
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31976–32001
November 4-9, 2025 ©2025 Association for Computational Linguistics

SQUiD: Synthesizing Relational Databases from Unstructured Text

Mushtari Sadia Zhenning Yang Yunming Xiao
Ang Chen Amrita Roy Chowdhury

University of Michigan, Ann Arbor
{mushtari, znyang, yunmingx, chenang, aroyc}@umich.edu

Abstract

Relational databases are central to modern data
management, yet most data exists in unstruc-
tured forms like text documents. To bridge
this gap, we leverage large language models
(LLMs) to automatically synthesize a relational
database by generating its schema and pop-
ulating its tables from raw text. We intro-
duce SQUiD, a novel neurosymbolic frame-
work that decomposes this task into four stages,
each with specialized techniques. Our exper-
iments show that SQUiD consistently outper-
forms baselines across diverse datasets. Our
code and datasets are publicly available at:
https://github.com/Mushtari-Sadia/SQUiD.

1 Introduction

Relational databases serve as the foundation for
data management, supported by decades of ma-
ture infrastructure development and a wide array
of sophisticated analytical tools. However, much
of today’s data exists as raw, unstructured text –
such as academic articles, medical records, and
business reports (Harbert, n.d.). This unstructured
data cannot be directly analyzed using conventional
database tools, which rely on structured, relational
inputs. Bridging this gap remains a long-standing
goal of the data management community (Mansuri
and Sarawagi, 2006; Smith et al., 2022a; Chu
et al., 2007; Yafooz et al., 2013; Michelson and
Knoblock, 2008; Murthy et al., 2012; Jain et al.,
2007), with a key challenge being the conversion
of unstructured text into queryable, structured for-
mats compatible with existing relational database
infrastructure.

Large language models (LLMs) presents a
unique opportunity to automate this conversion,
owing to their growing capability to understand
natural language and perform complex informa-
tion extraction tasks. Prior work in this space
can be broadly categorized into two areas. The
first focuses on generating summarizing structures

Direct 
prompting for 
synthesizing 
relational
database

INSERT INTO Traveler 
VALUES (1, 

X Incomplete SQL

An error 
occurred: 
syntax 
error

INSERT INTO Traveler 
VALUES (1, 'Sophia');

Missing 
values: 
James

X Missing values

CREATE TABLE Traveler (id 
INT, email TEXT)
INSERT INTO Traveler 
VALUES 
(1,'sophia@gmail.com');

Hallucinated:
sophia@gmail.
com

X Hallucinated 
values

LM

SQL code

Sophia was 
visiting 
Rome on 
June 10th. 
James also 
booked a 
tour of 
Rome on 
June 10th.

Text 
document

Figure 1: Challenges of synthesizing relational DB from text

from text, such as tables (Deng et al., 2024; Wu
et al., 2022; Sundar et al., 2024; Li et al., 2023;
Arora et al., 2023) and mind maps (Jain et al.,
2024)—but these non-relational representations
are often tailored for specific downstream applica-
tions (Shavarani and Sarkar, 2025; Sui et al., 2024),
and lack the expressiveness and semantics of re-
lational databases. The second category manipu-
lates a pre-defined and fully populated relational
database—e.g., Text-to-SQL (Hong et al., 2024)
approaches generate executable SQL queries from
text over given schemas, while a recent work can
update existing relational databases using text in-
put (Jiao et al., 2024). However, a key challenge of
managing unstructured text is precisely that such a
pre-defined database often does not exist.

In this paper, we pursue a more ambitious goal
– synthesizing a relational database from unstruc-
tured text from scratch—a task that we call Text2R.
The Text2R task presents several unique chal-
lenges. First, a relational schema consists of multi-
ple interrelated tables that capture complex entity-
relationship semantics, and it must also preserve
syntactic integrity, such as satisfying primary/for-
eign key constraints. Second, database records
must be correctly identified and populated across
tables. This involves ensuring value consistency
– e.g., the same entity must be consistently rep-
resented in all relevant tables. Third, the actual
database creation requires valid and executable
SQL statements, adding another layer of complex-
ity. Naïve approaches, such as directly prompting

31976

https://github.com/Mushtari-Sadia/SQUiD


Unstructured texts 

(1) Schema Generation

Relational Database

(2) Value Identification

(3) Table Population (4) Database Materialization

Sophia, aged 34, booked 
a guided tour of Rome 
with BestCityTours, and 
opted for the premium 
package. She was visiting 
Rome on June 10th. 
James, aged 29, was 
also visiting Rome on 
June 10th…

LLM

Symbolic 
tool

CoT based prompting

Table: Trip
Traveler ID - FK** 
Destination ID - FK**

Start_date
Duration

Table: Destination
ID - PK*

City

Table: Traveler
ID - PK*

Name , Age 

Triplet generation

(Traveler, Name, Sophia)
(Traveler, Age, 34)
(Traveler, Name, James)
(Traveler, Age, 29)
(Destination, City, Rome)
(Trip, Start Date, 6/10)

Tool use prompting

traveler: 1,"Sophia", 34

traveler: 2,"James", 29

destination: 1, Rome

trip: 1, 1, “6/10”

trip: 2, 1, “6/10”

...

Program output

CREATE TABLE traveler …

INSERT INTO traveler (id, 
name, age) VALUES (1, 
'Sophia', 34);

INSERT INTO trip (id, 
traveler_id,...)
VALUES (1, 1,...);

Figure 2: Overview of SQUiD. (1) Schema Generation constructs a relational schema that defines the tables, columns, and their
relationships, from the entities in the text. (2) Value Identification extracts relevant values (e.g., names, dates) from the text.
These values are then organized during (3) Table Population by aligning them with the generated schema to form tuples. (4)
Database Materialization programmatically translates the output into SQL statements, producing the final relational database.

LLMs to synthesize databases, leads to diverse er-
rors, including missing or hallucinated values, and
SQL syntax issues (Fig. 1).

To address these challenges, we propose
SQUiD1, a neurosymbolic framework for the
Text2R task. Our key idea is to decompose the
task into multiple modular stages in a principled
manner—breaking the problem into manageable
sub-tasks. This allows each stage to leverage spe-
cialized techniques, such as symbolic information
extraction and LLM-assisted tool use, for improved
performance. Via task breakdown, some stages can
also be executed programmatically, enhancing both
accuracy and consistency. Additionally, each stage
incorporates best practices from relational database
literature to guide prompt design.

SQUiD consists of four stages, which general-
ize across text from diverse domains. The schema
generation stage uses LLMs to infer a relational
schema from the input text, guided by carefully
designed prompts that incorporate best practices
to identify entities and relationships. In the value
identification stage, intermediate representations
in the form of triplets are extracted using both
symbolic tools and LLMs. These triplets break
down complex sentences into granular units, im-
proving coverage of the extracted values. Next,
the table population stage aligns these triplets with
the generated schema to form schema-consistent
tuples. Finally, instead of generating SQL directly
via LLMs—which can be token-intensive—our
database materialization stage programmatically
translates the structured outputs into valid SQL
statements, ensuring syntactic correctness and
structural fidelity. The resulting SQL is then exe-
cuted to instantiate the final database. We make the
following contributions:
• We define a new task – synthesizing relational

databases from unstructured text, or Text2R. This
1SQUiD - SQL on Unstructured Data

marks a clear departure from prior work, which
focuses on downstream relational tasks (e.g.,
Text2SQL), assuming a pre-existing database.

• We propose SQUiD, a novel neurosymbolic
framework for Text2R, based on a four-stage de-
composition. Each stage leverages custom tech-
niques tailored to its specific subtask.

• We establish an automated benchmark methodol-
ogy for Text2R. We also define a suite of evalu-
ation metrics to assess schema and tuple quality
along both semantic and syntactic dimensions.

• We conduct extensive experiments across diverse
text domains and show that SQUiD consistently
outperforms direct prompting baselines.

2 The Text2R Task
We begin by defining this new task of relational
database synthesis, or Text2R. Given an unstruc-
tured document D of natural language text, the
goal is to produce a set of SQL statements S: (1)
CREATE TABLE statements which define the schema
R, specifying the structure of the database in terms
of tables and columns; and (2) INSERT statements
which populate the relations with data extracted
from the text in D. The schema R consists of a
set of tables T = {T1, T2, . . . , Tn} where each Ti

has a set of columns Ci = {Ci,1, Ci,2, . . . , Ci,ki}.
Each table corresponds to an entity type, and the
tables are inter-related, organizing the extracted tu-
ples from the text into a database. A tuple t for table
Ti is represented as: t = ⟨v1, v2, . . . , vki⟩ where
vj is the value corresponding to column Cij ∈ Ti.
Each tuple represents a unique instance of the en-
tity described by Ti. Fig 3 illustrates the differences
between Text2R and other tasks.

3 SQUiD Framework
SQUiD decomposes the Text2R task into four mod-
ular stages that mirror the typical database construc-
tion process. First, a relational database schema is
designed by identifying the domain’s entities and

31977



Sophia, aged 34, was visiting Rome on June 10th. She had booked a hotel 
room for the duration of her stay, which would set her back a total of $1,000. 

James, aged 29, was also visiting Rome on June 10th…
T3 prompts

Structsum prompts

Evaporate prompts

❌ Contains a single table
❌ Incorrect column-value assignment
❌ Does not support SQL 

❌ Contains a single table
❌ Incorrect column-value assignment
❌ Does not support SQL 

❌ Contains multiple incoherent tables
❌ Lacks relationships between tables
❌ Does not support SQL 

Figure 3: Closest related works—T3(Deng et al., 2024), STRUCTSUM(Jain et al., 2024), and EVAPORATE(Arora et al.,
2023)—when applied to our example dataset, either produced a single table with incorrect column-value assignments or multiple
disconnected, irrelevant tables. In contrast, as shown in Fig.2, SQUiD correctly generates all five tables corresponding to the
entities (Traveler, Trip, Accommodation, Transportation and Destination) along with their proper relationships.

relationships—this is the schema generation stage.
Next, SQUiD extracts all the relevant values from
the text (value identification), which are then used
to construct tuples (table population). Finally, the
generated schema and tuples are translated into
valid SQL statements during the database mate-
rialization stage. We describe these stages below,
using the following text shown in Fig. 2 as a run-
ning example: “Sophia booked a guided tour of
Rome with BestCityTours, and opted for the pre-
mium package. She was visiting Rome on June
10th. James, aged 29, was also visiting Rome on
June 10th.”

3.1 Schema Generation
Challenge. The complexity of schema genera-
tion is both semantic and syntactic. Semantically,
the schema must accurately capture the entity-
relationship structure that reflects the underlying
data. Syntactically, a valid schema must comply
with the integrity constraints defined by the es-
tablished principles of relational databases. Sim-
ply prompting LLMs to generate a schema with-
out explicitly articulating the necessary relational
database constraints can result in structurally in-
valid outputs, as illustrated in Fig. 4.

1   1            Rome    

Table: Traveler 

Name AgePK→ ID

1   Sophia       34
2   James        29

Table: Trip 

DestinationPK→ ID

1   Rome    

Invalid Schema

X No relationship 
between tables

Table: Traveler 

Name AgePK→ ID

1   Sophia       34
2   James        29

Table: Trip 

Traveler ID  DestinationPK→ ID

Valid Schema

2   2            Rome    

FK

Figure 4: Examples of valid versus invalid relational schemas.
PK: Primary key; FK: Foreign key.

Approach. The novelty of our approach is to en-
code a standardized set of rules that reflect the
best practices in relational database literature, ef-
fectively guiding the model through a structured
design process. These rules cover: (1) identify-
ing relevant entities and relationships, (2) defining
tables with appropriate columns, (3) assigning pri-
mary and foreign keys, and (4) avoiding reserved
SQL keywords in naming tables/columns. We en-

code these rules into two types of prompt strategies:
direct, and chain-of-thought (CoT) prompting. CoT
decomposes schema generation into intermediate
reasoning steps (e.g., entity identification, then ta-
ble and key definition; see Appendix G).

Decoupling schema generation from tuple for-
mation has another advantage – it allows schema
validity to be evaluated in isolation. This modular-
ity is essential for enforcing syntactic constraints:
each table must define a primary key (a column, or
set of columns that uniquely identifies each row);
and tables should include foreign keys (columns
referencing primary keys in other tables). These
constraints capture relationships between tables
and enable JOIN operations.

3.2 Value Identification
Challenge. This stage identifies and extracts val-
ues from the text that correspond to columns across
all tables in the schema, presenting two challenges.
First, multiple values often need to be extracted
and deduplicated from the input to form a com-
plete tuple (i.e., an entity instance). In our exam-
ple, “Sophia booked a guided tour of Rome with
BestCityTours, and opted for the premium pack-
age. She was visiting Rome on June 10th.”, we
must recover several values, such as traveler name
("Sophia"), tour location ("Rome"), tour operator
("BestCityTours"), and date ("June 10th"); redun-
dant mentions (e.g. "Rome") need to be detected
and deduplicated. Second, a document may de-
scribe multiple instances of the same type of entity,
so we need to assign each value to the correct tuple.
For instance, in the passage we also have: “James,
aged 29, was also visiting Rome on June 10th.”
Hence, we need to track that Sophia and James are
different tourists, and form distinct tuples.
Approach. Our neurosymbolic approach first aug-
ments direct LLM prompting with two informa-
tion extraction (IE) methods to isolate values in
a structured format, and then guides the LLM to
accurately group these values by tuples.

31978



Triplet Generation. This step introduces an inter-
mediate representation using triplets, a format com-
monly used in information extraction. Specifically,
we consider two triplet formats:

• Symbolic triplets, in the form (subject,
relation, object)—e.g., (Sophia, visiting,
Rome), extracted symbolically using the Stanford
CoreNLP toolkit (Manning et al., 2014).

• Schema-aligned triplets, in the form (table
column, value)—e.g., (Tour, Location,
Rome), generated using prompt-based LLM ex-
traction for the target schema (see Appendix G).

For instance, the earlier passage describing Sophia
might yield the following schema-aligned triplets:

<Traveler, Name, Sophia>
<Trip, Destination, Rome>
<Booking, Date, June 10th>

Sophia

<Traveler, Name, James>
<Trip, Destination, Rome>
<Booking, Date, June 10th>

James

We consider these two types of triplets because
each captures complementary sets of values. Sym-
bolic tools use deterministic methods to parse the
text, and often extract values that LLMs may over-
look (e.g. modifier words like premium). In
contrast, LLM-generated schema-aligned triplets
are more structurally consistent with the database
schema, (e.g., Location → Rome).

To ensure comprehensive coverage, we addi-
tionally leverage part-of-speech (POS) tagging to
identify all nouns, pronouns, and numerical tokens
in the text, since these POS categories typically
encompass most values. We then perform string
matching to verify whether the extracted triplets
include all such tokens. If any are missing, the
LLM is prompted to augment the existing triplets
by incorporating the missing POS tokens.
Triplet Deduplication. Both triplet generation meth-
ods often introduce redundancy. To reduce this, we
use the "sentence-t5-base" model (Ni et al., 2021)
to generate embeddings of the triplets and apply
cosine similarity to identify near-duplicates. If a
set of triplets has a pairwise cosine similarity above
a tunable threshold (97%), we retain only one rep-
resentative triplet.
Triplet Grouping. To ensure that triplets are cor-
rectly grouped by entity instance, we apply two
heuristics. First, we assume that the first table
in the schema typically corresponds to the central
entity (e.g., the tourist in a tourism booking sys-
tem). Second, we leverage the structure of the input
document, where each paragraph often describes
a distinct instance of this central entity. Accord-
ingly, we associate each paragraph with a unique

identifier, which serves as the primary key for the
first table. In particular, SQUiD uses an LLM to
detect the number of distinct entity instances in the
document and assign a unique identifier to each
paragraph. Once assigned, each triplet is prefixed
with its corresponding identifier. For example:

<1, Traveler, Name, Sophia>
<1, Trip, Destination, Rome>
<1, Booking, Date, June 10th>

Sophia

<2, Traveler, Name, James>
<2, Trip, Destination, Rome>
<2, Booking, Date, June 10th>

James

This structure ensures that all extracted values
are correctly grouped by the entity instance they
describe, and that the same identifier can be used to
link rows across tables during the population stage.

3.3 Table Population
Challenge. This stage constructs tuples for each
table using the values identified in the previous
stage, presenting two challenges. First, each value
must be correctly aligned with its corresponding
table column, meaning the LLM must output tuples
in a schema-aligned format. However, extracting
structured information in a single generation often
results in malformed outputs—especially when the
target format (e.g., JSON) is complex. Second, we
must maintain referential integrity: references to
the same entity instance must remain consistent
across related tables. For example, a tuple in the
Trip table may refer to a destination (e.g., Rome)
and a traveler (e.g., Sophia), who also appears in
the Traveler table. Here, the traveler ID used in
the Trip table must match the primary key of the
corresponding tuple in the Traveler table (Fig. 4).
Approach. Before delving into the details, we re-
mind readers that SQUiD has three possible inputs
for table population: (1) text alone, (2) text with
symbolic triplets, and (3) text with schema-aligned
triplets. Including all three in a single prompt in-
creases context length and can degrade output qual-
ity. Instead, each source is used independently as
input to the prompt, and the resulting tuples are
later combined. This is akin to ensemble learning
in ML (Polikar, 2012), allowing us to leverage the
complementary strengths of each input.

We now describe the process of table population.
To address the value-alignment challenge, we use a
structured format that is incrementally generatable
by the LLM. Instead of emitting the entire structure
at once, the format supports iterative generation,
which reduces formatting errors. We ensure refer-
ential integrity by incorporating carefully chosen
guidelines in the prompt that is compatible with
the above format. In particular, we leverage tool

31979



use in LLMs (Qu et al., 2025) by introducing a
lightweight tool extract that outputs one structured
record at a time according to a given schema. This
approach helps the LLM remain consistent with
the expected output format.

After generating the records, we parse the output
to extract each column-value pair for every tuple.

3.4 Database Materialization
Challenge. A naïve approach is to prompt LLMs
with all prior schema and value information to gen-
erate the corresponding SQL INSERT statements
directly. However, this method is both inefficient
and error-prone. We observe that this is akin to a
“program synthesis” task—it not only requires the
production of a large number of redundant tokens,
which can be costly; but is also brittle to slight mis-
takes (e.g., a slightly-malformed SQL statement
will produce execution errors).
Approach. Instead, we observe that the required
SQL statements are well-defined—creating specific
tables and then inserting the corresponding tuples
to these tables. Therefore, we decouple the materi-
alization step from the LLM by parsing the model’s
output from the previous stage to programmatically
construct executable SQL code. Specifically, we
generate CREATE TABLE and INSERT INTO state-
ments (as shown in Fig. 2) which are executed on
a local SQLite instance to instantiate the database.
This separation enables deterministic parsing, en-
suring syntactically correct SQL statements.

4 Evaluation Setup
Dataset. The Text2R task requires a text
document paired with a ground-truth relational
database—however, no existing benchmarks di-
rectly support this. To fill this gap, we introduce
an automated dataset creation pipeline: starting
from relational databases or CSV files (using col-
umn names and tuple values as ground truth), we
prompt an LLM to generate textual descriptions
of the tuples, which serve as the input for Text2R.
Using this approach, we construct two datasets: (1)
BIRD Dataset—covering six domains from the
BIRD Text2SQL benchmark (Li et al., 2024); and
(2) Kaggle Dataset—containing CSV files from
three domains (tourism, education, finance) (Kiat-
tisak, 2023; Becker and Kohavi, 1996; Rai, 2023),
which reflect more user-centric, realistic data often

missing in BIRD. Table 1 summarizes the dataset
statistics. We categorize the text difficulty as easy
(e.g., Tourism, Finance), medium (e.g., Education,
California Schools), or hard (e.g., Mental Health,
Superheroes), based on domain complexity, record
sparsity, and LLM-induced verbosity. We also man-
ually annotated samples from the WikiBio (Lebret
et al., 2016), CNN-DM (Nallapati et al., 2016), and
CORD-19 (Wang et al., 2020) datasets to enable
evaluation on real text (see Appendix D.2).

Domain Kaggle (24 tables/domain) BIRD (24 tables/domain)

Tourism Education Finance Calif. Schools Superhero Books Comp. Student Mental Health Authors

Cols/Table 12 8 10 26 9 7 6 2 5
Vals/Table 60 40 50 130 45 35 30 10 25

Overall Total Values 10,200

Table 1: Dataset statistics

Models. We test five state-of-the-art mod-
els: GPT-4O (OpenAI, 2024), DEEPSEEK-V2.5
(DeepSeek AI, 2024), CLAUDE 3.7 SONNET (An-
thropic, 2024), LLAMA-3-8B-INSTRUCT (Meta
AI, 2024), and QWEN3-8B (Alibaba, 2024).
Metrics. We propose a suite of novel metrics for a
principled evaluation of the Text2R task, which are
summarized in Table 2.
Schema Evaluation. We evaluate the quality of
generated database schemas along three dimen-
sions: entity coverage, primary key coverage,
and foreign key coverage. Entity coverage as-
sesses whether each column from the ground truth
is represented in the generated schema. A column
is considered covered if there exists a semantically
equivalent column (based on cosine similarity be-
tween column names) in the output. Primary key
coverage checks whether each generated table de-
fines at least one primary key, while foreign key
coverage evaluates whether all foreign keys cor-
rectly reference primary keys in valid, related ta-
bles within the schema. The last two metrics assess
syntactic constraints that are essential for the cor-
rectness of relational database schemas.
Tuple Evaluation. Relational databases store data
across multiple tables; therefore, evaluating the
quality of such databases requires a holistic view
that goes beyond individual tables or isolated val-
ues. To enable a principled evaluation, we flatten
the schema into a single table—commonly referred
to as a denormalized table (Elmasri and Navathe,
2016)—by performing a JOIN across all tables. In
our databases, each table maintains a many-to-one
or one-to-one relationship with a central table, en-
abling this complete JOIN of the entire schema.
This consolidated table captures complete entity-
relationship instances in a unified format. We

31980



Evaluation Metrics Definition Formula

Schema
Entity Coverage Score (ECS) Avg. max cosine similarity betn. GT & DB columns 1

N

∑N
i=1 maxj∈[1,M ] cos_sim(ci, ĉj)

Primary Key Coverage (PKC) % of tables with a defined primary key #Tables with PK/#Tables

Foreign Key Coverage (FKC) % of tables whose foreign keys refer valid primary keys #Tables with valid FK/#Tables

Tuple

Database Construction Success Rate (DBR) % of successfully generated databases #Generated DB/#Text Documents

Tuple Coverage (TC) % of GT tuples present in DB |RGT∩RDB|/|RGT|

Value Coverage (VC) % of GT values present in DB |VGT∩VDB|/|VGT|

Column Consistency (CC) % of GT values present in DB in correct columns |VGT∩VDB|/|VGT|, where VGT,VDB ∈ col

Ref. Integrity % (RRIR) Avg. tuple completeness after FK joins (non-null ratio) RRIR = 1
N

∑N
i=1

#non−null values in tuple i
#total values in tuple i

Table 2: Novel evaluation metrics for Text2R: GT denotes ground truth and DB denotes the generated databases.

generate two denormalized tables: one from the
ground-truth database and one from the database
produced by SQUiD. The two are then compared
to assess the accuracy of the generated database.

We propose five novel metrics to evaluate the
quality of the generated tuples along two dimen-
sions: syntactic and semantic validity. Syntactic
validity assesses whether the generated databases
adhere to correct structural and relational rules. It is
measured using: (1) Database Construction Suc-
cess Rate, which measures the percentage of gener-
ated SQL statements that successfully materialize
into databases with at least one non-null tuple, (2)
Referential Integrity Rate (RRIR), which mea-
sures the fraction of foreign-key joins that yielded
valid (non-null) tuples.

Semantic validity evaluates the comprehensive-
ness and correctness of the values populated. It
is measured using: (1) Tuple Coverage, which
measures the fraction of the ground truth tuples
recovered; (2) Value Coverage, which measures
the fraction of ground truth values populated; and
(3) Column Consistency, which checks whether
each value appears in its correct column.
Baseline. We design a tailored baseline: using
zero-shot prompting, we generate CREATE TABLE
and INSERT INTO SQL statements directly from the
input text, then execute them in SQLite to instanti-
ate the database, serving as the most relevant point
of reference. Prompt details are in Appendix G.

Existing work, by contrast, addresses a funda-
mentally different task—text-to-table summariza-
tion—which diverges from our task in the follow-
ing key aspects: (1) Text2R involves generating
interrelated tables which must satisfy constraints
such as primary/foreign keys, whereas prior work
produces independent tables that cannot be queried
as a database. (2) Text2R requires consistent value
population across related tables—e.g., the same
entity must be consistently represented wherever
it occurs. Existing work lacks this requirement as
their tables are unrelated. (3) Database creation
requires valid, executable SQL statements. This

critical step is entirely absent in prior work, which
generates markdown-style tables (i.e., plain text),
not databases. Instead, SQUiD generates fully exe-
cutable SQLite databases in the user’s system, pro-
viding a way to perform computation over unstruc-
tured text, rather than mere text summarization.
Thus, any end-to-end quantitative comparison with
prior work on Text2R would not be meaningful
(as highlighted in Fig. 3). Nevertheless, for com-
pleteness, we adapt prompts from T3 (Deng et al.,
2024), STRUCTSUM (Jain et al., 2024), and EVAP-
ORATE (Arora et al., 2023), and evaluate them on
a subset of our metrics where a fair comparison is
possible. Since these methods output only mark-
down tables, we relied on custom parsing to extract
column names and values, which introduces some
unreliability. In contrast, SQUiD supports princi-
pled evaluation through relational databases and
query-based retrieval.

5 Experiments and Analysis
We evaluate the performance of SQUiD based on
the following three research questions (RQs):

• RQ1. Can SQUiD generate a high-quality rela-
tional schema?

• RQ2. Can SQUiD generate accurate relational
tuples to populate the tables?

• RQ3. How do SQUiD’s design choices affect
performance?

• RQ4. How does SQUiD’s performance compare
to prior work?

5.1 RQ1: Schema Evaluation
As described in Sec.3.1, we evaluate two prompt-
ing strategies for schema generation: Direct and
Chain-of-Thought (CoT). Table 3 summarizes the
results. We only consider schemas that match the
format specified in the prompt, as this is required
for SQUiD to process them later. We evaluate
both syntactic validity—using primary key cov-
erage (PKC) and foreign key coverage (FKC)—and
semantic validity, using entity coverage (ECS). We
first highlight general observations across all three
metrics, followed by specific analysis. Overall,

31981



Model Prompt Easy Medium Hard Avg.
ECS(%) PKC(%) FKC(%) ECS(%) PKC(%) FKC(%) ECS(%) PKC(%) FKC(%) ECS(%) PKC(%) FKC(%)

CLAUDE 3.7 SONNET Direct 86.2 100 100 80.7 100 100 45.3 100 100 70.7 100 100

LLAMA-8B INSTRUCT
Direct 80.4 100 100 78.6 100 100 55.4 100 100 71.5 100 100
CoT 95.8 100 100 76.5 100 100 62.7 100 100 78.4 100 100

DEEPSEEK V2.5 Direct – – – 28.3 33.33 33.3 34.5 50 50 20.9 27.8 27.8
CoT 86.9 100 100 84.2 100 100 65.1 100 100 78.8 100 100

GPT-4O
Direct 90.5 100 100 79.4 94.4 100 62.6 100 100 77.5 98.2 100
CoT 93.0 100 100 80.0 100 66.7 63.2 100 100 78.7 100 88.9

Table 3: Schema evaluation: Entity (ECS), Primary Key (PKC) and Foreign Key (FKC) coverage scores. “–”: schema generation
failures that violate the requested structure in our prompts. CLAUDE-CoT and QWEN-8B are omitted due to such failures.

CoT consistently outperforms Direct across dif-
ficulty levels; except CLAUDE, which performs
better with Direct but struggles with CoT due to
format violations, likely due to overthinking (Liu
et al., 2024b). QWEN-8B consistently fails to pro-
duce valid schemas, likely due to poor support for
structured output tasks (Liu et al., 2024c).
Syntactic Validity. We observe that most CoT-
based generations achieve full PKC and FKC, except
GPT, which drops to 66.67% FKC in the medium
dataset. This is because GPT occasionally gener-
ates a single table with no foreign key, when the
text contains only a few entities.
Semantic Validity. For entity coverage ECS,
DEEPSEEK with CoT performs the best, followed
by LLAMA-8B and GPT–which show minor
drops due to their tendency to generate paraphrased
column names (e.g., “heritage” or “ethnicity” in-
stead of “race”), whereas DEEPSEEK aligns more
closely with the ground truth. In terms of perfor-
mance across domains (Appendix D), DEEPSEEK

achieves the highest entity coverage in the Educa-
tion domain (91.08%) and the lowest in the Mental
Health domain (38.97%). The ground truth of the
latter has complex column names, such as “ques-
tiontext" and “answertext", suggesting that domain
complexity significantly affects the quality of the
generated schema.

5.2 RQ2: Tuple Evaluation

Syntactic Validity. Table 4 reports the Database
Construction Success Rate (DBR) and the improve-
ment in Referential Integrity Rate (RRIR) over
the baseline. We highlight three observations.
First, SQUiD achieves perfect DBR (100%) across
all models and difficulty levels, except for us-
ing DEEPSEEK on hard examples, where it drops
slightly to 98%. This indicates the robustness
of SQUiD in consistently generating syntactically
valid databases. We observe similar robustness of
SQUiD in real text datasets (see Appendix. D.2).
In contrast, the baseline DBR varies widely—from

as low as 9.7% (GPT) to 58.2% (CLAUDE) on av-
erage. Next, we turn to referential integrity. We
note that SQUiD ’s RRIR is a conservative (lower-
bound) estimate, since records with missing values
in the ground truth are treated as invalid under our
metric. Nevertheless, SQUiD still achieves signifi-
cant improvements over the baseline. For example,
GPT exhibits the highest improvement (46.59×
on easy examples). QWEN-8B also achieve no-
table average improvements of 3.52×. Although
LLAMA-8B achieves perfect DBR, its RRIR does
not improve on the medium dataset, suggesting its
baseline already exhibits relatively strong referen-
tial integrity.

DBR(%) RRIR
SQUiD Baseline Improvement Factor

CLAUDE 3.7
SONNET

Easy 100.0 63.2 1.56×
Medium 100.0 63.4 1.10×
Hard 100.0 48.1 1.41×
Average 100.0 58.2 1.40×

DEEPSEEK
V2.5

Easy 100.0 23.2 4.44×
Medium 100.0 42.4 1.70×
Hard 98.0 40.3 1.87×
Average 99.3 35.3 1.80×

GPT-4O

Easy 100.0 2.0 46.59×
Medium 100.0 6.1 12.09×
Hard 100.0 21.0 2.63×
Average 100.0 9.7 13.93×

QWEN3
-8B

Easy 100.0 23.5 4.42×
Medium 100.0 32.2 2.52×
Hard 100.0 10.4 6.83×
Average 100.0 22.0 3.52×

LLAMA-3
8B-INSTRUCT

Easy 100.0 63.2 1.54×
Medium 100.0 64.5 1.00×
Hard 100.0 40.1 1.87×
Average 100.0 55.9 1.64×

Table 4: Database Construction Success Rate (%) and the
improvement factor in Referential Integrity Rate in SQUiD
compared to the baseline.

Semantic Validity. Table 5 reports Tuple Cover-
age (TC), Value Coverage (VC), and Column Consis-
tency (CC) with three findings. First, SQUiD consis-
tently outperforms the baseline across all models
and metrics. Notably, all 8B-parameter models
(LLAMA-8B, QWEN-8B) under SQUiD signifi-

31982



cantly outperform all larger model baselines (GPT,
CLAUDE, DEEPSEEK). In particular, although
QWEN-8B’s baseline lags behind those of CLAUDE

and DEEPSEEK, its performance under SQUiD sur-
passes them—highlighting the effectiveness of our
approach. Second, on average, all models using
SQUiD achieve high TC (≥0.95) and strong VC/CC
(≥0.70), with GPT showing the largest improve-
ment over its baseline (17.75× improvement on
CC). This is primarily because failed database gen-
erations are assigned zero scores, and as shown
in Table 4, GPT performs poorly in database con-
struction under the baseline setting. Third, even for
models with relatively strong baseline performance,
such as LLAMA-8B, SQUiD improves VC and CC
by 4.1× and 5.5× on hard examples, respectively.

M
od

el
D

iff
. SQUiD Baseline

TC(%) VC(%) CC(%) TC(%) VC(%) CC(%)

C
L

A
U

D
E

3.
7 Easy 100.0 (2.56×) 98.0 (4.67×) 98.0 (4.67×) 39.0 21.0 21.0

Med 98.0 (2.72×) 78.0 (6.00×) 74.0 (5.69×) 36.0 13.0 13.0
Hard 100.0 (2.44×) 63.0 (2.74×) 41.0 (3.73×) 41.0 23.0 11.0

Avg 99.0 (2.61×) 80.0 (4.21×) 71.0 (4.73×) 38.0 19.0 15.0

D
E

E
P

S
E

E
K

-V
2.

5 Easy 100.0 (5.88×) 96.0 (6.86×) 96.0 (6.86×) 17.0 14.0 14.0
Med 99.0 (3.54×) 80.0 (5.33×) 77.0 (5.50×) 28.0 15.0 14.0
Hard 95.0 (2.64×) 59.0 (2.57×) 39.0 (3.90×) 36.0 23.0 10.0

Avg 98.0 (3.63×) 79.0 (4.65×) 71.0 (5.92×) 27.0 17.0 12.0

G
P

T-
4O

Easy 100.0 (50.00×) 97.0 (48.50×) 97.0 (48.50×) 2.0 2.0 2.0
Med 99.0 (16.50×) 81.0 (16.20×) 77.0 (19.25×) 6.0 5.0 4.0
Hard 97.0 (6.47×) 61.0 (5.55×) 40.0 (6.67×) 15.0 11.0 6.0

Avg 99.0 (14.14×) 80.0 (13.33×) 71.0 (17.75×) 7.0 6.0 4.0

L
L

A
M

A
3-

8B
-I

N
.

Easy 100.0 (1.82×) 95.0 (3.06×) 95.0 (3.17×) 55.0 31.0 30.0
Med 99.0 (1.83×) 79.0 (2.82×) 75.0 (3.00×) 54.0 28.0 25.0
Hard 100.0 (3.45×) 70.0 (4.12×) 44.0 (5.50×) 29.0 17.0 8.0

Avg 100.0 (2.17×) 81.0 (3.24×) 71.0 (3.38×) 46.0 25.0 21.0

Q
W

E
N

3-
8B

Easy 100.0 (4.55×) 96.0 (5.05×) 96.0 (5.33×) 22.0 19.0 18.0
Med 98.0 (3.27×) 79.0 (3.16×) 79.0 (3.43×) 30.0 25.0 23.0
Hard 99.0 (14.14×) 51.0 (10.20×) 51.0 (17.00×) 7.0 5.0 3.0

Avg 99.0 (4.95×) 76.0 (4.75×) 75.0 (5.00×) 20.0 16.0 15.0

Table 5: Tuple evaluation via Tuple Coverage (TC), Value
Coverage (VC) and Column Consistency (CC). Best scores and
improvement factors across models in bold. Gray indicates
that SQUiD on all 8B models outperforms larger models.

5.3 RQ3: Impact of SQUiD’s Design Choices
We now evaluate the impact of SQUiD’s design
choices on value identification and table population.
Recall that we consider three different prompts
for table population based on their input source:
(1) text only (T), (2) text with symbolic triplets
(S), and (3) text with schema-aligned triplets (L).
SQUiD combines the rows generated from all three
prompts. Table 6 evaluates how these different
value sources affect the quality of the generated
tuples, with the following observations.

First, using triplets significantly improves value
coverage compared to extracting them from the
text alone. This is evident from the observation

Model Diff. T (%) S (%) L (%) T⊕S (%) T⊕L (%) SQUiD (%)
(1) (2) (3) (1)+(2) (1)+(3) (1)+(2)+(3)

C
L

A
U

D
E

3.
7 Easy 97.4 97.1 93.8 98.3 97.7 98.4

Med 68.2 74.6 74.1 77.3 77.5 78.2
Hard 51.7 58.4 51.3 60.7 60.5 63.1

Avg 72.4 76.7 73.1 78.8 78.6 79.9

D
E

E
P

S
E

E
K

-
V

2.
5

Easy 92.3 94.5 92.7 96.8 95.4 96.8
Med 76.7 68.1 69.3 79.6 80.2 80.4
Hard 54.8 42.9 35.7 57.4 57.1 59.3

Avg 74.6 68.5 65.9 77.9 77.6 78.8

G
P

T-
4O

Easy 90.8 93.2 90.4 95.1 96.3 97.4
Med 75.3 69.7 68.6 80.4 81.2 81.3
Hard 50.6 41.8 51.7 56.3 59.4 61.6

Avg 72.2 68.2 70.2 77.3 79.0 80.1

L
L

A
M

A
3-

8B
-I

N
. Easy 89.3 74.8 61.5 95.2 94.4 95.5

Med 70.1 52.7 61.3 75.5 76.1 79.4
Hard 60.6 37.9 40.4 64.3 68.5 70.7

Avg 73.3 55.1 54.4 78.3 79.7 81.9

Q
W

E
N

3-
8B

Easy 92.1 92.6 72.5 96.4 96.1 96.4
Med 71.4 71.3 67.4 74.7 78.4 79.5
Hard 29.8 23.5 35.9 33.3 48.2 51.2

Avg 64.4 62.5 58.6 68.1 74.2 75.7

Table 6: Impact of different value source. The first three
columns represent individual prompt settings, while the last
three correspond to post-generation ensembling. T⊕S com-
bines tuples generated from T and S while T⊕L combines T
and L. SQUiD combines outputs from all three prompts.

that SQUiD outperforms T by 5–12%.
Second, we examine how to best incorporate the

triplets: whether to concatenate them with the input
text in a single prompt, or to generate tuples sep-
arately and combine them post-hoc (ensembling).
SQUiD adopts the latter strategy, and our results
support this choice. Specifically, in the individual
prompt setting, T outperforms both S and L in all
but one case (CLAUDE). In contrast, the ensemble
approaches (T⊕S , T⊕L and SQUiD) consistently
outperform all the individual prompts. This sug-
gests that including triplets directly in the input
prompt increases context length, which degrades
model performance—likely due to context window
saturation (Liu et al., 2024a).

Finally, we evaluate our design choice of com-
bining triples generated from symbolic tools and
schema-aligned triplets from LLMs. Overall, T⊕L
outperforms T⊕S across most models on aver-
age, except for CLAUDE and DEEPSEEK. SQUiD
consistently yields the best score, indicating that
each source captures complementary information.
LLM-generated triplets are schema-aware and can
correctly group multi-word values under the correct
columns (e.g., mapping “car rental” to the trans-
portation mode column, whereas symbolic tools
only captured “car”). However, LLMs sometimes
paraphrase values (e.g., “low income” to “modest

31983



income”), whereas symbolic tools extract values
verbatim, yielding closer alignment to the input.

5.4 RQ4: Comparison of SQUiD’s
Performance with Related Work

M
od

el
D

iff
. T3 Evaporate StructSum SQUiD

VC CC VC CC VC CC VC CC
(%) (%) (%) (%) (%) (%) (%) (%)

C
L

A
U

D
E

3.
7 Easy 12.7 2.3 55.1 42.8 61.0 52.0 98.0 (×7.72/1.61/1.60) 98.0 (×42.6/2.29/1.88)

Med 19.3 1.8 46.4 34.1 50.0 41.5 78.0 (×4.04/1.68/1.56) 74.0 (×41.1/2.17/1.78)
Hard 25.5 0.9 15.6 7.2 62.5 23.5 63.0 (×2.47/4.04/1.01) 41.0 (×45.6/5.69/1.74)

Avg 19.2 1.7 39.0 28.0 57.8 39.0 80.0 (×4.17/2.05/1.38) 71.0 (×41.8/2.54/1.82)

D
E

E
P

S
E

E
K

-V
2.

5 Easy 8.9 1.6 60.2 54.8 61.9 55.2 96.0 (×10.8/1.59/1.55) 96.0 (×60.0/1.75/1.74)
Med 13.8 4.3 50.0 40.4 50.0 44.2 80.0 (×5.80/1.60/1.60) 77.0 (×17.9/1.91/1.74)
Hard 4.8 1.3 10.7 6.9 63.1 27.4 59.0 (×12.3/5.51/0.94) 39.0 (×30.0/5.65/1.42)

Avg 9.2 2.4 40.3 34.0 58.3 42.3 79.0 (×8.59/1.96/1.35) 71.0 (×29.6/2.09/1.68)

L
L

A
M

A
3-

8B
-I

N
.

Easy 13.0 2.1 59.7 40.1 60.0 55.2 95.0 (×7.31/1.59/1.58) 95.0 (×45.2/2.37/1.72)
Med 13.9 1.2 48.9 35.5 50.0 42.3 79.0 (×5.68/1.61/1.58) 75.0 (×62.5/2.11/1.77)
Hard 11.8 0.9 53.6 3.5 61.9 14.3 70.0 (×5.93/1.31/1.13) 44.0 (×48.9/12.6/3.08)

Avg 12.9 1.4 54.1 26.4 57.3 37.3 81.0 (×6.28/1.49/1.41) 71.0 (×50.7/2.69/1.90)

G
P

T-
4O

Easy 14.5 3.9 33.6 25.5 60.5 51.2 97.0 (×6.69/2.89/1.60) 97.0 (×24.9/3.80/1.89)
Med 26.2 2.4 41.5 25.6 50.0 40.4 81.0 (×3.09/1.95/1.62) 77.0 (×32.1/3.01/1.91)
Hard 43.6 3.5 2.4 1.2 64.3 28.6 61.0 (×1.40/25.4/0.95) 40.0 (×11.4/33.3/1.40)

Avg 28.1 3.3 25.8 17.4 58.3 40.1 80.0 (×2.85/3.10/1.37) 71.0 (×21.5/4.08/1.77)

Q
W

E
N

3-
8B

Easy 11.4 2.2 58.7 43.9 61.2 55.0 96.0 (×8.42/1.63/1.56) 96.0 (×43.6/2.19/1.75)
Med 15.9 1.1 47.3 33.0 50.0 43.0 79.0 (×4.97/1.67/1.58) 79.0 (×71.8/2.39/1.84)
Hard 9.2 0.6 21.5 12.0 62.0 21.5 51.0 (×5.54/2.37/0.82) 51.0 (×85.0/4.25/2.37)

Avg 12.2 1.3 42.5 29.6 57.7 39.8 75.0 (×6.15/1.76/1.30) 75.0 (×57.7/2.53/1.88)

Table 7: Inline multipliers indicate SQUiD ’s improvement
factors over T3, Evaporate, and StructSum (in that order). The
best improvement factor is highlighted in bold.

We design a new baseline for SQUiD, since prior
work cannot serve as a direct point of compari-
son—the tasks differ fundamentally and do not
allow for an apples-to-apples evaluation. Never-
theless, for completeness, we report comparison
results in Table 7 on a subset of metrics that remain
meaningful. Schema-level metrics and DBR are ex-
cluded, as they assess the syntactic validity of rela-
tional databases, whereas prior methods output non-
relational tables. TC is also not a fair metric: for a
single flat table, it’s straightforward to enumerate
all the tuples. In contrast, SQUiD generates mul-
tiple interrelated tables, introducing two key chal-
lenges: ensuring consistent representation of enti-
ties across tables and retrieving attributes spread
among them. Reconstructing the correct tuples
for the normalized evaluation database (via JOIN;
see Sec. 4) is therefore non-trivial. The only fair
metrics for comparison are VC and CC, which test
whether all ground-truth values appear in the output
and whether they are placed in the correct columns,
respectively. As shown in Table 7, SQUiD sub-
stantially outperforms all baselines, achieving the
best scores across all models and difficulty levels
(up to an 85× improvement on the Hard dataset
for CC, Qwen3-8B). CC is especially poor for T3
prompts, with SQUiD yielding on average a 42×
improvement over T3 across models. We attribute

SQUiD’s substantial performance gains to a fun-
damental limitation of prior methods: markdown
tables lack atomicity. Designed for summarization,
they often compress multiple attributes into a single
column (e.g., merging hotel name and cost under
accommodation), resulting in misalignment with
the ground truth. By contrast, SQUiD preserves the
atomicity of relational databases by first defining an
explicit schema, ensuring that each value occupies
its own column and that all relevant information is
captured in full rather than summarized.
6 Related Work
Summarizing Structures. Text-to-table genera-
tion (Wu et al., 2022; Sundar et al., 2024; Li et al.,
2023; Deng et al., 2024; Arora et al., 2023; Jain
et al., 2024) projects explore sequence-to-sequence
modeling, LLM prompt engineering, and struc-
tured summarization techniques. However, they
can only generate flat tables, and cannot capture
the relational database model in our work.
Manipulating Existing Databases. The goal of
these projects is to leverage LLMs to interact with
existing relational databases—such as to generate
SQL queries from text (Hong et al., 2024; Pang
et al., 2020), or to update them using natural lan-
guage (Jiao et al., 2024). However, none of these
works can synthesize a relational database from
scratch, which is what SQUiD tackles.
Non-LLM Approaches. Prior to LLMs, integrat-
ing text into relational structures relied on tradi-
tional pipelines that combine information extrac-
tion, schema induction, and entity linking (Zhang
et al., 2016; Smith et al., 2022b; Zhang et al., 2019).
These methods rely on statistical or symbolic tech-
niques, but required domain-specific heuristics and
did not generalize to noisy or diverse input text.

7 Conclusion
In this work, we have introduced a novel task of
synthesizing relational databases from text, called
Text2R. We have also developed a framework,
SQUiD, designed to solve Text2R tasks. SQUiD
has a neurosymbolic pipeline, with each stage in-
corporating specialized techniques for the task.
Our experiments show SQUiD significantly out-
performs baseline solutions across diverse datasets.

Limitations

While we provide extensive evaluation of SQUiD
on our benchmark, we leave comparisons with few-
shot baselines and fine-tuned models for future
work.

31984



Ethics Statement
All datasets used in this work are publicly avail-
able and released under open licenses. The tools
and models employed are authorized for research
purposes and have been used in accordance with
their intended terms. Detailed license information
is provided in Appendix F. All experiments were
performed strictly for research and evaluation.

Because our study requires user-centric docu-
ments for schema generation and value mapping
evaluation, anonymization was not feasible with-
out significantly compromising data integrity. To
the best of the authors’ knowledge, this research
does not introduce any ethical risks beyond those
already associated with the original datasets.

Since SQUiD uses large language models
(LLMs) to synthesize databases, and LLMs are
known to occasionally produce hallucinated or in-
accurate content, there are potential risks when
applying SQUiD in sensitive domains without hu-
man oversight. Careful review and verification are
recommended before deploying the system in high-
stakes or privacy-critical applications.

Acknowledgments
This work is partially supported by NSF grants
CNS-2535540, CNS-2406598, CNS-2420309, and
CNS-2345339.

References
Alibaba. 2024. Qwen3 language models. Accessed:

2025-05-19. Licensed under the Apache 2.0 License.

Anthropic. 2024. Claude 3 model family. Accessed:
2025-05-19. Usage governed by Anthropic’s terms
of service.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika
Narayan, Andrew Hojel, Immanuel Trummer, and
Christopher Ré. 2023. Language models enable sim-
ple systems for generating structured views of hetero-
geneous data lakes. Proc. VLDB Endow., 17(2):92–
105.

Wen Bai, Shuo Liu, and Kai Zhang. 2023. Schema-
driven information extraction from heterogeneous
tables. arXiv preprint arXiv:2306.12345.

Barry Becker and Ronny Kohavi. 1996. Adult.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5XW20.

Andrew Carlson and Charles Schafer. 2008. Bootstrap-
ping information extraction from semi-structured
web pages. In European Conference on Machine

Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD).

Chia-Hui Chang and Chun-Ying Wu. 2016. Fastwrap-
per: Learning structure from web pages for data ex-
traction. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD).

Jiayi Chang, Yu Liu, and Fang Chen. 2024. Synthe-
sizing text-to-sql data from weak and strong llms.
In Proceedings of the 2024 Annual Meeting of the
Association for Computational Linguistics (ACL).

Eric Chu, Akanksha Baid, Ting Chen, AnHai Doan,
and Jeffrey Naughton. 2007. A relational approach
to incrementally extracting and querying structure
in unstructured data. In Proceedings of the 33rd
International Conference on Very Large Data Bases
(VLDB), pages 1045–1056.

DeepSeek AI. 2024. Deepseek-v2.5: A next-generation
language model. Accessed: 2025-05-19. Licensed
under the DeepSeek License.

Xi Deng. 2010. Automatic web data extraction using
tree matching and partial tree alignment. In Pro-
ceedings of IEEE International Conference on Data
Engineering Workshops (ICDE Workshops).

Xi Deng. 2011. Sede: Schema extraction from html
data sources. In IEEE International Conference on
Data Engineering (ICDE).

Zheye Deng, Chunkit Chan, Weiqi Wang, Yuxi Sun,
Wei Fan, Tianshi Zheng, Yauwai Yim, and Yangqiu
Song. 2024. Text-tuple-table: Towards information
integration in text-to-table generation via global tuple
extraction.

Ramez Elmasri and Shamkant B. Navathe. 2016. Fun-
damentals of Database Systems, 7 edition. Pearson.

Tam Harbert. n.d. Tapping the power of
unstructured data. https://mitsloan.
mit.edu/ideas-made-to-matter/
tapping-power-unstructured-data.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. arXiv preprint arXiv:2406.08426.

Alpa Jain, AnHai Doan, and Luis Gravano. 2007. Sql
queries over unstructured text databases. In 2007
IEEE 23rd International Conference on Data Engi-
neering (ICDE), pages 1255–1257.

Parag Jain, Andreea Marzoca, and Francesco Piccinno.
2024. STRUCTSUM generation for faster text com-
prehension. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 7876–7896,
Bangkok, Thailand. Association for Computational
Linguistics.

31985

https://huggingface.co/Qwen/Qwen3-8B
https://www.anthropic.com/index/claude-3
https://doi.org/10.14778/3626292.3626294
https://doi.org/10.14778/3626292.3626294
https://doi.org/10.14778/3626292.3626294
https://huggingface.co/deepseek-ai/DeepSeek-V2.5
https://huggingface.co/deepseek-ai/DeepSeek-V2.5
http://arxiv.org/abs/2404.14215
http://arxiv.org/abs/2404.14215
http://arxiv.org/abs/2404.14215
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://doi.org/10.1109/ICDE.2007.368986
https://doi.org/10.1109/ICDE.2007.368986
https://doi.org/10.18653/v1/2024.acl-long.426
https://doi.org/10.18653/v1/2024.acl-long.426


Yizhu Jiao, Sha Li, Sizhe Zhou, Heng Ji, and Jiawei
Han. 2024. Text2DB: Integration-aware information
extraction with large language model agents. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 185–205, Bangkok, Thailand.
Association for Computational Linguistics.

Ratanakorn Kiattisak. 2023. Traveler trip data. Ac-
cessed: 2025-05-07.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. arXiv preprint
arXiv:1603.07771.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Mingda Li, Yichong Chen, and Jiawei Han. 2023.
Seq2seqset: Modular table generation via sequential
header and set-based body construction. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Ryan Liu, Jiayi Geng, Addison J. Wu, Ilia Sucholutsky,
Tania Lombrozo, and Thomas L. Griffiths. 2024b.
Mind your step (by step): Chain-of-thought can re-
duce performance on tasks where thinking makes
humans worse.

Yu Liu, Duantengchuan Li, Kaili Wang, Zhuoran Xiong,
Fobo Shi, Jian Wang, Bing Li, and Bo Hang. 2024c.
Are llms good at structured outputs? a bench-
mark for evaluating structured output capabilities
in llms. Information Processing and Management,
61(5):103809.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

I.R. Mansuri and S. Sarawagi. 2006. Integrating unstruc-
tured data into relational databases. In 22nd Interna-
tional Conference on Data Engineering (ICDE’06),
pages 29–29.

Meta AI. 2024. Llama 3: Open foundation and
instruction-tuned language models. Accessed: 2025-
05-19. Licensed under Meta’s LLaMA 3 Community
License.

Matthew Michelson and Craig A. Knoblock. 2008. Cre-
ating relational data from unstructured and ungram-
matical data sources. Journal of Artificial Intelli-
gence Research, 31:543–590.

Karin Murthy, Prasad M. Deshpande, Atreyee Dey, Ra-
manujam Halasipuram, Mukesh Mohania, P. Deepak,
Jennifer Reed, and Scott Schumacher. 2012. Ex-
ploiting evidence from unstructured data to enhance
master data management. Proceedings of the VLDB
Endowment, 5(12):1862–1873.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2021. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2018. A survey on open infor-
mation extraction. arXiv preprint arXiv:1806.05599.

Madhav Nimishakavi and Partha Talukdar. 2016. Rela-
tion schema induction using tensor factorization with
side information. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

OpenAI. 2024. Gpt-4o technical report. Accessed:
2025-05-19. Usage governed by OpenAI’s terms of
service.

Long Pang, Tao Zhang, and Ming Hu. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Robi Polikar. 2012. Ensemble learning. Ensemble Ma-
chine Learning: Methods and Applications, pages
1–34.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-rong
Wen. 2025. Tool learning with large language mod-
els: A survey. Frontiers of Computer Science, 19(8).

Harun Rai. 2023. Fintech customer life time value (ltv)
dataset. Accessed: 2025-05-07.

Thomas Scholak, Siva Reddy Patra, and James Compo-
sitionality. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Hassan Shavarani and Anoop Sarkar. 2025. Entity re-
trieval for answering entity-centric questions. In
Proceedings of the 4th International Workshop on
Knowledge-Augmented Methods for Natural Lan-
guage Processing, pages 1–17, Albuquerque, New
Mexico, USA. Association for Computational Lin-
guistics.

31986

https://doi.org/10.18653/v1/2024.findings-acl.12
https://doi.org/10.18653/v1/2024.findings-acl.12
https://www.kaggle.com/datasets/rkiattisak/traveler-trip-data
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
http://arxiv.org/abs/2410.21333
http://arxiv.org/abs/2410.21333
http://arxiv.org/abs/2410.21333
https://doi.org/10.1016/j.ipm.2024.103809
https://doi.org/10.1016/j.ipm.2024.103809
https://doi.org/10.1016/j.ipm.2024.103809
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1109/ICDE.2006.83
https://doi.org/10.1109/ICDE.2006.83
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://doi.org/10.14778/2367502.2367524
https://doi.org/10.14778/2367502.2367524
https://doi.org/10.14778/2367502.2367524
http://arxiv.org/abs/2108.08877
http://arxiv.org/abs/2108.08877
https://openai.com/index/gpt-4o
https://doi.org/10.1007/s11704-024-40678-2
https://doi.org/10.1007/s11704-024-40678-2
https://www.kaggle.com/datasets/harunrai/fintech-customer-life-time-value-ltv-dataset
https://www.kaggle.com/datasets/harunrai/fintech-customer-life-time-value-ltv-dataset
https://aclanthology.org/2025.knowledgenlp-1.1/
https://aclanthology.org/2025.knowledgenlp-1.1/


Abraham Silberschatz, Henry F. Korth, and S. Sudar-
shan. 2020. Database System Concepts, 7 edition.
McGraw-Hill Education.

Ellery Smith, Dimitris Papadopoulos, Martin Braschler,
and Kurt Stockinger. 2022a. Lillie: Information ex-
traction and database integration using linguistics
and learning-based algorithms. Information Systems,
105:101938.

Jack Smith, Evangelos Kanoulas, et al. 2022b. Lillie:
Language-independent linked information extraction.
Data and Knowledge Engineering, 137:101998.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, WSDM ’24, pages 645–
654, New York, NY, USA. Association for Comput-
ing Machinery.

Srivatsan Sundar, Dhruv Jain, Yuwei Zhang, and H. V.
Jagadish. 2024. gtbls: Generating tables from text by
learning table structures. In Proceedings of the 2024
Conference of the Association for Computational Lin-
guistics.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Rus-
sell Reas, Jiangjiang Yang, Douglas Burdick, Darrin
Eide, Kathryn Funk, Yannis Katsis, Rodney Kinney,
et al. 2020. Cord-19: The covid-19 open research
dataset. ArXiv, pages arXiv–2004.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-
to-table: A new dataset and method for structured
table generation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2518–2533.

Wael M.S. Yafooz, Siti Z.Z. Abidin, Nasiroh Omar, and
Zanariah Idrus. 2013. Managing unstructured data
in relational databases. In 2013 IEEE Conference on
Systems, Process and Control (ICSPC), pages 198–
203.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, Qingming Ma, Irene Li,
Shanelle Yao, Yi Zhang, et al. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3911–3921.

Yuniarti Yuliana and Chia-Hui Chang. 2016. Afis: Auto-
matic format-induction system for detail web pages.
In The Asian Conference on Artificial Intelligence
(TAAI).

Yuniarti Yuliana and Chia-Hui Chang. 2020. Dcade:
Dynamic content alignment for data extraction
from web pages. Journal of Information Science,
46(5):656–674.

Ce Zhang, Jan Hoffmann, Ce Wang, et al. 2016. Deep-
dive: Declarative knowledge base construction. Com-
munications of the ACM, 60(5):93–102.

Fan Zhang, Alan Ritter, et al. 2019. Openki: Integrating
open information extraction and knowledge bases.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL).

31987

https://doi.org/10.1016/j.is.2021.101938
https://doi.org/10.1016/j.is.2021.101938
https://doi.org/10.1016/j.is.2021.101938
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1109/SPC.2013.6735131
https://doi.org/10.1109/SPC.2013.6735131


A Definitions

1. Canonical Join Query: The canonical join
of the database schema is the natural join of
all the relations in the schema. (Elmasri and
Navathe, 2016)

2. Primary Key: A primary key is a set of one or
more attributes that uniquely identifies a tuple
within a relation. No attribute in the primary
key can have a null value. (Silberschatz et al.,
2020, Section 3.3.2)

3. Foreign Key: A foreign key is an attribute,
or a set of attributes, in one relation that refer-
ences the primary key of another relation. It
ensures referential integrity between the two
relations. (Silberschatz et al., 2020, Section
3.4)

4. Referential Integrity: Referential integrity
is a property of a relational database that en-
sures that every foreign key value in a child
table either matches a valid primary key in the
referenced parent table or is null (if allowed).
It guarantees that relationships between tables
remain consistent. (Silberschatz et al., 2020,
Section 3.4)

B Dataset

Our dataset generation approach is illustrated in
Fig. 5. For the BIRD dataset, we flatten each multi-
table database obtained from the BIRD benchmark
(Li et al., 2024) into a single table by joining related
tables. Then, using the LLAMA-8B-INSTRUCT

model (see prompts in Appendix 6), we generate
a natural language sentence for each row. Five
consecutive sentences are concatenated to create
a paragraph-style input document. The same ap-
proach is applied to the Kaggle datasets (Kiattisak,
2023; Rai, 2023; Becker and Kohavi, 1996).

C Metrics

We assess the quality of both the generated schema
and its instantiated content using a suite of novel
evaluation metrics that capture structural correct-
ness, semantic alignment, and data fidelity, provid-
ing a comprehensive measure of generation quality.

C.0.1 Schema Evaluation
We evaluate the quality of generated database
schemas using three complementary metrics:

Entity Coverage Score (ECS) for column-
level semantic alignment, Primary Key Coverage
(PKC) for schema completeness, and Foreign Key
Coverage (FKC) for referential integrity.
Entity Coverage Score (ECS) evaluates how
well the predicted schema recovers the ground truth
column names. Let {c1, . . . , cN} be the ground
truth column names and {ĉ1, . . . , ĉM} be the pre-
dicted columns. For each ground truth column ci,
we compute its cosine similarity with every pre-
dicted column ĉj and select the highest similarity.
ECS is the average of these maximum scores:

ECS =
1

N

N∑

i=1

max
j∈[1,M ]

cos_sim(ci, ĉj) (1)

where cosine similarity is computed as:

cos_sim(u, v) =
u · v

∥u∥∥v∥ (2)

This metric captures the best semantic match for
each ground truth column using SentenceTrans-
former embeddings (all-MiniLM-L6-v2).
Primary Key Coverage (PKC) measures how
well the generated schema supports tuple-level
uniqueness by checking whether primary keys are
defined. PKC is defined as:

PKC =
Num_PK

Num_tables
(3)

Here, Num_PK is the number of generated ta-
bles that define at least one primary key, and
Num_tables is the total number of generated ta-
bles. This metric reflects the model’s ability to
generate structurally valid tables that enforce row-
level uniqueness through primary keys.
Foreign Key Coverage (FKC) assesses the extent
to which the generated schema maintains referen-
tial integrity across tables. FKC is defined as:

FKC =
Num_FKValid
Num_FK

(4)

Here, Num_FKValid is the number of foreign keys
that correctly reference existing primary keys, and
Num_FK is the total number of generated foreign
keys. This metric evaluates the model’s ability to
establish valid inter-table relationships, ensuring
that foreign keys point to legitimate primary key
targets.

31988



As the sun began to set on July 1st, 2023, 45-year-old David Lee, a Korean national, stood at the airport, … 
adventure to the beautiful island of Bali, Indonesia … 

Imagine Sarah Johnson, a 29-year-old British woman … the city that never sleeps – New York, USA … set to 
begin on August 15th, 2023, and would last for 14 whole days …

Kim Nguyen, a 26-year-old Vietnamese woman, had been planning her dream trip to Tokyo, … would cost her 
200 dollars…

Michael Brown, a 42-year-old American man, had been planning his dream trip to the City of Light … To get to 
Paris, he opted for a convenient flight, which set him back $800…

Emily Davis, a 33-year-old Australian woman… stay at a cozy hostel, which she had budgeted for a reasonable 
$500 … she had opted for a convenient flight, which set her back a total of $1,200…

Prompts for dataset generation

Text Document

Ground Truth

"Destination": (1, "Bali, Indonesia"), (2, "New York, USA"), (3, 
"Tokyo, Japan"), (4, "Paris, France"), (5, "Sydney, Australia")

"Start date": (1, "7/1/2023"), (2, "8/15/2023"), (3, "9/10/2023"), 
(4, "10/5/2023"), (5, "11/20/2023")

"End date": (1, "7/8/2023"), (2, "8/29/2023"), (3, "9/17/2023"), (4, 
"10/10/2023"), (5, "11/30/2023")

"Duration": (1, 7), (2, 14), (3, 7), (4, 5), (5, 10)

"Name": (1, "David Lee"), (2, "Sarah Johnson"), (3, "Kim 
Nguyen"), (4, "Michael Brown"), (5, “Emily Davis”)

CSV File

LM

Figure 5: Our dataset generation process

C.0.2 Database Evaluation
We use five evaluation metrics to assess how well
the generated database reconstructs the ground
truth data: Database Construction Success
Rate (DBR), Referential Integrity Rate
(RRIR), Tuple Coverage (TC), Value Coverage
(VC), and Column Consistency (CC).
Database Construction Success Rate (DBR)
captures the percentage of successfully generated
databases from text documents.

DBR =
#Generated DB

#Text Documents
(5)

Referential Integrity Rate (RRIR) captures
whether foreign key joins result in meaningful, non-
sparse rows during execution. Let D be the set of
evaluated databases, and let each database d ∈ D

produce a set of rows Rd from a canonical foreign
key join. For each row r ∈ Rd, let ntotal(r) be the
number of columns, and nnull(r) the number of
columns with null values. The per-database score
is:

RRIR(d) =
1

|Rd|
∑

r∈Rd

(
1− nnull(r)

ntotal(r)

)
(6)

The overall score across all databases is:

RRIR =
1

|D|
∑

d∈D
RRIP(d) (7)

This metric provides a practical signal of referen-
tial soundness during execution by quantifying the

completeness of joined rows in terms of non-null
content.
Tuple Coverage (TC) quantifies how many
ground truth rows are recovered through canon-
ical joins. Let RGT be the set of primary keys from
the ground truth database, and Rjoin be the set
of primary keys resulting from the canonical join
query over the generated database. Then:

TC =
|RGT ∩ Rjoin|

|RGT|
(8)

This metric reflects the row-level reconstruction
accuracy.
Value Coverage (VC) measures the proportion of
ground truth cell values that are accurately recov-
ered in the predicted database. A predicted value v̂
is considered a match to a ground truth value v if:

• For numeric values: |v − v̂| < 10−2 (i.e.,
absolute difference less than 0.01).

• For textual values: the cosine similarity be-
tween embeddings satisfies cos_sim(v, v̂) >
0.8.

Let VGT be the set of all ground truth values,
and VDB be the set of predicted values matched to
ground truth under the criteria above. Then VC is
defined as:

VC =
|VGT ∩ VDB|

|VGT|
(9)

31989



This ratio reflects the overall proportion of cor-
rectly reconstructed cell values, incorporating both
numeric precision and semantic similarity for text.

Column Consistency (CC) quantifies the propor-
tion of matched values that appear under the correct
column names in the predicted database. A column
name in the prediction is considered correct if its
semantic similarity with the corresponding ground
truth column name exceeds a threshold of 0.7, i.e.,

cos_sim(colGT, colDB) > 0.7

Formally, restricting the sets VGT and VDB to val-
ues within a specific column col, CC is defined
as:

CC =
|VGT ∩ VDB|

|VGT|
, where VGT,VDB ∈ col

(10)
Here, the intersection counts only those values

matched under semantically correct columns ac-
cording to the cosine similarity criterion above.

D Experimentation Details

D.1 Experimental Setting

Computational Resources and Model Sizes. We
report the number of parameters, computational
budget, and infrastructure details for all models
and experiments used in this work. The mod-
els employed include: LLAMA3-8B-INSTRUCT

(8B parameters), CLAUDE 3.7 SONNET (param-
eter size not disclosed), GPT-4O (parameter size
not disclosed), QWEN3-8B (8B parameters), and
DEEPSEEK-V2.5 (16B parameters). All experi-
ments, including both development and final evalu-
ation runs, were conducted using 1 GPU (NVIDIA
A10, 24 GB VRAM) over a total of approximately
100 GPU hours. Our computing environment in-
cluded 48-core Intel Xeon Silver 4310 CPUs and
128 GB RAM, running on Ubuntu 24.04.2 LTS.
These details are provided to support reproducibil-
ity and contextualize the performance reported in
this study.

D.2 Results

We report additional results from our study in
this section. Table 8 presents schema coverage
scores across different domains and datasets for the
DEEPSEEK-V2.5 model and CoT approach. Ta-
ble 9 shows the impact of different value sources

on Tuple Coverage (TC), Value Coverage (VC) and
Column Consistency (CC).

Domain ECS PKC FKC

K
ag

gl
e Tourism 89.15 100 100

Education 91.08 100 100
Finance 84.71 100 100

B
IR

D

California Schools 76.84 100 100
Superhero 77.55 100 100
Books 84.87 100 100
Computer Student 57.46 100 100
Mental Health Survey 38.97 100 100
Authors 86.44 100 100

Table 8: Schema coverage scores across different domains and
datasets for the DEEPSEEK-V2.5 model and CoT approach.

We also conducted a small-scale evaluation on
real text from WikiBio (Lebret et al., 2016), CNN-
DM (Nallapati et al., 2016), and CORD-19 (Wang
et al., 2020) manually annotating 10 entries per
dataset to evaluate SQUiD. Results (Tables 10 and
11) align with those from synthetic data, demon-
strating SQUiD’s robustness. Notably, on WikiBio,
GPT-4O fails completely (0% DBR), while SQUiD
succeeds in 100% of cases.

D.3 Additional Context
Baseline Join Query vs SQUiD Join Query. For
the baseline case, the model was prompted to gener-
ate join queries after seeing the full table contents,
allowing it to tailor joins to observed values. In
contrast, SQUiD ’s join queries are issued inde-
pendently of table population, which may result in
more None retrievals.

E Related Work

Recent research relevant to our task of synthesizing
relational databases from unstructured text spans
three primary areas: (1) summarizing structured
information from text (2) interacting with or modi-
fying existing databases (3) domain-specific, non-
LLM approaches based on rule-based or statistical
methods for relational structure extraction from
text.

Summarizing Structures from Text. A widely
studied area related to our task is Open Informa-
tion Extraction (OpenIE), which extracts subject,

31990



Model Diff. T S L T⊕S T⊕L SQUiD
(1) (2) (3) (1)+(2) (1)+(3) (1)+(2)+(3)

TC VC CC TC VC CC TC VC CC TC VC CC TC VC CC TC VC CC

CLAUDE 3.7 SONNET

Easy 1.00 0.97 0.97 1.00 0.97 0.97 0.98 0.93 0.93 1.00 0.98 0.98 1.00 0.97 0.97 1.00 0.98 0.98
Med 0.85 0.68 0.64 0.93 0.74 0.70 0.93 0.74 0.70 0.97 0.77 0.72 0.97 0.77 0.72 0.98 0.78 0.74
Hard 0.82 0.51 0.33 0.94 0.58 0.37 0.88 0.51 0.33 0.96 0.60 0.40 0.97 0.60 0.39 1.00 0.63 0.41
Avg. 0.89 0.72 0.65 0.96 0.76 0.68 0.93 0.72 0.65 0.98 0.78 0.70 0.98 0.78 0.70 0.99 0.80 0.71

DEEPSEEK-V2.5

Easy 0.99 0.92 0.92 0.99 0.94 0.94 1.00 0.92 0.91 1.00 0.96 0.96 1.00 0.95 0.95 1.00 0.96 0.96
Med 0.96 0.76 0.71 0.87 0.68 0.64 0.90 0.69 0.66 0.98 0.79 0.75 0.98 0.80 0.76 0.99 0.80 0.77
Hard 0.89 0.54 0.35 0.83 0.42 0.26 0.75 0.35 0.24 0.95 0.57 0.38 0.95 0.57 0.38 0.95 0.59 0.39
Avg. 0.95 0.74 0.66 0.90 0.68 0.62 0.88 0.65 0.60 0.98 0.78 0.70 0.98 0.78 0.70 0.98 0.79 0.71

GPT-4O

Easy 0.98 0.90 0.90 0.98 0.93 0.93 1.00 0.90 0.89 0.99 0.95 0.95 1.00 0.96 0.96 1.00 0.97 0.97
Med 0.94 0.75 0.71 0.88 0.69 0.66 0.90 0.68 0.64 0.98 0.80 0.76 0.98 0.81 0.77 0.99 0.81 0.77
Hard 0.81 0.50 0.32 0.78 0.41 0.29 0.93 0.51 0.33 0.92 0.56 0.38 0.97 0.59 0.38 0.97 0.61 0.40
Avg. 0.91 0.71 0.64 0.88 0.67 0.63 0.94 0.69 0.62 0.97 0.77 0.70 0.98 0.79 0.70 0.99 0.80 0.71

LLAMA3-8B-INSTRUCT

Easy 0.99 0.89 0.88 0.81 0.74 0.74 0.77 0.61 0.60 1.00 0.95 0.95 1.00 0.94 0.94 1.00 0.95 0.95
Med 0.95 0.70 0.66 0.76 0.52 0.48 0.89 0.61 0.57 0.98 0.75 0.72 0.98 0.76 0.73 0.99 0.79 0.75
Hard 0.95 0.60 0.39 0.88 0.37 0.26 0.71 0.40 0.25 1.00 0.64 0.41 1.00 0.68 0.42 1.00 0.70 0.44
Avg. 0.96 0.73 0.64 0.81 0.54 0.49 0.79 0.54 0.47 0.99 0.78 0.69 0.99 0.79 0.70 1.00 0.81 0.71

QWEN3-8B

Easy 0.99 0.92 0.92 0.97 0.92 0.92 0.85 0.72 0.72 1.00 0.96 0.96 1.00 0.96 0.96 1.00 0.96 0.96
Med 0.94 0.71 0.71 0.90 0.71 0.71 0.96 0.67 0.67 0.95 0.74 0.73 0.98 0.78 0.78 0.98 0.79 0.79
Hard 0.57 0.29 0.29 0.36 0.23 0.23 0.76 0.35 0.35 0.59 0.33 0.33 0.99 0.48 0.48 0.99 0.51 0.51
Avg. 0.83 0.64 0.64 0.75 0.62 0.62 0.85 0.58 0.58 0.85 0.68 0.67 0.99 0.74 0.74 0.99 0.76 0.75

Table 9: Impact of different value sources on Tuple Coverage (TC), Value Coverage (VC) and Column Consistency (CC). T⊕S
combines tuples generated from T and S while T⊕L combines T and L. SQUiD combines outputs from all three prompts.

Model Dataset ECS PKC FKC

DEEPSEEK-V2.5 WikiBio 87.2 100 100
CNN-DM 75.2 100 100
CORD-19 44.3 100 100

LLAMA-3-8B-INSTRUCT WikiBio 78.2 100 100
CNN-DM 63.6 100 100
CORD-19 60.6 100 100

GPT-4O WikiBio 81.1 100 100
CNN-DM 67.1 100 100
CORD-19 64.1 100 100

Table 10: Schema evaluation across real text datasets. Results
for schema generation failures that violate the requested struc-
ture are omitted.

predicate, object (SPO) triplets from unstructured
text (Niklaus et al., 2018). While OpenIE provides
useful abstractions, the extracted triplets are not
organized under a formal data model. A more struc-
tured alternative is the text-to-table generation task.
Early works approach this as a sequence model-
ing problem, jointly generating column headers
and cell contents (Wu et al., 2022). More recent
systems such as gTBLS(Sundar et al., 2024) and
Seq2Seq&Set(Li et al., 2023) decouple schema
inference from data population in the text-to-table
task, yielding improvements in table validity and
structure. Other lines of work explore extracting
structured data from semi-structured documents
such as HTML and PDF using LLMs (Arora et al.,
2023), or schema-driven information extraction
from heterogeneous tables (Bai et al., 2023). How-

ever, the outputs remain flat and lack the normal-
ized relationships central to relational database de-
sign. T3 (Deng et al., 2024) takes a step further by
converting extracted tuples into flat tables, which
is conceptually closest to our use of intermediate
triplet representations. Still, their method does not
capture inter-table relationships, limiting alignment
with relational database requirements. Addition-
ally, other research explores non-relational struc-
tures such as mind maps for representing extracted
information (Jain et al., 2024), which similarly do
not align with the relational database model our
work targets.

Manipulating Existing Databases. Another line
of work focuses on interacting with or updating
existing relational databases using language. Early
work such as (Mansuri and Sarawagi, 2006) pro-
posed integrating unstructured sources into rela-
tional databases using information extraction and
matching techniques, but relied heavily on sta-
tistical models, rule-based systems and domain-
specific heuristics. In TEXT2DB (Jiao et al., 2024),
LLM agents ingest documents and update a pre-
existing relational database. While it operates on re-
lational databases, it assumes an existing database
with a predefined schema and does not attempt to
synthesize a new one. On the other hand, the text-
to-SQL literature (Hong et al., 2024; Yu et al., 2018)
focuses on translating natural language queries into

31991



Model Dataset DBR (SQ×) TC (SQ×) VC (SQ×) CC (SQ×) DBR TC VC CC

CLAUDE 3.7 SONNET WikiBio 100 (2.0×) 100 (3.2×) 91.2 (4.8×) 87.5 (4.6×) 49.2 31.2 19.2 19.2
CNN-DM 100 (4.0×) 100 (5.8×) 66.0 (7.4×) 63.2 (7.1×) 25.0 17.2 8.9 8.9
CORD-19 100 (4.0×) 100 (8.0×) 68.3 (10.7×) 56.1 (8.8×) 25.0 12.5 6.4 6.4

DEEPSEEK-V2.5 WikiBio 100 (2.0×) 100 (2.4×) 93.0 (9.1×) 89.3 (9.9×) 51.0 41.0 10.2 9.0
CNN-DM 100 (3.6×) 100 (4.6×) 65.0 (5.7×) 65.0 (5.7×) 28.0 21.7 11.5 11.5
CORD-19 100 (5.4×) 100 (6.2×) 76.1 (9.3×) 74.2 (9.0×) 18.5 16.2 8.2 8.2

LLAMA-3-8B WikiBio 100 (5×) 100 (5×) 92.7 (5.1×) 85.7 (4.7×) 20.0 20.0 18.1 18.1
CNN-DM 100 (1.7×) 100 (2.7×) 74.2 (4.1×) 71.8 (4.0×) 60.0 37.7 18.2 18.2
CORD-19 100 (2×) 100 (2×) 73.3 (4.4×) 73.3 (4.4×) 50.0 50.7 16.5 16.5

GPT-4O WikiBio 100 (∞) 100 (∞) 94.6 (∞) 92.4 (∞) 0 0 0 0
CNN-DM 100 (3.3×) 100 (5.2×) 77.8 (11.8×) 74.6 (11.3×) 30.0 19.2 6.6 6.6
CORD-19 100 (10×) 100 (12.2×) 79.5 (19.9×) 77.3 (19.3×) 10.0 8.22 4.0 4.0

Table 11: SQUID vs. baseline on real datasets. Metrics: DBR = Database Construction Rate, TC = Tuple Coverage, VC = Value
Coverage, CC = Column Consistency. (SQ×) = SQUiD’s multiplier over baseline.

executable SQL statements over a known schema.
Other works in this space include relation-aware
schema encoding for better generalization (Pang
et al., 2020), constrained decoding for syntactically
valid SQL generation (Scholak et al., 2021), and
synthetic data generation to improve model robust-
ness (Chang et al., 2024). However, none of these
works attempt to synthesize a relational database
from text.

Non-LLM Approaches for Relational Structure
Extraction From Text. Before LLMs, integrat-
ing unstructured text into relational databases re-
lied on classical pipelines combining information
extraction, schema induction, and entity linking.
Systems such as DeepDive (Zhang et al., 2016),
LILLIE (Smith et al., 2022b), and OpenKI (Zhang
et al., 2019) extracted structured facts and aligned
them with relational schemas using statistical in-
ference, symbolic reasoning, or context-aware
matching. In web-centric domains, methods like
SEDE (Deng, 2010, 2011) and wrapper induction
systems (Carlson and Schafer, 2008; Chang and
Wu, 2016; Yuliana and Chang, 2016, 2020) inferred
schemas from repeated HTML patterns and popu-
lated tables using DOM-based alignment. Statisti-
cal models such as SICTF (Nimishakavi and Taluk-
dar, 2016) induced relation schemas from OpenIE
triples via joint tensor factorization. These non-
LLM methods demonstrated the feasibility of rela-
tional synthesis via symbolic or statistical reason-
ing, but typically required domain-specific tuning
and struggled to generalize across diverse, noisy
input text.

Broadly, existing research either aims to extract
tables from text or to interface with predefined re-
lational databases—without bridging the gap be-
tween the two. To our knowledge, no existing work

performs fully automated and domain-generalized
text-to-relational database synthesis. Our system
fills this gap by leveraging a neurosymbolic frame-
work that decomposes the task into interpretable
stages.

F Artifact Use

F.1 Dataset License Information

In accordance with ACL guidelines, we disclose
the licenses of all datasets used.

The BIRD benchmark datasets (Li et al., 2024)
are distributed under various open licenses includ-
ing Public Domain, CC0, CC-BY 4.0, CC-BY-SA
4.0, GPL, and CPOL, all permitting research use
and redistribution.

The Kaggle datasets utilized in our experiments
are licensed as follows, and all allow research use
and redistribution:

• Tourism dataset (Kiattisak, 2023): Licensed
under Creative Commons Attribution 4.0 (CC-
BY 4.0).

• Education dataset (Becker and Kohavi,
1996): Licensed under Creative Commons
Attribution 4.0 (CC-BY 4.0).

• Finance dataset (Rai, 2023): Licensed under
the MIT License.

Additionally, we will release our generated
dataset publicly under a CC BY 4.0 License.

F.2 Software and Language Models

We used Stanford CoreNLP (v4.5.9) (Manning
et al., 2014), licensed under GNU GPLv3, which
permits free use, modification, and redistribution
under open-source terms.

31992



The language models employed are publicly
available and used under their respective license or
terms of service:

• LLAMA-3-8B-INSTRUCT (Meta AI, 2024):
Released under Meta’s research license allow-
ing academic use.

• CLAUDE 3.7 SONNET (Anthropic, 2024):
Provided under Anthropic’s terms for research
and commercial use.

• GPT-4O (OpenAI, 2024): Accessed via Ope-
nAI’s API under their usage policies.

• QWEN3-8B (Alibaba, 2024): Released with
a permissive license for research use.

• DEEPSEEK-V2.5 (DeepSeek AI, 2024): Li-
censed for research use as specified by
DeepSeek AI.

G Prompts

All of the prompts we use in SQUiD are provided
in Figures 6 to 20.

31993



You are a creative AI that rephrases given sentences into engaging, conversational stories while
incorporating all provided datapoints.

- Ensure that no information is omitted or added, and skip any datapoints labeled as 'nan'.
- Do not rephrase the object of a sentence. For example, if the sentence is 'start date is $9/22/2023
$', do not change the date to a different format.
- Respond only with the rephrased sentence without any additional commentary.

Figure 6: Prompts for dataset generation with LLAMA3-8B-INSTRUCT: system prompt

Rephrase the following sentence into a conversational story, ensuring all data points are included
while skipping 'nan' values.
Do not introduce any extra or false details.

Original sentence: {sentence}

Creative sentence:

Figure 7: Prompts for dataset generation with LLAMA3-8B-INSTRUCT: user prompt template

You are an expert at formulating database schemas from textual data. I have given you a paragraph of
text.

Using this text, your task is to generate a relational database schema in JSON format.

### **Task:**
1. **Extract Entities & Relationships**: Identify unique entity types and relationships.
2. **Determine Attributes**: Define necessary columns for each table.
3. **Normalize the Schema**: Ensure proper **primary keys, foreign keys, and normalization (3NF)**.
4. **Generate Output in JSON Format**.
5. **Column and Table name restriction**:

reserved_sql_keywords = ["order", "group", "select", "from", "where", "join", "on", "as", "and", "or
", "by", "insert", "update", "delete", "create", "drop", "alter", "into", "table"]
- Ensure that the table names and column names do not contain any SQL reserved keywords.

Figure 8: Prompts for schema generation: system prompt

31994



### **Text:**
{text}

### **Expected Example Output Format (Strictly Follow This Structure while modifying the table_names,
column_names to match the given text)**:
schema = [

{{
"table_name": "student",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "name", "type": "TEXT"}},

]
}},
{{

"table_name": "course",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "title", "type": "TEXT"}},

]
}},
{{

"table_name": "enrollment",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "student_id", "type": "INTEGER", "foreign_key": True, "foreign_key_table": "

student", "foreign_key_column": "id"}},
{{"name": "course_id", "type": "INTEGER", "foreign_key": True, "foreign_key_table": "

course", "foreign_key_column": "id"}}
]

}}
]

Now output the schema as per the system instructions.
### Output:

Figure 9: Prompts for schema generation: user prompt template

31995



You are an expert at formulating database schemas from textual data. I have given you a paragraph of
text.
Using this text, your task is to generate a relational database schema in JSON format.

---

### **Step-by-Step Guide for Schema Creation (Follow This Chain of Thought)**

**Requirements Analysis**:
- Identify all distinct entities and attributes from the text.
- Determine necessary tables and their columns.

**Entity-Relationship (ER) Modeling**:
- Identify entity relationships (One-to-One, One-to-Many, Many-to-Many).
- If applicable, use associative tables for Many-to-Many relationships.

**Define Tables and Columns**:
- Convert entities into relational tables with appropriate **data types**.

**Establish Primary Keys**:
- Assign a **Primary Key (PK)** for each table to uniquely identify records.

**Define Relationships and Foreign Keys**:
- Use **Foreign Keys (FK)** to enforce referential integrity between tables.
- Ensure that it is possible to join all tables to create one flat table using the foreign keys.
- Apply **ON DELETE CASCADE** if necessary to maintain consistency.

**Normalization (1NF => 2NF => 3NF)**:
- Ensure atomic values (1NF).
- Remove partial dependencies (2NF).
- Eliminate transitive dependencies (3NF).

**Define Constraints**:
- Apply **NOT NULL**, **UNIQUE**, **CHECK**, and other constraints as needed.

**Indexing for Performance**:
- Create indexes on frequently queried columns (e.g., search fields).

- **Column and Table name restriction**:
reserved_sql_keywords = ["order", "group", "select", "from", "where", "join", "on", "as", "and", "or
",

"by", "insert", "update", "delete", "create", "drop", "alter", "into", "table"]
- Ensure that the table names and column names do not contain any SQL reserved keywords.

---
### **Task Instructions:**
- **Step through the schema creation process using the above guide**.
- **Generate a well-structured, normalized relational database schema**.
- **Output only the final schema** in Python dictionary format (NO explanations).
- **Column and Table name restriction**:
reserved_sql_keywords = ["order", "group", "select", "from", "where", "join", "on", "as", "and", "or
",

"by", "insert", "update", "delete", "create", "drop", "alter", "into", "table"]
- Ensure that the table names and column names do not contain any SQL reserved keywords.

Figure 10: Prompts for schema generation: CoT - system prompt

31996



### **Text:**
{text}

### **Expected Example Output Format (Strictly Follow This Structure while modifying the table_names,
column_names to match the given text)**:
schema = [

{{
"table_name": "student",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "name", "type": "TEXT"}},

]
}},
{{

"table_name": "course",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "title", "type": "TEXT"}},

]
}},
{{

"table_name": "enrollment",
"columns": [

{{"name": "id", "type": "INTEGER", "primary_key": True}},
{{"name": "student_id", "type": "INTEGER", "foreign_key": True, "foreign_key_table": "

student", "foreign_key_column": "id"}},
{{"name": "course_id", "type": "INTEGER", "foreign_key": True, "foreign_key_table": "

course", "foreign_key_column": "id"}}
]

}}
]

Now output the schema as per the system instructions.
### Output:

Figure 11: Prompts for schema generation: CoT - user prompt template

You are a helpful assistant that who assists a user with information extraction tasks.
Your job is to associate a unique superkey value with each paragraph in the text.
You will be given multiple paragraphs of text, a database schema, and a superkey.
Your task is to associate the superkey value with each paragraph in the text. Each paragraph MUST be
associated with a superkey value. No two superkey values should be the same.
Fill in the <FILL IN WITH APPROPRIATE VALUE OF {superkey}> with the value. You will not provide code
or SQL, you will do the task yourself.

Figure 12: Prompts for triplet generation with LLM- unique identifier association: system prompt

**Text**:
{text}

**Schema**:
{schema}

**Superkey**:
{superkey}

**Paragraphs**:
"""

user_prompt += "\n--\n"
for j in range(len(paragraphs)):

user_prompt += f"paragraph {j}: {paragraphs[j]}\n"
user_prompt += f"associated superkey: <FILL IN WITH APPROPRIATE VALUE OF {superkey}>\n"
user_prompt += "\n--\n"

Figure 13: Prompts for triplet generation with LLM- unique identifier association: user prompt template

31997



You are an expert in Open Information Extraction and relational databases. Given a database schema
and a natural language paragraph, your task is to extract all factual information from each sentence
of the paragraph in the form of triplets, structured as a Python list of dictionaries.

Each dictionary should have the following keys: 'table_name', 'column_name', and 'value'. Ensure that
the extracted triplets strictly follow the format: {'table_name': <table_name>, 'column_name': <
column_name>, 'value': }.

Only extract values that explicitly appear in the input sentence. The table_name and column_name must
match the schema. Do not invent values or infer unstated facts. You don"t need to generate triplets
for values that are not mentioned. DO NOT generate code, do the task yourself.

Figure 14: Prompts for triplet generation with LLM- triplet generation: system prompt

You will be given a database schema and a sentence. Extract all relevant triplets of the form:
{{"table_name": <table_name>, "column_name": <column_name>, "value": <value>}}
Your output must be a valid Python list of dictionaries. Do not include any explanations or notes-
only return the list.
{example_schema}

Sentence: {example_text}

{example_output}

Now extract triplets for the following input:

Schema:
{schema}

Sentence: {text}
Triplets:

Figure 15: Prompts for triplet generation with LLM- triplet generation: user prompt template

31998



Extract information using the extraction tool -- "extract".

Example:
Python table schema:

- person: "id: int [PK]", "name: string", "age: int", "location: string", "married: boolean"
- job: "id: int [PK]", "person_id: int [FK => person(id)]", "title: string", "salary: int", "

department: string"

Example triplets:
< 1 , person, name, John >
< 1 , person, age, 30 >
< 1 , person, location, Los Angeles >
< 1 , person, married, false >
< 1 , job, title, Software Engineer >
< 1 , job, salary, 100000 >
< 1 , job, department, Engineering >

Example usage:
extract person: "id": 1; "name": "John"; "age" 30; "location": "Los Angeles"; "married": false
extract job: "id": 1; "person_id": 1; "title": "Software Engineer"; "salary": 100000; "department

": "Engineering"

Tool guidelines:
- "id" should always be present in the extraction. It is the primary key of the table. You must
assign an appropriate value to it. Do not leave it empty.
- "xxx_id" is the foreign key of the table and references the primary key of a row in another table.
It must also be present in the extraction, you must assign an appropriate value to it, and ensure
that the value matches the id of the row in it's foreign key parent table. Do not leave it empty.
- You must follow the order of the columns per table, defined in the Python table schema.
- You must follow the data type for each column.
- You must use "extract" once per table of the schema to extract information from the whole paragraph
and the set of triplets for each of the table.
- After reading the paragraph, the schema and the triplets, do all the extraction steps in one go, do
not skip any extraction steps. Do not repeat extraction for the same id if there are no new
information.
- Do not extract any information that is not present in the original paragraph.
- Other than "id" and "xxx_id", if no value is found for a column, use '?' to represent the value. If
all columns are empty, do not use extract for that row.

Python table schema:
{table_instruction_str}

Figure 16: Prompts for table population: tooluse prompt for extraction

system_prompt = f"""You are an expert at populating values in a database from text based on a given
database schema. I have provided a paragraph of text and a database schema. Using this information,
your task is to extract relevant values and format them according to the schema. Do not provide code,
do the task yourself."""

user_prompt = f"""
### **Text:**
{text}
### **Schema:**
{schema}
### **Expected Output Format:**
{data_template}
Output as many rows as necessary to populate the data. Replace the '#' with the actual values from
the text.

You will follow this chain-of-thought reasoning to generate the final output:
- Generate output entries relevant to the text.
- Follow the given output format strictly. Do not add any additional explanations or comments. Only
output the data entries in given format. Do not provide code, do the task yourself.
### **Output:**
"""

Figure 17: Prompts for table population: Method T

31999



text = data['text']
schema = data['schema']
superkey = data['superkey']
data_template = generate_empty_data_template_tooluse(schema)
identified_values = data['identified_values']

system_prompt = f"""You are a database assistant that extracts data from each sentence of a given
text, and populates data entries into a fixed relational database schema.

The user will give you the following inputs: a text with data of multiple users, the primary
identifier (superkey) of that text, extracted triplets from that text in the following format:
<superkey, `subject`, `relation`, `object`>

You will follow this chain-of-thought reasoning to generate the final output:
- Generate output entries as per given instructions, relevant to the current paragraph.
- Validate each output entry by going through the triplets one by one, and ensure every unique data
point from the triplets is captured into the correct table and fields.
- Follow the given output format strictly. Do not add any additional explanations or comments. Only
output the data entries in given format. Do not provide code, do the task yourself.

Text:
{text}

Output format:
{data_template}

Figure 18: Prompts for table population: Method S

text = data['text']
schema = data['schema']
superkey = data['superkey']
data_template = generate_empty_data_template_tooluse(schema)
identified_values = data['identified_values']

system_prompt = f"""You are a database assistant that extracts data from each sentence of a given
text, and populates data entries into a fixed relational database schema.

The user will give you the following inputs: a text with data of multiple users, the primary
identifier (superkey) of that text, extracted triplets from that text in the following format:
<superkey, `table_name`, `column_name`, `value`>

You will follow this chain-of-thought reasoning to generate the final output:
- Generate output entries as per given instructions, relevant to the current paragraph.
- Validate each output entry by going through the triplets one by one, and ensure every unique data
point from the triplets is captured into the correct table and fields.
- Follow the given output format strictly. Do not add any additional explanations or comments. Only
output the data entries in given format. Do not provide code, do the task yourself.

Text:
{text}

Output format:
{data_template}

"""
user_prompt = "Please perform the task as per the system instructions.\n"
user_prompt += f"### Extracted <{superkey}, `table_name`, `column_name`, `value`> triplets from

each paragraph:\n"
for item in identified_values:

for triplet in item['triplets']:
if triplet['value'] !="not mentioned" or triplet['value'] !="not provided":

user_prompt += f"<{item['superkey']}, {triplet['table_name']}, {triplet['column_name
']}, {triplet['value']}>\n"

user_prompt += "\n"
user_prompt += "### Output:\n"

Figure 19: Prompts for table population: Method L

32000



system_prompt = """You are a database expert. Your task is generating SQL 'CREATE TABLE' and 'INSERT
INTO' statements from text."""

user_prompt = f"""
### **Text:**
{text}
### **Output: (Write the create table and insert into statements together)
"""

system_prompt = """You are a database expert. Your task is generating a sqlite join query from '
create table' and 'insert into' statements."""

user_prompt = f"""
### **'CREATE TABLE' and 'INSERT INTO' statements:**
{sql_statements}
### **Output:**
"""

Figure 20: Prompts for baseline

32001


