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Abstract

Large language models (LLMs) excel at com-
plex reasoning tasks but often suffer from
overconfidence and computational inefficiency
due to fixed computation budgets and mis-
calibrated confidence estimates. We present
a novel framework for computationally effi-
cient, trustworthy reasoning under uncertainty,
introducing two complementary techniques:
Diversity-Aware Self-Signal Dilution (DASD)
and Convergent Adaptive Weighted Sampling
(CAWS). DASD operates in an unsupervised
manner to dilute overconfident, semantically
redundant reasoning paths, thereby producing
better-calibrated internal confidence estimates.
CAWS dynamically allocates computational re-
sources at inference time by aggregating these
signals and terminating computation once an-
swer dominance and stability are achieved.
Comprehensive experiments across three rea-
soning datasets demonstrate that our approach
maintains accuracy levels while achieving over
70% reduction in inference cost, surpassing
competitive baselines. Our framework provides
a scalable, unsupervised solution for reliable
and efficient LLM reasoning.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities across a range of com-
plex reasoning tasks, including arithmetic problem-
solving, commonsense inference, and multi-step
question answering (Ahn et al., 2024; Li et al.,
2025a). Beyond reasoning, LLMs have also been
increasingly applied in other domains such as code
and UI generation (Xiao et al., 2024; Wan et al.,
2024; Xiao et al., 2025a,b; Tang et al., 2025). De-
spite these advancements, generating accurate and
trustworthy answers during inference remains chal-
lenging. A central issue is that LLMs often produce
outputs with uncertain reliability (Steyvers et al.,
2025; Herrera-Poyatos et al., 2025; Wang et al.,

*Yong Jiang and Qing Li are the corresponding authors.

2025a), while offering little signal to determine
when an answer should be trusted, especially for
inputs of varying difficulty and ambiguity.

To mitigate this, a common practice is to scale
up inference-time computation via sampling-based
strategies such as Best-of-N or Self-Consistency
sampling. These methods aggregate multiple rea-
soning paths to increase the chance of correctness.
However, regardless of complexity, they assign a
fixed number of samples to each input. This leads
to inefficiency: simple questions are oversampled,
while hard ones are often underexplored, resulting
in wasted computation and inconsistent outcomes
(Chiang and Lee, 2024; Chen et al., 2025).

An alternative line of work leverages model-
generated confidence scores to guide inference
adaptively (Huang et al., 2025b; Kang et al., 2025).
By terminating sampling early when the model
exhibits high confidence, or re-ranking candidate
answers using confidence signals, these methods
aim to save computation on easy instances and al-
locate more effort to difficult ones. Yet, this line
of work faces a fundamental challenge: raw con-
fidence scores from LLMs are frequently miscali-
brated, often reflecting surface fluency rather than
semantic correctness (Zhang et al., 2024; Wang
et al., 2025b). Moreover, the model often produces
multiple reasoning paths that differ lexically but are
logically redundant, which can make the answer
appear more certain than it is.

To address these limitations, we propose a self-
supervised framework that transforms the LLM’s
imperfect uncertainty signals into well-calibrated
reasoning behavior. Our method introduces two
complementary components operating at training
and inference time, respectively, targeting both con-
fidence quality and computational efficiency.

We propose Diversity-Aware Self-Signal Dilu-
tion (DASD), a training-time confidence calibration
algorithm that mitigates overconfidence by explic-
itly modeling semantic redundancy in the model’s

32193



outputs. Given a set of sampled reasoning paths
for a given input, DASD clusters answers based on
their final prediction and estimates diversity within
each cluster using lightweight LLM-based seman-
tic comparisons. Clusters containing many redun-
dant variants of the same flawed reasoning path
are penalized via a soft dilution mechanism, yield-
ing calibrated pseudo-confidence labels that bet-
ter reflect the true informativeness of each answer.
These labels are then used to fine-tune the model’s
self-evaluation behavior, improving its ability to
generate well-calibrated internal confidence scores.

We design Convergent Adaptive Weighted Sam-
pling (CAWS), a test-time inference algorithm de-
signed to efficiently and robustly aggregate uncer-
tain model outputs. CAWS incrementally sam-
ples candidate answers and uses the model’s self-
estimated confidence to assign soft voting weights
via a sigmoid mapping. Crucially, instead of re-
lying on a fixed number of samples or a hard
confidence threshold, CAWS monitors the run-
ning distribution of weighted answers and applies
convergence-based stopping criteria: inference
halts only when a leading answer has remained
dominant and stable across multiple steps. This
adaptive mechanism allows the model to save com-
putation on easy instances while allocating more
effort to hard or ambiguous ones, resulting in better
accuracy-compute trade-off and improved robust-
ness to residual miscalibration.

Together, these two modules form a unified
framework for scalable, trustworthy LLM reason-
ing under uncertainty, where DASD improves the
quality of confidence signals and CAWS leverages
them effectively during inference. Through exten-
sive evaluations across diverse reasoning bench-
marks, including GSM8K (Cobbe et al., 2021),
ARC-Challenge (Clark et al., 2018), and Common-
senseQA (Talmor et al., 2018), and across three
representative models (LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024), Qwen2.5-7B-Instruct
(Yang et al., 2024), and DeepSeek-R1-Distill-
Qwen-1.5B (Guo et al., 2025)), we demonstrate
that our proposed method consistently outperforms
fixed-budget and confidence-based baselines across
all benchmarks, maintaining or improving accu-
racy while reducing inference costs by over 70%.
Our analysis further highlights the effectiveness
of confidence dilution, directly contributing to the
improved reliability of adaptive inference.

Overall, our work provides a significant step
toward bridging the efficiency-reliability gap in

LLM inference, offering a scalable, unsupervised
solution that advances practical deployment and
reliable decision-making in reasoning scenarios.

Our contributions are as follows:

• We propose a self-supervised confidence cali-
bration approach that explicitly accounts for
semantic redundancy in model generations,
producing more informative and trustworthy
internal confidence signals.

• We develop Diversity-Aware Self-Signal Dilu-
tion, an unsupervised method that explicitly
models intra-cluster semantic diversity to pro-
duce calibrated confidence without relying on
annotations or external reward models.

• We introduce Convergent Adaptive Weighted
Sampling, a novel stopping mechanism that
dynamically halts inference based on stability
and dominance, enabling robust compute allo-
cation under imperfect confidence estimates.

• We demonstrate that our unified framework
achieves substantial efficiency gains while
maintaining accuracy across diverse reason-
ing tasks, establishing a new paradigm for
efficient and reliable LLM inference1.

2 Related Work

Test-time compute scaling. A common ap-
proach to improve LLM reasoning performance
is to generate multiple outputs and aggregate them
via fixed-budget strategies (Snell et al., 2024; Ji
et al., 2025). Best-of-N decoding selects the output
with the highest likelihood among N samples (Sun
et al., 2024), while Self-Consistency (SC) sampling
aggregates final answers from multiple reasoning
chains to improve robustness (Chen et al., 2023b).
Despite their empirical success, these methods stat-
ically allocate computational resources, regardless
of input difficulty. This leads to inefficiency: triv-
ial questions are oversampled, while ambiguous or
complex ones may be underexplored (Tan et al.,
2025; Liu et al., 2025a,b). Our work instead fo-
cuses on adaptive inference, adjusting the number
of samples dynamically based on real-time confi-
dence convergence.

1https://github.com/sznnzs/
Trustworthy-LLM-Reasoning
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Reward signal acquisition. Another line of
work uses auxiliary reward models trained to as-
sess response quality or human preference, often
applied during reinforcement learning (Wu, 2025)
or re-ranking of the decoding time (Huang et al.,
2024a). Although effective in some settings, these
models require labeled data, are expensive to train,
and introduce substantial memory and latency over-
head during inference (Zhong et al., 2024; Sheng
et al., 2024). Moreover, recent studies have shown
that reward models can be poorly calibrated and
prone to over-rewarding fluent but incorrect com-
pletions (Huang et al., 2024b; Leng et al., 2024;
Rita et al., 2024), thus limiting their reliability as
a source of truth. In contrast, our approach avoids
any form of external supervision and focuses on
improving the utility of the native LLM uncertainty
signals through unsupervised calibration.

Confidence-based adaptive inference. Several
recent methods attempt to improve inference effi-
ciency by leveraging scalar reward signals to guide
decoding (Taubenfeld et al., 2025). For instance,
early stopping strategies stop sampling once a can-
didate exceeds a fixed score threshold (Agrawal
et al., 2024; Li et al., 2024), while other approaches
use confidence-weighted voting to combine reason-
ing chains (Chen et al., 2023a; Razghandi et al.,
2025). However, overreliance on uncalibrated con-
fidence scores can lead to reward hacking—where
models produce fluent yet incorrect outputs that
game the scoring mechanism (Moskovitz et al.,
2023; Miao et al., 2024b; Huang et al., 2025a).
These issues make reward-based adaptive inference
brittle and difficult to generalize. In contrast, our
work unsupervisedly calibrates the internal confi-
dence of the model and utilizes it robustly to ensure
stable and trustworthy reasoning without external
heuristics or task-specific scores.

3 Methodology

3.1 Problem Setup and Framework Overview
We consider open-ended question answering with a
large language model (LLM), where given a natural
language input x, the model generates a reasoning
trace y ∼ pθ(· | x), representing a full sequence
of intermediate steps or explanations. A final an-
swer z = parse(y) (e.g., a choice or number) is
extracted from the output.

At test time, multiple samples are typically
drawn to improve answer quality and robustness.
Our goal is to identify the most reliable answer

while reducing the number of samples needed. To
this end, we propose a unified two-stage framework.
Figure 1 illustrates the overall pipeline.

• Training stage: We perform Diversity-Aware
Self-Signal Dilution, a confidence calibration
module that estimates intra-cluster seman-
tic redundancy and softly downweights over-
represented reasoning patterns. The result-
ing pseudo-labels are used to fine-tune the
model’s confidence prediction behavior in a
fully self-supervised manner.

• Inference stage: At test time, we apply Con-
vergent Adaptive Weighted Sampling, an al-
gorithm that incrementally samples outputs,
assigns confidence-based vote weights, and
halts when answer distribution converges.
This mechanism dynamically adjusts compute
allocation based on real-time signal aggrega-
tion.

3.2 Self-Supervised Confidence Calibration
3.2.1 The Challenge of Overconfidence
While large language models demonstrate impres-
sive reasoning capabilities, their self-assessed con-
fidence scores often poorly align with actual an-
swer correctness. LLMs typically exhibit over-
confidence, assigning high confidence to incorrect
answers, particularly when reasoning traces appear
fluent or superficially coherent (Sun et al., 2025;
Bodhwani et al., 2025). This miscalibration under-
mines the reliability of internal signals for adap-
tive inference decisions. The issue is further com-
pounded by repetition in autoregressive decoding.
Models frequently generate multiple variations of
a reasoning path that differ in wording but follow
nearly identical logic, converging on the same (pos-
sibly incorrect) final answer (Wang et al., 2022).
These outputs are mistakenly treated as indepen-
dent evidence, despite offering little meaningful
diversity (Ginart et al., 2025). As a result, naive
aggregation strategies such as majority voting or
score averaging become prone to systematic over-
confidence when faced with clusters of logically re-
dundant reasoning chains (Chiang and Lee, 2024).

3.2.2 Redundancy-Aware Score Dilution
To mitigate overconfidence induced by semantic
redundancy, we introduce a soft calibration mech-
anism that penalizes clusters of reasoning paths
lacking semantic diversity. Our key intuition is
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Figure 1: Overview of our two-stage framework. The training-time module, Diversity-Aware Self-Signal Dilution
(DASD), calibrates model confidence via semantic clustering and soft dilution. The inference-time module,
Convergent Adaptive Weighted Sampling (CAWS), leverages these calibrated scores to adaptively allocate compute
through weighted sampling and convergence-based stopping.

that a high number of similar answers should not
be interpreted as strong evidence, especially when
those answers represent minor variations of the
same flawed reasoning trace.

We define a score adjustment scheme that op-
erates on batches of sampled outputs for a given
input x. Let Y = {y1, . . . , yN} denote the set of
reasoning paths sampled from the LLM. Each yi
is parsed into a final prediction zi = parse(yi),
and following (Huang et al., 2025b), its correctness
score is obtained using a prompt-based verifier:

si = pθ(Yes | x, yi, I) (1)

where I is a fixed instruction that prompts the
model to assess whether the answer is correct. The
prompt design is detailed in Appendix B.

Step 1: Output Clustering. We group reason-
ing paths based on their parsed final answers. Let
{z(1), . . . , z(K)} denote the set of distinct answers
among {zi}. Each cluster is defined as:

Ck =
{
yi ∈ Y | zi = z(k)

}
, k = 1, . . . ,K

(2)
Step 2: Intra-Cluster Diversity Estimation.

To estimate semantic redundancy within each clus-
ter, we select the highest-confidence path as repre-
sentative:

y
rep
k = arg max

yi∈Ck
si (3)

For each other member yj ∈ Ck \ {yrep
k }, we query

the model with a pairwise prompt to estimate se-
mantic similarity between yj and the representative
y

rep
k . We then compute the estimated number of

distinct members as:

Dk = 1 +
∑

yj∈Ck\{yrep
k }

I
[
sim(yj , y

rep
k ) < τ

]
(4)

where τ is a predefined similarity threshold. The
prompt used to elicit similarity scores is provided
in Appendix B.

Step 3: Soft Dilution and Score Adjustment.
To downweight low-diversity clusters, we define a
dilution factor:

αk =

(
Dk

|Ck|

)p

, p ∈ (0, 1) (5)

We then compute the adjusted cluster score:

S
adj
k = αk ·

∑

yi∈Ck
si (6)

To produce a normalized confidence distribution
over final answers, we compute for each sample:

R̂(yi) =
S

adj
k∑M

j=1 S
adj
j

, for yi ∈ Ck (7)

The resulting pseudo-scores R̂(yi) reflect not
only model-predicted correctness, but also the di-
versity of supporting reasoning. These signals
serve as training targets for unsupervised calibra-
tion.
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3.2.3 Confidence-Aware Fine-Tuning
The pseudo-confidence scores R̂(yi), derived
through diversity-aware dilution, serve as soft, self-
supervised targets for calibrating the model’s inter-
nal confidence estimates. We optimize a calibration
loss Lcalib to encourage alignment between the pre-
dicted scores and these targets.

For samples where the confidence target exceeds
a threshold η, we additionally encourage output fi-
delity using a generation loss: Lgen = − log pθ(yi |
x). The final objective combines both terms:

Ltotal = Lcalib + λ · I[R̂(yi) > η] · Lgen (8)

Here, λ controls the influence of generation su-
pervision relative to calibration. This procedure
improves the model’s ability to produce well-
calibrated internal confidence scores without re-
quiring any human annotations.

3.3 Convergent Adaptive Inference

3.3.1 Robustness with Imperfect Confidence
Even with improved calibration, confidence scores
from large language models can remain noisy and
imperfect. Consequently, inference strategies that
rely on local signals, such as selecting the answer
with the highest confidence or stopping early based
on fixed thresholds, are often brittle and sensitive
to outliers.

To address this, we design a robust inference-
time algorithm that aggregates evidence across
multiple generations. Our method incrementally
samples candidate answers, assigns them soft vot-
ing weights derived from confidence, and moni-
tors the evolving distribution over final predictions.
Inference halts only when sufficient convergence
is observed: one answer not only dominates the
weighted vote but also remains stable across mul-
tiple sampling steps. This strategy defers commit-
ment until the model has seen enough consistent
evidence, improving robustness against noisy sig-
nals. It also enables adaptive compute allocation
that naturally matches input difficulty.

3.3.2 Confidence-Weighted Voting
At each inference step, the model samples a can-
didate reasoning path y(t) ∼ pθ(· | x), which is
parsed into a final answer z(t) = parse(y(t)). To
aggregate outputs meaningfully, we assign each
candidate a soft voting weight based on its pre-
dicted confidence score s(t) ∈ [0, 1].

To ensure robustness to raw score noise and re-
duce the impact of outliers, we apply a sigmoid
transformation to the confidence score:

w(t) = σ(s(t)) =
1

1 + es
(t)

(9)

This mapping amplifies differences near the deci-
sion boundary while saturating extreme values.

The cumulative score for each unique final an-
swer z is computed as the sum of weights assigned
to its supporting samples:

Scoret(z) =
t∑

i=1

I[z(i) = z] · w(i) (10)

This formulation naturally accommodates noisy
confidence estimates: rather than relying on a sin-
gle high-scoring output, answers must accrue con-
sistent support over time. The soft weighting avoids
overcommitment to outlier samples and reflects the
model’s evolving belief distribution during sam-
pling.

3.3.3 Convergence-Guided Stopping
To determine when to terminate inference, we mon-
itor the evolution of the aggregated answer distri-
bution and apply a convergence-guided stopping
criterion. The intuition is to halt sampling only
when one answer has both accumulated dominant
support and remained stable over time.

Let z∗t = argmaxz Scoret(z) denote the cur-
rent leading answer at step t. We define two con-
vergence conditions:

• Stability. The same answer z∗t must remain
the top candidate for the last M steps.

• Dominance. The leading answer must either
(a) account for a sufficient proportion of total
votes or (b) surpass the second-best answer by
a large margin:

Scoret(z
∗
t )∑

z Scoret(z)
≥ θshare (11)

or
Scoret(z

∗
t )

maxz′ ̸=z∗t Scoret(z
′)
≥ θmargin (12)

Inference halts as soon as both conditions are
met. Otherwise, sampling continues until a max-
imum budget Nmax is reached, at which point the
most supported answer is returned:

z∗ = argmax
z

ScoreNmax(z) (13)
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This adaptive criterion balances efficiency and
reliability. It allows early exit on confident inputs
while allocating more compute to ambiguous or in-
consistent cases. By grounding stopping decisions
in aggregate signal convergence, CAWS avoids brit-
tle reliance on raw scores or arbitrary thresholds.

4 Experiments

4.1 Experimental Setup
We evaluate our method using three open-source
instruction-tuned language models: LLaMA-3.1-
8B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-
Instruct (Yang et al., 2024), and DeepSeek-R1-
Distill-Qwen-1.5B (Guo et al., 2025). Experiments
are conducted on three representative reasoning
benchmarks: GSM8K (Cobbe et al., 2021) for
arithmetic reasoning, ARC-Challenge (Clark et al.,
2018) for science question answering, and Com-
monsenseQA (Talmor et al., 2018) for common-
sense inference. Prompt formats for both confi-
dence estimation and semantic similarity judgment
are provided in Appendix B. Full hyperparameter
configurations are listed in Appendix 4.3.

4.2 Baselines Methods
We compare our approach against a set of widely
adopted baselines that represent the dominant
strategies for inference-time reasoning with LLMs:

• Best-of-N (Irvine et al., 2023; Song et al.,
2024): Generates N independent reasoning
paths and selects the one with the highest
model score as the final answer.

• Self-Consistency (SC) (Wang et al., 2022;
Chen et al., 2024): Samples multiple reason-
ing traces and determines the final answer via
majority voting over their outputs.

• Weighted Self-Consistency (WSC) (Wu et al.,
2024; Zeng et al., 2025): Extends SC by as-
signing each answer a weight based on its
confidence, yielding a weighted aggregation.

• Early Stopping (Miao et al., 2024a; Qiao et al.,
2025): Sequentially samples outputs and halts
once a generated response exceeds a prede-
fined confidence threshold.

• Adaptive Self-Consistency (ASC) (Aggarwal
et al., 2023): Combines answer aggregation
with confidence-based stopping, triggered by
the score gap between top candidates.

Hyperparameter Value

DASD soft dilution exponent p 0.1
Similarity threshold τ 9
Soft label threshold η 0.75

Loss weighting coefficient λ 0.1
Maximum samples Nmax 64
Minimum samples Nmin 5
Convergence window M 10

Confidence margin threshold θmargin 3.0
Confidence share threshold θshare 0.6

Training batch size 64
Learning rate 5× 10−5

Optimizer AdamW
Training epochs 1

Table 1: Hyperparameters for DASD and CAWS.

4.3 Hyperparameter Settings

Table 1 lists the default hyperparameters used in
our framework. These values were selected to re-
flect broadly applicable configurations that perform
robustly across diverse datasets and models, with-
out task-specific tuning. For all adaptive baselines
that depend on confidence-based stopping criteria
(e.g., Early Stopping, ASC), we adopt a unified
threshold value of 0.9 across all datasets and mod-
els to ensure consistency and fair comparison with
our method. We set the test split ratio to 0.1. DASD
is performed for a single epoch, with a batch size
of 64, a learning rate of 5× 10−5, and the AdamW
optimizer. The loss weighting coefficient λ is set
to 0.1, and the soft label threshold η is set to 0.75
(see Eq. 8). All methods are evaluated with a tem-
perature setting of 0.7. While we prioritize general-
ity and comparability in hyperparameter selection,
further tuning on a per-task basis may improve ac-
curacy or computational efficiency.

4.4 Accuracy and Efficiency Comparison

Table 2 shows that our framework achieves the best
overall balance between accuracy and efficiency
across all models and datasets. Compared to the
Vanilla setting, incorporating DASD consistently
improves accuracy across tasks, confirming the ben-
efit of confidence dilution during training. Our
inference-time module CAWS further enhances
sample efficiency while preserving accuracy. For
example, on GSM8K, CAWS achieves 92.6% accu-
racy with LLaMA and 94.6% with Qwen, matching
SC but using less than 25% of the samples. Simi-
lar trends hold on ARC-Challenge and Common-
senseQA, where CAWS reduces compute by over
70% on average without hurting performance. This
suggests that CAWS can reliably halt sampling ear-
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Model Method

ARC-Challenge CommonSenseQA GSM8K

Vanilla DASD Vanilla DASD Vanilla DASD

ACC Samples ACC Samples ACC Samples ACC Samples ACC Samples ACC Samples

DeepSeek

Early Stopping 67.5 ↑0.3 43.5 ↓20.5 67.8 ↑0.2 43.7 ↓20.3 53.0 ↓0.3 50.3 ↓13.7 53.0 ↑0.3 50.5 ↓13.5 89.2 ↑1.0 64.0 88.4 ↓0.2 64.0
SC 67.2 64.0 67.6 64.0 53.3 64.0 52.7 64.0 88.2 64.0 88.6 64.0

WSC 67.5 ↑0.3 64.0 67.8 ↑0.2 64.0 53.0 ↓0.3 64.0 53.0 ↑0.3 64.0 89.2 ↑1.0 64.0 88.4 ↓0.2 64.0
Best-of-N 58.3 ↓8.9 64.0 56.9 ↓10.7 64.0 45.2 ↓8.1 64.0 40.9 ↓11.8 64.0 75.6 ↓12.6 64.0 68.9 ↓19.7 64.0

ASC 65.7 ↓1.5 17.3 ↓46.7 66.7 ↓0.9 18.0 ↓46.0 52.4 ↓0.9 26.2 ↓37.8 51.6 ↓1.1 27.9 ↓36.1 87.4 ↓0.8 21.6 ↓42.4 87.3 ↓1.3 21.9 ↓42.1
CAWS 67.2 ↑0.0 19.2 ↓44.8 67.8 ↑0.2 18.8 ↓45.2 52.4 ↓0.9 26.4 ↓37.6 52.7 ↑0.0 26.1 ↓37.9 87.9 ↓0.3 19.3 ↓44.7 88.3 ↓0.3 18.8 ↓45.2

Llama

Early Stopping 84.8 ↓3.0 2.6 ↓61.4 84.6 ↓3.3 2.0 ↓62.0 75.5 ↓3.1 2.6 ↓61.4 73.7 ↓5.6 2.0 ↓62.0 85.1 ↓6.9 12.6 ↓51.4 87.5 ↓4.9 17.4 ↓46.6
SC 87.8 64.0 87.9 64.0 78.6 64.0 79.3 64.0 92.0 64.0 92.4 64.0

WSC 88.3 ↑0.5 64.0 88.6 ↑0.7 64.0 78.7 ↑0.1 64.0 79.4 ↑0.1 64.0 92.2 ↑0.2 64.0 92.5 ↑0.1 64.0
Best-of-N 86.3 ↓1.5 64.0 86.3 ↓1.6 64.0 78.7 ↑0.1 64.0 77.7 ↓1.6 64.0 85.0 ↓7.0 64.0 86.6 ↓5.8 64.0

ASC 86.7 ↓1.1 10.7 ↓53.3 87.5 ↓0.4 11.6 ↓52.4 76.9 ↓1.7 16.2 ↓47.8 78.8 ↓0.5 15.9 ↓48.1 91.2 ↓0.8 19.5 ↓44.5 91.4 ↓1.0 17.0 ↓47.0
CAWS 87.6 ↓0.2 15.1 ↓48.9 88.0 ↑0.1 14.6 ↓49.4 78.7 ↑0.1 17.5 ↓46.5 79.1 ↓0.2 17.1 ↓46.9 92.0 ↑0.0 16.6 ↓47.4 92.6 ↑0.2 15.9 ↓48.1

Qwen

Early Stopping 90.3 ↓1.0 41.1 ↓22.9 89.0 ↓2.6 1.6 ↓62.4 83.2 ↓0.3 60.6 ↓3.4 82.7 ↓1.0 7.5 ↓56.5 94.2 ↑0.3 64.0 94.9 ↑0.3 64.0
SC 91.3 64.0 91.6 64.0 83.5 64.0 83.7 64.0 93.9 64.0 94.6 64.0

WSC 90.7 ↓0.6 64.0 91.1 ↓0.5 64.0 83.2 ↓0.3 64.0 83.8 ↑0.1 64.0 94.2 ↑0.3 64.0 94.9 ↑0.3 64.0
Best-of-N 89.6 ↓1.7 64.0 90.4 ↓1.2 64.0 81.9 ↓1.6 64.0 83.2 ↓0.5 64.0 89.9 ↓4.0 64.0 90.8 ↓3.8 64.0

ASC 90.7 ↓0.6 8.7 ↓55.3 91.1 ↓0.5 9.5 ↓54.5 82.3 ↓1.2 11.8 ↓52.2 82.8 ↓0.9 11.5 ↓52.5 93.3 ↓0.6 11.7 ↓52.3 94.2 ↓0.4 11.4 ↓52.6
CAWS 91.0 ↓0.3 13.6 ↓50.4 91.4 ↓0.2 13.0 ↓51.0 82.9 ↓0.6 14.4 ↓49.6 83.1 ↓0.6 14.0 ↓50.0 93.9 ↑0.0 14.4 ↓49.6 94.6 ↑0.0 13.9 ↓50.1

Table 2: Comparison of CAWS and baselines under calibrated (DASD) and non-calibrated settings. We report
accuracy and average sample count. For each model-dataset block, accuracy values are compared against the SC
baseline, with differences noted in green (improvement) or red (decline).

Method
ARC-Challenge CommonSenseQA

ACC Samples ACC Samples

w/o Dilution 67.2 19.2 52.3 26.3
w/o Window 65.0 4.7 49.7 7.9
w/o Margin 67.8 19.0 52.7 27.3
w/o Share 67.6 21.6 52.6 29.2

Full 67.8 18.8 52.7 26.1

Table 3: Ablation study of CAWS components, evaluat-
ing their impact on accuracy and average sample count.

lier and avoid unnecessary computation on more
straightforward inputs.

Compared to adaptive baselines such as ASC,
CAWS yields more stable improvements, espe-
cially under ambiguous inputs. Its convergence-
aware stopping mechanism better allocates com-
pute based on observed answer stability, mitigat-
ing premature halts or redundant sampling. On
DeepSeek + ARC, for instance, CAWS reaches
67.8% accuracy with only 18.8 samples, while
ASC uses more steps for similar performance.
These results validate that combining DASD and
CAWS enables accurate and efficient reasoning. By
calibrating internal confidence scores and dynam-
ically adapting sampling, our framework offers a
practical solution for scalable LLM inference.

4.5 Ablation Study

We conduct ablations using DeepSeek-R1-Distill-
Qwen-1.5B to isolate the effects of both training-
time calibration and inference-time control, as
shown in Table 3. First, removing DASD and train-
ing with unadjusted confidence scores (“w/o Dilu-

tion”) results in consistent accuracy degradation,
particularly on ARC-Challenge (-0.6). This con-
firms that miscalibrated internal signals undermine
adaptive inference and highlights the importance of
DASD’s semantic redundancy-aware dilution for
producing reliable confidence estimates. Next, ab-
lating the convergence criteria individually reveals
their complementary roles. Removing the stability
check (“w/o Window”) significantly reduces accu-
racy and leads to overly aggressive stopping, while
discarding dominance (“w/o Share”) or margin gap
(“w/o Margin”) causes inefficient oversampling. In
particular, the absence of margin control increases
sample cost on CSQA (+1.2) without any accuracy
gain, showing that convergence without discrimi-
native dominance is suboptimal. Together, these
results underscore that both DASD and CAWS are
critical for achieving robust and efficient inference.

4.6 Confidence Calibration Analysis

We analyze whether DASD improves the align-
ment between model-predicted confidence scores
and actual answer correctness. Figure 2 shows the
confidence-accuracy curves. In the vanilla setting,
the curves exhibit clear misalignment: predicted
confidence does not reliably correspond to empiri-
cal accuracy, especially at higher confidence levels.
In contrast, models trained with DASD produce
more monotonic and well-aligned curves, indicat-
ing improved calibration. We also visualize the
distribution of predictions across confidence bins.
Without calibration, confidence scores are heav-
ily skewed toward the upper end. DASD spreads

32199



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Bin

40%

60%

80%

100%
Ac

cu
ra

cy
 (%

)
Δ ≤  20%
Δ > 20%

(a) Conf-ACC (Vanilla)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Bin

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Δ ≤  20%
Δ > 20%

(b) Conf-ACC (DASD)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Bin

0

5000

10000

15000

20000

Co
un

ts

(c) Conf-Counts (Vanilla)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Bin

0

3000

6000

9000

12000

Co
un

ts

(d) Conf-Counts (DASD)

Figure 2: Top: Confidence-accuracy alignment curves.
Bottom: Sample distribution across confidence bins. We
compare models with and without DASD calibration.

the scores more evenly, reducing misleading score
concentration and producing more faithful signals.

Figure 3 presents ROC curves comparing models
trained with and without DASD to further assess
the discriminative utility of confidence scores. We
observe consistent AUC improvements: on ARC-
Challenge, the AUC increases from 0.65 to 0.71;
on CommonsenseQA, from 0.64 to 0.72; and on
GSM8K, from 0.69 to 0.73. The largest gains are
observed on CommonsenseQA, where confidence-
based separation is particularly challenging. These
results indicate that DASD enhances the model’s
ability to distinguish correct from incorrect answers
based on internal confidence, improving the relia-
bility of adaptive inference.

To quantitatively assess calibration, we report
Expected Calibration Error (ECE) (Guo et al.,
2017) across all datasets and model families (Ta-
ble 4). DASD consistently reduces calibration er-
ror compared to the vanilla setting, indicating that
the diluted pseudo-labels indeed improve the align-
ment between predicted confidence and empirical
correctness. This improvement is crucial because
CAWS relies on confidence signals to decide con-
vergence: better calibrated signals directly translate
into more robust stopping behavior and reduced
risk of premature or excessive sampling. The re-
sults demonstrate that the training-time calibration,
though lightweight, substantially enhances the reli-
ability of downstream adaptive inference.

4.7 Parameter Sensitivity Analysis

We analyze how CAWS responds to changes in
three key hyperparameters: the margin threshold

Model ARC-Challenge CommonSenseQA GSM8K

Vanilla DASD Vanilla DASD Vanilla DASD

DeepSeek 12.29 8.86 7.36 5.27 46.66 42.51
Llama 6.70 4.45 15.42 8.09 13.89 9.64
Qwen 54.33 9.08 63.36 14.42 87.17 82.61

Table 4: Expected Calibration Error (ECE) analysis
across three datasets and model families. Lower values
indicate better alignment between predicted confidence
and accuracy. DASD consistently reduces calibration
error compared to the vanilla setting, demonstrating its
effectiveness in improving confidence reliability.

p ARC-Challenge CommonSenseQA GSM8K

0.0 0.65 0.64 0.69
0.1 0.71 0.72 0.73
0.2 0.72 0.69 0.72
0.3 0.69 0.67 0.72

Table 5: Impact of the dilution exponent p on the AUC
calibration metric across three datasets.

θmargin, the share threshold θshare, and the stability
window size M , using the GSM8K dataset with the
LLaMA-3.1-8B-Instruct model. Figure 4 shows
their effects on sample usage and accuracy.

Increasing the margin threshold improves accu-
racy to a moderate value but leads to diminishing
returns and increased sample cost beyond that point
(Figure 4(a)). The vote share threshold exhibits a
similar trade-off: values between 0.6 and 0.7 pro-
mote answer reliability but may delay convergence
on simpler inputs (Figure 4(b)). The window size
influences stability: smaller values risk premature
termination, while larger ones enhance robustness
at a modest computational cost (Figure 4(c)). These
trends indicate that CAWS performs best under
moderately conservative settings, where the stop-
ping condition balances decision confidence with
efficiency. Careful tuning of these parameters can
further optimize performance under different task
conditions.

4.8 Sensitivity to Dilution Exponent

We analyze the impact of the dilution exponent p
on the AUC calibration metric (Table 5). The re-
sults reveal a clear non-linear trend: small values
(e.g., p = 0.1) substantially improve calibration
by mitigating redundancy-driven overconfidence,
while overly large values (e.g., p = 0.3) may ex-
cessively penalize clusters and degrade signal qual-
ity. The optimal balance is achieved at p = 0.1,
which consistently yields the highest AUC across
all benchmarks. This analysis validates our default
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Figure 3: Receiver Operating Characteristic (ROC) curves across three benchmarks. Models trained with DASD
consistently achieve higher AUC than the vanilla counterparts, indicating improved confidence scores.
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Figure 4: Sensitivity analysis of CAWS stopping parameters. We evaluate the effect of varying the margin threshold
(θmargin), vote share threshold (θshare), and stability window size (M ) on accuracy and average sample usage.

Model Dataset Tokens Overhead

Llama
ARC-Challenge 6512.7 0.18%

CommonSenseQA 6503.4 0.18%
GSM8K 6940.8 0.17%

DeepSeek
ARC-Challenge 15142.6 0.07%

CommonSenseQA 17844.8 0.06%
GSM8K 14447.8 0.08%

Qwen
ARC-Challenge 5205.7 0.23%

CommonSenseQA 5009.4 0.24%
GSM8K 5427.2 0.22%

Table 6: Token-level overhead introduced by confi-
dence querying during inference. Across all datasets
and model families, the overhead remains below 0.3%,
confirming that the cost of confidence estimation is neg-
ligible relative to total decoding.

hyperparameter choice and highlights that mod-
erate dilution is sufficient to stabilize model self-
assessments without distorting their discriminative
capacity. Together, these findings emphasize that
DASD’s calibration effect is both principled and
robust across datasets.

4.9 Overhead Evaluation
We evaluate the inference-time overhead intro-
duced by querying internal confidence using aux-
iliary prompts. As shown in Table 6, the addi-
tional token usage ranges from 0.06% to 0.24%
across datasets and models, indicating that the cost
of confidence estimation is negligible relative to
total decoding. In contrast, reward-model-based

methods typically require a full forward pass for
each candidate output, resulting in 100% additional
overhead in memory and computation. Our method
achieves comparable benefits in answer selection
at a fraction of the cost, making it substantially
more efficient and deployable in practical settings.
Moreover, since the overhead remains stable across
model scales, DASD+CAWS can be seamlessly in-
tegrated into real-world pipelines without incurring
measurable latency, which is particularly valuable
for large-scale deployment scenarios where effi-
ciency is critical.

5 Conclusion

This work addresses a central challenge in LLM
reasoning: making reliable answer selections under
uncertainty using only internal model signals. We
propose a unified framework that calibrates self-
confidence through Diversity-Aware Self-Signal
Dilution (DASD) and leverages these signals via
Convergent Adaptive Weighted Sampling (CAWS)
for inference-time control. Together, these compo-
nents enable LLMs to reason more efficiently and
reliably, dynamically allocating compute based on
internal confidence signals while improving the
utility of model self-assessments. Experiments
across three reasoning benchmarks and multiple
model scales show that our approach achieves sub-
stantial efficiency gains while maintaining or even
improving accuracy.
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Limitations

While our framework enables efficient and self-
contained inference without relying on external su-
pervision, several limitations remain. First, the con-
fidence signals are derived through prompt-based
querying, which may offer limited calibration fi-
delity, especially under distributional shifts or ad-
versarial conditions. Second, our experiments fo-
cus on single-turn, factoid-style QA tasks where
answers are well-defined and easily verifiable. Ex-
tending our method to open-ended settings such
as multi-turn dialogue or code generation poses
new challenges, as aggregating diverse outputs or
determining convergence becomes less straightfor-
ward when there is no single correct answer. Third,
while CAWS performs well on average, it may fail
to converge or terminate prematurely on ambigu-
ous or low-signal examples. Understanding and
mitigating such failure modes remains an essential
direction for improving the robustness of adaptive
inference. Furthermore, in safety-critical domains,
overly confident convergence on incorrect outputs
may lead to hard-to-detect failure cases. Although
we observe no such failure in our evaluation do-
mains, future work should explore safeguards to
mitigate the amplification of misleading reasoning
patterns under uncertainty. This work does not
raise any ethical issues.
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Appendix

A Notation Summary

Table 7 summarizes the key symbols used in
our framework, grouped by training-time calibra-
tion (Diversity-Aware Self-Signal Dilution, DASD)
and inference-time control (Convergent Adaptive
Weighted Sampling, CAWS).

Diversity-Aware Self-Signal Dilution

x Input question or prompt
yi Model-generated reasoning path (sample i)
zi Final parsed answer from yi
s(i) Model-assigned confidence score for yi
R̂(yi) Calibrated confidence assigned by DASD
Ck Cluster of samples sharing answer zk
Dk Semantic diversity estimate of cluster Ck

αk Soft dilution factor for cluster Ck

Sadj
k Adjusted score for cluster k after dilution

Convergent Adaptive Weighted Sampling

w(i) Smoothed vote weight for sample y(i)

Score(z) Aggregated vote score for answer z
z∗t Leading candidate answer at inference step t
M Stability window for CAWS stopping
θshare Vote share threshold for stopping
θmargin Vote margin threshold for stopping
Nmax Maximum number of samples per input

Table 7: Summary of notations used in Diversity-Aware
Self-Signal Dilution (DASD) and Convergent Adaptive
Weighted Sampling (CAWS).

B Prompt Templates

We provide the exact prompt formats used in our
framework for semantic similarity evaluation and
confidence querying. All prompts are executed
using the same base LLM via in-context decoding.

Semantic Similarity Prompt. This prompt is
used to evaluate whether two reasoning paths con-
vey different semantic content. It enables diver-
sity estimation for answer clusters during training
(DASD), and follows a format similar to (Jiang
et al., 2023; Li et al., 2025b).

Please rate the semantic similarity between
the following two reasoning paths on a scale
of 1 to 10.

Text A: [Candidate A]
Text B: [Candidate B]

Similarity score (1–10):

Confidence Query Prompt. This prompt is used
to estimate whether a generated answer appears cor-
rect to the LLM. Following prior work on LLM-as-
a-judge (Huang et al., 2025b; Singhi et al., 2025),
we adopt their same prompt format to query the
model’s internal judgment without external super-
vision. The resulting signal supports our unsuper-
vised confidence calibration in DASD.

Question: [Input x]
Answer: [Generated output y]

Is the answer correct? (Yes / No)

C Algorithm Pseudocode

Algorithm 1 outlines the inference procedure of
Convergent Adaptive Weighted Sampling (CAWS).
The algorithm iteratively samples reasoning paths
and maintains a confidence-weighted score distri-
bution over candidate answers. At each step, it
evaluates convergence based on the stability of the
top-scoring answer within a sliding window of size
M , along with two additional criteria: dominance
in vote share and margin over alternatives. The
algorithm stops early when a sufficiently consistent
and confident answer emerges. If no answer meets
the stopping criteria within Nmax samples, the final
output is selected as the answer with the highest
accumulated confidence score.

D Efficiency-Accuracy Tradeoff

Table 8 presents a detailed comparison of accuracy
under varying sampling budgets on datasets. The
results are based on models trained with DASD
to ensure calibrated confidence scores. We vary
the confidence threshold for ASC and Early Stop-
ping to control the average number of samples. For
CAWS, we achieve budget alignment by adjust-
ing its stopping parameters. At each budget level,
we report the configuration that yields an average
sample count closest to the target.

Across all datasets and models, CAWS consis-
tently achieves stronger or comparable accuracy
with significantly fewer samples than both fixed-
budget and adaptive baselines. On ARC-Challenge,
CAWS reaches 68.2% with DeepSeek and 91.6%
with Qwen at a 16-sample budget, outperforming
SC and WSC (both at 64 samples) as well as ASC,
which achieves only 66.9% (DeepSeek) and 91.4%
(Qwen) under the same budget. On Common-
senseQA with Qwen, CAWS achieves 83.4% at 16
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Algorithm 1 CAWS
Require: Input x, model pθ, max samples Nmax,

stability window M , thresholds θshare, θmargin
1: Initialize Score← {}; history bufferH ← []
2: for t = 1 to Nmax do
3: Sample y(t) ∼ pθ(· | x)
4: z(t) ← extract_answer(y(t))
5: s(t) ← confidence_query(x, y(t))
6: w(t) ← σ(s(t))
7: Score(z(t)) += w(t)

8: Append z(t) toH
9: if t ≥M then

10: z∗ ← argmaxz Score(z)
11: stable← H[−M :] = [z∗]M

12: Compute share via Eq. (11)
13: Compute margin via Eq. (12)
14: if stable and (share ≥ θshare or

margin ≥ θmargin) then
15: return z∗

16: end if
17: end if
18: end for
19: return argmaxz Score(z)

samples, matching WSC and outperforming ASC
(83.0%) and Early Stopping (83.1%) at similar cost.
On GSM8K, CAWS maintains accuracy above 92%
with LLaMA and Qwen using only 16 samples,
while other methods either require more budget or
show accuracy degradation as sampling decreases.
These results demonstrate that CAWS achieves a
more favorable efficiency-accuracy tradeoff than
existing methods, making it a practical and scalable
solution for compute-efficient LLM reasoning.

E Dataset Licenses

We report the licenses for all datasets used in our
experiments:

• GSM8K2 (Cobbe et al., 2021): Released un-
der the MIT License.

• CommonsenseQA3 (Talmor et al., 2018): Re-
leased under the MIT License.

• ARC-Challenge4 (Clark et al., 2018):
Released under the Creative Commons

2https://huggingface.co/datasets/openai/gsm8k
3https://huggingface.co/datasets/tau/

commonsense_qa
4https://huggingface.co/datasets/allenai/ai2_

arc

Attribution-ShareAlike 4.0 International (CC
BY-SA 4.0) license.

All datasets are publicly released and have
served as standard benchmarks in reasoning with
large language models.
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Table 8: Accuracy (%) on ARC-Challenge, CommonsenseQA, and GSM8K under varying numbers of shots (2x).
For 21 to 26, each value shows the absolute change (↑ or ↓) relative to SC under the same setting. Equal values are
marked as ↑0.0. Within each group, the highest score is bolded and the second-highest is underlined.

Model Method 20 21 22 23 24 25 26

ARC-Challenge

DeepSeek

Early Stopping 59.4 59.4 ↑0.0 58.3 ↓6.2 58.2 ↓9.3 60.3 ↓7.3 64.3 ↓3.3 67.8 ↑0.2
SC 59.4 59.4 64.5 67.5 67.6 67.6 67.6

WSC 59.4 59.2 ↓0.2 64.3 ↓0.2 67.4 ↓0.1 66.9 ↓0.7 67.7 ↑0.1 67.8 ↑0.2
Best-of-N 59.4 59.2 ↓0.2 59.2 ↓5.3 61.2 ↓6.3 59.1 ↓8.5 57.8 ↓9.8 56.9 ↓10.7

ASC - 59.4 ↑0.0 64.7 ↑0.2 64.9 ↓2.6 66.9 ↓0.7 66.7 ↓0.9 66.7 ↓0.9
CAWS - - - 65.0 ↓2.5 68.2 ↑0.6 68.2 ↑0.6 68.2 ↑0.6

Llama

Early Stopping 81.6 84.6 ↑3.0 84.8 ↑0.2 85.6 ↓0.8 86.1 ↓1.6 86.1 ↓1.5 88.7 ↑0.8
SC 81.6 81.6 84.6 86.4 87.7 87.6 87.9

WSC 81.6 84.6 ↑3.0 85.8 ↑1.2 87.5 ↑1.1 88.1 ↑0.4 88.2 ↑0.6 88.7 ↑0.8
Best-of-N 81.6 84.6 ↑3.0 85.5 ↑0.9 86.0 ↓0.4 86.0 ↓1.7 86.0 ↓1.6 86.3 ↓1.6

ASC - 81.6 ↑0.0 85.4 ↑0.8 87.6 ↑1.2 87.5 ↓0.2 87.5 ↓0.1 87.5 ↓0.4
CAWS - - 85.4 ↑0.8 87.7 ↑1.3 88.0 ↑0.3 88.1 ↑0.5 88.1 ↑0.2

Qwen

Early Stopping 89.1 89.3 ↑0.2 89.4 ↓1.6 89.4 ↓1.6 89.4 ↓1.6 89.4 ↓2.2 91.1 ↓0.5
SC 89.1 89.1 91.0 91.0 91.0 91.6 91.6

WSC 89.1 89.3 ↑0.2 89.9 ↓1.1 90.4 ↓0.6 90.8 ↓0.2 91.0 ↓0.6 91.1 ↓0.5
Best-of-N 89.1 89.3 ↑0.2 89.3 ↓1.7 89.5 ↓1.5 89.3 ↓1.7 89.9 ↓1.7 90.4 ↓1.2

ASC - 89.1 ↑0.0 91.3 ↑0.3 91.4 ↑0.4 91.4 ↑0.4 91.4 ↓0.2 91.4 ↓0.2
CAWS - - 91.5 ↑0.5 91.6 ↑0.6 91.6 ↑0.6 91.6 ↑0.0 91.6 ↑0.0

CommonSenseQA

DeepSeek

Early Stopping 43.0 42.7 ↓0.3 43.2 ↓4.9 42.5 ↓7.0 44.2 ↓8.8 43.7 ↓9.0 53.0 ↑0.3
SC 43.0 43.0 48.1 49.5 53.0 52.7 52.7

WSC 43.0 44.2 ↑1.2 47.7 ↓0.4 50.8 ↑1.3 52.7 ↓0.3 52.7 ↑0.0 53.0 ↑0.3
Best-of-N 43.0 44.2 ↑1.2 43.6 ↓4.5 42.4 ↓7.1 43.1 ↓9.9 41.7 ↓11.0 40.9 ↓11.8

ASC - 43.0 ↑0.0 43.0 ↓5.1 49.7 ↑0.2 50.0 ↓3.0 51.6 ↓1.1 51.6 ↓1.1
CAWS - - - 49.7 ↑0.2 51.7 ↓1.3 52.8 ↑0.1 52.8 ↑0.1

Llama

Early Stopping 72.3 73.7 ↑1.4 75.4 ↓0.6 76.7 ↓0.8 76.7 ↓1.7 76.7 ↓1.8 79.4 ↑0.1
SC 72.3 72.3 76.0 77.5 78.4 78.5 79.3

WSC 72.3 75.7 ↑3.4 76.6 ↑0.6 78.4 ↑0.9 78.5 ↑0.1 79.2 ↑0.7 79.4 ↑0.1
Best-of-N 72.3 75.7 ↑3.4 76.7 ↑0.7 77.6 ↑0.1 77.3 ↓1.1 77.2 ↓1.3 77.7 ↓1.6

ASC - 72.3 ↑0.0 76.3 ↑0.3 77.9 ↑0.4 78.8 ↑0.4 78.8 ↑0.3 78.8 ↓0.5
CAWS - - 76.1 ↑0.1 78.4 ↑0.9 78.9 ↑0.5 79.3 ↑0.8 79.3 ↑0.0

Qwen

Early Stopping 80.4 81.2 ↑0.8 81.8 ↑0.0 82.7 ↑0.0 83.1 ↑0.0 83.6 ↑0.2 83.8 ↑0.1
SC 80.4 80.4 81.8 82.7 83.1 83.4 83.7

WSC 80.4 82.0 ↑1.6 81.7 ↓0.1 82.4 ↓0.3 83.5 ↑0.4 83.3 ↓0.1 83.8 ↑0.1
Best-of-N 80.4 82.0 ↑1.6 81.8 ↑0.0 81.9 ↓0.8 82.2 ↓0.9 82.9 ↓0.5 83.2 ↓0.5

ASC - 80.4 ↑0.0 81.9 ↑0.1 83.0 ↑0.3 83.0 ↓0.1 83.0 ↓0.4 83.0 ↓0.7
CAWS - - 82.1 ↑0.3 82.9 ↑0.2 83.4 ↑0.3 83.4 ↑0.0 83.4 ↓0.3

GSM8K

DeepSeek

Early Stopping 72.2 72.4 ↑0.2 71.0 ↓10.7 71.3 ↓14.3 71.1 ↓16.5 72.1 ↓15.9 88.4 ↓0.2
SC 72.2 72.2 81.7 85.6 87.6 88.0 88.6

WSC 72.2 72.6 ↑0.4 79.8 ↓1.9 83.8 ↓1.8 86.8 ↓0.8 88.4 ↑0.4 88.4 ↓0.2
Best-of-N 72.2 72.6 ↑0.4 72.9 ↓8.8 71.3 ↓14.3 69.6 ↓18.0 71.4 ↓16.6 68.9 ↓19.7

ASC - 72.2 ↑0.0 72.2 ↓9.5 72.2 ↓13.4 87.2 ↓0.4 87.3 ↓0.7 87.3 ↓1.3
CAWS - - - 85.4 ↓0.2 88.2 ↑0.6 88.5 ↑0.5 88.5 ↓0.1

Llama

Early Stopping 80.4 85.2 ↑4.8 86.1 ↓0.6 85.8 ↓4.5 86.4 ↓5.3 88.3 ↓3.7 92.5 ↑0.1
SC 80.4 80.4 86.7 90.3 91.7 92.0 92.4

WSC 80.4 84.0 ↑3.6 88.9 ↑2.2 91.1 ↑0.8 92.1 ↑0.4 92.1 ↑0.1 92.5 ↑0.1
Best-of-N 80.4 84.0 ↑3.6 86.4 ↓0.3 86.9 ↓3.4 86.8 ↓4.9 86.6 ↓5.4 86.6 ↓5.8

ASC - 80.4 ↑0.0 80.4 ↓6.3 90.6 ↑0.3 91.4 ↓0.3 91.4 ↓0.6 91.4 ↓1.0
CAWS - - - 91.7 ↑1.4 92.6 ↑0.9 92.6 ↑0.6 92.6 ↑0.2

Qwen

Early Stopping 87.6 87.6 ↑0.0 87.6 ↓5.7 87.6 ↓6.2 91.2 ↓3.3 93.0 ↓1.5 94.9 ↑0.3
SC 87.6 87.6 93.3 93.8 94.5 94.5 94.6

WSC 87.6 91.2 ↑3.6 93.3 ↑0.0 93.9 ↑0.1 94.6 ↑0.1 94.8 ↑0.3 94.9 ↑0.3
Best-of-N 87.6 91.2 ↑3.6 91.6 ↓1.7 91.4 ↓2.4 91.6 ↓2.9 91.4 ↓3.1 90.8 ↓3.8

ASC - 87.6 ↑0.0 93.8 ↑0.5 94.6 ↑0.8 94.6 ↑0.1 94.6 ↑0.1 94.6 ↑0.0
CAWS - - 93.9 ↑0.6 94.7 ↑0.9 94.7 ↑0.2 94.7 ↑0.2 94.7 ↑0.1
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