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Abstract

Natural Language Inference (NLI) is a fun-
damental task in Natural Language Process-
ing (NLP). However, adapting NLI models to
new domains remains challenging due to the
high cost of collecting domain-specific training
data. While prior work proposed 15 sentence
transformation rules to automate training data
generation, these rules do not sufficiently cap-
ture the diversity of natural language. We pro-
pose a novel framework that combines Out-of-
Distribution (OOD) detection and BERT-based
clustering to identify premise–hypothesis pairs
in the SNLI dataset that are not covered by
existing rules and discover four new transfor-
mation rules from them. Using these rules
with Chain-of-Thought (CoT) prompting and
Large Language Models (LLMs), we gener-
ate high-quality training data and augment the
SNLI dataset. Our method yields consistent
performance improvements across dataset sizes,
achieving +0.85%p accuracy on 2k samples
and +0.15%p on 550k samples. Furthermore,
a distribution-aware augmentation strategy en-
hances performance across all scales. Beyond
manual explanations, we extend our framework
to automatically-generated explanations (CoT-
Ex), demonstrating that they provide a scalable
alternative to human-written explanations and
enable reliable rule discovery.

1 Introduction

Natural Language Inference (NLI) is a Natural
Language Processing (NLP) task that involves un-
derstanding and inferring logical relationships be-
tween premise and hypothesis sentences, classi-
fying their relationship as entailment, contradic-
tion, or neutral. In supervised learning-based
NLI research, models are trained using Premise-
Hypothesis-Label (PHL) datasets. However, apply-
ing NLI models to new domains requires construct-
ing domain-specific training data, which demands
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substantial time and cost. Although previous re-
search attempted to automatically generate training
data using sentence transformation rules, the exist-
ing 15 transformation rules (Varshney et al., 2022)
were insufficient to comprehensively cover the di-
verse NLI patterns in real-world scenarios.

This paper proposes a novel approach that com-
bines Out-of-Distribution (OOD) detection and
clustering to overcome the limitations of exist-
ing rules. Our method employs a combination
of Maximum Softmax Probability (MSP), Tem-
perature Scaling (TS), and Input Preprocessing
(IP) for OOD detection to identify new premise-
hypothesis pairs that cannot be explained by ex-
isting rules. These identified premise-hypothesis
pairs are grouped using BERT (Devlin et al., 2019)
embedding-based k-means clustering (Sinaga and
Yang, 2020), and as a result of manual analysis,
four new transformation rules were discovered:
Role Generalization (RG), Contextual Augmenta-
tion (CA), Visual Specification (VS), and Emotion
Inference (EI). To further reduce reliance on man-
ual analysis in the rule discovery stage described
above, we introduced an automated rule discov-
ery step that leverages Large Language Models
(LLMs) to generate new rule candidates and vali-
date the generated rules. Using this automated pro-
cess, we successfully discovered 5 rules, three of
which matched the rules identified through manual
analysis. The derived rules were used to generate
high-quality training data using LLMs and Chain-
of-Thought (CoT) prompting (Wei et al., 2022).

The experimental results demonstrated that our
method achieved consistent performance improve-
ments regardless of the size of the training data,
with improvements of 0.85%p for small-scale
datasets (2k) and 0.15%p for large-scale datasets
(550k), validating the effectiveness of our method-
ology. Furthermore, our data distribution-aware
augmentation strategy showed consistent perfor-
mance improvements across all dataset sizes (2k-
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550k), demonstrating its effectiveness for data aug-
mentation in NLI tasks. In summary, our contribu-
tions are as follows:

• We propose a novel (semi-)automated frame-
work for discovering transformation rules by
leveraging OOD detection and clustering tech-
niques.

• We empirically validate the effectiveness
of our proposed framework across diverse
dataset scales.

• Our data distribution-aware augmentation
strategy showed consistent performance im-
provements across all dataset sizes (2k-550k),
validating its effectiveness for data augmenta-
tion in NLI tasks.

2 Related Work

Previous research related to natural language in-
ference can be examined from two perspectives:
supervised learning-based NLI and automatic gen-
eration of training data.

2.1 Supervised Learning-based NLI
In supervised learning-based natural language in-
ference research, NLI models are trained using
Premise-Hypothesis-Label (PHL) datasets (Varsh-
ney et al., 2022). With the release of large-scale
datasets such as SNLI version 1.0 (Bowman et al.,
2015) and the emergence of transformer-based pre-
trained models (Vaswani, 2017) such as BERT, NLI
performance has improved significantly. However,
applying NLI models to new domains requires con-
structing domain-specific training data, which de-
mands substantial time and human effort.

2.2 Automatic Generation of Training Data
To reduce data construction costs, various auto-
matic training data generation methods have been
proposed. Varshney et al. (2022) focused on us-
ing predefined sentence transformation rules with
WordNet, Gensim, and ConceptNet to automat-
ically generate hypothesis sentences from given
premise sentences (Miller, 1992; Rehurek and So-
jka, 2011; Speer et al., 2017). However, the existing
15 transformation rules were insufficient to com-
prehensively cover the diverse patterns in NLI. Cho
et al. (2023) investigated using CoT and few-shot
learning with LLMs, to generate data through step-
by-step reasoning processes (Brown et al., 2020;
Mersinias and Valvis, 2022), though ensuring the

quality and diversity of generated data remains a
challenge.

3 OOD Detection and New Rule
Discovery for NLI Data Generation

In this research, we propose a methodology that
uses OOD detection techniques to identify premise-
hypothesis pairs in existing NLI training data that
fall outside the patterns covered by the current 15
transformation rules. Our approach leverages OOD
detection techniques based on Maximum Softmax
Probability (Hendrycks and Gimpel, 2018), en-
hanced with Temperature Scaling (Hinton et al.,
2015) and Input Preprocessing (Liang et al., 2020)
to improve detection performance. The identified
OOD premise-hypothesis pairs are clustered using
k-means clustering, and new rules are derived from
selected clusters filtered based on their cohesion
scores. These derived rules are used with LLMs
and CoT prompting to generate additional NLI
training data, leading to demonstrated improve-
ments in NLI model performance.

3.1 OOD Detection for Discovering New Rules
in NLI Training Data Generation

This paper employs OOD detection techniques for
discovering new rules for NLI training data genera-
tion through the following process:

1. We extract 15,000 premise sentences from the
training set of the SNLI dataset and utilize an
LLM to apply CoT prompting for each of the
15 existing rules to the extracted sentences,
constructing a new Premise-Hypothesis-Label
(PHL) dataset of 15,000 instances.

2. The labels in the constructed PHL dataset are
modified to ‘NLI Label + rule name’ and the
modified PHL dataset is then used for fine-
tuning a pre-trained BERT-base model. The
fine-tuned model takes the premise and hy-
pothesis sentences as input and classifies the
relationship between the sentence pairs into
the new 15 categories (i.e., NLI label + rule
name).

3. The fine-tuned model and OOD detection tech-
nique are applied to the premise-hypothesis
pairs in the training set of the SNLI dataset,
categorizing premise-hypothesis pairs as In-
Distribution (ID) if they match existing 15
transformation rules and Out-of-Distribution
(OOD) otherwise.
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3.1.1 OOD Detection Using MSP
We employ Maximum Softmax Probability (MSP)
as our baseline method for OOD detection. MSP
leverages softmax probabilities to measure confi-
dence scores for class predictions in deep learning
classification tasks, using these scores to determine
whether inputs are OOD. Specifically, MSP uses
the maximum value from the model’s softmax out-
put as the OOD score, classifying inputs as ID if
this score exceeds a predetermined threshold, and
as OOD otherwise.

3.1.2 OOD Detection Using Temperature
Scaling

A known limitation of MSP is that it tends to over-
estimate prediction probabilities relative to actual
model accuracy. To mitigate this issue, Tempera-
ture Scaling (TS) is applied to calibrate the output
probabilities. The mathematical formulation is as
follows:

Si(x;T ) =
exp (fi(x)/T )∑N
j=1 exp (fj(x)/T )

(1)

TS adjusts softmax outputs by scaling them
with a temperature parameter (Guo et al., 2017),
which calibrates prediction probabilities to better
align with actual probabilities while preserving the
model’s class predictions. In this paper, we ex-
perimentally determined the optimal temperature
values for OOD detection and improved detection
performance by minimizing calibration error rates.

3.1.3 OOD Detection Using Input
Preprocessing

Input Preprocessing (IP) is a method that modifies
the model prediction probability distribution by
applying small perturbations ϵ to the input x. The
mathematical formulation is:

x̃ = x− ϵsign (−∇x logSŷ(x;T )) (2)

This method effectively differentiates between
ID and OOD data by adjusting the inputs to max-
imize softmax probabilities, resulting in higher
probabilities for ID data and lower probabilities
for OOD data. In this paper, we extend the IP
technique, originally proposed for computer vision
tasks, to suit the NLI task. Specifically, we applied
IP to BERT word embeddings, which represent text
as vectors in a high-dimensional embedding space.
The input x is defined as:

x = WordEmbeddingBERT (tokenseq) (3)

We tuned the perturbation scale ϵ ∈ [0.01, 0.09],
refining the search to [0.031, 0.039], and selected
ϵ = 0.033 as optimal parameter. Similarly, we
searched temperature values T ∈ [10, 1000] and
found T = 1000 to be the best parameter. See
Appendix A for detailed results.

3.2 Derivation of New Rules through
Clustering Analysis

In this paper, we conducted OOD detection on
550,152 premise-hypothesis pairs from the SNLI
training set, identifying 50,000 premise-hypothesis
pairs that fall outside the patterns covered by the
existing 15 transformation rules. For OOD detec-
tion, we employed a combined MSP+TS+IP ap-
proach and used a threshold of 0.07186 to iden-
tify 50,000 premise-hypothesis pairs as OOD. The
identified OOD premise-hypothesis pairs were clus-
tered using k-means clustering, and the cohesion
of each cluster was measured based on the aver-
age Euclidean distance (Suwanda et al., 2020) be-
tween premise-hypothesis pairs within each cluster.
New transformation rules were derived from high-
cohesion clusters. These derived rules were then
used with LLMs and CoT prompting to generate
additional premise-hypothesis pairs.

3.2.1 BERT Embedding-based K-Means
Clustering

For the 50,000 premise-hypothesis pairs detected
as OOD, we conducted three variants of k-means
clustering using [CLS] embeddings from the fine-
tuned BERT-base model as described in Section
3.1:

1. Clustering based on premise-hypothesis pairs

2. Clustering based on premise-hypothesis-
explanation triples, utilizing human-annotated
natural language explanations from the e-
SNLI dataset (Camburu et al., 2018)

3. Clustering based exclusively on explana-
tion sentences extracted from the premise-
hypothesis-explanation triples in the e-SNLI
dataset

Preliminary experimental results showed that the
explanation-based clustering approach achieved su-
perior performance, and we subsequently adopted
it for further experiments. Figure 1 presents t-SNE
visualizations of the embedding vectors for each
clustering approach: (a) premise-hypothesis pairs,
(b) premise-hypothesis-explanation triplets, and
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(a) Premise-Hypothesis

(b) Premise-Hypothesis-Explanation

(c) Explanation

Figure 1: t-SNE Visualizations of Sentence Embeddings

(c) explanations only. Among them, Figure 1(c)
clearly illustrates that explanation-based embed-
dings produce the most distinct and well-defined
cluster structures.

3.2.2 Cluster Cohesion Evaluation and New
Rule Derivation

From the 50,000 premise-hypothesis pairs identi-
fied as OOD, we generated 10,000 clusters using
k-means clustering, and new transformation rules
were derived through the following step-by-step
analysis:

1. To evaluate cluster cohesion, we calculated
the mean Euclidean distance, referred to as the
Mean Pairwise Distance (MPD), between all
premise-hypothesis pairs within each cluster
using sentence embedding vectors:

MPD =
2

m(m− 1)

m−1∑

i=1

m∑

j=i+1

d(xi, xj)

where m is the number of premise-hypothesis
pairs in the cluster, and d(xi, xj) is the Eu-

clidean distance between sentence vectors xi
and xj . A lower MPD indicates higher cohe-
sion, suggesting that premise-hypothesis pairs
within the cluster share more similar charac-
teristics. After sorting clusters in descending
order by size, we selected the top 100 clusters
with the highest cohesion.

2. We then verified the label consistency of
the selected 100 clusters. If any premise-
hypothesis pairs within a cluster had a label
different from the others, we considered that
cluster to lack a consistent transformation pat-
tern and excluded it. Through this process,
58% of the clusters were excluded for contain-
ing inconsistent labels, leaving 42 clusters for
final analysis.

3. Through manual analysis of the premise-
hypothesis-explanation patterns in these 42
clusters, we derived four new rules:

• Role Generalization (RG): Transform
specific roles and occupations into gen-
eral expressions

• Contextual Augmentation (CA): Derive
purpose and background information
based on context

• Visual Specification (VS): Specify visual
details of subjects

• Emotion Inference (EI): Infer emotions
or states based on behaviors

Among the four new rules, RG falls under the
Entailment category, while CA, VS, and EI
are classified as Neutral. Among these dis-
covered rules, EI was derived through manual
analysis of cluster 9101. This cluster com-
prised 20 premise-hypothesis pairs, and anal-
ysis of their premise-hypothesis-explanation
patterns revealed a consistent pattern of "in-
ferring emotions or states based on behaviors
described in sentences." Detailed examples
are provided in Appendix B.

3.2.3 Automated Rule Generation and
Verification

To reduce manual effort in the final manual rule
discovery step of Section 3.2.2, we introduce an
automated rule discovery and validation procedure
based on LLMs and semantic similarity evaluation.
This procedure was applied to the 42 clusters iden-
tified in Section 3.2.2 and consists of the following
three stages.
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1. Evaluation of Alignment with Existing
Rules For each cluster, we provide the
set of premise-hypothesis-label-explanation
(PHL+E) quadruples and instruct the LLM to
evaluate whether the examples correspond to
any of the 15 existing rules. If the proportion
of unmatched examples exceeds 30% (equiva-
lently, if the match ratio falls below 70%), the
LLM is asked to generate a new rule that best
explains the patterns observed in the cluster.

2. Hypothesis Generation Using Newly Gen-
erated Rules For clusters where new rules
were generated in the previous step, we pro-
vide only the premise sentences along with the
generated rule, prompting the LLM to gener-
ate new hypothesis sentences accordingly.

3. Semantic Consistency Evaluation To assess
the semantic alignment between the original
hypothesis sentences and the newly generated
hypotheses from the previous step, we cal-
culate the cosine similarity using Sentence-
BERT embeddings. Clusters with an average
similarity exceeding a predefined threshold
(0.5) are retained as valid rule candidates.

This automated pipeline provides a scalable alter-
native to manual rule discovery by generating new
transformation rules for clusters not covered by ex-
isting rules and validating the generated rules. We
applied this procedure to 42 clusters and generated
new rules for 16 clusters that exceeded the 30%
unmatched-ratio threshold in the first step. To val-
idate the generated rules, we proceeded with the
second and third steps, applying a 0.5 semantic
similarity threshold to these clusters, with simi-
larity scores ranging from 0.0648 to 0.7029. As
a result, 6 clusters and their corresponding rules
were validated, with two clusters sharing the same
rule, resulting in a total of 5 unique rules automat-
ically generated. Notably, three of the four trans-
formation rules derived through manual analysis
(VS, CA, and EI) were also identified through this
automated process. This overlap supports the va-
lidity of our approach, demonstrating that it is not
only more efficient but also reliable, mitigating the
limitations of manual rule discovery such as time
consumption, limited scalability, and researcher
subjectivity. Additional examples are provided in
Appendix C.

3.3 Extension and Results with
CoT-Generated Explanations

To address the limitation that explanation-based
clustering is restricted to datasets with human-
written explanations, we investigate the use of au-
tomatically generated explanations derived solely
from premise–hypothesis pairs. Specifically, we
apply CoT prompting to generate approximately
50,000 explanation sentences from the SNLI
dataset and follow the same pipeline and filtering
procedure as described in Sections 3.2.2 and 3.2.3.
Under the human-written explanation (Human-Ex)
setting, clustering the top 100 clusters yields 6 clus-
ters with 4 new rules (CA, VS, RG, and EI), and
expanding to the top 200 clusters yields 12 clus-
ters with 5 rules (VS, CA, RG, EI, and IG). When
using CoT-generated explanations (CoT-Ex), the
top 100 clusters produce 13 clusters with 3 rules
(VS, CA, and EI), while the top 200 clusters pro-
duce 27 clusters with 5 rules (VS, CA, EI, IG, and
AFR). Across these settings, we consistently redis-
cover three of the four transformation rules (CA,
VS, and EI). In addition, two novel rules (IG and
AFR) emerge, both of which can be regarded as
sub-rules of the broader CA transformation. This
overlap between CoT-Ex and manually identified
rules supports the validity of our approach. CoT
explanations not only provide a scalable alternative
to human annotations but also enable reliable rule
discovery in domains without explicit explanations.
More fine-grained results across different Stage 1
and Stage 3 thresholds are reported in Appendix D.

4 Experiments

4.1 OOD Detection for discovering new rules

To evaluate OOD detection performance for dis-
covering new rules, we extracted 500 PHL triples
from the SNLI test set. These triples were manually
examined to determine if they were covered by the
existing 15 transformation rules, labeling them as
ID if included and OOD if not. The performance of
OOD detection was evaluated using the following
three metrics:

• FPR at 95% TPR (95FPR): Measures the
False Positive Rate (FPR) when True Posi-
tive Rate (TPR) is 95%. This indicates the
rate at which OOD samples are misclassified
as ID when the model identifies ID samples
with 95% accuracy. Lower values indicate
better performance.
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Figure 2: The ROC curves of the baseline (red), MSP
and our method (blue), MSP+TS+IP models

95FPR(↓) 93FPR(↓) AUROC(↑)
MSP MSP+TS+IP MSP MSP+TS+IP MSP MSP+TS+IP
93.1 84.1 91.0 80.1 66.5 68.8

Table 1: OOD Detection Performance of Baseline and
Proposed Models

• FPR at 93% TPR (93FPR): Measures FPR at
93% TPR threshold. As with 95FPR, lower
values indicate superior OOD detection per-
formance.

• AUROC(%): Calculates the area under
the TPR-FPR curve across all classification
thresholds (Davis and Goadrich, 2006), com-
prehensively evaluating the model’s OOD de-
tection capability. Higher AUROC values in-
dicate better discrimination between ID and
OOD samples (Humblot-Renaux et al., 2023).

Figure 2 and Table 1 compare the OOD detection
performance between the baseline (MSP) and our
proposed model (MSP+TS+IP). AUROC analysis
shows that our proposed model consistently out-
performed the baseline. Specifically, as shown in
Table 1, our model improved AUROC from 66.5%
to 68.8%, with FPR decreasing by 9 percentage
points at 95% TPR and 10.9 percentage points at
93% TPR. These results demonstrate the effective-
ness of combining temperature scaling and input
preprocessing for enhancing OOD detection in the
NLI task. Appendix A details threshold selection,
data partitioning, and the evaluation of Monte Carlo
Dropout (Gal and Ghahramani, 2016) for OOD
detection. Table 2 presents examples of OOD de-
tection using the proposed model (MSP+TS+IP).
The model accurately classified premise-hypothesis
pairs matching the existing 15 transformation rules,

Examples Label Type
P: The girls walk down the street
H: Girls set down in the street PA ID

P: A young man in a heavy brown winter
coat stands in front of a blue railing with
his arms spread
H: The young man is at his grandmothers
house

– OOD

Table 2: Examples of OOD Detection by the Proposed
Model

such as Paraphrasing (PA), as ID, while classifying
premise-hypothesis pairs that deviate from existing
rule patterns as OOD.

4.2 Automatic Rule-based NLI Data
Generation with Chain-of-Thought
Prompting

Using the 15 existing transformation rules and the
4 newly derived transformation rules introduced in
Section 3.2.2, we extracted premise sentences from
the SNLI training set and applied all 19 rules to gen-
erate new PHL triples. To implement the transfor-
mation rules, we employed the GPT-4o-mini model
with 3-shot CoT prompting, which produced be-
tween 4 and 2,307 PHL triples per rule depending
on the experimental setting. As shown in Table 3,
the generated premise–hypothesis pairs effectively
capture the characteristics of each rule and exhibit
logical relationships consistent with their corre-
sponding NLI labels. To evaluate the quality of the
generated data, we produced 200 PHL triples for
each rule and randomly sampled 40 triples per rule
for manual assessment, measuring accuracy based
on whether the premise–hypothesis relationships
adhered to their intended rule patterns. The evalua-
tion results presented in Table 4 show that the four
newly derived rules (RG, CA, VS, EI) achieved
high accuracy (97.5%–100%), comparable to the
existing rules, with an overall average accuracy
of 97.63% across all rules. Detailed CoT prompt
examples for both the existing 15 rules and the
newly derived four rules are provided in Appendix
E, demonstrating that our proposed method can
reliably generate high-quality NLI training data.

4.3 NLI Performance Analysis

To evaluate the effectiveness of new rules, we
generated PHL data by extracting premise sen-
tences from the SNLI training set and applying
our transformation rules using GPT-4o-mini with
CoT prompting. We generated 1,000 PHL triples
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Rule CoT Generation Result

RG

P: Concert goers watch as a guitarist performs
on stage
H: Concert goers watch as a musician performs
on stage
L: Entailment

CA

P: A man with a big red bowl is walking toward
a brown donkey
H: A man with a big red bowl is walking toward
a brown donkey to feed it
L: Neutral

VS
P: A guy is reading a newspaper
H: A guy is reading a crumpled newspaper
L: Neutral

EI

P: Three smiling children are running indoors
H: Three smiling children are running indoors
because they are excited
L: Neutral

Table 3: Generated PHL Examples Using the Newly
Derived Rules

Category Accuracy(%)

Entailment

HS 100

PS 100

CT 65

PA 100

ES 100

*RG 97.5

Contradiction

CW-adj 100

CW-noun 100

CV 100

NS 100

SOS 97.5

IrH 100

NI 100

Neutral

AM 100

Con 97.5

SSNCV 100

*CA 97.5

*VS 100

*EI 100

Average Generation Accuracy 97.63

Table 4: Generation Accuracy of Premise-Hypothesis-
Label Data Using CoT Prompting. Asterisk(*) denotes
the four newly derived rules.

Dataset Augmentation Method
BERT-base

Avg (Std.Dev)

Original(550,152) 89.85 (± 0.362)

Original + RG(1,000) 90.02 (± 0.054)

Original + CA(1,000) 90.07 (± 0.077)

Original + VS(1,000) 89.97 (± 0.253)

Original + EI(1,000) 89.93 (± 0.254)

Table 5: The Performance Improvement Effect of Using
Each New Rule as a Data Augmentation Method

Dataset Size

BERT-base

Best
Average

(Std.Dev)

SNLI 550,152 90.35
89.85

(± 0.362)

SNLI + 15 rules
554,652

(+4,500)
90.51

89.95

(± 0.359)

SNLI + 19 rules

(Ours)

555,852

(+5,700)
90.59

90.00

(± 0.399)

Table 6: NLI Performance Comparison with Integrated
Rules.

per rule (for both 15 existing and 4 new rules) and
augmented the SNLI training set (550,152 exam-
ples) with these generated triples. The BERT-base
model was trained using negative log-likelihood
(NLL) loss and the Adam optimizer, with a batch
size of 32 and a learning rate of 3e-5. Hyperparam-
eters optimized on the SNLI validation set. NLI
performance was evaluated using accuracy. For
each of five different random seeds, the model was
trained for 25 epochs and the highest accuracy on
the SNLI test set (10,000 examples) was recorded.
The final result was computed as the average of
these five highest accuracies.

Table 5 presents the results of using each new
rule as a data augmentation method. After adding
1,000 generated examples per rule to the SNLI
training set, the performance of each rule was evalu-
ated individually. The experimental results showed
that Contextual Augmentation (CA) achieved the
highest performance improvement (+0.22%p), with
all rules contributing to performance enhancement.

Table 6 presents the performance when integrat-
ing the 15 existing rules and 4 new rules as a data
augmentation method. Compared to the baseline
SNLI dataset, we evaluated the performance when
applying existing 15 rules (300 examples per rule,
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total 4,500) and all 19 rules including the new 4
rules (300 examples per rule, total 5,700) as a data
augmentation method. When all 19 rules were ap-
plied, we achieved the best performance of 90.59%
and an average performance of 90.00%(±0.39),
demonstrating the effectiveness of the proposed
rules.

4.4 Distribution-aware Data Augmentation

To understand the actual distribution of each trans-
formation rule in the SNLI dataset, we modified
the labels of the PHL triples generated using 15
and 19 rules, respectively, to their corresponding
rule names. Then, we trained a BERT-base model
and used it to classify 10,000 samples from the
SNLI validation set, analyzing the distribution of
each rule. Figure 3 and 4 visually demonstrate the
distributions of both rule sets. IH, ES, PA, and
COUNT consistently showed major proportions in
both rule sets. Based on these findings, we con-
ducted experiments with two data augmentation
approaches:

• Uniform Distribution (w/o Distribution): Gen-
erate an equal number of examples per rule

• Distribution-aware: Generate examples re-
flecting the actual rule distribution in SNLI
dev-set

To evaluate the performance of the two data aug-
mentation methods, we conducted experiments by
augmenting 4,500 examples across various training
set sizes (2k, 10k, 50k, 550k) under the same con-
ditions. In the ’Uniform distribution’ approach, we
generated 300 examples per rule for the 15-rule set
and approximately 237 per rule for the 19-rule set.
In the ’Distribution-aware’ approach, we generated
between 4 and 2,307 examples based on the actual
distribution, as detailed in Appendix F.

Figure 3: Distribution Analysis of SNLI Validation Set
for Basic 15 Rules

Figure 4: Distribution Analysis of SNLI Validation Set
for Extended 19 Rules

BERT-base

Average (Std.Dev)

Datasets Types 550k 50k 10k 2k

Original -
89.85

(± 0.362)

86.06

(± 0.240)

82.29

(± 0.347)

76.31

(± 0.513)

Original

+ 15rules
Uniform

89.95

(± 0.359)

86.14

(± 0.255)

82.49

(± 0.392)

76.71

(± 0.806)

(+4,500)
Distribution

-aware

89.99

(± 0.158)

86.19

(± 0.222)

82.62

(± 0.178)

76.43

(± 0.883)

Original

+ 19rules
Uniform

90.00

(± 0.405)

86.17

(± 0.224)

82.64

(± 0.383)

76.94

(± 0.835)

(+4,500)

*Ours

Distribution

-aware

90.00

(± 0.134)

86.24

(± 0.175)

82.72

(± 0.258)

77.16

(± 0.392)

Table 7: Performance Comparison across Dataset Sizes
and Augmentation Strategies. ’*Ours’ (19 rules with
Distribution-aware) achieves the highest performance
across all experimental settings.

Table 7 compares performance improvements
across different dataset sizes and augmenta-
tion strategies. Results show that distribution-
aware augmentation performed better across all
dataset sizes, achieving maximum improvement
(+0.85%p) with small datasets (2k). Additionally,
applying all 19 rules, including the newly discov-
ered rules, consistently outperformed the 15-rule
approach.

Figure 5 shows overall performance changes by
dataset size. For detailed performance graphs for
each individual dataset size, see Appendix G. Data
augmentation effects were more pronounced with
smaller datasets, with distribution-aware data aug-
mentation showing superior performance across all
sizes. These experimental results demonstrate the
effectiveness of augmentation strategies that reflect
actual data distribution in NLI tasks, suggesting
the importance of considering real training data
distribution patterns in data augmentation.
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Figure 5: Performance Comparison by Data Size and
Augmentation Strategy. Our proposed method (Original
+ 19 rules with Distribution-aware, shown in mint) con-
sistently achieves the best performance across all data
sizes.

5 Conclusion

In this paper, we proposed a novel framework
for discovering sentence transformation rules
to generate natural language inference (NLI)
training data. Our method combines Out-of-
Distribution (OOD) detection and clustering to
identify premise–hypothesis pairs in the SNLI
dataset that are not covered by existing rules. From
these, we discovered four new transformation rules
(RG, CA, VS, EI) in addition to the existing 15, and
automatically generated high-quality training ex-
amples using large language models (LLMs) with
Chain-of-Thought (CoT) prompting.

Beyond human-written explanations, we further
extend our approach to CoT-generated explana-
tions, demonstrating that CoT explanations provide
a scalable alternative to human annotations and
enable reliable rule discovery in domains where
explicit explanations are unavailable.

Experimental results confirm that augmenting
the training set with rule-based examples improves
model performance, with distribution-aware aug-
mentation strategies proving particularly effective
in low-resource settings (2k). Overall, our frame-
work offers an efficient and scalable solution for
adapting NLI models to new domains with limited
labeled data and shows potential for broader ap-
plicability to other NLP tasks, such as discovering
new error types in Grammatical Error Correction.

Limitation

While our method automates the rule discovery
process using LLMs to evaluate clusters, generate
rule candidates, and validate them via semantic

similarity, it still depends on several design choices
such as similarity thresholds and filtering criteria.
We conducted additional experiments under mul-
tiple threshold settings to mitigate this issue, but
fully removing such dependencies remains an open
challenge.

Although we generated NLI training data based
on 15 existing rules and 4 newly discovered rules, a
comprehensive validation of whether the generated
data matches the quality and diversity of human-
annotated examples is still lacking. In particular,
potential biases introduced by LLM-generated data
remain underexplored.

We further extended our framework to automat-
ically generated explanations (CoT-Ex), showing
their potential as a scalable alternative to human-
written explanations. However, the consistency
and reliability of CoT explanations across domains,
datasets, and languages remain to be rigorously
validated.

Finally, our augmentation strategy has been eval-
uated only on the SNLI dataset, and further studies
are needed to establish its generalizability to other
domains, datasets, and tasks.
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A Additional OOD Detection Details

A.1 Threshold Selection for OOD Detection

To ensure transparency in our OOD detection ex-
periments, we provide a detailed explanation of the
threshold selection procedure.

We first randomly sampled 500 PHL
(Premise–Hypothesis–Label) triplets from
the SNLI test set and manually annotated whether
each hypothesis conformed to one of the 15
existing transformation rules. This subset served
as a gold set for evaluating the performance of
various OOD detection methods, as described in
Section 4.1

We evaluated three configurations—MSP,
MSP+TS, and MSP+TS+IP—on this gold set
and compared their AUROC scores (Table 1).
Among these, MSP+TS+IP achieved the highest
AUROC (0.6880) and was selected as the final
method for OOD detection. To determine the
decision threshold, we set the value to 0.07155 to
ensure 95% precision on the 500-sample gold set.
However, given that the SNLI training set contains
over 550,000 examples, this threshold was deemed
unsuitable for global application, as it could overfit
to the small manually labeled subset.

To better align with the full training distribu-
tion and enhance generalizability, we reapplied the
MSP+TS+IP method to the entire SNLI training
set. We then determined a new threshold based on
the bottom 10% of softmax probabilities, approxi-
mately 50,000 examples, which yielded a threshold
value of 0.07186. This final threshold was used to
filter OOD samples in subsequent experiments.

This adaptive thresholding strategy mitigates the
risk of overfitting on a small evaluation set and
ensures robustness across the full dataset.

Figure 6: Visual comparison of ROC curves for Monte
Carlo Dropout and MSP-Based OOD Detection.

A.2 Evaluation of Uncertainty-based Method:
Monte Carlo Dropout

To evaluate the effectiveness of alternative
uncertainty-based methods for OOD detection, we
conducted additional experiments using Monte
Carlo Dropout. Following the approach proposed
by Gal and Ghahramani (2016), we applied dropout
at inference time to estimate predictive uncertainty.

We tested dropout rates ranging from 0.1 to
0.5, enabling dropout during inference and av-
eraging predictions over 100 stochastic forward
passes. While Monte Carlo Dropout is a widely
used method for uncertainty estimation, it consis-
tently underperformed in our setting. The best AU-
ROC score (0.6154) was achieved with a dropout
rate of 0.1, which was still notably lower than that
of our final method, MSP + TS + IP (AUROC
0.6880).

These results suggest that, although Monte Carlo
Dropout is a valid uncertainty estimation technique,
the combined approach of MSP + TS + IP yields
better separation between in-distribution and out-
of-distribution samples in the NLI setting. Accord-
ingly, we excluded dropout-based methods from
our final pipeline. The full AUROC scores and cor-
responding ROC curves are presented in Figure 6
and Table 8.

A.3 Hyperparameter Tuning for Temperature
and Epsilon

To ensure reproducibility and clarify the rationale
for hyperparameter selection, we conducted exten-
sive tuning experiments for temperature scaling (T )
and input perturbation scale (ϵ) used in MSP-based
OOD detection.
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Experiments AUROC

MSP 0.6651

MSP + T.S 0.6745

MSP + T.S + I.P 0.6880

Dropout 0.6154

Table 8: AUROC scores for different OOD detection
methods.

Temperature (T ): We tested values ranging
from 10 to 1000 and evaluated performance us-
ing AUROC on the 500-sample gold set described
in Section 4.1. The best result was observed at
T = 1000, achieving an AUROC of 0.6745. See
Table 9 for detailed results.

T Value AUROC

MSP (No T ) 0.6651

10 0.6736

100 0.6741

500 0.6743

600 0.6742

700 0.6743

800 0.6742

900 0.6742

1000 0.6745

Table 9: AUROC for different temperature (T ) values
in temperature scaling.

Epsilon (ϵ): We first explored a coarse range
[0.01, 0.09], as summarized in Table 10, and then
conducted a finer search within [0.031, 0.039],
shown in Table 11. The highest AUROC (0.6880)
was achieved at ϵ = 0.033, which was adopted as
the final perturbation strength.

B Examples of Emotion Inference (EI)
Rule

The Emotion Inference (EI) rule, which "infers
emotions or states from actions described in sen-
tences," was derived from analyzing premise-
hypothesis sentence pairs in cluster 9101, as shown
in Table 12. Among the 20 sentence pairs in
the cluster, the following 5 examples effectively
demonstrate the characteristics of this rule. For
example, in the first example, we identified a con-
sistent pattern where an underlying emotional state
is inferred from the behavioral description "The
little boy is at the side of the river throwing rocks"

ϵ Value AUROC

0.01 0.6783

0.02 0.6864

0.03 0.6870

0.04 0.6833

0.05 0.6801

0.06 0.6772

0.07 0.6754

0.08 0.6726

0.09 0.6684

Table 10: AUROC for coarse-grained search over per-
turbation scale ϵ.

ϵ Value AUROC

0.031 0.6872

0.032 0.6875

0.033 0.6880

0.034 0.6876

0.035 0.6868

0.036 0.6844

0.037 0.6835

0.038 0.6834

0.039 0.6834

Table 11: AUROC for fine-grained search over pertur-
bation scale ϵ.

to derive "A boy is bored outdoors"

C Prompt Design and Evaluation of
Automated Rule Discovery

C.1 Prompt Design for Automated Rule
Discovery

In this section, we present the prompt structure
used to automate the discovery of new sentence
transformation rules. The prompt was designed
to evaluate whether each cluster is explainable by
any of the existing 15 transformation rules and to
induce a new rule if not.

C.1.1 Existing 15 Transformation Rules
We provided the LLM with a list of 15 transfor-
mation rules categorized by NLI labels. Each rule
was defined with a short description and illustrative
example.

Entailment

1. Hypernym Substitution: Replace nouns with
their hypernyms (e.g., dog → animal)
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Premise Hypothesis Explanation Label
The little boy is at the side of the
river throwing rocks

A boy is bored outdoors Sentence 1 is missing boy is bored neutral

A young bride purses her lips She is angry Sentence 1 is missing person is an-
gry

neutral

A barefoot boy is crying The boy is hurt Sentence 1 is missing boy is hurt neutral

A screaming man playing hand-ball
makes a throw by jumping into the
air

A man is very athletic Sentence 1 is missing man is very
athletic

neutral

A young Indian boy is lean into a
wall, wearing a red and white striped
shirt, and covering his eyes

boy is crying Sentence 1 is missing boy is crying neutral

Table 12: The Emotion Inference (EI) rule, which "infers emotions or states from actions described in sentences".

2. Pronoun Substitution: Replace nouns with
pronouns (e.g., two men → they)

3. Counting: Count nouns sharing a common
hypernym (e.g., a bike and a car → two auto-
mobiles)

4. Paraphrasing: Rephrase the sentence using
synonymous expressions (e.g., bench → seat)

5. Extracting Snippets: Retain only the core
semantic content (e.g., a person with red shirt
→ a person)

Contradiction

6. Contradictory Words-adj: Replace adjec-
tives with antonyms (e.g., big → small)

7. Contradictory Words-noun: Replace nouns
with different nouns (e.g., piano → violin)

8. Contradictory Verb: Replace verbs with
antonyms (e.g., walk → drive)

9. Number Substitution: Replace numerical
expressions (e.g., two → seven)

10. Subject Object Swap: Swap the subject and
object positions (e.g., clock, pillow → pillow,
clock)

11. Irrelevant Hypothesis: Sample a completely
unrelated sentence (no CoT applied)

12. Negation Introduction: Apply negation to
the sentence (e.g., covered → did not cover)

Neutral

13. Adding Modifiers: Add modifiers to nouns
(e.g., bird → small bird)

14. ConceptNet: Add spatial or relational infor-
mation (e.g., eating the grass → eating the
grass in the yard)

15. Same Subject but Non-Contradictory Verb:
Replace verbs with synonymous alternatives
and add arbitrary nouns (e.g., sleeping → lay-
ing + chair)

C.1.2 Prompt Template for Cluster
Evaluation

Each cluster was evaluated using the following
prompt structure:

The following is a list of 15 transforma-
tion rules used for natural language in-
ference (NLI) data generation. For each
sentence pair in the given cluster, check
whether the transformation from premise
to hypothesis aligns with one of the 15
rules. If at least 70% of the pairs match
a single rule (equivalently, if fewer than
30% are unmatched), name the rule. oth-
erwise (unmatched ratio ≥ 30%), define
a new rule that best explains the trans-
formation pattern observed in this clus-
ter. Please output only the rule name if
matched, or a newly proposed rule name
and its description if unmatched.

C.1.3 Cluster Input Example
The following is a representative example used
in the evaluation prompt. Each line contains a
premise, hypothesis, label and explanation.

Table 13 (Cluster 9101) shows an example clus-
ter used in the evaluation.

C.1.4 Output Interpretation Example
If the proportion of unmatched examples in a clus-
ter is 30% or higher, the model is instructed to

25995



Premise Hypothesis Label Explanation
The little boy is at the side of the
river throwing rocks

A boy is bored outdoors neutral Sentence 1 is missing boy is bored

A man is sleeping inside on a
bench with his hat over his eyes

A man fell asleep on a bench be-
cause he was drunk

neutral Sentence 1 is missing he was drunk

A young bride purses her lips She is angry neutral Sentence 1 is missing person is angry

Table 13: Example premise-hypothesis-label-explanation triples from Cluster 9101.

generate a new rule. For example (Cluster 9101):

Proposed Rule (Inferred Contextual
Attribute): Construct the hypothesis by
inferring contextual attributes of a person
that are not explicitly mentioned in the
premise (e.g., identity, emotional state,
physical condition), based on common-
sense and situational cues. (e.g., The boy
is throwing rocks → The boy is bored)

C.2 Evaluation Results of Automated Rule
Discovery

C.2.1 Cluster Filtering and Validation
Summary

We applied our automated rule discovery proce-
dure to 42 clusters. In the After Matching stage,
16 clusters were flagged as requiring novel rules
due to an unmatched ratio above 30% with the
existing transformation rules. In the After Simi-
larity Eval. stage, new hypotheses were generated
based on LLM-proposed rules and evaluated using
Sentence-BERT. Among the 16 clusters, 6 passed
the semantic consistency threshold (0.5) and were
retained as valid rule candidates. Notably, 4 of
these 6 clusters (890, 1527, 2007, 9101) overlapped
with rules (VS, CA, EI) that were independently
derived via manual analysis. Details of each stage
are summarized in Table 14.

C.2.2 Semantic Comparison of Hypotheses
To evaluate the semantic consistency of hypothe-
ses generated through the LLM-based rule appli-
cation process, we compared them to the original
hypotheses. The original hypotheses were writ-
ten by human annotators, while the generated ones
were produced by prompting the LLM with only
the premise sentences and the automatically de-
rived rule.

Table 15 presents a side-by-side compari-
son of the original and generated hypothe-
ses. Cluster 9101 is shown here as a repre-
sentative example, using the inferred rule In-

ferred_Contextual_Attribute. Sentence-level se-
mantic similarity was computed using Sentence-
BERT, and the average cosine similarity across
these pairs was used as the validation criterion in
Stage 3 of the automated rule discovery pipeline.

C.2.3 Automatically Discovered Rules and
Alignment with Manual Rules

Table 16 presents the six transformation rules re-
tained after Stage 3 of the automated rule discovery
pipeline. These rules were automatically generated
by prompting the LLM with clusters that did not
align with any of the 15 existing transformation
rules. Each rule was subsequently validated for
semantic consistency. The table reports the clus-
ter ID, rule name, rule description, and whether
the rule aligns with a manually defined rule. Four
rules—Generalization Refinement, Situation Infer-
ence, Action Addition, and Inferred Contextual
Attribute—show alignment with existing manual
rules (VS, CA, EI), indicating a high degree of con-
sistency between automated and human-authored
rule definitions.

D Detailed Threshold-based Results

In this appendix, we present the detailed results
of our threshold-based experiments for automated
rule discovery. We varied similarity thresholds
at Stage 1 (0.3, 0.5, 0.7) and Stage 3 (0.3, 0.35,
0.4, 0.5) under two different settings: Human-Ex
(human-written explanations) and CoT-Ex (Chain-
of-Thought generated explanations).

D.1 Human-Ex (e-SNLI Dataset)

For the Human-Ex setting, we initially selected
the top-100 clusters based on cohesion scores,
where 42 clusters passed the label consistency filter.
When extending to the top-200 clusters, an addi-
tional 24 clusters met the same criterion, although
with lower semantic coherence. Among these, one
cluster (IG) corresponded to a novel transforma-
tion rule not included in the original four, while
the remaining clusters aligned with one of the 15
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Stage Remaining Selected Clusters Notes
Initial 42 – –

After Matching 16 233, 384, 890, 1527, 1739, 2007, 2456, 3072,
3201, 3334, 4581, 5084, 5881, 6020, 7546, 9101

Unmatched ≥ 30%

After Similarity Eval. 6 890, 1527, 2007, 6020, 7546, 9101 Similarity ≥ 0.5

Manual Overlap 4 890 (VS), 1527 & 2007 (CA), 9101 (EI) Matches manual rules

Table 14: Cluster selection and validation results at each stage of the automated rule discovery pipeline.

Original Hypothesis Generated Hypothesis
A boy is bored outdoors The boy is curious about nature

The man is asian The man is highly focused and skilled

A man fell asleep on a bench because he was drunk The man is exhausted from work

The man has made a lot of money The man is a street performer earning money

The man is fat The man is a construction worker

boy is crying The boy is shy and nervous

The man is homeless The man is struggling financially

A boy confirms he finds rock climbing easy The boy is confident in his climbing skills

the children are white The children are energetic and playful

The child she is holding is not hers The child feels safe in her arms

The woman is homeless The woman is living in poverty

She is angry She is feeling anxious about her wedding

The boy is hurt The boy is emotionally distressed

The boy only skateboards at night The boy enjoys the freedom of night rides

the horse is leaping to see his girlfriend The horse is well-trained and competitive

A man is very athletic The man is physically very fit

THe man is fishing The man is preparing to fish

The man is good at guitar The man is an experienced street musician

the man is a spy The man is a motorcycle enthusiast

The driver is bored The driver is tired after a long shift

Table 15: Comparison of Original and LLM-generated hypotheses for Cluster 9101 under the inferred rule
Inferred_Contextual_Attribute, with Sentence-BERT similarity scores from Stage 3.

existing rules or the previously discovered four new
rules (RG, CA, VS, EI). Across multiple threshold
settings at Stage 1 and Stage 3, we consistently
identified 3–5 new transformation rules, indicat-
ing that the automated rule discovery process is
relatively robust to threshold variations on the e-
SNLI dataset. The detailed results across different
thresholds are shown in Table 17.

D.2 CoT-Ex (SNLI Dataset)

For the CoT-Ex setting, we generated approx-
imately 50,000 explanations using Chain-of-
Thought prompting. We applied the same clus-
tering and filtering pipeline as in Section 3.2.3 and
analyzed the top-100 and top-200 clusters under
multiple threshold settings. The results show con-
sistent rediscovery of three previously identified

rules (CA, VS, EI), as well as the emergence of
two novel rules (IG, AFR) in the top-200 clusters.
These findings indicate that CoT-generated explana-
tions serve as a scalable and reliable alternative to
human annotations for rule discovery. The detailed
results across different thresholds are presented in
Table 18.

E Examples of CoT Prompt-based
Sentence Transformation Rule
Application

E.1 Data Generation Process

We generated premise-hypothesis-label data us-
ing the GPT-4o-mini model with rule-specific CoT
prompts (Madaan et al., 2023) for 1,000 premise
sentences randomly sampled from the SNLI train-
ing set. The Stanford Natural Language Inference
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Cluster ID Rule Rule Description Matches Manual Rule
890 Generalization Refinement Explicitly add visual attributes such as color, size, or

condition to objects mentioned in the premise when
generating the hypothesis.

VS

1527 Situation Inference Generate a hypothesis by inferring unstated inten-
tions, purposes, or situational context from the
premise.

CA

2007 Action Addition Generate a hypothesis by adding an implied purpose-
driven action to the scenario in the premise.

CA

6020 Implicit Attribute Addition Generate a hypothesis by inferring a person’s social
identity from contextual clues and commonsense
knowledge, focusing on who the person is, not why
they act.

–

7546 Implicit Intention Inference Generate a hypothesis by inferring the agent’s inter-
nal motivations solely from their actions, without
assuming any unstated background context.

–

9101 Inferred Contextual Attribute Generate a hypothesis by inferring the subject’s emo-
tional or physical state based on actions described in
the premise.

EI

Table 16: Final six automatically generated transformation rules that passed semantic consistency validation. Three
of these rules (VS, CA, EI) align with manually defined rules.

(SNLI) dataset (version 1.0) (Bowman et al., 2015)
is publicly available for research purposes under
the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) License. This li-
cense permits sharing and adaptation of the dataset
with proper attribution and distribution under the
same terms.

E.2 Illustrative Examples for Existing
Transformation Rules

Table 19 shows the rule definitions and their as-
sociated illustrative examples for the existing 15
transformation rules. These examples are simpli-
fied Q/A demonstrations of how each rule is ap-
plied, and can serve as few-shot instances when
constructing CoT prompts for data generation.

E.3 Illustrative Examples for New
Transformation Rules

Table 20 shows the rule definitions and their as-
sociated illustrative examples for the 4 newly dis-
covered transformation rules. As with the existing
rules, these examples serve as concise demonstra-
tions of rule application. They also provide canoni-
cal cases that can be incorporated into CoT prompt-
ing to guide large language models in generating
high-quality NLI data.

F Data Augmentation Distribution by
Rules

We augmented 4,500 samples for each dataset size
(2k, 10k, 50k, 550k) using two approaches: uni-
form and distribution-aware. The uniform distribu-
tion allocated samples equally across rules, while
the distribution-aware followed the rule frequen-
cies observed in the SNLI validation set. These ap-
proaches were applied to both 15-rule and 19-rule
sets. The following sections detail the augmenta-
tion distribution for each approach:

F.1 Uniform Distribution-based Data
Augmentation for 15 Rules

Table 21 shows the data augmentation distribution
where 300 samples were uniformly allocated to
each of the 15 rules, resulting in a total of 4,500
augmented samples.

F.2 Distribution-aware Data Augmentation
for 15 Rules

Table 22 shows the data augmentation following
the distribution observed in the SNLI validation
set. Samples were allocated proportionally to each
rule’s frequency, ranging from 4 to 2,307 samples
per rule.

F.3 Uniform Distribution-based Data
Augmentation for 19 Rules

Table 23 shows the uniform distribution approach
for 19 rules, where 4,500 samples were evenly dis-
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Top-k Clusters #Filtered Clusters Stage 1 (Threshold) Stage 3 (Threshold) #Clusters #Clusters with New Rules New Rules

100 42

0.3

0.3 10 6 (VS(2), CA(2), RG(1), EI(1)) 4 (VS, CA, RG, EI)

0.35 9 6 (VS(2), CA(2), RG(1), EI(1)) 4 (VS, CA, RG, EI)

0.4 4 3 (VS(1), CA(1), RG(1)) 3 (VS, CA, RG)

0.5 0 0 0

0.5

0.3 11 6 (VS(2), CA(2), RG(1), EI(1)) 4 (VS, CA, RG, EI)

0.35 9 5 (VS(2), CA(2), RG(1)) 3 (VS, CA, RG)

0.4 6 3 (VS(2), RG(1)) 2 (VS, RG)

0.5 0 0 0

0.7

0.3 9 4 (VS(2), CA(1), EI(1)) 4 (VS, CA, RG, EI)

0.35 5 3 (VS(2), CA(1)) 2 (VS, CA)

0.4 4 2 (VS(1), CA(1)) 2 (VS, CA)

0.5 0 0 0

200 66

0.3

0.3 27 12 (VS(2), CA(3), RG(4), EI(2), IG(1)) 5 (VS, CA, RG, EI, IG)

0.35 23 10 (VS(2), CA(3), RG(3), EI(1), IG(1)) 5 (VS, CA, RG, EI, IG)

0.4 12 6 (VS(1), CA(1), RG(3), IG(1)) 4 (VS, CA, RG, IG)

0.5 2 0 0

0.5

0.3 27 12 (VS(2), CA(3), RG(4), EI(2), IG(1)) 5 (VS, CA, RG, EI, IG)

0.35 22 9 (VS(2), CA(3), RG(3), IG(1)) 4 (VS, CA, RG, IG)

0.4 11 3 (VS(2), RG(1)) 2 (VS, RG)

0.5 2 0 0

0.7

0.3 23 9 (VS(2), CA(2), RG(2), EI(2), IG(1)) 5 (VS, CA, RG, EI, IG)

0.35 16 7 (VS(2), CA(2), RG(2), IG(1)) 4 (VS, CA, RG, IG)

0.4 8 2 (VS(1), CA(1)) 2 (VS, CA)

0.5 2 0 0

Table 17: Detailed results for Human-Ex (human-written explanations) under varying Stage 1 and Stage 3 thresholds.

Top-k Clusters #Filtered Clusters Stage 1 (Threshold) Stage 3 (Threshold) #Clusters #Clusters with New Rules New Rules

100 65

0.3

0.3 25 13 (VS(7), CA(5), EI(1)) 3 (VS, CA, EI)

0.35 17 8 (VS(4), CA(4)) 2 (VS, CA)

0.4 9 4 (VS(2), CA(2)) 2 (VS, CA)

0.5 7 1 (CA(1)) 1 (CA)

0.5

0.3 23 12 (VS(7), CA(5)) 2 (VS, CA)

0.35 17 8 (VS(4), CA(4)) 2 (VS, CA)

0.4 10 4 (VS(2), CA(2)) 2 (VS, CA)

0.5 7 1 (CA(1)) 1 (CA)

0.7

0.3 22 11 (VS(7), CA(4)) 2 (VS, CA)

0.35 15 8 (VS(4), CA(4)) 2 (VS, CA)

0.4 9 3 (VS(2), CA(1)) 2 (VS, CA)

0.5 6 0 0

200 107

0.3

0.3 47 27 (VS(8), CA(10), EI(2), IG(1), AFR(1)) 5 (VS, CA, EI, IG, AFR)

0.35 31 16 (VS(5), CA(9), IG(1), AFR(1)) 4 (VS, CA, IG, AFR)

0.4 16 10 (VS(3), CA(7)) 2 (VS, CA)

0.5 7 1 (CA(1)) 1 (CA)

0.5

0.3 43 21 (VS(8), CA(10), EI(1), IG(1), AFR(1)) 5 (VS, CA, EI, IG, AFR)

0.35 28 15 (VS(5), CA(9), IG(1)) 3 (VS, CA, IG)

0.4 15 8 (VS(2), CA(6)) 2 (VS, CA)

0.5 7 1 (CA(1)) 1 (CA)

0.7

0.3 40 20 (VS(8), CA(9), EI(1), IG(1), AFR(1)) 5 (VS, CA, EI, IG, AFR)

0.35 23 14 (VS(5), CA(9)) 2 (VS, CA)

0.4 14 8 (VS(2), CA(5)) 2 (VS, CA)

0.5 6 0 0

Table 18: Detailed results for CoT-Ex (CoT-generated explanations) under varying Stage 1 and Stage 3 thresholds.
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Figure 7: Data Augmentation Effects on 2k Dataset.
The lines represent uniform distribution sampling (red)
and our proposed distribution-aware sampling (blue)

Figure 8: Data Augmentation Effects on 10k Dataset.
The lines represent uniform distribution sampling (red)
and our proposed distribution-aware sampling (blue)

tributed, resulting in approximately 237 samples
per rule.

F.4 Distribution-aware Data Augmentation
for 19 Rules

Table 24 shows the distribution-aware approach for
19 rules. The number of samples was determined
by the distribution ratios observed in the SNLI val-
idation set, with differential allocation based on
each rule’s prevalence.

G Detailed Performance by Dataset Size

Figures 7–10 present detailed comparisons of data
augmentation performance for each dataset size:
2k, 10k, 50k, and 550k, respectively. These fig-
ures expand on the overall trend shown in Figure 5,
highlighting how the effects of distribution-aware
augmentation vary across different data scales. In
particular, the performance improvements are most
pronounced in the smallest dataset (2k), while
the relative gains diminish as the dataset size in-
creases. These results further support our claim
that distribution-aware augmentation is especially
beneficial in low-resource settings.

Figure 9: Data Augmentation Effects on 50k Dataset.
The lines represent uniform distribution sampling (red)
and our proposed distribution-aware sampling (blue)

Figure 10: Data Augmentation Effects on 550k Dataset.
The lines represent uniform distribution sampling (red)
and our proposed distribution-aware sampling (blue)

Figure 11: Reproduced from the main paper (Figure 5):
Overall performance comparison across dataset sizes
(2k, 10k, 50k, 550k).
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Label Rule-Name Explanation Illustrative Example

Entailment

Hypernym
Substitution

(HS)

Generate a hypothesis by
replacing nouns with their

hypernyms.

Q: In a sentence {a black dog is sleeping}, replace ‘dog’
with its hypernym ‘animal’.
A: {a black animal is sleeping}.

Pronoun
Substitution

(PS)

Generate a hypothesis by
replacing nouns with

pronouns.

Q: In a sentence {Two men are sitting on a blue truck},
replace ‘Two men’ with a pronoun.
A: {They are sitting on a blue truck}.

Counting
(CT)

Generate a hypothesis by
expressing the number of

nouns that share a common
hypernym.

Q: In a sentence {A motorbike and a car are parked},
replace with the hypernym and count.
A: {two automobiles are parked}.

Paraphrasing
(PA)

Generate a hypothesis by
paraphrasing the sentence

using synonyms.

Q: In a sentence {A brown purse is sitting on a green
bench}, replace with synonyms.
A: {A brown bag is perched atop a green seat}.

Extracting
Snippets

(ES)

Generate a hypothesis by
retaining only the core

meaning of the sentence.

Q: In a sentence {A person with a red shirt is running
near the garden}, remove modifiers.
A: {A person is running near the garden}.

Contradiction

Contradictory
Words-adj
(CW-adj)

Generate a hypothesis by
replacing adjectives with their

antonyms.

Q: In a sentence {He lives in a big house}, replace ‘big’
with its antonym.
A: {He lives in a small house}.

Contradictory
Words-noun
(CW-noun)

Generate a hypothesis by
replacing nouns with
contradictory nouns.

Q: In a sentence {She is playing the piano}, replace
‘piano’ with another noun.
A: {She is playing the violin}.

Contradictory
Verb
(CV)

Generate a hypothesis by
replacing verbs with their

antonyms.

Q: In a sentence {A girl is walking}, replace ‘walking’
with an antonym.
A: {A girl is driving}.

Number
Substitution

(NS)

Generate a hypothesis by
replacing numbers with

different numbers.

Q: In a sentence {two cars are parked on the sidewalk},
replace ‘two’ with another number.
A: {seven cars are parked on the sidewalk}.

Subject Object
Swap
(SOS)

Generate a hypothesis by
swapping the subject and

object.

Q: In a sentence {A clock is standing on a pillar}, swap
subject and object.
A: {A pillar is standing on a clock}.

Irrelevant
Hypothesis

(IrH)

Generate a hypothesis by
sampling an unrelated

sentence. (CoT is not applied
in this case)

Q: In a sentence {A sign for an ancient monument is on
the roadside}, generate an unrelated hypothesis.
A: {A man goes to strike a tennis ball}.

Negation
Introduction

(NI)

Generate a hypothesis by
introducing negation.

Q: In a sentence {Empty fog covered the streets at
night}, negate the verb.
A: {Empty fog did not cover the streets at night}.

Neutral

Adding
Modifiers

(AM)

Generate a hypothesis by
adding modifiers to nouns

Q: In a sentence {This is a bird sitting on a twig}, add a
modifier.
A: {This is a small bird sitting on a twig}.

ConceptNet
(Con)

Generate a hypothesis by
adding spatial or relational

information.

Q: In a sentence {Three horses are eating grass}, add a
location.
A: {Three horses are eating grass in the yard}.

Same Subject
but Non-

Contradictory
Verb

(SSNCV)

Generate a hypothesis by
replacing verbs with

synonyms and adding
arbitrary nouns.

Q: In a sentence {A child is sleeping in a bed}, replace
the verb and add a noun.
A: {A child is laying in a bed with a chair nearby}.

Table 19: Definitions and illustrative examples for the 15 existing transformation rules. Each rule is described with
its definition and a corresponding example.
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Label Rule-Name Explanation Illustrative Example

Entailment
Role

Generalization
(RG)

Generate a hypothesis by
replacing specific roles with

general categories.

Q: In a sentence {A baseball player is diving to catch a
ball}, generalize ‘baseball player’.
A: {An athlete is diving to catch a ball}.

Neutral

Contextual
Augmentation

(CA)

Generate a hypothesis by
adding implicit purposes or

background.

Q: In a sentence {A man is playing the saxophone on
the street}, add a plausible purpose.
A: {A man is playing the saxophone on the street to
collect donations}.

Visual
Specification

(VS)

Generate a hypothesis by
adding visual characteristics.

Q: In a sentence {A man is wearing a straw hat}, add a
plausible visual trait.
A: {A man is wearing a dirty straw hat}.

Emotion
Inference

(EI)

Generate a hypothesis by
inferring emotions or states

from actions.

Q: In a sentence {A boy is throwing rocks by the river},
infer an emotional state.
A: {A boy is throwing rocks by the river because he is
bored}.

Table 20: Definitions and illustrative examples for the 4 newly proposed transformation rules. Each rule is described
with its definition and a corresponding example.
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Rule-Name # Samples

Entailment

HS 300
PS 300
CT 300
PA 300
ES 300

Contradiction

CW-adj 300
CW-noun 300

CV 300
NS 300

SOS 300
IrH 300
NI 300

Neutral
AM 300
Con 300

SSNCV 300

Table 21: Uniform Distribution-based Data Augmenta-
tion for 15 Rules
(Total: 4,500 samples, 300 samples per rule)

Rule-Name # Samples

Entailment

HS 50
PS 63
CT 299
PA 803
ES 972

Contradiction

CW-adj 58
CW-noun 99

CV 61
NS 16

SOS 13
IrH 1806
NI 20

Neutral
AM 31
Con 9

SSNCV 200

Table 22: Distribution-aware Data Augmentation for 15
Rules
(Total: 4,500 samples, allocated based on SNLI valida-
tion set distribution)

Rule-Name # Samples

Entailment

HS 237
PS 237
CT 237
PA 237
ES 237
RG 237

Contradiction

CW-adj 237
CW-noun 237

CV 237
NS 236

SOS 237
IrH 237
NI 237

Neutral

AM 237
Con 236

SSNCV 237
CA 237
VS 237
EI 236

Table 23: Uniform Distribution-based Data Augmenta-
tion for 19 Rules
(Total: 4,500 samples, 236 or 237 samples per rule)

Rule-Name # Samples

Entailment

HS 16
PS 21
CT 173
PA 473
ES 958
RG 56

Contradiction

CW-adj 54
CW-noun 45

CV 60
NS 4

SOS 10
IrH 2307
NI 12

Neutral

AM 13
Con 4

SSNCV 91
CA 109
VS 90
EI 4

Table 24: Distribution-aware Data Augmentation for 19
Rules
(Total: 4,500 samples, allocated based on SNLI valida-
tion set distribution)
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