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Abstract

This paper introduces Pairwise Difference
Pearson (PDP), a novel segment-level meta-
evaluation metric for Machine Translation
(MT) that address limitations in previous Pear-
son’s p-based and and Kendall’s 7-based meta-
evaluation approaches. PDP is a correlation-
based metric that utilizes pairwise differences
rather than raw scores. It draws on information
from all segments for a more robust understand-
ing of score distributions and uses segment-
wise pairwise differences to refine Global Pear-
son to intra-segment score comparisons. Anal-
ysis on the WMT’24 shared task shows PDP
properly ranks sentinel evaluation metrics and
better aligns with human error weightings than
previous work. Noise injection analysis demon-
strates PDP’s robustness to random noise, seg-
ment bias, and system bias while highlighting
its sensitivity to extreme outliers.

1 Introduction

Meta-evaluation of MT automatic metrics quanti-
fies their performance using correlation between
human-annotated scores (Y) with metric scores
(X) for a set of translations (Mathur et al., 2020b).
The scores can be organized into N x M matri-
ces, where IV is the number of evaluation systems
and M is the number of translations evaluated
(Deutsch et al., 2023). Alignment is often ranking-
based, such as acc, (a derivative of Kendall’s 7
for handling tied scores; Deutsch et al., 2023) or
correlation-based, such as Pearson’s p.
Segment-level meta-evaluation assesses metric
scores on individual translations, while system-
level meta-evaluation measures system correlation
or ranking agreement. There are many ways to
compute a segment-level agreement based on how
scores are grouped together when calculating agree-
ment and the specific agreement statistic that is
used. The two most common groupings either (1)
calculate agreement using all values in X and Y,

denoted “Global,” or (2) calculate the average of M
correlations between each segment’s N translation
scores, denoted “Segment-Wise.” Frequently used
instantiations of these approaches that have been
explored in the WMT Metrics Shared Task (Freitag
et al., 2024) are Global Pearson’s p, Segment-Wise
Pearson’s p, and Segment-Wise acc., (hereafter
just accegq).

These three meta-evaluation metrics each have
their own limitations. Pearson correlations are sen-
sitive to outliers (Mathur et al., 2020a) and the
segments analyzed under Segment-Wise Pearson
may sample skewed score distributions due to small
sample sizes. acceq discards information about the
magnitude of ranking differences.

This paper proposes Pairwise Difference Pear-
son (PDP), a novel meta-evaluation metric that ad-
dresses these limitations. PDP computes a Pearson
correlation on the pairwise differences between
scores rather than the raw scores themselves and
is able to draw on information from all segments
for a more robust understanding of score distribu-
tions. In this work, we define the properties of PDP,
and present a comparative analysis against existing
meta-evaluation statistics using MQM annotations
from the WMT’23 and WMT’24 Metrics Shared
Tasks (Freitag et al., 2023a, 2024). The difference
between acc., and PDP is then empirically tested
using oracle metrics, showing PDP’s effective cor-
relation with human evaluation weights.

2 Background and Related Work

Over the years, the methodology used by the WMT
Metrics Shared Task has evolved and changed. Be-
low, we summarize the most commonly used meth-
ods for segment-level meta-evaluation.

2.1 Kendall’s 7 and acc,

Kendall’s 7 is a widely used ranking-based corre-
lation coefficient in MT meta-evaluation (Mathur
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et al., 2020b; Freitag et al., 2021c, 2022, 2023a,
2024). It quantifies the proportion of agreement
between metric and human rankings across all intra-
segment translation pairs. Kendall’s 7 loses trans-
lation difference scale by looking only at rankings,
meaning a small translation preference is equiva-
lent to a large preference. This can lead to small
errors biasing Kendall’s 7 as a meta-evaluation met-
ric by flipping the preference between two similar
translations.

The recent acc,y (Deutsch et al., 2023) refines
traditional 7 by adding correctly predicted ties to
the set of concordant pairs. acce, addresses the con-
tinuous nature of some metric predictions, where
exact ties are rare. It does this by introducing a
tie calibration procedure that broadens the defini-
tion of "ties" in the metric outputs. Despite these
changes, acc,, largely suffers from the same issues
as 7 due to it being a rank-based statistic. Within
WMT, acceq has only been used Segment-Wise.

2.2 Pearson at the Segment Level

Pearson’s p measures the linear correlation between
two vectors. In the context of segment-level meta-
evaluation, Global Pearson flattens X and Y into
vectors and calculates a single Pearson correlation.
For Segment-Wise Pearson, Pearson scores are
computed for each individual segment and aver-
aged to get the overall meta-evaluation score.

In contrast to accq, Pearson evaluates metrics
considering the scale differences between vector
values. Appendix A proves the equivalence be-
tween the Pearson correlation of a vector’s raw
values and the Pearson correlation on all the pair-
wise differences between the vector’s raw values.
This shows Segment-Wise Pearson is equivalent to
Segment-Wise Pearson using pairwise differences
between translations.

Segment-Wise Pearson solves the scale igno-
rance of accey, but is extremely sensitive to noise.
A limitation of Pearson’s p is its sensitivity to out-
liers (Mathur et al., 2020a). This issue is particu-
larly pronounced in Segment-Wise Pearson’s p due
to typically small input vectors (N < 30).

The small sample size of segment vectors can
cause misleading distributions, misleading the Pear-
son score. For example, a segment with all perfect
translations except one with an insignificant error
will rescale the minor error to an extreme outlier.

Global Pearson solves Segment-Wise Pearson’s
small sample size problem by calculating the Pear-
son score over all translations at once. While this

approach better understands the overall human and
metric score distributions, it introduces pairwise
comparisons between translations from different
segments. Considering the proof from Appendix A,
Global Pearson is equivalent to the Pearson corre-
lation using pairwise differences between all trans-
lation scores in the dataset. This includes pair-
wise differences between translations from differ-
ent source texts, which are not strictly comparable.

3 Evaluating with PDP

PDP is the Global Pearson correlation without di-
rect inter-segment pairwise differences. The for-
mula for PDP is outlined in Equation 1, where
X* and Y* are 2(N?) x M matrices of the intra-
segment pairwise differences of X and Y. For each
pair of translations (1, z2), two pairwise differ-
ences are computed (z - x2, T2 - 1) to ensure the
signs of X* and Y* values do not depend on the
system ordering.

PDP(X,Y) = Global Pearson(X*,Y™) (1)

PDP is different than Segment-Wise Pearson cor-
relations because Segment-Wise Pearson’s p ana-
lyzes segments in isolation while PDP uses infor-
mation from all segments at once, better under-
standing the overall score distribution. To distin-
guish PDP from Global Pearson, we consider the
information loss introduced by PDP. Global Pear-
son calculates the correlation between all scores
in X and Y. This is equivalent to calculating the
correlation between X ** and Y **, where X™** and
Y ** are 2N M x N M matrices of all score pairwise
differences from X and Y. Since PDP is calculated
using intra-segment pairwise differences X* and
Y™, it effectively removes the raw score pairwise
differences between segments. This information
loss targets PDP towards intra-segment differences
rather than score correlation across segments.

Since PDP uses Pearson correlation as the un-
derlying metric, it is sensitive to outliers (§2.2).
However, PDP does not suffer from the "NaN prob-
lem", as detailed by Deutsch et al. (2023). If all
pairwise difference predictions are constant, result-
ing in an undefined Pearson’s p, we assign a value
of 0, indicating no correlation with ground truth
scores. This constant scoring scenario under PDP
is less common than under Segment-Wise Pear-
son’s p because PDP considers all N x M scores
while segment-wise Pearson’s p is computed using
N scores at a time.
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4 Analysis Setup
4.1 Datasets

For empirical meta-evaluation, we used the Mul-
tidimensional Quality Metrics (MQM; Lommel
et al., 2014; Freitag et al., 2021a) annotations pro-
vided by the WMT’23 (Freitag et al., 2023b) and
WMT’ 24 (Freitag et al., 2024) metrics shared tasks.
The MQM scores serve as the ground-truth against
which automatic metrics were evaluated.

On the WMT’23 metrics shared task, our anal-
ysis encompasses two language pairs: English to
German (en—de) and Chinese to English (zh—en).
The datasets for these language pairs contain 12-
15 MT evaluation systems and 557-1976 segments.
WMT’23 also includes two additional rounds of hu-
man annotations to measure inter-annotator agree-
ment. On the WMT’24 metrics shared task, our
analysis uses three language pairs: English to Ger-
man (en—de), Japanese to Chinese (ja—zh), and
English to Spanish (en—es), with an emphasis on
the en—de language pair. The datasets for these
language pairs contain 21 to 26 MT evaluation sys-
tems and 722 to 998 segments.

4.2 Automatic Metrics Under Evaluation

We conducted segment-level meta-evaluation on
the set of automatic metrics submitted to the
WMT’23 and WMT’24 shared tasks. The WMT’ 24
shared task includes three sentinel metrics (Perrella
et al., 2024), designed to assess the fairness char-
acteristics of each meta-evaluation metric. These
sentinel metrics were trained using MQM and Di-
rect Assessment (DA) data from WMT 2017-2022
(Bojar et al., 2017; Ma et al., 2018, 2019; Mathur
et al., 2020b; Freitag et al., 2021c¢, 2022), with each
being provided specific, limited information about
the translation during evaluation:

e sentinel-cand-mgm: Score translations
based only on the candidate translation.

e sentinel-src-mgm: Score translations based
only on the source text.

e sentinel-ref-mgm: Score translations based
only on the reference translation.

While the src and ref sentinels consistently
produce a constant score across all translations
within a given segment, sentinel-cand-mgm’s
score can vary within a single segment, render-
ing sentinel-cand-mgm a valuable benchmark for

Segment-Wise Global

Metric Pearson Pearson 8CCeq PDP
XCOMET 0.404 ( 2) 0.459( 1) 0.530( 3) 0443( 1)
XCOMET-QE* 0.355( 8) 0.428 ( 3) 0.520( 5) 0.397( 2)
metametrics 0.419( 1) 0.437(2) 0542( 1) 0.393( 3)
MetricX-24-Hybrid 0.403 ( 3) 0.393(4) 0532(2) 0.383(4)
bright-ge* 0.261 (14) 0.353( 6) 0.500( 8 0.350( 5)
MetricX-24-Hybrid-QE* 0.379 ( 5) 0.336( 7) 0526(4) 0.349( 6)
COMET-22 0.381( 4) 0311(9) 0482(11) 0.322( 7)
metametrics_qge* 0.221 (19) 0.357(5) 0497( 9 0.321( 8)
gemba_esa* 0.361( 7) 0.282(12) 0507 ( 7) 0.319( 9)
BLCOM_1 0.350 ( 9) 0.283 (11) 0.455(13) 0.300 (10)
CometKiwi* 0.244 (17) 0.229 (16) 0.467 (12) 0.288 (11)
MEE4 0.257 (15) 0.190 (19) 0.437 (16) 0.282 (12)
BLEURT-20 0.372 ( 6) 0.332( 8) 0.486(10) 0.281 (13)
chrfS 0.246 (16) 0.153 (21) 0.434(20) 0.253 (14)
BERTScore 0.229 (18) 0.201 (18) 0.435(18) 0.241 (15)
sentinel-cand-mgm* 0.298 (11) 0.306 (10) 0.517( 6) 0.223 (16)
PrismRefMedium 0.307 (10) 0.146 (23) 0.434(19) 0.222(17)
PrismRefSmall 0.295 (12) 0.142 (24) 0433 (21) 0.212(18)
damonmonli 0.178 (23) 0.261 (14) 0.443 (15) 0.210(19)
YiSi-1 0.282 (13) 0.202 (17)  0.436 (17) 0.208 (20)
chrF 0.220 (20) 0.142 (25) 0.431(22) 0.192 (21)
spBLEU 0.216 (21) 0.155(20) 0.431(24) 0.161 (22)
BLEU 0.196 (22) 0.149 (22) 0.431(23) 0.151(23)
XLsimMgm* 0.087 (24) 0.080 (26) 0.450 (14) 0.005 (24)
sentinel-ref-mgm 0.000 (25) 0.246 (15) 0.429 (25) 0.000 (25)
sentinel-src-mgm* 0.000 (25) 0.262 (13) 0.429 (25) 0.000 (25)

Table 1: Scores (and ranks) of metrics evaluated by
Segment-Wise Pearson, Global Pearson, acce,, and
PDP on the WMT’24 en—de dataset. QE metrics are
marked with a *.

segment-level meta-evaluation. We hypothesize
this metric primarily captures fluency and stylis-
tic errors rather than accuracy errors. As such,
we expect it should be patently outperformed by
SOTA evaluation metrics. Since the true ranking
of metrics is unknown, it is not possible to defini-
tively say which meta-evaluation metric is better.
Therefore we focus on the sentinel metrics, which
should be ranked low, and agreement with other
segment-level meta-evaluation metrics.

5 Analysis

Table 1 presents a comparative analysis of segment-
level performance under Segment-Wise Pearson’s
p, Global Pearson’s p, accey, and PDP for the
en—de language pair of the WMT’ 24 metrics
shared task. Segment-Wise Pearson rankings dis-
agree with many other meta-evaluation metrics,
ranking XCOMET-QE 8", bright-qe 14", and
metametrics_qe 19t Global Pearson ranks the
sentinel-src and sentinel-ref 13" and 15
despite each system predicting only ties within ev-
ery segment. This shows how Global Pearson uses
inter-segment correlations for meta-evaluation.

A key difference between PDP and all other
segment-level meta-evaluation rankings is for
sentinel-cand. While other meta-evaluation met-
rics rank sentinel-cand at 11** and above, PDP
ranks it 16" out of 26. The divergent ranking of
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sentinel-cand between PDP and acce, is also
observed using zh—en data in Appendix B.
Under the assumption that humans are better
raters of MT quality than automatic metrics, a
meta-evaluation metric should rank human re-
annotations highest, showing it is a reliable mea-
sure of correlation with human judgment. Existing
meta-eval metrics failing to do this is a problem
that has been recently demonstrated by Proietti et al.
(2025). The inter-annotator agreement was first
calculated under acc.q and PDP on the WMT’23
shared task. PDP ranks the second and third rounds
of human annotation 1% and 2"? under en—de,
while acc,, ranks them 5" and 8!". Human anno-
tations also rank higher using PDP than acc., under
zh—en. Details are provided in Appendix B.1.

5.1 Oracle Metrics

To investigate sentinel-cand’s meta-metric rank-
ing difference between acce, and PDP, we con-
sider how acc.qy and PDP show bias towards dif-
ferent error categories. We believe good meta-
evaluation metrics should rank accuracy-focused
metrics above fluency-focused ones, as fluency er-
rors often preserve source text meaning.

An oracle metric was constructed for each MQM
error category by aggregating all the error cate-
gory’s MQM errors and was evaluated against the
total human error scores. These oracle sentinels,
as ideal detectors for their error types, allow direct
examination of how meta-evaluation metrics weigh
each error’s importance.

We define an error category’s importance as its
total contribution to the human scores: the sum
of all error category annotations across the MQM
dataset. Full information about each error cate-
gory’s importance, count, and weight are given in
Appendix C. For each error category’s correspond-
ing oracle metric, we find its predictive power un-
der acceq and PDP. A Spearman rank correlation
is used to measure correlation between each met-
rics’ importance and meta-evaluation score. acceq
and PDP perform similarly well, with Spearman
correlations of 0.90 and 0.88 respectively.

The two factors which determine an error cat-
egory’s importance are the number of errors and
the average error weight. We believe error weight
reflects the value human annotators place on each
error category, measuring a single error’s effect
on the score. Oracle metric PDP scores are bet-
ter correlated with their respective error weights,
with PDP achieving Spearman correlation of 0.74

and acceq only 0.30. acc,q is more correlated with
the error counts than PDP, achieving 0.66 and 0.40
respectively.

These results highlight a key distinction: PDP
emphasizes error weight and is less sensitive to
many small errors than acceq. accey’s sensitivity
to error count is an attribute of its binary view of
pairwise differences. Small score differences, par-
ticularly in the human scores, can disproportion-
ately impact acceq if they change the translation
rankings. This analysis provides an explanation
for why sentinel-cand ranks higher under acc,q
than PDP: the oracle may correctly identify many
fluency-based errors, but such errors are not heavily
weighted by human annotators.

6 Robustness to Noise

Selecting a meta-evaluation metric is challenging
due to the lack of a ground truth ranking for evalu-
ation metrics. We introduce synthetic datasets with
artificially injected noise to measure the effect of
perturbations on meta-evaluation metric scores. For
our ground truth dataset (Y), we chose the en—de
MQM scores. Y contains negative values ranging
from -100 to 0, with individual errors contributing
-1 for minor errors and -5 for major errors, as deter-
mined by raters (Freitag et al., 2021b). Most scores
are between -25 and 0, with non-translations scor-
ing -25. From the ground truth, the best and worst
scores were calculated for each meta-evaluation
metric by comparing the MQM scores against them-
selves and against randomly guessed scores from
the distribution of Y, (X,.4nd)-

To quantify the effect of artificial noise added to
Y, each meta-evaluation metric’s score degradation
was measured under increasing levels of noise. The
formulation of score degradation proportion (SDP)
measures the meta-evaluation metric’s (6) score
change from ground truth scaled by the theoretical
range of score change (Equation 2). X,,;se is the
N x M matrix Y with noise added to it and X ;.4
isa N x M matrix of score predictions generated
by randomly sampling from Y with replacement.

9(Y7 Y) - O(Y’ Xnoise)
Q(Y’ Y) - Q(Y, Xromd)

SDP(Y'|0) = 2)

SDP indicates a meta-evaluation metric’s noise
sensitivity; better metrics are expected to degrade
less given noisy versions of ground truth predic-
tions. Four variants of noise injections, each testing
unique aspects of robustness, were tested:
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Effect of Noise on Score Degredation

Random Noise Single Outlier Noise

System Bias Noise Segment Bias Noise

—— Segment-Wise Pearson —— Segment-Wise Pearson 0.141 —— Segment-Wise Pearson 0.124 —— Segment-Wise Pearson
06 Global Pearson 0.0304 Global Pearson Global Pearson Global Pearson
—— acc_eq —— acc_eq 0129 — acc_eq 0.10{ — acc_eq
051 — ppp 00257 ___ ppp — PDP — PDP
0.10
0.4 0.020 \v4 0.08
0.08
0.3 0.015 0.06
0.06
0.2 0.010 008 0.04
0.1 0.005 0.02 0.02
0.0 0.000 0.00 0.00
0.0 0.5 1.0 15 2.0 -100 -80 -60 -40 00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0
Noise Level Noise Level Noise Level Noise Level

Figure 1: SDP for Segment-Wise Pearson’s p, Global Pearson’s p, acc.q, and PDP under increasing levels of noise.
Lower SDP values indicate greater stability and robustness to noise.

¢ random noise: for each element of Y, add a
random value sampled from ~N (0, noise)

* extreme outlier: a randomly selected element
of Y is set to noise

* system bias: for a randomly selected system
of Y, add noise to all scores of the system

* segment bias: for each segment of Y, add a
random value sampled from ~N (0, noise)

Figure 1 visualizes the performance of Segment-
Wise Pearson, Global Pearson, accey, and PDP un-
der varying levels of noisy conditions. The leftmost
plot in Figure 1 illustrates the effect of increasing
levels of random noise injection on meta-evaluation
metric SDP. As the random noise level increases,
Global Pearson and PDP exhibit the most robust
performance. Their consistently low SDP indicates
these meta-evaluation scores are least affected by
random noise in the evaluation data.

While Global Pearson and PDP are more robust
to random noise, they are less robust to a single,
extreme outlier. Since the segments are analyzed in
isolation using Segment-Wise Pearson and acce,
does not consider scale, these two meta-evaluation
metrics cap the effect of individual outliers, thereby
providing greater robustness. While PDP is less
robust to a single extreme outlier, we believe this
sensitivity is less concerning than sensitivity to
random noise. Random noise is assumed to be an
inherent part of the data, whereas outliers can often
be identified through data inspection and managed
using techniques such as score clipping.

Ideally, segment-level meta-evaluation metrics
would be less sensitive to system bias, as system-
level meta-evaluation metrics are designed to cap-
ture this. The third plot in Figure 1 simulates un-
fairly biasing a metric towards a single system.

Global Pearson and PDP are more robust to system
bias than the other metrics tested.

The final plot in Figure 1 simulates an evaluation
metric which is biased by the source text, with the
relative rankings within each segment remaining
unchanged. Global Pearson is the only metric af-
fected by this noise. This confirms the findings
in Section 5: Global Pearson is not restricted to
intra-segment comparisons while PDP is.

7 Conclusion

This work introduces PDP for MT segment-level
meta-evaluation. PDP addresses limitations in met-
rics like Segment-Wise Pearson’s p, Global Pear-
son’s p, and acceq by using pairwise score differ-
ences from multiple segments for more accurate
distribution estimation. Meta-evaluation on the
WMT’23 shared task ranked human evaluation
higher under PDP than acce,. WMT’24 shared
task analysis showed PDP consistently outperforms
other segment-level meta-evaluation metrics, down-
ranking sentinel metrics and better aligning with
human error weightings. While our analysis fo-
cuses on MT, PDP is generalizable to any segment-
level meta-evaluation task in NLP.

8 Limitations

Our analysis is limited to four language pairs from
the WMT’23 and WMT’24 metrics shared tasks.
Section 6 details PDP’s sensitivity to outliers. This
is a known limitation of Pearson’s p as a correlation-
based statistic. Although PDP’s random noise ro-
bustness may overshadow its outlier sensitivity, this
tradeoff will depend on the use case and dataset.
PDP also assumes a consistent scoring variance
between raters.
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A Pearson Correlation Using Pairwise
Differences

In this section, we prove the Pearson correlation
between two vectors is equivalent to the Pearson
correlation between the pairwise difference coun-
terparts of each vector.

A.1 Pearson Equivalence Proof

Let X = (21,22, ...,2y) and Y = (y1, Y2, ...Yn)-
The vector of all pairwise differences for X is
defined:

AX :(a:l—xl,xl—xg,...,xl—xn,
L9 — L1, L2 —TL2y...,L2 — Tp,
c Ty — Xy Ty — Ty)

This vector AX has N = n? elements. We denote
elements of AX as (AX)y where k indexes a pair
(i,j), SO (AX)k =Ty — Ty.

Similarly for Y:
AY :(yl — YY1 — Y2, -5 Y1 — Yn,
Y2 —Y1,Y2 —Y2,---,Y2 — Yn,
"7yn_y17---7yn_yn)

Each element (AY');, = y; — y; corresponds to
the same pair of indices (i, j) as for (AX).

The Pearson correlation coefficient between two

vectors U and V is P(U, V) = ——22WV)
V' Var(U)Var(V)
We want to prove P(X,Y) = P(AX,AY)

1. Mean of AX and AY
The mean of AX is:

Y 1 n n
AX = ﬁzizlzjzl(fci )

1
7(22212?:1951‘ -

E?:12?:19@

1 3)
_X_x
=0

So, AX = 0. Similarly, AY = 0.
2. Variance of AX and AY
Since AX = 0 (Equation 3), we can show:

= E[(AX)?]
1
= 921112?:1(% - %)2
1
= SIS (- X) — (- X))
Letz) = 2 — X
1
= EE?—@?:A:CQ - 933)2
1 n n /N2 /] /1\2
= ﬁzi—lzjzl((l’i) 2z, + (23)7)
1 “4)
= gz?:l(x;)Q 2 2?—133;2?:1959
1
+ *2?21(363)2
Since X} _,2}, =0
1 1
= EE?:1($;)2 + EE?:N?C;‘)Q
2
= EZZ(%F
2
= —(n x Var(X))
n
= 2 X Var(X)
Similarly, Var(AY') = 2 x Var(Y).
3. Covariance of AX and AY
Since AX = 0and AY = 0:
Cov(AX,AY)
= E[AXAY]
1
= EE?:@?:A% —zi)(yi — Y5)
Letx) =2, — Xandy, =y, — Y.
1
= 52?212?:1(962 - x;)(y; - ?J;)
1
= ﬁz?:lzyzl(x;y; - x;yé 5)

= Ly el 4 Tty
- %E};ﬂx%y%

— %(n x Cov(X,Y))

=2 x Cov(X,Y)

So, Cov(AX,AY) =2 x Cov(X,Y).
4. Correlation of AX and AY
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Cov(AX,AY)
V/Var(AX)Var(AY)
2Cov(X,Y)
V/2Var(X) x 2Var(Y)  (6)
Cov(X,Y)
Var(X)Var(Y)
= P(X,Y)

P(AX,AY) =

This equality holds assuming Var(X) > 0 and
Var(Y) > 0. If either variance is zero, both
correlations are undefined.

B Other Language Pair Analysis

Table 3 and Table 4 present the segment-level
performance of the zh—en and en—es language
pairs. When using PDP instead of acce, the
sentinel-cand ranking falls from 12" to 215
using zh—en and raised from 10" to 7*" using
en—es. We believe the ranking change under
en—es is less reliable because many of the transla-
tions for this dataset received perfect human scores,
resulting in many segment-wise ties. We see the
en—es high tie rate’s effect reflected in the smaller
acceq score range, with the worst and best scor-
ing systems achieving acc,, performances of 0.680
and 0.689 respectively.

B.1 WMT’23

The segment-level performance under Segment-
Wise Pearson’s p, Global Pearson’s p, acceq, and
PDP for the WMT’23 en—de language pair is
shown in Tables 5 and 6. These tables include
two rounds of human reratings (human-round2
and human-round3) which are ranked highest in
total undern PDP than all other segment-level meta-
evaluation metrics.

C PDP vs. acc.y: Error Weight

Using the WMT’24 metrics shared task en—de
dataset, sentinel metrics were constructed by fil-
tering MQM annotations for each error category.
These sentinels simulate a perfect evaluation model
for their respective error types. Table 2 details the
number and average severity of annotations labeled
by each sentinel. The product of the count and aver-
age weight is a measure of the overall weight each
error category contributes to the final evaluation:
importance. Using these sentinel metrics, we can
analyze how each meta-evaluation metric values
different types of errors in Section 5.1.

Error Category Importance | Count  Avg. Weight | acCeq PDP
accuracy/addition 925( 9) | 249 (13) 3715( 6) | 0451 (9)  0.310( 4)
accuracy/creative reinterpretation 0(22) | 770( 5) 0.000 (22) | 0.429 (21)  0.000 (21)
accuracy/gender mismatch 156 (16) 3221 4.875(2) | 0.433(15)  0.105 (13)
accuracy/mistranslation 12749 ( 1) | 3805 ( 1) 3.351(9) | 0646 ( 1)  0.600 ( 1)
accuracy/omission 767 (10) | 187 (15) 4.102( 4) | 0.450(10)  0.320( 3)
accuracy/source language fragment 1690 ( 4) | 438( 8) 3858 (5) | 0464(6) 0218(7)
fluency/grammar 2088 ( 3) | 1052 ( 4) 1.985(11) [ 0.513( 4) 0.265( 6)
fluency/inconsistency 369 (12) | 137(17) 2.693( 8) | 0.442(12) 1.109 (12)
fluency/punctuation 262(14) | 1884 ( 2) 0.139(21) | 0.526 ( 3)  0.038 (15)
fluency/register 1491 ( 5) | 415(9) 3.593(7) | 0461(7) 0271(5)
fluency/spelling 978 ( 7) | 658( 6) 1.486 (13) | 0478 ( 5)  0.123(11)
fluency/text-breaking 192 (15) | 108 (19) 1.778 (12) | 0.437 (13)  0.031 (16)
locale convention/address format 2(21) 2(23) 1.000 (17) | 0.429 (21)  0.007 (20)
locale convention/currency format 7(20) 3(22) 2.333(10) | 0430 (18)  0.017 (18)
locale convention/time format 8(19) 8(20) 1.000 (18) | 0.430 (18)  0.018 (17)
non-translation! 975( 8) 39(20)  25.000( 1) | 0431 (16) 0459 ( 2)
other 267 (13) 87 (19) 3.069 (10) | 0.437(13)  0.070 (14)
source issue 0(22) | 1791 ( 3) 0.000 (22) | 0.429 (21)  0.000 (21)
style/archaic or obscure word choice 42(17) 14 (24) 3.000 (12) | 0.430(18)  0.011(19)
style/bad sentence structure 521(11) | 173 (16) 3.012(11) | 0.450(10)  0.197( 9)
style/unnatural or awkward 3620 ( 2) | 1996 ( 2) 1.814 (14) [ 0.558 ( 2) 0.201( 8)
terminology/inappropriate for context 1021 ( 6) 349 (10) 2.926( 7) | 0460 ( 8) 0.156 (10)
terminology/inconsistent 23 (18) 19 (19) 1.211(16) | 0.431 (16) -0.004 (23)

Table 2: Importance, count, and avg. weight (with
rank) for each error category in the WMT 24 en—de hu-
man evaluations. acc., and PDP scores (with ranks) are
included for oracle sentinel metrics which score trans-
lations based only the category’s ground truth MQM
erTors.
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Metric Segment-Wise Pearson  Global Pearson acCeq PDP

human-round2 0.490 ( 9) 0.656( 4) 0.586(5) 0568( 1)

human-round3 0.459 (15) 0722( 1) 0577(8) 0.548( 2)

Metric Segment-Wise Pearson  Global Pearson acCeq PDP MetricX-23-QE* 0511 ( 3) 0.626 ( 5) 0.596( 3) 0.501( 3)
- XCOMET-Ensemble 0.538 ( 2) 0.695(2) 0.604( 1) 0.488( 4)
metametrics 0.413( 1) 0475( 1) 0.561( 1) 0.408( 1) MetricX.23 0.507( 5) 0585( 6) 0603(2) 0474( 5
MetrieX-24-Hybrid-QE* 0.360 ( 7) 0.432(2) 0.530(4) 0407(2) XCOMET-QE-Ensemble* 0507 ( 6) 0679(3) 0588(4) 0463(6)
MetricX-24-Hybrid 0.398 ( 3) 0.430( 3) 0.539( 3) 0.400( 3) COMET 0.508 ( 4) 0432(18) 0.574( 9) 0449 ( 7)
gemba_esa* 0.405 ( 2) 0400( 6) 0539(2) 0356( 4) docWMT22CometDA 0.484 (10) 0.394 (21)  0.559 (14)  0.446( 8)
XCOMET 0.395( 4) 0427(4) 0.510(6) 0.346( 5) cometoid22-wmt22% 0.499 ( 7) 0.441(16) 0.578( 7) 0.401( 9)
COMET-22 0.383( 5) 0366 ( 9) 0.496(7) 0.340( 6) GEMBA-MQM* 0.482 (11) 0502 (11)  0.572(11)  0.399 (10)
metametrics_qe* 0.281 (16) 0405(5) 0516(5) 0314(7) BLEURT-20 0.492 ( 8) 0.484 (12)  0.572(10)  0.389 (11)
damonmonli 0.273 (18) 0.337(11) 0.472(13) 0.302( 8) Calibri-COMET22 0.477 (12) 0.413(20) 0.522(25)  0.380 (12)
CometKiwi* 0.333(11) 0.345 (10)  0.490 ( 8) 0.299( 9) Yisi-1 0.404 (19) 0.366 (22) 0.542(18) 0372 (13)
YiSi-1 0.309 (14) 0.307 (13)  0.458 (16)  0.298 (10) sescoreX 0.459 (14) 0.519(9) 0.563(13) 0359 (14)
BLEURT-20 0.349( 9) 0.368 ( 7) 0.484(11) 0.297 (11) mbr-metricx-ge* 0.543( 1) 0.571(7) 0.584(6) 0345(15)
BLCOM_1 0.374 ( 6) 0.327(12) 0.488( 9) 0.295(12) CometKiwi* 0.463 (13) 0475 (13)  0.569 (12)  0.341 (16)
MEE4 0.312(12) 0.240 (21)  0.446 (19) 0.280 (13) KG-BERTScore* 0.456 (16) 0451 (14)  0.556(15)  0.339 (17)
PrismRefMedium 0.351( 8) 0.267 (17) 0462 (15) 0.279 (14) BERTScore 0.355 (24) 0.325(23) 0.528(22) 0.336(18)
BERTScore 0.282 (15) 0.292 (15)  0.451 (18) 0.268 (15) docWMT22CometKiwiDA* 0.426 (18) 0.444 (15)  0.547 (16)  0.334.(19)
PrismRefSmall 0339 (10) 0276 (16) 0457 (17)  0.260 (16) MaTeSe 0.330 29) 0.554(8) 052821  0324(20)
chrfS 0275 (17) 0237 (22) 0444 (20) 0.256(17) XLSim 0.372 (22) 0239 (26) 0.527(23) 0320 21)
XCOMET-QE* 0310 (13) 0367( 8) 0463(14) 0251 (18) Calibri-COMET22-QF* 0.432 (17) 0441 (17) 0483 (32) 0318(22)
hiF 0211 (19) 0.192(25) 0436(23) 0.146 (19) MS-COMET-QE-22* 0.400 (20) 0310 (24) 0.546 (17) 0306 (23)
spBLEU 0.200 (20) 0218(24) 0436(22) 0.138 (20) ‘fl’]ke"g”"‘j 0'32(”27) 0.227(29) 0520 26) 0.201 @9
sentinel-cand-mqm* 0.140 (22) 0.262 (19) 0.481(12) 0.108 (21) chrf 0.336 28) 023228 0519@28) 030025
- 200spBLEU 0.343 (26) 0.237(27) 0.526 (24) 0274 (26)
bright-ge* 019521 0.301(14) 0.484(10) 0.103(22) embed_llama 0242 (32) 0250 (25) 0483 (31) 0.254 (27)
XLsimMgm* 0.056 (24) 0.224(23) 0438 (21) 0.082(23) MEEA 0360 (23) 0202(30) 0529(20) 0250 (28)
BLEU 0.078 (23) 0.079 (26)  0.435(26) 0.019 (24) BLEU 0310 31) 0.192(31) 0520(27) 0242 (29)
sentinel-ref-mqn 0.000 (25) 0.263 (18)  0.435(24)  0.000 (25) mre-score-labse-regular 0376 21) 0.111(32) 0.530(19)  0.208 (30)
sentinel-src-mgm* 0.000 (25) 0.243 (20) 0.435(24) 0.000 (25) prismRef 0.349 (25) 0516 (10) 0.518(29) 0.121 31)
random-sysname* 0.124 (33) 0.064 (33) 0.409 (34) 0.114 (32)

. eBLEU 0.317 (30) 20.011(34) 0512(30)  0.094 (33)

Table 3: The scores (and ranks) of the metrics as eval- prismSre* 0.102 (34) 0425(19) 0.426(33) -0.139 (34)

uated by Pearson, acc,,, and PDP using segment-level

correlation on the WMT’24 ja—szh dataset, sorted by Table 5: Scores (and ranks) of metrics evaluated by
PDP rank. QE metrics are marked with a *. Segment-Wise Pearson, Global Pearson, acceq, and

PDP on the WMT’23 en—de dataset. QE metrics are
marked with a *.

Metric Segment-Wise Pearson  Global Pearson aCCeq PDP
XCOMET-Ensemble 0.421( 3) 0.650( 1) 0543( 1) 0477( 1)
human-round3 0.393( 5) 0.611(5) 0522(8) 0463 (2)
Metric Segment-Wise Pearson  Global Pearson acCCeq PDP XCQMET'QE’E"Semhly 0380( 7) 0.647(3) 0.533(3) 0449(3)
MetricX-23-QE* 0.359 (12) 0.647 (2) 0527(5) 0442( 4)
metametrics 0.249( 2) 0339( 1) 0.686(4) 0285(1) human-round2 0403 ( 4) 0.572( 6) 0.523(7) 0431(5)
XCOMET 0241 ( 4) 0331(2) 0.688(2) 0.285(2) mbr-metricx-ge* 0436 ( 1) 0.489( 9) 0.537(2) 0431(6)
MetricX-24-Hybrid 0.241( 3) 0.326 (13) 0.685( 6) 0.275( 3) MetricX-23 0.373( 8) 0.625(4) 0531(4) 0428(7)
MetricX-24-Hybrid-QE* 0229 ( 5) 0299( 6) 0.685(7) 0.264(4) GEMBA-MQM?* 0434 ( 2) 0.449 (11)  0.522( 9) 0.408 ( 8)
XCOMET-QE* 0.204 ( 8) 0.308( 4) 0.687(3) 0.254(5) CometKiwi* 0.388 ( 6) 0442 (13) 0.525( 6) 0.399( 9)
bright-ge* 0.160 (14) 0.302( 5) 0.689( 1) 0.249( 6) KG-BERTScore* 0.369 (10) 0.430 (14)  0.516 (1) 0.392 (10)
sentinel-cand-mqm* 0.198 (11) 0.264 ( 8) 0.683(10) 0.229( 7) MaTeSe 0.325 (19) 0.511( 8) 0479 (26) 0.362 (11)
gemba_esa* 0.221( 7) 0.252(11) 0.683 (11)  0.227( 8) docWMT22CometKiwiDA* 0.340 (15) 0.387 (17) 0493 (19) 0.360 (12)
COMET-22 0.265( 1) 0.257( 9) 0.683(12) 0.227( 9) cometoid22-wmt22* 0.357 (13) 0.479 (10) 0.515(12) 0.352(13)
metametrics_qe* 0.153 (16) 0.286( 7) 0.686( 5) 0.207 (10) Calibri-COMET22-QE* 0.355 (14) 0.443 (12) 0491 (21) 0.348 (14)
CometKiwi* 0.201 (10) 0.214 (13) 0.684( 8) 0.205(11) BLEURT-20 0.371( 9) 0.378 (18)  0.518 (10)  0.347 (15)
BLCOM_I 0.228 ( 6) 0.227 (12) 0.681 (16)  0.189 (12) COMET 0.364 (11) 0.396 (15)  0.514 (13)  0.345 (16)
BLEURT-20 0.203 ( 9) 0.253(10) 0.681 (17)  0.185(13) MS-COMET-QE-22* 0.306 (22) 0367 (19) 0.498 (18) 0.324 (17)
BERTScore 0.183 (12) 0.179 (17)  0.682 (13)  0.143 (14) docWMT22CometDA 0.327 (18) 0.353(20) 0.493 (20) 0.324 (18)
MEE4 0.151 (17) 0.138(19)  0.683 (9) 0.135(15) Yisi-1 0329 (17) 0.290 (21)  0.504 (14)  0.321 (19)
YiSi-1 0.179 (13) 0.157(18) 0.681(18) 0.129 (16) sescoreX 0.295 (23) 0.536(7) 0.499 (16) 0.303 (20)
chrfS 0.150 (18) 0.123(20) 0.682(15) 0.121(17) BERTScore 0.309 (21) 0.236(22) 0499 (17) 0.294 (21)
damonmonli 0.088 (23) 0194 (15) 0.682(14)  0.100 (18) Calibri-COMET22 0.311 (20) 0.396 (16)  0.474 (28)  0.293 (22)
PrismRefMedium 0.147 (19) 0.116 (21)  0.680 (20)  0.090 (19) prismRef 0332 (16) 0.183(24)  0.504 (15) 0.284 (23)
hF 0.131 (20) 0.115(22) 0680 (24) 0087 (20) tokengram_F 0.262 (25) 0.060 (32) 0.485(23) 0.218 (24)
PrismRefSmall 0.153 (15) 0.114(23) 0.680(22)  0.086 (21) chrF 0263 (24) 0063 (31) 0.485(22) 0212 (25)
spBLEU 0.121 21) 0.113(24) 0.680(21)  0.067 (22) mre-.score-lubse-regular 0.251 (26) 0.145 (26) 0.481 (24) 0.207 (26)
BLEU 0.104 (22) 0.103 (25) 0.680 (23) 0.059 (23) XLSim 0218 (30) 0.111(28) 0464 31) 0.189 (27)
sentinel-ref-mqm 0.000 (25) 0.180 (16) 0.680 (25)  0.000 (24) £200spBLEU 0.220 28) 0.108 (29)  0.476(27) 0.169 (28)
et MEE4 0.236 (27) 0.105 (30)  0.480 (25) 0.163 (29)
sentinel-src-mgm* 0.000 (25) 0.194 (14)  0.680 (25)  0.000 (24)
XLsimMgm?* 0.018 (24) 0.032 (24) 0.681(19) -0.011 (26) eBLEU 0219 (29) 20.084 (34)  0.473(29) 0.156 (30)
- : : BLEU 0.208 (31) 0.119(27) 0.472(30) 0.152(31)
embed_llama 0.138 (32) 0.161 (25) 0447 (32) 0.120 (32)
. prismSrc* 0.078 (33) 0.223 (23) 0.421(33) 0.054 (33)
Table 4: The scores (and ranks) of the metrics as eval- random-sysname™ 0019 (34) 001833 0381 (34) 0021 (34)

uated by Pearson, acc,,, and PDP using segment-level

correlation on the WMT’24 en—es dataset, sorted by ~ Table 6:  Scores (and ranks) of metrics evaluated by

PDP rank. QE metrics are marked with a *. Segment-Wise Pearson, Global Pearson, acceq, and
PDP on the WMT’23 zh—en dataset. QE metrics are
marked with a *.
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