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Abstract

Recently, Multimodal Large Language Models
(MLLMs) encounter two key issues in multi-
image contexts: (1) a lack of fine-grained per-
ception across disparate images, and (2) a di-
minished capability to effectively reason over
and synthesize information from multiple vi-
sual inputs. However, while various prompt-
ing methods aim to describe visual content,
many existing studies focus primarily on single-
image settings or specific, constrained scenar-
ios. This leaves a critical gap in understanding
and addressing how MLLMs tackle more gen-
eral and complex multi-image reasoning tasks.
Thus, we first extensively investigate how cur-
rent prompting methods perceive fine-grained
visual details and process visual information
when dealing with multiple images. Our find-
ings reveal that existing prompting methods
fall short in attending to needed clues and
seamlessly integrating perception and reason-
ing. Inspired by the findings, we propose a new
zero-shot prompting method, Question-Guided
Chain-of-Captions (QG-CoC), a generalized
prompting approach that effectively handles
problems with an arbitrary number of images.
We evaluate our method on various open-source
and closed-source MLLMs for multi-image and
single-image benchmarks. Experimental re-
sults indicate that QG-CoC demonstrates com-
petitive performance across tasks and exhibits
robust improvements in the challenging scenar-
ios where existing prompting methods fail.

1 Introduction

Recent advancements in MLLMs (Li et al., 2024;
Liu et al., 2023) have demonstrated impressive abil-
ities in understanding the semantics of multimodal
data and achieving promising results across various
single-image tasks. However, recent empirical stud-
ies (Meng et al., 2024) show that MLLMs currently
still struggle with solving complex multimodal un-
derstanding tasks such as temporal, spatial, and
multi-image relationships.

Therefore, there have been some emerging
prompting methods that help to enhance the reason-
ing chain of multimodal data. Most of the works
focus on converting visual scenes into rich text-
based representations such as scene graph, visual
table, and bounding box detection (Mitra et al.,
2024; Shao et al., 2024), then triggering the reason-
ing ability of MLLMs. Although these methods are
effective for understanding single-image context,
they encounter obstacles when discerning relation-
ships between multiple images. This difficulty pri-
marily stems from an insufficient focus on key in-
formation, which requires joint consideration of all
images involved. Although some methods (Zhang
et al., 2024) start to consider multiple images in
their prompting methods, they are far from being
general and dealing with different kinds of scenar-
ios that involve multi-perspectives, multi-relations,
and multi-understanding (Wang et al., 2024; Meng
et al., 2024).

In our preliminary study, we first conduct a com-
prehensive evaluation of various captioning strate-
gies to analyze how to caption images effectively
under multi-image scenarios. Our findings reveal
that question-guided captioning each image in de-
tail benefits more than captioning multiple images
as a whole or concisely. Then, we adopt existing
prompting methods to multi-image scenarios and
observe the limitations of existing methods that
generate a lack of spatial context, unrelated object
descriptions, and vague descriptions. Motivated
by our preliminary study, we propose QG-CoC,
which first decomposes the original question into
necessary sub-questions to understand which key
information is needed for solving different tasks.
Then, based on each specific sub-question, we gen-
erate relevant captioning to ensure each caption
is conditioned under the given sub-question. Af-
ter obtaining guided captions, we utilize each sub-
caption as a clear hint to answer each sub-problem.
Last, we combine the sub-question and sub-answer
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pairs to serve as prior domain knowledge, high-
lighting the key information needed to generate a
final response.

To summarize, our main contributions are as
follows:

• We first analyze why existing prompting meth-
ods cannot work and suggest what is the most
effective way to caption images under multi-
image scenarios.

• We then introduce QG-CoC, a novel zero-shot
prompting method that can deal with an ar-
bitrary number of images. This provides a
strong baseline for future multimodal under-
standing tasks.

• Our method consistently outperforms existing
prompting methods in multi-image scenarios
and also shows generalization in single-image
scenarios under both closed-source and open-
source models.

2 Related Work

MultiModal Prompting Methods. Chain-of-
Thought (CoT) prompting has considerably en-
hanced the reasoning capacities of LLMs. Recent
research has explored various methodologies to
adapt CoT for multimodal models. Some investi-
gations adopt a two-stage approach, where image
information is initially transformed and grounded
into captions, graph structure (e.g., scene graphs
or knowledge graphs), or bounding boxes before
reasoning (Mitra et al., 2024; Zhang et al., 2024;
Shao et al., 2024; Zhang et al., 2023; Mondal et al.,
2024; Zhong et al., 2024). Other studies use agent-
style pipelines that integrate external tools to pro-
cess and reason with image observations. These
tools include code interpreters and specialized vi-
sion models (Shao et al., 2024; Lei et al., 2024; Hu
et al., 2024a; Gao et al., 2024). Although these
approaches effectively manage both textual and
visual input, they exhibit limitations in handling
multi-image scenarios since they need models to
automatically integrate and analyze either spatial,
temporal, or contextual cues from varied perspec-
tives, moments, and settings (Shao et al., 2024). To
address these limitations, in our work, a general
prompting framework is designed for multimodal
reasoning without fine-tuning or relying on sepa-
rate visual modules or external tools.

MultiModal Understanding Benchmarks.
There are lots of benchmarks have been developed
to comprehensively assess the multimodal under-

standing and reasoning capabilities of MLLMs
that require conditioning on images; however, they
predominantly focus on single-image scenarios and
do not directly measure how well the model and
the prompting methods can integrate information
across different images (Yue et al., 2024; Liu
et al., 2024; Lu et al., 2022). Therefore, several
benchmarks have recently been introduced to
systematically evaluate multi-image reasoning
and understanding capabilities, covering diverse
perspectives and tasks such as comparison, video
understanding, and grounding (Wang et al., 2024;
Meng et al., 2024). Besides, these benchmarks
comprehensively assess MLLMs, covering a
broader range of current multi-image capacities.
Despite these efforts, existing MLLMs fail
to explore and unlock the inherent reasoning
capabilities without specific prompting to solve
multi-image problems, and most of the common
techniques to enhance performance are based on
supervised fine-tuning (Liu et al., 2023; Jiang et al.,
2024; Xu et al., 2024) on multi-image interleaved
data or CoT reasoning data. In parallel, in our
work, we focus on how to apply a sophisticated
prompting strategy without fine-tuning to represent
visual scenes into more informative descriptions,
demonstrating benefits in diverse domains in both
single-image and multi-image scenarios.

3 Preliminaries

3.1 Analysis on Different Captioning
Strategies under Multi-Image

MLLMs are capable of reasoning directly over both
vision and language modalities. These models typ-
ically receive an input consisting of images I and
an associated task prompt in text form P (e.g., a
question, caption generation, or scene graph gen-
eration). The diverse descriptions generated from
these inputs often encapsulate multiple perspec-
tives and provide advantageous informative con-
text that aids in addressing the original problem.
However, a critical question arises: How can we
accurately generate key information from images
to effectively answer multi-image problems? Previ-
ous research (Shao et al., 2024; Zhong et al., 2024;
Hu et al., 2024b) has demonstrated that providing
useful context can enhance single-image problems
and help uncover visual details that MLLMs might
overlook when processing combined image and
text inputs.

In this analysis, we compare different captioning
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Figure 1: An example multi-image question with different captioning settings. Text in red, green, and orange
highlights our advantages. Text in blue is the correct answer. The actual prompt used for each captioning setting can
be found in Appendix B.

Model Gemini-Flash LLaVA-OV Mantis

Dataset MMIU MUIR MMIU MUIR MMIU MUIR

Concise vs. Detailed 54.1 → 54.9 65.2 → 66.3 47.3 → 48.0 43.7 → 44.0 45.3 → 46.4 42.3 → 44.5
Summarize vs. Individual 54.1 → 54.5 66.0 → 66.5 46.5 → 48.6 44.1 → 43.9 45.3 → 46.4 43.1 → 43.5
Question-Guided (N/Y) 53.3 → 55.3 65.4 → 66.2 47.4 → 47.8 43.1 → 44.7 45.5 → 46.0 42.4 → 44.1

Table 1: Comparison of captioning settings across models and multi-image datasets. Metrics represent answer
accuracy (%).

strategies and derive insights into their effective-
ness, focusing on four key settings: (1) concise
versus detailed captions, (2) individual captions for
each image versus a summarized caption across
multiple images, and (3) the inclusion of questions
when doing captioning. To comprehensively assess
performance, we evaluate both closed-source and
open-source models across all possible combina-
tions of these factors, resulting in 8 experimental
settings. For each control factor, results are aver-
aged over the 4 relevant variations, enabling a fair
and robust comparison of the different strategies.

1. Caption Length (Concise vs. Detailed): To
examine whether the level of detail in image
captions affects multi-image understanding,
we compare two captioning length settings:
Concise (describe the image in a sentence)
vs. Detailed (describe the image in detail).
Table 1 indicates that detailed captions im-
prove multi-image accuracy due to enhanced
modality matching and comprehensive image
descriptions. In Figure 1, we can observe that
detailed captioning will contain the informa-

tion such as author and school list needed for
answering the question.
Insight: Detailed captions are superior to con-
cise ones, as they mitigate information loss
and better support complex reasoning tasks.

2. Caption Scope (Summarized vs. Individ-
ual): When dealing with multiple images re-
lated to the question, a key decision is whether
to summarize image set as a whole or describe
each image independently. We evaluated two
settings: Summarized (generate a summarized
caption that describes the content across the
whole set) vs. Individual (generate a separate
caption for each image). Table 1 indicates that
when handling multiple images, generating in-
dividual captions for each image outperforms
producing a single summarized caption across
all images. In Figure 1, we can observe that
individual captioning provides more informa-
tion than summarized captioning.
Insight: Individual captions are more effec-
tive than summarized captions, particularly
in multi-image scenarios requiring precise,
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Figure 2: An example multi-image question with different prompting methods. Text in red highlights the
disadvantages. Text in blue is the correct answer. The actual prompt used for each method can be found in
Appendix C.

image-specific information.

3. Question-Guided (No vs. Yes): To under-
stand whether integrating the question during
the caption generation influences the perfor-
mance, we compare two captioning settings:
No Question-Guided (captions are generated
based on images solely) vs. Question-Guided
(captions are generated based on images and
the question). Table 1 and Figure 1 show
that question-guided captions improve overall
multi-image task accuracy, focusing on task-
relevant visual elements.
Insight: Question-guided captioning outper-
forms unguided captioning by aligning gener-
ated context more closely with the question.

Based on the above findings regarding effective
image captioning in multi-image scenarios, the
next subsection examines if adjusting the previous
single-image prompting methods to multi-image
scenarios can provide the necessary context for
multi-image problems.

3.2 Adjusting Existing Prompting Methods to
Multi-Image Scenarios

We conduct the following study to verify whether
existing prompting methods can be effectively
extended to address the complexities of multi-
image scenarios. Our study focused on prominent
methods such as DDCoT (Duty-Distinct Chain-of-
Thought) (Zheng et al., 2023), which we adapted
to decompose a central question into sub-questions
applicable across multiple images; CCoT (Com-
positional Chain-of-Thought) (Mitra et al., 2024),

explored for its potential to generate a compos-
ite scene graph from each given image; and Co-
CoT (Contrastive Chain-of-Thought) (Zhang et al.,
2024), which, while originally designed for dis-
cerning similarities and differences between just
two images, we considered for its conceptual appli-
cability to broader multi-image comparisons. As il-
lustrated in Figure 2 using Gemini-1.5-Flash (Team
et al., 2024), we present a case study and reveal
a consistent pattern. While these adapted existing
methods demonstrate some capability in identify-
ing individual entities, their characteristics, and
straightforward, explicit relationships between im-
ages, they exhibit significant limitations. Specifi-
cally, they struggle to extract deeper, implicit con-
text or perform complex reasoning that requires
synthesizing information from an arbitrary number
of images. For example, DDCoT lacks present spa-
tial context from images, CCoT presents unrelated
object descriptions since it does not understand
what information is needed to answer the question,
and CoCoT only vaguely describes the similarity
and difference between images. To further validate
these observations, Section 5 provides quantitative
support that demonstrates these limitations.

Thus, since the above study highlights the need
for more specialized prompting methods tailored to
multi-image context, we propose a new zero-shot
prompting method Question-Guided Chain-of-
Captions that involves balancing detail, specificity,
and relevance.
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Figure 3: An example multi-image question and its corresponding reasoning steps using QG-CoC. The prompts
used for each step can be found Appendix D.

4 Question-Guided Chain-of-Captions

As shown in Figure 3, Question-Guided Chain-
of-Captions (QG-CoC) is a structured reasoning
approach designed to enhance multi-image under-
standing. The method involves three key steps:

Step 1: Decompose the question into sub-
questions. First, given a complex question, the
method breaks it down into a series of simpler,
interpretable sub-questions. Each sub-question tar-
gets a specific aspect of the image(s), such as the
subject’s action, outcome, or reaction. This decom-
position ensures that the reasoning is detailed and
aligned with the intent of the question.

Step 2: Caption key information for each sub-
question. The MLLM then generates targeted
captions for each sub-question. These captions ex-
tract and describe the most relevant visual evidence
(e.g., objects, actions, effects, or scene changes),
providing intermediate interpretations. This step
directly connects each piece of reasoning to the
image content.

Step 3: Answer the sub-questions and integrate
reasoning. Finally, the model answers each sub-
question based on the captions, forming a coherent
reasoning chain. These individual answers are then
combined to produce the final answer to the origi-
nal question, supported by visual evidence from the

images. This step-by-step process improves both
the accuracy and the explainability of the model
predictions.

5 Experimental Results

5.1 Experimental Setting

Implementation. We conduct experiments us-
ing different zero-shot prompting methods on
both closed-source and open-source MLLMs. For
experiments in this section, we utilize GPT-
4o (Hurst et al., 2024) and Gemini-1.5-Flash (Team
et al., 2024) as representatives of general-purpose
MLLMs. We also utilize two open-sourced
MLLMs: Mantis-idefics2-8B (Jiang et al., 2024),
LLaVA-OneVision-7B (Li et al., 2024), and Qwen-
2.5-VL-7B (Bai et al., 2025), which support mul-
tiple image inputs. However, they have limited
capacity to process and follow long prompts to gen-
erate additional context in the first stage. From
open-source model evaluation, we use Gemini-1.5-
Flash as oracle captioning in the first stage. The
versions of these models we used for the experi-
ments are listed in Appendix A.

Baselines. First, to evaluate the added benefit
of our method to pretrained MLLMs, our default
baseline is to apply the model to the benchmark
without any prompt engineering. Then, we com-
pare QG-CoC prompting to five state-of-the-art
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Model Method
Dataset

MUIR MMIU ScienceQA MMMU MMBench
Open-Source

LLaVA-One-Vision

w/o prompt 41.2 44.6 94.5 45.4 85.1
Caption 42.0 (+0.8) 48.1 (+3.5) 91.7 (-2.8) 49.7 (+4.3) 85.1 (+0.0)

QG-Caption 44.7 (+3.5) 49.4 (+4.8) 93.1 (-1.4) 45.4 (+0.0) 85.6 (+0.5)

DDCoT 53.4 (+12.2) 50.5 (+5.9) 92.9 (-1.6) 49.7 (+4.3) 84.3 (-0.8)

CCoT 44.6 (+3.4) 46.9 (+2.3) 93.0 (-1.5) 46.8 (+1.4) 86.0 (+0.9)

CoCoT 44.2 (+3.0) 46.4 (+1.8) – – –
QG-CoC 53.3 (+12.1) 50.9 (+6.3) 94.5 (+0.0) 48.9 (+3.5) 87.6 (+2.5)

Mantis-idefics2

w/o prompt 43.4 45.0 80.3 41.8 79.0
Caption 43.9 (+0.5) 46.7 (+1.7) 79.7 (-0.6) 44.7 (+2.9) 80.4 (+1.4)

QG-Caption 44.5 (+1.1) 47.7 (+2.7) 79.1 (-1.2) 44.0 (+2.2) 79.7 (+0.7)

DDCoT 47.9 (+4.5) 50.1 (+5.1) 83.0 (+2.7) 49.7 (+7.9) 78.3 (-0.7)

CCoT 44.4 (+1.0) 44.9 (-0.1) 80.7 (+0.4) 46.1 (+4.3) 82.1 (+3.1)

CoCoT 42.6 (-0.8) 45.4 (+0.4) – – –
QG-CoC 48.9 (+5.5) 49.8 (+4.8) 83.8 (+3.5) 48.9 (+7.1) 83.4 (+4.4)

Qwen-2.5-VL

w/o prompt 62.1 50.3 90.2 58.2 88.2
Caption 62.8 (+0.7) 50.9 (+0.6) 88.0 (-2.2) 59.4 (+1.2) 88.3 (+0.1)

QG-Caption 62.4 (+0.3) 50.1 (-0.2) 88.9 (-1.3) 60.0 (+1.8) 88.5 (+0.3)

DDCoT 63.7 (+1.6) 54.1 (+3.8) 90.5 (+0.3) 61.5 (+3.3) 87.9 (-0.3)

CCoT 62.3 (+0.2) 51.6 (+1.3) 89.5 (-0.7) 59.5 (+1.3) 88.5 (+0.3)

CoCoT 62.6 (+0.5) 52.3 (+2.0) – – –
QG-CoC 65.3 (+3.2) 56.9 (+6.6) 91.9 (+1.7) 64.8 (+6.6) 89.4 (+1.2)

Closed-Source

GPT-4o

w/o prompt 70.8 63.3 89.5 63.1 86.0
Caption 71.8 (+1.0) 63.6 (+0.3) 86.8 (-2.7) 66.0 (+2.9) 88.1 (+2.1)

QG-Caption 70.0 (-0.8) 65.1 (+1.8) 89.6 (+0.1) 61.7 (-1.4) 89.5 (+3.5)

DDCoT 73.1 (+2.3) 62.9 (-0.4) 89.3 (-0.2) 64.5 (+1.4) 86.6 (+0.6)

CCoT 70.4 (-0.4) 60.9 (-2.4) 87.8 (-1.7) 61.0 (-2.1) 88.1 (+2.1)

CoCoT 74.0 (+3.2) 64.5 (+1.2) – – –
QG-CoC 74.9 (+4.1) 65.8 (+2.5) 90.3 (+0.8) 66.7 (+3.6) 88.9 (+2.9)

Gemini-1.5-Flash

w/o prompt 66.0 55.0 87.0 64.5 86.0
Caption 66.8 (+0.8) 53.7 (-1.3) 86.9 (-0.1) 61.0 (-3.5) 84.5 (-1.5)

QG-Caption 66.0 (+0.0) 54.9 (-0.1) 86.8 (-0.2) 66.7 (+2.2) 84.9 (-1.1)

DDCoT 67.6 (+1.6) 51.5 (-3.5) 86.9 (-0.1) 53.9 (-10.6) 84.5 (-1.5)

CCoT 66.3 (+0.3) 51.9 (-3.1) 85.5 (-1.5) 53.2 (-11.3) 85.6 (-0.4)

CoCoT 65.4 (-0.6) 55.5 (+0.5) – – –
QG-CoC 68.2 (+2.2) 55.4 (+0.4) 87.2 (+0.2) 63.7 (-0.8) 85.2 (-0.8)

Table 2: Multi-Image and Single-Image benchmark performance of different models with various prompting
methods. Numbers in (+/-) indicate delta compared to the w/o prompt baseline of the same model. Metrics represent
answer accuracy (%).

methods including: (1) Detailed Captioning: In
the previous section, we find that captioning image
individually in detail enhance the performance the
most, (2) Question-Guided Detailed Captioning:
In the previous section, we find that adding ques-
tion in the prompt enhances the performance, (3)
DDCoT (Zheng et al., 2023): First, decompose the
question, then utilizes MLLMs to answer the sub-
questions and uses it as rationale, (4) CCoT (Mitra
et al., 2024): Utilize MLLMs to generate a scene
graph based on each image, and (5) CoCoT (Zhang

et al., 2024): Utilize MLLMs to describe the simi-
larity and difference between multiple images. All
these methods work in a two-step pipeline. The
first step generates an additional textual represen-
tation from the instructions of different methods.
The second step involves passing the images, ques-
tion, and output from the first step to answer the
question.

Evaluation Dataset. We select two represen-
tative and multi-faceted benchmarks: Muir-
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Bench (Wang et al., 2024) and MMIU (Meng et al.,
2024). MuirBench is a comprehensive benchmark
consisting of 12 diverse multi-image tasks, such
as scene understanding, ordering, etc. It contains
2,600 multiple-choice questions with 11,264 im-
ages in total. We report the overall average per-
formance across the 12 tasks. MMIU is a multi-
image benchmark encompassing 7 types of multi-
image relationships, 52 tasks, 77K images, and
11K multiple-choice questions. We report the
overall average performance across all the tasks.
However, during the evaluation, we observe some
tasks in MMIU exhibit low quality, so we filter out
some tasks in the spatial and semantic relationships.
We also compare our method on various single-
image tasks, including MMMU (Yue et al., 2024),
MMBench (Liu et al., 2024), and ScienceQA (Lu
et al., 2022), to validate the generalizability of our
method. However, since CoCoT is constructed un-
der image comparison, we cannot evaluate CoCoT
on single-image benchmarks.

5.2 Main Results

To investigate which prompting methods and mod-
els better solve multi-image problems, we summa-
rize the answer accuracy performance in Table 2.

Comparison with various prompting baselines.
QG-CoC demonstrates strong performance across
both multi-image and single-image benchmarks, as
shown in Table 2:

1. Comparison over Caption: While provid-
ing detailed captions for individual images
(“Caption” method) is beneficial, QG-CoC
not only provides image captions but also en-
sures these captions are directly relevant to
specific parts of the sub-question. This rel-
evance is achieved by first decomposing the
main question into sub-questions (Step 1) and
captioning key information for sub-questions
(Step 2). As a result, the generated captions
are targeted, leading to more focused and ef-
fective reasoning compared to general detailed
captions.

2. Comparison over QG-Caption: QG-
Caption incorporates the question into the
prompt to improve caption relevance. Instead
of guiding captions with a single, potentially
complex main question, QG-CoC decomposes
the question into simpler sub-questions (Step
1) and then generates targeted captions for

each sub-question (Step 2). This question-
guided captioning at each sub-question typi-
cally yields better results than a single pass of
QG-Caption.

3. Comparison over DDCoT: DDCoT also in-
volves question decomposition. However,
QG-CoC introduces a crucial intermediate
step: generating explicit, targeted captions for
each sub-question (Step 2) before proceeding
to answer them and integrate reasoning (Step
3). This step of grounding each sub-problem
in visual evidence through dedicated captions
often leads to more robust reasoning. While
DDCoT shows competitive performance, QG-
CoC frequently outperforms it.

4. Comparison over CCoT: While scene graphs
can be informative, they might produce overly
detailed or less relevant information for a spe-
cific question. Our method of generating cap-
tions related to sub-questions (Step 2), guided
by the initial question decomposition (Step 1),
ensures that the visual information extracted
is directly relevant to the task. Thus, QG-
CoC consistently demonstrates higher accu-
racy than CCoT.

5. Comparison over CoCoT: CoCoT utilizes
MLLMs to describe the similarity and differ-
ence between multiple images. This can be
effective for comparative tasks but may not be
optimal for all types of multi-image tasks. QG-
CoC, through its sub-question decomposition
(Step 1) and subsequent targeted captioning
(Step 2), offers a more general framework that
can adapt to various reasoning needs beyond
simple comparison. As a result, QG-CoC gen-
erally achieves higher accuracy than CoCoT.

Overall, the results show the effectiveness of QG-
CoC in leveraging both detailed image understand-
ing and question-aware reasoning.

6 Discussion

We conduct an analysis of QG-CoC through mul-
tiple perspectives, including detailed breakdowns
of different visual domains on MMIU and MUIR
benchmarks, the impact of incorporating each com-
ponent of QG-CoC, and common error analysis.

Different Prompting Methods Performance
Across Various Image Relationships. As shown
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(a) LLaVA-OV (b) Mantis

Figure 4: Prompting methods performance by image relationships on different models (MMIU dataset).

in Figure 4, models exhibit different capabilities
across various image relationships in MMIU. We
also record all model performance on all tasks in
MMIU (Table 8) and MUIR (Table 9).

1) In semantic relationships, direct prompting
generally performs better on multi-image semantic
tasks involving low-level relationships than adding
more context. Since low-level relationships usually
involve intuitive understanding, providing more
details will not help with reasoning. Inversely,
in high-level tasks, for subjective tasks such as
Causality Reasoning and Emotion Recognition,
which require the identification and reasoning of
implicit visual information, and objective tasks,
such as retrieval tasks, QG-CoC outperforms exist-
ing methods significantly since our method pro-
vides more key information to tackle them. 2)
In temporal relationships, all prompting methods
can handle discrete and continuous temporal re-
lationships relatively well, but perform poorly on
reasoning-intensive tasks such as Visual Ordering
and Temporal Ordering. 3) In spatial relationships,
we find that all prompting method struggles with
understanding both 2D and 3D positional relations.
Since these prompting methods cannot provide
spatial information in multiple images and reason
correctly, QG-CoC overall provides more spatial-
related information compared to other methods.

Importance of each component on QG-CoC.
We analyze the contribution of each component in
QG-CoC through an ablation study on the MUIR
and MMIU benchmarks. In Table 3, starting from

Method MUIR MMIU

Zero-shot 66.0 55.0
+ Question-Decompose 66.5 54.8
+ Question-Guided Caption 67.2 55.1
+ QG-CoC 68.2 55.4

Table 3: Ablation experiment results across MMIU
and MUIR benchmarks using Gemini-1.5-Flash. Our
method achieves the highest accuracy among all.

the zero-shot baseline, each successive module
leads to consistent performance gains. Introduc-
ing Question Decomposition improves MUIR ac-
curacy from 66.0 to 66.5, showing the benefit of
simplifying complex queries. Adding the Question-
Guided Captioning module further raises the score
to 67.2, highlighting the importance of context-
aware visual grounding. Finally, incorporating the
full QG-CoC model achieves the highest accuracy
of 68.2 on MUIR and 55.4 on MMIU, confirming
that the combined reasoning and generation steps
effectively enhance overall understanding. These
results underscore the complementary roles of each
module and validate the design of our composi-
tional reasoning pipeline.

Error Reason Percentage (%)
(E1) Wrong question understanding 33.3% (40/120)
(E2) Inaccurate perception 31.7% (38/120)
(E3) Wrong reasoning 35.0% (42/120)

Table 4: Statistics of error analysis under Gemini-1.5-
Flash using QG-CoC.

Error Analysis. We delve deeper into the pri-
mary challenges that MLLMs encounter when solv-
ing multi-image problems using QG-CoC. To gain
a quantitative understanding of model failures, we
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Error Type Geographic Diagram Matching Difference Retrieval Counting Attribute Scene Action Grounding Cartoon Ordering

E1 50 30 30 30 30 40 30 30 30 30 30 40
E2 30 40 40 20 40 40 40 20 20 30 30 30
E3 20 30 30 50 30 20 30 50 50 40 40 30

Table 5: Distribution of error types (%) across MUIR tasks for Gemini-1.5-Flash under QG-CoC prompting.

randomly sample 10 error instances for every task
and a total of 120 error instances made by Gemini-
1.5-flash on MuirBench, and annotate the main
reasons for these mispredictions. We categorize
into the three error types, including: (E1) Wrong
question understanding, which means MLLMs
do not understand the question accurately, lead-
ing to the incorrect question decomposition. (E2)
Wrong perception, which means the failure to
capture details in or between images. (E3) Wrong
reasoning, which means even if we get accurate
decomposition and captioning, MLLMs still infer
the wrong reasoning path to answer the question.

In Table 4, we observe that the most common
error category (35.0% of error cases) is failure of
reasoning. We conclude that even if the given con-
text is accurate, MLLMs still infer incorrectly. The
other error category (33.3% of error cases) is due to
inaccurate question understanding and influences
the generation of incorrect captions and reasoning.
The rest 31.7% of errors are due to the failure to
capture details in images. The detailed qualitative
examples are provided in Figure 10.

We further analyze errors by task category in
MUIR (Table 5). We observe that tasks requiring
holistic multi-image understanding (e.g., Differ-
ence, Scene, Action) are dominated by E3. In con-
trast, tasks relying on fine-grained perception (e.g.,
Matching, Attribute, Counting) are more prone to
E2. Meanwhile, E1 is consistently present, with
higher prevalence in abstract tasks like Ordering
and Geographic. Overall, the breakdown confirms
that reasoning across multiple images remains the
most significant challenge.

Method #Tokens Runtime
w/o prompt 0 3.5s
Caption 349 8.5s
QG-Caption 169 6.6s
DDCoT 108 5.8s
CCoT 372 8.7s
CoCoT 111 5.9s
QG-CoC 127 6.1s

Table 6: Computational Overhead Analysis on
MMIU Benchmark. Runtime means the average run-
time(seconds) per sample. #Tokens means the average
additional tokens per sample.

Inference Time Comparison Analysis. We ana-
lyze the computational overhead of our method,
QG-CoC. The method involves a two-stage
pipeline, which inherently introduces additional
costs compared to direct prompting. To quantify
this, we measured the extra token usage for closed-
source models, using Gemini-1.5-Flash as an exam-
ple, and the inference runtime for open-source mod-
els, exemplified by LLaVA-OneVision-7B. The re-
sults, averaged on 100 data samples randomly se-
lected from the MMIU benchmark and run on 4
NVIDIA A6000 GPUs for open-source models,
are detailed in Table 6. For Gemini-1.5-Flash, to-
ken estimation was based on the Google-provided
API. As the table indicates, QG-CoC does increase
token usage and runtime. However, we contend
that this is a justifiable trade-off for the consistent
performance improvements documented in our pa-
per. This is particularly evident for open-source
models, where QG-CoC leads to more significant
gains, with a +12% improvement for LLaVA-OV
and +5% for Mantis. The overhead is compara-
ble to other two-stage methods while achieving
superior accuracy. We believe this represents an
efficient utilization of resources to unlock more
advanced reasoning capabilities.

7 Conclusion

In this work, we introduce a novel prompting
method called Question-Guided Chain-of-Captions
(QG-CoC), which first incorporates problem de-
composition and then generates each sub-question-
guided image captioning to provide a clue to an-
swer the sub-question, then combines the sub-
question and sub-answer pair as prior knowledge to
answer the original problem. Our extensive experi-
ments demonstrate the advantages of our method
for different MLLMs on various benchmarks.

Limitations

This work only provides a strong baseline for
the single-image and multi-image reasoning of
MLLMs. Although we experiment with many rep-
resentative models and reasoning methods in this
paper, we acknowledge that this does not cover all
models and frameworks. Our proposed method re-
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lies on the captioning ability of advanced MLLMs.
Therefore, it might cause performance deterioration
in less advanced language models or more challeng-
ing tasks. To strengthen QG-CoC, a more diverse
and complicated scenario should be explored in the
future, such as complex geometric shapes and even
2D, 3D-spatial information.
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A Model Hyperparameters

The hyperparameters for the experiments for study-
ing QG-CoC and other prompting methods are set
to their default values to ensure consistency in our
experiment. Table 7 details the specific generation
parameters for the various MLLMs we evaluate.

B Detail Studies of Different Captioning
Strategies under Multi-Image

B.1 Full Model Prompt
In Figure 5, we show the full model prompt of
different captioning settings.

C Detail Studies of Adjusting Existing
Prompting Methods to Multi-Image
Scenarios

C.1 Full Model Prompt
In Figure 6, we show the full model prompt of
different methods.

D Detail Studies of Question-Guided
Chain-of-Captions

D.1 Full Model Prompt
In Figure 7, we show the full model prompt of
QG-CoC.

D.2 Full Quantitative Results Across Various
Image Relationships

We further show the overall performance of QG-
CoC across various image relationships and com-
pare it with different prompting methods and mod-
els. The results of MMIU and MUIR datasets are

shown in Table 8 and Table 9, and we also illustrate
the task performance of different prompting meth-
ods under MUIR benchmark in Figure 8. The find-
ings remain the same as MMIU, and our method
outperforms other methods. Additionally, we ob-
serve that the performance of each task under open-
source models generally has a larger difference
compared to closed-source models across various
datasets and prompting methods.

D.3 More Qualitative Examples
In Figure 9, we show more examples for each multi-
image task using QG-CoC in Gemini-1.5-Flash.

D.4 Qualitative Analysis of Error Cases
We present every type of error case that Gemini-
1.5-Flash cannot answer correctly in Figure 10a,
10b,10c. From E1, the model understands the
wrong meaning of the question that "tortoise" is not
"duck", and decomposes the question into wrong
sub-questions (sub-goals). From E2, in step 2,
the model incorrectly captions that "L shape has 4
squares", when the correct caption is "3 squares".
From E3, since the generated sub-questions and
captions are accurate, we can observe that the
model correctly points out the difference between
the two images, "a person walking". However,
the model does incorrect reasoning in the final re-
sponse.
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Model Version Generation Setup
Close-source

GPT-4o gpt-4o-2024-05-13 temperature = 0, max tokens = 2048
Gemini-Flash gemini-1.5-flash temperature = 0, max tokens = 2048

Open-source
LLaVA-OneVision-7B lmms-lab/llava-onevision-qwen2-7b-ov do_sample=False, temperature=0, max tokens = 2048
Mantis-Idefics2-8B TIGER-Lab/Mantis-8B-Idefics2 do_sample=False, temperature=0, max tokens = 2048

Table 7: Model names, versions, and generating setups for various MLLMs.

Model Method Overall Discrete Continuous Low-level High-sub High-obj Two-D Three-D

LLaVA-OV w/o prompt 44.6 37.6 47.9 66.8 51.8 42.9 37.1 27.8
Caption 48.1 40.5 50.6 75.6 55.8 51.2 35.8 27.5

QG-Caption 49.4 40.1 53.4 78.4 56.3 53.8 37.6 26.5
CCoT 50.5 41.4 50.2 76.9 57.5 59.1 39.6 28.5

DDCoT 46.9 39.6 47.8 69.1 57.3 51.3 36.4 26.6
CoCoT 46.4 39.6 48.0 72.3 53.5 48.2 36.5 26.8

QG-CoC 50.9 39.4 52.3 71.9 60.0 61.0 37.8 34.1

Mantis w/o prompt 45.0 34.5 45.7 62.7 51.8 52.0 41.8 26.4
Caption 46.7 35.4 45.7 69.5 52.0 52.7 40.7 28.6

QG-Caption 47.7 35.8 51.4 69.8 51.8 55.4 39.4 30.3
CCoT 50.1 38.0 50.3 69.2 57.3 61.5 45.9 28.8

DDCoT 44.9 37.9 48.5 57.3 50.8 52.2 42.5 25.4
CoCoT 45.4 34.6 45.7 67.6 50.8 49.8 41.6 27.6

QG-CoC 49.8 37.4 50.4 68.7 55.8 61.9 44.6 30.1

GPT-4o w/o prompt 63.3 60.6 60.7 94.8 60.0 67.3 53.3 46.4
Caption 63.6 59.0 57.5 95.1 65.8 65.9 53.3 48.6

QG-Caption 65.1 58.1 61.4 93.1 66.0 67.7 55.8 53.5
CCoT 60.9 53.4 60.0 91.7 60.8 63.7 53.4 43.0

DDCoT 62.9 57.3 58.3 94.1 64.0 65.1 54.4 47.0
CoCoT 64.5 60.3 60.9 95.4 65.8 65.0 56.3 48.0

QG-CoC 65.8 59.3 61.4 93.3 66.0 68.5 56.2 55.9

Gemini-Flash w/o prompt 55.0 49.4 53.0 82.1 62.0 61.3 46.4 30.9
Caption 53.7 51.4 52.1 83.1 60.3 63.3 47.2 18.4

QG-Caption 54.9 52.8 55.1 78.3 59.5 63.0 47.5 28.1
CCoT 51.9 48.1 52.3 72.2 59.8 60.9 45.6 24.5

DDCoT 51.5 47.8 51.6 80.4 58.8 61.4 42.4 18.4
CoCoT 55.5 50.8 52.3 79.6 59.8 63.2 49.1 33.8

QG-CoC 55.4 51.1 54.6 76.8 60.3 63.4 48.1 33.6

Table 8: MMIU performance across dimensions with different prompting methods and models.

Model Method Overall Geographic. Diagram. Matching. Difference. Retrieval. Counting. Attribute. Scene. Action. Grounding. Cartoon. Ordering

LLaVA-OV w/o prompt 41.2 37.0 54.0 44.0 30.0 45.9 26.5 34.2 63.4 40.2 29.8 38.5 15.6
Caption 42.0 46.0 56.0 44.0 32.4 38.4 34.2 28.6 66.7 42.1 32.1 37.2 20.3

QG-Caption 44.7 40.0 60.1 49.6 33.2 41.4 36.3 37.2 66.1 43.3 29.8 38.5 20.3
CCoT 44.6 44.0 58.8 47.8 32.7 43.5 35.9 36.7 69.9 40.2 32.1 38.5 18.8

DDCoT 53.4 41.0 69.6 61.0 46.2 54.5 34.2 56.1 74.2 42.1 32.1 41.0 21.9
CoCoT 44.2 42.0 56.8 46.3 34.4 50.3 31.6 35.7 67.2 42.1 31.0 35.9 17.2

QG-CoC 53.3 42.0 70.1 60.1 38.8 54.1 41.9 56.6 76.9 43.9 29.8 42.3 20.3

Mantis w/o prompt 43.4 25.0 62.1 53.7 28.8 35.3 38.0 46.9 56.5 34.2 28.6 38.5 17.2
Caption 43.9 29.0 61.3 53.0 32.7 31.9 39.3 33.7 62.9 44.5 28.6 43.6 17.2

QG-Caption 44.5 32.0 63.6 53.5 28.5 37.0 41.0 38.8 62.4 41.5 28.6 38.5 15.6
CCoT 44.4 30.0 63.3 56.5 28.2 34.6 41.5 35.7 66.1 37.8 27.4 38.5 10.9

DDCoT 47.9 35.0 59.8 57.8 35.9 42.1 39.3 52.0 71.0 38.4 34.5 41.0 15.6
CoCoT 42.6 26.0 59.6 52.6 33.8 31.5 39.3 35.2 55.9 38.4 29.8 38.5 17.2

QG-CoC 48.9 37.0 64.3 59.1 34.5 41.4 44.0 48.0 70.4 39.0 32.1 46.2 15.6

GPT-4o w/o prompt 70.8 50.0 90.2 84.1 58.5 63.0 78.6 63.3 86.6 50.6 54.8 53.9 28.1
Caption 71.8 62.0 91.0 85.6 65.3 59.9 79.1 56.1 83.3 54.9 53.6 52.6 34.4

QG-Caption 67.0 44.0 90.2 84.9 63.8 58.2 75.2 60.7 85.0 51.2 52.4 50.0 23.4
CCoT 70.4 51.0 90.2 83.9 66.2 61.6 75.6 60.2 83.3 46.3 54.8 44.9 31.3

DDCoT 73.1 50.0 89.7 85.8 66.5 64.4 79.9 61.7 87.6 57.3 56.0 56.4 40.6
CoCoT 74.0 57.0 90.5 87.3 70.6 70.9 76.5 59.2 88.2 50.0 54.8 57.7 37.5

QG-CoC 74.9 61.0 91.0 87.9 68.5 68.5 79.1 62.2 87.0 57.9 57.1 56.4 43.8

Gemini-Flash w/o prompt 66.0 53.0 84.7 82.5 53.5 75.3 51.3 54.1 82.8 43.3 51.2 46.2 18.8
Caption 66.9 58.0 84.2 83.2 56.2 69.2 50.9 58.2 80.7 47.6 50.0 50.0 32.8

QG-Caption 66.0 47.0 83.4 83.4 55.0 64.4 52.1 61.2 83.3 53.1 48.8 42.3 25.0
CCoT 66.3 54.0 85.7 82.3 52.4 69.9 50.0 60.7 81.2 49.4 47.6 43.6 34.4

DDCoT 67.6 44.0 87.7 84.3 56.5 74.7 46.6 62.2 75.8 49.4 56.0 53.9 32.8
CoCoT 65.4 44.0 84.4 81.7 50.9 73.3 48.7 57.1 80.7 47.0 51.2 52.6 25.0

QG-CoC 68.2 46.0 88.7 84.3 57.4 76.0 50.4 59.2 79.0 50.6 52.4 51.3 28.1

Table 9: MUIR performance across tasks with different prompting methods and models.
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Figure 5: Actual prompts with different captioning settings.
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Figure 6: Different actual prompts of existing prompting methods adapted to multi-image scenarios.

Figure 7: An actual prompt of QG-CoC.
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(a) LLaVA-OV (b) Mantis

Figure 8: Prompting methods performance by tasks on different models. (MUIR)

(a) Task: Image Text Matching (b) Task: Ordering

Figure 9: Examples of different tasks using QG-CoC on Gemini-1.5-Flash.
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(a) Error type 1 (Wrong Question Understanding) example
of QG-CoC on Gemini-1.5-Flash.

(b) Error type 2 (Inaccurate Perception) example of QG-CoC
on Gemini-1.5-Flash.

(c) Error type 3 (Wrong Reasoning) example of QG-CoC on Gemini-1.5-Flash.

Figure 10: Examples of three common error types made by QG-CoC on Gemini-1.5-Flash.
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