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Abstract

Understanding how Transformer-based lan-
guage models store and retrieve factual asso-
ciations is critical for improving interpretabil-
ity and enabling targeted model editing. Prior
work, primarily on GPT-style models, has iden-
tified MLP modules in early layers as key
contributors to factual recall. However, it re-
mains unclear whether these findings gener-
alize across different autoregressive architec-
tures. To address this, we conduct a comprehen-
sive evaluation of factual recall across several
models—including GPT, LLaMA, Qwen, and
DeepSeek—analyzing where and how factual
information is encoded and accessed. Conse-
quently, we find that Qwen-based models be-
have differently from previous patterns: atten-
tion modules in the earliest layers contribute
more to factual recall than MLP modules. Our
findings suggest that even within the autoregres-
sive Transformer family, architectural varia-
tions can lead to fundamentally different mech-
anisms of factual recall.1

1 Introduction

Transformer-based language models are trained in
an autoregressive manner, generating the next token
sequentially based on previous tokens. These mod-
els exhibit strong language understanding due to
their scale and self-attention mechanism (Vaswani
et al., 2017). Beyond simple sentence genera-
tion, they internalize factual associations, typi-
cally expressed in knowledge triples of the form
t = (s, r, o), where s is the subject, r is the rela-
tion, and o is the object, and effectively recall them
during inference (Petroni et al., 2019).

Factual association recall refers to a model’s
ability to generate the correct object given a sub-
ject–relation prompt by leveraging internally stored

*Corresponding author.
1The code and data are available at https://github.com/

ICT-Convergence-Security-Lab-Chosun/CAARM

factual knowledge. One line of research on factual
recall investigates whether specific properties are
embedded within the internal representations of lan-
guage models, by tracing information flow through
causal analysis (Meng et al., 2022a,b; Geva et al.,
2023). These approaches are widely used in ap-
plications such as knowledge editing to identify
where factual associations are primarily stored and
to enable targeted modifications, rather than editing
the entire network.

However, these prior findings have focused only
on GPT-family architectures. This observation
raises the question of whether such findings gener-
alize across different autoregressive architectures.
To address this gap, we conduct a comprehen-
sive, layer-wise and module-wise (Attention vs.
MLP) quantitative evaluation of factual association
recall—examining where and how factual informa-
tion is stored and retrieved across a range of autore-
gressive Transformer models, including GPT (Rad-
ford et al., 2019; Brown et al., 2020; Wang and Ko-
matsuzaki, 2021), LLaMA (Grattafiori et al., 2024),
Qwen (Yang et al., 2024), and DeepSeek (Guo
et al., 2025) 2. Our evaluation and analysis re-
veals notable architecture-specific differences—
particularly in the Qwen-based architectures—in
where and how factual associations are recalled.

In our evaluation, we extend the experimental
frameworks of Meng et al. (2022a) and Geva et al.
(2023), applying causal tracing across a diverse set
of autoregressive Transformer models to perform
the following experiments, as showed in Figure 1.
1. Restoration effects. We measure the change in
inference probability between clean and corrupted
inputs at the last subject token position, follow-
ing causal tracing protocols from prior work. This
allows us to analyze the sensitivity of model pre-

2Evaluation results are based on 17 models across target
architectures; For brevity, we present results for four repre-
sentative models in the main text, with the remaining results
included in Appendix A.
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Figure 1: Overview of Our Evaluation. Given a sentence represented as knowledge triples of the form t = (s, r, o),
the pipeline proceeds in three stages: #1 restoration effects, #2 severing effects, and #3 factual prediction. #1 and
#2 are conducted using the indirect effect, which is computed from clean-run and corrupted-run. In contrast, #3 is
conducted on knockout-run. Each stage applies a distinct intervention strategy to evaluate the contribution of the
Attention and MLP modules to factual association recall.

dictions across all layers and modules (Attention
vs. MLP), providing insight into where factual
associations are most affected by input corruption.
2. Severing effects. We perform selective severing
either the Attention or MLP module at each layer
during inference. We then evaluate how much each
module contributes to the model’s ability to gener-
ate the correct object in factual association prompts.
In addition, we compute the Gini coefficient over
inference contributions to assess how structurally
localized the causal effects are within each module.
3. Factual prediction. We refine the object predic-
tion evaluation method used in Geva et al. (2023),
which relies on string matching between predicted
tokens and BM25-selected candidates. Noting its
insensitivity to semantically equivalent outputs, we
introduce a semantic similarity–based evaluation
metric, which considers a predicted token correct
if its embedding similarity to a candidate token ex-
ceeds a fixed threshold. This allows for more robust
evaluation of model outputs, especially in architec-
tures that generate more varied but semantically
equivalent expressions.
Results. This study highlights the following:
1. Our evaluation confirms that, in GPT-based mod-
els, MLP modules in the early layers play a key
role in storing factual associations. This finding
supports prior work (Meng et al., 2022a; Geva et al.,
2023), demonstrating that their conclusions are ap-
plicable to this class of architectures.
2. However, we identify key factors indicating

that Qwen-based models show larger changes in
inference probability within the early Attention lay-
ers, unlike GPT-based models. In Qwen-based
models, factual associations are more concentrated
in the Attention module than in the MLP. This
finding is further supported by Gini coefficient
analysis, which shows that the Attention modules
are where most of the important effects are fo-
cused—highlighting their key role in factual recall
in this model.
3. Our semantic similarity–based evaluation further
confirms the difference between GPT-based and
Qwen-based models. In Qwen-based models, At-
tention modules consistently contribute more to fac-
tual inference than MLPs, even when the model’s
outputs vary in wording.

These findings have practical implications for
deploying Transformer models in real-world sce-
narios, where knowing which layers and modules
store factual knowledge is important for effective
targeted model editing, reliable interpretability, and
knowledge-intensive tasks.

2 Notation of Autoregressive Transformer

We begin by outlining the fundamental architecture
of autoregressive Transformer models (Vaswani
et al., 2017), before analyzing the recall mecha-
nisms of factual associations in representative mod-
els such as GPT, LLaMA, Qwen, and DeepSeek.
These models are designed such that each token
can perform the Attention mechanism only over
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tokens that precede it.
An autoregressive Transformer model M : X →

Y operates over a vocabulary V , and given an input
token sequence x = [x1, ..., xT ] ∈ X , produces a
probability distribution y ∈ Y ⊂ R|V | for the next
token. This distribution reflects the model’s estima-
tion of the next token given the preceding context.

Internally, each token xi is mapped to a hidden
state vector h(l)i at layer l. The initial hidden state
h
(emb)
i is computed as the sum of the token em-

bedding and positional embedding, as defined in
Equation 1.

h
(emb)
i = emb(xi) + pos(i) ∈ Rdmodel (1)

The hidden state is iteratively updated through
layers using Attention and MLP modules. At layer
l, the hidden state of the i-th token is :

h
(l)
i = h

(l−1)
i + a

(l)
i +m

(l)
i (2)

The Attention output a(l)i incorporates represen-
tations from previous tokens via self-attention :

a
(l)
i = attn(l)(h

(l−1)
1 , ..., h

(l−1)
i ) (3)

The MLP output applies a non-linear transfor-
mation to the residual input :

m
(l)
i = W

(l)
projσ(W

(l)
fc γ(a

(l)
i + h

(l−1)
i )) (4)

where γ denotes a normalization, and σ is a
non-linear activation.

3 Structural Insights into Factual Recall

We conduct a quantitative analysis of how factual
associations are stored across various autoregres-
sive models through a unified evaluation. The
results show that Qwen and DeepSeek exhibit
patterns that differ from previously reported
trends. Specifically, the early Attention layers
corresponding to the position of the last subject
token make significant contributions to the storage
of factual associations. These findings suggest
that architectural differences may influence the
mechanisms underlying factual association storage.

We frame our empirical study around the follow-
ing research questions, and describe our approach.
#1. In various autoregressive Transformer models,
which modules, layers, and token-position-specific
activations contribute to the recall of specific fac-
tual associations, and to what extent do they influ-
ence the model’s output?

• Following the causal tracing methodology in-
troduced in ROME (Meng et al., 2022a), we
conduct restoration effects and severing ef-
fects experiments across a range of autore-
gressive Transformer models. Through these
experiments, we quantitatively measure the
Average Indirect Effect (AIE) of internal acti-
vations.

#2. Experiments conducted across various mod-
els reveal an inconsistency between the results of
the restoration effects experiment and the sever-
ing effects experiment in the Qwen and DeepSeek
models, raising the question: what factors might
have caused this discrepancy?

• To investigate the underlying cause of this dis-
crepancy, we compute the Gini coefficient
over the distribution of AIE values to quan-
tify the degree of concentration across layers,
thereby identifying which layers contribute
most to factual association recall.

• Subsequently, we apply the severing effects
experiment to the layers within the Attention
modules of the Qwen and DeepSeek mod-
els that exhibit the highest AIE concentration.
However, severing these layers does not result
in a significant reduction in AIE. The incon-
sistency between the two experimental results
is consistently observed.

#3. These findings suggest that the severing ef-
fects may have failed to sufficiently suppress the
activations of the Attention module. Does this not
indicate the need for a more precise intervention
method?

• Experimental results reveal that the severing
effects method (as proposed in Meng et al.
(2022a)) has a critical limitation in accurately
reflecting the contribution to factual associa-
tion recall, as it fails to sufficiently suppress
the influence of the attention module.

• To address this limitation, we adopt the
methodology proposed by Geva et al. (2023)
and apply a knockout technique that directly
blocks the output of each module. In addi-
tion, we evaluate factual prediction perfor-
mance using the objects rate instead of AIE,
incorporating semantic similarity by comput-
ing the cosine similarity between Sentence-
BERT (Reimers and Gurevych, 2019) em-
beddings, rather than relying on exact string

28485



matching. Through this approach, we em-
pirically confirm that the early layers of the
Attention module in the Qwen and DeepSeek
models contribute to the factual recall.

We present a novel finding that, in Qwen-based
models, the early layers of the Attention module
contribute more to factual association recall at the
last subject token position than the MLP module.
This contrasts with prior work (Meng et al., 2022a;
Geva et al., 2023) that identifies the MLP as the pri-
mary site for factual association storage. Our result
suggests that the localization of factual associations
can shift depending on model architecture, high-
lighting the need for broader comparative studies
across Transformer families.

4 Evaluation Methods

We build on and modify the implementations pro-
vided by Meng et al. (2022a) and Geva et al. (2023)
to suit our evaluation framework.
Model Selection. We evaluate a variety of autore-
gressive Transformer models, as summarized in
Table 1. Additional experimental targets and evalu-
ation results are provided in the Appendix A.
Dataset & Prompting. We employ the COUN-
TERFACT dataset (Meng et al., 2022a), which is
specifically designed to test factual associations
stored in language models. This dataset consists of
a diverse collection of prompts that encode factual
associations.

To examine how each model processes the ob-
ject in a factual association, we input only the
subject and relation from a knowledge tuple t =
(subject, relation, object), excluding the object.
This setup allows us to evaluate the model’s abil-
ity to accurately predict the object based on the
given context. For performance evaluation, we
sample 100 factual sentences in which the object
was successfully predicted, and apply the evalua-
tion methodology described in the next subsection.
Throughout all experiments, model layers are in-
dexed from 0 to L− 1, and our analysis focuses on
the last subject token position, which is critical for
triggering factual recall within the model.

4.1 Restoration Effects
Our first experiment #1 aims to quantitatively an-
alyze how specific modules, layers, and token-
position-specific activations in Transformer-based
language models contribute to the storage and re-
call of factual associations.

Model #Layers #Parameters
GPT-2-XL 48 1.5B

LLaMA-3.2-1B 16 1B
Qwen-2.5-1.5B 28 1.5B
DeepSeek-R1

Distill-Qwen-1.5B
28 1.5B

Table 1: Architectural details of autoregressive Trans-
former models (B = Billion parameters).

The analysis assumes two baseline execution set-
tings. The clean-run executes the model on an
uncorrupted input, yielding accurate factual predic-
tions. In contrast, the corrupted-run injects noise
into the subject representation to degrade recall
performance. Specifically, we perturb the subject
embedding by adding noise with a magnitude of
v = 3σsub, where σsub is the standard deviation of
subject embeddings collected from the dataset.

Based on this setup, we quantify the restoration
effects by restoring the activation of a module at a
specific layer to its clean state within the corrupted
run. This setup enables us to measure the causal
contribution of the target component to factual as-
sociation recall.

Under this setup, we use the metric Indirect Ef-
fect (IE) to quantify the degree to which a given
component contributes to factual recall. IE is com-
puted as the difference in prediction probability
of the correct token o between the restored and
non-restored cases (Meng et al., 2022a):

IE = P∗,clean h
(l)
i

[o]− P∗[o] (5)

where P∗[o] denotes the prediction probability of o
in the corrupted run, and P∗,clean h

(l)
i

[o] is the corre-

sponding probability when the hidden state h
(l)
i is

restored to its clean value. In this experiment, IE
is used to quantify the causal contribution of the
target component, where a higher IE indicates that
the activation of the module at the given layer has
a greater impact on factual recall.

Finally, the Average Indirect Effect (AIE)
aggregates IE across multiple prompts, capturing
the degree to which a given component consistently
supports factual recall across diverse contexts.

4.2 Severing Effects

Our second experiment #2 applies the severing ef-
fects to quantitatively analyze the extent to which
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AIE-based contributions are concentrated in either
the Attention or MLP modules. Specifically, simi-
lar to the restoration effects, we start from a hidden
state in which activations have been restored, but
selectively replace only the activation of the target
module (e.g., Attention or MLP) with its corrupted
counterpart, thereby severing the information flow
through that module. If the AIE value significantly
decreases when the activation of a specific mod-
ule at a certain layer is corrupted, it suggests that
the corresponding activation plays a critical role in
factual association recall.

The restoration and severing effects experiments
yield diverging results, making it difficult to con-
sistently interpret the contribution of each module.
To address this discrepancy, we compute the Gini
coefficient (Dorfman, 1979) over the AIE distribu-
tion to quantify the concentration of contributions
across layers. The Gini coefficient is defined as
follows:

GAIE =

∑
i

∑
j |AIE′

i −AIE′
j |

2L
∑

iAIE′
i

(6)

where L is the number of total layers, and AIE′

denotes the normalized, layer-level aggregated AIE
values.

We compute the Gini coefficient to identify the
layer with concentrated AIE, and then apply the
severing effects to evaluate whether the AIE re-
duction aligns proportionally with the restoration
effects.

4.3 Factual Prediction
Our third experiment #3 aims to quantitatively eval-
uate how the Attention and MLP modules inject
factual association into the subject representation
and functionally contribute to factual prediction.
To this end, we execute a knockout-run, which
sequentially applies knockout interventions to each
layer l = 0, . . . , L − 1. Specifically, we zero out
the updates at the last subject token position in both
the Attention and MLP modules across five consec-
utive layers. The intervention is applied over the
range l̃ = l, . . . ,min{l+4, L−1}, and the model’s
top-k output tokens under these intervention condi-
tions are collected. These tokens are subsequently
used as the set T , which serves as the basis for
factual prediction evaluation.

Prior to evaluation, we construct a candidate
object set O corresponding to each subject. We
retrieve relevant paragraphs from Wikipedia us-
ing BM25 (Robertson et al., 1995; Geva et al.,

2023), followed by tokenization and the removal of
stopwords and subword fragments. The resulting
candidate set consists of non-common tokens that
frequently co-occur with the subject and can be
considered plausible object expressions.

Language models with a relatively large num-
ber of parameters often produce outputs that are
semantically accurate but lexically differ from the
canonical object tokens. As a result, conventional
string match-based metrics significantly underes-
timate the objects rate. To mitigate this limita-
tion, we adopt a semantic similarity-based evalua-
tion method using Sentence-BERT (Reimers and
Gurevych, 2019).

Therefore, instead of relying on exact string
matching, we compute the cosine similarity be-
tween the Sentence-BERT embeddings of the gen-
erated tokens and the object candidates. Tokens
that exceed a predefined similarity threshold τ with
any element in O are regarded as semantically
valid. This design allows for robust and generaliz-
able evaluation of factual prediction by accounting
for lexical variation, improving upon string match-
based methods used in prior work (Geva et al.,
2023).

The objects rate is defined as the average propor-
tion of semantically valid tokens among the top-k
outputs for each subject:

ObjectsRate =
|Oτ |
|T | × 100 (7)

where T denotes the set of top-k tokens (with k =
50) generated by the model for a given subject, and
Oτ is defined as:

Oτ = {t ∈ T | ∃o ∈ O, sim(t, o) ≥ τ} (8)

Here, O is the candidate object set for each subject,
and sim(t, o) denotes the cosine similarity between
the generated token t and the object candidate o.
The similarity threshold is set to τ = 0.73, and
the objects rate is averaged across all subjects to
yield a generalized measure of factual prediction
performance.

5 Evaluation Results

5.1 Restoration Effects Analysis
To analyze the components contributing to the
recall of factual associations, we use the restoration
effects experiment to compute the Average Indirect

3Detailed in Appendix B.
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Figure 2: Restoration effects across multiple autoregressive Transformer models.

Effect (AIE). The experiments are conducted
on autoregressive Transformer-based models
including GPT, LLaMA, Qwen, and DeepSeek,
with a particular focus on the last subject token,
which plays a crucial role in factual association
recall.

Figure 2 shows the results of the restoration
effects experiment, visualizing the layer-wise
and module-wise AIE distribution across all
token positions for each model. In GPT and
LLaMA, AIE values are elevated in the early MLP
layers, reflecting a canonical pattern of factual
recall (Meng et al., 2022a). By contrast, Qwen and
DeepSeek exhibit notably high AIE values in the
early layers of the Attention module, suggesting
that, unlike GPT and LLaMA, they store factual
associations in the early Attention layers.

5.2 Severing Effects Analysis

To quantitatively analyze whether AIE-based con-
tributions are more concentrated in the Attention or
MLP modules, we perform a severing effects exper-
iment in which we remove the outputs of specific
layers and measure the resulting changes in AIE.

As prior results (Figure 2) indicate that the early
layers of both modules exhibit relatively high AIE
values, we design the experiment to target layers 0
through 15 for each module.

Figure 3 shows the results of the severing ef-
fects experiment, focusing on layers with high AIE
values identified in the previous restoration effects
analysis. In GPT and LLaMA, the AIE values are
elevated in the early MLP layers, and severing these
layers leads to a substantial reduction in AIE. By
contrast, in Qwen and DeepSeek, although the early
Attention layers exhibit high AIE values, severing
these layers results in only a minimal decrease.
This indicates that while the Attention module ap-
pears to contribute significantly in the restoration
effects experiment, its influence is not effectively
suppressed in the severing effects setting.

To quantitatively explain this discrepancy, we
compute the Gini coefficient of the layer-wise AIE
distribution, as shown in Figure 4. The results show
that in the Qwen and DeepSeek models, the AIE
contribution of the Attention module is highly con-
centrated in the fourth layer. In contrast, in the
GPT and LLaMA models, contributions from both
the Attention and MLP modules are more evenly
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Figure 3: Severing effects across multiple autoregressive Transformer models (restricted to layers 0–15 to verify
whether severing early layers significantly reduces AIE, consistent with the concentration observed in the restoration
effects experiment).
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Figure 4: Gini coefficient-based concentration analysis
in Attention and MLP modules across autoregressive
Transformer models (numbers above bars indicate the
layer with the highest concentration).

distributed. Based on this analysis, we conduct an
additional experiment that selectively severs the
layers with the highest concentration of contribu-
tions in each module. The results are summarized
in Table 2. Severing the MLP layers leads to a clear
drop in AIE, while severing the Attention layers
yields only a minimal reduction. This outcome can
be attributed to the structural characteristics of the
Attention mechanism. In the Attention module, in-
formation can propagate through alternative paths
even when specific routes are blocked, which miti-
gates the impact of severing a particular layer (El-
hage et al., 2021). In contrast, the MLP module
operates independently on each token, and severing
it directly disrupts the flow of information. These
structural differences account for the observed dis-
parity in AIE reduction between the two modules in
the severing effects experiment (Geva et al., 2021).

5.3 Factual Prediction Analysis
To more precisely evaluate the contribution of the
Attention module, we conduct a factual prediction
experiment using a knockout approach that com-

Model Attention
(Drop rate)

MLP
(Drop rate)

GPT-2-XL 31.32% 69.52%
LLaMA-3.2-1B 10.82% 89.40%
Qwen-2.5-1.5B 8.25% 83.55%
DeepSeek-R1

Distill-Qwen-1.5B
-0.14% 83.60%

Table 2: Effect of severing highly concentrated layers
selected by the Gini coefficient on AIE. A larger drop
rate indicates greater layer influence (for Qwen and
DeepSeek, severing Attention layers with high Gini
scores results in only a small drop).

pletely blocks the output of the target module.
Figure 5 shows the change in objects rate when

a knockout is applied to each layer of the Attention
and MLP modules. In GPT and LLaMA, blocking
the early MLP layers leads to a substantial drop
in objects rate, whereas in Qwen and DeepSeek,
blocking the early Attention layers also results in
a substantial drop. These results suggest that GPT
and LLaMA primarily store factual associations in
the early layers of the MLP module, while Qwen
and Qwen-based DeepSeek store a substantial por-
tion of such associations in the early layers of the
Attention module, which plays a critical role in the
recall of factual associations. These findings indi-
cate that the factual prediction experiment provides
a more appropriate and reliable means of assessing
the contribution of the Attention module than the
severing effects experiment.

6 Practical Implications

Our study highlights important differences in how
language models store and recall facts, depending
on their architecture, which have important prac-
tical implications. For example, in Qwen-based
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Figure 5: Factual prediction evaluation after knockout of Attention and MLP outputs across autoregressive Trans-
former models. Red boxes indicate points where blocking either the Attention or MLP module in early layers causes
a substantial drop in objects rate, suggesting that the corresponding module plays a critical role in factual association
recall.

architectures, where factual recall is concentrated
in early Attention layers, knowledge editing meth-
ods (Meng et al., 2022a,b; Li et al., 2024; Fang
et al., 2024) should adapt accordingly: targeting At-
tention modules more than MLPs. However, the un-
derlying causes of these architectural divergences
remain unclear. To further probe this issue, we
present and formulate two hypotheses related to
subject tokenization and architectural design fac-
tors, and conduct exploratory analyses, the results
of which are presented in Appendix D.

Similarly, interpretability tools (Clark et al.,
2019; Belinkov, 2022) and attribution analy-
ses (Vig, 2019) should focus on these components
to better trace factual reasoning. These insights
can also guide architecture-aware model compres-
sion (Sanh et al., 2020), where preserving key At-
tention layers may help retain factual knowledge.

7 Related Work

Language models go beyond predicting sequences
based solely on frequently occurring word patterns,
as they internally store and utilize factual asso-
ciations (Petroni et al., 2019; Jiang et al., 2020;
Roberts et al., 2020). Early research on factual
association recall focuses on probing methods,
which train classifiers on frozen representations
to evaluate whether specific properties are embed-
ded within the internal representations of language
models (Ettinger et al., 2016; Adi et al., 2016; Be-
linkov et al., 2017; Hupkes et al., 2018; Conneau

et al., 2018; Elazar et al., 2021). However, such ap-
proaches are limited in explaining how these prop-
erties functionally influence model predictions (Be-
linkov, 2022).

To address these limitations, recent work turns
to causal analysis, which estimates the functional
contributions of internal components by applying
counterfactual interventions (Vig et al., 2020; Pearl,
2022). A prominent method that applies this con-
cept to hidden representation analysis is causal
tracing, which enables the layer-level and module-
level attribution of factual predictions (Meng et al.,
2022a). Recent work actively explores causal trac-
ing, which now serves as a central analytical frame-
work for model interpretability (Dai et al., 2022;
Mohebbi et al., 2023; Hase et al., 2023; Geva
et al., 2023; Dar et al., 2023) and knowledge edit-
ing (Meng et al., 2022a,b; Li et al., 2024; Fang
et al., 2024).

8 Conclusion

We conducted a comprehensive evaluation of fac-
tual association recall to examine whether prior
findings based on GPT models generalize across
a broader range of autoregressive Transformer ar-
chitectures. To this end, we designed our evalu-
ation methods to highlight structural differences
in factual recall behavior across models. Our re-
sults reveal that Qwen-based models behave dif-
ferently from previously reported patterns: factual
recall is more strongly concentrated in the Atten-
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tion modules, rather than the MLPs. Our findings
have important implications for the deployment of
Transformer models in real-world applications. In
particular, understanding which layers and modules
are responsible for storing factual knowledge is es-
sential for improving performance in knowledge-
intensive tasks, enabling more precise model edit-
ing, and supporting interpretability.

Limitations

While we analyze where factual associations are
stored across a range of autoregressive Trans-
former models, including GPT, LLaMA, Qwen,
and DeepSeek, the internal mechanisms by which
these associations are recalled during inference
remain insufficiently understood. Furthermore,
despite observing model-specific recall patterns,
how factual associations are dynamically accessed
across different architectures remains unclear. In
addition, although our results indicate that the
storage locations of factual associations may vary
depending on the model architecture, the inter-
pretation of such structural differences is lim-
ited, warranting further investigation. Addressing
these limitations is crucial for applications such as
knowledge editing across existing and emerging
Transformer-based architectures.
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A Additional Experimental Analysis

We extend our experiments to autoregressive Trans-
former models with varying parameter sizes, as
listed in Table 3, and conduct additional evalua-
tions accordingly.

A.1 Restoration Effects Analysis
We extend the restoration effects experiment by
conducting additional analyses on autoregressive
Transformer models with varying parameter scales.

We show the restoration effects results separately
for each model family. Figure 6 shows the results
for the GPT family, and Figures 7, 8, and 9 show
the results for the LLaMA, Qwen, and DeepSeek
families, respectively.

First, the analysis of GPT-family models reveals
that the MLP modules in the early layers at the last
subject token play a primary role in storing factual
associations. Notably, GPT-2 Large exhibits a dis-
tinct pattern, where the Attention modules in the
early layers also make a significant contribution to
recalling factual associations.

Second, the analysis of LLaMA-family models
reveals that, similar to the GPT family, the MLP
modules in the early layers at the last subject token
play a major role in storing factual associations.

Third, the analysis of Qwen-family models re-
veals that both MLP and Attention modules con-
tribute to the storage of factual associations primar-
ily in the early layers at the last subject token. This
suggests that Qwen models leverage multiple mod-
ules within the early layers jointly in the process of
storing factual associations.

Finally, the analysis of DeepSeek-family models
reveals that the pattern of factual association stor-
age varies depending on the base model used for
distillation. Qwen-based models store factual asso-
ciations in the early layers at the last subject token
through both Attention and MLP modules, whereas
LLaMA-based models show no clear contribution
from the Attention modules at the same position.
Furthermore, the distillation models exhibit factual
association recall structures similar to their base
models and display generally consistent patterns.

These results suggest that the location of factual

Model #Layers #Parameters
GPT-2-Small 12 0.124B

GPT-2-Medium 24 0.335B
GPT-2-Large 36 0.774B

GPT-J-6B 28 6B
LLaMA-3.1-8B 32 8B
LLaMA-3.2-3B 28 3B
Qwen-2.5-0.5B 24 0.5B
Qwen-2.5-3B 36 3B
Qwen-2.5-7B 28 7B
Qwen-2.5-14B 48 14B
DeepSeek-R1

Distill-Qwen-7B
28 7B

DeepSeek-R1
Distill-LLaMA-8B

32 8B

DeepSeek-R1
Distill-Qwen-14B

48 14B

Table 3: Architectural configurations of autoregressive
Transformer models with varying parameter scales (B =
billion parameters).

association storage may vary depending on struc-
tural differences in model architecture.

Prior work, such as ROME (Meng et al., 2022a),
suggests that in models with a small number of lay-
ers, factual associations may be stored in the early
layers of the attention module at the position of
the last subject token. However, our experimental
results show that clear activation is not observed in
the attention module at the last subject token posi-
tion in models with a small number of layers, such
as GPT-Small, GPT-Medium, and LLaMA-3.2–3B.
These findings suggest that the contribution of the
attention module to factual association storage is
not determined solely by the number of layers, but
may also be influenced by other architectural fac-
tors.

A.2 Severing Effects Analysis

We extend the original severing effects experiment,
which was limited to layers 0-15, to cover all layers,
and perform additional analyses on autoregressive
Transformer models with varying parameter scales.

Figure 10 shows the results of the extended sev-
ering effects experiments conducted across the full
layer range. Figures 11, 12, 13, and 14 show
the outcomes for the GPT, LLaMA, Qwen, and
DeepSeek families, respectively. The analysis
of all model families — including GPT, LLaMA,
Qwen, and DeepSeek — reveals that severing the
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Figure 6: Restoration effects in GPT-family autoregressive Transformer models with varying parameter scales.

MLP modules in the early layers at the last subject
token leads to a substantial drop in AIE, indicating
their critical role in factual association recall. No-
tably, while Qwen and DeepSeek models exhibit
high AIE values for the early Attention modules at
the last subject token in the severing effects experi-
ments, the severing effects experiments show that
severing these Attention modules does not result in
as large a decrease in AIE as observed for the MLP
modules.

Based on these results, we extend the previ-
ous Gini coefficient-based concentration experi-
ments by conducting additional analyses across
a range of autoregressive Transformer models to
quantitatively examine the distribution characteris-
tics of AIE within the Attention and MLP mod-
ules. Figure 15 shows the results of the Gini
coefficient-based concentration analysis. Most
GPT-family and LLaMA-family models, except
for GPT-2-Small and GPT-2-Large, exhibit a rela-
tively uniform distribution of AIE across the Atten-
tion and MLP modules. In contrast, Qwen-family
and DeepSeek-family models show a concentrated
distribution of AIE within specific layers of the At-
tention module, indicating that factual associations

tend to be stored in a more concentrated manner
within certain layers of the Attention module.

A.3 Factual Prediction Analysis

We extend the previous factual prediction experi-
ments by conducting additional evaluations on a
variety of autoregressive Transformer models.

The factual prediction results are presented sepa-
rately for each model family. Figure 16 presents the
results for the GPT family, and Figures 17, 18, and
19 correspond to the LLaMA, Qwen, and DeepSeek
families, respectively.

Most GPT-family models exhibit a substantial
drop in objects rate when the early layers of the
MLP module are blocked, suggesting that these
layers are key locations where factual associations
are recalled.

Within the LLaMA family, LLaMA 3.1-8B
shows a similar pattern to GPT models, with a
significant objects rate drop when early MLP lay-
ers are blocked, indicating that factual associations
are primarily recalled in that region. In contrast,
LLaMA 3.2-3B shows a clear drop in objects rate
when early Attention layers are blocked, implying
that factual recall primarily occurs in the early At-
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Figure 7: Restoration effects in LLaMA-family autoregressive Transformer models with varying parameter scales.

tention module.
Most models in the Qwen family also demon-

strate that early Attention layers play a central
role in factual association recall, as evidenced by
marked decreases in objects rate when these layers
are blocked.

For the DeepSeek family, DeepSeek-R1-Distill-
LLaMA-8B exhibits factual recall concentrated in
the early MLP layers, while DeepSeek-R1-Distill-
Qwen-14B shows that both early Attention and
MLP layers contribute to factual recall. Meanwhile,
DeepSeek-R1-Distill-Qwen-7B produces inconsis-
tent results, indicating the need for further investi-
gation in future work.

B Semantic Similarity Threshold

This section explains the rationale behind the se-
mantic similarity threshold of 0.7 used in the fac-
tual prediction experiment.

Language models with a relatively large number
of parameters exhibit expressive capabilities. As
a result, evaluating their outputs solely based on
surface-level string matching is insufficient to cap-
ture their semantic appropriateness. To address this
limitation, this study adopts a quantitative evalua-
tion method based on semantic similarity.

For computing semantic similarity, this study
employs all-MiniLM-L6-v2, a pre-trained language
model based on Sentence-BERT (Reimers and
Gurevych, 2019). Each word pair is encoded into
embeddings, and cosine similarity is used to quan-
tify their semantic closeness. Pairs with a similarity
score of 0.7 or higher are considered semantically
similar. This threshold is selected as a conserva-
tive and empirically grounded criterion to ensure
a clearer separation between semantically similar

Word A Word B Similarity Score
table sadness 0.09
law noodles 0.17

rocket freedom 0.24
chair depression 0.32

urinary water 0.40
task project 0.56

publicity advertising 0.62
student school 0.65
movie cinema 0.68

combat fight 0.71
computer laptop 0.71

art painting 0.72
middle mid 0.75

city urban 0.86
purchase buy 0.87

bike bicycle 0.92
sofa sofa 1.00

Table 4: Examples of semantic similarity scores for
word pairs measured by Sentence-BERT.

and dissimilar cases, thereby enhancing consis-
tency and precision in evaluation. Although lower
similarity scores may sometimes correspond to se-
mantically related expressions, a threshold of 0.7 is
adopted to maintain reliability and interpretability.

To support the validity of this threshold, Table 4
presents examples of sentence pairs spanning a
range of similarity scores. These examples demon-
strate that semantic similarity–based evaluation en-
ables more fine-grained and accurate assessment
than methods relying solely on surface-level string
matching.
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Figure 8: Restoration effects in Qwen-family autoregressive Transformer models with varying parameter scales.

C Implementation Details

All language model families used in our ex-
periments—including GPT, LLaMA, Qwen, and
DeepSeek—are loaded via the Hugging Face Trans-
formers4 library, which provides a unified interface
for model and tokenizer handling.

During preprocessing as described in Section 4.3,
we use NLTK5 to remove stopwords from prompts.
For candidate selection, we apply BM25 ranking
using the rank_bm256 python package.

Meng et al. (2022a) is released under the MIT
License, and Geva et al. (2023) under the Apache
License 2.0, both of which we build upon and mod-
ify to support our evaluation framework and to
extend their functionalities for a broader set of au-
toregressive Transformer architectures.

D Analyzing Factors in Causal Effect
Concentration Differences

To investigate differences in the concentration of
causal effects, as observed in Figures 2 and 5, we

4https://huggingface.co/
5https://www.nltk.org/
6https://github.com/dorianbrown/rank_bm25

present two hypotheses and analyze each in detail.
The first hypothesis is that the attention-centered

concentration of causal effects observed in Qwen-
based models may come from the presence of multi-
token subjects. To test this possibility, we repeat
the same evaluation procedure under the constraint
that subjects consist of a single token.

The second hypothesis considers that architec-
tural design factors—such as MLP hidden size, the
number of attention heads, and the type of atten-
tion mechanism (MHA vs. GQA)—as well as the
tokenizer and vocabulary size may influence where
causal effects tend to be concentrated within the
network. To evaluate this, we conduct a compara-
tive analysis across models with diverse structural
configurations.

D.1 Impact of Subject Token Length on
Causal Effect

We hypothesized that multi-token subjects which
consists may contribute to the concentration of
causal effects observed in the early Attention lay-
ers of Qwen-based models. This hypothesis im-
plies that single-token subjects will not yield the
same results as multi-token subjects. To examine
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Figure 9: Restoration effects in DeepSeek-family autoregressive Transformer models with varying parameter scales.

Model MLP
Hidden Size

Total
Attention Heads

(head × layer)

Attention
Mechanism

Recall
Concentration Tokenizer Voca

Size

GPT-2 XL 6,400 25 × 48 = 1,200 MHA Early MLP BPE 50,257
LLaMA-3.2-1B 8,192 32 × 16 = 512 GQA Early MLP BPE 128,256
LLaMA-3.1-8B 14,336 32 × 32 = 1,024 GQA Early MLP BPE 128,256
Qwen-2.5-1.5B 8,960 12 × 28 = 336 GQA Early Attention BPE 151,936
DeepSeek-R1

Distill-Qwen-1.5B 8,960 12 × 28 = 336 GQA Early Attention BPE 151,936

Qwen-2.5-14B 13,824 40 × 48 = 1,920 GQA Early Attention BPE 152,064
DeepSeek-R1

Distill-Qwen-14B 13,824 40 × 48 = 1,920 GQA Early Attention BPE 152,064

Table 5: Architectural comparisons of autoregressive Transformer models and their recall localization.

this possibility, we reconstruct the COUNTERFACT

dataset (Meng et al., 2022a), which contains multi-
token subjects, to be suitable for single-token sub-
ject analysis. We paraphrase the original prompts
to ensure all models produce the same predictions
and ultimately build a dataset of 100 single-token
subject sentences for use in causal tracing experi-
ments.

Figure 20 shows the restoration effects under
the single-token subject setting. The experimental
results confirm that the architecture-specific pat-
terns remain consistent. In GPT-2 XL and LLaMA-
3.2-1B, causal effects remain concentrated in the
early MLP layers. In contrast, Qwen-2.5-1.5B and
DeepSeek-R1-Distill-Qwen-2.5-1.5B continue to
exhibit stronger causal concentration in the early
Attention layers than GPT-family models.

These results indicate that Qwen’s reliance on
early Attention layers is not an artifact of multi-

token subjects, but rather an intrinsic property of
the model. Furthermore, across all models, we ob-
serve a consistent increase in causal effect on the
relation token that immediately follows the subject,
suggesting that in the single-token subject setting,
the relation token plays a compensatory role by
more prominently anchoring factual retrieval. In
multi-token subjects, factual knowledge may ac-
cumulate across tokens and become consolidated
at the last subject token, which could serve as the
entry point for object prediction and the primary
locus of factual recall concentration. By contrast,
in the single-token subject setting, the subject pro-
vides too few token positions for accumulation, so
the model may exploit factual knowledge at the
subsequent relation token to initiate object predic-
tion, leading factual recall to be concentrated at
that position.
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Figure 10: Severing effects across multiple autoregressive Transformer models (all layers).
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Figure 11: Severing effects across GPT-family autoregressive Transformer models at varying parameter scales.

D.2 Impact of Architectural Factors on
Causal Effect

We also investigate whether specific architectural
parameters influence the localization of factual re-
call. Four aspects are examined: the hidden size of
the MLP, the number of attention heads, the type
of attention mechanism, the tokenizer type, and
vocabulary size. A summary of these comparisons
is provided in Table 5.

First, comparison across models indicates that
MLP hidden size does not consistently determine
where recall is localized. For instance, GPT-2 XL
(6,400) and LLaMA-3.2-1B (8,192) show recall
concentrated in early MLP layers, while Qwen-2.5-
1.5B and DeepSeek-R1-Distill-Qwen-1.5B (8,960)
exhibit recall centered in early attention layers.

However, this trend does not hold for LLaMA-3.1-
8B, which has an even larger hidden size of 14,336
but still demonstrates MLP-centered recall.

Second, the number of attention heads also
shows no consistent relationship with recall lo-
calization. Models with very high head counts,
such as GPT-2 XL (1,200) and LLaMA-3.1-8B
(1,024), rely on MLP layers, whereas Qwen-2.5-
1.5B and DeepSeek-R1-Distill-Qwen-1.5B, with
only 336 heads, rely on attention layers. Yet,
larger models like Qwen-2.5-14B and DeepSeek-
R1-Distill-Qwen-14B, with 1,920 heads, still dis-
play attention-centered recall, contradicting a sim-
ple head-count hypothesis.

Third, the type of attention mechanism, whether
multi-head attention (MHA) or grouped-query at-
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Figure 12: Severing effects across LLaMA-family autoregressive Transformer models at varying parameter scales.
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Figure 13: Severing effects across Qwen-family autoregressive Transformer models at varying parameter scales.

tention (GQA), cannot by itself explain the ob-
served patterns. GPT-2 XL is the only model in this
set using MHA and exhibits MLP-centered recall.
In contrast, all other models use GQA, but with
diverging outcomes: LLaMA models still localize
recall in MLP layers, while Qwen models consis-
tently localize recall in early attention layers.

Fourth, tokenizer-level properties or vocabulary
size may contribute to the observed patterns, but
they do not fully account for them. While all mod-
els employ BPE-based tokenization, they differ
substantially in vocabulary size and structure. For
example, GPT-2 XL uses 50,257 tokens, Qwen-
2.5-1.5B and DeepSeek-Qwen models use 151,936
tokens, and LLaMA-3.2-1B uses 128,256 tokens.
Interestingly, despite LLaMA-3.2-1B having a vo-
cabulary size comparable to that of Qwen, its causal
effect distribution aligns more closely with GPT,
suggesting that vocabulary size alone does not ex-
plain the observed differences.

Together, these findings indicate that recall lo-
calization cannot be attributed to any single fac-
tor. Neither architectural parameters—such as

MLP hidden size, attention head count, or attention
mechanism type—nor the tokenizer or vocabulary
size consistently explain the observed patterns. In-
stead, recall localization appears to arise from more
complex interactions among these design choices,
coupled with training objectives and optimization
dynamics, which warrant further investigation.
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Figure 14: Severing effects across DeepSeek-family autoregressive Transformer models at varying parameter scales.
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Figure 15: Gini coefficient-based concentration analysis of causal effects in Attention and MLP modules across
autoregressive Transformer models with varying parameter scales (numbers above bars indicate the layer with the
highest concentration).
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Figure 16: Factual prediction evaluation after knockout of Attention and MLP outputs across GPT-family autore-
gressive Transformer models with varying parameter scales.
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Figure 17: Factual prediction evaluation after knockout of Attention and MLP outputs across LLaMA-family
autoregressive Transformer models with varying parameter scales.
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Figure 18: Factual prediction evaluation after knockout of Attention and MLP outputs across Qwen-family
autoregressive Transformer models with varying parameter scales.
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Figure 19: Factual prediction evaluation after knockout of Attention and MLP outputs across DeepSeek-family
autoregressive Transformer models with varying parameter scales.
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Figure 20: Restoration effects across multiple autoregressive Transformer models under the single-token subject
setting.

28502


