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Abstract

Efficient Key-Value (KV) cache management
is essential for processing long text sequences
in large language models (LLMs), where mem-
ory constraints often limit performance. Con-
ventional KV eviction strategies, such as top-k
selection based on attention scores, depend on
static heuristics that fail to capture the evolv-
ing implicit dependencies among tokens dur-
ing inference. To overcome this, we propose
GraphKYV, a graph-based framework that rede-
fines token selection for KV cache compres-
sion. In GraphKYV, tokens are modeled as
nodes with importance scores, and edges rep-
resent their similarity relationships. Through
a decay-signal-propagation mechanism, token
importance is dynamically updated by propa-
gating information across the graph, enabling
adaptive retention of the most contextually sig-
nificant tokens. GraphKV can be seamlessly
utilized in existing KV cache eviction methods
such as SnapKV and PyramidKYV in a plug-and-
play manner. Our code is publicly available at
GitHub.

1 Introduction

Large language models (LLMs) have enhanced pro-
ficiency in processing long-text, improving per-
formance in multi-turn dialogues (Chiang et al.,
2023), document summarization (Zhang et al.,
2024), question answering (Bai et al., 2023a), in-
formation retrieval (Zhu et al., 2023), and code gen-
eration (Li et al., 2025). New models such as GPT-
4 (Achiam et al., 2023), Claude 3.5 (Anthropic,
2024), LLaMA 3.1 (Grattafiori et al., 2024), and
Mistral Large 2 have extended token processing
capacities beyond 128K. In the context of long-text
processing, key value caching (KV cache) (Yang
et al., 2024; Wu et al., 2024) is a crucial technique
for improving the efficiency of LLMs. As the con-
text length grows, the size of the KV cache in-
creases linearly, leading to significant memory and
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Figure 1: Overview of GraphKYV. Tokens are defined
as nodes with their initial importance scores. The co-
sine similarity between tokens is defined as the edges.
GraphKV aims to firstly identify K most important
nodes (e.g., “love”, K=1), and then propagate decay
signal to their most adjacent tokens (e.g., “like” and
“great”) to obtain diverse retained KV. This propagation
can be performed one or multiple times.

computational overhead. Liu et al. (2024); Singha-
nia et al. (2024) partially address this issue by lever-
aging low-rank decomposition to approximate the
full-rank KV cache during the training phase. How-
ever, efficiently optimizing the key-value cache
without extra training is vital for inference on long
contexts under memory limitations, especially in
standard deployment scenarios with a fixed model
architecture.

Building on training-free approaches to optimize
the key-value cache, token eviction has emerged
as a viable and effective method to compress the
KV cache by selectively removing less important
tokens. The core challenge in token eviction lies
in accurately identifying and retaining the most
critical tokens while discarding redundant ones,
without compromising the model’s performance.

Most existing token eviction strategies (Zhang
et al., 2023; Li et al., 2024; Cai et al., 2024; Guo
et al., 2024) reduce KV cache size via identifying
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important tokens based on their importance scores
(e.g., attention scores). Then, as shown in Figure 1,
a static selection is utilized to remove the KV cache
of the redundant tokens and only retain the most im-
portant ones. Such a one-stage selection can iden-
tify the most representative tokens (i.e., tokens
which are most relevant to the following query),
but always suffers from the problem of duplication,
since the important tokens usually contain similar
semantics, as shown in Figure 2 and will be dis-
cussed in Section 3. This observation highlights
that retaining multiple tokens with high importance
can lead to redundancy if they are highly similar,
while the other less important but dissimilar tokens
that contain more diverse semantic information can
contribute uniquely to the overall context.

To bridge the gap, as shown in Figure 1, we
propose GraphKYV, which formulates KV cache
as a graph, employing a decay-signal-propagation
mechanism in the graph for importance propaga-
tion among tokens, enabling dynamic KV selection.
Inspired by graph-based methods, where dynamic
node updating mechanisms iteratively refine node
states by aggregating information from neighbors,
we construct a graph where tokens are defined as
nodes, and the similarities among tokens are rep-
resented as edges. The importance scores defined
by any previous KV cache eviction methods serve
as the initial value for each node. Concretely, in
the first step, we select only a few tokens (K) with
the highest importance scores and compute their
cosine similarity with other tokens to initialize the
graph. In the second step, we perform a decay-
signal-propagation over the graph, reducing the
importance scores of the tokens that are most adja-
cent (i.e., adjacent) to the previously selected im-
portant nodes. Such a negative propagation helps to
reduce the possibility of retaining multiple highly
similar tokens, and it can be performed by one
or all multiple times. Finally, we remove the KV
cache of tokens with lower scores after the propa-
gation. Based on GraphKYV, the retained KV cache
can be both representative and diverse, minimizing
the information loss from KV eviction.

Notably, GraphKYV is not a new KV eviction
method that introduces a new important score, it
is a framework that can be directly applied to any
previous KV cache eviction methods in a plug-
and-play manner. The only additional computa-
tion in GraphKYV is to compute the cosine simi-
larity between the selected K most important to-
kens and other tokens. Since we define K << N,

such a computation shows linear complexity as
O(N x K) ~ O(N). which is ignorable. Ex-
perimental results validate GraphKV’s effective-
ness. For example, on the LongBench QA task,
GraphKYV outperforms the suboptimal Knorm (De-
voto et al., 2024) method by 45.88% and achieves
approximately 3% improvement over state-of-the-
art models SnapKV (Li et al., 2024) and Pyra-
midKV (Cai et al., 2024) with a KV cache size
of 512 on the LLaMA-8B model. Additionally,
GraphKV demonstrates superior performance on
the Needle in a Haystack benchmark, further high-
lighting its ability to retain critical context details
in long-context scenarios.
In summary, our contributions are as follows:

* Formulation of the KV cache as a graph, with
tokens as nodes and semantic similarities as
edges, enables dynamic modeling of token
relationships for efficient eviction.

* A decay-signal-propagation mechanism in
GraphKYV iteratively propagates decay infor-
mation to suppress redundant tokens, leverag-
ing token similarity to prioritize diverse and
representative context.

» Extensive experiments on LongBench and
Needle-in-a-Haystack benchmarks demon-
strate that GraphKV can be applied to any
previous KV cache eviction methods in a plug-
and-play manner with significant accuracy im-
provements under the same compression ratio.

2 Related works

KV Cache Eviction. With KV cache size scaling
linearly with sequence length, efficient manage-
ment of KV cache has garnered significant atten-
tion as an effective way to mitigate the memory
constraints of LL.Ms when processing long con-
texts. Numerous studies have proposed token evic-
tion strategies to reduce memory overhead while
maintaining inference performance by selectively
retaining only the most relevant tokens in the cache.
Heavy Hitter Oracle (H20) (Zhang et al., 2023)
introduces a dynamic eviction policy that balances
retention of recent and historically significant to-
kens, optimizing memory usage without sacrificing
critical information. Similarly, SnapKV (Li et al.,
2024) enhances efficiency by clustering significant
KV positions based on attention scores of an ob-
servation window, while PyramidKV (Cai et al.,
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Figure 2: Cosine similarity of keys and the frequency distribution of cosine similarity, measured using Llama3-8B
on a sample from the HotpotQA dataset in LongBench, with truncated 128 tokens for visualization. (a) illustrates
the cosine similarity across all 128 tokens. (b) depicts the cosine similarity for the top-10 tokens with highest
importance scores. (c) presents the cosine similarity for the top-10 tokens after GraphKV’s decay signal propagation.
(d) compares the frequency distribution of cosine similarity for the keys before (w/o GraphKV) and after (w/

GraphKV) GraphKV’s decay signal propagation.

2024) adopts a layer-wise approach, allocating vari-
able KV budgets according to each layer’s attention
demands. StreamingLL.M (Xiao et al., 2023) en-
ables models trained on finite attention windows
to process infinite sequences without retraining by
preserving initial attention sinks and recent local
tokens. FastGen (Ge et al., 2023) employs an adap-
tive strategy, tailoring KV retention to the behavior
of individual attention heads. Despite their success
in reducing cache size, these methods predomi-
nantly rely on static importance scores, overlooking
the dynamic, implicit relationships among tokens.
This limitation can lead to suboptimal retention
decisions, motivating the need for approaches that
capture token interdependencies more effectively.

3 Observation

Most static-importance-score-driven methods uti-
lize Top-K to select tokens based on their impor-
tance. However, Chen et al. (2024) notes that Top-
K’s reliance on attention score magnitude for im-
portance estimation is biased and fails to capture
the true distribution of important tokens. To bet-
ter understand the limitations of static-importance-
score-driven token eviction, we further analyzed
the interplay between token importance and se-
mantic similarity in the KV cache of LLaMA-8B,
using a sample from the HotpotQA dataset in Long-
Bench. Figure 2 visualizes the cosine similarity of
key states and the frequency distribution of cosine

similarity values for 128 truncated tokens, compar-
ing the effects of GraphKV’s decay signal prop-
agation across two layers. Subfigures (a) and (b)
show high cosine similarity among top-10 tokens
by importance, with (b) having a brighter heatmap.
Subfigure (d) reveals high mean and low variance
in cosine similarity before GraphKV’s decay sig-
nal propagation, indicating potential redundancy
among high-importance tokens. This aligns with
(Wang et al., 2024). Additionally, we identified
several tokens with moderate importance scores
but low key similarity, likely encoding critical se-
mantic diversity. We extended our analysis across
different model layers to verify the generalizability
of this finding, and results show the phenomenon
persists across layers.

This observation underscores a key insight:
while high-scoring tokens are important, their
similarity often leads to redundancy, whereas less
similar tokens with moderate scores contribute
unique semantic diversity. In token eviction for
KV cache compression, prioritizing these diverse,
non-redundant tokens is crucial for preserving
critical context details under memory constraints.
Therefore, our proposed GraphKYV leverages this
insight by dynamically refining importance scores
through similarity-based decay signal propagation,
as demonstrated in Subfigures (c) and (d). Specifi-
cally, (c) shows that after GraphKV’s decay prop-
agation, the heatmap exhibits significantly darker
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Figure 3: The pipeline of GraphKYV. (I) Initiate Importance Score: We initialize importance scores for each token
with any importance scoring function. (II) Build Graph: We select tokens with the highest importance scores as
source nodes and compute the key cosine similarity between source nodes and other nodes, retaining the highest
similarity values as edges in the graph. (III) Decay Signal Propagation: After constructing the graph, we perform
multiple rounds of decay signal propagation on nodes adjacent to source nodes, attenuating their importance scores
based on edge weights to reduce semantic redundancy. (IV) Select Important Tokens: Based on the updated scores,
we reselect the most important tokens to balance significance and diversity for the compressed KV cache.

colors, indicating a notable reduction in the key
similarity among the top-10 tokens. Moreover, (d)
shows the post-propagation distribution exhibits a
lower mean and reduced variance compared to the
pre-propagation distribution, further confirming the
decline in key similarity distribution.

4 Methodology

4.1 Problem Formulation

Token eviction aims to retain a minimal subset
of the KV cache while preserving as much con-
textual information as possible. Formally, we
consider an LLM with M transformer layers pro-
cessing a sequence of prompt tokens X,put =
[z1, ..., zy], where n represents the total number
of tokens in the input sequence. For the [-th layer
(l € 0,1,...,M — 1), the full key and value ma-
trices are denoted as Kl7 Vi e R4 where d is
the hidden dimension of the model. The objec-
tive of token eviction is to identify compressed
sub-matrices K\, VL € R¥*4 where k; < n is
the layer-specific cache budget, while minimiz-
ing performance degradation. Formally, given
a dataset D and a performance metric Score()s
the compressed model using K. and V! is ex-
pected to attain similar results with the full model:
Score(KL, VL, D) = Score (K, VI, D).

4.2 Sparse Graph Building

Note that GraphKYV is a graph-based framework de-
signed to dynamically manage the Key-Value(KV)
cache by modeling token relationships using a
graph structure. First of all, we define the KV cache

as a weighted graph G = (O, E). Specifically,
each token x; in the input sequence corresponds to
anode o; € O, with an initial importance score s;.
Notably, this score can be initialized flexibly using
important indicator of diverse established meth-
ods, such as attention-based scores from SnapKV,
PyramidKV and CAKE, or KNorm, ensuring com-
patibility with prior high-performing frameworks.
Inspired by the observation in 3, we model the co-
sine similarity between the keys of token pairs as
an edge e;; € E in the weighted graph G This is
formally expressed as followed:

<ki7 kj>
€ij = T ey
1Kl 15
where k; and k; are key vectors of the token pairs
x; and x; respectively.

It is worth noting that computing the similar-
ity for all node pairs in the graph incurs significant
computational overhead, particularly when process-
ing long input sequences with a large number of to-
kens. To address this, we further sparsify the graph.
Since the graph contains numerous nodes with low
importance scores, which we consider to be tokens
with minimal semantic relevance, we isolate these
low-scoring nodes by removing their edges. Con-
versely, we prioritize the similarity relationships
among the more significant tokens. Therefore, we
adopt a top-k selection strategy to identify the most
important source nodes, as follows:

Osource = {0i | s; ranks in top-k,

ief{l,...,n} @
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where k is a hyperparameter tied to the layer-
specific cache budget k;. We compute the simi-
larity only between these selected source nodes
Osource and all other nodes, thereby completing the
sparsification of the graph. Sparse graph structure
building approach enables GraphKYV to efficiently
and effectively capture token relationships within
the KV cache.

4.3 Decay Signal Propagation

Once the sparse graph G = (O, F) is constructed,
we introduce a dynamic decay-signal-propagation
mechanism to refine token importance scores and
eliminate semantic redundancy caused by token
similarity. This process leverages the graph struc-
ture to propagate redundant signal across nodes,
ensuring that the retained tokens are both signifi-
cant and contextually diverse.

Initially, for each node 0; € Ogource, We define
its neighborhood as the set of nodes o; whose edge
weights are among the top-m:

N(oj) ={oj | eij > €jtmy,J # i},  (3)

where €;(,,,) is the m-th largest edge weight among
{eij | j # i}, m is a hyperparameter indicating the
number of nodes in the neighborhood. This step
ensures that decay score propagation targets tokens
with high semantic overlap while preserving the
diversity of retained tokens.

Furthermore, to prevent the over-representation
of similar tokens, we apply a decay function to the
importance scores of nodes in N (O; ). The decay is
proportional to their similarity to the source node,
reducing the scores of redundant tokens. For a node
0j € N(0;), the decayed score after one round of
propagation as followed :

/o

S] Sj — -eij . Sj, (4)

where 33 represents the refined scores. To capture
broader contextual dependencies, we extend this
process over I" rounds of propagation (e.g., ' = 3),
where in each round ¢, the updated score of a node
0j is computed as:

@t _ (@-1)
Sjpo =98 H

0; €Osource ;05 GN(Oi)

(L—eiy) (5

with s§0) = sj, we aggregate cumulative decay

from multiple source nodes to heavily suppress

tokens similar to several retained ones. Finally,

(T)

after T rounds, the updated scores s J determine

the final k; tokens for the compressed KV cache
sub-matrices K/ and VY, retaining those with the

The decay-signal-propagation mechanism inno-
vates over static-importance-score-driven methods
by dynamically updating scores across multiple
rounds, suppressing redundancy through similarity-
based decay and offering flexibility by integrating
initial scores from prior frameworks.

highest s:" ’ to balance importance and diversity.

S Experiment

5.1 Experimental Setup
5.1.1 Baseline Methods

We integrate GraphKV with five state-of-the-art
methods: CAKE (Qin et al., 2025) considers the
temporal and spatial aspects of attention, SnapKV
(Li et al., 2024) clusters recent attention, Pyra-
midKYV (Cai et al., 2024) employs a budget al-
location strategy, H20 (Zhang et al., 2023) uses
cumulative attention and KNorm (Devoto et al.,
2024) applies Lo norm of keys. For more detailed
information, please refer to Appendix A.1.

5.2 Evaluation on LongBench

The evaluation results for the LongBench dataset
are presented in Table 1. We evaluated three state-
of-the-art models Llama2-7B-Chat, Llama3-8B-
Instruct, and Mistral-7B-Instruct-v0.2, each con-
figured with a fixed KV cache size of 512. As
shown in Table 1, a full KV cache yields the high-
est performance but is impractical for long-context
applications due to its substantial GPU memory
requirements. In contrast, our proposed GraphKV
method achieves superior performance across all
three models, surpassing other methods in the aver-
age score across 16 tasks. GraphKV shows a sig-
nificant improvement on Retrieval-Based Passage
(RB-P) dataset, evaluating the ability to understand
cross-file dependencies, retrieve relevant code snip-
pets, and generate accurate code completions in a
multi-file programming context, while surpassing
full-context model performance with only 10% of
the full budget. This demonstrates its effectiveness
for long-context inference. Furthermore, integrat-
ing GraphKV with three token eviction strategies
enhances performance, highlighting its flexibility
and compatibility. Overall, GraphKV offers an
effective and flexible solution for long-context in-
ference, significantly reducing GPU memory usage
while maintaining high performance.
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Llama2-7B-Chat, KV Size =512
Full 18.39 20.10  35.67 31.25 25.73 10.64 25.67 20.89 26.34 64.00 83.38 40.90 5.50 10.00 58.67 53.00 33.13
KNorm 6.72 8.10 7.94 8.38 7.06 272 16.60 15.69 19.69 19.50 27.26 11.86 4.50 1.67 28.60 2213 13.03
+GraphKV 12,57 1555  20.01 26.15 20.87 6.52 18.86 18.82 20.61 31.50 79.21 33.43 5.00 8.00 44.35 41.67 2520
SnapKV 16.01 19.11 3240 32.25 24.18 10.47 19.96 20.97 23.50 62.00 82.70 39.11 6.00 11.00 58.06 5350 3195
+GraphKV 1639  20.12  33.58 33.44 25.19 10.66 20.23 21.09 23.38 62.00 83.21 39.56 6.00 11.00 57.65 54.15 3235
PyramidKV ~ 17.22 19.82 3415 32.29 24.41 10.08 20.28 20.47 23.46 62.50 83.10 38.61 6.00 11.50 57.17 5162 32.04
+GraphKV  16.39 1942 35.62 32.60 25.85 991 20.43 20.72 23.64 62.50 83.43 39.16 6.00 11.50 il 5177 3225
Llama3-8B-Instruct, KV Size =512
Full 25.56 32.21 39.65 43.56 35.29 21.14 28.73 23.36 26.63 74.00 90.48 42.36 4.80 69.25 57.03 52.38 41.65
KNorm 10.00 798  11.05 11.90 8.92 4.83 21.24 18.39 2343 40.00 51.87 17.14 542 47.89 28.22 2192 20.64
+GraphKV 19,51 16.02  24.05 25.45 14.71 11.01 21.29 20.29 23.47 43.50 85.50 31.52 4.05 61.60 38.11 36.00 29.76
SnapKV 2345 2337 37.14 42.60 34.60 20.08 22.08 22.61 24.06 70.50 90.52 39.88 5.81 69.50 59.50 53.87 3997
+GraphKV ~ 23.68 2537 3755 4321 3572 20.94 22.57 22.86 24.02 70.50 90.33 39.48 5.59 69.25 58.42 56.10 4035
PyramidKV 2459  21.90  36.11 42.51 33.01 20.09 22.28 22.70 23.83 69.00 90.42 40.66 5.78 69.25 57.41 5391 39.58
+GraphKV 2412 2357  37.05 44.13 33.59 20.67 2231 22.87 24.07 70.00 90.52 40.09 5.78 69.12 58.05 5546 40.09
Mistral-7B-Instruct-v0.2, KV Size = 512

Full 26.81 3319  49.26 43.02 27.12 18.78 32.80 24.16 27.02 71.00 86.23 42.64 2.75 86.98 55.09 53.01 42.49
KNorm 7.34 853  11.93 9.44 7.16 391 2222 16.81 2243 3575 21.25 9.27 359 6.42 29.13 2329 1491
+ GraphKV 8.98 775 1250 7.87 7.83 3.56 21.58 18.44 22.66 45.50 26.79 12.61 4.24 5.17 3222 2629 1650
SnapKV 2471 2792 4901 38.39 25.02 17.53 23.69 23.59 24.61 67.00 85.77 41.90 2.81 88.18 53.12 50.60  40.24
+GraphKV 2521  29.21  49.51 39.15 25.84 18.15 23.15 23.75 24.82 67.00 86.23 43.32 2.75 88.36 52.89 5123 40.60
PyramidKV 2425 2640 4848 40.22 24.97 17.62 23.18 2333 24.40 67.50 85.73 41.64 3.03 87.64 53.90 50.26  40.16
+GraphKV 2462 2859  49.36 42.08 25.83 18.03 23.16 22.82 24.07 67.50 85.20 41.93 2.57 87.56 54.18 50.57  40.50

Table 1: Performance comparison of GraphKV on LongBench.
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Figure 4: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack™) test in LlaMa-3-8B-
Instruct with 8k context size in 128 KV cache size. The vertical axis of the table represents the depth percentage,

and the horizontal axis represents the token length.

5.3 Evaluation on Needle In a Haystack

In this experiment, we assess the Llama3-8B model
under resource constraints, with a context length
of 8,000 tokens and a KV cache size of 128. Fig-
ure 4 shows retrieval accuracy on the Needle In
a Haystack benchmark comparing PyramidKYV,
SnapKYV, and Knorm with/without GraphKYV inte-
gration. Notably, PyramidKV and SnapKYV see no-
table improvements with GraphKV: PyramidKV’s
accuracy rises from 90.3% to 96.9% (+6.6%), and
SnapKV’s from 87.7% t0 95.9% (+8.2%). These re-
sults highlight GraphKV’s effectiveness in enhanc-
ing retrieval performance for long-context tasks
under resource constraints.

6 Ablation

To further evaluate the design choices of GraphKYV,
we perform ablation studies to study the different
components, including the choice of the number

of source nodes, the number of adjacent nodes,
and the number of propagation rounds, with exper-
iments on some datasets in Longbench.

6.1 Effect of Adaptive Source Nodes

To evaluate the impact of the graph propagation
range, we constructed sparse graphs with varying
numbers of source nodes and conducted propaga-
tion tests. Specifically, we utilized a proportion
of the KV cache budget as the number of source
nodes. As shown in Figure 5 (a), a proportion
of 0.3 x the KV cache budget achieved the best
performance (0.3x B). As the number of source
nodes increased, the performance declined. This is
because the number of source nodes is positively
correlated with the number of nodes affected by
the score updates, and a greater number of influ-
enced nodes tends to introduce noise into the token
importance distribution.
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Figure 5: Impact of the number of adaptive source nodes
and the number of adjacent nodes. “B” denotes the
budget of the KV cache size. “L” denotes the length of
input tokens x 1073,

6.2 Effect of Adjacent Nodes

In addition to test the impact of the number of
source nodes, we also explored the effect of the
number of adjacent nodes for each source node. To
adapt to query inputs of varying lengths, we set
the number of adjacent nodes as the minimum be-
tween a predefined value and the query length. As
shown in Figure 5 (b), the adaptive approach to de-
termining the number of adjacent nodes generally
outperforms a fixed setting. Under a fixed setting,
increasing the number of adjacent nodes leads to
poorer performance, which further indicates that
a greater number of influenced nodes introduces
noise into the token importance distribution.

6.3 Effect of Propagation Round

To evaluate the impact of propagation rounds on
GraphKYV, we integrated it with state-of-the-art
methods, including CAKE, PyramidKV, SnapKYV,
and H20. We conducted experiments under four
settings: no propagation (7=0) and propagation
rounds 7'=1, 2, and 3.

As shown in Figure 6, comparing 7=0 and T=1,
all four methods exhibited the most significant per-
formance improvements after the first round of
decay signal propagation. Notably, PyramidKV
exhibited a significant performance, jumping from
42.51 to 44.48, surpassing FullKV after just one
round. However, CAKE and PyramidKV showed
slight performance dips at 7'=2, though still out-
performing the non-propagated baseline. These
results indicate that while performance fluctuates
slightly with increased propagation rounds, overall,
propagation substantially enhances performance.

As Figure 7 shows, subfigures (a)—(d) show key
vector distributions projected onto PCA compo-
nents at steps 7'=0, 1, 2, and 3, respectively. Vec-
tors are colored by normalized importance scores

CAKE H20

47.00 16.86 42.60
16.76
46,80 210

41.60
46.47 w/o GraphKTe

46.40 wlo GraphKV 41.10 E 40.91
46.20 40.60

Pyramid KV

42.14 42.15

41.75
46.60 | 46.40

F1- Score

45.00 Y an.67 | 43.40

13.97 4303 4304
44.00 43.00

42.60

wio GraphKV

F1- Score

43.00 | 42.60

1200 wio GraphKV 42.20
0 1 2 3 0 ! 2 ’

#Propagation Round T #Propagation Round T

Figure 6: Impact on the number of propagation rounds
of GraphKV with decay signal propagation.

using a high-contrast colormap, with top5% high-
score tokens highlighted as larger, opaque markers.
At T'=0, key vectors of tokens with high importance
scores are concentrated in a single region. After the
first round of propagation, the token distribution
becomes noticeably sparser. This change leads to
significant performance improvements, validating
that propagation reduces token redundancy.

Table 2: Performance (f1 Scores or accuracy) compar-
ison over three propagation signal types with 128 KV
cache size across various datasets. The best result is
highlighted in bold, the second best in underline.

Dataset Decay (—) Enhanced (+) Evicted (—oco) Baseline

NarrativeQA 22.21 21.71 5.09 21.35
Qasper 13.59 12.53 3.89 13.46
HotpotQA 41.14 39.75 11.84 40.68
2WikiMultihopQA 2943 28.83 14.17 28.94
MusiQue 19.68 19.78 3.71 18.84
TREC 55.00 52.50 41.00 51.50
SAMSum 39.01 38.16 9.08 38.13
PassageCount 68.92 69.50 65.29 69.50
Lce 55.43 55.04 8.33 54.49
RepoBench-P 53.94 52.84 9.89 52.78
Average 39.84 38.67 18.80 38.61

7 Discussion

Inspired by the relationship between key similarity
and token’s importance score, we propose a method
for propagating decay signals based on graph struc-
tures. In the following sections, we further discuss
this graph-based score updating paradigm.

7.1 Exploration of similarity for Graph Edge

In addition to key-to-key cosine similarity, we ex-
plore using query-to-key, query-to-query, key-to-
value, and value-to-value similarities as decay sig-
nals for graph propagation. We assess their per-
formance in multi-document QA and code gener-
ation tasks. Figure 8 shows that these additional
measures improve performance across various sub-
datasets when used as edge-based decay signals.
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Figure 7: PCA visualizations in two dimensions of Keys with normalized importance scores for GraphKV across
propagation rounds, where key vectors are colored by using a high-contrast colormap (sky blue to red), with retained

tokens highlighted as larger, opaque markers.
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Figure 8: Performance comparison of GraphKV across datasets with different similarity graph edges.

Method Decoding Latency (s)
PyramidKV 5.133

PyramidKV+ GraphKV ~ 5.265 (+2.5%)
SnapKV 5.474

SnapKV+ GraphKV 4912 (-10.2%)
Knorm 6.031

Knorm+ GraphKV 5.095 (-15.5%)

Table 3: The decoding latency of different methods on
QMSum in LongBench at the KV budget of 512.

This underscores the effectiveness of avoiding stor-
ing too many highly similar tokens in GraphKYV,
supporting previous observation and motivation.

7.2 Diversity of Graph Signal

The experiments presented above validate the effec-
tiveness of decay signal propagation in GraphKV.
To comprehensively analyze graph signal propa-
gation behavior, we further investigated different
signal propagation modes. Specifically, we config-
ured three signal types: decay signal (—), enhanced
signal (4), and evicted signal (—o0).

As presented in Table 2, the decay signal propa-
gation yields the most significant improvement over
the baseline method, followed by the enhanced sig-
nal, which provides a marginal improvement of
only 0.06, rendering it negligible. This further val-
idates the critical role of GraphKYV in leveraging
decay signals to eliminate token semantic redun-
dancy. Importantly, propagating the evicted signal

leads to a substantial performance decline. This
is primarily due to the naive and coarse approach
of evicting all nodes connected to the source node,
which unintentionally removes too many important
tokens. indicating a balance between importance
and diversity should be achieved.

7.3 Efficiency Analysis

Table 3 gives the latency of GraphKV over three
previous methods, demonstrating that GraphKV
does not increase the inference latency, and even
sometimes reduces it. This may be caused by that
GraphKYV increases model accuracy and hence pre-
vents the model from over-long generation.

8 Conclusion

This paper investigates the critical limitations
of static-importance-score-driven token eviction
strategies in LL.Ms, which often fail to capture
the relation between different tokens and suffer
from duplicate KV cache. To address these chal-
lenges, we propose GraphKYV, which models tokens
as nodes and the similarity as edges. GraphKV dy-
namically refines token importance scores through
an iterative decay-score-propagation mechanism,
prioritizing contextually diverse and non-redundant
tokens, leading to better performance in long-
context scenarios.
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9 Limitation

Although GraphKV substantially advances KV
cache compression for long-context large language
model inference through its innovative graph-based
decay-signal-propagation framework for dynamic
token relationship modeling, several limitations
persist. The propagation mechanism depends on
empirically determined hyperparameters, such as
decay strength and propagation rounds, lacking a
rigorous theoretical foundation for optimal configu-
ration across diverse context complexities. Further-
more, due to computational constraints, evaluations
are confined to 8B models, leaving the scalability
and effectiveness of GraphKYV on larger models un-
explored. These gaps highlight the need for deeper
theoretical analysis and broader empirical valida-
tion in future work.
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A Appendix

A.1 Implementation Details

Model Configuration. Our experiments include
three state-of-the-art open-source LLMs. Specif-
ically Llama2-7B-Chat (Touvron et al., 2023),
Llama-3-8B-Instruct (Grattafiori et al., 2024) and
Mistral-7B-Instruct-v0.2 (Jiang, 2024). All exper-
iments are conducted on a single NVIDIA H20
GPU. We use beam search according to (Cai et al.,
2024; Li et al., 2024).

Evaluation Tasks. To assess GraphKV’s perfor-
mance, we use two widely used benchmarks Long-
Bench (Bai et al., 2023b) and Needle In a Haystack
(Li et al., 2024). LongBench is a bilingual, multi-
task benchmark suite for LLMs, providing a com-
prehensive stress test for long prompt inputs. It
consists of a diverse set of tasks, including question
answering, summarization, reading comprehension,
and code-related tasks, with input contexts rang-
ing from a few thousand to over 100,000 tokens.
The dataset spans multiple languages and domains,
such as scientific literature, news, and dialogues,
ensuring robust evaluation across varied scenarios.
A detailed breakdown of the sub-tasks and their
corresponding metrics is provided in Table 4 be-
low. Needle In a Haystack assesses retrieval and
reasoning via three components: Single-Needle Re-
trieval, Multi-Needle Retrieval, and Multi-Needle
Reasoning, testing performance in complex contex-
tual environments.

Dataset Avg len Metric #data
NarrativeQA 18,409 F1 200
Qasper 3,619 F1 200
MultiFieldQA-en 4,559 Fl 150
HotpotQA 9,151 F1 200
2WikiMultihopQA 4,887 Fl 200
MuSiQue 11,214 F1 200
GovReport 8,734 Rouge-L 200
QMSum 10,614 Rouge-L 200
MultiNews 2,113 Rouge-L 200
TREC 5,177 Accuracy (CLS) 200
TriviaQA 8,209 F1 200
SAMSum 6,258 Rouge-L 200
PassageCount 11,141 Accuracy (EM) 200
PassageRetrieval-en 9,289 Accuracy (EM) 200
LCC 1,235 Edit Sim 500
RepoBench-P 4,206 Edit Sim 500

Table 4: The dataset statistics in LongBench include
several key metrics. The *Avg len’ (average length) is
measured by the number of words for datasets in English
(or code). *Accuracy (CLS)’ represents classification
accuracy, while ’Accuracy (EM)’ denotes exact match
accuracy.
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KYV Cache Size (Tokens) KV Cache Memory (GB)
128 0.016
256 0.031
512 0.063
1024 0.125
2048 0.250
16K 1.953
32K 3.906
64K 7.813
128K 15.625

Table 5: Memory consumption of KV cache at differ-
ent context lengths for a 7B-parameter model with 32
attention heads and 128-dimensional key/value vectors.
Memory calculations assume BF16 precision.

A.2 More Related Works

Graph-Based Methods. Graph-based modeling
(Scarselli et al., 2008) has emerged as a powerful
paradigm for capturing complex relationships in
structured data, with applications ranging from so-
cial networks (Fan et al., 2019) to natural language
processing (Wu et al., 2023). Graph Neural Net-
works (GNNs), leverage message-passing mecha-
nisms to dynamically update node representations
by aggregating information from adjacent nodes.
This iterative process effectively captures depen-
dencies that evolve over time or context, making
it well-suited for tasks requiring relational reason-
ing. In the context of language modeling, graph
structures have been used to represent syntactic
dependencies or semantic relationships in text. In-
spired by these capabilities, our GraphKV method
formulates the KV cache as a graph with tokens
as nodes and semantic similarities as edges. To
the best of our knowledge, our approach is the first
method to explore the application of graph-based
methods to KV cache eviction in LLMs.

Algorithm 1 Sparse Graph Construction

1: Input: Token sequence X = {z1,...
scores S = {s1,...,8n}, k
Initialize nodes O = {o1,...,0,}
Initialize empty edge set E = ()
Osource <— {0; | s; intop-k}
for 0; € Ogource do

for o; € O\ {o0;} do

E+ EU { ey

)x’n}y

end for
end for
Output: Sparse graph G = (O, E)

R A A T o

_
e

# Source Nodes

Task
10% 30% 50% 70% 100%
KYV Cache Size = 512
Qasper 24.86 24.47 2445 25.20 24.53
NarrQA  23.06 23.03 23.01 22.65 22.18
MFQA-en 35.45 36.34 36.31 35.27 36.82
HotpotQA 43.91 43.75 43.70 43.10 42.66
2WikiQA 33.09 34.05 34.00 33.70 33.51
MusiQue 20.65 20.33 20.29 20.28 20.57

Table 6: Performance of GraphKV with varying num-
bers of source nodes (as a percentage of the KV cache
size, 512) across multiple tasks. Bold values indi-
cate the best performance for each task. Abbrevia-
tions: Qas (Qasper), NarrQA (NarrativeQA), MFQA-en
(MultiFieldQA-en), 2WikiQA (2WikiMultihopQA).

Algorithm 2 Decay Signal Propagation

1: Input: Sparse graph G = (O, E), scores
{s1,-.-y8n}, T,m
Initialize 35.0) <« sjforallo; € O
for round ¢t = 1 to 7" do
for each source node 0; € Ogoyrce do
Neo) o« o |
e;j is top-m among {e; } - }

6 for each 0o; € N(0;) do

7: sgt) — sg-t_l) (1 —-e45)

8 end for

9: end for

10: end for

11: Output: Refined scores {ng), ce s,(lT)}
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