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Abstract

While LLMs are widely used for generic tasks
like question answering and search, they strug-
gle to adapt to specialized knowledge, such
as industrial workflows in healthcare, legal,
and agricultural sectors, as well as knowledge-
driven tasks such as news journalism, investiga-
tive research, and consulting without expensive
fine-tuning or sub-optimal retrieval methods.
Existing retrieval-augmented models, such as
RAG, offer improvements but fail to account
for structured domain knowledge, leading to
suboptimal context generation. Ontologies,
which conceptually organize domain knowl-
edge by defining entities and their interrelation-
ships, offer a structured representation to ad-
dress this gap. This paper presents OG-RAG,
an Ontology-Grounded Retrieval Augmented
Generation method designed to enhance LLM-
generated responses by anchoring retrieval pro-
cesses in domain-specific ontologies. OG-RAG
constructs a hypergraph representation of do-
main documents, where each hyperedge encap-
sulates clusters of factual knowledge grounded
using domain-specific ontology and retrieves a
minimal set of hyperedges for a given query us-
ing an optimization algorithm. Our evaluations
demonstrate that OG-RAG increases the recall
of accurate facts by 55% and improves response
correctness by 40% across four different LLMs.
Additionally, OG-RAG enables 30% faster attri-
bution of responses to context and boosts fact-
based reasoning accuracy by 27% compared
to baseline methods. We release the code at
https://github.com/microsoft/ograg?2.

1 Introduction

Large language models (LLMs) have advanced the
capabilities of question-answering systems, search
engines, and generic chatbots (Perplexity, 2024;
ChatGPT, 2024) . However, they face significant
challenges with fact-based adaptation, particularly
in domains that rely on precise, domain-specific
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Figure 1: Comparison of the proposed Ontology-
Grounded Retrieval Augmented Generation (OG-RAG)
with existing RAG solutions.

data, e.g, industrial workflows in healthcare, legal,
and agricultural sectors, as well as knowledge work
such as news journalism, web based investigative
research, consulting, and more. (Cascella et al.,
2023; Thirunavukarasu et al., 2023; Singhal et al.,
2023; Guha et al., 2024; Wang et al., 2024; Bala-
guer et al., 2024). To overcome these limitations,
off-the-shelf LLMs can be either fine-tuned for spe-
cific domains (Bommasani et al., 2021) or paired
with external tools or documents (Lewis et al.,
2020; Schick et al., 2024). However, fine-tuning
is computationally expensive and requires exten-
sive data curation, making it a less practical solu-
tion (Balaguer et al., 2024; Ovadia et al., 2023). On
the other hand, retrieval-based approaches, such as
RAG (Lewis et al., 2020; Sarthi et al., 2024; Zhang
et al., 2024b; Borgeaud et al., 2022; Karpukhin
etal.,2020; Edge et al., 2024), use domain-agnostic
embeddings to retrieve query-relevant information
from domain-specific documents for answering.
Although promising, these methods fail to capture
the deep conceptual relationships and nuanced facts
required for accurate domain-specific retrieval.

Each domain organizes its knowledge and ter-
minology in distinct ways, which cannot be gener-
alized across different fields (Mernik et al., 2005).
For example, in industrial workflows, facts and
relationships are carefully curated and structured
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into domain-specific frameworks, while in knowl-
edge work and investigative research, ontologies
serve as templates for organizing and analyzing
facts and concepts (Jackson, 1990; Guarino et al.,
2009). Current LLMs struggle to adapt to these
diverse structures, limiting their accuracy and ef-
fectiveness in specialized domains. Another major
issue is that users often struggle to trace generated
responses back to the relevant context. Further-
more, many specialized domains follow strict pro-
cedural rules, and the current techniques fail to
reliably deduce accurate conclusions based on this
established domain knowledge. This gap presents a
major challenge to the wider applicability of LLMs
in specialized workflows.

In this paper, we present OG-RAG (Ontology-
Grounded Retrieval Augmented Generation),
which enhances LLMs by integrating domain-
specific ontologies for fact-based adaptation. On-
tologies, which define key entities and their rela-
tionships within a domain, provide structured rep-
resentation that is essential for adapting to complex
and evolving information landscapes. OG-RAG
ground the retrieval process in these ontologies for
improved response accuracy, flexible fact-based
adaptation, and enabling verifiable context attri-
bution. In particular, we form hypergraph repre-
sentations of domain documents, where each hy-
peredge groups related factual knowledge. Using
a greedy algorithm, the engine retrieves a mini-
mal set of hyperedges for a given query that forms
a compact context for the LLM. Our evaluations
of OG-RAG within the agriculture and news do-
mains demonstrate that OG-RAG boosts fact recall
by 55% and response correctness by 40% across
four LLMs. Users attribute responses 30% faster
and better, while fact-based reasoning improves
correctness by 27%. These results demonstrate
OG-RAG's effectiveness in delivering reliable, fact-
based answers across specialized domains.

2 Related Work

Retrieval methods. In addition to the traditional
retrieval augmented generation (RAG) (Lewis et al.,
2020), graph-based approaches have also been pro-
posed. These include GraphRAG (Edge et al.,
2024), RAPTOR (Sarthi et al., 2024), and other
knowledge graph-based frameworks such as Lla-
malndex ! and Neo4J 2. They have advanced LLM

"https://tinyurl.com/y7t2mt8s
Zhttps://tinyurl.com/2rd38usb

performance by leveraging structured knowledge
graphs to organize and retrieve contextually rel-
evant information. However, these approaches
rely on ad-hoc extraction of entities and domain-
specific information, often without grounding in
domain expertise. Recent papers (Li et al., 2024;
Luo et al., 2023; He et al., 2024) explore retriev-
ing and reasoning over structured knowledge bases
or existing knowledge graphs to further enhance
factual retrieval. However, these require access to
a complete knowledge graph, which is often pro-
hibitive. Our proposed approach instead leverages
domain experts-defined semantic schema to ground
unstructured documents for improved retrieval. A
contemporaneous work, SiReRAG (Zhang et al.,
2024a), further combines the strengths of RAP-
TOR’s semantic similarity structure and entity-
driven GraphRAG structure, motivating future ex-
tensions of combining OG-RAG’s domain-specific
structure with a general semantic-similarity struc-
ture to create a domain-adaptive and generalizable
unified RAG system.

Domain adaptation for RAG. Adapting general-
purpose RAG systems to specific domains is a chal-
lenging task and previous techniques have involved
end-to-end training of retriever and generator (Siri-
wardhana et al., 2023), backbone sharing (Guan
et al., 2024), self-improving (Xu et al., 2025), and
domain-specialized retriever training (Xu et al.,
2024; Cai et al., 2024). While these approaches
enhance domain adaptation, they involve retraining
and limit the adoption of these technologies to ar-
bitrary domains. Thus, domain ontologies present
a unique opportunity to ground and adapt the re-
trieval process. Traditionally, ontologies have been
created to provide a consistent and clear frame-
work for organizing domain knowledge (Guarino
et al., 2009; Jackson, 1990). With the advent of
LLMs, there promise has been identified in auto-
mated learning of ontologies and to extract useful
domain-specific information (Babaei Giglou et al.,
2023). Other works incorporate ontology infor-
mation to verify RAG outputs, rather than struc-
turally guiding retrieval or generation (Zhao et al.,
2024). Bran et al. (2025) and Xiao et al. (2024)
propose ontology-guided RAG but their focus is
primarily on scientific documents and automated
ontology construction and entity typing tasks re-
spectively. Our work bridges this gap in the liter-
ature by leveraging ontology for general-purpose
domain-specific retrieval.
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Attribution. To enhance the interpretability and
reliability of the LLLM responses, it is important
to attribute their generation to trustworthy sources.
One way is to generate text with citations but prior
work has shown limitations of existing zero-shot
approaches (Gao et al., 2023) and specially-trained
models (Khalifa et al., 2024). Furthermore, other
forms of attribution are also explored since cita-
tions require users to search over a full page to
verify the claims in the generated response, which
is undesirable. Thus, locally-attributable meth-
ods (Slobodkin et al., 2024) and human-in-the-
loop (Kamalloo et al., 2023) strategies have also
been proposed. While these approaches provide
sentence-level attribution, complementary benefits
can be achieved through interpretable RAG con-
texts. OG-RAG provides easy-to-attribute contexts
that require only a little effort from the users to
trace the generation of the response.

Deductive reasoning. Traditional rule-based rea-
soning systems provide interpretable and easily
controllable ways to deduce novel conclusions
from a given input (Jackson, 1990; Saparov et al.,
2023). However, they lack the flexibility and gener-
alization capabilities of neural models like LL.Ms.
On the other hand, LLMs are prone to arbitrary hal-
lucinations in deductive reasoning, which can be
problematic in structured workflows (Wang et al.,
2024; Saparov et al., 2023). OG-RAG combines
the structured precision of fact-based reasoning
with neural flexibility by anchoring unstructured
text to domain-specific vocabulary, enabling LLMs
to apply domain-specific rules more effectively.

3 Background

An ontology is a formal representation of key enti-
ties and their relationships within a domain. For ex-
ample, in the agriculture domain, entities like crops,
soil, and weather conditions are defined, along with
relationships such as "crop is grown in a region"
or "soil has moisture level". Earlier foundational
efforts have led to the widespread standardization
of domain-specific ontologies in many industries,
such as healthcare 3 retail # , and energy >. It differs
from taxonomy or classifications as it allows for
richer relationships between entities that need not
be hierarchical. More formally,

3https ://tinyurl.com/3e8pc2xr
*https://tinyurl.com/u5x2nck4
Shttps://tinyurl.com/4re4xekx

Definition 1 An ontology O C S x Ax (SU{¢})
consists of a set of triples that relate a set of entities
S using a set of attributes A, where (s,a,v) € O
denotes that the subject entity s has an attribute a,
and the value v := vo (s, a) is either: (1) Another
entity s' € S, or (2) An unspecified domain value,
denoted by ¢. Here, v := vp (s, a) represents the
value of the attribute a for entity s, which is either
another entity within the ontology or an undefined
(unspecified) text or data.

For example, consider a subject entity s =
“Crop”, that can have the attribute a; = “is
grown in”’, which maps it to another object entity
vo(s,a1) = s = “Crop Region”. Additionally,
the same entity s can have another attribute as =
“has name”, which maps it to an arbitrary text, de-
noted as vo (s, az) = ¢, indicating that this value
is unspecified and can be any relevant text or name
in the domain. These unspecified values can thus
be filled by extracting relevant knowledge from
domain-specific documents D.

However, different parts of the documents may
provide distinct yet valid text/data values related
to the same ontology entity. For example, one sec-
tion may talk about Soybean crops grown in the
Northwest region, while another talks about the
one grown in the Northeast region. To represent
this variability, we introduce factual blocks, each
capturing a localized subject—attribute—value triple
grounded in a specific context. This mechanism
allows us to preserve the contextual distinction
between values tied to the same ontology entity,
avoiding overwriting or flattening these differences
during grounding. Therefore, we model the ex-
tracted information Z := D(Q) using a set of self-
contained factual-blocks F' € D(O), i.e.,

Definition 2 Ontology-mapped data T := D(O)
is a set of factual-blocks, where each factual-
block F represents a set of ontology relationships
(s,a,v) € F, where the value v is derived as fol-
lows: If value vo(s,a) = ¢ thenv € V is extracted
from the document text; otherwise v = vp (s, a) is
the value provided by the ontology.

Thus, ontology-mapped data represents self-
contained and ontology-grounded information ex-
tracted from domain-specific documents. For exam-
ple, a factual-block F' might represent that: a term
s =“Seed” is a; = “of crop” v(s, a;) ="“Soybean”
is ag = “is grown in” v(s, az) = (s’ =“Crop Re-
gion”, which a3 = “has a name” of v(s’,ag) =
“Northwest Region” ). We employ the ontology
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Figure 2: OG-RAG: Ontology-Grounded Retrieval-Augmented Generation

mapping prompt described in Appendix C.2, split-
ting documents into large chunks of 8192 tokens.
Using this setup, we then generate the JSON-LD
through GPT-40’s structured output capability.

4 OG-RAG

Then, we propose Ontology-Grounded Retrieval
Augmented Generation (OG-RAG) that integrates
ontologies, i.e., formal representations of domain-
specific concepts and their relationships, into the
retrieval process. Unlike existing approaches that
rely on general-purpose embeddings or ad-hoc con-
text generation without grounding in domain ex-
pertise, OG-RAG leverages ontology-driven hy-
pergraph retrieval to dynamically adapt LLMs to
structured knowledge bases and complex domain-
specific queries. Figure 2 shows the high-level
pipeline of the proposed method and we describe
each component in more detail below.

4.1 Hypergraph Construction

The first part includes mapping the general domain-
specific documents D onto a given ontology O and
converting the available information into a set of
factual blocks F'. To do this, we leverage GPT-40
and prompt it to fill domain-specific values into the
ontology from the chunked parts of the documents,
thus, converting the documents into an ontology-
grounded format suitable for retrieval. The com-
plete prompt is provided in Appendix C.2.

4.1.1 Hypergraph Transformation

First, we note that a factual-block F' € D(O) is
a nested structure by definition since a value can
be mapped to another subject-attribute pair in it.
This can be challenging to process directly and effi-
ciently. To address this, we flatten the structure so
that each factual-block F' in the ontology-mapped

data 7 is converted into a set of flattened factual-
blocks F', making the information easier to handle
without significant loss of detail. Algorithm 1 be-
low outlines the flattening process, which is also
illustrated in Figure 2.

Algorithm 1 Flattening a factual block

Require: Factual block F', Concatenation .
Ensure: A set of flattened factual-blocks F
FLATTEN(F') flattens any nested information
present in F'.
1: procedure FLATTEN(F')

2: F « {}

3 Fo + {(s®a,v): (s,a,v) € Fv €
V,(s',d’,s) ¢ F}.> can be directly flattened

4: F+«FuU {Fo}

5. for (s,a,s') € F\F do.

6: if s’ € S then

7: Fy « FoU{(s®ads ®d,v):
(s',d',0v") € F}.

8: F < F U FLATTEN(Fy).

9: end if

10: end for

11: return I’

12: end procedure

We define each flattened factual-block as a hy-
peredge e € £, where a hyperedge e connects mul-
tiple hypernodes {n; € N}, where each hypernode
n; € F is a key-value pair where the key concate-
nates the nested entities and their attributes. Impor-
tantly, this flattening process preserves the integrity
of the information without introducing data loss.
This allows OG-RAG to capture multi-dimensional
relationships between facts, unlike simpler graph-
based models that only handle pairwise connec-
tions. We can now convert the extracted informa-
tion from the documents into a more structured
hypergraph, defined as follows:
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Definition 3 A hypergraph H(Z) := (N, &) con-
sists of hypernodes N and hyperedges £, such that
each hyperedge e € & is an arbitrary set of hyper-
nodes. Defining P(X) as the power set of X and
@ X as the set that is formed by concatenating
the strings within each element of the set X, we
have the hyperedges & C P(N') and the hyper-
nodes N C [ P(S x A)] x V, where X is the
cartesian product.

With this definition, a hypernode is essentially a
key-value pair and we declare a hyperedge to be a
true fact grounded in domain-specific data, where

Definition 4 A fact is a logical assertion between
two entities - subject and object, through a func-
tional attribute, which can be evidentially verified
to be either true or false.

Now, let us consider two hypernodes, nj(s; @
ay,v1) =(Crop has name, Soybean) and na(py €
P P(S x A), v2) =(Crop has growing zone Crop-
GrowingZone with name, Northwest) forming an
hyperedge e =((Crop has name, Soybean), (Crop
has growing zone CropGrowingZone with name,
Northwest)) can be represented as a simplified
fact: hasGrowingZone(Crop has name Soybean) =
Northwest, which can be evidentially verified to be
True or False.

4.2 Hypergraph-based retrieval

With the hypergraph constructed on domain-
specific information, i.e., H(Z(D, O)), OG-RAG
is now ready to retrieve relevant context based on
user query () that can support the LLM in gener-
ating accurate, domain-specific responses. Algo-
rithm 2 presents the complete pre-processing and
retrieval algorithm while the complexity analysis
is provided in Appendix A.2.

4.2.1 Relevant Hypernodes

We first identify the set of hypernodes relevant to
a given query. Using Definition 3, a hypernode
n € N can be represented as a key-value pair that
comes from the elements in the sets S, A4, V. A
hypernode can then be considered relevant to a
query if: (1) the query pertains to an attribute a of
the term s, or (2) the query focuses on an object
with specific values v. In other words, a hypernode
is relevant if either the similarity between the key
(representing concatenated entities and attributes)
and the query @ is high, or the similarity between v
(the value) and the query @ is high. OG-RAG finds
two sets of query-relevant hypernodes: Ng(Q) and

Algorithm 2 OG-RAG

Require: Query (), Domain-specific Ontology O,
Documents D, Sentence embedding function
Z,LILM M, Maximum length L

Ensure: Retrieved context Cy(Q) is grounded in
the ontology and relevant to the query

1: procedure OG-PREPROCESS(O, D, M)

2: 7 +LLM My(Mapping Prompt, D, O)
3: H(Z) < Hypergraph with edges
Upez FLATTEN(F).

4: end procedure

5: procedure OG-RETRIEVE(Q, H(Z),Z, k, L)
6: N, € + nodes, edges of hypergraph H (7).
7: NS(Q) A tOpk(&aw)eN’(Z(S@a), Z(Q)>
8 NV(Q) A topk(s,a,v)e./\/<z(v)’ Z(Q)>

9: N(Q) %Ns(Q)UNv(Q)

0 Cul@) < {}

11: while (|JV(Q)] > 0) V (|Cx(Q)| < L) do

12: Cu(Q) — Cu(Q) U
arg max,cg [{n € N(Q) : n € e}|
13: end while

14: return Cy (Q)
15: end procedure

Ny (Q) to represent the two sets respectively. In
particular, Ng(Q) denotes the top k hypernodes
with the highest similarity between their attributed
term, i.e., s @ a and the query @ in the vector
space Z. Similarly, Ny (Q) represents the top k
hypernodes with the highest similarity between
their value v and the query (). Thus, for each query,
we extract 2 - k relevant hypernodes.

4.2.2 Relevant Hyeredges as Context

We form the relevant context as the set of hyper-
edges Cx(Q) C & that minimally cover the rel-
evant hypernodes, N'(Q) = Ns(Q) U Ny (Q).
This is formulated as an optimization problem and
solved in a greedy manner. Since the objective of
minimizing the number of hyperedges is linear un-
der a matroid constraint, the solution can be shown
to be optimal (Korte et al., 2011). Specifically, we
maintain a dictionary that maps each hypernode
n € N to the set of hyperedges that it is a part
of, i.e., E(n), where e € £(n) = n € e. In
each iteration, we add the hyperedge that covers the
largest number of uncovered nodes to the context
and remove those nodes from further considera-
tion. This process is repeated until either we have
L hyperedges or all the relevant nodes are covered.
In this way, the context is constructed as a col-
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lection of up to L hyperedges representing facts
relevant to the given query. By organizing infor-
mation into hyperedges, OG-RAG is able to group
related facts together, ensuring that the retrieved
context is both compact and comprehensive, cap-
turing all necessary facts to support accurate LLM
responses, while optimizing for efficiency.

5 Experimental Setup

Datasets. We evaluate OG-RAG in two distinct
domain categories that involve specialized work-
flows: (a) Industrial workflows, with a focus on
the agriculture domain, where precise, data-driven
decisions are critical for crop management and re-
source allocation, and (b) Knowledge work, where
we evaluate it on research and analysis tasks in the
news domain. For the agriculture domain, we uti-
lize two high-quality datasets. These comprise 85
documents prepared by agriculture experts, focus-
ing on the crop cultivation of Soybean and Wheat
in India ©. For the news domain, we use the pub-
licly available dataset from Multi-hop RAG (Tang
and Yang, 2024) to generate a hard subset of RA-
GAS reasoning questions, focusing complex and
multifaceted news stories. This results in a total
of more than 45K entities’ attributes relationships.
We provide exemplary excerpts from the datasets
along with more statistics in Appendix B. For dis-
cussion on scalability to larger datasets, please refer
Appendix A.3. Note that we avoid any comparison
with general RAG datasets since they are specif-
ically designed to contain data from various do-
mains that does not align with the main goal of our
work to enhance the domain-specific adaptation.

Ontology. We use a semi-automated approach
to construct the ontology for both domains, which
reflects the broader applicability of OG-RAG in
specialized workflows. For the agriculture domain,
the ontology was generated using a proprietary on-
tology learning module, which was then reviewed
and verified by multiple experts specializing in crop
cultivation. For the news domain, we modify the
existing Simple News and Press (SNaP) ontology’.
The complete ontologies for both domains are pro-
vided in Appendix C along with more details.

Large Language Models. We consider 4 large
language models for zero-shot query answering

®Dataset available here: https://github.com/
agaronagoovi/Multihop-Agri-QA-dataset
"https://iptc.org/thirdparty/snap-ontology/

while adding the retrieved context from different
methods: 2 closed-box models ® (GPT-40-mini and
GPT-40) and 2 open-source models ° (Llama-3.1-
8B and Llama-3.1-70B). These models have been
chosen for their remarkable understanding and abil-
ity to reason in natural language. We consider 4096
completion tokens and a temperature of 0.

Baselines. We compare OG-RAG against three
leading retrieval-based methods, representing state-
of-the-art approaches to context retrieval and
generation, to demonstrate its effectiveness: (1)
RAG (Lewis et al., 2020) that retrieves relevant
contiguous chunks from documents using maxi-
mum inner product search, (2) RAPTOR (Sarthi
et al., 2024) that clusters similar chunks and sum-
marizes them through an LLM for additional infor-
mation, (3) GraphRAG (Edge et al., 2024) that
forms a knowledge graph of the documents by en-
tity and relationship extraction and clustering them
into semantic communities.

We use the text-embedding-3-small ® as the sen-
tence embedding function across all retrieval meth-
ods and GPT-40 as the LLM (i.e., M) for pre-
processing. For each method, we find the top {2, 5}
contexts and and select the one with the highest per-
formance. We select these values based on a trade-
off between coverage and input length constraints.
For more details and analyses on all hyperparame-
ters, refer Appendix D.1 and E.I.

Metrics. Building on the RAGAS frame-
work (RAGAS, 2024), we use the following met-
rics to assess the quality of the retrieved con-
text and the generated responses while using text-
embedding-3-small as the embedding model and
GPT-40 as the LLM.

1. Context Recall (C-Rec): Proportion of claims
in the ground-truth answer that can be attributed
to the retrieved context.

2. Context Entity Recall (C-ERec): Proportion
of entities in the ground-truth answer that are
present in the retrieved context.

3. Answer Similarity (A-Sim): Similarity be-
tween the generated response and the ground-
truth answer in the embedding space.

4. Answer Correctness (A-Corr): A combination
of answer similarity (defined above) and factual
similarity, which is the F1-score between the

8https://openai.com/index
*https://ai.meta.com/blog/meta-1lama-3-1/
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Soybean Wheat News

C-Rec C-ERec C-Rec C-ERec C-Rec C-ERec

RAG 0.22 0.08 0.14 0.04 0.01 0.01

RAPTOR 0.54 0.19 0.85 0.29 0.82 0.46
GraphRAG  0.41 0.14 0.78 0.05 -

OG-RAG  0.84 0.41 0.95 0.34 0.82 0.52

Method

Table 1: Quality of contexts retrieved by different
methods for domain-specific query-answering. We
found the 95% confidence interval to be < 0.05 for
all metrics, representing small margin of error. It is
not reported here. The symbol ¢-’ denotes that the
computation did not complete within 1 day.

claims in the ground-truth answer and those in
the generated response.

5. Answer Relevance (A-Rel): Measures how eas-
ily the original question can be inferred from
the generated response.

6 Experiments

6.1 Query answering

Question Generation. We generate a set of
question/answer pairs using the RAGAS frame-
work (RAGAS, 2024) to validate the factual accu-
racy of our proposed method. RAGAS prompts off-
the-shelf LLM to generate questions of varying dif-
ficulty, each with the corresponding ground-truth
answers and contexts. Specifically, we generate up
to 100 unique questions from RAGAS focused on
multi-hop reasoning abilities, which is commonly
required in specialized domain tasks. Examples of
these generated questions, along with their ground-
truth answers, are provided in Appendix E.2.

6.1.1 Does OG-RAG retrieve more useful
contexts?

A context is deemed useful for a query if it provides
sufficient information to derive the ground-truth re-
sponse. We evaluate this using Context Recall and
Context Entity Recall. Table 1 compares the perfor-
mance of different retrieval methods across three
datasets. OG-RAG outperforms the baselines in al-
most all cases, boosting the recall of correct claims
by 55% and recall of correct entities by 110%. The
only exception is the News dataset where OG-RAG
matches the context recall performance of RAP-
TOR but still delivers better performance. Note
that here we select the best of either top-2 or 5
contexts for each method and defer individual per-
formance to Appendix E.1.

6.1.2 Does OG-RAG help generate factually
accurate responses?

A useful context should lead to more factual and
precise response when incorporated into the query
for various LLMs. We evaluate this by compar-
ing how closely the generated responses/answers
align with the ground-truth answer when added as
context across different LLMs. Table 2 presents
the results of response correctness, similarity, and
relevance for the 3 datasets. OG-RAG consistently
outperforms the baselines, significantly improving
answer correctness by 40%, and answer relevance
by 16%. The only notable exception where OG-
RAG slightly underperforms is in the Answer Rel-
evance for Wheat and Soybean datasets in GPT-40
and Llama-3-70B. This is likely due to the broad
scope of the retrieved context, which can some-
times introduce extraneous information. This can
be possibly mitigated through further fine-tuning of
the hypergraph retrieval mechanism, adjusting the
level of detail to suit the complexity of the queries
expected. We leave domain-specific optimization
for future work, as the current approach already
delivers good responses across all datasets.

6.1.3 Is OG-RAG efficient?

Finally, we demonstrate that OG-RAG is computa-
tionally efficient by comparing its pre-processing
and per-query retrieval times with other methods
across different datasets. Table 3 shows that OG-
RAG performs nearly as efficiently as a simple
RAG method, with only a minimal increase of at
most 2 seconds during querying time despite be-
ing at least 100% better in factual accuracy. OG-
RAG is also shown to have significantly lower
computational time than more competitive base-
lines such as RAPTOR and GraphRAG at both
the pre-processing and query stages, particularly
highlighted by a 50% drop in the pre-processing
times. This efficiency is particularly critical for
real-time applications, such as agricultural moni-
toring systems, legal research, and automated news
fact-checking, where quick retrieval and processing
of domain-specific knowledge is essential.

6.2 Context attribution

Survey design. To assess how effectively the
proposed method aids humans in verifying facts
within LLM-generated responses, we conduct a
human study measuring the time taken to verify
whether the given context supports the generated
response. We randomly select 10 queries from the
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Method Soybean Wheat News

A-Corr  A-Sim  A-Rel A-Corr A-Sim A-Rel A-Corr A-Sim  A-Rel

Llama-3-8B
RAG 0.26 0.59 0.22 0.26 0.65 0.23 0.15 0.52 0.08
RAPTOR 0.34 0.66 0.59 0.54 0.76 0.67 0.53 0.74 0.68
GraphRAG  0.26 0.63 0.52 0.43 0.35 0.27 - - -
OG-RAG 0.40 0.65 0.60 0.54 0.73 0.72 0.52 0.76 0.69

Llama-3-70B
RAG 0.27 0.59 0.19 0.26 0.65 0.14 0.17 0.58 0.09
RAPTOR 0.41 0.70 0.64 0.58 077 0.75 0.39 0.72 0.64
GraphRAG 030 0.65 0.55 0.47 0.37 0.29 - - -
OG-RAG 0.54 0.75 0.56 0.63 0.77 0.73 0.51 0.77 0.67

GPT-40-mini
RAG 0.29 0.66 0.59 0.33 0.73 0.66 0.34 0.73 0.64
RAPTOR 0.34 0.68 0.85 0.51 0.77 0.88 0.51 0.77 0.88
GraphRAG 025 0.63 0.65 0.35 070 085 - - -
OG-RAG 0.48 0.72 0.77 0.62 0.78 085 0.62 0.78 0.85

GPT-4o
RAG 0.31 0.62 0.29 0.29 0.69 0.28 0.27 0.67 0.20
RAPTOR 0.34 0.68 0.68 0.59 0.79 0.89 0.58 0.84 0.76
GraphRAG ~ 0.26 0.63 0.63 0.35 0.70 0.86 - - -
OG-RAG 0.48 0.72 0.79 0.62 0.79 0.79 0.66 0.86 0.73

Table 2: Quality of the answers generated by dif-
ferent LL.Ms using different retrieval methods. We
found the 95% confidence interval to be < 0.05 for
all metrics, so it is not reported here. The symbol
¢-> denotes that the computation did not complete
within 1 day.

Method Soybean Wheat News

Tpre i Tquery ‘|( Tpre Jr Tquery wL Tpre »L Tquery Jr
RAG 11.41 2.49 10.55 2.36 449.21 3.56
RAPTOR 71.66 4.81 61.56 4.38 1513.57  5.45
GraphRAG 157.04 595  307.37  5.65 >1 day -
OG-RAG 29.61 3.75 47.76 4.09 655.15 4.12

Table 3: Efficiency of different retrieval methods on
domain-specific query-answering. Tpre and Tguery
denote the average pre-processing and query time
in seconds. We found the variance to be within 5
seconds, so it is not reported here.

agriculture dataset and present the responses gen-
erated by GPT-40 using both RAG and OG-RAG,
each paired with their respective contexts. We ex-
clude RAPTOR due to its content similarity with
RAG, and GraphRAG due to its prohibitive con-
text length. Participants are asked to evaluate the
level of factual support the context provides for the
response on a scale of 1-4, where 1 corresponds
to “no support” and 4 corresponds to “full sup-
port” for all claims. We also track the time each
participant takes to complete this task. Each partici-
pant is shown 10 questions, consisting of 5 random
queries, each paired with both RAG and OG-RAG
responses and contexts in a randomized order. To
ensure fairness, each query is presented an equal
number of times across all participants. Examples
of the survey design can be found in Appendix F.

Results. We recruited a total of 16 participants,
aged 18-34, and familiar with LLMs within a
university campus after approving their consent.
Table 4 presents the average time taken and the

Method Time taken |  Support [1-4] 1
RAG 61.15 £ 28.48 2.67£0.30
OG-RAG 43.50+18.08 3.46 £0.19

Table 4: Comparison of the time taken and support
given by humans for the generated responses to the
contexts produced by RAG and OG-RAG, presented
with 95% confidence intervals.

level of support participants attributed to the con-
texts. We observed that OG-RAG significantly re-
duced the time required by 28.8% and increased
the human-attributed support by 29.6% on aver-
age. Furthermore, the median token count for OG-
RAG responses is 229 (Soybean) and 261 (Wheat),
versus 264 and 278 respectively for standard RAG.
These numbers show no meaningful difference in
length in both approaches, while humans still find
OG-RAG answers easier to attribute to context.
Thus, OG-RAG not only enables faster fact ver-
ification but also provides more robust and clear
contexts, making the system more user-friendly
and reliable for context fact attribution.

6.3 Factual Deduction

Deductive Facts. We assess OG-RAG’s ability to
enhance deductive reasoning in LLMs by evaluat-
ing how well it can generate new conclusions based
on a set of predefined facts. These facts, grounded
in domain-specific ontologies, provide the frame-
work for reasoning tasks that require multi-step
logic. Specifically, for this experiment we use six
agricultural facts to deduce CO2 emissions, as this
information is not directly available in the docu-
ments. These facts are partially derived from indus-
try sources on the relationship between fossil fuels,
pesticides, and greenhouse gases '°:

1. Farm area in the North Eastern Hill zone is 1 hectare or ha.
2. Farm area in North Plain Hill zone is 2 hectares or ha.

3. Herbicide production is calculated by multiplying the farm
area by the recommended herbicide quantity.

4. 1 kg of herbicide production results in 18.22—26.63 kg of
CO2e emissions.

5. 1 kg of insecticide production results in 14.79--18.91 kg
of CO2e emissions.

6. 1 kg of fungicide production results in 11.94—29.19 kg of
CO2e emissions.

Question Generation. To create the evaluation

test set, we prompt GPT-4o0 following the RA-

GAS guidelines (RAGAS, 2024) to generate ques-

tions that require the application of deductive facts

10Adapted in part from https://tinyurl.com/mw3jxhxk
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and a randomly sampled chunk from the ontology-
mapped data to generate the responses. Specifically,
we use the following prompt:

Given the following data and a set of deductive
rules, generate a hard question that requires the
application of the rules on the data to generate
the answer.

Data: < Domain-specific data >

Rules: < Fixed set of rules >

Question:

Next, we make two additional LLM calls to gen-
erate the corresponding answer and assign a rating
from 1 to 10, evaluating how well the question tests
the application of the rules on the data to derive the
answer. We select 10 questions that receive a rating
of at least 7. A full list of generated questions is
provided in Appendix E.2.

Results. Table 5 presents the results of factual
deductions across two agriculture datasets, using
GPT-40 and GPT-40-mini as the underlying LLMs.
In all cases, except two, the OG-RAG context sub-
stantially improves the correctness, similarity, and
relevance of the generated answers compared to
baseline methods. This demonstrates that OG-RAG
is more effective at supporting deductive reason-
ing from a fixed set of facts. One exception is in
the Soybean dataset for answer relevance which
again points to a slightly less pertinent answer due
to a broader retrieved context by OG-RAG. Over-
all, these results confirm that OG-RAG provides a
more robust context for deducing new facts. We
also note an unexpected low performance of RAP-
TOR on Soybean with GPT-40 where the retrieved
context leads GPT-40 to inaccurate final answers as
measured by RAGAS metrics. This shows how de-
ductive reasoning can be sensitive to small changes
in the retrieved contexts since the same context
works alright for GPT-40-mini.

6.4 Ontology sensitivity

—8— Normalized Answer Similarity
—m- Normalized Answer Relevance
-4- Normalized Context Recall

We also test the sensitivity
of our results on the qual-
ity of ontology by randomly
dropping certain attributes
from the ontology with a
probability. The adjoining
figure shows the min-max

ontlogy Dropat Frobabiy

normalized values of different metrics on Soybean
at varying dropout probabilities. We observe that
the results are preserved until about half of the

information in the ontology is dropped.

Method Soybean Wheat
A-Corr  A-Sim  A-Rel A-Corr A-Sim  A-Rel
GPT-40-mini
RAG 0.46 0.89 0.66 0.41 0.92 0.64

RAPTOR 0.42 0.89 0.81 0.50 0.92 0.74
GraphRAG  0.44 0.91 0.83 0.49 0.93 0.82
OG-RAG 0.50 0.92 0.75 0.53 0.94 0.83

GPT-4o0
RAG 0.44 0.90 0.56 0.42 0.92 0.54
RAPTOR 0.01 0.11 0.03 0.41 0.91 0.74
GraphRAG 048 0.92 0.84 0.44 0.90 0.73
OG-RAG 0.56 0.92 0.75 0.47 0.94 0.83

Table 5: Comparison of different retrieval methods
in their ability to support deductive reasoning from
pre-defined rules in different LLMs.

7 Conclusion

In this work, we propose OG-RAG, a novel
hypergraph-based retrieval method for domain
adaptation of LLMs using ontology-grounded
retrieval-augmented generation. OG-RAG has
wide applicability in domains, including health-
care, law, agriculture, journalism, and research. Ex-
periments on agriculture and news datasets show
OG-RAG improves factual accuracy, accelerates
answer attribution, and strengthens rule-based rea-
soning. By offering greater flexibility and control
over how context is retrieved and utilized, OG-
RAG paves the way for more adaptable and reli-
able language systems to incorporate controlled
vocabulary and structured evidence retrieval. This
not only enhances user comprehension of gener-
ated responses but also facilitates smoother integra-
tion of LLMs into industrial workflows and knowl-
edge work. Future works can explore automated or
semi-automated ontology construction techniques
to build these frameworks in an end-to-end fash-
ion, ensuring broader applicability of retrieval-
augmented models across diverse domains.
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Limitations

Ontology creation. Since we require domains to
have well-defined ontologies for effective domain
adaptation and retrieval, we are limited by the avail-
ability of these ontologies. Here, we take the advan-
tage of legacy systems developed in most domains
such as knowledge work and industrial workflows,
that have already developed detailed ontologies.
However, this dependency can be a limitation in
newer and fast-developing domains such as technol-
ogy. We thus leave it for future works to abstract
the domain knowledge as ontologies in an auto-
mated manner (Babaei Giglou et al., 2023). Our
proposed hypergraph-based retrieval strategy can
directly benefit from these innovations as we estab-
lish its efficacy to accurately and succinctly answer
domain-specific questions given its ontology.
Human experiment. All 16 participants were
university-educated people aged 18-34 with fa-
miliarity with LLMs. While larger-scale studies
would yield more robust conclusions, our user
study serves as a targeted, cost-conscious evalu-
ation to gather evidence of context attribution as
aligned with the scope of our work.
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Appendix
A Method details

A.1 Retrieval-Augmented Generation

Given a user query () and the relevant context as
found above, we prompt the LLM M to use this
context to answer the query as M(P(Q,Cy(Q)),
where P denotes the corresponding textual prompt:
Given the context below, generate the answer to
the given query. Note that the context is provided
as a list of valid facts in a dictionary format.
Context: Line-separated retrieved context Cy(Q)
Query: User-given query ()

Answer:

A.2 Complexity Analysis

Algorithm 2 outlines the full procedure of the pro-
posed method which consists of two main compo-
nents: (1) OG-PREPROCESS, applied to the set of
documents once, and (2) OG-RETRIEVE, used to
retrieve the relevant context for each query.

A.2.1 Query Complexity

Assume the context size for the LLM M is N¢.
The ontology O, which can be written in a JSON-
LD or textual format, has a length |O|, where
the attributes are mapped to their corresponding
ranges in the natural language vocabulary. OG-
PREPROCESS phase may involves several LLM
calls depending on the number of document chunks,
specifically, |D|/N¢ + |O| number of calls. We
do not make any additional LLM calls during the
querying time in the OG-RETRIEVE procedure.

A.2.2 Time Complexity

We ignore the time taken by LLM calls while calcu-
lating the time complexity, as this is accounted for
under query complexity. Thus, the time complexity
of the OG-PREPROCESS step only involves the hy-
pergraph transformation by flattening the mapped
data. Let us assume we have |Z| factual-blocks de-
rived from the documents, and each factual-block
has a maximum length of |F|,,q, = O(]O]). We
consider two cases: (1) Minimal or No Nesting:
In this case, the time complexity is determined by
step 4 in the algorithm, leading to a complexity
of O(]O||Z]), (2) Maximum Nesting: In this sce-
nario, step 4 may result in an empty set. Thus,
each factual-block F' can be recursively flattened
log |O| times while searching through the entire set,
leading to a time complexity of O(|Z||O|log |O]).

A.2.3 Space Complexity

The only storage required is for the hypergraph
structure H(Z), which is directly proportional to
the number of hyperedges |£| = |Z]|.

A.3 Scalability

We note that large documents may lead to ex-
tremely large hypergraphs with millions of hyper-
edges. However, most of the time is taken up by
the pre-processing hypergraph creation step due
to additional LLM calls and flattening. A desir-
able property of our method is that this only in-
curs a one-time cost along with the embedding
pre-computation. At query time, our method will
thus only involve a maximum inner product search
over the number of hypernodes and hyperedges. If
the dataset leads to a creation of a huge hypergraph,
this can sometimes be prohibitive but even with
1000-sized hypergraph, we find stable and efficient
performance (in Table 3 and 2).

B Datasets

Complexity of the data. While the number of
documents in each dataset may appear modest, we
emphasize that the knowledge base derived from
these documents, via ontology grounding, is sig-
nificantly richer and more complex than the raw
document count suggests. The agricultural ontol-
ogy (Figure 3) consists of 76 nodes (44 leaf nodes),
while the news ontology (Figure 4) includes 40
nodes (19 leaf nodes). These ontologies are used
to ground the document content, resulting in large
and highly structured hypergraphs. Table 6 pro-
vides detailed statistics illustrating the scale and
complexity of these hypergraphs. Thus, even the
filtered News dataset produces a hypergraph with
7,497 nodes and 4,573 hyperedges, with individual
hyperedges connecting up to 22 nodes and node
degrees reaching as high as 560. These properties
indicate a highly interconnected structure, where
retrieval is far from trivial. The resulting scale sim-
ulates the kinds of complexity expected in larger
real-world knowledge graphs.

C Ontology
C.1 Ontology Creation

For the agricultural domain, we use a proprietary
ontology reviewed and verified by multiple experts
on crop cultivation following the steps in the liter-
ature on ontology (Jackson, 1990; Guarino et al.,
2009). For the news domain, we modify the already

32963



Dataset  # Hypernodes # Hyperedges Av. nodes per hyperedge Min. nodes per hyperedge Max. nodes per hyperedge ~Av. degree Min. degree Max. degree

Soybean 282 209 6.08
Wheat 253 253 5.61
News 7497 4573 9.67

9 4.51 1 198
9 5.61 1 253
22 5.89 1 560

Table 6: Dataset statistics

existing Simple News and Press (SNaP) ontology
by simplifying it by removing the image attributes
and flattening some hierarchies. Specifically, we
simplify its structure by excluding certain classes,
such as those related to images, videos, and the
"stuff" hierarchy. Instead, we allow an asset to
be linked to multiple events, and each event can
be associated with multiple organizations and per-
sons. These ontologies, as shown in Figures 3 and
4, are created by the experts to keep the abstract
information of the domain, such that they can work
across different documents from that domain. This
can be verified by the fact that one agricultural on-
tology works for both Soybean and Wheat, while
one News ontology is applicable to various news
documents. Furthermore, multiple domains have
organized their knowledge as ontologies (Jackson,
1990; Guarino et al., 2009), and we leverage these
advancements directly with our method, as high-
lighted through the use of SNaP ontology.

C.2 Ontology Mapping Prompt

Here is a context definition for a crop
cultivation ontology.

Context Definition:
{context_definition}

Generate a JSON-LD using the following
data and the above context definition
for crop cultivation ontology.

Use ’@graph’ object namespace for the
data in JSON-LD.

Be comprehensive and make sure to fill
all of the data.

Keep nesting to the minimum and still be
able to disambiguate.

If there are multiple subfields
enumerated in a ’List’ namespace then do
not combine them in a single subfield,
keep them as separate subfields to
disambiguate.

Ensure that you populate all items in the
’List’ namespace, do not leave any item.
Do not include any explanations or
apologies in your response.

Do not add any other text other than the

generated JSON-LD in your response.
Generate in Json format.

Data:
{data}

JSON-LD json:

C.3 Examples

Figures 3 and 4 show agriculture and news ontolo-
gies used in the work.

D Additional experimental details

All experiments were conducted using Python
3.8.12 on an Ubuntu 18.04 PC with an Intel Xeon
E5-2698 v4 CPU @ 2.20GHz and 512 GB RAM.
As our method primarily relies on OpenAl API
queries, GPU infrastructure was not required.

D.1 Baselines

1. RAG (Lewis et al., 2020): RAG (Retrieval-
Augmented Generation) retrieves query-relevant
document chunks by embedding them into a
vector space and then finding the context based
on the maximum chunk-query A-Sim.

2. RAPTOR (Sarthi et al., 2024): RAPTOR clus-
ters document chunks into hierarchical struc-
tures and uses an LLM to summarize the clusters
as additional context. For this experiment, we
set the tree depth to 3 and use the collapsed-tree
retrieval strategy.

3. GraphRAG (Edge et al., 2024): GraphRAG
retrieves from a knowledge graph constructed
using an LLLM by extracting entities and re-
lationships and clustering them into semantic
communities. We use default graph construc-
tion prompts and local search with community
level as 2 for retrieval. Other parameters are:
Encoding: cl100k_base, Entity Extraction:
NLTK-based, Vector Store: Lancedb, Graph
Layout: Zero graph, Community Detection:
Graph intelligence-based, Entity Types: Orga-
nization, Person, Geo, Event, Prompts: Default

32964



OG-RAG RAG Raptor
Dataset  Metric Top-2 Top-5 Top-2 Top-5 Top-2 Top-5
Soybean A-Corr 043 048 031 031 034 034

A-Sim 070 072 062 063 0.68 0.68
A-Rel 069 079 029 029 069 0385
C-Rec 074 084 015 022 054 059
C-ERec  0.34 041 006 008 020 0.23

Wheat  A-Corr  0.66 062 025 029 054 0.60
A-Sim 078 0.79 0.69 070 0.78 0.79

A-Rel 077 079 026 028 087 0.89

C-Rec 0.89 095 0.04 014 076 0.85

C-ERec  0.31 034 003 004 034 029

Table 7: Senstivity of the number of contexts. We keep

soil types, specific amendments are needed
for saline and acidic soils to optimize growth.
Therefore, no particular soil type is explicitly
advised to be avoided, but appropriate soil
management practices are necessary for differ-
ent soil conditions.

OG-RAG Answer: Sandy soil should be
avoided for growing soybeans due to its
medium to high nutrient holding capacity and
medium water holding capacity.

k = 5 when L = 2 for OG-RAG and k£ = 10 when

L =5.

for each workflow, Search Parameters: 0.5
text unit proportion, 0.1 community proportion,
top 10 mapped entities and relationships.

E Additional results

E.1 Parameter sensitivity

Table 7 shows how the results change if we con-
sider top-2 or top-5 contexts in each method.

E.2 Evaluation Questions

E.3 Soybean

Question: Which pest can be controlled
with Imidacloprid 48 FS pesticide in soybean
crops?

OG-RAG Answer: The pest that can be con-
trolled with Imidacloprid 48 FS pesticide in
soybean crops is the White Grub.

Question: What type of soil should be

Question: What is the name of the crop that
requires seeds with a germination rate of at
least 80%, should be harvested when 85-90%
pods have turned brown and lost their green
color, and should be stored in a cool, dry place
using hermetic storage bags for long-term stor-
age?

RAPTOR Answer: The context provided
does not mention a crop that requires seeds
with a germination rate of at least 80%, should
be harvested when 85-90% pods have turned
brown and lost their green color, and should
be stored in a cool, dry place using hermetic
storage bags for long-term storage. The con-
text specifically discusses soybean harvesting,
threshing, and storage practices, including a
germination rate of at least 70%, harvesting
when 95% of pods change color, and storage
recommendations. Therefore, based on the
given context, there is no crop that matches
the criteria described in the question.
OG-RAG Answer: The name of the crop is
Soybean.

avoided for growing soybeans due to its

medium to high nutrient holding capacity and
medium water holding capacity?

RAPTOR Answer: The context does not ex-
plicitly mention a specific type of soil that
should be avoided for growing soybeans due
to its medium to high nutrient holding capacity
and medium water holding capacity. However,
it does provide recommendations for manag-
ing different soil types:

- In saline soils (pH >7.5), gypsum at 150-
200 kg/ha should be applied along with or-
ganic manure. - In acidic soils (pH <6.5), lime
at 600 kg/ha is recommended.

Based on this information, it can be inferred
that while soybeans can be grown in various
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Question: Which soybean crop is recom-
mended for the Central Zone and has an early
sowing time on January 1st, 2016?

RAPTOR Answer: The context provided
does not mention any soybean crop recom-
mended for the Central Zone with an early
sowing time on January 1st, 2016. The recom-
mended sowing times for the Central Zone are
from 20th June to Sth July. Therefore, there is
no soybean crop recommended for the Central
Zone with a sowing time of January 1st, 2016.
OG-RAG Answer: The soybean crop recom-
mended for the Central Zone with an early
sowing time starting on January 1st, 2016, is




the variety "JS 20-69."

to a moisture level below 12

Question: What is the temperature range for
soybean germination and how does it compare
to the temperature requirements for flowering
and grain filling?

RAPTOR Answer: The provided context
does not specify the exact temperature range
required for soybean germination, flowering,
or grain filling. Therefore, based on general
agronomic knowledge:

1. **Soybean Germination**: Soybeans
typically germinate best at soil temperatures
between 15°C to 30°C (59°F to 86°F). Opti-
mal germination usually occurs around 25°C
(77°F).

2. **Flowering and Grain Filling**: For
flowering and grain filling, soybeans gener-
ally require slightly higher temperatures. The
optimal temperature range for these stages
is typically between 20°C to 30°C (68°F to
86°F). Temperatures above 30°C (86°F) can
negatively impact these processes, especially
if they are sustained over long periods.

In summary, while soybean germination can

occur at a range of temperatures starting from
around 15°C, the optimal conditions for flow-
ering and grain filling are generally within a
similar but slightly higher range, emphasizing
the importance of maintaining moderate tem-
peratures throughout the growing season for
optimal yield.
OG-RAG Answer: The temperature range
for soybean germination is 15-30°C. For flow-
ering, the temperature requirement is 20-30°C,
and for grain filling, it is also 20-30°C. This
means that the temperature range for germi-
nation is slightly broader on the lower end
compared to flowering and grain filling, which
have the same temperature requirements.

Question: Why conduct a seed germination
test for wheat in relation to food production?

OG-RAG Answer: Conducting a seed ger-
mination test for wheat is essential to ensure
a minimum germination rate of 85%. This is
crucial for achieving an optimum plant pop-
ulation, which directly impacts the yield. By
verifying the germination status of seeds, farm-
ers can ensure that they plant seeds that are
likely to grow successfully, leading to better
food production and higher yields.

Question: What are the recommended prac-
tices for harvesting and drying wheat grains in
the NEP Zone before storage?

OG-RAG Answer: The recommended prac-
tices for harvesting and drying wheat grains in
the North Western Plains (NEP) Zone before
storage are as follows:

1. **Harvesting:** - Harvest when the
moisture level of the grain is 25- Wheat should
be harvested 4-5 days before it is dead ripe. -
Morning is the best time for harvesting. - For
quick harvesting, use a combine harvester to
avoid losses due to shattering and lodging. - In
case of manual harvesting, make bundles and
dry them for 3-4 days before threshing with a
thresher.

2. **Drying:** - Before storage, dry the
grain by spreading it on tarpaulin plastic sheets
in bright sunlight. - Ensure the moisture level
is reduced to below 12% before storage.

E.4 Wheat

Question: What is the recommended moisture
level for harvesting wheat and how should the
grain be dried before storage?

OG-RAG Answer: The recommended mois-
ture level for harvesting wheat is 25%. Before
storage, the grain should be dried by spreading
it on tarpaulin plastic sheets in bright sunlight
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Question: What are the recommended prac-
tices for harvesting and drying wheat grains in
the Northern Hills Zone before storage?
OG-RAG Answer: In the Northern Hills
Zone, the recommended practices for harvest-
ing and drying wheat grains before storage are
as follows:

1. **Harvesting:** - Harvest when the
moisture level of the grain is 25- Wheat is
generally manually harvested, but a combine
harvester can be used for quick harvesting to
avoid losses due to shattering and lodging. -
Harvest 4-5 days before the wheat is dead ripe.




- Morning is the best time for harvesting. - In
case of manual harvesting, make bundles and
dry them for 3-4 days before threshing with a
thresher.

2. **Drying:** - Before storage, dry the
grain by spreading it on tarpaulin plastic sheets
in bright sunlight to reduce the moisture level
below 12%.

ticularly effective during major sales events
like Black Friday and Cyber Monday, when
price competition is intense. By guarantee-
ing competitive pricing, retailers can maintain
their customer base and potentially attract new
customers who are looking for the best deals.

E.5 News

Question: Which earbuds are stylish and see-
through?

OG-RAG Answer: The earbuds that are
stylish and see-through are the "Nothing Ear
Stick."

Question: Who wrote about Al risks and the
creative class?

OG-RAG Answer: Daniel Tencer wrote
about Al risks and the creative class.

Question: What else debuts with ’Hurricane
Season’ on Netflix Nov. 1?

OG-RAG Answer: On Netflix Nov. 1, along
with "Hurricane Season," the following titles
debut:

- Locked In (Netflix Film) - Mysteries of the
Faith (Netflix Documentary) - Nuovo Olimpo
(Netflix Film) - Till Murder Do Us Part: So-
ering vs. Haysom (Netflix Documentary) -
Wingwomen (Netflix Film) - 13 Going on 30
- 13 Hours: The Secret Soldiers of Benghazi -
60 Days In: Season 5 - The Addams Family -
The Big Lebowski - The Change-Up - Desper-
ado - Downsizing - Drag Me to Hell - Love in
the Wild: Season 1 - Madea’s Family Reunion
- The Mummy (2017) - Paul Blart: Mall Cop
- Paul Blart: Mall Cop 2 - Pitch Perfect - The
Scorpion King - Scott Pilgrim vs. the World -
Sherlock Gnomes - Six Feet Under: Seasons
1-5 - Sixteen Candles - The Social Network -
Ted 2 - Victorious: Season 3 - Whiplash

Question: Who hit the Hawks’ game-winning
buzzer-beater vs. the Taipans?

OG-RAG Answer: Tyler Harvey hit the
Hawks’ game-winning buzzer-beater vs. the
Taipans.

Question: Which Chrome extension by
Steven Tey aids in sharing Al replies?
OG-RAG Answer: The Chrome extension by
Steven Tey that aids in sharing Al replies is
called "ShareGPT."

Question: Which artists thrived under
Michelle Jubelirer at Capitol Music Group?
OG-RAG Answer: The artists that thrived un-
der Michelle Jubelirer at Capitol Music Group
include Ice Spice and The Beatles.

Question: How do price-match policies curb
customer loss in big sales?

OG-RAG Answer: Price-match policies help
curb customer loss during big sales by ensur-
ing that customers can get the best price with-
out needing to shop around at multiple retail-
ers. By offering to match lower prices found
elsewhere, retailers like Best Buy, Walmart,
Dell, eBay, and Lowe’s aim to keep customers
satisfied and loyal, preventing them from pur-
chasing from competitors. This strategy is par-

Question: Why are JLab earphones seen as a
budget-friendly backup with EQ presets?
OG-RAG Answer: JLab earphones are con-
sidered a budget-friendly backup because they
offer great value by including three different
EQ presets directly into the earphones. This
feature enhances the listening experience with-
out a high cost, making them an attractive op-
tion for those seeking an affordable alternative
to their main wireless earphones.

E.6 Factual Deduction
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Question: Calculate the total CO2e emissions
from herbicide production for a farm located
in the North Eastern Plains Zone, using the
recommended herbicide for Phalaris minor.




Assume the farm area is 1 hectare. Provide the
range of CO2e emissions based on the given
data and rules.

OG-RAG Answer: To calculate the total
CO2e emissions from herbicide production
for a farm located in the North Eastern Plains
Zone, we need to follow these steps:

1. **Identify the Recommended Herbicide
and Quantity:** - The recommended herbi-
cide for Phalaris minor is Clodinafop. - The
recommended quantity is 60 gm a.i. (active
ingredient) per hectare.

2. **Calculate the Total Herbicide Re-
quired:** - Since the farm area is 1 hectare,
the total herbicide required is 60 grams.

3. *¥*Convert Grams to Kilograms:** - 60
grams is equivalent to 0.06 kilograms.

4. **Calculate CO2e Emissions:** - The
CO2e emissions for herbicide production
range from 18.22 to 26.63 kg of CO2e per kilo-
gram of herbicide. - For 0.06 kg of herbicide,
the CO2e emissions are calculated as follows:
- Lower bound: 0.06 kg * 18.22 kg CO2e/kg
= 1.0932 kg CO2e - Upper bound: 0.06 kg *
26.63 kg CO2e/kg = 1.5978 kg CO2e

Therefore, the total CO2e emissions from
herbicide production for the farm are in the
range of 1.0932 to 1.5978 kg CO2e.

erage CO2e = (18.22 + 26.63) / 2 = 22.425
kg CO2e/kg - Insecticide: Average CO2e =
(14.79 + 1891) / 2 = 16.85 kg CO2e/kg -
Fungicide: Average CO2e = (11.94 + 29.19) /
2 =20.565 kg CO2e/kg

4. **Calculate the total CO2e emissions for
each type of chemical**: - Herbicide: 4 kg x
22.425 kg CO2e/kg = 89.7 kg CO2e - Insec-
ticide: 3 kg x 16.85 kg CO2e/kg = 50.55 kg
CO2e - Fungicide: 2 kg x 20.565 kg CO2e/kg
=41.13 kg CO2e

5. **Calculate the total potential CO2e
emissions**: - Total CO2e = 89.7 kg + 50.55
kg +41.13 kg = 181.38 kg CO2e

Therefore, the total potential CO2e emis-
sions from herbicide, insecticide, and fungi-
cide production for the farm in the North Plain
zone is 181.38 kg CO2e.

Question: Calculate the total potential CO2e
emissions from herbicide, insecticide, and
fungicide production for a farm located in the
North Plain zone, assuming the recommended
herbicide quantity is 2 kg per hectare, insecti-
cide quantity is 1.5 kg per hectare, and fungi-
cide quantity is 1 kg per hectare. Use the
average CO2e values for your calculations.
OG-RAG Answer: To calculate the total po-
tential CO2e emissions from herbicide, insec-
ticide, and fungicide production for a farm
located in the North Plain zone, we need to
follow these steps:

1. **Determine the farm area**: The farm
area in the North Plain Hill zone is 2 hectares.

2. **Calculate the total quantity of each
type of chemical used**: - Herbicide: 2 kg/ha
x 2 ha =4 kg - Insecticide: 1.5 kg/ha x 2 ha =
3 kg - Fungicide: 1 kg/ha x 2 ha=2 kg

3. **Use the average CO2e values for
each type of chemical**: - Herbicide: Av-
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F Survey design

Figure 5 shows the design of our survey with the
introduction and one exemplary question.
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