-Guided Visual Semantic Filtering

We first propose a fine-grained image filtering
strategy that uses BLIP-generated captions
and LLM-based semantic reasoning to detect
and eliminate irrelevant or noisy images to
improve alignment performance.

• LLM-Based Attribute Summarization for
Semantic Enhancement

We convert raw attribute triples into coherent
textual summaries and employ LLMs to gen-
erate enriched semantic embeddings, thereby
enhancing entity representations and enabling
better generalization in MMEA tasks.

• State-of-the-art (SOTA) Performance on
Challenging Benchmarks

Our method achieves SOTA performance
across multiple benchmarks while utilizing
only approximately 10% of the images re-
quired by other approaches, including three
cross-lingual and two monolingual datasets.
Additionally, it significantly reduces computa-
tional resource consumption and offers advan-
tages in lightweight computing and scalabil-
ity.

2 Related Work

2.1 Typical Multi-modal Entity Alignment
EVA (Liu et al., 2021) exploits visual pivots for un-
supervised alignment. MSNEA (Chen et al., 2022)
uses siamese networks or modality-specific en-
coders to integrate visual, relational, and attribute
features, and MCLEA (Lin et al., 2022) employs
contrastive learning to enhance inter-modal and
intra-modal representation learning. MEAformer
(Chen et al., 2023a) uses transformer-based predic-
tion to adjust fusion weights. LoginMEA (Su et al.,
2024) combines local and global signals through
hierarchical fusion. AMF2SEA (Li et al., 2025)
dynamically selects fusion methods per entity.

2.2 Multi-modal Entity Alignment Based on
LLMs and Data Augmentation

UMAEA (Chen et al., 2023b) employs a varia-
tional autoencoder (VAE) to reconstruct missing
modalities and utilizes a parameter-freezing train-
ing strategy to enhance alignment accuracy. SimD-
iff (Li et al., 2024) enhances alignment indirectly
via multi-modal data augmentation using latent dif-
fusion models. TMEA (Chen et al., 2024) pro-
poses a novel cross-modal attention mechanism
with orthogonal constraints, and further incorpo-
rates LLMs for attribute abstraction, showing that
language-driven preprocessing can boost alignment
performance.

However, none of the above methods consider
fine-grained image semantic noise. If noisy images
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are fed into the model, it not only increases com-
putational cost but also raises the risk of modality
overfitting, thereby compromising alignment ac-
curacy. In contrast, our work explicitly addresses
this limitation by introducing an LLM-based se-
mantic filtering mechanism. Unlike prior studies
that mainly focus on fusion or augmentation, our
method performs pre-alignment data filtering on
both visual and attribute modalities, ensuring that
only semantically consistent information is retained
for subsequent fusion. This design complements
existing fusion strategies and leads to more robust
and interpretable alignment performance.

3 Preliminary

Multi-modal Knowledge Graph (MMKG) A
MMKG is a structured representation of real-world
knowledge that integrates multiple modalities of
information. Formally, a MMKG can be defined
as a tuple G = (E,R,A,V, V, T ), where E is a
set of entities, R is a set of relations, A is a set
of attributes, V is a set of attribute values (liter-
als), V is a set of images, and T is a set of triples.
The triples in T can be either relational triples
(eh, r, et), where eh, et ∈ E and r ∈ R, or at-
tribute triples (e, a, v), where e ∈ E, a ∈ A, and
v ∈ V .

Multi-modal Entity Alignment (MMEA)
MMEA is the task of identifying equivalent
entities across different MMKGs. Given two
MMKGs G1 = (E1, R1, A1,V1, V1, T1) and
G2 = (E2, R2, A2,V2, V2, T2), the goal of
MMEA is to find the set of aligned entity pairs
S = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, e1 ≡ e2},
where e1 ≡ e2 means that e1 and e2 refer to the
same real-world object.

4 Method

Our approach consists of five modules, as shown in
Figure 1: (1) Semantic-Based Multi-Modal Data
Filtering, where we use LLMs to remove semanti-
cally irrelevant images and noisy attributes, provid-
ing cleaner inputs for alignment; (2) Multi-Modal
Information Encoder, which extracts embeddings
from structure, relations, attributes, and images
separately; (3) Multi-Modal Fusion, which com-
bines these embeddings into a unified represen-
tation; (4) Intra-Modal Contrastive Learning,
which improves alignment by strengthening con-
sistency within modalities; and (5) Inter-Modal
Alignment, which aligns the fused representation

with individual modalities to enhance overall per-
formance.

4.1 Semantic-Based Multi-Modal Data
Filtering

LLM-Guided Visual Semantic Filtering. In-
spired by Masked-MMEA (Shi et al., 2022), to
enhance the reliability of visual information, we
first propose a novel fine-grained semantic filtering
strategy. For each entity in the MMKG, we utilize
the BLIP (Li et al., 2022) model to generate three
candidate captions based on the associated image.
Generating multiple captions per image helps mit-
igate the randomness and variability inherent in
BLIP-generated descriptions.

Given an aligned entity pair, we input the corre-
sponding captions into an LLM and prompt it to
determine whether the two captions describe the
same semantic topic. Based on the LLM’s decision,
we generate a binary mask vector me ∈ {0, 1}d
for each entity e, where d is the dimension of the
visual embedding. If the captions are judged to be
semantically aligned, the mask is set to all ones,
preserving the visual feature; otherwise, the mask
is set to all zeros, effectively filtering out the visual
information.

While CLIP (Radford et al., 2021) can be used
for image–image alignment based on similarity
thresholds, its practical application is limited by
the need to manually select these thresholds. As
shown in Masked-MMEA (Shi et al., 2022), differ-
ent datasets exhibit varying levels of visual noise,
making it labor-intensive and dataset-specific to
determine appropriate thresholds. In contrast, our
proposed method achieves near-optimal filtering
ratios automatically, which is further validated in
subsequent experiments, Table 4. Moreover, CLIP
only provides coarse similarity scores, whereas
our LLM-based semantic filtering operates at a
finer, more flexible granularity, allowing selective
retention or removal of visual information based
on semantic relevance. In summary, our approach
eliminates manual threshold tuning while enabling
more precise and semantically informed filtering
compared with CLIP.

LLM-Based Attribute Summarization for Se-
mantic Enhancement. We leverage LLMs to ex-
tract information from entity attributes. For each
entity e in the KG, we collect its attribute triples in
the form of (entity name, attribute name, attribute
value), remove the entity name, and concatenate
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Figure 1: The framework of LGEA consists of five key components, (1) Semantic-Based Multi-Modal Data Filtering:
This component filters out noisy data by leveraging semantic cues to enhance the quality of the input data before
further processing. (2) Multi-Modal Information Encoder: It encodes the filtered data from different modalities
into a shared representation space, enabling a better fusion of multi-modal information. (3) Multi-Modal Fusion
(MMF): This component combines the representations from different modalities to create a unified multi-modal
feature space that captures the most relevant information for alignment. (4) Intra-Modal Contrastive Learning (ICL):
It enforces consistency within each modality by applying contrastive learning techniques to minimize the difference
between similar instances and maximize the gap between dissimilar ones. (5) Inter-Modal Alignment (IA): Utilizes
Inter-Modal Alignment Loss (IAL) to ensure accurate alignment of semantically similar entities across different
modalities by minimizing the distance between aligned representations.

the remaining pairs into a textual sequence te, e.g.,
(att1, value1), (att2, value2), . . .. This forms a raw
attribute description that reflects the factual con-
tent associated with the entity. Specifically, each te
is summarized into a concise text (limited to 100
words) for embedding.

Constraining the summary length encourages the
model to focus on the most salient and discrimi-
native attributes while filtering out redundant or
ambiguous information. Furthermore, since entity
names are excluded and no external prompts are
used to invoke factual knowledge, the risk of hallu-
cination (Zhang et al., 2023; Chen et al., 2025) and
information leakage is minimized. The prompt is
shown in Table 11.

4.2 Multi-Modal Information Encoder

We employ four encoders to extract modality-
specific embeddings: structure, attribute, relation,
and vision. Each embedding is projected into a
shared latent space via a fully connected layer.

Structure Encoder We use Graph Attention Net-
works (GATs) (Veličković et al., 2018) to capture
local graph structure through attention-based ag-
gregation. For a node i corresponding to entity e,

its structure-based embedding is computed as:

hstructure
i = FC


σ


 ∑

j∈N (i)

αijhj




 , (1)

where αij is the attention weight between node i
and neighbor j, and σ denotes a non-linear activa-
tion function. The final output is obtained via a
fully connected layer FC(·).

Attribute Encoder We leverage an LLM to en-
code the textual attributes of each entity. Given a
summarized attribute description te, the attribute
embedding is:

hA
e = FC (FLLM(te)) , (2)

where FLLM(·) denotes the LLM-based encoder.

Relation Encoder We represent the relational
context of an entity e as a sparse bag-of-relations
(Yang et al., 2019) vector uR

e . This feature is trans-
formed into a dense embedding using:

hR
e = FC

(
uR
e

)
. (3)
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Vision Encoder Let ve be the image embedding
from a pretrained ResNet (He et al., 2016) and
VGG (Simonyan and Zisserman, 2015). We apply
an entity-specific mask me to filter irrelevant visual
signals:

ṽe = me ⊙ ve, (4)

hV
e = FC (ṽe) . (5)

This semantic-guided filtering helps suppress
visual noise and enhances the quality of visual rep-
resentations.

4.3 Multi-Modal Fusion
To integrate multiple modalities effectively,
we adopt a Multi-Head Cross-Modal At-
tention (MHCA) mechanism inspired by
MEAformer (Chen et al., 2023a). Given a set of
available modality embeddings {hm}m∈M , where
M = {structure,R,A, V }, we first stack them
into a matrix Hm and feed them into a shared
MHCA module:

H̃m
= MHCA(Hm), (6)

where each H̃m
contains contextualized informa-

tion from all other modalities.
We extract the attention weights αm from the

MHCA module by summing over heads and nor-
malizing:

αm = softmax

(
Ah∑

i=1

Attention(i)
)
, (7)

where Attention(i) ∈ RB×|M |×|M | is the attention
matrix from head i, and softmax is applied across
modalities.

Finally, we compute the joint embedding as a
weighted concatenation of the original modality
embeddings:

hjoint =
⊕

m∈M
αm · Norm(hm), (8)

where Norm(·) denotes ℓ2 normalization and
⊕

indicates concatenation across modalities.
This allows the model to softly emphasize more

informative modalities and produce a unified repre-
sentation for downstream tasks.

4.4 Intra-modal Contrastive Learning (ICL)
Inspired by MEAformer (Chen et al., 2023a), to
improve both modality-specific quality and cross-
modal alignment, we adopt a dual-level contrastive
learning framework.

Given a set of aligned entity pairs (e1, e2) ∈ S,
we compute contrastive probabilities using in-batch
negatives:

p(e1, e2) =
exp(sim(f(e1), f(e2))/τ)∑

e′∈N(e1,e2)

exp(sim(f(e1), f(e′))/τ)
, (9)

where sim(·, ·) is cosine similarity and τ is a tem-
perature parameter.

We define a contrastive loss as:

Lm = −E(e1,e2)∈S
[
log pm(e1, e2)

+ log pm(e2, e1)
]
.

(10)

Intra-modal Contrastive Loss. For each modal-
ity m ∈ M , we compute an intra-modal contrastive
loss Lm to encourage alignment within the same
modality. These individual losses are then com-
bined using a learnable weighted sum to form the
total intra-modal contrastive loss:

Lintra =
∑

λmLm∈M . (11)

Joint Contrastive Loss. To enhance cross-
modal consistency, the same objective is applied to
the fused embeddings:

Ljoint = L∑
m (12)

4.5 Inter-modal Alignment
To ensure consistency between each modality and
the joint embedding, we introduce an Inter-modal
Alignment Loss (IAL) (Lin et al., 2022) by mini-
mizing the bidirectional KL divergence (Schulman
et al., 2017) between their alignment distributions.

Lm
IAL = E(e1,e2)∈S

1

2

(
KL(qo(e1, e2)∥qm(e1, e2))

+ KL(qo(e2, e1)∥qm(e2, e1))
)
, (13)

where qo and qm represent the alignment prob-
ability distributions from the joint embedding
space and modality m, respectively. Specifically,
qo(e1, e2) and qo(e2, e1) represent the alignment
probabilities of entity pairs (e1, e2) and (e2, e1) ob-
tained by the joint embedding, while qm(e1, e2)
and qm(e2, e1) represent the alignment probabili-
ties of the corresponding entity pairs in modality
m.

We ensure the consistency between each modal-
ity and the joint embedding by minimizing the bidi-
rectional KL divergence between these two proba-
bility distributions. The KL divergence measures
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the difference between the two probability distribu-
tions, and the bidirectional calculation ensures the
symmetry and sufficiency of the alignment process.

The total IAL is computed by aggregating over
all modalities:

LIAL = λ ·
∑

m∈M
Lm

IAL, (14)

where λ controls the overall contribution of IAL.
The final training objective combines all afore-

mentioned loss components to enable both intra-
and inter-modal learning. Specifically, the overall
loss is defined as:

L = Lintra + Ljoint + LIAL. (15)

5 Experiments

5.1 Experimental setup
Datasets We evaluate our method on two types of
datasets: (i) Bilingual datasets: We use DBP15K
(Chen et al., 2023a), which includes three cross-
lingual subsets derived from the multilingual ver-
sions of DBpedia: DBP15KZH-EN, DBP15KJA-EN,
and DBP15KFR-EN. Each subset contains approxi-
mately 400K knowledge graph triples and 15K pre-
aligned entity pairs, of which 30% are used as seed
alignments. (ii) Monolingual datasets: We select
FBDB15K and FBYG15K from the MMKG (Liu
et al., 2019) benchmark, of which 20% are used as
seed alignments. Detailed information about these
datasets is shown in Table 10 (see Appendix).

Evaluation Metrics We assess the alignment
probability between entities from different
MMKGs based on cosine similarity. Hits@N
and Mean Reciprocal Rank (MRR) are used as
evaluation metrics for all models. Higher values of
Hits@N and MRR indicate better performance.

Experimental Setup All experiments are con-
ducted on entity alignment tasks with 20% of en-
tity pairs used as supervision for the FBDB15K
and FBYG15K datasets, and 30% for the DBP15K
dataset. For each setting, models are trained itera-
tively, where alignment predictions from previous
rounds are gradually incorporated to refine the em-
bedding space and improve alignment quality. The
entire experimental process does not involve any
surface forms (i.e., entity names).

Implementation Details We utilize LLaMA-3-
8B-Instruct as the core LLM for both attribute
summarization and embedding. For image-text

matching tasks, we employ GPT-3.5-Turbo via
API-based inference. All experiments are imple-
mented using the PyTorch framework. Inference
with LLaMA-3-8B-Instruct is conducted on a com-
puting server equipped with NVIDIA A100 GPU
(40GB). No fine-tuning is applied to either model;
instead, we adopt task-specific prompt engineering
to adapt the LLMs to various alignment subtasks.

5.2 Main Experimental Results
We evaluate LGEA on five standard multi-modal
MMEA benchmarks, covering two FB15K-based
datasets (FBDB15K and FBYG15K) and three mul-
tilingual DBP15K datasets (ZH-EN, JA-EN, FR-
EN). The results are reported in Table 2 and Ta-
ble 1, with comparisons against a comprehensive
set of baselines, including early multi-modal mod-
els (MCLEA, MEAformer), and recent SOTA ap-
proaches such as SimDiff, LoginMEA, and TMEA.

On the multilingual DBP15K datasets,
as shown in Table 1, LGEA achieves sub-
stantial and consistent improvements over
all baselines. On DBP15KZH-EN, LGEA
achieves 0.970 on Hits@1, 0.998 on Hits@10,
and 0.982 on MRR—outperforming Login-
MEA (0.873/0.978/0.913) by over 9 points
on Hits@1 and nearly 7 points on MRR.
Similarly, on DBP15KJA-EN, LGEA records
(0.962/0.999/0.977), and on DBP15KFR-EN, it
attains (0.975/0.999/0.985), achieving new SOTA
performance in all metrics across all three language
pairs.

While recent methods such as UMAEA and
MEAformer show strong performance on DBP15K,
they still fall short in consistently achieving top
Hits@1 scores across datasets. LGEA’s strong per-
formance on Hits@1 indicates its superior preci-
sion in top-ranked predictions, which is particularly
critical in resource-constrained alignment scenar-
ios. Furthermore, LGEA exhibits high Hits@10
across all datasets, demonstrating not only accurate
top-1 matching but also broader contextual ranking
quality.

On the monolingual FB15K-based datasets
(Table 2), LGEA delivers competitive or su-
perior performance. For FBDB15K, LGEA
achieves a Hits@1 of 0.801, Hits@10 of 0.910,
and MRR of 0.842. These results are be-
hind the current top-performing model TMEA
(0.867/0.944/0.895), but still represent a clear
improvement over all other baselines, includ-
ing LoginMEA (0.667/0.854/0.735) and SimDiff
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Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

Masked-MMEA 0.612 0.837 0.693 0.627 0.858 0.711 0.712 0.901 0.779
MSNEA 0.643 0.865 0.719 0.572 0.832 0.660 0.584 0.841 0.671

AMF2SEA 0.691 0.879 0.751 0.696 0.871 0.757 0.767 0.914 0.818
EVA 0.746 0.910 0.807 0.741 0.918 0.805 0.767 0.939 0.831

MCLEA 0.811 0.954 0.865 0.806 0.953 0.861 0.811 0.954 0.865
SimDiff 0.829 0.963 0.877 0.835 0.966 0.883 0.861 0.980 0.905

MEAformer 0.847 0.970 0.892 0.842 0.974 0.892 0.845 0.976 0.894
UMAEA 0.856 0.974 0.900 0.857 0.980 0.904 0.873 0.988 0.917

LoginMEA 0.873 0.978 0.913 0.866 0.981 0.911 0.881 0.988 0.924

LGEA 0.970 0.998 0.982 0.962 0.999 0.977 0.975 0.999 0.985

Table 1: Main experimental results of LGEA on DBP15K datasets.

Models FBDB15K FBYG15K
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MMEA 0.265 0.451 0.357 0.234 0.398 0.317
MoAlign 0.318 0.564 0.296 0.378 0.000 0.000
MCLEA 0.441 0.640 0.534 0.406 0.579 0.488

EVA 0.556 0.666 0.609 0.103 0.217 0.164
SimDiff 0.615 0.820 0.678 0.530 0.736 0.595
MSNEA 0.653 0.768 0.708 0.443 0.626 0.529

LoginMEA 0.667 0.854 0.735 0.758 0.898 0.810
TMEA 0.867 0.944 0.895 0.818 0.916 0.853

LGEA 0.801 0.910 0.842 0.850 0.942 0.883

Table 2: Main experimental results of LGEA on FBDB15K and FBYG15K datasets.

(0.615/0.820/0.678), showcasing LGEA’s strong
modality integration capability.

On the more challenging FBYG15K dataset,
LGEA attains SOTA results with a Hits@1 of
0.850, Hits@10 of 0.942, and MRR of 0.883. This
surpasses all baselines, including the previously
best-performing TMEA (0.818/0.916/0.853), with
margins of +3.2, +2.6, and +3.0 points on Hits@1,
Hits@10, and MRR respectively. It is worth noting
that many models (e.g., EVA, MSNEA) suffer sig-
nificant performance drops on this dataset, while
LGEA remains robust and accurate, demonstrating
its strong generalization across diverse graph and
modality structures.

In summary, LGEA achieves the best perfor-
mance on 4 out of 5 datasets and ranks second
only to TMEA on the remaining one, while still
outperforming TMEA on the more challenging
FBYG15K benchmark, which is characterized by
fewer attribute and relation types but significantly
more noise. These results confirm the effectiveness
and robustness of LGEA in integrating and aligning

multi-modal information, and establish it as a new
SOTA for MMEA tasks across both monolingual
and multilingual settings.

5.3 Ablation Study

To better understand the contribution of each
modality and architectural component within
LGEA, we conduct a comprehensive ablation
study on two benchmark datasets: FBDB15K and
FBYG15K. The results are summarized in Table 3.
We divide the ablation into two parts: the upper
half of the table explores the impact of remov-
ing individual modalities (vision (wo/img), rela-
tions (wo/rel), structure (wo/structure), and at-
tributes (wo/att)), while the lower half focuses on
core design choices of the model, LLM integration
(wo/llm), iterative refinement (wo/it), and visual
masking (wo/mask).

Modality Ablation Each modality brings dis-
tinct and complementary signals. Removing
structural information (wo/structure) leads to
the most significant performance drop, especially
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Models FBDB15K FBYG15K
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

LGEA 0.801 0.910 0.842 0.850 0.942 0.883

w/o img 0.740 0.890 0.791 0.767 0.896 0.811
w/o rel 0.737 0.890 0.791 0.813 0.917 0.851

w/o structure 0.440 0.615 0.502 0.678 0.844 0.737
w/o att 0.655 0.840 0.720 0.563 0.755 0.628

w/o llm 0.682 0.855 0.745 0.558 0.756 0.626
w/o mask 0.714 0.868 0.772 0.818 0.917 0.854

w/o it 0.684 0.868 0.749 0.785 0.914 0.832

Table 3: Ablation results of LGEA on FBDB15K and FBYG15K datasets, showing modal and method ablations.

Models FBDB15K FBYG15K
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

LGEA 0.801 0.910 0.842 0.850 0.942 0.883

0%mask 0.714 0.868 0.772 0.818 0.917 0.854
50%mask 0.790 0.908 0.834 0.842 0.934 0.878
80%mask 0.766 0.890 0.812 0.834 0.928 0.868

Table 4: Ablation results of different masking proportion on FBDB15K and FBYG15K.

on FBDB15K, where Hits@1 falls from 0.801
to 0.440. This underscores the importance of
neighborhood-based reasoning for MMEA. Vi-
sual information (wo/img) and relational triples
(wo/rel) also provide important support, as their
removal results in 6 ∼ 7% drops in Hits@1 and
MRR, indicating their synergy with other modal-
ities. Notably, removing attribute information
(wo/att) causes a substantial drop, especially on
FBYG15K (Hits@1 drops from 0.850 to 0.563),
highlighting the key role of rich semantic clues
from attributes in alignment.

Architecture Ablation Beyond evaluating in-
dividual modalities, we examine the impact of
core architectural components in LGEA. The LLM-
based attribute summarization module (wo/llm)
proves essential, particularly in settings with noisy
or inconsistent attribute information. Its removal
leads to a dramatic drop in performance—for
example, Hits@1 falls from 0.850 to 0.558 on
FBYG15K—highlighting that raw structured at-
tributes often carry noise and redundancy, whereas
LLM-generated summaries capture more coher-
ent and informative semantics for alignment. The
visual semantic filtering module (wo/mask) also
contributes notably by eliminating irrelevant or
misleading images. As shown in Table 3, omit-

ting this component causes performance to de-
cline (e.g., Hits@1 drops from 0.801 to 0.714 on
FBDB15K and from 0.850 to 0.818 on FBYG15K).
Finally, removing the iterative refinement mecha-
nism (wo/it) leads to noticeable decreases across
metrics (e.g., MRR drops from 0.842 to 0.749 on
FBDB15K and from 0.883 to 0.832 on FBYG15K),
indicating its effectiveness in progressively improv-
ing alignment quality. Together, these results under-
score the importance of semantic enhancement and
noise filtering in advancing MMEA performance.

These results confirm that both modality-level
and architecture-level components are critical to
LGEA’s success. Notably, the LLM-guided se-
mantic filtering and summarization modules con-
tribute the most, as they effectively reduce visual
and attribute noise while enriching entity seman-
tics. Their synergy, together with iterative refine-
ment, enables LGEA to achieve strong generaliza-
tion across diverse and noisy datasets. This high-
lights the importance of semantic-level reasoning
and noise-aware design in advancing MMEA.

5.4 Mask Analysis

Effect of Visual Semantic Masking
We analyze the impact of varying the proportion

of images considered valid (i.e., mask = 1) in the
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visual semantic filtering module. As shown in Ta-
ble 4, the masking mechanism plays a critical role
in balancing information quality and quantity in
the visual modality.

When no masking is applied (0%mask), the
model includes all images regardless of their rel-
evance. This leads to a noticeable performance
degradation, especially on FBDB15K, where
Hits@1 drops from 0.801 (full LGEA) to 0.714,
and MRR drops from 0.842 to 0.772. This sug-
gests that noisy or irrelevant images can introduce
confusion and negatively affect alignment quality.

Applying a moderate mask ratio (50%mask)
achieves the best performance across both datasets,
reaching 0.790 Hits@1 and 0.834 MRR on
FBDB15K, and 0.842 Hits@1 and 0.878 MRR
on FBYG15K. This demonstrates that selectively
filtering less informative images while retaining
valuable visual cues enhances model effectiveness.

However, an overly aggressive masking strategy
(80%mask) slightly reduces performance compared
to 50% masking, with Hits@1 falling to 0.766 on
FBDB15K and 0.834 on FBYG15K. This indicates
that discarding too many images may lead to the
loss of useful semantic signals.

In summary, these results highlight the impor-
tance of image filtering mechanism. Proper visual
masking mitigates noise and improves alignment,
while excessive masking can result in information
loss. Importantly, our BLIP+LLM-based semantic
filtering demonstrates the effectiveness of automat-
ically identifying noisy visual information across
different datasets, achieving suitable masking ra-
tios without the need for manually defined thresh-
olds for each dataset. This adaptability not only
validates the robustness of our approach but also
reduces reliance on human intervention.

5.5 Ablation Study on Loss Functions

FBDB15K

settings Hits@1 Hits@10 MRR

LGEA 0.801 0.910 0.842

w/o Lintra 0.711 0.868 0.765

w/o Ljoint 0.742 0.876 0.791

w/o LIAL 0.770 0.894 0.816

Table 5: Ablation results of different loss components
on the FBDB15K dataset.

From Table 5, we observe that removing any
loss term leads to a performance drop compared
to the complete LGEA model, demonstrating that
each component plays a crucial role. Specifically,
eliminating Lintra causes the largest decline, with
Hits@1 decreasing from 0.801 to 0.711 and MRR
from 0.842 to 0.765, highlighting the importance
of intra-modal consistency in learning robust rep-
resentations. Removing Ljoint also results in a con-
siderable reduction, showing that global alignment
across modalities is essential for accurate entity
matching. The performance decrease caused by
removing LIAL is relatively smaller but still notice-
able, indicating that inter-modal alignment further
enhances cross-modal correspondence. Overall,
these results verify the complementary effect of
the three loss terms and confirm that their joint
optimization significantly improves model perfor-
mance.

6 Conclusion

In this paper, we present LGEA, a novel method
for MMEA that tackles a fundamental but underex-
plored challenge: the prevalence of noisy or seman-
tically irrelevant information across modalities. In-
stead of focusing solely on fusion strategies, LGEA
shifts the perspective toward semantic-level under-
standing and noise reduction, guided by LLMs.
Specifically, we introduce two key techniques: (1)
a fine-grained visual semantic filtering method that
leverages BLIP and LLMs to discard off-topic im-
ages based on entity context; and (2) an attribute
summarization strategy that transforms structured
attributes into coherent textual descriptions to en-
hance the semantics of entities. Extensive exper-
iments across both monolingual and multilingual
MMEA benchmarks validate the effectiveness of
our approach, with LGEA achieving SOTA perfor-
mance and demonstrating strong robustness under
noisy settings. These results highlight the value of
LLM-guided reasoning in advancing MMEA.

Limitations

Although the proposed LGEA framework achieves
strong results across diverse datasets, there remain
certain limitations worth further investigation. For
instance, on the structurally rich FBDB15K dataset,
LGEA underperforms compared to TMEA. This is
largely due to TMEA’s powerful fusion mechanism
that better leverages abundant relational informa-
tion. However, in noisier and more structurally
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sparse scenarios, such as FBYG15K, LGEA out-
performs TMEA by a notable margin, thanks to
its LLM-guided semantic filtering and enhance-
ment strategies. These results suggest that future
research should advance noise reduction and multi-
modal fusion together to achieve more robust and
accurate MMEA.

On the other hand, in the semantic filtering pro-
cess of the visual modality, the original design con-
sidered using a multi-modal large model (MLLM)
for more refined image semantic alignment to fur-
ther improve the accuracy of visual quality control.
However, in the experimental preparation stage,
considering the high computational and resource
costs of the current mainstream MLLM, we had
to abandon this solution at this stage. Neverthe-
less, with the development of multi-modal model
technology and the gradual reduction of inference
costs, this direction still has great potential. In
the future, the introduction of lightweight or task-
customized MLLM modules will be an important
direction worthy of further research.
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A Appendix

A.1 Statistical Data of Datasets
Table 10 presents the statistics of the datasets used
in our experiments, covering both multilingual and
cross-KG scenarios.

Dataset: Each dataset consists of a pair of knowl-
edge graphs (KGs), either from different languages
(e.g., ZH-EN) or different sources (e.g., FB15K vs.
DB15K/YAGO15K).

KG: This field specifies the identity of the in-
dividual KG within the dataset, such as Chinese,
English, Freebase (FB15K), DBpedia (DB15K), or
YAGO (YAGO15K).

# Ent.: The number of unique entities in each
KG.

# Rel.: The number of distinct relation types
used to form relation triples.

# Attr.: The number of distinct attribute types
used to describe entity properties.

# Rel. Triples: The total number of relation
triples, each representing a factual connection in
the form of (head entity, relation, tail entity).

# Attr. Triples: The total number of attribute
triples, each describing a property in the form of
(entity, attribute, value).

# Image: The number of entities that are asso-
ciated with image data. Not all entities are linked
with an image.

# EA pairs: The number of pre-aligned entity
pairs across the two KGs, used as ground truth for
training or evaluation in the entity alignment task.

Note that the values may vary significantly
across datasets due to differences in language, do-
main, and data richness. Additionally, some enti-
ties may lack image data or aligned counterparts in
the other KG.

A.2 Comparison of parameters of different
MMEA methods

We report the parameter sizes of different methods
on the DBP15K dataset, as shown in the Figure 2.
Although LGEA has slightly more parameters than
the previous classical MMEA methods, it remains
significantly lighter than TMEA, whose parame-
ter size is over five times larger. The increase in
LGEA’s parameters primarily comes from the use
of higher-dimensional attribute vectors generated
by the LLM-based encoder.

A.3 Prompts
To facilitate the use of LLMs in entity representa-
tion and cross-modal alignment, we design specific
prompts targeting two key tasks: textual summa-
rization and image-based similarity judgment. As
shown in Table 11, the summary prompt guides
the model to generate a concise English descrip-
tion of an entity based on its structured attribute-
value pairs. This enables abstraction and normaliza-
tion of entity semantics from heterogeneous knowl-
edge graphs. Meanwhile, Table 12 presents the im-
age matching prompt, which is used to determine
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Figure 2: Comparison of parameters of different MMEA
methods.

whether two image captions refer to the same en-
tity or concept. If they match, the model is further
asked to extract a shared theme, aiding in cross-
modal entity alignment by highlighting common
visual semantics. These carefully crafted prompts
ensure task-specific responses while minimizing
irrelevant or verbose output.

A.4 Comparative Study

Comparison and Analysis of Iterative Align-
ment Results. Table 13 reports the performance
of several representative multimodal entity align-
ment methods under different proportions of train-
ing seeds (20%, 50%, and 80%) on two widely used
cross-KG datasets: FBDB15K and FBYAGO15K.
We compare the proposed method LGEA against
four baselines: EVA, MSNEA, MCLEA, and
MEAformer, using standard evaluation metrics in-
cluding Hits@1, Hits@10, and MRR.

Across all settings, LGEA consistently outper-
forms all baselines, demonstrating strong gener-
alization and alignment capability. When only
20% of the reference entities are provided, LGEA
achieves 0.771 Hits@1, 0.894 Hits@10, and 0.816
MRR on FBDB15K, significantly surpassing the
previously best-performing MEAformer by 0.193,
0.082, and 0.155, respectively. Similarly, on
FBYAGO15K, LGEA reaches 0.850 Hits@1, 0.942
Hits@10, and 0.883 MRR, showing substantial
improvements of 0.406, 0.250, and 0.354 over
MEAformer.

As the proportion of training seeds increases
to 50% and 80%, the performance of all models
improves, but LGEA maintains a clear advantage.
For instance, at the 80% level, LGEA achieves
0.866 Hits@1, 0.946 Hits@10, and 0.894 MRR
on FBDB15K, as well as 0.925 Hits@1, 0.978
Hits@10, and 0.944 MRR on FBYAGO15K, con-

sistently setting new state-of-the-art results.
These results confirm that LGEA is not only ef-

fective in low-resource scenarios but also scales
well with more supervision. Moreover, its superior-
ity is more pronounced on FBYAGO15K, a dataset
characterized by greater structural and modality
heterogeneity, which further validates the robust-
ness and adaptability of our proposed approach
across different types of knowledge graphs.

A.5 Impact of Different LLMs

FBDB15K

settings Hits@1 Hits@10 MRR

LGEALlama3-8B 0.801 0.910 0.842

LGEALlama2-7B 0.793 0.898 0.836

LGEAMistral-7B 0.791 0.893 0.833

Table 6: Performance comparison of LGEA with differ-
ent LLMs on the FBDB15K dataset.

From Table 6, we observe that all three LLM
variants achieve competitive results, with Hits@1
ranging from 0.791 to 0.801 and MRR ranging
from 0.833 to 0.842. Among them, LGEALlama3-8B
achieves the best performance, reaching 0.801 in
Hits@1 and 0.910 in Hits@10, slightly outperform-
ing the other two backbones. LGEALlama2-7B and
LGEAMistral-7B show marginally lower results but
remain close, demonstrating the robustness of the
framework to different LLMs.

These results suggest that while the choice of
LLM can influence performance, the gap between
different backbones is relatively small. This in-
dicates that the proposed approach does not rely
heavily on a specific model, but rather benefits
from the general semantic reasoning capabilities
of modern LLMs. Nonetheless, the advantage of
Llama3-8B highlights that stronger LLMs with bet-
ter alignment ability can provide slight but consis-
tent improvements in entity alignment tasks.

A.6 Impact of Learning Rate

As shown in Table 7, the performance of LGEA
remains stable across different learning rates. The
optimal result is obtained when the learning rate
is set to 5 × 10−4, but the differences compared
with 1 × 10−4 and 1 × 10−3 are relatively minor.
This indicates that our approach is not overly sensi-
tive to the choice of learning rate, and the reported
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improvements are not dependent on careful hyper-
parameter tuning. These results further confirm the
robustness and reliability of our method.

FBDB15K

settings Hits@1 Hits@10 MRR

LGEA5e-4 0.801 0.910 0.842

LGEA1e-4 0.794 0.901 0.829

LGEA1e-3 0.772 0.896 0.814

Table 7: Parameter sensitivity analysis of LGEA on
FBDB15K under different learning rates.

A.7 Efficiency and Scalability Analysis
To evaluate the efficiency of our method, we mea-
sured the processing time of LLM-based com-
ponents. As shown in Table 8, the most time-
consuming stage is the Visual Semantic Filtering,
which relies on GPT API calls (about 1–2 seconds
per call, 15k calls in total), resulting in 5–8 hours
of processing. This stage, however, can be signifi-
cantly accelerated by parallel requests, thus scaling
well across multiple datasets. The Attribute Sum-
marization and entity information embedding, both
completed locally by the LLaMA3-8B model, re-
quire only about 10 minutes even for the full set
of 30k entities. Overall, the total LLM processing
time for a complete dataset is about 5–8 hours, and
processing all five datasets requires only 6–9 hours,
demonstrating the good efficiency and scalability
of our approach.

A.8 Cost Analysis
As shown in Table 9, the cost analysis of LLM
usage in our LGEA framework includes two main
parts. Attribute Summarization and embedding are
processed by Llama3-8B on an A100-40G GPU,
costing about $0.3. Visual Semantic Filtering is per-
formed via the GPT-3.5-turbo API, costing about
$0.2. Therefore, the maximum total cost for the en-
tire DBP15KZH-EN dataset is approximately $0.5.
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LLM Component Setting Time Cost

Visual Semantic Filtering GPT API (15k calls, 1–2s per call) 5–8 h (parallelizable)

Attribute Summarization LLaMA3-8B (local) ≈ 10 min (total)
Embedding of entity information LLaMA3-8B (local)

Total (per dataset) 5–8 h
Total (all 5 datasets) 6–9 h

Table 8: Processing time of LLM components in our method (measured on DBP15KZH-EN with 15,000 entity pairs).

Module Setup Computation Cost
Visual Semantic Filtering GPT-3.5-turbo API 15,000 calls, ∼600k tokens $0.2
Attribute Summarization & embedding Llama3-8B (A100-40G) 15,000 pairs, 10–20 min $0.3
Total – – $0.5

Table 9: Cost analysis of LLM processing in the LGEA framework on DBP15KZH-EN.

Dataset KG # Ent. # Rel. # Attr. # Rel. Triples # Attr. Triples # Image # EA pairs

DBP15KZH-EN
ZH (Chinese) 19,388 1,701 8,111 70,414 248,035 15,912

15,000
EN (English) 19,572 1,323 7,173 95,142 343,218 14,125

DBP15KJA-EN
JA (Japanese) 19,814 1,299 5,882 77,214 248,991 12,739

15,000
EN (English) 19,780 1,153 6,066 93,484 320,616 13,741

DBP15KFR-EN
FR (French) 19,661 903 4,547 105,998 273,825 14,174

15,000
EN (English) 19,993 1,208 6,422 115,722 351,094 13,858

FBDB15K
FB15K 14,951 1,345 116 592,213 29,395 13,444

12,846
DB15K 12,842 279 225 89,197 48,080 12,837

FBYG15K
FB15K 14,951 1,345 116 592,213 29,395 13,444

11,199
YAGO15K 15,404 32 7 122,886 23,532 11,194

Table 10: Statistics for datasets

Summary Prompt
prompt = """
You are an expert who can provide concise explanations based on entity information.
I will give you the properties of attributes and values of an entity in the form of (predicate object).
Using these information, please provide a short description of the entity.

- The explanation should be no longer than 100 words.
- Focus on summarizing the entity based on the given information.
- Do not include unnecessary details or explanations beyond the entity description.
- Do not include entity name.

Example:

Entity Information: (occupation Mathematician), (notable work Principia Mathematica)
Explanation: The entity was a prominent mathematician recognized for authoring Principia
Mathematica, a foundational work in the history of science and mathematics.

Now, please summarize the following entity information and return an desctription in English:
"""

Table 11: Prompt for summary
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Image Matching Prompt
prompt = """
Here are two captions of different images:

Caption 1:
"{a group of photos shows different buildings}"

Caption 2:
"{many different images of the various building styles}"

Do they describe the same thing or topic? Answer only "Yes" or "No".
If Yes, summarize the shared theme in one sentence.
If No, leave the theme blank.
"""

Table 12: Prompt for image similarity judgment and shared theme extraction

Seeds Models FBDB15K FBYAGO15K

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

20%

EVA 0.231 0.488 0.318 0.188 0.403 0.260
MSNEA 0.149 0.392 0.232 0.138 0.346 0.210
MCLEA 0.395 0.656 0.487 0.322 0.546 0.400

MEAformer 0.578 0.812 0.661 0.444 0.692 0.529
LGEA 0.801 0.910 0.842 0.850 0.942 0.883

50%

EVA 0.364 0.606 0.449 0.325 0.560 0.404
MSNEA 0.358 0.656 0.459 0.376 0.646 0.472
MCLEA 0.620 0.832 0.696 0.563 0.751 0.631

MEAformer 0.690 0.871 0.755 0.612 0.808 0.682
LGEA 0.814 0.922 0.853 0.883 0.947 0.906

80%

EVA 0.491 0.711 0.573 0.493 0.695 0.572
MSNEA 0.565 0.810 0.651 0.593 0.806 0.668
MCLEA 0.741 0.900 0.802 0.681 0.837 0.737

MEAformer 0.784 0.921 0.834 0.724 0.880 0.783
LGEA 0.866 0.946 0.894 0.925 0.978 0.944

Table 13: Iterative results on two cross-KG datasets are presented.
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