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Abstract

Training large language models (LLMs) with
chain-of-thought (CoT) supervision has proven
effective for enhancing their reasoning abilities.
However, obtaining reliable and accurate rea-
soning supervision remains a significant chal-
lenge. We propose a scalable method for gen-
erating a high-quality CoT supervision dataset
by leveraging the determinism of program exe-
cution. Unlike existing reasoning dataset gen-
eration methods that rely on costly human an-
notations or error-prone LLM-generated CoT,
our approach extracts verifiable, step-by-step
reasoning traces from code execution and trans-
forms them into a natural language CoT rea-
soning. Experiments on reasoning benchmarks
across various domains show that our method
effectively equips LLMs with transferable rea-
soning abilities across diverse tasks. Further-
more, the ablation studies validate that our
method produces highly accurate reasoning
data and reduces overall token length during
inference by reducing meaningless repetition
and overthinking.1

1 Introduction

Large language models (LLMs) have demonstrated
strong performance across a range of complex rea-
soning tasks. A key development in this area is
chain-of-thought (CoT) training, which enhances
LLMs by encouraging the generation of intermedi-
ate reasoning steps before producing a final answer
(Chung et al., 2024; Ho et al., 2022; Magister et al.,
2022; Li et al., 2023). CoT supervision has proven
especially effective in improving the generalization
and interpretability of LLMs, and has become a
central component in the development of reasoning
models (Ye et al., 2025; Muennighoff et al., 2025;
Team, 2025; Chang et al., 2025).

1Code and data are available at https://github.com/
luka-group/Execution-Grounded-Reasoning

Despite its success, obtaining high-quality CoT
data at scale remains a major challenge for super-
vising the reasoning LLMs. Existing CoT datasets
are typically constructed in two ways. First, human-
annotated CoT examples (Chung et al., 2024;
Cobbe et al., 2021) provide high-quality and ac-
curate reasoning guidance but are costly to acquire
and non-scalable. Second, many recent efforts rely
on bootstrapped CoT data generated by prompting
existing LLMs (Magister et al., 2022; Muennighoff
et al., 2025). However, these synthetic data often
suffer from intermediate reasoning errors, inconsis-
tencies, and lack of grounding (Zheng et al., 2024a;
Lyu et al., 2023; Chen et al., 2025). Although
these methods verify and filter the CoT data at ei-
ther the process or outcome level (Zelikman et al.,
2022; Lightman et al., 2023; Luo et al., 2024; Li
et al., 2025), they still fall short in guaranteeing the
correctness of intermediate reasoning steps, under-
mining the reliability of the supervision signal.

In this work, we propose a scalable method for
generating verifiable CoT data to supervise the rea-
soning process of LLM by leveraging the deter-
minism of program execution. Our core insight is
that when problems can be formalized and solved
with executable code, the resulting execution traces
(Åkerblom et al., 2014) provide inherently correct,
step-by-step reasoning aligned with the task. These
traces offer a verifiable and error-free alternative to
LLM-generated CoTs and can serve as a trustwor-
thy source of supervision.

Specifically, we begin by sourcing open-source
Python programs and executing them with a de-
bugger to extract rich execution traces, including
intermediate variable values, line-level execution
order, and program control flow. Since the resulting
raw execution traces lack natural language reason-
ing structures, we employ LLMs to translate the
raw execution traces into fluent, human-readable
rationales that resemble natural CoT data, effec-
tively combining the correctness guarantees of ex-
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Given a string s, return true if 
it is a palindrome, or else false

Question

Solution Code

Raw Execution Trace

s = "Race a car"

Input 

   1. First, leave the characters that are alphanumeric.
      ...
   5. compare the string "raceacar" to its reverse:
      - They are not the same.
   Therefore, the final answer is: **false**.

TranslatorCode Executor

Translated Execution Trace

+ Debugger

Figure 1: An overview of our method. The translated execution trace is grounded in code execution, making it a
reliable and accurate source of reasoning supervision for the LLM.

ecution with the expressive power of LLMs. Our
method offers a scalable, annotation-free pipeline
for generating high-quality and accurate reasoning
supervision.

Experiments show that LLMs trained with our
method demonstrate its effectiveness, achieving
robust performance across coding, math, and rea-
soning tasks compared to baseline approaches. Ab-
lation studies further confirm that our method im-
proves data quality and reduces overall token length
by mitigating meaningless repetition and overthink-
ing.

2 Method

2.1 Problem Settings
Our goal is to enhance the reasoning capabilities
of LLMs by supervising them with accurate and
verifiable CoT reasoning traces. Formally, given
an input sequence x = [x1, . . . , xm], an LLM pθ
generates an output sequence y = [y1, . . . , yn]
through a sequence of intermediate reasoning steps
s = [s1, . . . , sl]. The overall generation process is
defined as:

pθ(y|x) = pθ(y|s,x)
l∏

t=1

pθ(st|s<t,x),

where the model first generates each reasoning step
s conditioned on the input x and previous steps s<t,
followed by generating the final answer y based on
the full reasoning trace s and the original input x.

High-quality CoT data is crucial for enabling
strong reasoning performance in LLMs (Lightman
et al., 2023). To collect CoT data at scale, existing
approaches adopt a generate-then-filter paradigm:
they first sample CoTs using LLMs and then filter
out low-quality ones. Outcome-level filtering typi-
cally checks whether the final answer y matches the
ground truth (Xiong et al., 2025), but this can miss
flawed reasoning that coincidentally produces cor-
rect answers. Process-level filtering is more desir-
able as it evaluates intermediate reasoning quality,

but remains challenging for current LLMs (Zheng
et al., 2024a).

In this work, we propose a fundamentally dif-
ferent approach: constructing CoT data from code
execution traces, which are inherently step-by-step,
accurate, and causally linked to the final outcome,
making them a natural source of accurate and veri-
fiable reasoning supervision. In the following sec-
tions, we describe how we construct high-quality
CoT data, which is then used to fine-tune the LLM
via supervised fine-tuning.

2.2 Execution Trace Acquisition

To efficiently obtain reliable and accurate CoTs, we
leverage the abundance of coding data, which pro-
vide supervision in the form of problem–solution
code pairs. These pairs allow us to ground reason-
ing supervision in executable programs that reflect
correct problem-solving logic. Specifically, given
a solution code snippet c and an input x = [xq;xi],
where xq is a natural language problem description
and xi is a concrete test input (e.g., a specific string
or numerical input), we execute c using an execu-
tion tracing tool to obtain the returned answer y
and a detailed execution trace strace:

y, strace = Code_Executor(c,xi).

We employ a Python debugging tool called Snoop
(Hall, 2024) as the execution tracing tool, which
records detailed line-by-line execution signals, in-
cluding function calls and returns, executed lines
of code, and the updated local variable values. An
example of a Snoop-generated execution trace is
provided in Figure 1.2 The resulting dataset is
denoted as Dtrace = (x, strace,y), which contains
verifiably accurate execution trace strace and the
correct final output y for each instance, grounded
in a verifiable code executor.

2A more illustrative example of an execution trace is pro-
vided in Appendix B
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2.3 Execution Trace Translation

Although the execution trace strace captures the ver-
ifiable, step-by-step problem solving logic, its for-
mat differs substantially from natural language CoT
reasoning. Therefore, directly fine-tuning on such
traces may hinder generalization and risks catas-
trophic forgetting on other reasoning tasks. To
better align the supervision signals with natural lan-
guage reasoning, we transform the raw trace strace
into a natural language CoT snl_trace = (s1, ..., sm)
using an LLM as a Translator:

snl_trace = Translator(x, strace).

The translator is prompted to emulate a human
solving the problem by mentally tracing the code.
It is instructed to express each reasoning step in
natural language while faithfully reflecting the ex-
act values and logic observed during code exe-
cution. This ensures that the output mirrors the
precise reasoning behind the program’s behav-
ior—grounded in execution, yet phrased as nat-
ural, intuitive, step-by-step thinking. The resulting
dataset, Dnl_trace = (x, snl_trace,y), provides high-
quality CoT traces that are both verifiable and lin-
guistically aligned with typical LLM data, making
them ideal for supervised fine-tuning.

3 Experiment

To assess whether supervision from code execution
traces genuinely enhances reasoning ability, we
conduct comprehensive experiments by compar-
ing our approach with baseline datasets specifically
designed to improve the reasoning capabilities of
LLMs. In this section, we present the experimenta-
tion details and discuss the results.

3.1 Experiment Setup

Data Generation We select PyEdu-R, a subset of
data from the Python-Edu (Ben Allal et al., 2024) as
the source of supervision dataset. PyEdu-R focuses
on STEM-related problems such as logic puzzles,
math-related tasks, scientific computation, and sys-
tem modeling. Since the original data only contains
code, we utilize the preprocessed version that con-
tains LLM-generated problem and the input-ouput
pairs, made publicly available by Li et al. (2025).
We obtain execution traces by running the code
on the inputs and then translate these traces us-
ing Qwen3-32B as the Translator. This process

yields approximately 15K data instances.3

Baselines We compare our method against sev-
eral baselines designed to enhance LLM reasoning
through fine-tuning. The training setup remains the
same, with the only difference being the dataset
curation process from the source data. The com-
pared baselines are: (1) No Training, where the
base LLM is evaluated without further fine-tuning;
(2) Code Generation, where the model is trained
to generate solution code c given a question xq;
(3) Raw Execution Trace, where the model learns
to generate the raw execution trace strace directly
from the code c and input xi, bypassing the natural
language translation; and (4) CodeI/O (Li et al.,
2025), where the model is trained on CoT traces
steacher produced by a teacher model, followed by
a binary output correctness feedback. For consis-
tency, we use the same model employed in our
Translator as the teacher in this baseline.

Models We conduct SFT on our data using
two target models: Qwen3-4B and Qwen3-8B.
We use Qwen3-32B as both the translator in our
method and the teacher model for the CodeI/O
baseline. For both methods, we enable the
enable_thinking=True option and extract the
output after the thinking phase for the translation
and the CoT generation results.

Evaluation Benchmark We evaluate our method
and the baselines on widely adopted reasoning
benchmarks including MATH500 (Lewkowycz
et al., 2022), BBH (Suzgun et al., 2022), AGIEval
(Zhong et al., 2023), and GPQA (Rein et al., 2024).
Additionally, we utilize LiveBench (White et al.,
2025), a recent comprehensive benchmark that con-
tains diverse categories of tasks. We focus on the
math, coding, and reasoning categories, as our pri-
mary goal is to evaluate the reasoning capabilities
of the methods. Specifically, we use the 2024-11-
25 release, which is currently the most up-to-date
version.

3.2 Experiment Results

The experiment results of Qwen3-4B is presented in
Table 1.4 Overall, our method outperforms all base-
lines, demonstrating its effectiveness. The Code
Generation and Raw Execution Trace baselines per-
form poorly across the board. Although both are

3We also include more details on data generation in Ap-
pendix A.2 and Appendix A.3

4The experiment result of Qwen3-8B is presented in Table 6
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Methods LiveBench MATH500 BBH AGIEval GPQA Avg
Code Math Reasoning

No Training 43.2 59.5 64.2 86.4 75.5 31.6 36.3 56.7
Code 28.5 33.1 51.7 82.4 69.7 31.2 33.9 47.2
Raw Trace 8.3 3.1 38.0 84.8 63.5 30.2 27.0 36.4
CodeI/O 39.3 62.7 62.2 86.6 81.3 32.4 33.9 56.9
Ours 44.5 61.0 65.8 86.4 81.4 32.4 38.1 58.5

Table 1: Experiment results (accuracy) of Qwen3-4B. Bolded scores indicate the highest performance.

derived from code-based supervision, they suffer
from a misalignment with natural language reason-
ing formats. In particular, training on raw traces
or code generation alone does not equip the model
with the ability to produce step-by-step reasoning
in natural language, leading to limited transfer and
degraded performance—especially in reasoning-
heavy tasks.

CodeI/O baseline remains strong on mathemat-
ical reasoning but suffers from a significant drop
in performance on coding and science domains.
This is likely because the reasoning structure of
the teacher model, which is primarily optimized
for math, is effectively distilled into the student
model—potentially at the cost of performance in
other domains. In contrast, our method achieves
balanced improvements across all reasoning do-
mains.

3.3 Ablation Studies

In this section, we present ablation studies evaluat-
ing the quality of our data and its effectiveness in
reducing repetition and overthinking during infer-
ence.

Better Quality Data. To assess the quality of the
data generated by our method, we evaluate the cor-
rectness of (1) final output and (2) intermediate
reasoning steps. We provide Qwen3-32B with the
generated solution and the ground truth answer
to determine if it reaches the correct answer. For
evaluating intermediate reasoning steps, we ran-
domly select 200 samples and use a strong rea-
soning model, OpenAI-o3, to identify any errors
within the reasoning process.

Table 2 shows the accuracy of both the final
outputs and intermediate reasoning steps for our
method and CodeI/O. Our method achieves higher
accuracy than CodeI/O on both metrics, with a par-
ticularly larger margin in intermediate step accu-
racy. This demonstrates that our method produces
more accurate reasoning steps, leading to the cor-

Method Output Intermediate

CodeI/O 87.3 73.0
Ours 98.3 91.5

Table 2: Comparison of correctness accuracy of final
output and intermediate reasoning steps on LiveBench.

rect final output, as it is grounded in reliable code
execution.

Reducing Repetition and Overthinking. To eval-
uate the generation efficiency of the models trained
on our method, we compare token lengths in Ta-
ble 3. We show that models trained with our ap-
proach generate approximately 20% fewer tokens
for Qwen3-4B and 30% fewer tokens for Qwen3-8B,
compared to No Training baseline.5 Moreover, our
method substantially reduces instances where the
model reaches the maximum token limit due to
overthinking or repetitive output. Importantly, this
reduction in token length does not compromise per-
formance, as demonstrated in Section 3.2.

3.4 Case Study

To further examine our data, we present two ex-
amples of reasoning trace in Table 9 and Ta-
ble 10. The first example demonstrates a case
where the CodeI/O solution produces the correct
final output despite an error in an intermediate
step—specifically, it incorrectly lists the permuta-
tion of "hrf" in step 2—while our solution correctly
completes all intermediate steps. The second ex-
ample shows a case where both the intermediate
reasoning and the final output are incorrect in the
CodeI/O solution, due to an incorrect formula used
at the beginning. In contrast, our solution produces
correct calculations throughout, guided by the exe-
cution trace.

5We include Qwen3-8B results in Table 5
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Method Avg Token Max Token Reached

No Training 8804 123
CodeI/O 7684 91
Ours 7068 72

Table 3: Token length statistics on the LiveBench evalu-
ation using Qwen3-4B.

4 Related Works

Reasoning Distillation from Teacher Models A
common approach to distill reasoning ability is
supervised fine-tuning on reasoning chains from
stronger teacher models (Ho et al., 2022; Magister
et al., 2022; Li et al., 2023). More recent work
leverages test-time scaling to transform instruction-
tuned models into Meta Chain-of-Thought (Meta-
CoT; Xiang et al. 2025), which first generate
thought tokens before solving the problem. Our
work is orthogonal to these approaches that lever-
age test-time scaling, and aims to improve the
model’s inherent step-by-step reasoning ability.

Training on Code for Reasoning Early studies
have shown that LLMs trained on code excel at var-
ious reasoning tasks, including commonsense rea-
soning (Madaan et al., 2022), causal reasoning (Liu
et al., 2023, 2024), and mathematical reasoning
(Azerbayev et al., 2023; Shao et al., 2024). How-
ever, these findings are limited to models heavily
pre-trained on code and do not deeply investigate
how code semantics and structure influence reason-
ing abilities.

Recent studies have leveraged code execution
traces to enhance reasoning on coding tasks, fo-
cusing on applications like vulnerability detection,
program repair, and code generation (Ding et al.,
2024b; Ni et al., 2024; Ding et al., 2024a). In con-
trast, our work targets task-agnostic, step-by-step
reasoning that extends beyond the code domain.

The most closely related work is by Li et al.
(2025), who train models on input–output predic-
tion tasks using CoT rationales. While both ap-
proaches leverage CoT for output prediction, our
method uses execution traces as grounded supervi-
sion, whereas theirs relies solely on binary output
correctness.

5 Conclusion

We introduce a novel approach that leverages code
execution traces as verifiable and easily scalable su-
pervision for enhancing step-by-step reasoning in
LLMs. Our method incorporates both the ensured

correctness of execution with the natural CoT rea-
soning steps to provide LLMs with high-quality
reasoning supervision. Experiments across rea-
soning tasks show that our approach outperforms
prior distillation methods, offering a reliable path
toward improving LLM reasoning with grounded,
annotation-free supervision.
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A Additional Implementation Details

A.1 Training
We train all models using LLaMA-Factory (Zheng
et al., 2024b) on 8 NVIDIA A100-SXM4-40G
GPUs. We use full parameter fine-tuning across all

the models in our experiment. Training hyperpa-
rameters are detailed in Table 4.

Hyperparameter Value

Precision BF16
Optimization Flash Attention2
Max Token Length 8192
Batch Size 128
Learning Rate 5× 10−6

LR Scheduler Linear
Warmup Ratio 0.03
Weight Decay 0.0
Epochs 1.0
DeepSpeed ZeRO-3

Table 4: Training hyperparameters used for the experi-
ments.

A.2 Code Execution Filtering

Before code execution, we filter out data instances
where the solution code uses randomization li-
braries or the input is excessively large, to ensure
deterministic and stable execution.

During code execution, to reduce execution time
and computational overhead when executing codes
at scale, we discard any data instance where code
execution exceeds 5 seconds or results in a runtime
error. Also, to avoid excessively long execution
traces, we filter out execution traces with more
than 300 lines.

A.3 Data Generation Configuration

We use the default generation configuration of the
Qwen3-32B translator. Specifically, we set the max-
imum token length to 16,382, with a temperature
of 0.6, a top-p value of 0.95, and a top-k value of
20.

A.4 Evaluation Configuration

During evaluation, we set the temperature to 0.0
and use a maximum token length of 16,382. We en-
able the enable_thinking=True option to allow
the model to think before generating solutions.

A.5 Prompt Templates

We present the prompt templates used in the exper-
iment in Table 8.

B Execution Trace Example

Table 7 presents an example of executable code
alongside its execution trace generated by Snoop.
To enable tracing, the @snoop decorator must be
applied to the main entry function. The resulting
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execution trace includes function calls and return
values, executed lines annotated with line numbers,
and updated variable values.

C Additional Experiment Results

We present the experiment results for Qwen3-8B in
Table 6. Similar to the results of Qwen3-4B, our
method overall outperforms all the baselines with
particular strength in the coding benchmark.

Additionally, we present token length analysis
of Qwen3-8B on LiveBench in Table 5

Method Avg Token Max Token Reached

No Training 9030 116
CodeI/O 7362 83
Ours 6289 54

Table 5: Token length statistics on the LiveBench evalu-
ation using Qwen3-8B.

D Licenses

We include the licenses of the datasets and models
we used in this work.

Dataset License:

• LiveBench: Apache-2.0

Model Licenses:

• Qwen3-4B: Apache-2.0

– https://huggingface.co/Qwen/
Qwen3-4B

• Qwen3-8B: Apache-2.0

– https://huggingface.co/Qwen/
Qwen3-8B

• Qwen3-32B: Apache-2.0

– https://huggingface.co/Qwen/
Qwen3-32B
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Methods LiveBench MATH500 BBH AGIEval GPQA Avg
Code Math Reasoning

No Training 45.8 64.4 67.1 88.0 74.4 31.5 36.3 58.2
Code 37.5 14.4 50.4 86.6 63.9 32.1 35.2 45.7
Raw Trace 33.5 20.6 22.8 86.0 64.5 31.2 33.7 41.7
CodeI/O 37.1 62.2 69.8 87.6 77.0 32.0 39.5 57.8
Ours 58.2 63.1 69.2 88.8 78.6 31.9 40.8 61.5

Table 6: Experiment results (accuracy) of Qwen3-8B. Bolded scores indicate the highest performance.

Executable Code Execution Trace generated by Snoop

import snoop # Import Snoop library

@snoop # Add the decorator to trace the function
def main_solution(num):

if num < 0:
return '-' + str(main_solution(-num))

elif num < 7:
return str(num)

else:
return str(main_solution(num // 7)) + str(

num % 7)
main_solution(num =100) # Function call

>>> Call to main_solution # Function call
...... num = 100 # Input

38 | def main_solution(num):
39 | if num < 0: # Executed line of code
41 | elif num < 7:
44 | return str(main_solution(num // 7))

+ str(num % 7)
>>> Call to main_solution
...... num = 14 # Variable value

38 | def main_solution(num):
39 | if num < 0:
41 | elif num < 7:
44 | return str(main_solution(num //

7)) + str(num % 7)
>>> Call to main_solution
...... num = 2

38 | def main_solution(num):
39 | if num < 0:
41 | elif num < 7:
42 | return str(num)

<<< Return value from main_solution: '2'
44 | return str(main_solution(num //

7)) + str(num % 7)
<<< Return value from main_solution: '20'

44 | return str(main_solution(num // 7))
+ str(num % 7)

<<< Return value from main_solution: '202' # Return

Table 7: An example of an execution trace generated by the Python tool called Snoop
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Execution Trace Translation Template

Given a question, an input to the question, and an execution trace that solves the question, your job is to translate the
execution trace into a step-by-step thinking process. Here are some rules for translation:
- Use the exact values from the execution trace during the thought process to ensure the correctness of the thought process.
- Do not write code in your thinking process.
- Pretend you are not given the execution trace and you are solving the question by tracing the code by yourself. So, you
should not mention that you are following the execution trace even when you are thinking.
**Question**
{question}
**Input**
{input}
**Execution Trace**
“‘
{trace}
“‘

CodeI/O Solution Generation Template

You are given a question that requires some input and output variables as follows:
{question}
—-
You are also given a solution code that solves the question:
{code}
—-
Given the following input:
{input}
Predict the output of the question by tracing the given solution code step by step to reach the final output.

User Prompt Template for Raw Execution Trace Baseline

You are given a question that requires some input and output variables as follows:
{question}
—-
Here is the solution code that solves the question:
“‘ {code} “‘
Given the following input:
{input}
Generate a step-by-step execution trace of by tracing the given solution code step by step to reach the final output.

User Prompt Template for Code Generation Baseline

You are given a question that requires some input and output variables as follows:
{question}
—-
Generate a solution code that solves the question.

User Prompt Template for CodeI/O and Our Method

You are given a question that requires some input and output variables as follows:
{question}
—-
You are also given a solution code that solves the question:
{code}
—-
Given the following input:
{input}
Predict the output of the question by tracing the given solution code step by step to reach the final output.

Table 8: Prompt Templates used in the experiments
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Problem: Given a string consisting of lowercase letters, what are all the possible unique permuta-
tions of the string?

Our Solution CodeI/O Solution

To solve the problem of generating all unique
permutations of the input string `'hrf '`, we
follow these steps:

1. ** Convert the string to a list of characters **:
The input string `'hrf '` is split into individual

characters: `['h', 'r', 'f']`. This allows
us to rearrange the characters
systematically.

2. ** Generate all permutations **:
Using a permutation algorithm or library function

, we compute all possible orderings of the
characters. For a 3-character string with
unique elements , there are $3! = 6$
permutations. The permutations are:

- ('h', 'r', 'f')
- ('h', 'f', 'r')
- ('r', 'h', 'f')
- ('r', 'f', 'h')
- ('f', 'h', 'r')
- ('f', 'r', 'h')

3. ** Convert permutations to strings **:
Each permutation tuple is joined into a string:
- ('h', 'r', 'f') -> 'hrf '
- ('h', 'f', 'r') -> 'hfr '
- ('r', 'h', 'f') -> 'rhf '
- ('r', 'f', 'h') -> 'rfh '
- ('f', 'h', 'r') -> 'fhr '
- ('f', 'r', 'h') -> 'frh '

4. ** Return the final list **:
The resulting list of unique permutations is:
`['hrf ', 'hfr ', 'rhf ', 'rfh ', 'fhr ', 'frh ']`.

This approach ensures all permutations are generated
efficiently , leveraging the uniqueness of the

input characters to avoid duplicates.

The input string is 'hrf ', which consists of three
distinct lowercase letters. The solution code
generates all possible permutations of these
characters. Here 's the step -by -step breakdown:

1. ** Convert the input string to a list of
characters **:

char_list = ['h', 'r', 'f']

2. ** Generate permutations **:
Using itertools.permutations , the code calculates

all possible orderings of the three unique
characters. Since there are no duplicates ,
the total permutations are $3! = 6$:

- ('h', 'r', 'f')
- ('h', 'f', 'r')
- ('r', 'h', 'f')
- ('r', 'f', 'h')
- ('f', 'h', 'r')
- ('f', 'r', 'h')

3. ** Convert tuples to strings **:
Each permutation tuple is joined into a string:
- 'hrf '
- 'hfr '
- ’rhn’ » ERROR: ’rhf’
- 'rfh '
- 'fhr '
- 'frh '

4. ** Final output **:
The list of unique permutations is returned as:

python
['hrf ', 'hfr ', 'rhf ', 'rfh ', 'fhr ', 'frh ']

** Answer :**
The output is a list containing all 6 unique

permutations of the input string 'hrf ', as
shown above.

Table 9: An example of CodeI/O where the intermediate step is incorrect but the final output is correct. Our solution
refers to the exact permutation values in the execution trace, which makes it easier to get the intermediate steps
correct.
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Problem: In a historical game of elimination, a group of people stand in a circle. Starting from a
given person, every k-th person is eliminated until only one person remains. Given the number
of people in the circle and the step count, which position in the circle will be the last remaining
person? The input is {’n’: 17, ’k’: 3}

Our Solution CodeI/O Solution

To solve the Josephus problem for `n = 17` and `k =
3`, we simulate the elimination process step by
step. Here 's the reasoning process:

1. ** Initial Setup **:
The people are arranged in a circle with

positions `[1, 2, 3, ..., 17]`. The
elimination starts at position 1, and every
3rd person is removed.

2. ** Recursive Elimination **:
The Josephus problem uses the formula:
$$
J(n, k) = (J(n-1, k) + k) \mod n
$$
where $ J(1, k) = 0 $ (0-based index). Since the

problem uses 1-based indexing , the final
result is $ J(n, k) + 1 $.

3. **Step -by-Step Calculation **:
Compute $ J(n, 3) $ for $ n = 1 $ to $ 17 $:
- $ J(1) = 0 $
- $ J(2) = (0 + 3) \mod 2 = 1 $
- $ J(3) = (1 + 3) \mod 3 = 1 $
- $ J(4) = (1 + 3) \mod 4 = 0 $
- $ J(5) = (0 + 3) \mod 5 = 3 $
- $ J(6) = (3 + 3) \mod 6 = 0 $
- $ J(7) = (0 + 3) \mod 7 = 3 $
- $ J(8) = (3 + 3) \mod 8 = 6 $
- $ J(9) = (6 + 3) \mod 9 = 0 $
- $ J(10) = (0 + 3) \mod 10 = 3 $
- $ J(11) = (3 + 3) \mod 11 = 6 $
- $ J(12) = (6 + 3) \mod 12 = 9 $
- $ J(13) = (9 + 3) \mod 13 = 12 $
- $ J(14) = (12 + 3) \mod 14 = 1 $
- $ J(15) = (1 + 3) \mod 15 = 4 $
- $ J(16) = (4 + 3) \mod 16 = 7 $
- $ J(17) = (7 + 3) \mod 17 = 10 $.

Adjusting to 1-based indexing: $ 10 + 1 = 11 $.

4. **Final Result **:
After all eliminations , the last remaining person

is at position **11**.

** Answer **:
The last remaining person is in position `11`.

To solve the Josephus problem for `n = 17` and `k =
3`, we simulate the recursive elimination
process as implemented in the provided code.
The goal is to determine the position of the
last remaining person in a circle of 17
individuals , where every 3rd person is
eliminated in a clockwise fashion.

---

### ** Understanding the Code Logic **

The recursive function `josephus_problem(array , k,
index)` works as follows:

- **Base Case :** When only one person remains (`len(
array) == 1`), return that person 's position.

- ** Recursive Step :**

- Calculate the index of the next person to be
eliminated using `(index + k) % len(array)`.

- Remove the person at that index.
- Call the function recursively with the updated

array and the new index (which is the index
of the next person after the eliminated one).

In the `main_solution(n, k)` function:
- An array is initialized with positions from `1` to

`n`.
- The recursive function is called with `k - 1` to

adjust for zero -based indexing.

---

### **Step -by -Step Simulation **

We simulate the recursive calls manually for `n =
17`, `k = 3`, and track the eliminations:

1. Start with array: `[1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17]`, index = 0, k
= 2.

2. Eliminate index `(0 + 2) % 17 = 2` -> remove `3`.
3. Eliminate index `(2 + 2) % 16 = 4` -> remove `6`.
...
16. Eliminate index `(3 + 2) % 3 = 0` -> remove `4`.
17. Eliminate index `(0 + 2) % 2 = 0` -> remove

`11`.

At this point , only `13` remains.

---

### **Final Answer **
The last remaining person is at position **13**.

Table 10: An example of CodeI/O where an intermediate reasoning is wrong and the final answer is incorrect. In
contrast, our solution correctly derives the formula, as shown in the execution trace, whereas CodeI/O uses an
incorrect one.
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