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Abstract

Retrieval-augmented generation (RAG) and
long-context language models (LCLMs) both
address context limitations of LLMs in open-
domain question answering (QA). However, op-
timal external context to retrieve remains an
open problem: fixing the retrieval size risks
either wasting tokens or omitting key evidence.
Existing adaptive methods like Self-RAG and
SELF-ROUTE rely on iterative LLM prompting
and perform well on factoid QA, but struggle
with aggregation QA, where the optimal con-
text size is both unknown and variable. We
present Adaptive-k retrieval, a simple and ef-
fective single-pass method that adaptively se-
lects the number of passages based on the dis-
tribution of the similarity scores between the
query and the candidate passages. It does not
require model fine-tuning, extra LLM infer-
ences or changes to existing retriever–reader
pipelines. On both factoid and aggregation
QA benchmarks, Adaptive-k matches or outper-
forms fixed-k baselines while using up to 10×
fewer tokens than full-context input, yet still
retrieves 70% of relevant passages. It improves
accuracy across five LCLMs and two embed-
ding models, highlighting that dynamically ad-
justing context size leads to more efficient and
accurate QA.1

1 Introduction

Despite remarkable progress in LLMs, efficiently
incorporating external knowledge during inference
for long or dynamic contexts remains a key chal-
lenge. Two major paradigms have emerged to ad-
dress this: long-context language models (LCLMs),
which extend the model’s context window to
directly ingest more information, and retrieval-
augmented generation (RAG), which retrieves rele-
vant documents from an external corpus to con-

*Work done during internship at Megagon Labs.
1The experimental code is released at https://github.

com/megagonlabs/adaptive-k-retrieval under the BSD
3-Clause License.

dition the generation. While these approaches
are sometimes presented as alternatives (Li et al.,
2024a; Yu et al., 2024), recent studies highlight
their complementary nature (Li et al., 2024b).

A central bottleneck in both paradigms is deter-
mining how much context to include. Fixed-size
retrieval budgets (e.g., top-k retrieval) are subopti-
mal, because they either retrieve too little and risk
omitting key evidence, or retrieve too much, which
can overwhelm the model, increase latency and
costs, and degrade performance (Yu et al., 2024;
Leng et al., 2024; Jin et al., 2024). As Yang (2024)
observes, the challenge in long-context reasoning
lies not only in document length but also in how
relevant information is distributed and duplicated
within the context. Crucially, query type plays a
major role: factoid questions may need only a few
targeted facts, while aggregation queries (Maekawa
et al., 2025) often require reasoning based on infor-
mation from multiple evidence spans. This variabil-
ity makes fixed-k retrieval suboptimal for complex
tasks.

To address this, several hybrid and adaptive re-
trieval methods such as Self-RAG (Asai et al.,
2023), Adaptive-RAG (Jeong et al., 2024), and Dy-
namic context cutoff (Xie et al., 2025) have been
proposed, which estimate retrieval depth via iter-
ative prompting, each time fetching a fixed num-
ber of documents. However, they assume white-
box access to the LLM: Self-RAG requires fine-
tuning the LLM, while dynamic context cutoff de-
pends on access to internal KV cache states. This
makes them incompatible with closed-source or
API-based LLMs. While effective on factoid-style
questions, they also face significant limitations in
terms of scalability, latency, and deployment flex-
ibility. Although SELF-ROUTE (Li et al., 2024b)
offers a more modular solution, it still relies on a
fixed retrieval size and lacks the ability to adapt to
varying information needs across queries and con-
text documents. This motivates our core research
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question: How can we estimate the optimal number
of passages to retrieve for a given query and set of
context documents, without supervision or iterative
prompting?

To address this question, we introduce Adaptive-
k retrieval, a simple yet effective plug-and-play
method for dynamically selecting a query- and
context-specific number of documents in a sin-
gle retrieval pass. Our approach relies on analyz-
ing the distribution of similarity scores between a
query and candidate documents. By identifying the
largest gap in the sorted similarity distribution, it
estimates an optimal cutoff point, retrieving the top-
k documents before the gap. Unlike prior adaptive
retrieval methods, Adaptive-k requires no model
fine-tuning, no access to internal components and
no iterative prompting. It is fully modular, allowing
seamless integration with existing retriever–reader
pipeline and compatibility with black-box LLMs.
By relying solely on the distributional structure of
similarity scores, Adaptive-k adjusts the retrieval
size on a per-query basis. This simple yet prin-
cipled strategy leads to significant reductions in
input length and inference cost, while maintaining
or even improving the answer quality across both
factoid and aggregation-style QA tasks. We com-
pare Adaptive-k retrieval to prior approaches in
Table 1.

We evaluate Adaptive-k on both factoid and
aggregation-style QA tasks across multiple LCLMs
and embedding models. Our experiments span
two representative long-context benchmarks: HEL-
MET (Yen et al., 2025), which includes factoid
QA tasks with up to 128k-token contexts, and
HoloBench (Maekawa et al., 2025), which focuses
on aggregation-style queries. Our results show that
on aggregation-QA, Adaptive-k outperforms SELF-
ROUTE by up to +9 points in answer accuracy on
high-information tasks. It consistently maintains
∼70% context recall and reduces token usage by
2× to 10× compared to full-context baselines. On
factoid QA, Adaptive-k matches or exceeds the
accuracy of fixed-size retrieval with up to 99% re-
duction in input tokens, effectively pruning irrele-
vant content. These findings highlight the impor-
tance of query-specific context sizing and establish
Adaptive-k as a simple, robust, and efficient alterna-
tive to more complex adaptive retrieval strategies.

In summary, our key contributions are:

• We propose Adaptive-k, a simple yet effective
plug-and-play method for adaptive document

retrieval that dynamically adjusts context size
based on similarity distribution statistics.

• Adaptive-k achieves higher accuracy than
prior methods and up to 99% token reduc-
tion on factoid and aggregation QA against
LCLMs with full context.

• We show that no single fixed-size retrieval
strategy fits all settings. In contrast, Adaptive-
k shows robust performance across multiple
LLMs, embedding models and benchmarks.

2 Related Work

RAG and LCLMs are two prominent paradigms for
equipping LLMs with external knowledge. Recent
studies show that LCLMs can match or outperform
RAG in certain QA tasks (Li et al., 2024a; Yu et al.,
2024), yet the two methods are fundamentally com-
plementary.

Several approaches have been proposed to lever-
age both the strengths of RAG and LCLMs with
flexible retrieval strategies. Self-RAG (Asai et al.,
2023) trains an LLM to generate reflection tokens
that enable retrieval on the fly, so that the LLM can
determine whether it needs any additional docu-
ment by itself. SELF-ROUTE (Li et al., 2024b) asks
an LLM whether it can answer the query with the
retrieved context; if not, the LLM is given the full
context. Adaptive-RAG (Jeong et al., 2024) uses a
workflow that iteratively asks an LLM whether it
can answer the given query with the retrieved con-
text. LC-Boost (Qian et al., 2024) enables short-
context LLMs to tackle long-context tasks by first
identifying relevant information, then reasoning
over it, without needing extended context windows
or fine-tuning.

While effective in controlled settings, these
methods often rely on white-box access to the LLM,
fine-tuning, or multiple LLM inferences. Existing
research has highlighted key limitations in RAG
systems, particularly in terms of cost, modularity,
and retrieval granularity. However, prior methods
typically address these issues in isolation, and to
our knowledge, no single approach has tackled all
three challenges holistically. Our method is the
first to offer a unified solution that is cost-efficient,
modular, and capable of adaptive, query-specific
retrieval in a single pass.

Cost. High-quality inference often comes with
high token usage, energy consumption, and latency
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Plug-and-Play via API Retrieval Amount Variability Single Retrieval Operation

No RAG (LCLM) ✓ ✗ No Retrieval
RAG (traditional) ✓ ✗ ✓

Self-RAG (Asai et al., 2023) ✗ ✓ ✗

Adaptive-RAG (Jeong et al., 2024) ✓ ✓ ✗

SELF-ROUTE (Li et al., 2024b) ✓ ✗ ✓

LC-Boost (Qian et al., 2024) ✓ ✓ ✗

Dynamic context cutoff (Xie et al., 2025) ✗ ✓ ✗

Adaptive-k RAG (ours) ✓ ✓ ✓

Table 1: The comparison of previously proposed approaches as enhanced RAG. Plug-and-Play via API refers to
whether the approach can be easily plugged in to various LLM pipelines. Retrieval Amount Variability refers to
whether the system can flexibly change the retrieval amount depending on different queries and context. Single
Retrieval Operation refers to whether the retrieval is performed in a single step or in multiple steps.

(Li et al., 2024b; Qian et al., 2024), underscoring
the need for more cost-effective alternatives.

Modularity. Modularity is crucial for real-world
deployment (Wang et al., 2024), but many existing
methods require fine-tuning or training the LLM
itself. This tight coupling reduces compatibility
with API-based or closed-source models, limiting
practical applicability.

Retrieval granularity. Aggregation-type queries
often require comprehensive evidence and holistic
understanding. For example, answering “Which
colleges in California have over 10,000 students?”
demands access to the full set of relevant entries.
Fixed-size or iterative retrieval methods struggle
with such cases, as they cannot dynamically adjust
retrieval depth based on query complexity.

3 Method

This section details our approach to adaptive re-
trieval, grounded in the analysis of similarity score
patterns to determine retrieval sizes adaptively
based on the query and the context. We first review
the standard RAG retrieval process, then present
our methodology to identify the optimal threshold
in similarity distributions to efficiently select rele-
vant documents.

3.1 Retrieval in vanilla RAG

RAG consists of two steps: retrieval and genera-
tion. Given a query q and N context documents
C = {ci}N1 , the retriever module identifies top-k
semantically similar context documents C ′. Mod-
ern RAG approaches convert the query and the
context documents in natural language into the
query embedding q ∈ Rd and context embeddings
C ∈ RN×d. Similarity scores s ∈ RN are then

computed to quantify relevance, commonly using
cosine similarity:

s = fsim(q,C) =
Cq⊤

||q|| · ||C||rows

RAG typically retrieves a fixed number of top-k
documents (or tokens) based on the practitioner’s
choice. This fixed retrieval size is simple and mod-
ular but may result in inefficient token usage, either
retrieving irrelevant documents or missing critical
information, especially when the amount of rel-
evant context varies depending on the provided
context documents and the query type.

3.2 Toward efficient adaptive retrieval
Design motivation and principles. While
vanilla RAG offers modularity and straightforward
integration, its fixed retrieval size limits perfor-
mance and efficiency in scenarios where the quan-
tity of relevant context varies unpredictably such
as in aggregation QA in the HoloBench benchmark
(Maekawa et al., 2025). To address these limita-
tions, we aim to design an adaptive retrieval mecha-
nism that: (1) operates independently of the under-
lying inference model and requires no additional
training or fine-tuning (Plug-and-Play), (2) flex-
ibly controls the retrieval amount for each query,
avoiding both wasting tokens and omitting key ev-
idence (Retrieval Amount Variability), and (3)
operates in a single pass without requiring iterative
LLM calls (Single Retrieval Operation).

Preliminary analysis. To ground our design in
empirical evidence, we conduct an in-depth analy-
sis of the distributional patterns of cosine similarity
scores between queries and candidate documents,
which, crucially, are inference model-agnostic sig-
nals. This preliminary analysis reveals distinct dis-
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Figure 1: Example distributions of sorted cosine similar-
ities from the long-context version of HotpotQA (Yang
et al., 2018) included in HELMET (Yen et al., 2025)
with 1,000 context documents (top) and HoloBench
(Maekawa et al., 2025) with 10% relevant information
amount (bottom). BAAI’s bge-large-en-v1.5 is used as
the embedding model.

tributional characteristics that inform our adaptive
retrieval strategy.

As shown in Figure 1, for factoid QA tasks such
as HotpotQA, the sorted similarity scores typically
exhibit a pronounced gap separating a cluster of
highly relevant documents from the rest, suggest-
ing a natural threshold for retrieval. In contrast,
aggregation tasks (e.g., HoloBench) show more ir-
regular patterns, with gaps dispersed throughout
the distribution – reflecting the variable spread of
relevant information. In the bottom example in
Figure 1, the 100k-token context is generated such
that 10% of it is information relevant to the query.
Indeed, the large gaps are observed around the top
5% to 20% context, aligning with our expectations.

These insights lead to the hypothesis that the
largest gap in sorted similarity scores corresponds
to the boundary between relevant and irrelevant
documents, thus providing a data-driven criterion
for adaptive retrieval size selection.

Algorithm 1 Adaptive k Estimation via Largest
Similarity Gap

Require: q, C, Embedder(·), Similarity(·)
Ensure: Estimated k such that the largest similar-

ity drop occurs before the k-th item
q ← Embedder(q)
C ← Embedder(C) ▷ Precomputed
s← Similarity(q,C)
Sort s in descending order
g ← array() ▷ For storing the gap
for i = 0 to |s| − 2 do

Append s[i]− s[i+ 1] to g
end for
k ← argmax(g) ▷ Index at the largest gap
return k

3.3 Proposed method

Building on these observations, we formalize an
algorithm that adaptively estimates the retrieval
threshold k by identifying the position of the steep-
est drop in the similarity score distribution. The
method proceeds as follows: Compute the cosine
similarities s of the query q and context documents
C. Sort the scores in descending order. Compute
their first discrete differences g and choose the
index k where the similarity drop is the largest.
Figure 2 depicts this process within the RAG work-
flow. Under the assumption that the embeddings of
documents are precomputed, the time complexity
of this algorithm is O(n log n). The algorithm is
described in Algorithm 1.

In practice, while determining the threshold k
based on the largest similarity gap is effective, a
naïve implementation might miss relevant docu-
ments located immediately beyond the identified
threshold. To address this, we incorporate a small
fixed buffer, retrieving an additional B documents
after the k-th document. In our experiments, we set
B = 5. Furthermore, as depicted in Figure 1, the
largest gap may occasionally manifest among the
least relevant documents, leading to the retrieval
of an excessively large portion of the context. To
avoid this and align with our focus on retrieval from
extremely long contexts, we restrict the search for
the largest gap to the top 90% of documents sorted
by their similarity scores.

4 Experimental setup

In our experiments, we aim to answer the following
research questions:
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What are the names of colleges that have
more than 10,000 students and are located
in California?

Query

The University of California, Los Angeles
(UCLA) has a student population exceeding
45,000, making it one of the largest univer-
sities in California.

Context

relevant

Amherst College and Williams College,
located in Massachusetts, have fewer than
2,500 students each. irrelevant

In California, public universities such as
San Diego State University and California
State University, Fullerton each enroll more
than 30,000 students annually. relevant

...

Embedder

Query embedding

...
Context embeddings

fsim

Similarity distribution

Largest gap

⇒ threshold k

Retrieve this

What are the names of colleges that have
more than 10,000 students and are located
in California?

Prompt

The University of California, Los Angeles
(UCLA) has a student population exceeding
45,000, making it one of the largest univer-
sities in California.

In California, public universities such as
San Diego State University and California
State University, Fullerton each enroll more
than 30,000 students annually.

...

LLM

Here are some colleges and uni-
versities in California with more
than 10,000 students enrolled: ...

Figure 2: The proposed method in the RAG workflow. The method chooses the threshold k for retrieval based on a
large gap in the sorted similarity score distribution.

• How does the proposed adaptive-k method
compare to other modular retrieval approaches
on aggregation tasks with varying amounts of
relevant context?

• How does performance of Adaptive-k vary
across factoid QA and aggregation QA tasks?

• How does the performance gain from
Adaptive-k retrieval vary across LLMs?

• How do different embedding models influence
the performance of Adaptive-k?

To answer these questions, we employ the experi-
mental settings detailed below.

4.1 Dataset

For testing on factoid QA tasks, we use Hot-
potQA (Yang et al., 2018), Natural Questions (NQ)
(Kwiatkowski et al., 2019), and TriviaQA (Joshi
et al., 2017), as curated by HELMET (Yen et al.,
2025) for long-context benchmarking with 128k
input tokens. Due to the high computational cost
of long-context inference, we evaluate on a subset
of 100 examples per dataset.

For aggregation tasks, we employ HoloBench
(Maekawa et al., 2025), which provides 90 evalua-
tion samples. HoloBench allows control over both
total context size and the amount of information
relevant to the query. We fix the total context to
100k tokens and evaluate under varying levels of
relevant information, with info_amount = {5000,
10000, 25000, 50000} tokens.

4.2 Models

Retriever. We test our method on small, medium,
and large embedding models: Meta’s contriver-
msmarco2 (Izacard et al., 2021) with 109M params,
BAAI’s bge-en-large-v1.53 (Xiao et al., 2023) with
335M params, and Alibaba NLP’s gte-Qwen2-
1.5B-instruct4 (Li et al., 2023) with 1.78B params.

Reader. We use five closed and open mod-
els: GPT-4o-mini, GPT-4o (OpenAI et al., 2024),
Gemini-2.5-Flash (Team et al., 2024), Llama4-
Scout, and Llama4-Maverick (Touvron et al., 2023).
The model details are provided in Appendix A.2.

4.3 Compared methods

We compare the proposed adaptive-k method
against zero-shot LLMs (without context), LLMs
with full context, and SELF-ROUTE (Li et al.,
2024b), which is another modular retrieval method
with a single retrieval step. In SELF-ROUTE, fixed
top 5k tokens are retrieved for the first inference
step. We also show the results of the fixed-n re-
trieval method with varying numbers of tokens n
as performance references. Specifically, we run
experiments with n ∈ {1000, 5000, 10000, 25000,
50000} and regard the best-performing setting as
the oracle. In this way, we can compare the perfor-
mance of adaptive-k against the best possible score
of the fixed retrieval method.

2https://huggingface.co/facebook/
contriever-msmarco

3https://huggingface.co/BAAI/bge-large-en-v1.
5

4https://huggingface.co/Alibaba-NLP/
gte-Qwen2-1.5B-instruct
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Figure 3: The results with different amounts of relevant information in the HoloBench tasks. The best-performing
fixed-n setting is chosen as the oracle. is for performance improvement, and for the number of input tokens.

4.4 Metrics

To evaluate the retrieval performance, context recall
(Ru et al., 2024) is computed, which represents how
much of the relevant context documents were able
to be retrieved. For the evaluation of generation per-
formance, we use substring exact match (SubEM)
for HotpotQA, NQ, and TriviaQA, and LLM-as-a-
judge for HoloBench, following the metrics used
in their original implementation in HELMET (Yen
et al., 2025) and HoloBench, respectively. LLM-
as-a-judge evaluates whether the generated answer
contains a correct mention of the gold answer, as-
signing a score of 1 if it finds a correct mention, 0.5
for a partially correct mention, and 0 otherwise. For
the judge model, GPT-4o-mini is used. To evaluate
the inference cost, we count the number of input
and output tokens, assuming that the financial cost
on the user’s end and energy consumption depends
on the amount of tokens (Husom et al., 2024).

5 Results

This section provides the results of the experiments
with a focus on different task types, reader models,
and embedding models. For the full results, see
Appendix A.3.

5.1 Aggregation-type QA

Figure 3 shows GPT-4o’s results in the HoloBench
tasks where each task is designed to contain differ-
ent amounts of relevant information (info_amount:
10k, 25k, 50k tokens) in the context. It can be
observed that our Adaptive-k method constantly
outperforms SELF-ROUTE. The performance im-
provements of Adaptive-k are particularly notable
when the amount of relevant information in the con-

info5k info10k info25k info50k

SELF-ROUTE 65.79 45.04 30.42 21.54
Adaptive-k 75.74 68.54 66.16 67.43

fixed-1k 12.05 6.53 2.77 1.47
fixed-5k 51.92 31.77 14.06 7.54
fixed-10k 66.68 59.10 28.80 15.39
fixed-25k 78.48 78.18 68.13 39.55
fixed-50k 86.79 87.34 86.88 76.90

Table 2: A comparison of the context recall scores
across different relevant information amounts in the
HoloBench tasks. The query and contexts are embed-
ded by bge-large-en-v1.5. The scores compared are
SELF-ROUTE and Adaptive-k, as well as the results of
fixed-n token retrieval as references.

text is high. Also, our method flexibly increases
the amount of retrieved context chunks when there
is a higher amount of relevant information in the
entire context. In contrast, SELF-ROUTE tends to
underestimate the amount of relevant context and
jump to a conclusion that the LLM can answer the
query with the 5k-token context retrieved in the
first round, leading to lower performance in a high
amount of relevant information.

This contrast is also reflected in the context recall
scores. As shown in Table 2, Adaptive-k consis-
tently achieves a context recall score of approxi-
mately 70 across varying levels of relevant infor-
mation, indicating that it retrieves approximately
70% of truly relevant chunks regardless of their
proportion in the full context. The contrast is even
more pronounced when compared to context recall
of SELF-ROUTE, with Adaptive-k achieving more
than three times higher context recall.
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Figure 4: A performance comparison of our proposed
method (Adaptive-k) in the factoid QA tasks against
existing methods. The embedding model is bge-large-
en-v1.5, and the reader model is GPT-4o. is for the
SubEM scores, and for the number of input tokens.

5.2 Factoid-type QA

Figure 4 shows the comparison of Adaptive-k
against the zero-shot setting, fixed 1k-token re-
trieval, full context, and SELF-ROUTE. All meth-
ods are implemented using GPT-4o. Our method
achieves a 99% reduction in input cost compared
to the full context input, and a 90% reduction
compared to SELF-ROUTE. Since users generally
lack prior knowledge of the optimal retrieval size,
Adaptive-k successfully reduces the cost while im-
proving the generation quality compared to zero-
shot question answering.

5.3 Comparison across LLMs

Since our methods only modify the retriever mod-
ule, the retrieved documents to be fed into an
LLM’s prompt remain the same across different
LLMs. However, we observe that its effectiveness
varies notably by model. Figure 5 shows the aver-
age score improvements and input token counts
across different relevant information settings in
HoloBench. Larger high-performance LLMs such
as GPT-4o (Figure 5b), Gemini-2.5-Flash (Fig-
ure 5c), and Llama4-Maverick (Figure 5e) show
substantial gains from Adaptive-k retrieval com-
pared to SELF-ROUTE. In contrast, smaller LLMs
such as GPT-4o-mini (Figure 5a) and Llama4-
Scout (Figure 5d) exhibit more modest improve-
ments. Nonetheless, even for smaller models,
Adaptive-k effectively reduces context length while
maintaining performance close to the full-context
and oracle fixed-n baselines.

Method Contriever BGE GTE

HotpotQA SELF-ROUTE 77.50 90.83 25.83
adaptive-k 49.17 70.83 5.50

NQ SELF-ROUTE 51.19 51.90 20.67
adaptive-k 26.28 27.20 2.85

TriviaQA SELF-ROUTE 41.49 46.52 10.20
adaptive-k 25.02 31.21 3.00

HoloBench-5k SELF-ROUTE 60.57 65.79 65.18
adaptive-k 72.11 75.74 82.20

HoloBench-10k SELF-ROUTE 41.83 45.04 45.87
adaptive-k 70.85 68.54 78.99

HoloBench-25k SELF-ROUTE 29.67 30.42 31.02
adaptive-k 68.67 66.16 76.47

HoloBench-50k SELF-ROUTE 21.27 21.54 21.90
adaptive-k 67.16 67.43 72.54

Table 3: A comparison of the context recall scores
across tasks between Contriever (contriever-msmarco),
BGE (bge-large-en-v1.5), and GTE (gte-Qwen2-1.5B-
instruct).

5.4 Embedding bottleneck

We observed that the effectiveness of our adaptive
method is sensitive to the choice of embedding
model. As shown in Table 3, the embeddings by
bge-large-en-v1.5, gte-Qwen2-1.5B-instruct, and
contriever-msmarco have different strengths de-
pending on the task. In factoid QA tasks, BGE
embeddings consistently yield higher context re-
call than GTE, whereas GTE performs better on
HoloBench. The underlying cause remains unclear,
but we identify a few potential factors: (1) Context
chunk length: the factoid QA tasks in HELMET
generally have a longer context chunk length (up
to ∼100 tokens) than HoloBench (∼40 tokens); (2)
Chunking scheme (Zhong et al., 2025): while the
context chunks in HoloBench contain well-formed
natural-language sentences, those in the factoid
QA tasks often contain mid-sentence breaks; (3)
Training scheme: differences in pretraining corpora
and formatting may lead to divergent performance
across embedding models. Overall, choosing the
right embedding model is critical for ensuring RAG
effectiveness. For general use, we recommend bge-
large-en-v1.5 for Adaptive-k due to its strong and
consistent performance across settings.

5.5 Limitation of fixed retrieval

While fixed-n retrieval occasionally outperforms
Adaptive-k method, it requires prior knowledge of
the optimal n, which is difficult to estimate in prac-
tice. Our results show that the best-performing n
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Figure 5: A performance comparison across the different reader models in the HoloBench task. The emnbedding
model is bge-large-en-v1.5. is for performance improvement, and for the number of input tokens.

varies across task types, query types, embedding
models, reader models, and the distribution of rel-
evant information. In contrast, Adaptive-k is able
to dynamically adjust the retrieval amount based
on the query and context chunks, eliminating the
need for manual tuning. This not only removes the
burden and risk of heuristically selecting an n but
also provides a more robust and generalizable so-
lution across a wide range of scenarios, especially
in cases where the relevant context size is highly
variable or unknown a priori.

In addition, Tables 4 and 5 demonstrate that the
Adaptive-k method effectively estimates the thresh-
old of relevant contexts across different relevant
context sizes. These tables report the average ab-
solute difference between the estimated threshold
(k) and the true k-value, referred to as diff-k hence-
forth, across various datasets and embeddings. The
true k-value is defined as the index of the last rel-
evant context chunk in the list of context chunk
embeddings sorted by similarity; in other words,
diff-k is the smallest value of k that achieves 100%
recall. Table 4 presents the diff-k values for the
HoloBench task with 50k tokens of relevant context.

Contriever BGE GTE

fixed-1k 2351.96 2289.33 2265.12
fixed-5k 2236.31 2186.08 2154.81
fixed-10k 2095.38 2056.89 2017.09
fixed-25k 1680.93 1660.64 1599.99
fixed-50k (oracle) 992.47 985.39 898.34

Adaptive-k 1133.28 1248.99 1001.00
SELF-ROUTE 2236.31 2186.09 2154.81

Table 4: Diff-k values in the HoloBench task with an
information amount of 50k for the three embedding
models.

The diff-k values for Adaptive-k are substantially
lower than those of the SELF-ROUTE baseline and
closely match those of the fixed 50k-token retrieval,
which is treated as an oracle. Similarly, the diff-k
values for Adaptive-k in the HotpotQA task (Ta-
ble 5) consistently approximate the oracle retrieval
results, indicating that the method reliably deter-
mines the optimal retrieval amount.

6 Conclusion

We presented a simple yet effective and efficient
plug-and-play method, adaptive-k, that dynami-
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Contriever BGE GTE

fixed-1k (oracle) 162.52 88.86 631.90
fixed-5k 154.68 97.89 598.70
fixed-10k 156.29 116.35 558.69
fixed-25k 191.14 185.70 452.32
fixed-50k 297.41 320.50 307.12

Adaptive-k 161.14 89.40 632.28
SELF-ROUTE 154.68 97.89 598.70

Table 5: Diff-k values in HotpotQA for the three em-
bedding models. Given the low retrieval performance
with the GTE embeddings in the factoid-type QA tasks
in Table 3, the results of GTE embeddings in this table
are not informative.

cally selects the number of context chunks to re-
trieve in a single step, based on the similarity dis-
tribution between the query and context chunks.
Unlike existing adaptive retrieval methods that re-
quires iterative inference steps, our method only
requires a single matrix calculation to estimate the
retrieval threshold, achieving a fast and flexible
retrieval module. This method is particularly ef-
fective for aggregation-type QA tasks, where the
optimal number of context chunks varies across
examples and cannot be predetermined by a fixed-
token retrieval strategy. Results on HoloBench
demonstrate that Adaptive-k flexibly adjusts re-
trieval size to align with the amount of relevant
information in the context. In factoid QA tasks,
where relevant information is sparse, our method
aggressively prunes the context while still outper-
forming zero-shot QA in answer quality. Com-
pared to SELF-ROUTE, our method consistently
achieves superior performance in aggregation-type
QA tasks, while drastically reducing the input size
and maintaining higher context recall.

Our adaptive-k retrieval is a plug-and-play,
single-pass alternative to fixed-size retrieval, yet
several directions remain. First, because the
method is orthogonal to most RAG pipelines, pair-
ing it with techniques such as query-expansion,
iterative reranking, or generative feedback loops
could further improve accuracy and latency. Sec-
ond, embedding models excel on different query
and corpus traits; a runtime system that selects or
ensembles embeddings per query may unlock extra
gains in recall and robustness.

Limitations

While our proposed method shows promising re-
sults in adaptive retrieval for question answering

tasks, it has several limitations that warrant discus-
sion.

First, the method is not directly applicable to
tasks such as summarization, where the objective
is to process the entire input holistically rather than
retrieve a subset of relevant context. In such cases,
aggressive filtering may omit important informa-
tion that contributes to the overall summary. In
addition, an embedding model is not able to iden-
tify the relevant context documents with a general
summarization-type query. For instance, when the
query for a summarization task is a general state-
ment like “The summary of this book is:”
(an example from ∞BENCH Sum (Zhang et al.,
2024)), the high-similarity context chunks do not
necessarily reflect the importance to the answer be-
cause the query does not quite contain semantically
significant information.

Second, our method is designed for natural lan-
guage inputs and assumes meaningful semantic
similarity between queries and context chunks. It
does not generalize well to non-natural-language
tasks, such as those involving structured key-value
formats (e.g., JSON), where semantic embeddings
may not capture relevance effectively.

Third, the approach is sensitive to surface-level
variations in text. For example, typographical er-
rors in the query or context can negatively affect
embedding quality and distort similarity scores,
leading to suboptimal retrieval decisions. If the
queries are expected to be noisy with non-standard
spellings or grammar, adding a query standard-
ization module (Chan et al., 2024) on top of our
adaptive-k method would be helpful.

Lastly, the method may be vulnerable to adver-
sarial or malicious inputs (Wallace et al., 2019).
A specially crafted context chunk could receive
an artificially high or low similarity score, thereby
introducing a large gap in the similarity distribu-
tion and misleading the algorithm into selecting
an incorrect retrieval threshold (Su et al., 2024).
Mitigating such risks would require additional ro-
bustness checks or adversarial training techniques,
which are beyond the scope of this work.

Ethical considerations

One of the key advantages of our proposed adap-
tive retrieval method is its potential to reduce the
environmental impact of LLM inference. By dis-
carding irrelevant context chunks and only retriev-
ing a minimal yet sufficient subset of documents,
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our approach significantly reduces the number of
input tokens processed. In our experiments, our
proposed method discarded nearly 99% of the in-
put tokens in factoid QA tasks, and substantially
reduced input size in aggregation QA tasks while
maintaining high context recall.

This reduction translates into lower computa-
tional overhead, leading to more energy-efficient
inference. As a result, our method contributes to
decreasing the carbon footprint associated with de-
ploying LLMs at scale. With the growing trend of
longer context windows, flexibly filtering out irrele-
vant context is necessary to ensure energy-efficient
inference.

While efficiency is a central goal, we empha-
size that any optimization must not compromise
fairness or content coverage. Our method is de-
signed to be model-agnostic and does not introduce
or amplify biases beyond those present in the sim-
ilarity scoring mechanism, e.g., cosine similarity
over embedding spaces. However, care should be
taken when applying this method in high-stakes
domains, e.g., medical or legal QA, where discard-
ing seemingly low-similarity context could result
in the omission of critical information. Further re-
search is needed to quantify such risks and guide
responsible deployment.

The datasets used in this paper, HELMET and
HoloBench, were originally released under the MIT
License and the BSD 3-Clause License, respec-
tively, and our use of them complies with the terms
of those licenses. While the datasets often contain
named entities, including personal names, we en-
sured that no uniquely identifiable names appear in
the paper or the released code.

While we used AI assitants such as ChatGPT
and Copilot to assist in coding and revising this
paper, we carefully reviewed and edited all content
to ensure it meets our standards and aligns with our
research goals.
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A Appendix

A.1 Prompt templates

A.1.1 Prompt template for the factoid QA tasks

Your task is to answer the question provided. To help you answer accurately, some relevant
context documents have been retrieved. After reviewing them, you'll be asked the same question
again. Please respond succinctly.

**Input:**
- **Question:**
```
{question}
```

- **Context:**
```
{context}
```

- **Question:**
```
{question}
```

**Response:**
- **Answer:**

A.1.2 Prompt template for the HoloBench tasks

You'll be given a set of sentences to read through carefully. Once you've reviewed them, I'll
ask you a question related to the information in those sentences. Your job is to think
critically about the details, analyze the sentences in relation to the question, and then
provide your answer. If the information clearly supports a partial answer, provide that.
However, if the evidence is unclear or insufficient, it is okay to respond with "No answer."

**Input:**
- **Sentences:**
```
{context}
```

- **Question:**
```
{question}
```

**Response:**
- **Reasoning:**
- [Describe how you thought through the sentences and how they helped you reach your

conclusion. If the evidence is unclear or insufficient to provide a reliable answer,
explain why. Your reasoning should not exceed 10,000 words.]

- **Answer:** [Provide an answer only if it is clearly supported by the information in the
sentences. If the evidence is unclear or insufficient, respond with "No answer."]
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A.1.3 Prompt template for LLM-as-a-Judge

You will be given a question along with a response generated by an assistant and the
corresponding ground truth data. Your task is to assess the response based on its accuracy
and completeness in comparison to the ground truth. For each entry in the ground truth,
determine whether the information provided by the assistant is an "Exact Match," a "Partial
Match," or a "No Match."

#### **Evaluation Criteria:**

- **Exact Match**: The assistant's response precisely matches the ground truth in both
content and detail.

- **Partial Match**: The assistant's response includes some correct information but is either
incomplete, incorrectly ordered, or contains inaccuracies.

- **No Match**: The assistant's response does not accurately reflect the ground truth or is
missing entirely.

#### **Special Cases:**

**Ground Truth is None**:
- If the ground truth is `None` (represented as an empty list `[]`):
- **Exact Match**: If the assistant's response indicates that there is no information or

content.
- **No Match**: If the assistant's response provides any information when the ground truth

is `None`.

#### **Output Format:**

- The output should be a list of objects where each object contains:
- An `"id"` that matches the `id` of the corresponding ground truth entry.
- A `"label"` indicating whether the assistant's response is an `"Exact Match"`, `"Partial

Match"`, or `"No Match"`.

- The number of output objects should match the number of entries in the ground truth.

---

### **Examples:**
{in_context_examples}

====== Your task starts here ======

**Question:**
```
{question}
```

**Assistant's Response:**
```
{pred}
```

**Ground Truth:**
```
{gold}
```

**Output Format:**
```
{output_format}
```

20129



A.2 Detailed experimental setup
We set temperature and top-p parameters to 0.0 and 1.0, respectively, for all our experiments. For
Gemini-2.5-Flash, we set its thinking budget to 0. Table 6 lists the models used in our experiments.

Model Size Context Model name / snapshot License

GPT-4o — 128k gpt-4o-2024-08-06 OpenAI Service Terms3

GPT-4o-mini — 128k gpt-4o-mini-2024-07-18 OpenAI Service Terms
Gemini-2.5-Flash — 1M gemini-2.5-flash-preview-04-17 Gemini API Additional Terms of Service4

Llama-4-Maverick 400B 1M meta-llama/Llama-4-Maverick-17B-128E-Instruct Llama 4 Community License Agreement5

Llama-4-Scout 109B 10M meta-llama/Llama-4-Scout-17B-16E-Instruct Llama 4 Community License Agreement

Table 6: A list of the LLMs used in the experiments. An em-dash (—) means that the model size is not publicly
disclosed.

3https://openai.com/policies/services-agreement/ [Accessed: May 12, 2025]
4https://ai.google.dev/gemini-api/terms [Accessed: May 12, 2025]
5https://www.llama.com/llama4/license/ [Accessed: May 12, 2025]
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A.3 Full results
A.3.1 Factoid QA tasks (BGE embeddings)

Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 39 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 15.56 ± 9.92
fixed-1k 60 69.33 ± 30.77 99.33 ± 0.09 852.30 ± 57.33 20.53 ± 13.61
fixed-5k 66 84.50 ± 26.93 96.46 ± 0.29 3983.81 ± 219.82 20.87 ± 14.45
fixed-10k 66 88.50 ± 23.05 92.89 ± 0.55 7911.32 ± 440.28 21.85 ± 14.35
fixed-25k 67 92.50 ± 20.15 82.19 ± 1.32 19763.59 ± 1109.32 22.36 ± 14.48
fixed-50k 66 95.33 ± 14.23 64.46 ± 2.45 39597.66 ± 2224.65 24.00 ± 15.87
full-context 45 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 16.49 ± 18.35

SELF-ROUTE 61 90.83 ± 22.77 75.25 ± 40.17 28008.57 ± 45573.55 17.31 ± 17.84
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 954.33 ± 206.78 20.46 ± 14.43

NQ

zeroshot 49 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 23.36 ± 15.22
fixed-1k 54 26.45 ± 30.50 99.36 ± 0.09 806.77 ± 70.12 28.50 ± 18.53
fixed-5k 59 42.45 ± 36.68 96.66 ± 0.28 3837.48 ± 333.10 31.33 ± 21.80
fixed-10k 58 50.35 ± 35.94 93.27 ± 0.52 7632.00 ± 655.62 32.11 ± 23.94
fixed-25k 62 62.78 ± 32.87 83.10 ± 1.25 19051.28 ± 1574.22 33.91 ± 26.90
fixed-50k 59 68.89 ± 29.96 66.16 ± 2.45 38102.93 ± 2989.91 37.39 ± 29.33
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 23.10 ± 27.28

SELF-ROUTE 55 52.72 ± 36.37 77.33 ± 38.86 25839.53 ± 44249.67 23.60 ± 20.09
adaptive-k 54 27.20 ± 31.58 99.25 ± 0.25 927.69 ± 283.52 28.83 ± 18.99

TriviaQA

zeroshot 83 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 7.85 ± 6.27
fixed-1k 94 31.21 ± 36.58 99.34 ± 0.10 833.75 ± 67.42 11.86 ± 9.07
fixed-5k 93 42.10 ± 39.93 96.53 ± 0.26 3913.01 ± 260.44 11.73 ± 9.41
fixed-10k 92 49.90 ± 40.11 93.03 ± 0.49 7772.18 ± 488.60 12.64 ± 11.19
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 19384.51 ± 1164.94 13.64 ± 11.10
fixed-50k 94 61.66 ± 37.83 65.21 ± 2.27 38819.58 ± 2326.33 15.72 ± 11.95
full-context 61 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 11.95 ± 13.89

SELF-ROUTE 90 48.19 ± 39.84 84.95 ± 31.53 17112.00 ± 35900.97 8.69 ± 8.41
adaptive-k 92 31.21 ± 36.58 99.26 ± 0.23 918.86 ± 240.86 11.69 ± 9.15

Average

zeroshot 57.00 0.00 0.00 58.83 15.59
fixed-1k 69.33 42.33 99.34 830.94 20.30
fixed-5k 72.67 56.35 96.55 3911.43 21.31
fixed-10k 72.00 62.92 93.07 7771.83 22.20
fixed-25k 74.00 70.00 82.63 19399.79 23.30
fixed-50k 73.00 75.29 65.28 38840.06 25.70
full-context 49.00 100.00 0.00 110336.05 17.18

SELF-ROUTE 68.67 63.91 79.18 23653.37 16.53
adaptive-k 69.67 43.08 99.25 933.63 20.33

Table 7: Full GPT-4o-mini’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 50 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 19.31 ± 16.53
fixed-1k 61 69.33 ± 30.77 99.33 ± 0.09 852.30 ± 57.33 27.72 ± 18.35
fixed-5k 70 84.50 ± 26.93 96.46 ± 0.29 3983.81 ± 219.82 27.25 ± 17.25
fixed-10k 76 88.50 ± 23.05 92.89 ± 0.55 7911.32 ± 440.28 29.16 ± 18.31
fixed-25k 74 92.50 ± 20.15 82.19 ± 1.32 19763.59 ± 1109.32 28.66 ± 20.86
fixed-50k 73 95.33 ± 14.23 64.46 ± 2.45 39597.66 ± 2224.65 27.89 ± 20.22
full-context 48 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 18.91 ± 20.30

SELF-ROUTE 66 84.50 ± 26.93 96.46 ± 0.29 23663.11 ± 42241.38 22.49 ± 20.04
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 954.33 ± 206.78 28.24 ± 19.56

NQ

zeroshot 57 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 27.38 ± 24.23
fixed-1k 59 26.45 ± 30.50 99.36 ± 0.09 806.77 ± 70.12 33.62 ± 26.13
fixed-5k 64 42.45 ± 36.68 96.66 ± 0.28 3837.48 ± 333.10 37.37 ± 30.24
fixed-10k 64 50.35 ± 35.94 93.27 ± 0.52 7632.00 ± 655.62 38.41 ± 32.61
fixed-25k 64 62.78 ± 32.87 83.10 ± 1.25 19051.28 ± 1574.22 38.48 ± 33.35
fixed-50k 63 68.89 ± 29.96 66.16 ± 2.45 38102.93 ± 2989.91 39.76 ± 33.99
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 24.74 ± 33.79

SELF-ROUTE 61 42.45 ± 36.68 96.66 ± 0.28 24713.66 ± 43308.30 33.64 ± 34.15
adaptive-k 61 27.20 ± 31.58 99.25 ± 0.25 927.69 ± 283.52 34.85 ± 27.40

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 8.33 ± 7.16
fixed-1k 96 31.21 ± 36.58 99.34 ± 0.10 833.75 ± 67.42 16.10 ± 11.89
fixed-5k 95 42.10 ± 39.93 96.53 ± 0.26 3913.01 ± 260.44 16.01 ± 11.49
fixed-10k 94 49.90 ± 40.11 93.03 ± 0.49 7772.18 ± 488.60 15.55 ± 9.91
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 19384.51 ± 1164.94 15.96 ± 9.81
fixed-50k 93 61.66 ± 37.83 65.21 ± 2.27 38819.58 ± 2326.33 16.31 ± 10.62
full-context 62 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 12.94 ± 12.48

SELF-ROUTE 92 42.10 ± 39.93 96.53 ± 0.26 13900.19 ± 31870.44 11.39 ± 10.31
adaptive-k 96 31.21 ± 36.58 99.26 ± 0.23 918.86 ± 240.86 16.10 ± 12.07

Average

zeroshot 66.00 0.00 0.00 58.83 18.34
fixed-1k 72.00 42.33 99.34 830.94 25.81
fixed-5k 76.33 56.35 96.55 3911.43 26.88
fixed-10k 78.00 62.92 93.07 7771.83 27.71
fixed-25k 77.00 70.00 82.63 19399.79 27.70
fixed-50k 76.33 75.29 65.28 38840.06 27.99
full-context 50.33 100.00 0.00 110336.05 18.86

SELF-ROUTE 73.00 56.35 96.55 20758.99 22.51
adaptive-k 73.33 43.08 99.25 933.63 26.40

Table 8: Full GPT-4o’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 46 0.00 ± 0.00 100.00 ± 0.00 57.25 ± 7.72 3.00 ± 1.62
fixed-1k 54 69.33 ± 30.77 99.33 ± 0.09 883.55 ± 67.88 15.24 ± 23.19
fixed-5k 63 84.50 ± 26.93 96.46 ± 0.29 4170.89 ± 274.70 12.92 ± 19.22
fixed-10k 66 88.50 ± 23.05 92.89 ± 0.55 8295.62 ± 548.91 12.62 ± 17.17
fixed-25k 66 92.50 ± 20.15 82.19 ± 1.32 20727.06 ± 1379.61 15.09 ± 20.48
fixed-50k 72 95.33 ± 14.23 64.46 ± 2.45 41530.89 ± 2780.34 16.97 ± 22.12
full-context 71 100.00 ± 0.00 0.00 ± 0.00 115121.31 ± 5964.79 17.60 ± 19.32

SELF-ROUTE 68 95.33 ± 17.42 69.45 ± 43.53 36820.47 ± 52663.73 13.95 ± 19.00
adaptive-k 55 70.83 ± 31.01 99.24 ± 0.17 990.43 ± 216.72 15.29 ± 24.47

NQ

zeroshot 47 0.00 ± 0.00 100.00 ± 0.00 46.30 ± 2.46 4.67 ± 3.92
fixed-1k 44 26.45 ± 30.50 99.36 ± 0.09 826.53 ± 80.39 26.14 ± 33.25
fixed-5k 59 42.45 ± 36.68 96.66 ± 0.28 3959.77 ± 351.93 31.82 ± 32.77
fixed-10k 59 50.35 ± 35.94 93.27 ± 0.52 7891.38 ± 704.11 115.35 ± 816.66
fixed-25k 62 62.78 ± 32.87 83.10 ± 1.25 19730.89 ± 1697.34 34.87 ± 53.13
fixed-50k 61 68.89 ± 29.96 66.16 ± 2.45 39505.22 ± 3266.78 35.23 ± 47.76
full-context 64 100.00 ± 0.00 0.00 ± 0.00 115142.91 ± 5115.01 28.15 ± 22.01

SELF-ROUTE 60 54.71 ± 36.63 74.41 ± 40.87 30547.34 ± 48902.74 27.40 ± 30.96
adaptive-k 47 27.20 ± 31.58 99.25 ± 0.25 951.38 ± 295.47 29.04 ± 32.84

TriviaQA

zeroshot 93 0.00 ± 0.00 100.00 ± 0.00 54.36 ± 8.36 2.55 ± 1.48
fixed-1k 87 31.21 ± 36.58 99.34 ± 0.10 859.44 ± 78.27 8.99 ± 16.82
fixed-5k 93 42.10 ± 39.93 96.53 ± 0.26 4073.06 ± 317.10 8.74 ± 15.25
fixed-10k 92 49.90 ± 40.11 93.03 ± 0.49 8097.22 ± 589.74 9.30 ± 14.94
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 20213.64 ± 1424.47 8.41 ± 11.68
fixed-50k 92 61.66 ± 37.83 65.21 ± 2.27 40490.49 ± 2852.03 11.95 ± 14.79
full-context 95 100.00 ± 0.00 0.00 ± 0.00 115669.41 ± 4229.98 10.48 ± 8.73

SELF-ROUTE 94 49.19 ± 39.24 84.95 ± 31.53 17948.59 ± 37786.95 7.39 ± 10.84
adaptive-k 86 31.21 ± 36.58 99.26 ± 0.23 947.50 ± 244.93 7.53 ± 13.74

Average

zeroshot 62.00 0.00 0.00 52.64 3.41
fixed-1k 61.67 42.33 99.34 856.51 16.79
fixed-5k 71.67 56.35 96.55 4067.91 17.83
fixed-10k 72.33 62.92 93.07 8094.74 45.76
fixed-25k 73.67 70.00 82.63 20223.86 19.46
fixed-50k 75.00 75.29 65.28 40508.87 21.38
full-context 76.67 100.00 0.00 115311.21 18.74

SELF-ROUTE 74.00 66.41 76.27 28438.80 16.25
adaptive-k 62.67 43.08 99.25 963.10 17.29

Table 9: Full Gemini-2.5-Flash’s results in the factoid QA tasks.

20133



Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 38 0.00 ± 0.00 100.00 ± 0.00 61.17 ± 7.05 226.87 ± 1635.13
fixed-1k 65 69.33 ± 30.77 99.33 ± 0.09 850.33 ± 59.50 59.78 ± 97.50
fixed-5k 65 84.50 ± 26.93 96.46 ± 0.29 4006.32 ± 227.71 41.23 ± 63.66
fixed-10k 68 88.50 ± 23.05 92.89 ± 0.55 7963.66 ± 456.87 38.49 ± 60.86
fixed-25k 68 92.50 ± 20.15 82.19 ± 1.32 19912.13 ± 1152.36 33.14 ± 50.95
fixed-50k 67 95.33 ± 14.23 64.46 ± 2.45 39898.83 ± 2310.69 36.25 ± 56.47
full-context 67 100.00 ± 0.00 0.00 ± 0.00 110457.05 ± 5390.30 36.77 ± 65.52

SELF-ROUTE 73 89.50 ± 23.53 84.89 ± 31.51 17292.33 ± 36140.60 60.39 ± 78.22
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 952.64 ± 206.19 53.92 ± 87.49

NQ

zeroshot 58 0.00 ± 0.00 100.00 ± 0.00 51.54 ± 2.41 62.84 ± 53.57
fixed-1k 62 26.45 ± 30.50 99.36 ± 0.09 802.11 ± 71.62 60.35 ± 48.38
fixed-5k 66 42.45 ± 36.68 96.66 ± 0.28 3847.40 ± 341.79 73.75 ± 67.45
fixed-10k 64 50.35 ± 35.94 93.27 ± 0.52 7660.11 ± 675.79 76.13 ± 61.56
fixed-25k 66 62.78 ± 32.87 83.10 ± 1.25 19136.92 ± 1631.03 85.91 ± 81.62
fixed-50k 68 68.89 ± 29.96 66.16 ± 2.45 38284.28 ± 3103.43 288.08 ± 1664.19
full-context 68 100.00 ± 0.00 0.00 ± 0.00 111154.46 ± 4416.57 113.88 ± 202.07

SELF-ROUTE 66 48.21 ± 36.70 85.06 ± 31.57 17228.44 ± 36372.48 142.10 ± 316.76
adaptive-k 61 27.20 ± 31.58 99.25 ± 0.25 923.58 ± 286.51 67.89 ± 59.55

TriviaQA

zeroshot 85 0.00 ± 0.00 100.00 ± 0.00 58.29 ± 7.89 20.12 ± 39.32
fixed-1k 98 31.21 ± 36.58 99.34 ± 0.10 830.54 ± 66.35 24.97 ± 54.24
fixed-5k 98 42.10 ± 39.93 96.53 ± 0.26 3928.14 ± 261.91 24.80 ± 63.48
fixed-10k 97 49.90 ± 40.11 93.03 ± 0.49 7808.89 ± 495.48 18.29 ± 42.28
fixed-25k 96 54.74 ± 40.26 82.59 ± 1.14 19486.58 ± 1189.90 19.47 ± 51.48
fixed-50k 95 61.66 ± 37.83 65.21 ± 2.27 39032.69 ± 2399.86 12.60 ± 22.71
full-context 96 100.00 ± 0.00 0.00 ± 0.00 111322.11 ± 3373.09 23.69 ± 52.77

SELF-ROUTE 97 47.69 ± 40.13 89.78 ± 24.76 11742.38 ± 28544.35 34.38 ± 63.98
adaptive-k 98 31.21 ± 36.58 99.26 ± 0.23 915.89 ± 238.98 30.32 ± 73.20

Average

zeroshot 60.33 0.00 0.00 57.00 103.28
fixed-1k 75.00 42.33 99.34 827.66 48.37
fixed-5k 76.33 56.35 96.55 3927.29 46.59
fixed-10k 76.33 62.92 93.07 7810.89 44.30
fixed-25k 76.67 70.00 82.63 19511.88 46.17
fixed-50k 76.67 75.29 65.28 39071.93 112.31
full-context 77.00 100.00 0.00 110977.87 58.11

SELF-ROUTE 78.67 61.80 86.57 15421.05 78.96
adaptive-k 74.00 43.08 99.25 930.70 50.71

Table 10: Full Llama4-Scout’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 52 0.00 ± 0.00 100.00 ± 0.00 61.17 ± 7.05 99.43 ± 110.61
fixed-1k 71 69.33 ± 30.77 99.33 ± 0.09 850.33 ± 59.50 110.04 ± 141.75
fixed-5k 78 84.50 ± 26.93 96.46 ± 0.29 4006.32 ± 227.71 68.99 ± 88.75
fixed-10k 74 88.50 ± 23.05 92.89 ± 0.55 7963.66 ± 456.87 44.12 ± 63.11
fixed-25k 71 92.50 ± 20.15 82.19 ± 1.32 19912.13 ± 1152.36 43.30 ± 55.48
fixed-50k 72 95.33 ± 14.23 64.46 ± 2.45 39898.83 ± 2310.69 45.51 ± 66.82
full-context 75 100.00 ± 0.00 0.00 ± 0.00 110457.05 ± 5390.30 41.18 ± 54.88

SELF-ROUTE 79 86.00 ± 26.35 92.61 ± 19.00 8383.42 ± 21450.47 90.55 ± 120.15
adaptive-k 71 70.83 ± 31.01 99.24 ± 0.17 952.64 ± 206.19 112.62 ± 146.43

NQ

zeroshot 53 0.00 ± 0.00 100.00 ± 0.00 51.54 ± 2.41 54.22 ± 54.55
fixed-1k 63 26.45 ± 30.50 99.36 ± 0.09 802.11 ± 71.62 68.16 ± 58.41
fixed-5k 65 42.45 ± 36.68 96.66 ± 0.28 3847.40 ± 341.79 75.36 ± 69.75
fixed-10k 67 50.35 ± 35.94 93.27 ± 0.52 7660.11 ± 675.79 75.90 ± 79.63
fixed-25k 64 62.78 ± 32.87 83.10 ± 1.25 19136.92 ± 1631.03 69.41 ± 69.85
fixed-50k 64 68.89 ± 29.96 66.16 ± 2.45 38284.28 ± 3103.43 71.23 ± 77.03
full-context 67 100.00 ± 0.00 0.00 ± 0.00 111154.46 ± 4416.57 66.25 ± 66.57

SELF-ROUTE 65 45.95 ± 37.23 90.86 ± 23.07 10536.57 ± 26530.78 69.87 ± 75.65
adaptive-k 62 27.20 ± 31.58 99.25 ± 0.25 923.58 ± 286.51 75.56 ± 73.03

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 58.29 ± 7.89 25.52 ± 54.17
fixed-1k 96 31.21 ± 36.58 99.34 ± 0.10 830.54 ± 66.35 39.52 ± 57.18
fixed-5k 98 42.10 ± 39.93 96.53 ± 0.26 3928.14 ± 261.91 31.02 ± 48.63
fixed-10k 98 49.90 ± 40.11 93.03 ± 0.49 7808.89 ± 495.48 21.72 ± 32.93
fixed-25k 96 54.74 ± 40.26 82.59 ± 1.14 19486.58 ± 1189.90 22.79 ± 46.88
fixed-50k 96 61.66 ± 37.83 65.21 ± 2.27 39032.69 ± 2399.86 15.46 ± 34.71
full-context 96 100.00 ± 0.00 0.00 ± 0.00 111322.11 ± 3373.09 19.58 ± 34.15

SELF-ROUTE 98 44.60 ± 40.03 93.64 ± 16.55 7440.28 ± 19973.57 37.87 ± 63.00
adaptive-k 96 31.21 ± 36.58 99.26 ± 0.23 915.89 ± 238.98 49.73 ± 70.11

Average

zeroshot 65.33 0.00 0.00 57.00 59.72
fixed-1k 76.67 42.33 99.34 827.66 72.57
fixed-5k 80.33 56.35 96.55 3927.29 58.46
fixed-10k 79.67 62.92 93.07 7810.89 47.25
fixed-25k 77.00 70.00 82.63 19511.88 45.17
fixed-50k 77.33 75.29 65.28 39071.93 44.07
full-context 79.33 100.00 0.00 110977.87 42.34

SELF-ROUTE 80.67 58.85 92.37 8786.76 66.10
adaptive-k 76.33 43.08 99.25 930.70 79.30

Table 11: Full Llama4-Maverick’s results in the factoid QA tasks.

20135



A.3.2 HoloBench (BGE embeddings)

Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 10.00 0.00 ± 0.00 100.00 ± 0.00 58.13 43.34
fixed-1k 28.19 12.05 ± 6.42 99.18 ± 0.43 1000.07 325.14
fixed-5k 38.74 51.92 ± 29.82 95.85 ± 1.86 4194.01 923.67
fixed-10k 43.50 66.68 ± 30.73 91.80 ± 2.92 8011.64 801.81
fixed-25k 39.81 78.48 ± 26.96 79.59 ± 4.56 19574.94 1489.67
fixed-50k 37.67 86.79 ± 20.88 57.76 ± 5.92 39224.80 2342.40
full-context 37.76 100.00 ± 0.00 0.00 ± 0.00 85882.50 3147.27

SELF-ROUTE 31.32 69.46 ± 27.62 74.68 ± 40.18 23044.97 1523.99
adaptive-k 40.86 75.74 ± 30.48 74.07 ± 25.68 24625.02 2220.94

info10k

zeroshot 6.22 0.00 ± 0.00 100.00 ± 0.00 58.13 45.28
fixed-1k 22.55 6.53 ± 3.11 99.19 ± 0.40 1003.83 322.87
fixed-5k 34.06 31.77 ± 14.86 95.84 ± 1.90 4228.71 987.09
fixed-10k 34.85 59.10 ± 27.14 91.74 ± 3.47 8235.02 1712.06
fixed-25k 36.44 78.18 ± 26.55 79.55 ± 5.42 19838.92 1716.79
fixed-50k 29.98 87.34 ± 20.51 57.88 ± 6.41 39437.42 2910.81
full-context 26.59 100.00 ± 0.00 0.00 ± 0.00 86139.74 4370.90

SELF-ROUTE 28.56 48.18 ± 27.16 77.76 ± 37.78 19627.93 2228.59
adaptive-k 33.16 68.54 ± 32.55 79.22 ± 21.59 20233.99 2338.73

info25k

zeroshot 4.22 0.00 ± 0.00 100.00 ± 0.00 58.13 43.17
fixed-1k 16.67 2.77 ± 1.15 99.21 ± 0.32 999.62 331.77
fixed-5k 25.76 14.06 ± 5.50 95.96 ± 1.56 4215.72 670.87
fixed-10k 28.61 28.80 ± 9.87 91.86 ± 3.09 8269.06 1554.73
fixed-25k 32.63 68.13 ± 22.77 79.60 ± 7.10 20475.06 2249.00
fixed-50k 30.89 86.88 ± 20.14 58.46 ± 8.58 40152.73 3203.13
full-context 29.53 100.00 ± 0.00 0.00 ± 0.00 86751.63 3767.70

SELF-ROUTE 27.01 34.19 ± 35.59 74.68 ± 40.17 22726.84 1090.31
adaptive-k 25.68 66.16 ± 36.90 73.86 ± 23.04 25778.38 2818.23

info50k

zeroshot 5.28 0.00 ± 0.00 100.00 ± 0.00 58.13 43.59
fixed-1k 11.73 1.47 ± 0.55 99.22 ± 0.23 1006.91 310.46
fixed-5k 20.88 7.54 ± 2.52 96.02 ± 1.12 4235.36 511.71
fixed-10k 21.53 15.39 ± 4.25 92.01 ± 2.13 8288.68 1556.82
fixed-25k 25.29 39.55 ± 8.89 79.75 ± 5.38 20622.82 2609.31
fixed-50k 30.18 76.90 ± 16.82 58.85 ± 9.99 41264.63 2885.44
full-context 27.98 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 19.57 26.38 ± 37.06 76.86 ± 38.66 21444.74 945.72
adaptive-k 22.93 67.43 ± 38.13 60.73 ± 25.94 39654.20 2781.81

Average

zeroshot 6.43 0.00 0.00 58.13 43.84
fixed-1k 19.78 5.70 99.20 1002.61 322.56
fixed-5k 29.86 26.32 95.92 4218.45 773.33
fixed-10k 32.12 42.49 91.85 8201.10 1406.36
fixed-25k 33.54 66.09 79.62 20127.94 2016.19
fixed-50k 32.18 84.48 58.24 40019.90 2835.45
full-context 30.47 100.00 0.00 86677.57 3584.26

SELF-ROUTE 26.61 44.55 76.00 21711.12 1447.15
adaptive-k 30.66 69.47 71.97 27572.90 2539.93

Table 12: Full GPT-4o-mini’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 7.22 0.00 ± 0.00 100.00 ± 0.00 58.13 65.21
fixed-1k 26.14 12.05 ± 6.42 99.18 ± 0.43 1000.07 289.39
fixed-5k 42.32 51.92 ± 29.82 95.85 ± 1.86 4194.01 913.32
fixed-10k 49.79 66.68 ± 30.73 91.80 ± 2.92 8011.64 1334.67
fixed-25k 46.27 78.48 ± 26.96 79.59 ± 4.56 19574.94 2087.61
fixed-50k 43.82 86.79 ± 20.88 57.76 ± 5.92 39224.80 3188.69
full-context 48.30 100.00 ± 0.00 0.00 ± 0.00 73652.50 3680.13

SELF-ROUTE 41.86 65.79 ± 27.76 76.70 ± 38.60 17260.98 1139.29
adaptive-k 48.60 75.74 ± 30.48 74.07 ± 25.68 24625.02 1362.71

info10k

zeroshot 5.11 0.00 ± 0.00 100.00 ± 0.00 58.13 64.00
fixed-1k 21.83 6.53 ± 3.11 99.19 ± 0.40 1003.83 298.53
fixed-5k 32.45 31.77 ± 14.86 95.84 ± 1.90 4228.71 1001.83
fixed-10k 36.48 59.10 ± 27.14 91.74 ± 3.47 8235.02 2589.58
fixed-25k 39.65 78.18 ± 26.55 79.55 ± 5.42 19838.92 3527.68
fixed-50k 38.55 87.34 ± 20.51 57.88 ± 6.41 39437.42 4061.82
full-context 41.75 100.00 ± 0.00 0.00 ± 0.00 75768.00 4767.44

SELF-ROUTE 32.37 45.04 ± 25.18 79.96 ± 36.00 17208.18 1146.12
adaptive-k 37.06 68.54 ± 32.55 79.22 ± 21.59 20233.99 2252.20

info25k

zeroshot 3.54 0.00 ± 0.00 100.00 ± 0.00 58.13 65.69
fixed-1k 16.51 2.77 ± 1.15 99.21 ± 0.32 999.62 282.18
fixed-5k 27.52 14.06 ± 5.50 95.96 ± 1.56 4215.72 1350.80
fixed-10k 29.10 28.80 ± 9.87 91.86 ± 3.09 8269.06 2520.64
fixed-25k 40.25 68.13 ± 22.77 79.60 ± 7.10 20475.06 3406.40
fixed-50k 34.18 86.88 ± 20.14 58.46 ± 8.58 40152.73 4366.80
full-context 42.24 100.00 ± 0.00 0.00 ± 0.00 75787.37 4802.50

SELF-ROUTE 25.71 30.42 ± 32.70 77.87 ± 37.82 18525.29 1759.81
adaptive-k 33.46 66.16 ± 36.90 73.86 ± 23.04 25778.38 4017.11

info50k

zeroshot 5.19 0.00 ± 0.00 100.00 ± 0.00 58.13 62.30
fixed-1k 11.59 1.47 ± 0.55 99.22 ± 0.23 1006.91 274.89
fixed-5k 20.62 7.54 ± 2.52 96.02 ± 1.12 4235.36 735.80
fixed-10k 23.15 15.39 ± 4.25 92.01 ± 2.13 8288.68 1595.42
fixed-25k 28.11 39.55 ± 8.89 79.75 ± 5.38 20622.82 4269.89
fixed-50k 34.58 76.90 ± 16.82 58.85 ± 9.99 41264.63 4244.67
full-context 27.40 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 19.28 21.54 ± 31.97 80.09 ± 36.03 15426.00 917.82
adaptive-k 30.10 67.43 ± 38.13 60.73 ± 25.94 39654.20 4374.22

Average

zeroshot 5.26 0.00 0.00 58.13 64.30
fixed-1k 19.02 5.70 99.20 1002.61 286.25
fixed-5k 30.73 26.32 95.92 4218.45 1000.44
fixed-10k 34.63 42.49 91.85 8201.10 2010.08
fixed-25k 38.57 66.09 79.62 20127.94 3322.89
fixed-50k 37.78 84.48 58.24 40019.90 3965.49
full-context 39.92 100.00 0.00 78286.07 4075.32

SELF-ROUTE 29.80 40.70 78.65 17105.11 1240.76
adaptive-k 37.30 69.47 71.97 27572.90 3001.56

Table 13: Full GPT-4o’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 10.19 0.00 ± 0.00 100.00 ± 0.00 52.64 644.08
fixed-1k 27.78 12.05 ± 6.42 99.18 ± 0.43 1091.11 478.93
fixed-5k 49.11 51.92 ± 29.82 95.85 ± 1.86 4610.40 1470.04
fixed-10k 54.52 66.68 ± 30.73 91.80 ± 2.92 8760.92 2743.83
fixed-25k 55.31 78.48 ± 26.96 79.59 ± 4.56 21300.94 3422.06
fixed-50k 56.37 86.79 ± 20.88 57.76 ± 5.92 42764.79 3995.68
full-context 63.27 100.00 ± 0.00 0.00 ± 0.00 94227.37 4584.58

SELF-ROUTE 47.56 57.27 ± 31.23 88.38 ± 25.87 11559.12 1894.97
adaptive-k 55.68 75.74 ± 30.48 74.07 ± 25.68 26762.53 2776.24

info10k

zeroshot 8.33 0.00 ± 0.00 100.00 ± 0.00 52.64 572.52
fixed-1k 21.09 6.53 ± 3.11 99.19 ± 0.40 1099.17 469.12
fixed-5k 34.94 31.77 ± 14.86 95.84 ± 1.90 4683.90 2107.79
fixed-10k 50.51 59.10 ± 27.14 91.74 ± 3.47 9105.06 2855.68
fixed-25k 55.24 78.18 ± 26.55 79.55 ± 5.42 21717.67 4696.43
fixed-50k 54.06 87.34 ± 20.51 57.88 ± 6.41 43101.23 6040.41
full-context 53.65 100.00 ± 0.00 0.00 ± 0.00 94626.73 6381.93

SELF-ROUTE 35.72 36.72 ± 22.19 89.40 ± 24.10 10196.77 2031.94
adaptive-k 56.26 68.54 ± 32.55 79.22 ± 21.59 22081.99 3637.80

info25k

zeroshot 6.28 0.00 ± 0.00 100.00 ± 0.00 52.64 657.34
fixed-1k 15.42 2.77 ± 1.15 99.21 ± 0.32 1098.33 455.64
fixed-5k 31.18 14.06 ± 5.50 95.96 ± 1.56 4699.37 1695.57
fixed-10k 37.86 28.80 ± 9.87 91.86 ± 3.09 9230.02 3053.66
fixed-25k 42.87 68.13 ± 22.77 79.60 ± 7.10 22790.66 6461.89
fixed-50k 44.54 86.88 ± 20.14 58.46 ± 8.58 44317.83 7982.89
full-context 42.19 100.00 ± 0.00 0.00 ± 0.00 95716.53 9289.30

SELF-ROUTE 28.12 20.06 ± 22.11 89.55 ± 24.11 11120.20 2086.64
adaptive-k 43.76 66.16 ± 36.90 73.86 ± 23.04 28207.51 5901.29

info50k

zeroshot 6.95 0.00 ± 0.00 100.00 ± 0.00 52.64 735.01
fixed-1k 9.77 1.47 ± 0.55 99.22 ± 0.23 1108.12 445.62
fixed-5k 22.66 7.54 ± 2.52 96.02 ± 1.12 4730.58 1836.44
fixed-10k 30.00 15.39 ± 4.25 92.01 ± 2.13 9277.87 2990.94
fixed-25k 33.71 39.55 ± 8.89 79.75 ± 5.38 23092.23 6596.67
fixed-50k 35.68 76.90 ± 16.82 58.85 ± 9.99 46101.70 8373.53
full-context 45.44 100.00 ± 0.00 0.00 ± 0.00 97597.56 8792.94

SELF-ROUTE 22.37 11.75 ± 19.29 91.76 ± 19.93 8923.41 1610.90
adaptive-k 31.72 67.43 ± 38.13 60.73 ± 25.94 43888.98 7643.86

Average

zeroshot 7.94 0.00 0.00 52.64 652.24
fixed-1k 18.51 5.70 99.20 1099.18 462.33
fixed-5k 34.47 26.32 95.92 4681.06 1777.46
fixed-10k 43.22 42.49 91.85 9093.47 2911.03
fixed-25k 46.78 66.09 79.62 22225.38 5294.26
fixed-50k 47.66 84.48 58.24 44071.39 6598.13
full-context 51.14 100.00 0.00 95542.05 7262.19

SELF-ROUTE 33.44 31.45 89.78 10449.88 1906.11
adaptive-k 46.85 69.47 71.97 30235.25 4989.80

Table 14: Full Gemini-2.5-Flash’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 9.49 0.00 ± 0.00 100.00 ± 0.00 56.18 266.46
fixed-1k 29.52 12.05 ± 6.42 99.18 ± 0.43 994.79 450.14
fixed-5k 40.38 51.92 ± 29.82 95.85 ± 1.86 4195.84 650.72
fixed-10k 40.73 66.68 ± 30.73 91.80 ± 2.92 8024.09 687.39
fixed-25k 37.33 78.48 ± 26.96 79.59 ± 4.56 19625.13 711.01
fixed-50k 34.47 86.79 ± 20.88 57.76 ± 5.92 39342.62 707.11
full-context 36.32 100.00 ± 0.00 0.00 ± 0.00 86093.44 789.47

SELF-ROUTE 36.35 70.18 ± 29.18 69.25 ± 43.22 27700.34 785.69
adaptive-k 39.01 75.74 ± 30.48 74.07 ± 25.68 24711.58 1170.32

info10k

zeroshot 7.01 0.00 ± 0.00 100.00 ± 0.00 56.18 260.24
fixed-1k 19.25 6.53 ± 3.11 99.19 ± 0.40 999.90 473.22
fixed-5k 33.58 31.77 ± 14.86 95.84 ± 1.90 4233.97 708.81
fixed-10k 31.87 59.10 ± 27.14 91.74 ± 3.47 8254.73 796.22
fixed-25k 29.75 78.18 ± 26.55 79.55 ± 5.42 19898.58 840.93
fixed-50k 28.60 87.34 ± 20.51 57.88 ± 6.41 39561.99 1070.07
full-context 30.50 100.00 ± 0.00 0.00 ± 0.00 86347.34 1143.99

SELF-ROUTE 33.51 51.87 ± 29.27 72.57 ± 41.54 25307.50 1167.84
adaptive-k 34.69 68.54 ± 32.55 79.22 ± 21.59 20348.23 709.23

info25k

zeroshot 7.23 0.00 ± 0.00 100.00 ± 0.00 56.18 277.41
fixed-1k 17.62 2.77 ± 1.15 99.21 ± 0.32 997.53 473.57
fixed-5k 29.44 14.06 ± 5.50 95.96 ± 1.56 4226.03 682.94
fixed-10k 28.95 28.80 ± 9.87 91.86 ± 3.09 8298.52 759.61
fixed-25k 31.39 68.13 ± 22.77 79.60 ± 7.10 20562.19 795.73
fixed-50k 28.35 86.88 ± 20.14 58.46 ± 8.58 40309.13 1268.03
full-context 25.94 100.00 ± 0.00 0.00 ± 0.00 86997.00 961.38

SELF-ROUTE 29.08 32.25 ± 34.30 76.81 ± 38.65 21041.81 914.91
adaptive-k 26.90 66.16 ± 36.90 73.86 ± 23.04 25958.96 854.74

info50k

zeroshot 6.18 0.00 ± 0.00 100.00 ± 0.00 56.18 427.23
fixed-1k 11.93 1.47 ± 0.55 99.22 ± 0.23 1004.93 416.12
fixed-5k 22.89 7.54 ± 2.52 96.02 ± 1.12 4246.40 639.41
fixed-10k 23.75 15.39 ± 4.25 92.01 ± 2.13 8317.29 735.40
fixed-25k 23.94 39.55 ± 8.89 79.75 ± 5.38 20706.06 956.62
fixed-50k 25.46 76.90 ± 16.82 58.85 ± 9.99 41427.09 854.82
full-context 22.10 100.00 ± 0.00 0.00 ± 0.00 88197.90 1321.16

SELF-ROUTE 22.24 32.58 ± 40.92 70.50 ± 42.76 27508.79 980.10
adaptive-k 25.45 67.43 ± 38.13 60.73 ± 25.94 39897.64 1182.12

Average

zeroshot 7.48 0.00 0.00 56.18 307.84
fixed-1k 19.58 5.70 99.20 999.29 453.26
fixed-5k 31.57 26.32 95.92 4225.56 670.47
fixed-10k 31.33 42.49 91.85 8223.66 744.66
fixed-25k 30.60 66.09 79.62 20197.99 826.07
fixed-50k 29.22 84.48 58.24 40160.21 975.01
full-context 28.72 100.00 0.00 86908.92 1054.00

SELF-ROUTE 30.29 46.72 72.28 25389.61 962.14
adaptive-k 31.51 69.47 71.97 27729.10 979.11

Table 15: Full Llama4-Scout’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 9.65 0.00 ± 0.00 100.00 ± 0.00 56.18 328.77
fixed-1k 28.05 12.05 ± 6.42 99.18 ± 0.43 994.79 591.14
fixed-5k 48.57 51.92 ± 29.82 95.85 ± 1.86 4195.84 799.80
fixed-10k 54.30 66.68 ± 30.73 91.80 ± 2.92 8024.09 834.79
fixed-25k 56.39 78.48 ± 26.96 79.59 ± 4.56 19625.13 874.41
fixed-50k 53.54 86.79 ± 20.88 57.76 ± 5.92 39342.62 919.02
full-context 55.13 100.00 ± 0.00 0.00 ± 0.00 86093.44 1101.66

SELF-ROUTE 48.47 65.03 ± 29.24 79.91 ± 35.98 18195.21 897.80
adaptive-k 51.77 75.74 ± 30.48 74.07 ± 25.68 24711.58 836.68

info10k

zeroshot 9.06 0.00 ± 0.00 100.00 ± 0.00 56.18 322.59
fixed-1k 23.16 6.53 ± 3.11 99.19 ± 0.40 999.90 609.29
fixed-5k 39.02 31.77 ± 14.86 95.84 ± 1.90 4233.97 892.93
fixed-10k 42.91 59.10 ± 27.14 91.74 ± 3.47 8254.73 927.12
fixed-25k 44.54 78.18 ± 26.55 79.55 ± 5.42 19898.58 883.56
fixed-50k 50.37 87.34 ± 20.51 57.88 ± 6.41 39561.99 1020.78
full-context 48.02 100.00 ± 0.00 0.00 ± 0.00 86347.34 1357.50

SELF-ROUTE 37.68 44.92 ± 27.75 79.95 ± 36.00 18010.20 1053.86
adaptive-k 44.91 68.54 ± 32.55 79.22 ± 21.59 20348.23 934.27

info25k

zeroshot 7.26 0.00 ± 0.00 100.00 ± 0.00 56.18 322.77
fixed-1k 19.15 2.77 ± 1.15 99.21 ± 0.32 997.53 629.03
fixed-5k 30.36 14.06 ± 5.50 95.96 ± 1.56 4226.03 896.96
fixed-10k 30.28 28.80 ± 9.87 91.86 ± 3.09 8298.52 867.99
fixed-25k 40.47 68.13 ± 22.77 79.60 ± 7.10 20562.19 1053.26
fixed-50k 44.69 86.88 ± 20.14 58.46 ± 8.58 40309.13 1291.90
full-context 43.38 100.00 ± 0.00 0.00 ± 0.00 86997.00 1455.21

SELF-ROUTE 28.57 29.97 ± 33.04 79.00 ± 36.97 19123.37 1038.17
adaptive-k 39.40 66.16 ± 36.90 73.86 ± 23.04 25958.96 1122.81

info50k

zeroshot 8.51 0.00 ± 0.00 100.00 ± 0.00 56.18 342.58
fixed-1k 11.24 1.47 ± 0.55 99.22 ± 0.23 1004.93 574.83
fixed-5k 22.39 7.54 ± 2.52 96.02 ± 1.12 4246.40 783.99
fixed-10k 24.53 15.39 ± 4.25 92.01 ± 2.13 8317.29 825.16
fixed-25k 27.94 39.55 ± 8.89 79.75 ± 5.38 20706.06 1127.69
fixed-50k 34.89 76.90 ± 16.82 58.85 ± 9.99 41427.09 1317.22
full-context 36.54 100.00 ± 0.00 0.00 ± 0.00 88197.90 1706.96

SELF-ROUTE 21.90 24.17 ± 35.52 78.99 ± 36.95 19460.93 1183.29
adaptive-k 34.63 67.43 ± 38.13 60.73 ± 25.94 39897.64 1687.78

Average

zeroshot 8.62 0.00 0.00 56.18 329.18
fixed-1k 20.40 5.70 99.20 999.29 601.07
fixed-5k 35.09 26.32 95.92 4225.56 843.42
fixed-10k 38.00 42.49 91.85 8223.66 863.76
fixed-25k 42.33 66.09 79.62 20197.99 984.73
fixed-50k 45.87 84.48 58.24 40160.21 1137.23
full-context 45.77 100.00 0.00 86908.92 1405.33

SELF-ROUTE 34.16 41.02 79.46 18697.43 1043.28
adaptive-k 42.68 69.47 71.97 27729.10 1145.38

Table 16: Full Llama4-Maverick’s results in the HoloBench tasks.
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A.3.3 Factoid QA tasks (GTE embeddings)

Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 50 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 19.31 ± 16.53
fixed-1k 50 6.00 ± 16.33 99.16 ± 0.20 881.29 ± 76.42 31.19 ± 16.09
fixed-5k 51 9.33 ± 19.44 95.84 ± 0.67 4106.52 ± 327.20 30.61 ± 16.31
fixed-10k 54 13.67 ± 23.73 91.81 ± 1.19 8145.75 ± 576.29 29.29 ± 15.20
fixed-25k 58 27.50 ± 32.17 80.21 ± 2.40 20337.90 ± 1369.28 29.06 ± 17.08
fixed-50k 60 43.50 ± 33.16 61.79 ± 3.81 40520.53 ± 2661.25 28.96 ± 18.42
full-context 48 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 18.91 ± 20.30

SELF-ROUTE 46 25.83 ± 39.17 78.64 ± 37.04 76201.89 ± 52199.49 22.69 ± 20.51
adaptive-k 49 5.50 ± 15.72 99.20 ± 0.36 877.06 ± 409.16 32.87 ± 23.82

NQ

zeroshot 57 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 27.38 ± 24.23
fixed-1k 53 2.65 ± 9.56 99.29 ± 0.19 813.57 ± 84.46 31.61 ± 25.74
fixed-5k 53 9.07 ± 18.72 96.44 ± 0.49 3871.35 ± 353.77 33.67 ± 28.72
fixed-10k 58 14.22 ± 22.67 92.96 ± 0.77 7702.16 ± 668.50 34.24 ± 26.91
fixed-25k 62 31.38 ± 31.59 82.54 ± 1.61 19183.81 ± 1661.81 35.55 ± 29.97
fixed-50k 64 45.18 ± 33.28 65.32 ± 2.88 38288.26 ± 3141.73 36.84 ± 34.84
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 24.74 ± 33.79

SELF-ROUTE 49 20.67 ± 31.77 78.12 ± 38.03 54951.43 ± 55725.18 27.13 ± 25.83
adaptive-k 51 2.85 ± 9.72 99.22 ± 0.24 907.79 ± 263.30 32.75 ± 25.98

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 8.33 ± 7.16
fixed-1k 96 3.00 ± 13.48 99.15 ± 0.49 857.89 ± 96.49 16.98 ± 10.66
fixed-5k 94 4.79 ± 15.73 95.94 ± 0.83 4040.80 ± 358.14 17.35 ± 10.37
fixed-10k 93 6.43 ± 17.79 92.04 ± 1.25 8038.26 ± 670.72 17.64 ± 10.47
fixed-25k 96 16.65 ± 30.03 80.93 ± 1.99 19985.92 ± 1507.53 16.64 ± 10.50
fixed-50k 95 39.57 ± 41.22 63.01 ± 3.13 39806.06 ± 2867.46 17.17 ± 10.11
full-context 62 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 12.94 ± 12.48

SELF-ROUTE 88 10.20 ± 24.97 87.30 ± 27.60 32620.05 ± 48431.50 13.76 ± 10.53
adaptive-k 93 3.00 ± 13.48 99.16 ± 0.56 929.99 ± 604.34 17.33 ± 10.55

Average

zeroshot 66.00 0.00 0.00 58.83 18.34
fixed-1k 66.33 3.88 99.20 850.92 26.59
fixed-5k 66.00 7.73 96.07 4006.22 27.21
fixed-10k 68.33 11.44 92.27 7962.06 27.06
fixed-25k 72.00 25.18 81.23 19835.88 27.08
fixed-50k 73.00 42.75 63.38 39538.28 27.66
full-context 50.33 100.00 0.00 110336.05 18.86

SELF-ROUTE 61.00 18.90 81.35 54591.12 21.19
adaptive-k 64.33 3.78 99.19 904.95 27.65

Table 17: Full GPT-4o’s results in the factoid QA tasks with the embeddings by gte-Qwen2-1.5B-instruct.
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A.3.4 HoloBench (GTE embeddings)

Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 7.22 0.00 ± 0.00 100.00 ± 0.00 58.13 65.21
fixed-1k 26.14 12.05 ± 6.42 99.18 ± 0.43 1000.07 289.39
fixed-5k 42.32 51.92 ± 29.82 95.85 ± 1.86 4194.01 913.32
fixed-10k 49.79 66.68 ± 30.73 91.80 ± 2.92 8011.64 1334.67
fixed-25k 46.27 78.48 ± 26.96 79.59 ± 4.56 19574.94 2087.61
fixed-50k 43.82 86.79 ± 20.88 57.76 ± 5.92 39224.80 3188.69
full-context 48.30 100.00 ± 0.00 0.00 ± 0.00 73652.50 3680.13

SELF-ROUTE 40.69 65.18 ± 28.08 76.14 ± 38.33 12113.12 1288.40
adaptive-k 45.23 82.20 ± 25.15 64.79 ± 32.49 29079.80 1879.49

info10k

zeroshot 5.11 0.00 ± 0.00 100.00 ± 0.00 58.13 64.00
fixed-1k 21.83 6.53 ± 3.11 99.19 ± 0.40 1003.83 298.53
fixed-5k 32.45 31.77 ± 14.86 95.84 ± 1.90 4228.71 1001.83
fixed-10k 36.48 59.10 ± 27.14 91.74 ± 3.47 8235.02 2589.58
fixed-25k 39.65 78.18 ± 26.55 79.55 ± 5.42 19838.92 3527.68
fixed-50k 38.55 87.34 ± 20.51 57.88 ± 6.41 39437.42 4061.82
full-context 41.75 100.00 ± 0.00 0.00 ± 0.00 75768.00 4767.44

SELF-ROUTE 32.28 45.87 ± 24.77 79.47 ± 35.80 18646.59 1307.47
adaptive-k 39.66 78.99 ± 28.37 65.70 ± 30.96 28475.07 2238.23

info25k

zeroshot 3.54 0.00 ± 0.00 100.00 ± 0.00 58.13 65.69
fixed-1k 16.51 2.77 ± 1.15 99.21 ± 0.32 999.62 282.18
fixed-5k 27.52 14.06 ± 5.50 95.96 ± 1.56 4215.72 1350.80
fixed-10k 29.10 28.80 ± 9.87 91.86 ± 3.09 8269.06 2520.64
fixed-25k 40.25 68.13 ± 22.77 79.60 ± 7.10 20475.06 3406.40
fixed-50k 34.18 86.88 ± 20.14 58.46 ± 8.58 40152.73 4366.80
full-context 42.24 100.00 ± 0.00 0.00 ± 0.00 75787.37 4802.50

SELF-ROUTE 23.60 31.02 ± 32.35 77.63 ± 37.70 18905.02 1334.77
adaptive-k 36.33 76.47 ± 31.62 58.43 ± 29.94 36711.21 3509.82

info50k

zeroshot 5.19 0.00 ± 0.00 100.00 ± 0.00 58.13 62.30
fixed-1k 11.59 1.47 ± 0.55 99.22 ± 0.23 1006.91 274.89
fixed-5k 20.62 7.54 ± 2.52 96.02 ± 1.12 4235.36 735.80
fixed-10k 23.15 15.39 ± 4.25 92.01 ± 2.13 8288.68 1595.42
fixed-25k 28.11 39.55 ± 8.89 79.75 ± 5.38 20622.82 4269.89
fixed-50k 34.58 76.90 ± 16.82 58.85 ± 9.99 41264.63 4244.67
full-context 27.40 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 22.08 21.90 ± 31.81 79.88 ± 35.94 17563.86 1843.27
adaptive-k 30.80 72.54 ± 36.80 49.06 ± 29.83 46590.91 3806.21

Average

zeroshot 5.26 0.00 0.00 58.13 64.30
fixed-1k 19.02 5.70 99.20 1002.61 286.25
fixed-5k 30.73 26.32 95.92 4218.45 1000.44
fixed-10k 34.63 42.49 91.85 8201.10 2010.08
fixed-25k 38.57 66.09 79.62 20127.94 3322.89
fixed-50k 37.78 84.48 58.24 40019.90 3965.49
full-context 39.92 100.00 0.00 78286.07 4075.32

SELF-ROUTE 29.66 40.99 78.28 16807.15 1443.48
adaptive-k 38.00 77.55 59.49 35214.25 2858.44

Table 18: Full GPT-4o’s results in the HoloBench tasks with the embeddings by gte-Qwen2-1.5B-Instruct.
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