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Abstract

Large Language Model (LLM) agents are com-
monly tuned with supervised finetuning on
ReAct-style expert trajectories or preference
optimization over pairwise rollouts. Most of
these methods focus on imitating specific ex-
pert behaviors or promoting chosen reasoning
thoughts and actions over rejected ones. How-
ever, without reasoning and comparing over
alternative actions, LLM agents finetuned with
these methods may over-commit towards seem-
ingly plausible but suboptimal actions due to
limited action space exploration. To address
this, in this paper we propose Self-taught Ac-
tioN Deliberation (SAND) framework, enabling
LLM agents to explicitly deliberate over can-
didate actions before committing to one. To
tackle the challenges of when and what to delib-
erate given large action space and step-level ac-
tion evaluation, we incorporate self-consistency
action sampling and execution-guided action
critique to help synthesize step-wise action de-
liberation thoughts using the base model of the
LLM agent. In an iterative manner, the deliber-
ation trajectories are then used to finetune the
LLM agent itself. Evaluating on two represen-
tative interactive agent tasks, SAND achieves
an average 20% improvement over supervised
finetuning on initial expert data and also outper-
forms state-of-the-art agent tuning approaches.

1 Introduction

Large language models (LLMs) have recently been
cast as agents that read instructions, reason through
intermediate thoughts, and execute actions interact-
ing with external environments such as web naviga-
tion (Nakano et al., 2021; Yao et al., 2022; Nguyen
et al., 2025), embodied household tasks (Shridhar
et al., 2020), or scientific experiments (Wang et al.,
2022). Early prompting-based methods such as
ReAct (Yao et al., 2023b; Wu et al., 2025; Wang
et al., 2025b) interleave chain-of-thoughts and ac-
tions, enabling the LLM to plan and gather new

Thought: Now that I have the egg, I need to go back to 
the microwave to complete the task.
Action: go to microwave 1

Thought: I now have the egg. I have several options for 
the next step.
 

- go to microwave 1: this action seems valid but I am 
  not sure if the egg has already been cleaned.
- clean egg 1 with sinkbasin 1: this action might not 
  be valid as I am not at the sink yet.
- go to sinkbasin 1: this can be the most direct way to 
  advance the task as I can clean the egg there.
 

Comparing these candidates, I will choose to go to 
sinkbasin 1 because this can allow me to clean…
 

Action: go to sinkbasin 1

Observation: You pick up egg 1 from the countertop 3

Task: Put a Clean Egg in the Microwave…

SFT

SAND
(Ours)

Egg not cleaned

Figure 1: An illustrative example of an LLM agent
task, where SFT trained agent (Zeng et al., 2024) over-
commits to an seemingly plausible but suboptimal ac-
tion while our SAND tuned agent learns to deliberate
over candidate actions before choosing the best action.

information in context. To obtain more reliable
LLM agents, recent works apply supervised fine-
tuning on expert ReAct-style trajectories (Chen
et al., 2023; Zeng et al., 2024; Chen et al., 2024;
Wang et al., 2025a; Chen et al., 2025), or directly
optimize on agent trajectory preference pairs (Song
et al., 2024b; Xiong et al., 2024b; Shi et al., 2024).

Although effective, these approaches imitate ex-
pert actions or simply rank chosen actions over
rejected actions and expose the model to mostly
the reference action and corresponding rationale at
each decision point. Without effectively exploring
the action space, the agent seldom learns explicitly
why the chosen action wins over plausible alterna-
tives. As a result, the finetuned LLM agent can
over-commit to superficially reasonable yet subop-
timal actions, a failure mode also observed in self-
consistency studies of LLMs (Wang et al., 2023;
Xia et al., 2024a; Liang et al., 2024). Such behavior
also hurts the generalization performance of LLM
agents to unfamiliar scenarios.
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To address this, in this paper we aim to teach
LLM agent to deliberate by first generating sev-
eral candidate actions for the current state, eval-
uating and comparing their likely outcomes, and
then commit only after this evaluation. We propose
Self-taught ActioN Deliberation (SAND) frame-
work to instantiate this idea by teaching the LLM
agent with the deliberation thoughts synthesized by
the base version of itself. However, as the action
space of LLM agent tasks is often large or even
unbounded (Yao et al., 2022; Lin et al., 2025), it
is intractable to deliberate over all actions and also
inefficient to deliberate at every single step. To
further tackle the challenge of when and what to
deliberate, we devise self-consistency action sam-
pling along expert trajectories to sample uncertain
candidate actions of LLM agent at non-trivial de-
cision making steps. To provide more informative
and grounded step-level evaluations for each sam-
pled candidate action, we utilize executed rollouts
of each action to guide the critique generation. The
action critiques are utilized to synthesize an action
deliberation thought using the base LLM, which
augments the initial expert trajectory and constructs
deliberation trajectories for iterative finetuning of
the LLM agent. Experiments on two interactive
tasks demonstrate the advantage of our methods
compared with strong agent tuning baselines. In
summary, we make the following contributions:

• To teach LLM agents better explore the action
space, we propose Self-taught ActioN Delibera-
tion (SAND), a self-learning framework teaching
LLM agents to deliberatively reason over candi-
date actions before choosing one.

• To tackle the challenge of when and what to de-
liberate given large action space and step-level
action evaluation, we devise self-consistency ac-
tion sampling and execution-guided action cri-
tique to help synthesize high-quality deliberative
reasoning thoughts for iterative finetuning.

• Experiments on two representative interactive
agent tasks demonstrate the advantage of our
method with an average 20% improvement over
supervised finetuning on initial expert data and
outperforming strong agent tuning baselines.

2 Related Work

2.1 LLM Agents Tuning
Recent efforts in tuning LLM agents have pro-
gressed from failure recovery heuristics towards

more structured policy refinement. Early work such
as FiReAct (Chen et al., 2023) showed that adding
explicit failure-reflection demonstrations improves
LLM agent robustness. AgentTuning (Zeng et al.,
2024) uses high-quality trajectories to finetune an
instruction model for multi-turn interactions. ETO
(Song et al., 2024b) retains exploratory trajecto-
ries and contrasts them with expert trajectories for
agent optimization, while IPR (Xiong et al., 2024b)
obtain step-level rewards for iterative preference
refinement. DMPO (Shi et al., 2024) adapts di-
rect preference optimization to multi-turn trajectory
optimization, and WKM (Qiao et al., 2024) regu-
larizes actions with an external world knowledge
model. Similarly, KnowAgent (Zhu et al., 2025)
teaches LLM agents for self action learning from a
knowledge base (Xia et al., 2025d) and NAT (Wang
et al., 2025a) incorporates failure trajectories for
finetuning with an adapted prompt prefix. More
recently, MPO (Xiong et al., 2025) trains a meta
planner agent that guides task execution agents.
Several agent tuning benchmarks and datasets have
also emerged (Chen et al., 2024; Song et al., 2024a).
In contrast, our proposed SAND framework aims
to teach LLM agents to effectively deliberate over
candidate actions for better decision making.

2.2 Deliberative Reasoning

Prompting strategies for LLM deliberative reason-
ing have evolved rapidly. Chain-of-thought (CoT)
prompting (Wei et al., 2022; Xia et al., 2025c)
first showed that eliciting explicit intermediate rea-
soning steps markedly improves mathematical and
symbolic reasoning. Building on this idea, ReAct
blends CoT with environment feedback to couple
reasoning and acting (Yao et al., 2023b), while Self-
Refine (Madaan et al., 2023) and Reflexion (Shinn
et al., 2023) introduce iterative self-critique loops
that rewrite faulty thoughts. Tree-of-Thought (Yao
et al., 2023a) generalizes CoT into a breadth-first
search over alternative thought branches, allow-
ing the model to back-track and globally evaluate
solutions. SWAP (Xiong et al., 2024a) frames de-
liberate reasoning as structure-aware planning with
an internal world model. Guan et al. (2024) pro-
pose an explicit deliberation controller that decides
when to generate, inspect or discard thoughts and
Karanam et al. (2024) study how many forward
simulations are needed for reliable look-ahead in
RL-style agents. Our SAnD framework extends the
deliberative reasoning to LLM agent tasks with a
focus of action deliberation.
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Figure 2: An illustration of our SAND framework for synthesizing one step of action deliberation thoughts.

2.3 Iterative Self Learning
Another relevant line of works enable a model to
improve by repeatedly generating data and fine-
tuning on its own synthesized output (Xia et al.,
2025b). The idea began with STaR (Zelikman et al.,
2022), which bootstraps a few verified solutions
into a large corpus of correct rationales. RFT (Yuan
et al., 2023) generalises this to rejection-sampling
proofs that pass an external checker. Subsequent
work replaces hard filtering with self-feedback, e.g.,
Self-Refine (Madaan et al., 2023) and SELF (Chen
et al., 2023) alternate draft–critique–revise loops.
Agent-R (Yuan et al., 2025) repairs failed trajecto-
ries via Monte-Carlo search before re-training, and
Karanam et al. (2024) show that only a handful of
such self-play iterations are needed before returns
saturate. Our SAND framework follows the simi-
lar iterative self-learning idea to steadily improve
LLM agents without additional human supervision.

3 Task Formulation

We formulate our studied agent tasks as multi-turn
interactions between an LLM agent and a text-
based environment following Song et al. (2024b)
and Xiong et al. (2025). Specifically, for a ReAct-
style (Yao et al., 2023b) LLM agent, the task begins
with an instruction u ∈ U . At each step, the LLM
agent generates a reasoning thought z ∈ Z and an
action a ∈ A. The environment then returns an ob-
servation o ∈ O. At time step t, for an LLM agent
πθ with the past interaction history up to time step
t − 1 denoted as ht−1 = (u, z1, a1, o1, . . . , ot−1),
the reasoning thought is sampled conditioned on
the interaction history zt ∼ πθ(· | ht−1) fol-
lowed by the action at ∼ πθ(· | ht−1, zt). There-
fore, for a complete agent trajectory with L steps
e = (u, z1, a1, o1, . . . , oL−1, zL, aL), the probabil-
ity of generating it is given by

πθ(e | u) =
L∏

t=1

πθ
(
zt, at | ht−1

)
. (1)

After the task episode terminates upon success or
maximum steps, the environment returns a task
score r(u, e) ∈ [0, 1] as the task successful rate.

4 Methodology

In this section, we describe in details our proposed
Self-taught ActioN Deliberation (SAND) frame-
work. Starting from a base LLM, SAND iteratively
finetunes it to be a stronger LLM agent using the de-
liberation thoughts generated by the base version of
itself. An intuitive illustration of our framework for
generating a single step of deliberation thoughts
can be found in Figure 2. A more comprehen-
sive overview of the entire iterative self-learning
pipeline are presented in Algorithm 1.

4.1 Behavior Initialization
We start from a base instruction-tuned LLM πbase.
Following Song et al. (2024b) and Xiong et al.
(2024b), we initialize an LLM agent with the ba-
sic reasoning and action behavior for completing
the task via supervised finetuning (SFT) on a set
of ReAct-style expert trajectories on training tasks
Dexp = {(u, e)(i)}|D|

i=1 with the loss

LSFT = −Ee∼Dexp

[
log πθ(e | u)

]
. (2)

We then obtain the initial LLM agent policy πθ for
the subsequent iterative improvement.

4.2 Self-Consistency Action Sampling
With an LLM agent policy πθ, we aim to further
teach agent the action deliberation behavior. Two
central questions here are (i) when the agent should
invest extra thinking over actions and (ii) what ac-
tions to think about, especially within a large or
even unbounded action space. To address them,
we utilize self-consistency action sampling which
offers a natural solution.

For each expert trajectory e, we replay every
expert interaction and branch at each step t. Specif-
ically, given expert interaction history ht−1, the
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Algorithm 1: Self-Taught Action Deliberation (SAND)
Input: Dexp = {(u, z1, a1, o1, . . . , oL−1, zL, aL)

(i)}: expert trajectories, I: number of self-taught
iterations, N : number of sampled actions, πbase: base LLM, πθ = πbase: trainable LLM.

Output: Final LLM agent πθ
Finetune πθ on Dexp: LSFT = −Ee∼Dexp

[
log πθ(e | u)

]

for k = 1 to I do
πk ← πθ, Ddelib ← ∅
foreach e = (u, z1, a1, o1, . . . , zL, aL) ∈ Dexp do

Initialize history h0 ← u and self-taught deliberation trajectory ẽ = (u)
for t = 1 to L do

Sample N actions: {ẑ(n)t , â
(n)
t }Nn=1 ∼ πk(· | ht−1)

if |{â(1)t , . . . , â
(N)
t , at}| = 0 then continue

Rollout each action: {êt, rt} ∼ πk(· | ht−1, ẑt, ât)
Generate critique for each action: ct ∼ πbase(·

∣∣ ât, êt, rt, Promptc),

Synthesize action deliberation thought: z̃t ∼ πbase(· | {(â(n)t , c
(n)
t )}N+1

n=1 , Promptd)
ẽ← ẽ ∪ (z̃t, at, ot); ht ← (ht−1, zt, at, ot)

Ddelib ← Ddelib ∪ {ẽ}
Finetune πθ on Ddelib: LSFT = −Eẽ∼Ddelib

[
log πθ(ẽ | u)

]

Set Dexp ← Ddelib for the next iteration
return πθ

current policy πθ samples N actions

{â(1)t , . . . , â
(N)
t } ∼ πθ(· | ht−1), (3)

where we omit the sampled reasoning thoughts ẑt
here for notation simplicity. Together with the orig-
inal expert action at, we form a candidate action
set of size N + 1.

We then define an inconsistency indicator that
flags whether deliberation is needed for step t:

1delib(t) = 1
(∣∣{â(1)t , . . . , â

(N)
t , at}

∣∣ > 1
)
. (4)

If all actions in the set are the same, 1delib(t) = 0,
showing that the predictive distribution πθ(· | ht−1)
is sharply peaked, this suggests that the model
is confident in conducting the expert action at or
the decision at the current state is trivial. In this
case, no extra reasoning or deliberation is needed.
When the set contains more than one unique ac-
tion, 1delib(t) = 1, this suggests the uncertainty of
the LLM agent at the current state, and generating
an explicit deliberation thought can help the agent
better choose among candidate actions.

Moreover, since every branch starts from a step
on the expert trajectory e, the sampled actions ât
remain close to both the demonstration distribution
and the current LLM policy distribution while still
exploring diverse futures, thereby avoiding random
exploration over the large action space.

4.3 Execution-Guided Action Critique

If the inconsistency indicator flags for action delib-
eration at step t, 1delib(t) = 1, then next question
is how LLM agent can learn to generate meaning-
ful step-level action evaluations when deliberat-
ing over the candidate set. In typical multi-turn
interaction tasks, the reward is often delayed till
task completion (Xia et al., 2024b; Zhang et al.,
2025). Therefore, to provide additional context
and evaluation signals for each candidate action,
we collect its full rollout by executing each action
êt ∼ πθ(· | ht−1, ât) and obtain the final task re-
ward rt∈ [0, 1] from the training environment.

Then, for each candidate action rollout, we
prompt the frozen base LLM to generate a ver-
bal critique ct of the candidate action ât guided by
its execution results êt and rt

ct ∼ πbase
(
·
∣∣ ât, êt, rt, Promptc

)
, (5)

where Promptc is the critique prompt detailed in
Figure 5. It shows the action, the ensuing sequence
of observations, and the final reward, and asks
for a concise verdict that states whether the ac-
tion advanced, hindered, or had no effect on task
success. As the critique is verbalized natural lan-
guage, we also specify in the prompt for the base
LLM to record reusable commonsense knowledge
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(e.g., “eggs are more likely to be stored in the re-
frigerators”) that is not tied to the specific task
instance. Such commonsense snippets accumulate
across rollouts and provide transferable cues for
more informative step-level action evaluation than
numerical values aggregated from Monte Carlo
rollouts (Xiong et al., 2024b; Lin et al., 2025).

4.4 Action Deliberation Synthesis

After all critiques c
(n)
t on candidate actions â

(n)
t

have been gathered, we prompt the base LLM
πbase to generate a single deliberation thought. The
prompt, detailed in Figure 6, instructs the LLM
to first propose and analyze each candidate action
explicitly, then compare over them, and give a ratio-
nale for the final action choice of the expert action
at at the current step

z̃t ∼ πbase
(
·
∣∣ {(â(n)t , c

(n)
t )}N+1

n=1 , Promptd
)
. (6)

We then append (z̃t, at, ot) to the self-augmented
deliberation trajectory ẽ collected along each step
and update the running history ht.

Note that we keep the expert action at as the
ground-truth action here assuming it is the opti-
mal one at the current step. However, as some
expert data is annotated by human or another LLM,
the LLM agent being finetuned may explore bet-
ter paths than the expert path (Song et al., 2024b;
Xiong et al., 2024b). Thus, we also devise an op-
tional expert switch mechanism that replaces the
original expert action with a better explored ac-
tion if the LLM agent finds a better rollout during
execution in Section 4.3.

4.5 Iterative Deliberation Finetuning
Exploring through all training tasks, the collection
of self-taught action deliberation trajectories is de-
noted by Ddelib = {(u, ẽ)(i)}|Ddelib|

i=1 . We update the
LLM agent πθ with via the similar supervised fine-
tuning objective

LSFT = −Eẽ∼Ddelib

[
log πθ(ẽ | u)

]
. (7)

Compared with the initial expert trajectories, the
synthesized deliberation trajectories provide richer
guidance on enabling the action deliberation behav-
ior as well as on why an action is chosen among
alternative candidates, rather than only what ac-
tion to mimic. Moreover, as the action deliberation
is synthesized only when the action inconsistency
indicator t, 1delib(t) = 1 defined in Equation 4.2
flags, the trajectories Ddelib we collected are mixed

Dataset Train Test Seen Test Unseen Action Space

ScienceWorld 1483 194 211 19
ALFWorld 3321 140 134 13

Table 1: Statistics of ALFWorld and SciWorld datasets.

with deliberation and non-deliberation steps. This
also teaches the LLM agent when to conduct action
deliberation, as justified by our empirical analysis
discussed in Section 6.4. Note that the LLM agent
finetuned on the deliberation trajectories does not
perform any action sampling during inference time.
Instead, it generates the entire action deliberation
thought in one pass, as illustrated in Figure 1.

Finally, we set Dexp←Ddelib and repeat the sam-
pling, critique, synthesis, and finetuning loop for
I iterations, steadily improving LLM agents with
a base version of itself without additional human
labels or annotations.

5 Experimental Setup

5.1 Datasets and Evaluation
We evaluate our proposed SAND agent tuning
framework mainly in two representative interac-
tive environments ALFWorld and ScienceWorld
following Xiong et al. (2025). ALFWorld (Shrid-
har et al., 2020) provides a text-based household
task environment that for natural language under-
standing and embodied reasoning. It provides only
binary rewards of task success upon completion
or termination. ScienceWorld (Wang et al., 2022)
presents a text-based environment where agents per-
form elementary-level scientific experiments. It of-
fers a granular reward system that quantifies partial
progress toward scientific task goals. Both datasets
include training sets and test sets for both seen and
unseen tasks as reported in Table 1, allowing us to
assess how well LLM agents finetuned with SAND
can generalize to unseen scenarios. We also report
additional evaluation results on a real-world web
navigation task WebShop (Yao et al., 2022) in Ap-
pendix A. Following Song et al. (2024b) and Xiong
et al. (2024b), we use the Average Reward across
test tasks as our main evaluation metric. We set the
decoding temperature to 0 for all agents when eval-
uating on the test sets to facilitate reproducibility.

5.2 Baselines and Variants
We compare SAND with the following agent tuning
baselines and variants

• AgentTuning (Zeng et al., 2024): a direct super-
vised finetuning approach on expert trajectories.
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Model Single Agent ScienceWorld ALFWorld Average
Seen Unseen Seen Unseen

Agents w/o Training

GPT-4o (Achiam et al., 2023) ✓ 60.0 56.0 78.6 83.6 69.6
GPT-4o-mini (Achiam et al., 2023) ✓ 49.1 42.7 32.1 41.0 41.2
Llama-3.1-8B-Instruct (Dubey et al., 2024) ✓ 47.7 42.2 22.9 28.4 35.3
Llama-3.1-8B-Instruct + MPO (Xiong et al., 2025) ✗ 56.5 55.5 50.0 52.2 53.6
Qwen2.5-7B-Instruct (Yang et al., 2025) ✓ 38.5 38.8 71.4 75.4 56.0
Llama-3.1-70B-Instruct (Dubey et al., 2024) ✓ 72.6 70.2 78.6 73.9 73.8
Llama-3.1-70B-Instruct + MPO (Xiong et al., 2025) ✗ 80.4 79.5 85.7 86.6 83.1

Agents w/ Training

Qwen2.5-7B-Instruct + SFT (Zeng et al., 2024) ✓ 69.2 60.8 72.1 75.4 69.4
Llama-3.1-8B-Instruct + SFT (Zeng et al., 2024) ✓ 75.6 65.1 79.3 71.6 72.9
Llama-3.1-8B-Instruct + ETO (Song et al., 2024b) ✓ 81.3 74.1 77.1 76.4 77.2
Llama-3.1-8B-Instruct + KnowAgent (Zhu et al., 2025) ✓ 81.7 69.6 80.0 74.9 76.6
Llama-3.1-8B-Instruct + WKM (Qiao et al., 2024) ✗ 82.1 76.5 77.1 78.2 78.5
Llama-3.1-8B-Instruct + ETO&MPO (Xiong et al., 2025) ✗ 83.4 80.8 85.0 79.1 82.1

Qwen2.5-7B-Instruct + SAND (Iteration 1) ✓ 80.9 67.2 85.7 85.0 79.7
Qwen2.5-7B-Instruct + SAND (Iteration 2) ✓ 83.2 69.9 85.0 89.6 81.9
Qwen2.5-7B-Instruct + SAND (Iteration 3) ✓ 84.0 69.0 90.7 94.8 84.6
Llama-3.1-8B-Instruct + SAND (Iteration 1) ✓ 86.6 77.5 92.9 91.8 86.0
Llama-3.1-8B-Instruct + SAND (Iteration 2) ✓ 88.7 78.2 94.3 94.0 88.8
Llama-3.1-8B-Instruct + SAND (Iteration 3) ✓ 85.7 79.1 94.3 96.3 88.9

Table 2: Average rewards of all compared methods on two datasets. SAND significantly improves LLM agents across
different model backbones, outperforming proprietary LLMs as well as state-of-the-art multi-agent approaches.

• ETO (Song et al., 2024b): a representative
agent tuning method leveraging an adapted direct
preference optimization objective for contrastive
agent trajectory pairs.

• KnowAgent (Zhu et al., 2025): a recent frame-
work employing an additional action knowledge
base for self learning of LLM agents.

• WKM (Qiao et al., 2024): an agent tuning
method with a jointly optimized world knowl-
edge model available during test time.

• MPO (Xiong et al., 2025): an optimization ap-
proach via training a meta planner agent generat-
ing explicit guidance for task execution agents.

• SANDw/o SAS: a variant of our method which
does not conduct self-consistency action sam-
pling (SAS) but instead directly prompts the base
LLM to generate N alternative candidate actions
in context during action deliberation synthesis.

• SANDw/o EAC: a variant of our method which
skips the execution-guided action critique (EAC)
stage and directly synthesize action deliberation
thought with N sampled candidate actions.

For more comprehensive comparison, we also re-
port results of prompting-based ReAct-style LLM

agent based on proprietary and open-sourced mod-
els GPT4o (Achiam et al., 2023) and Llama-3.1-
70B-Instruct (Dubey et al., 2024) collected by
Xiong et al. (2025), where an in-context exam-
ple is given for all prompting-based models. We
provide in Appendix B additional discussion and
comparisons of our SAND framework with recent
test-time search methods guided by process reward
or Q-value models (Zhai et al., 2025; Lin et al.,
2025; Xia et al., 2025a).

5.3 Implementation Details

We adopt two backbone models Llama-3.1-8B-
Instruct (Dubey et al., 2024) and Qwen2.5-7B-
Instruct (Yang et al., 2025) as the base models and
finetune them with our SAND framework. The ini-
tial expert trajectories are collected by Song et al.
(2024b). For behavior initialization step, we follow
Song et al. (2024b) to set batch size of 64 with a
learning rate of 1e-5 and a cosine scheduler for 3
epochs. At self-consistency action sampling step,
the decoding temperature of the LLM agent πθ is
set to 1.0 for sampling N = 5 candidate actions
as well as the subsequent rollout execution. The
execution-guided action critique is generated by
the base LLM πbase with the decoding temperature
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Figure 3: Average reward per step (bars) and average action deliberation rate per step (lines) on test sets.

0. Both prompts for critique generation and action
deliberation synthesis are provided in Appendix
C. We disable the expert action switch mechanism
discussed in Section 4.4 on ScienceWorld as we
empirically observe that some of the tasks have
short-cuts that might boost LLM agents on training
set but hurt performances on test set. For delibera-
tion finetuning steps, we set similarly batch size of
64 and learning rate of 1e-5 for I = 3 iterations. To
avoid overfitting, we train 3 epochs only for the first
iteration of SAND and 1 epoch for later iterations.
We use OpenRLHF (Hu et al., 2024) to implement
our training framework and all experiments run on
8 NVIDIA A100 80GB GPUs.

6 Results

6.1 How does SAND perform compared with
other agent tuning methods?

We show the results of all compared methods
on both seen and unseen test tasks in Table 2.
From the results, we observe a clear advantage
of SAND which outperforms all baselines on ALF-
World by a large margin. On ScienceWorld, SAND
also shows competitive performances matching or
surpassing state-of-the-art multi-agent approach.
For both Llama-3.1-8B-Instruct and Qwen-2.5-7B-
Instruct as the backbone LLMs, SAND (Iteration 3)
achieves an average over 20% performance boost
compared with SFT on initial expert data.

Besides, with our iterative deliberation finetun-
ing, we also observe a steady performance improve-
ment across different iterations of SAND, demon-
strating the effectiveness of our self learning frame-
work requiring no additional human labels. An-
other notable observation is that on later iterations
of SAND, agents trained on both Llama-3.1-8B-
Instruct and Qwen-2.5-7B-Instruct exhibit strong
generalization capabilities on ALFWorld unseen
tasks, achieving high rewards even than seen tasks.
We attribute the performance gains on unseen tasks
to the action deliberation behavior learned by LLM
agents during SAND iterations. Such action delib-
eration behavior enables LLM agents to explicitly

Method ScienceWorld ALFWorld
Seen Unseen Seen Unseen

Qwen2.5-7B-Instruct

Base 38.5 38.8 71.4 75.4
SFT 69.2 60.8 72.1 75.4
SANDw/o SAS 63.5 52.4 72.1 62.7
SANDw/o EAC 72.0 66.3 70.6 75.0
SAND 80.9 67.2 85.7 85.0

Llama-3.1-8B-Instruct

Base 47.7 42.2 22.9 28.4
SFT 75.6 65.1 79.3 71.6
SANDw/o SAS 70.3 62.0 85.7 77.3
SANDw/o EAC 78.6 73.7 85.0 86.6
SAND 86.6 77.5 92.9 91.8

Table 3: Ablation study on different modules in SAND.

analyze unseen actions and environments before
committing one instead of relying mostly on seen
action patterns learned during training tasks.

6.2 Are self-consistency action sampling and
execution-guided critique necessary?

To validate the effectiveness of our devised self-
consistency action sampling and execution-guided
action critique, we compare SAND at the first iter-
ation with its ablated variants SANDw/o SAS and
SANDw/o EAC. The results are shown in Table
3, where we observe a performance drop after
removing each modules. Specifically, we find
that SANDw/o SAS can even hurt the agent perfor-
mance being outperformed by initial SFT. From our
logged failed testing trajectories, we observe that
without self-consistency action sampling, LLM
agents often propose random actions irrelevant
to the task goals and sometimes show degener-
ated behavior of repeating a candidate action till
the maximum context length. On the other hand,
SANDw/o EAC, though also showing a small per-
formance decrease compared with SAND, still im-
proves over the initial SFT agent. The results again
demonstrates the necessity of the self-consistency
action sampling module while also validating the
effectiveness of execution-guided action critique in
improving the synthesized deliberation quality.
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Figure 4: Action deliberation rate distribution across three difficulty bands in unseen test set on ScienceWorld. Each
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show that more SAND iterations teach LLM agents to deliberate more on hard tasks and less on easy tasks.

6.3 Does action deliberation improve LLM
agents at step-level across iterations?

SAND has shown overall performance improve-
ment over iterations in Table 2. To further study the
influence of the action deliberation behavior LLM
agents learned from SAND, we show in Figure 3
the average reward per step and the corresponding
average action deliberation rate per step across all
test sets. The per-step average reward is calculated
as the ratio of final reward to the total steps for
each task, averaged across all tasks in the test set.
Similarly, the per-step average deliberation rate is
the ratio of action deliberation steps to the total
steps for each task, averaged across all tasks.

From Figure 3, we can first observe a consistent
improvement on per-step average reward across
different finetuning iterations with first iteration
shows a larger gain followed by smaller gains in
later iterations. We also observe that the per-step
action deliberation rate also show a general increas-
ing pattern. Such correlation further validates the
advantage of step-level action deliberation, which
enables LLM agent to make better decisions at each
step. The higher step-level reward also brings the
advantages of earlier and more efficient task com-
pletion for practical applications of LLM agents.

6.4 Do LLM agents finetuned with SAND
really learn when to deliberate?

To further analyze the agent tuning dynamics dur-
ing SAND iterations, we study whether LLM
agents have learned to decide when to deliberate
over candidate actions, as discussed in Section 4.2.
Specifically, we visualize when the LLM agent de-
cides to deliberate with violin plots in Figure 4,
where each panel corresponds to an iteration in
SAND. As ScienceWorld provides finegrained re-
wards that can reflect partial task completion rate,

Method ALFWorld ScienceWorld

SFT 498.3 800.0
SAND (Iteration 1) 1,314.2 (2.6×) 2,411.9 (3.0×)
SAND (Iteration 2) 1,105.8 (2.2×) 2,522.1 (3.2×)
SAND (Iteration 3) 1,146.2 (2.3×) 2,253.6 (2.8×)

Table 4: Average #tokens per task on ALFWorld and
ScienceWorld. Multipliers are relative to SFT agent.

we partition the unseen tasks on ScienceWorld into
three difficulty bands based on the empirical ter-
tiles of reward distribution from the base LLM
Llama-3.1-8B-Instruct. We define the bottom third
as Hard tasks, the middle third as Medium tasks,
and the top third as Easy tasks. Within each band
we compute the deliberation rate of SAND simi-
larly defined as the ratio of deliberation steps to the
total steps for each task, and plot the distribution
of deliberation rates across tasks.

From Figure 4, we observe that across all three
iterations the hard band remains the only one with
a high median deliberation rate around 0.75, while
the median deliberation rate on easy band stays
near 0.30. This shows SAND effectively teaches
LLM agent to direct more action deliberation to
hard tasks while keeping reasoning concise when
the task is easy. From iteration 1 to iteration 3, we
also observe a slight distribution shift of the hard
violin, which widens at the top with the median
gradually increases. This further demonstrates the
effectiveness of iterative deliberation finetuning in
our SAND framework that not only improves the
task performances but also teaches LLM agents to
make better decisions on when to deliberate.

6.5 How much additional inference-time
computation cost does SAND introduce?

As SAND teaches LLM agents to explicitly de-
liberate over candidate actions, it introduces ad-
ditional computation cost during inference time.
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To study how much additional inference-time cost
is incurred, we compare in Table 4 the average
number of tokens used per task between the SFT
agent (without action deliberation) and our SAND-
finetuned agents (with action deliberation), where
the base model is Llama-3.1-8B-Instruct.

From Table 4, we find that the additional ac-
tion deliberation results in approximately 2 to 3
times more tokens per task. Compared to rep-
resentative test-time scaling approaches such as
Best-of-N, which incurs 5 times more tokens when
N = 5, we believe our SAND framework intro-
duces a reasonable additional inference-time com-
putation cost with considerable performance im-
provements. Moreover, as analyzed in Section 6.4,
our SAND framework effectively teaches LLM
agents when to deliberate, avoiding unnecessary
action deliberation on simple tasks. This finding is
also reflected in Table 4, where a slight decreasing
trend in token usage is observed across iterations,
indicating better inference-time computation usage
through our iterative finetuning framework.

7 Conclusion

In this paper, we propose Self-taught ActioN De-
liberation (SAND), a self-learning framework that
equips LLM agents with explicit action deliber-
ation. Addressing when and what to deliberate
given large action space, SAND samples candidate
actions by self-consistency, critiques each action
guided exectured rollout, synthesizes a deliberation
thought, and iteratively finetunes the LLM agent
on the enriched trajectories. Experiments and anal-
ysis demonstrate the effectivenes and advantages
of our methods, which further highlights the key
role of deliberative reasoning in developing more
powerful LLM agents for real world applications.

Limitations

Despite the performance improvements, generat-
ing more deliberation thoughts inevitably increases
the token usage and inference costs. As discussed
and analyzed in Section 6.4, our proposed SAND
framework teaches LLM agent when to deliberate
via self-consistency action sampling to avoid delib-
erating during trivial decision making steps. Our
results in Section 6.5 further show that the action
deliberation learned by SAND introduces reason-
able additional inference-time computation cost.
To further improve the reasoning efficiency, more
advanced methods such reinforcement learning or

direct preference optimization can be utilized to
guide the LLM agent to better decide when to gen-
erating more comprehensive deliberative reasoning
and when to generate more concise quick thoughts.
Parallel inference techniques can also be applied to
further enhance the inference efficiency.
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Method Train Base
LLM Agent

Train Separate
PRM/Value Model

Inference-time
Sampling Strategy WebShop ALFWorld

(Unseen)
SciWorld
(Unseen)

Llama-3.1-8B-Instruct
+ Q (Zhai et al., 2025)

✗ ✓ 5 Actions Per Step 60.0 – –

Llama-2-7B-Chat
+ QLASS (Lin et al., 2025)

✓ ✓ 6 Actions Per Step 70.3 82.8 66.4

Llama-3-8B-Instruct
+ AgentRM-BoN (Xia et al., 2025a)

✓ ✓ Best-of-5 Trajectories 71.0 94.8 76.1

Llama-3-8B-Instruct
+ AgentRM-Beam (Xia et al., 2025a)

✓ ✓ 25 Actions Per Step
(5×5 Beam Search)

75.3 96.3 82.6

Llama-3.1-8B-Instruct
+ SAND (Ours)

✓ ✗
1 Action Per Step
(No Sampling)

72.4 96.3 79.1

Table 5: Comparisons of SAND with representative test-time search methods guided by PRM or Q-value model.

Appendix

A Additional Results on Webshop

To further verify the generalizability of SAND to
more diverse environments, we report in Table
6 the performance of SAND with Llama-3.1-8B-
Instruct as the base model on a real-world web
navigation task WebShop (Yao et al., 2022). We
use the same train-test dataset splits as in Song et al.
(2024b). The number of sample actions in our self-
consistency action sampling is set to N = 3 due
to the smaller action space of WebShop compared
to ALFWorld and SciWorld. Other configurations
remain the same as in Section 5.3. From the results,
we observe a consistent performance boost with
our SAND framework for LLM agents with around
10% improvement compared to the SFT baseline,
which validates the effectiveness of SAND on more
diverse environments.

B Comparisons with PRM and Q-Value
Models for LLM Agents

In this work, we propose an LLM agent tuning
framework, SAND, that enhances LLM agents’
abilities during training time with self-taught delib-
eration trajectories. During inference, our SAND-
finetuned LLM agent generates the entire action
deliberation thought along with the final action in
one pass, as illustrated in Figure 1. Therefore, our
proposed LLM agent tuning framework is orthog-
onal and complementary to recent process reward
model (PRM) or Q-value model-guided test-time
search methods (Zhai et al., 2025; Lin et al., 2025;
Xia et al., 2025a), which train separate reward or
value models and perform multiple samplings at
each step during inference.

Though our method is compatible with those test-
time search techniques for LLM agents, for a more

Method WebShop

Base 55.3
SFT 65.4
SAND (Iteration 1) 68.5
SAND (Iteration 2) 72.4
SAND (Iteration 3) 71.8

Table 6: Average rewards on WebShop.

comprehensive view, we report in Table 5 some
preliminary comparisons of SAND with representa-
tive test-time search methods guided by PRMs (Xia
et al., 2025a) and Q-value models (Zhai et al., 2025;
Lin et al., 2025). Note that the results are directly
imported from the original papers and thus the base
models might be slightly different. We leave fur-
ther integration of our agent tuning framework with
advanced test-time search methods as future work.

C Prompts

In this section, we provide the prompts used in
our SAND framework. The prompt for execution-
guided critique generation is shown in Figure 5 and
prompt for action deliberation synthesis is shown in
Figure 6. For evaluation on test set of ALFWorld
and ScienceWorld, we follow the same prompts
used in Xiong et al. (2025) for fair comparison,
which is provided in Figure 7 and Figure 8.
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Prompt for Execution-Guided Action Critique

### Background
{task_instruction}

### Current State
{interaction_history}

### Private Mental Simulations
You quietly imagined several futures that all start with the action **{sample_action}**.
Here is your simulated futures (keep it private):

{executed_rollout}

### Instructions
Write **one short paragraph (3 sentences)** titled exactly
`Action Evaluation:` that captures **your** intuitive judgement of
executing **{sampled_action}** now. In fluent prose, incorporate any of the following aspects

as you see fit:

* Whether **{sampled_action}** in the current state is valid based on the environment
feedback.

* Whether and how it might help advance the current progress toward important sub-goals or
final goal of completing the task.

* Any task-relevant affordances or commonsense cues you should notice.
* Frequent failure patterns or error loop you should be cautious for similar tasks.
* A practical evaluation of the action **{sampled_action}** in the current state.

Do **not** directly quote or refer to the simulation log, and do **not** list items; blend
them naturally into the paragraph.

Do **not** mention that the simulations exists or that you had outside help.

### Output Format
Action Evaluation: <your paragraph>

Figure 5: Prompt used for the execution-guided action critique.
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Prompt for Action Deliberation Synthesis

Background
{task_instrution}

### Current State
{interaction_history}

### Private Scratch-pad
You silently drafted several possible next actions with your intuitive judgement about each

(these notes stay private):
- {candidate_action_1}: {critique_for_candidate_action_1}
- {candidate_action_2}: {critique_for_candidate_action_2}
- {candidate_action_3}: {critique_for_candidate_action_3}

### Very Important
Your final **Action** line must be **{expert_action}**. Everything you write has to lead

naturally to this choice.

### Instructions
Generate reasoning thoughts following the instructions below:
Begin with a short one-sentence reflection of your previous action and your current situation.
Then propose and list each candidate action from the scratch-pad with your own intuitive

judgement, e.g., - <candidate action>: <your judgement>.
Keep your judgement informative and avoid repeating generic evaluation statements.

Do **not** mention that the scratch-pad exists or that you got outside help.

### Output Format
Thought: <your one-sentence reflection>

- <candidate action>: <your judgement>
- <candidate action>: <your judgement>

<your comparison and rationale>

Figure 6: Prompt used for action deliberation synthesis.
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Prompt for ALFWorld Tasks

Interact with a household to solve a task. Imagine you are an intelligent agent in a
household environment and your target is to perform actions to complete the task goal. At
the beginning of your interactions, you will be given the detailed description of the
current environment and your goal to accomplish.

For each of your turn, you will be given the observation of the last turn. You should choose
from two actions: "Thought" or "Action". If you choose "Thought", you should first think
about the current condition and plan for your future actions, and then output your action
in this turn. Your output must strictly follow this format:"Thought: your thoughts.\n
Action: your next action"; If you choose "Action", you should directly output the action
in this turn. Your output must strictly follow this format:"Action: your next action".

The available actions are:
1. go to {recep}
2. take {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}
6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which you

plan your next few steps. if the envrionment output "Nothing happened", that means the
previous action is invalid and you should try more options.

Reminder:
1. The action must be chosen from the given available actions. Any actions except provided

available actions will be regarded as illegal.
2. Think when necessary, try to act directly more in the process.

Now, it's your turn and here is the task.
{task}

Figure 7: Prompt used for ALFWorld tasks.
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Prompt for ScienceWorld Tasks

You are a helpful assistant to do some scientific experiment in an environment.
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside,

living room, bedroom, greenhouse, art studio, hallway
You should explore the environment and find the items you need to complete the experiment.
You can teleport to any room in one step.
All containers in the environment have already been opened, you can directly get items from

the containers.
For each of your turn, you will be given the observation of the last turn. You should choose

from two actions: "Thought" or "Action". If you choose "Thought", you should first think
about the current condition and plan for your future actions, and then output your action
in this turn. Your output must strictly follow this format:"Thought: your thoughts.\n
Action: your next action"; If you choose "Action", you should directly output the action
in this turn. Your output must strictly follow this format:"Action: your next action".
Remember that you can only output one "Action:" in per response.

The available actions are:
open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container's contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
wait1: task no action for a step

Now, it's your turn and here is the task.
{task}

Figure 8: Prompt used for ScienceWorld tasks.
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