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Abstract

Agentic Retrieval-Augmented Generation
(Agentic RAG) enhances the processing
capability for complex tasks through dynamic
retrieval and adaptive workflows. Recent
advances (e.g., Search-R1) have shown that
outcome-supervised reinforcement learning
demonstrate strong performance. However,
this approach still suffers from inefficient
exploration, sparse reward signals, and
ambiguous global reward feedback. To address
these challenges, we propose DecEx-RAG,
which models RAG as a Markov Decision
Process (MDP) incorporating decision-making
and execution, while introducing an efficient
pruning strategy to optimize data expansion.
Through comprehensive process-level policy
optimization, DecEx-RAG significantly
enhances the autonomous task decomposition,
dynamic retrieval, and high-quality answer gen-
eration capabilities of large language models
(LLMs). Experiments show that DecEx-RAG
achieves an average absolute performance
improvement of 6.2% across six datasets,
significantly outperforming existing baselines.
Moreover, the pruning strategy improves data
construction efficiency by nearly 6×, providing
an efficient solution for process-supervised
RAG training. The code is available at
https://github.com/sdsxdxl/DecEx-RAG.

1 Introduction

State-of-the-art LLMs have demonstrated remark-
able problem-solving capabilities (Jaech et al.,
2024; Shi et al., 2024; DeepSeek-AI et al., 2025).
However, due to the inherent limitations of static
training data, LLMs still exhibit significant bot-
tlenecks when addressing dynamic and real-time
problems (Ji et al., 2023; Huang et al., 2025a).
Retrieval-Augmented Generation (RAG) emerges
as a promising solution by incorporating external

* Corresponding author.

knowledge bases or search engines (Gao et al.,
2023).

Recent advances employ outcome-supervised re-
inforcement learning (RL) to integrate dynamic
retrieval into reasoning processes, enabling LLMs
to autonomously invoke search tools and achieve re-
markable results (Jin et al., 2025; Song et al., 2025).
However, this approach still suffers from inherent
limitations. First, the efficiency of exploration is
low as LLMs must generate a complete reasoning
chain before receiving outcome-based reward feed-
back. Second, reward signals are sparse, which
results in the need for more data and training steps
to achieve convergence (Zhang et al., 2025). Third,
global rewards struggle to reflect local performance
at step levels, posing challenges for fine-grained
optimization.

Inspired by how humans leverage search tools
to solve complex problems, we propose DecEx-
RAG, a process-supervised framework for Agentic
RAG. The framework models RAG as a Markov
Decision Process (MDP) consisting of two stages:
Decision-Making and Execution. The Decision-
Making stage involves termination and retrieval
decisions, the former aims to avoid redundant it-
erations or premature stopping, while the latter
determines whether to rely on the LLMs’ inter-
nal knowledge or retrieval tools for sub-question
resolution. The Execution stage focuses on the
quality of decision execution. For example, a high-
quality sub-question is crucial for the success of
subsequent reasoning. By structurally decompos-
ing the Decision-Making and Execution stages, our
framework enables fine-grained process-level su-
pervision, while taking into account both execution
quality and decision efficiency.

Within the DecEx-RAG framework, the absence
of supervision signals for intermediate reasoning
steps often necessitates extensive exploration dur-
ing search tree expansion, resulting in exponential
growth of time complexity with the depth of layers.
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Figure 1: Illustration of the framework for DecEx-RAG, which demonstrates the process of search tree expansion
and pruning.

To address this, we propose an efficient pruning
strategy. At each layer of the search tree, multiple
rollout simulations are conducted for different exe-
cutions of decisions, using aggregated rewards as
feedback signals to dynamically prune redundant
branches. Specifically, the iteration terminates if
the termination decision determines that existing it-
erative information suffices to answer the question;
the retrieval operation is skipped if the retrieval de-
cision determines that the model’s intrinsic knowl-
edge can effectively derive the final answer.

To validate the effectiveness of the DecEx-
RAG framework and the proposed pruning strat-
egy, we conduct experiments on six open-domain
QA datasets. Experiment results show that DecEx-
RAG significantly outperforms existing methods,
achieving an average improvement of 6.3% over
the outcome-supervised strong baseline Search-R1
(Jin et al., 2025). Further analysis reveals that the
proposed pruning strategy enhances data construc-
tion efficiency by nearly 6× compared to the ex-
pansion method without pruning while maintaining
equivalent data quality, demonstrating its effective-
ness and practicality.

In summary, our main contributions are as fol-
lows:

• We propose DecEx-RAG, a novel framework
that models RAG as a Markov Decision Pro-
cess, providing a more comprehensive and
unified perspective for Agentic RAG systems.

• We propose a pruning strategy to optimize the
data expansion process, significantly enhanc-

ing the efficiency of process supervision data
construction without sacrificing data quality.

• Experimental results on six datasets demon-
strate that, with the same scale of training
data, DecEx-RAG significantly outperforms
existing baselines in performance.

2 DecEx-RAG

Figure 1 illustrates our proposed DecEx-RAG
framework. This framework models RAG as a
Markov Decision Process incorporating decision-
making and execution, expanding a search tree
for each question to obtain multi-step process-
supervised data. During expansion, intermediate
process rewards are acquired through multiple roll-
outs, while redundant branches are pruned to en-
hance efficiency. Upon completion of the expan-
sion, the optimal reasoning chain (from root node
to leaf node) is used for Supervised Fine-tuning
(SFT), while all branched nodes along the path
serve as preference data for Direct Preference Opti-
mization (DPO).

2.1 RAG as a Markov Decision Process
We formalize RAG as a Markov Decision Process,
represented by the tuple (S,A, P,R), where S de-
note the state sets, A denote the action sets, P
describes the state transition dynamics, and R spec-
ifies the reward function.

States. At each time step t, the state st ∈ S
represents a partial solution to the question. For-
mally, the state st can be formulated as: st =
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[Q, (q1, r1), · · · , (qt, rt)], where Q is the question,
qi denotes the i-th sub-question, and ri represents
the answer to qi, or the sub-query and retrieved
relevant documents.

Actions. In state st, the model selects an action
at = (σt, δt) ∈ A, which consists of two decisions:

• Termination decision σt: Determines whether to
continue iteration. If continuing, the next sub-
question qt+1 is generated. If terminating, the
final answer o is yielded.

• Retrieval decision δt (when σt chooses to con-
tinue): For the sub-question qt+1, δt determines
how to answer it. If choosing to answer using
the model’s own knowledge, DecEx-RAG gen-
erates the answer wt+1. If invoking the retriever,
DecEx-RAG generates the sub-query et+1 and
obtains relevant documents dt+1.

State Transition. When the action at = (σt, δt)
is executed in state st, the state is updated to st+1.
Specifically, if the termination decision σt chooses
to terminate, the final answer o will be generated
to end the iteration, and the termination state is
st+1 = [Q, (q1, r1), · · · , (qt, rt), o]. Otherwise,
DecEx-RAG generates the sub-question qt+1 and
continues to execute the retrieval decision δt.

For the retrieval decision δt, if choosing to
answer based on model’s own knowledge, then
rt+1 = wt+1. If choosing to retrieve, then
rt+1 = [et+1, dt+1]. Finally, the state is updated to
st+1 = [Q, (q1, r1), · · · , (qt, rt), (qt+1, rt+1)].

Rewards. The reward function R(st, at) spec-
ifies the expected reward obtained after taking
action at in state st. Under our framework, we
perform several rollouts for the state-action pair
(st, at), and use the correctness of multiple rollout
results as the reward:

R(st, at) =
1

n

n∑

i=1

v(rollouti) (1)

where rollouti is the i-th simulated completion of
(st, at), v(rollouti) ∈ [0, 1] denotes the correctness
score (e.g., F1 score) of the final answer.

Our framework proposes two key innovations.
First, we explicitly distinguish between sub-
question and sub-query. The significance of this
distinction lies in the fact that different retrievers
may return drastically different documents for sub-
queries with similar semantics but differing details,

so sub-query is processed independently for opti-
mization. Second, we decouple decision-making
and execution in the MDP framework. Traditional
MDP frameworks often treat decision-making and
execution as a whole without clear distinction. In
DecEx-RAG, decision-making focuses on method
selection, while execution focuses on content qual-
ity. By separating decision-making from execution,
we aim to leverage decision data to improve system
efficiency and execution data to optimize content
generation quality.

2.2 Search Tree Expansion with Pruning
With the Markov Decision Process defined in Sec-
tion 2.1, DecEx-RAG solves each question by con-
structing a search tree. In state st, the model first
expands the termination decision σt, using a non-
zero temperature parameter to sample termination
decision multiple times. If more than 50% of the
sampling results favor terminating the iteration, the
solving process ends. Otherwise, the model gener-
ates multiple candidate sub-questions. After dedu-
plication, we perform multiple rollout simulations
for each sub-question, take the average score as the
intermediate reward, and finally select the branch
with the highest reward to expand the next state.

After completing the termination decision ex-
pansion, the model proceeds to expand the retrieval
decision δt. At this stage, the model first gener-
ates multiple candidate answers to the sub-question
based on internal knowledge, similarly deduplicat-
ing them and calculating rewards through multiple
rollouts. If the highest reward exceeds a preset
threshold, it indicates that the final answer can be
correctly derived from the current state. In this
case, the retrieval branch is skipped to reduce com-
putational overhead, and the highest-reward answer
is directly selected as the next expanded state. Oth-
erwise, the model generates multiple sub-queries,
repeats the aforementioned process, and selects
the sub-query with the highest reward as the next
expanded state.

The search tree expansion process is controlled
by the maximum iteration limit Tmax. Each layer
executes according to the above strategy until ei-
ther reaching the iteration limit or being actively
terminated by the model. Although each decision
execution requires multiple rollouts to obtain in-
termediate rewards, these data not only serve to
construct preference training data but also provide
the basis for decision pruning. Through pruning,
each layer of the search tree retains only the optimal
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Models
HotpotQA 2Wiki Bamboogle PopQA NQ AmbigQA Avg

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Prompt-Based Methods
Direct Inference 15.7 25.3 24.2 30.7 7.2 16.2 14.3 18.6 10.5 22.4 11.6 22.4 13.9 22.6
CoT 19.8 28.0 27.8 33.9 10.4 20.4 16.0 17.6 22.0 30.9 27.6 38.1 20.6 28.2
Standard RAG 29.1 40.0 23.4 30.4 12.8 22.8 40.8 48.1 33.6 43.3 44.3 56.7 30.7 40.2
Iter-RetGen 31.0 42.2 24.3 31.1 14.4 23.9 42.5 49.3 34.5 44.2 47.0 58.8 32.3 41.6
IR-COT 20.5 30.9 9.1 17.2 16.0 27.9 32.4 39.9 19.3 35.5 24.5 40.6 20.3 32.0
FLARE 22.3 31.8 25.8 32.3 15.2 24.6 36.8 44.9 28.9 43.2 40.6 50.1 28.3 37.8
Search-o1 29.1 39.1 29.2 35.3 30.4 39.9 47.0 50.0 30.3 40.7 42.5 53.4 34.8 43.1

Reinforcement Learning
Search-R1 (PPO) 32.6 43.2 34.7 41.8 30.4 43.2 41.3 46.4 36.0 45.0 49.2 60.4 37.4 46.7
IKEA (GRPO) 31.1 41.7 32.7 39.3 30.4 45.3 38.7 42.7 30.7 42.8 47.0 57.9 35.1 45.0
ReasonRAG 27.5 36.4 30.3 35.8 22.4 29.1 41.1 44.4 28.1 38.9 39.7 51.9 31.5 39.4
DeepRAG† 32.1 41.1 40.4 44.9 - - 40.6 43.2 - - - - - -
DecEx-RAG 37.7 49.3 50.0 55.9 37.6 49.3 51.3 53.2 36.0 47.2 49.5 59.5 43.7 52.4

Table 1: The overall experimental results of DecEx-RAG and other baselines on six datasets. The best/second best
scores in each dataset are bolded/underlined. †DeepRAG EM/F1 scores are extracted from the DeepRAG paper
(Guan et al., 2025).

decision branch, significantly enhancing the expan-
sion efficiency of the search tree. All the prompt
instructions used for the search tree expansion can
be found in Appendix A.1.

2.3 Training

DecEx-RAG focuses on optimizing four key com-
ponents: final answer generation, sub-question de-
composition, sub-question answering based on self-
knowledge, and sub-query generation and retrieval,
covering all branches of the framework’s two de-
cisions. Based on the search tree constructed in
Section 2.2, we perform two-stage training.

Supervised Fine-tuning (SFT) We extract the
complete reasoning path from the root node to the
leaf node in the search tree for Supervised Fine-
Tuning. For each question Q, we construct mul-
tiple input-output pairs, where the input consists
of {Q, (q1, r1), ..., (qxi , exi , dxi)}, and the output
consists of (qxi+1, rxi+1), ..., (qxi+1 , exi+1), with
xi is the index of the retrieval step. This setup en-
sures iterative reasoning, enabling LLMs to lever-
age previous steps until the next retrieval or final
answer generation.

Direct Preference Optimization (DPO) Subse-
quently, we utilize the decision and execution data
from the search tree nodes to construct preference
pairs. Although only the optimal branch is retained
for each layer of the final search tree, all decision
branches are generated before pruning. As a result,
we naturally obtain two types of preference data.
Based on the mixed preference data, we perform

DPO training, and the detailed training objective is
shown in Appendix A.2.

3 Experiments

3.1 Datasets and Baselines
We evaluated DecEx-RAG and all baseline models
on six public datasets, including three single-hop
QA datasets: PopQA (Mallen et al., 2023), NQ
(Kwiatkowski et al., 2019), and AmbigQA (Min
et al., 2020), and three multi-hop QA datasets: Hot-
potQA (Yang et al., 2018), 2WikiMultiHopQA (Ho
et al., 2020), and Bamboogle (Press et al., 2023).
Among these, HotpotQA and 2WikiMultiHopQA
are in-domain test sets, while the other four are out-
of-domain test sets. We compared DecEx-RAG
against two categories of baselines: prompt-based
approaches (e.g., Direct Inference, Standard RAG,
Search-o1) and reinforcement learning approaches
(e.g., Search-R1, IKEA, DeepRAG). Detailed base-
line information can be found in Appendix B.

3.2 Implementation Details
We extracted 2,000 and 1,000 questions from the
training subsets of HotpotQA and 2WikiMulti-
HopQA, respectively, to construct our training
dataset. During the expansion of the search tree,
for retrieval decisions, we employed Qwen2.5-7B-
Instruct (Yang et al., 2024) as the policy model,
which is consistent with the base model in the sub-
sequent training stage. Apart from this decision,
we uniformly used Qwen3-30B-A3B (Yang et al.,
2025) as the policy model. For retrieval, we follow
Jin et al. (2025), using the 2018 Wikipedia dump

1415



Least Random Most

30

35

40

45
Av

er
ag

e 
EM

34.9

37.9

41.1

Avg. EM
Avg. Retrievals

0

1

2

3

Av
er

ag
e 

Re
tri

ev
al

s

1.03
1.25

1.56

(a)

Execution Decision All
35

40

45

50

Av
er

ag
e 

EM

41.7
40.7

43.6

Avg. EM
Avg. Retrievals

0

1

2

3

Av
er

ag
e 

Re
tri

ev
al

s

1.52
1.38 1.47

(b)

SFT DPO SFT+DPO
30

35

40

45

Av
er

ag
e 

EM

37.9

35.8

43.6Avg. EM
Avg. Retrievals

0

1

2

3

Av
er

ag
e 

Re
tri

ev
al

s

1.25
1.55 1.47

(c)

Figure 2: Ablation results for SFT (a), DPO (b) and different training methods (c).

(Karpukhin et al., 2020) as the knowledge source
and E5 (Wang et al., 2022) as the retriever.

To ensure fair comparison, we reproduced
Search-R1 and IKEA with equivalent amounts of
training data. The number of retrieved documents
is set to 3 for all methods requiring retrieval, while
Tmax is set to 4 for all multi-round iterative meth-
ods. For evaluation, Exact Match (EM) and F1
scores are adopted as the metrics.

3.3 Main Results

As shown in Table 1, we present the performance
of DecEx-RAG and 11 baseline models on six
datasets. Based on the experimental results, we
draw the following main conclusions:

Prompt-Based Methods Exhibit Limited Perfor-
mance. Experiments show that methods relying
solely on internal knowledge (e.g., Direct Infer-
ence and CoT) show poor performance, confirming
the limitations of LLMs’ inherent knowledge. In
contrast, RAG-based methods (e.g., Iter-RetGen,
IR-COT, FLARE) improve performance, highlight-
ing the necessity of external knowledge integration.
Notably, although Search-o1 achieves the best per-
formance among prompt-based methods, this lead
is far smaller than the significant advantage demon-
strated in its paper. This is because Search-o1’s
complex prompting pipeline imposes high require-
ments on the policy model’s instruction-following
and reasoning capabilities, and its advantages only
manifest fully on large reasoning models. Con-
sequently, it is difficult to extend this advantage
equally to smaller models.

Process-Supervised RL Demonstrates Higher
Data Efficiency Than Outcome-supervised RL.
While Search-R1 and IKEA improve the LLMs’
ability to integrate search during reasoning through
outcome-supervised RL, their performance remains

suboptimal with only 3K training samples. In
contrast, DecEx-RAG demonstrates comprehen-
sive leadership across six datasets, yielding an av-
erage performance improvement of 6%~8% over
outcome-supervised RL methods under the same
training data scales, fully demonstrating the data
efficiency advantage of process-supervised RL.

DecEx-RAG Outperforms Other Process-
Supervised Methods. Compared with similar
process-supervised methods (DeepRAG and Rea-
sonRAG), DecEx-RAG shows better performance.
DeepRAG only focuses on decision optimization,
while DecEx-RAG covers both decision and
execution, forming a more complete optimization
framework. Output analysis of ReasonRAG shows
that its insufficient retrieval behavior and excessive
reliance on internal knowledge lead to more
incorrect answers. Experimental results show that
DecEx-RAG not only performs outstandingly on
in-domain test sets but also demonstrates excellent
cross-domain generalization ability.

3.4 Ablation Study

To validate the effectiveness of the DecEx-RAG
framework, we conducted a series of ablation ex-
periments. Figure 2(a) shows comparative results
of different data selection strategies during the SFT
stage. Experiments show that the model trained
with the Most Retrieval Cost (Most) strategy ex-
hibits optimal performance, with more frequent
retrieval actions. By examining the model’s out-
puts, we find that the model tends to verify answer
accuracy through multiple retrievals, demonstrat-
ing stronger deliberative capabilities. In contrast,
the model trained with the Least Retrieval Cost
(Least) strategy overly relies on its own knowledge,
leading to increased error rates.

Figure 2(b) shows the comparison of different
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Metrics Pruning Search No Pruning Search Full Node Search

Expansion Efficiency (k = 3, n = 4, Tmax = 4)

Theoretical Expansion Counts (4k + 3knl)l
∑l

i=1 i
2(4k + 3knl) (2k(k + 1))l

Average Extension Time (s) 134.9 743.2 -

Data Quality (k = 3, n = 4, Tmax = 4)

SFT (EM/F1) 32.8 / 40.7 33.2 / 41.8 -
SFT+DPO (EM/F1) 36.6 / 45.3 36.3 / 44.8 -

Table 2: Comparison of the three expansion methods. k denotes the number of execution branches for each decision,
n denotes the number of rollouts and l denotes the depth of layers.

preference data compositions during the DPO stage.
Experiments reveal that omitting any type of prefer-
ence data results in performance degradation, high-
lighting the necessity of simultaneously optimizing
decision-making and execution. Further analysis
shows that the model trained with decision data
performs slightly worse than the one trained with
execution data but requires fewer retrievals. This
confirms that execution data primarily optimizes
content quality, while decision data optimizes re-
trieval efficiency.

Figure 2(c) shows performance comparisons
across different training methods. Experiments re-
veal that SFT-only training enables models to learn
basic retrieval patterns, but insufficient retrieval
frequency limits performance ceilings. DPO-only
trained models suffer from poor iteration quality
and increased ineffective retrievals due to the lack
of effective imitation learning. In comparison, the
two-stage training (SFT+DPO) achieves a balance
between performance and efficiency, establishing
reasoning foundations through SFT training while
optimizing decision processes via DPO training,
ultimately delivering the best overall performance.

4 Analysis

4.1 Data Expansion Efficiency
To validate the effectiveness of the search tree ex-
pansion pruning method (Pruning Search), we com-
pared it with two other approaches: No Pruning
Search and Full Node Search. No Pruning Search
retains the optimal execution branches for the two
decisions, while Full Node Search keeps all exe-
cution branches but omits the rollout simulation
process. Table 2 reports all the results.

Theoretical analysis shows that the number of
expansions in Pruning Search grows linearly with
the depth of layers, significantly outperforming
the exponential growth trend of 2l in No Pruning
Search and the more drastic growth trend of (2k)l

in Full Node Search, where k represents the number
of execution branches per decision, l represents the
depth of layers.

In the actual performance test, we evaluated the
three methods using 500 questions under the same
hardware configuration. Experimental results show
that Pruning Search is nearly 6 times faster than
No Pruning Search in terms of average expansion
time per question. The expansion efficiency of
Full Node Search is extremely low, with the expan-
sion time per question exceeding 1 hour, making
it incomparable. Therefore, we do not report its
subsequent experimental results.

To further validate the data effectiveness, we
sampled data generated by Pruning Search and
No Pruning Search in the same quantity and used
it to train Qwen2.5-7B-Instruct, respectively. Ta-
ble 2 shows the average performance across six
datasets. We observe that whether SFT-only train-
ing or SFT+DPO training, the data generated by
Pruning Search and No Pruning Search yield nearly
identical model performance.

In summary, the pruning strategy significantly
improves expansion efficiency (nearly 6 times
faster) while maintaining data quality comparable
to No Pruning Search, fully demonstrating the ef-
fectiveness and practical value.

4.2 Effect of Pruning on Optimal Reasoning
Chain

In general, pruning operations may bias the search
toward locally optimal reasoning paths, while dis-
carding potentially superior global reasoning paths.
For RAG tasks, the core differences between differ-
ent reasoning paths for the same question usually
lies in the choice made during the decision-making
process. Thus, we examined the optimal reason-
ing chains generated by Pruning Search and No
Pruning Search.

We find that for 85% of the samples, the rea-

1417



soning chains obtained by these two methods have
the same number of iterations, and for 87% of the
samples, the reasoning chains obtained by the two
methods have the same number of retrievals. These
results directly demonstrate that the proposed prun-
ing strategy can maximally preserve the globally
optimal reasoning chain while compressing the
search space.

4.3 Case Study

We provide a case in Table 3 to intuitively compare
the performance differences between DecEx-RAG
and Search-R1.

For the given question, Search-R1 relying on
its own knowledge and one retrieval, accurately
clarified the nationality information of Ed Wood
and Scott Derrickson during the reasoning process.
However, its final output result is “No”. This phe-
nomenon clearly indicates that Search-R1 has a
serious inconsistency between the reasoning pro-
cess and the conclusion, which is a typical case
of reward hacking. In contrast, DecEx-RAG not
only generated a logically rigorous and correct rea-
soning process, but also achieved a high degree of
consistency between the reasoning process and the
final answer.

5 Related Work

RL for Retrieval-Augmented Generation Re-
cent advances show that reinforcement learning
(RL) significantly enhances LLMs’ complex rea-
soning, emerging as a mainstream post-training
paradigm (DeepSeek-AI et al., 2025; Zhang and
Xiong, 2025). Agentic RAG like Search-R1 (Jin
et al., 2025) use outcome-supervised RL to train
LLMs as search agents, improving complex task
performance (Song et al., 2025; Chen et al., 2025).
However, this approach faces inefficient explo-
ration, sparse reward signals, and ambiguous global
feedback. In contrast, Process-supervised RL in-
corporates fine-grained step-level rewards and has
outperformed outcome supervision in various tasks
(Lightman et al., 2024). Nevertheless, its integra-
tion into RAG training pipelines remains under-
explored.

Tree Search for LLMs Tree search have been
extensively explored in both the training and in-
ference of LLMs, particularly in data synthesis
(Zhang et al., 2024a; Yu et al., 2025) and inference-
time scaling (Snell et al., 2024; Li et al., 2025b).
Yao et al. (2023) propose Tree of Thoughts (ToT),

which generates multiple branches for substeps dur-
ing inference to expand reasoning paths. Simi-
larly, several studies incorporate Monte Carlo Tree
Search (MCTS) during reasoning to improve the
performance of LLMs in mathematical and RAG-
related tasks (Chen et al., 2024; Jiang et al., 2025;
Feng et al., 2025). While inference-time scaling
can enhances the performance of LLMs, it signif-
icantly increases computational complexity, lim-
iting practical applications. Considering this con-
straint, Zhang et al. (2024b) propose fine-tuning
LLMs by collecting preference information dur-
ing tree search processes, effectively transferring
resource consumption from inference stage to train-
ing stage. However, tree search still relies on ex-
tensive search and simulation operations, and its
search efficiency and scalability in RAG remain to
be optimized.

6 Conclusion

In this paper, we have presented DecEx-RAG, a
novel framework that models RAG as a Markov
Decision Process (MDP) with two distinct stages:
Execution and Decision-Making. By decomposing
the process into structured steps, DecEx-RAG en-
ables fine-grained process supervision, facilitating
more precise optimization of RAG systems. Based
on this framework, we have introduced a search
tree pruning strategy that incorporates multiple ad-
ditional rollout processes to provide reward sig-
nals for intermediate steps. This allows the frame-
work to dynamically prune unnecessary decision
branches, effectively reducing the time complexity
of search tree expansion from exponential to lin-
ear. Experiments on six datasets have demonstrated
that DecEx-RAG consistently outperforms existing
baselines. Further analysis has confirmed the ef-
ficiency of the pruning strategy, achieving up to
a 6× improvement in data construction efficiency
without sacrificing data quality. This offers a prac-
tical solution to the high cost of process-supervised
data construction.

Limitations

Despite the outstanding performance of DecEx-
RAG, several limitations remain. When construct-
ing the process supervision data, we adopt Exact
Match (EM) and F1 score as reward feedback for in-
termediate processes. However, we have found that
in some samples where errors occur in intermediate
steps, high scores can still be obtained after rollout.
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This phenomenon is mainly attributed to the fact
that answers in existing RAG datasets are generally
too concise and problems are simplistic, leading
to EM and F1 score failing to truly reflect the cor-
rectness of responses in some scenarios. Currently,
we mitigate the inconsistency between intermedi-
ate processes and final results by increasing the
number of rollouts, but this approach substantially
increases reasoning resource consumption.

In the future, we plan to explore a more scien-
tifically authoritative evaluation metric for RAG
tasks, rather than merely relying on increasing the
frequency of rollouts, we aim to fundamentally en-
hance the accuracy and reliability of intermediate
process feedback.
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A Method Details

A.1 Prompt Instructions
We use several prompt instructions during the
search tree extension process. Table 4 provides
the prompt instruction of execution termination
decision, Table 5 provides the prompt instruction
for generating sub-question, Table 6 presents the
prompt instruction for the model to answer ques-
tions based on its own knowledge, Table 7 provides
the prompt instruction for generating sub-query,
and Table 8 presents the prompt instruction for
rollout.

A.2 DPO Training Objective
The DPO training objective is formulated as:

Lθ = −E(x,y<t,y
w
t ,yl

t)∼D

[
logσ

(
β log

πθ(y
w
t |x, y<t)

πref(yw
t |x, y<t)

− β log
πθ(y

l
t|x, y<t)

πref(yl
t|x, y<t)

)]

(2)

where πθ represents the policy being optimized,
πref represents the reference policy, x denotes the
original question, y<t denotes the previous reason-
ing steps, ywt and ylt respectively represent the pre-
ferred and non-preferred decisions or executions in
the subsequent steps, σ is the logistic function, and
the hyperparameter β controls the KL divergence
constraint.

B Baselines

The baselines we compared against are as follows:

• Direct Inference: We prompt the model to
directly answer questions.

• CoT: We prompt the model to reason step-by-
step before generating the answer.

• Standard RAG (Lewis et al., 2020): We first
retrieve relevant documents for the question,
then prompt the model to answer with refer-
ence to these documents.

• Iter-RetGen (Shao et al., 2023): This method
collaboratively retrieves and generates in an
iterative manner, alternating between optimiz-
ing retrieval and generation through multiple
iterations.

• IRCoT (Trivedi et al., 2023): This method in-
terweaves retrieval with CoT reasoning steps,
using CoT to guide retrieval and leveraging
retrieval results to refine CoT.

• FLARE (Jiang et al., 2023): This method in-
troduces proactive forward-looking retrieval,
determining retrieval timing based on token-
level confidence.

• Search-o1 (Li et al., 2025a): This method
designs a complex iterative workflow via
prompting and introduces a Reason-in-
Documents module to optimize reasoning
chains.

• Search-R1 (Jin et al., 2025): This method
trains the model’s dynamic retrieval capabil-
ities via outcome-supervised reinforcement
learning.

• IKEA (Huang et al., 2025b): Extending
Search-R1. This method introduces a retrieval
frequency penalty to improve reasoning effi-
ciency.

• ReasonRAG (Zhang et al., 2025): This
method constructs process-supervised data via
Monte Carlo Tree Search (MCTS) for DPO
training.

• DeepRAG (Guan et al., 2025): This method
constructs process-supervised data via full-
node expansion combined with binary tree
search for DPO training.
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Question: Were Scott Derrickson and Ed Wood of the same nationality?

Ground Truth: yes

DecEx-RAG:
<think> To determine if Scott Derrickson and Ed Wood share the same nationality, I need to identify the
nationalities of both individuals. Starting with Scott Derrickson. So, the next sub-question is: What is Scott
Derrickson’s nationality? I recall that Scott Derrickson’s nationality is American. Now, I need to determine Ed
Wood’s nationality. I am less familiar with him, so I require additional information. I am uncertain about Ed
Wood’s nationality. He may be an actor or filmmaker, but I need to verify this. </think>
<search> Ed Wood nationality </search>
<information>
Docs 1: "Ed Wood"
Greyś 1992 oral biography "Nightmare of Ecstasy: The Life and Art of Edward D. Wood Jr.", the public took a
greater interest in Wood, leading up to director Tim Burton’s biopic of Wood’s life, "Ed Wood" (1994), a critically
acclaimed film starring Johnny Depp as Wood that earned two Academy Awards. Wood’s father, Edward Sr.,
worked for the U.S. Postal Service as a custodian...
Docs 2: "Ed Wood"
Ed Wood Edward Davis Wood Jr. (October 10, 1924 – December 10, 1978) was an American filmmaker, actor,
and author. In the 1950s, Wood made a number of low-budget films in the science fiction, crime and horror
genres, intercutting stock footage. In the 1960s and 1970s, he made sexploitation movies and wrote over 80 pulp
crime, horror and sex novels...
Docs 3: "Alexander Wood (soccer)"
Alexander Wood (soccer) Alexander “Alec” Wood (June 12, 1907 – July 20, 1987) Was a former Scottish
American soccer defender. Wood began his club career in the United States before moving to England in the
early 1930s. He also played all three U.S. games at the 1930 FIFA World Cup...
</information>
<think> The information provided confirms that Ed Wood was an American filmmaker, and his birth in the U.S.
establishes his nationality as American. Scott Derrickson is also American. Both are of the same nationality.
</think>
<answer> yes </answer>

Search-R1:
<think> Scott Derrickson is known for directing films such as "The Exorcist" (2016). Ed Wood is famous for his
low-budget films in the 1950s, particularly "Plan 9 from Outer Space." Given that Ed Wood was American, I
need to confirm Scott Derricksonś nationality. </think>
<search> Scott Derrickson nationality </search>
<information>
Docs 1: "Scott Derrickson"
directed the film "Doctor Strange", based on the Marvel Comics property and part of the Marvel Cinematic
Universe. It was released in November 2016. The film was both a commercial and critical success. In
February 2018, it was announced that Derrickson will executive produce the television series "You Bury Me" for
Blumhouse Productions...
Docs 2: "Scott Tucker (racing driver)"
(in the TA2 class) in August 2011 at Road America. Tucker is the founder and CEO of Sentient Technologies, a
provider of loan origination software. Tucker grew up in Kansas City, Missouri and went to Rockhurst High
School. He studied business administration at Kansas State University...
Docs 3: "Scott Smith (ice hockey)"
collaborated regularly with team management of Sean Burke with the men’s national team, and Melody Davidson
with the womenś national team to ensure that staff and athletes were prepared to perform on the ice. In 2018,
Smith extended the partnership with Bauer Hockey for another 8 years, who have been the official equipment
supplier for the national teams since 1996...
</information>
<think> From the search results, it appears that Scott Derrickson is associated with American films and there is
no mention of him being from any other country. Therefore, Scott Derrickson is American. </think>
<answer> No </answer>

Table 3: A case study of DecEx-RAG and Search-R1.
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Prompt Instruction

You are a Retrieval-Augmented Generation (RAG) model. Your task is to carry out multiple iterative processes,
continuously decompose a problem into sub-problems, solve them one by one, and finally answer the original
question. We will provide you with a question and the previous iteration history (each iteration includes the
thinking process, sub-question, the model’s answers to the sub-questions based on its own knowledge or the
relevant documents retrieved from the sub-question). Please judge based on the available information whether
there is sufficient evidence to answer the original question reasonably. Please note that you must rely only on the
existing information as evidence and cannot introduce any information or knowledge that has not appeared in the
iterative history, including your own knowledge.

- If you think that based on the existing information, you can reasonably reason out the answer to the original
question and there is no need to continue raising the next sub-question, then please first state your reasoning
process in <reasoning> and </reasoning>, the reasoning process requires the provision of reasonable evidence,
and then provide the final answer in <answer> and </answer>. For example: <reasoning> your reasoning process
</reasoning>. <answer> your answer </answer>.
- If you think that it is impossible to reasonably reason out the answer to the original question based on the
existing information and you need to continue to raise the next sub-question and iterate further, then please
first state your reasoning process in <reasoning> and </reasoning>, the reasoning process needs to explain the
reasons for the need for further iteration, and then provide the sub-questions in <question> and </question>. For
example: <reasoning> your reasoning process </reasoning>. <question> next sub-question </question>.

Matters Need Attention:
**1. It should be noted that if you find that the sub-question generated in the previous iteration has not been
successfully solved, we encourage you to try to raise this sub-question again and continue the iteration, rather
than easily giving a final answer and thus ending the iteration.**
**2. Ensure both question and answer are concise, using nouns or short phrases whenever possible.**

### Question
{question}

### Previous Iteration
{iter_history}

### Your Output

Table 4: The prompt of execution termination decision determines whether to continue the iteration or terminate.

Prompt Instruction

You are a Retrieval-Augmented Generation (RAG) model. Your task is to break down the original question into
several clear sub-questions, which will be solved iteratively to answer the original question.
We will provide you with a question. Please break it down and output the next sub-question that needs to be
solved. Before outputting sub-question, you must provide a clear thinking process or reasons. Finally, provide
the sub-question inside <question> and </question>.
For example: Your thinking process. <question> sub-question </question>.

### Question
{question}

### Your Output

Table 5: The prompt for generating sub-question.
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Prompt Instruction

We will provide you with a question, please answer this question. Your output should first provide your thinking
process, and finally offer the final answer within <answer> and </answer>, ensure your answer is concise, using
nouns or short phrases whenever possible. An example is shown below.

### Sample
Question:
Which country’s capital is Beijing?

Your Output:
To determine which country’s capital is Beijing, I need to recall geographical knowledge about major cities and
their respective countries. Beijing is a well-known city in East Asia, and it is the political and cultural center of a
significant nation in that region. The country that has Beijing as its capital is China. <answer> China </answer>

### Question
{question}

### Your Output

Table 6: The prompt for the model to answer questions based on its own knowledge.

Prompt Instruction

You are a Retrieval-Augmented Generation (RAG) model. We will provide you with a question. Please generate
a query for search engines for this question. Generate the query directly without outputting any other content.

### Question
{question}

### Your Output

Table 7: The prompt for generating sub-query.

Prompt Instruction

You are a Retrieval-Augmented Generation (RAG) model. Your task is to carry out multiple iterative processes,
continuously decompose a problem into sub-problems, solve them one by one, and finally answer the original
question. We will provide you with a question and the previous iteration history (each iteration includes the
thinking process, sub-question, the model’s answers to the sub-questions based on its own knowledge or the
relevant documents retrieved from the sub-question). Please continue reasoning along the previous iteration
history to solve the original problem.

After reasoning, if you find you lack some knowledge, you can call a search engine by <search> query </search>,
and it will return the top searched results between <information> and </information>. If you find that no further
external knowledge is needed, please still provide your reasoning process, and then you can directly provide the
answers within <answer> and </answer>. For example, <answer> Beijing </answer>.

**Ensure both queries and answers are concise, using nouns or short phrases whenever possible.**

Matters Need Attention:
**1. Please note that the previous iteration history is true and does not need to be verified again, so you can
definitely take this information as established facts and, based on this, continue to reason downward.**
**2. Please note that during the reasoning process, do not end it casually. Only when you think it necessary
to call the search engine (the output ends with </search>) or output the final answer (the output ends with
</answer>) can the reasoning process be temporarily interrupted or completely ended.**

### Question
{question}

### Previous Iteration
{iter_history}

### Your Output

Table 8: The prompt for rollout.
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