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Recent machine translation (MT) metrics calibrate their effectiveness by correlating with
human judgement. However, these results are often obtained by averaging predictions across large
test sets without any insights into the strengths and weaknesses of these metrics across different
error types. Challenge sets are used to probe specific dimensions of metric behaviour but there
are very few such datasets and they either focus on a limited number of phenomena or a limited
number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language
pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These
phenomena range from basic alterations at the word/character level to more intricate errors based
on discourse and real-world knowledge. We conducted a large-scale study by benchmarking ACES
on 47 metrics submitted to the WMT 2022 and WMT 2023 metrics shared tasks. We also measure
their sensitivity to a range of linguistic phenomena. We further investigate claims that Large
Language Models (LLMs) are effective as MT evaluators, addressing the limitations of previous
studies by using a dataset that covers a range of linguistic phenomena and language pairs and
includes both low- and medium-resource languages. Our results demonstrate that different metric
families struggle with different phenomena and that LLM-based methods are unreliable. We expose
a number of major flaws with existing methods: most metrics ignore the source sentence; metrics
tend to prefer surface level overlap; and over-reliance on language-agnostic representations leads
to confusion when the target language is similar to the source language. To further encourage
detailed evaluation beyond singular scores, we expand ACES to include error span annotations,
denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics, showing
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that these metrics also need considerable improvement. Based on our observations, we provide a
set of recommendations for building better MT metrics, including focusing on error labels instead
of scores, ensembling, designing metrics to explicitly focus on the source sentence, focusing on
semantic content rather than relying on the lexical overlap, and choosing the right pre-trained
model for obtaining representations.

1. Introduction

Machine Translation (MT) metrics are a fundamental component of the development of high-
quality MT systems as most state-of-the-art MT models claim their effectiveness through such
metrics (Kocmi et al. 2021). While human evaluation of these MT systems is ideal, it is labour-
intensive, time-consuming, and expensive. Development of automatic metrics has thus received
significant interest over the past years (Koehn and Monz 2006; Freitag et al. 2023) resulting in a
surge of new metrics. These metrics are typically judged by their ability to distinguish the quality
of one machine translation system over another (system-level) on large test sets. This type of
evaluation only provides an overview and it is difficult to identify whether these metrics are robust
to specific MT errors.

To systematically study the advantages and shortcomings of MT metrics, and to identify
broad trends in metric development, we rely on the construction of challenge sets for MT metrics.
Challenge sets are a useful tool in measuring the performance of systems or metrics on one or
more specific phenomena of interest. They may be used to compare the performance of a range
of different systems or to identify performance improvement/degradation between successive
iterations of the same system. Whilst challenge sets have already been created for measuring the
success of systems or metrics on a particular phenomenon of interest for a range of NLP tasks,
including but not limited to: Sentiment Analysis1 (Li, Cohn, and Baldwin 2017; Mahler et al. 2017,
Stalitinait¢ and Bonfil 2017), Natural Language Inference (McCoy and Linzen 2019; Rocchietti
et al. 2021), Question Answering (Ravichander et al. 2021), Machine Reading Comprehension
(Khashabi et al. 2018), Machine Translation (MT) (King and Falkedal 1990; Isabelle, Cherry, and
Foster 2017), and the more specific task of pronoun translation in MT (Guillou and Hardmeier
2016), they have only recently been applied to the evaluation of MT metrics.

The WMT 2021 Metrics shared task (Freitag et al. 2021b) introduced the task of constructing
contrastive challenge sets for the evaluation of MT metrics. Contrastive challenge sets aim to
assess how well a given metric can discriminate between a good and incorrect translation of the
source text where the incorrect translation consists of a translation error of interest. Providing a
reference translation allows for flexibility: it may be included to assess reference-based metrics or
excluded to assess reference-free (i.e. Quality Estimation (QE)) metrics. Benchmarking metrics
on such challenge sets provides insights into their strengths while simultaneously uncovering their
weaknesses on different translation errors.

In this work, we describe the Translation Accuracy ChallengE Set (ACES) dataset submitted
to the challenge sets subtask of the WMT 2022 and WMT 2023 Metrics shared task and its
subsequent expansion to include error span annotations (SPAN-ACES). The ACES dataset?
(Amrhein, Moghe, and Guillou 2022) consists of 36,476 examples covering 146 language pairs
and representing challenges from 68 phenomena. Most MT metric challenge sets (Avramidis et al.
2018; Alves et al. 2022; Karpinska et al. 2022) either focus on a small number of phenomena or a
small number of languages. Our dataset is larger in coverage of phenomena as well as language
pairs, providing comprehensive challenge sets for MT metrics.

1 Submitted to the EMNLP 2017 “Build It Break It” shared task on sentiment analysis
2 The ACES dataset is available at https://huggingface.co/datasets/nikitam/ACES
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Figure 1
Diagram of the error categories on which our collection of challenge sets is based. Red means challenge sets
are created automatically, blue means challenge sets are created manually.

We focus on translation accuracy errors because in recent years, machine translation outputs
have become increasingly fluent (Bentivogli et al. 2016; Toral and Sanchez-Cartagena 2017;
Castilho et al. 2017). Further, accuracy errors can have dangerous consequences in certain
contexts, for example in the medical and legal domains (Vieira, O’Hagan, and O’Sullivan 2021).

ACES uses the hierarchy of errors under the class Accuracy from the Multidimensional
Quality Metrics (MQM) ontology (Lommel, Burchardt, and Uszkoreit 2014) to design the
challenge sets. We extend this ontology by two error classes (translations defying real-world
knowledge and translations in the wrong language) and specify several more specific subclasses
such as discourse-level errors or ordering mismatches. We include phenomena ranging from
simple perturbations involving the omission/addition of characters or tokens to more complex
examples involving mistranslation e.g. ambiguity and hallucinations in translation, untranslated
elements of a sentence, discourse-level phenomena, and real-world knowledge. A full overview
of all error classes can be seen in Figure 1. Our challenge set consists of synthetically generated
adversarial examples, examples from re-purposed contrastive MT test sets (both marked in red),
and manually annotated examples (marked in blue).

We use ACES to benchmark the metrics that participated in the WMT 2022 and 2023 metrics
shared tasks. We also investigate whether Large Language Models (LLMs) can perform MT
evaluation (Kocmi and Federmann 2023b; Xu et al. 2023). We conduct several analyses on these
results revealing:

1. There is no winning metric as conducting granular evaluation reveals different
metrics have different strengths and weaknesses.

2. Most metrics tend to disregard information present in the source.
3. Reference-based neural metrics still rely on surface-level overlap.
4, Some properties of the pretrained models in neural metrics may cause undesirable

effects on evaluation like learning language agnostic representations can fail to
detect untranslated output.
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The introduction of ACES marks a paradigm shift from relying on a single score, to providing
multiple scores across different categories of linguistic phenomena. However, a metric that
can, in addition to providing scores, accurately label errors in MT output provides many clear
advantages over one that only provides scores (Freitag et al. 2021a). Observations by Moghe
et al. (2023) suggest that interpreting the quality of MT output based on scores is both unreliable
and uninformative. Instead, they recommend the development of metrics that predict labels for
error spans in the MT output. Similarly, Lommel, Burchardt, and Uszkoreit (2014); Freitag et al.
(2021a) and the recent WMT challenges (Freitag et al. 2021b, 2022, 2023) also advocate the use
of labelled error spans for MT evaluation. When considering whether to deploy an MT system
(or which of several systems to deploy), system developers can take into consideration the type,
frequency, and severity of the errors that the system is likely to make, coupled with information
about what types of errors may be tolerated/not for a given downstream task.

With these motivations, we extend the ACES dataset into SPAN-ACES, where we include
error span annotations for each example. These annotations indicate the location of error spans
present in the incorrect translation and pertaining to the specific linguistic phenomenon in focus.
Whilst some currently available MT metrics are already able to mark error spans including
MATESE (Perrella et al. 2022a) and COMET-22 (Rei et al. 2022) that are trained on MQM
(Lommel, Burchardt, and Uszkoreit 2014), and GEMBA-MQM (Kocmi and Federmann 2023a)
and AutoMQM (Fernandes et al. 2023) that prompt LLMs to obtain the corresponding error
span, we believe that error-span labelling is an important next step in MT metric evolution.
Independent challenge sets such as SPAN-ACES will be essential in driving development forward.
We benchmark GEMBA-MQM (Kocmi and Federmann 2023a)), XCOMET-XL (Guerreiro et al.
2023), and adapted versions of COMET-22 (Rei et al. 2022) and UniTE (Wan et al. 2022b) on
SPAN-ACES.

In this article, we provide an overview of the ACES challenge set and its participation at
the WMT 2022 and 2023 Metrics shared task - Challenge Sets subtask (Amrhein, Moghe, and
Guillou 2022, 2023). We list our contributions below; items 1 — 3 have already been published at
WMT 2022 and 2023, and items 4 — 7 represent novel contributions:

1. We briefly present the construction of ACES, containing 36k examples across 146
language pairs and 68 phenomena.

2. We evaluate ACES on the metrics submitted to the WMT 2022 and WMT 23
Metrics shared task providing an overview of the performance of 47 different
metrics.

3. We conduct several analyses on these metrics revealing their drawbacks and also
providing recommendations to mitigate them.

4. We describe the construction of SPAN-ACES, an extended version ACES which
includes error span annotations.

5. Using SPAN-ACES, we benchmark the performance of currently available metrics
for the task of labelling errors in MT output. Our results suggest that these methods
show some success on the error labelling task with the highest span-F1 score
reaching 26.9. However, these results and corresponding poor results on the
contrastive task also raise new questions in labelling MT errors as evaluation.

6. We present the results of analyses aimed at determining how sensitive metrics are to
different phenomena. This is grounded in our assertion that an ideal metric should
be able to discriminate reliably between a good translation and an incorrect one —
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that is, there should be a sizeable difference between the scores it assigns to the
good and incorrect translations.

7. We investigate claims that Large Language Models may be used as MT evaluators
and describe experiments on LLMs from three different LLM families.
Benchmarking these LLMs on ACES reveals that these models perform worse than
the string-overlap metrics. These results degrade further in the reference-free setting
where all of the LLMs have a negative correlation across all of the ACES
categories.

We advocate steering metric development towards methods that produce error labels in
addition to the scores. Based on our analyses, we also recommend that metric developers consider:
a) combining metrics with different strengths, e.g. in the form of ensemble models, b) paying
more attention to the source and avoiding over-reliance on surface-overlap with the reference, and
¢) checking the properties of the pre-trained models prior to their use in developing new metrics.

We propose the adoption of both ACES and SPAN-ACES by the MT community, as
a benchmark for developing Machine Translation metrics. We envisage several use cases in
which the challenge sets may be employed: to profile and compare metric performance across a
range of error categories, and to identify improvement/degradation in performance of successive
development iterations of the same metric. Similarly, MT models can also be evaluated using this
dataset by calculating sentence-level perplexity of the two translations. Furthermore, we propose
the use of SPAN-ACES to aid in advancing the development of the next generation of MT metrics
which aim to provide error-span labels over MT output in addition to scores. Our work provides
baseline results for LLM-based MT evaluation and we hope the findings can better inform metric
design with LLMs.

2. Related Work

Challenge sets have been used for a range of NLP tasks to investigate the behaviour of these
tasks under a specific phenomenon rather than the standard test distribution (Popovié¢ and Castilho
2019). Challenge sets aim to provide insights on whether state-of-the-art models are robust to
domain shifts, simple textual perturbations, whether they have some understanding of linguistic
phenomena such as negation/commonsense or simply rely on shallow heuristics, to name a few.
The earliest introduction of challenge sets was by King and Falkedal (1990) who probed the
acceptability of machine translations for different domains. Since then challenge sets have been
developed for different fields within NLP including parsing (Rimell, Clark, and Steedman 2009),
NLI (McCoy and Linzen 2019; Rocchietti et al. 2021), question answering (Ravichander et al.
2021), Machine Reading Comprehension (Khashabi et al. 2018) and sentiment analysis (Li, Cohn,
and Baldwin 2017; Mahler et al. 2017; Stalitinaité and Bonfil 2017). Challenge sets are also
referred as “adversarial datasets” which also create examples by perturbing the standard test set to
fool the model (Smith (2012); Jia and Liang (2017), inter-alia).

Challenge sets for evaluating MT systems have focused on the translation models’ ability
to generate the correct translation given a phenomenon of interest. These include word sense
ambiguity (Rios, Miiller, and Sennrich 2018; Campolungo et al. 2022), gender bias (Rudinger,
May, and Van Durme 2017; Zhao et al. 2018; Stanovsky, Smith, and Zettlemoyer 2019), structural
divergence (Isabelle, Cherry, and Foster 2017) and discourse level phenomena (Guillou and
Hardmeier 2016; Emelin and Sennrich 2021). While such challenge sets focus on evaluating
specific MT models, it is necessary to identify whether the existing MT evaluation metrics also
perform well under these and related phenomena. Following the success of neural MT metrics,
which have been shown to correlate well with human judgements (Freitag et al. 2021b; Kocmi
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et al. 2021), the development of challenge sets designed to examine their strengths and weaknesses
has received considerable interest. However, metric weaknesses remain relatively unknown and
only a small number of works (e.g. Hanna and Bojar (2021) and Amrhein and Sennrich (2022))
have proposed systematic analyses to uncover them.

Early work on constructing challenge sets for metric evaluation typically focused on a small
range of phenomena (Specia et al. 2020; Zerva et al. 2022), synthetic perturbations (Freitag et al.
2021b), or manual perturbations for high-resource language pairs (Avramidis et al. 2018). These
limitations have been addressed in the development of the DEMETR (Karpinska et al. 2022) and
ACES datasets.

DEMETR (Karpinska et al. 2022), which comprises 31K English examples translated from
ten languages, was developed for evaluating MT metric sensitivity to a range of 35 different
types of linguistic perturbations, belonging to semantic, syntactic, and morphological error
categories. These were divided into minor, major, and critical errors according to the type of
perturbation, similar to the grading of error categories to compute the weighted ACES-Score.
As in ACES, example generation was carefully designed to form minimal pairs such that the
perturbed translation only differs from the actual translation in one aspect. The application of
DEMETR in evaluating a suite of baseline metrics revealed a similar pattern to the analyses
in Amrhein, Moghe, and Guillou (2022) - that metric performance varies considerably across
the different error categories, often with no clear winner. It is worth noting that DEMETR and
ACES each have their respective advantages: all examples in DEMETR have been verified by
human annotators; ACES provides broader coverage in terms of both languages and linguistic
phenomena.

In addition to ACES, three other datasets were submitted to the WMT 2022 challenge sets
shared task (Freitag et al. 2022): SMAUG (Alves et al. 2022), the HWTSC challenge set (Chen
et al. 2022), and the DFKI challenge set (Avramidis and Macketanz 2022). These datasets differ
from ACES in terms of their size, and the languages and phenomena/categories they cover. Both
SMAUG and HWTSC are relatively small datasets (<1000 examples) focusing on a small set
of five phenomena, each pertaining to a single category of critical error for meaning change. In
comparison, the DFKI challenge set is much larger — it contains 19,347 examples and covers over
100 linguistically motivated phenomena, which are organised into 14 categories. Whereas the aim
of ACES was to provide a broad coverage of language pairs, the other datasets provide an in-depth
focus on specific high-resource language pairs: SMAUG (pt«+en and es—en), DFKI (de<>en),
and HWTSC (zh<»en). Whilst there is a clear overlap between the ACES phenomena and those in
SMAUG and HWTSC, many of the phenomena in the DFKI dataset are complementary such that
in the case of evaluating metrics for the German-English pair, metric developers might consider
benchmarking on both datasets.

The WMT 2023 Challenge Sets submissions included ACES, MSLC23 (Lo, Larkin, and
Knowles 2023), and an extended version of the DFKI challenge set to include the en—ru language
pair plus additional examples and phenomena for the en—de language pair (Avramidis et al.
2023). The MSLC23 dataset covers four language pairs (zh—en, he<ren, and en—de) and
includes examples of low-, medium- and high-quality output designed to provide an interpretation
of metric performance across a range of different levels of translation quality. The motivation
for this is that whilst metric performance may be evaluated on high-quality MT output, these
same metrics may later be used to evaluate low-quality MT output, and it is therefore important to
understand their performance in the lower-quality setting.

Together with descriptions of the datasets, the authors of all challenge sets submitted to WMT
2022 and 2023 also include large-scale meta evaluations over a large collection of metrics. Whilst
we are therefore not the first to conduct such a meta evaluation, our evaluation covers a wider
range of language pairs, and includes comparably more comprehensive and in-depth analyses
aimed at making specific recommendations for future metric development. For example, whereas
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the DFKI dataset covers only a single language pair in 2022 and two pairs in 2023, we include
146 language pairs in our evaluation; the DEMETER dataset covers ten languages, but contains
only very shallow analyses. We also note that SPAN-ACES, our contrastive challenge set with
error span annotations, is the first of its kind.

3. Challenge Sets

Creating a contrastive challenge set for evaluating a machine translation evaluation metric requires
a source sentence, a reference translation, and two translation hypotheses: one which contains an
error or phenomenon of interest (the “incorrect” translation) and one which is a correct translation
in that respect (the “good” translation). One possible way to create such challenge sets is to start
with two alternative references (or two identical copies of the same reference) and insert errors
into one of them to form an incorrect translation while the uncorrupted version can be used as the
good translation. This limits the full evaluation scope to translation hypotheses that only contain
a single error. To create a more realistic setup, we also create many challenge sets where the
good translation is not free of errors, but it is a better translation than the incorrect translation.
For automatically created challenge sets, we put measures in place to ensure that the incorrect
translation is indeed a worse translation than the good translation.

3.1 Datasets

The examples in ACES are based on several academic datasets designed to test particular
properties in Machine Translation or other multilingual NLP tasks. The majority of the examples
in our challenge set were based on data extracted from three main datasets: FLORES-101, PAWS-
X, and XNLI (with additional translations from XTREME). FLORES-101 (Goyal et al. 2022)
and FLORES-200 (NLLB Team et al. 2022) are low resource MT evaluation benchmarks with
parallel data in 101 and 200 languages respectively. The FLORES-101 data was extracted from
Wikipedia, and the FLORES-200 data from three Wikimedia projects: Wikinews, Wikijunior, and
Wikivoyage. PAWS-X (Yang et al. 2019) is a cross-lingual dataset based on Wikipedia data and
designed for the task of paraphrase identification. PAWS-X consists of pairs of sentences that
are labelled as true or adversarial paraphrases, for seven languages. XNLI (Conneau et al. 2018)
is a multilingual Natural Language Inference (NLI) dataset consisting of premise-hypothesis
pairs with their corresponding inference label for 14 languages. In terms of text genres, XNLI
is the most diverse dataset used in the construction of ACES, with texts drawn from ten genres —
nine are from the Open American National Corpus: Face-To-Face, Telephone, Government, 9/11,
Letters, Oxford University Press (OUP), Slate, Verbatim, and Government, and the tenth (Fiction)
is drawn from the novel “Captain Blood”. The other datasets used in the development of ACES
serve specific challenges. WinoMT (Stanovsky, Smith, and Zettlemoyer 2019), a challenge set
developed for analysing gender bias in MT with examples exhibiting an equal balance of male and
female genders, and of stereotypical and non-stereotypical gender-role assignments (e.g., a female
nurse vs. a female doctor), is derived from two corpora constructed using Winograd-style Schemas.
MuCoW (Raganato, Scherrer, and Tiedemann 2019) is a multilingual contrastive word sense
disambiguation test suite for machine translation based on the OPUS collection of translated texts
from the web. The WMT 2018 English-German pronoun translation evaluation test suite
(Guillou et al. 2018) contains examples of the ambiguous English pronouns if and they extracted
from the TED talks portion of ParCorFull (Lapshinova-Koltunski, Hardmeier, and Krielke 2018).
The Europarl ConcoDisco corpus (Laali and Kosseim 2017) comprises the English-French
parallel texts from Europarl (Koehn 2005) over which automatic methods were used to perform
discourse connective annotation of their sense types. Wino-X (Emelin and Sennrich 2021) is a
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parallel dataset of German, French, and Russian Winograd schemas, aligned with their English
counterparts used to test commonsense reasoning and coreference resolution of MT models.

We will now discuss the different categories of challenge sets. We list some examples from
ACES in Table 1. We refer the reader to (Amrhein, Moghe, and Guillou 2022) for a comprehensive
description of the ACES phenomena and additional examples.

3.2 Addition and Omission

We create a challenge set for addition and omission errors which are defined in the MQM ontology
as “target content that includes content not present in the source” and “errors where content is
missing from the translation that is present in the source”, respectively. We focus on the level
of constituents and use an implementation by Vamvas and Sennrich (2022) to create synthetic
examples of addition and omission errors using the likelihood of tokens for a given MT model. To
generate examples, we use the concatenated dev and devtest sets from the FLORES-101 evaluation
benchmark for 46 languages. We focus on the 46 languages for which there exists a stanza parser>
and create datasets for all languages paired with English plus ten additional language pairs that
we selected randomly. For translation, we use the M2M100* model with 1.2B parameters (Fan
et al. 2021).

3.3 Mistranslation

The mistranslation phenomenon is broadly defined as the target translation not accurately
containing the information in the source content.

3.3.1 Mistranslation - Ambiguous Translation. This error type is defined in the MQM ontology
as a case where “an unambiguous source text is translated ambiguously”. For this error type,
we create challenge sets where MT metrics are presented with an unambiguous source and an
ambiguous reference. The metrics then need to choose between two disambiguated translation
hypotheses where only one meaning matches the source sentence. Therefore, these challenge sets
test whether metrics consider the source when the reference is not expressive enough to identify
the better translation. Since many reference-based metrics, by design, do not include the source to
compute evaluation scores, we believe that this presents a challenging test set.

Our method for creating examples is inspired by Vamvas and Sennrich (2021) who score a
translation against two versions of the source sentence, one with an added correct disambiguation
cue and one with a wrong disambiguation cue to determine whether a translation model produced
the correct translation or not. Instead of adding the disambiguation cues to the source, we
use an unambiguous source and add disambiguation cues to an ambiguous reference to create
two contrasting translation hypotheses. We create three separate challenge sets of this type:
Occupation Name Gender using the WinoMT dataset where the target language is English and
the source language has gendered occupation names. For example, in German there are specific
male or female inflections for professions i.e. Bdcker refers to a male baker and Bdickerin to a
female baker. The cues added to the reference to form the “good” and “incorrect” translations are
“female” and “male”.

Word Sense Disambiguation using the MuCoW dataset where the ambiguity lies in homographs
in the target language that are unambiguous in the source sentence. The cues added to the reference
to form the contrastive translations are sense-specific.

3 https://stanfordnlp.github.io/stanza/available_models.html
4 https://huggingface.co/facebook/m2m100_1.28B
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Discourse Connectives using the Europarl ConDisco corpus where the ambiguity lies in the
English discourse connective “since” which can have both causal and temporal meanings.

3.3.2 Mistranslation - Hallucinations. In this category, we group several subcategories of
mistranslation errors that happen at the word level and could occur due to hallucination by a
neural MT model. Hallucinations are a common error type for several natural language generation
tasks where a model generates an output that is partially related or completely unrelated to the
source sentence (Dale et al. 2023; Ji et al. 2023). >

These challenge sets test whether the machine translation evaluation metrics can reliably
identify hallucinations when presented with a correct alternative translation.
We create five different challenge sets based on hallucination errors:
Date-Time Errors: using the FLORES-101 data where a month name in the reference (e.g.
November) is replaced with a corresponding abbreviation in the “good” translation (e.g. Nov.)
and a different month name in the “incorrect” translation (e.g. August).
Numbers and Named Entities: We create a challenge set for numbers and named entities where
we perform character-level edits (adding, removing or substituting digits in numbers or characters
in named entities) as well as word-level edits (substituting whole numbers or named entities).
In the 2021 WMT metrics shared task, number differences were not a big issue for most neural
metrics (Freitag et al. 2021b). However, we believe that simply changing a number in an alternative
translation and using this as an incorrect translation as done by Freitag et al. (2021b) is an overly
simplistic setup and does not cover the whole translation hypothesis space. To address this
shortcoming, we propose a three-level evaluation. The first, easiest level follows Freitag et al.
(2021b) and applies a change to an alternative translation to form an incorrect translation. The
second level uses an alternative translation that is lexically very similar to the reference as the
good translation and applies a change to the reference to form an incorrect translation. The third,
and hardest level, uses an alternative translation that is lexically very different from the reference
as the good translation and applies a change to the reference to form an incorrect translation. In
this way, our challenge set tests whether the number and named entity differences can still be
detected as the surface similarity between the two translation candidates decreases and the surface
similarity between the incorrect translation and the reference increases. We use cross-lingual
paraphrases from the PAWS-X dataset as a pool of alternative translations to create this challenge
set. We only consider language pairs for which we can use a spacy NER model on the target side,
which results in 42 language pairs.
Unit Conversion: using FLORES-101 dataset, where we replace unit mentions in the reference
(e.g. 100 feet) with a different unit and corresponding amount in the “good” translation (e.g. 30.5
metres) and either the wrong amount (e.g. 100 metres) or wrong unit (30.5 feet) compared to the
reference in the “incorrect” translation.
Nonsense Words: We develop a challenge set for evaluating hallucinations at subword level
(Sennrich, Haddow, and Birch 2016). To create this challenge set, we consider tokens which
are broken down into at least two subwords and then randomly swap those subwords with other
subwords to create nonsense words by using the multilingual BERT tokenizer (Devlin et al. 2019).
We use the paraphrases from the PAWS-X dataset as good translations and randomly swap one
subword in the reference to generate an incorrect translation.
Real Data Hallucinations: To also create a more realistic hallucination benchmark, we manually
check some machine translations of the FLORES-101 dev and devtest sets for four language pairs:
de—en, en—de, fr—de and en—mr. We consider both cases where a more frequent, completely

5 Often, sentences with hallucinations can contain unrelated content beyond a single word/phrase. This category only
contains hallucinations at the word/sub-word level.
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wrong word occurs and cases where the MT model started with the correct subword but then
produced random subwords as hallucinations. Translations with a hallucination are used as
incorrect translations. We manually replace the hallucination part with its correct translation to
form the good translation.

3.3.3 Mistranslation - Lexical Overlap. Language models trained with the masked language
modelling objective are successful on downstream tasks because they model higher-order word
co-occurrence statistics instead of syntactic structures (Sinha et al. 2021). We create this challenge
set to test if metrics can reliably identify an incorrect translation especially when it shares a high
degree of lexical overlap with the reference. To create such examples, we use the PAWS-X dataset
for which adversarial paraphrase examples were constructed by changing the word order and/or
the syntactic structure at the phrase level while maintaining a high degree of lexical overlap. It
is likely that there will be higher unigram overlap, but the context beyond the altered phrase is
retained as is, thus providing some n-gram overlap.

3.3.4 Mistranslation - Linguistic Modality. Modal auxiliary verbs signal the function of the
main verb that they govern. For example, they may be used to denote possibility (‘“could”),
permission (“may”), the giving of advice (“should”), or necessity (“must”). We are interested in
whether MT evaluation metrics can identify when modal auxiliary verbs are incorrectly translated.
We focus on the English modal auxiliary verbs: “must” (necessity), and “may”, “might”, “could”
(possibility). We then translate the source sentence using Google Translate to obtain the “good”
translation and manually replace the modal verb with an alternative with the same meaning where
necessary (e.g. “have to” denotes necessity as does “must”’; also “might”, “may”’ and “could” are
considered equivalent). For the incorrect translation, we manually substitute the modal verb that
conveys a different meaning or epistemic strength e.g. in the example above “might” (possibility)
is replaced with “will”, which denotes (near) certainty. We use a combination of the FLORES-200

and PAWS-X datasets as the basis of the challenge sets.

3.3.5 Mistranslation - Overly Literal Translations. MQM defines this error type as translations
that are overly literal, for example, literal translations of figurative language. We create two
challenge sets based on this error type:

Idioms: We create this challenge set based on the PIE® parallel corpus of English idiomatic
expressions and literal paraphrases (Zhou, Gong, and Bhat 2021). We manually translate 102
parallel sentences into German for which we find a matching idiom that is not a word-by-word
translation of the original English idiom. Further, we create an overly literal translation of the
English and German idioms. We use either the German or English original idiom as the source
sentence. Then, we either use the correct idiom in the other language as the reference and the
literal paraphrase as the good translation, or vice versa. The incorrect translation is always the
overly literal translation of the source idiom.

Real Data Errors: For this challenge set, we manually check MT translations of the FLORES-101
datasets. If we find an overly-literal translation, we manually correct it to form the good translation
and use the overly-literal translation as the incorrect translation.

3.3.6 Mistranslation - Sentence-Level Meaning Error. We also consider a special case of
sentence-level semantic error that arises due to the nature of the task of Natural Language
Inference (NLI). The task of NLI requires identifying where the given hypothesis is an entailment,
contradiction, or neutral, for a given premise. Thus, the premise and hypothesis have substantial

6 https://github.com/zhjjn/MWE_PIE
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overlap but they vary in meaning. We use the XNLI dataset to create such examples where
there is at least a 0.5 chrF score between the English premise and hypothesis only for the
neutral and contradiction examples. We use either the premise/hypothesis as the reference, an
automatic translation as the “good translation”, premise/hypothesis from the remaining non-
English languages, and hypothesis/premise as the “incorrect translation”.

3.3.7 Mistranslation - Ordering Mismatch. We also investigate the effects of changing word
order in a way that changes meaning. For example, “I like apple pie and fried chicken” is changed
to “ I like chicken pie and fried apple” to form the incorrect translation. This challenge set is
created manually by changing translations from the FLORES-101 dataset and covers de—en,
en—de and fr—de.

3.4 Mistranslation - Discourse-level Errors

We introduce a new subclass of mistranslation errors that specifically cover discourse-level
phenomena. We create several challenge sets based on discourse-level errors:

Pronouns: To create these challenge sets, we use the English-German pronoun translation
evaluation test suite from the WMT 2018 shared task as the basis for our examples. We focus on
the following six categories derived from the manually annotated pronoun function and attribute
labels: pleonastic it, anaphoric subject and non-subject position if, anaphoric they, singular they,
and group it/they. We use the MT translations as the “good” translations and automatically generate
“incorrect” translations using one of the following strategies: omission - the translated pronoun is
deleted from the MT output, substitution - the “correct” pronoun is replaced with an “incorrect”
form.

Discourse Connectives: We leverage the Europarl ConcoDisco corpus of parallel English/French
sentences with discourse connectives marked and annotated for sense, and select examples with
ambiguity in the French source sentence. We construct the good translation by replacing instances
of “while” (temporal) with “as” or “as long as” and instances of “while” (comparison) as “whereas”
(ensuring grammaticality is preserved). For the incorrect translation, we replace the discourse
connective with one with the alternative sense of “while” e.g. we use “whereas” (comparison)
where a temporal sense is required.

Commonsense Co-Reference Disambiguation: We use the English sentences in the Wino-X
challenge set which were sampled from the Winograd schema. All contain the pronoun it and
were manually translated into two contrastive translations for de, fr, and ru. Based on this data,
we create our challenge sets covering two types of examples: For the first, the good translation
contains the pronoun referring to the correct antecedent, while the incorrect translation contains
the pronoun referring to the incorrect antecedent. For the second, the correct translation translates
the instance of it into the correct disambiguating filler, while the second translation contains the
pronoun referring to the incorrect antecedent.

3.5 Untranslated

MQM defines this error type as “errors occurring when a text segment that was intended for
translation is left untranslated in the target content”. We create two challenge sets based on
untranslated content errors:

Word-Level: We manually annotate real errors in translations of the FLORES-101 dev and devtest
sets. We count complete copies as untranslated content as well as content that comes from the
source language but was only adapted to look more like the target language.

11
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Sentence-Level: We create a challenge set for untranslated sentences by simply copying the
entire source sentence as the incorrect translation. We used a combination of examples from the
FLORES-200, XNLI, and PAWS-X datasets to create these examples.

3.6 Do Not Translate Errors

This category of errors is defined in MQM as content in the source that should be copied to the
output in the source language but was mistakenly translated into the target language. Common
examples of this error type are company names or slogans. Here, we manually create a challenge
set based on the PAWS-X data which contains many song titles that should not be translated. To
construct the challenge set, we use one paraphrase as the good translation and manually translate
an English sequence of tokens (e.g. a song title) into German to form the incorrect translation.

3.7 Overtranslation and Undertranslation

Hallucinations from a translation model can often produce a term which is either more generic
than the source word or more specific. Within the MQM ontology, the former is referred to as
undertranslation while the latter is referred to as overtranslation. For example, “car” may be
substituted with “vehicle” (undertranslation) or “BMW” (overtranslation). A randomly selected
noun from the reference translation is replaced by its corresponding hypernym or hyponym (by
using Wordnet) to simulate undertranslation or overtranslation errors, respectively.

3.8 Real-world Knowledge

We propose a new error category where translations disagree with real-world knowledge in
addition to the accuracy categories in MQM. We create five challenge sets based on this error
type. For the first four, we manually construct examples each for en—de and de—en. We used
German-English examples from XNLI, plus English translations from XTREME as the basis for
our examples. Typically, we select a single sentence, either the premise or hypothesis from XNLI,
and manipulate the MT translations.

Textual Entailment: We construct examples for which the good translation entails the meaning
of the original sentence (and its reference). For example, we use the entailment was murdered —
died (i.e. if a person is murdered then they must have died) to construct the good translation in the
example above. We construct the incorrect translation by replacing the entailed predicate (died)
with a related but non-entailed predicate (here was attacked) — a person may have been murdered
without being attacked, i.e. by being poisoned for example.

Hypernyms and Hyponyms: We consider a translation that contains a hypernym of a word to be
better than one that contains a hyponym. For example, whilst translating “Hund” (“dog”) with the
broader term “animal” results in some loss of information, this is preferable over hallucinating
information by using a more specific term such as “labrador” (i.e. an instance of the hyponym
class “dog”). We used Wordnet and WordRel.com’ (an online dictionary of words’ relations) to
identify hypernyms and hyponyms of nouns within the reference sentences, and used these as
substitutions in the MT output: hypernyms are used in the “good” translations and hyponyms
in the “incorrect” translations. This category is different from the two categories in Section 3.7
as the good translation is still a paraphrase of the reference (no loss of information) while the
incorrect translation is created by manipulating the reference.

7 https://wordrel.com/
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Hypernyms and Distractors: Similar to above, we construct examples in which the good
translation contains a hypernym (e.g. “pet”) of the word in the reference (e.g. “dog”). We form
the incorrect translation by replacing the original word in the source/reference with a different
member from the same class (e.g. “cat”; both cats and dogs belong to the class of pets).
Antonyms: We also construct incorrect translations by replacing words with their corresponding
antonyms from Wordnet. We construct challenge sets for both nouns and verbs. For nouns, we
automatically constructed incorrect translations by replacing nouns in the reference with their
antonyms. In the case of verbs, we manually constructed a more challenging set of examples
intended to be used to assess whether the metrics can distinguish between translations that contain
a synonym versus an antonym of a given word.

Commonsense: We are also interested in whether evaluation metrics prefer translations that
adhere to common sense. To test this, we remove explanatory subordinate clauses from the sources
and references in the dataset described in Section 3.4. This guarantees that when choosing between
a good and incorrect translation, the metric cannot infer the correct answer from looking at the
source or the reference. We then pair the shortened source and reference sentences with the full
translation that follows commonsense as the good translation and the full translation with the
other noun as the incorrect translation.

3.9 Wrong Language

Most of the representations obtained from large multilingual language models do not explicitly
use the language identifier (id) as an input while encoding a sentence. Here, we are interested in
checking whether sentences which have similar meanings are closer together in the representation
space of neural MT evaluation metrics, irrespective of their language. We create a challenge set
for embedding-based metrics using the FLORES-200 dataset where the incorrect translation is in
a similar language (same typology/same script) to the reference (e.g. a Catalan translation may be
used as the incorrect translation if the target language is Spanish).

3.10 Fluency

Although the focus of ACES is on accuracy errors, we also include a small set of fluency errors
for the punctuation category.’

Punctuation: We assess the effect of deleting and substituting punctuation characters. We employ
four strategies: 1) deleting all punctuation, 2) deleting only quotation marks (i.e. removing
indications of quoted speech), 3) deleting only commas (i.e. removing clause boundary markers),
4) replacing exclamation points with question marks (i.e. statement — question). In strategies
1 and, especially, 3 and 4, some of the examples may also contain accuracy-related errors. For
example, the meaning of the sentence could be changed in the incorrect translation if we remove a
comma, e.g. in the (in)famous example “Let’s eat, Grandma!” vs. “Let’s eat Grandma!”. We use
the TED Talks from the WMT 2018 English-German pronoun translation evaluation test suite and
apply all deletions and substitutions automatically.

We leave the development of challenge sets for other fluency phenomena to future work.

8 Part of the rationale for including fluency as an additional category stems from the need to satisfy the requirement that
TED talks be replicated in their entirety; the pronoun examples described in Section 3.4 are drawn from TED talks, but
not all sentences contain a pronoun
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Addition
target includes content not present in the source

SRC (de):  In den letzten 20 Jahren ist die Auswahl in Uptown Charlotte exponentiell gewachsen.
REF (en):  In the past 20 years, the amount in Uptown Charlotte has grown exponentially.
Vi Over the past 20 years, the selection in Uptown Charlotte has grown exponentially.
X Over the past 20 years, the selection of child-friendly options in Uptown Charlotte has grown exponentially.

Omission
errors where content is missing from the translation that is present in the source

SRC (fr):  Une tornade est un tourbillon d’air a basse-pression en forme de colonne, I’air alentour est aspiré vers I'intérieur et le haut.
REF (en): A tornado is a spinning column of very low-pressure air, which sucks the surrounding air inward and upward.

v: A tornado is a column-shaped low-pressure air turbine, the air around it is sucked inside and up.

X: Atornado is a low-pressure air turbine, the air around it is sucked inside and up.

Untranslated - Word Level
errors occurring when a text segment that was intended for translation is left untranslated in the target content

SRC (fr): A I’origine, I’émission mettait en scéne des édi de doublag s, originaires de 1’est du Texas.
REF (de):  Die Sendung hatte urspriinglich lokale Amateursynchronsprecher aus Ost-Texas.
v (copy):  Urspriinglich spielte die Show mit Amateursynchronsprechern aus dem Osten von Texas.
v (syn.):  Urspriinglich spielte die Show mit Amateur-Synchron-Schauspielern aus dem Osten von Texas.
X: Urspriinglich spielte die Show mit Amateur-Doubling-Schauspielern aus dem Osten von Texas.
Mistranslation - Ambi; Translati
an unambiguous source text is translated ambiguously

SRC (de):  Der Manager feuerte die Bickerin.
REF (en):  The manager fired the baker.
Vi The manager fired the female baker.
X: The manager fired the male baker.

Do Not Translate
content in the source that should be copied to the output in the source language, but was mistakenly translated into the target language.

SRC (en):  Dance was one of the inspirations for the exodus - song “The Toxic Waltz”, from their 1989 album “Fabulous Disaster”.
REF (de):  Dance war eine der Inspirationen fiir das Exodus-Lied ,,The Toxic Waltz* von ihrem 1989er Album ,,Fabulous Disaster*.
v: Der Tanz war eine der Inspirationen fiir den Exodus-Song ,,The Toxic Waltz*, von ihrem 1989er Album ,,Fabulous Disaster”.
X: Der Tanz war eine der Inspirationen fiir den Exodus-Song ,,Der Toxische Walzer*, von ihrem 1989er Album ,,Fabulous Disaster”.

Undertranslation
erroneous translation has a meaning that is more generic than the source

SRC (de):  Bob und Ted waren Briider. Ted ist der Sohn von John.
REF (en):  Bob and Ted were brothers. Ted is John’s son.

v:  Bob and Ted were brothers, and Ted is John’s son.

X: Bob and Ted were brothers. Ted is John’s male offspring.

Overtranslation
erroneous translation has a meaning that is more specific than the source

SRC (ja): £ 40 FOMEL T ) —h 7 T2 - TT— R L)L Uk ZEH 72,
REF (en):  The 40-minute film was written by Annaud with Alain Godard.

v: The 40-minute film was written by Annaud along with Alain Godard.

X The 40-minute cinema verite was written by Annaud with Alain Godard.

Real-world Knowledge - Textual Entailment
meaning of the source/reference is entailed by the “good” translation

SRC (de): Ein Mann wurde ermordet.
REF (en): A man was murdered.

V1 A man died.

X: A man was attacked.

Wrong Language
incorrect translation is a perfect translation in a related language

SRC (en):  Cell comes from the Latin word cella which means small room.

REF (es):  El término célula deriva de la palabra latina cella, que quiere decir «cuarto pequefio».
v/ (es): Lacélula viene de la palabra latina cella que significa habitacién pequeifia.
X(ca):  Cellula ve de la paraula llatina cella, que vol dir habitacio petita.

Table 1

Examples from each top-level accuracy error category in ACES. An example consists of a source sentence
(SRC), reference (REF), good (v') and incorrect (X) translations, language pair, and a phenomenon label. We
also provide a description of the relevant phenomenon which is sourced from the MQM ontology. en:
English, de: German, fr: French, ja: Japanese, es: Spanish, ca: Catalan
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4. ACES Statistics

The ACES dataset consists of 36,476 examples and covers 146 languages. See Table 2 for a
distribution of examples over the ten top-level error categories in ACES.

Category Examples | Category Examples
addition 999 | overtransaltion 1,000
omission 999 | undertransaltion 1,000
mistranslation 24,457 | real-world knowledge 2,948
untranslated 1,300 | wrong language 2,000
do not translate 100 | punctuation 1,673

Table 2
Number of examples per top-level category in ACES

The distribution of examples across language pairs is provided in the matrix in Appendix
C: Distribution of Examples Across Language Pairs. We note that the distribution of examples
is variable across language pairs, with high-resource language pairs such as en-de and en-fr
better represented than medium and low-resource language pairs, reflecting the limitations of
the underlying datasets used to construct ACES. The distribution of language pairs across the
68 fine-grained phenomena in ACES is included in Appendix D: Distribution of Language Pairs
Across Phenomena. Again, the distribution of language pairs is variable across phenomena. We
list the different domains used for constructing the ACES dataset in Appendix E: Distribution of
Domains Across Phenomena. We find that examples are largely created from Wikipedia text.

5. Span Annotations

To support the development of Quality Estimation and MT evaluation metrics that predict error
spans, we extended the original version of ACES (released at WMT 2022) to include error span
annotations. Specifically, we annotated all error spans of the type denoted by the phenomenon
category label, ignoring the presence of errors belonging to other categories. We therefore label
only errors present in the incorrect translation, which by design contains errors of the phenomenon
category denoted by the label. We annotate spans at the word/token level similar to the MQM
format (Freitag et al. 2021a) and in line with recent developments in error span prediction metrics
(Perrella et al. 2022a; Rei et al. 2022). Following the WMT 2022 MQM Human Evaluation span
annotation format (Freitag et al. 2022), error spans are enclosed in tags (<v> error span </
v>) denoting the start and end position of the error in the incorrect translation. Note that due to
the formulation of the manual annotation guidelines (see Appendix I: ACES Span Annotation
Guidelines) it is not possible for two spans to overlap.

We provide annotations for all ACES examples, using a combination of automated and
manual methods. The annotation methods used for each phenomenon can be found in Appendix F:
ACES Annotation Methods per Phenomena. For many of the phenomena categories, we were able
to automatically annotate examples using rule-based methods informed by the methodology that
we followed to construct the examples. For the remaining phenomena, which we could not annotate
automatically due to the manual methods used to generate the good and incorrect translations, we
annotated the error spans manually (see Appendix I: ACES Span Annotation Guidelines). We also
manually annotated a small number of examples (1,959 from the mistranslation phenomena and
three from the real-world knowledge phenomena) for which the automated annotation rules failed.
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5.1 Automatic Annotations

We automatically annotate the error spans in the incorrect translations for 34,514 samples out of
36,476, by deterministically comparing the incorrect translation to either the good translation or
the reference sentence. As the span annotations were added to ACES post-hoc, the automatic
annotation methods were reverse engineered according to the methods from which challenge sets
for each phenomena were constructed’. In the majority of cases these contain only word-level
annotations (though more complex cases exist and required manual annotation (see Section 5.2).
We used unit tests and manual inspection (for every category) to ensure that the error span marked
by the automatic annotation method matches the original error. The details of the automatic
annotation methods are as follows:

Annotation of addition, omission and substitutions. This method tokenises the good translation
and incorrect translation, and compares the tokens to annotate word-level addition, omission and
substitutions which may occur multiple times. It is only used to annotate the simpler cases of
substitutions, when each word was replaced with another word.

Annotation of substitution of a variable-sized span compared to the correct translation. This
method tokenises the good translation and the incorrect translation and then finds a single word-
level error span with variable size.

Annotation of substitution of a variable-sized span compared to the reference sentence. Similar
to “Annotation of substitution of a variable-sized span comparing to the correct translation", this
method tokenises the reference and the incorrect translation and then finds a single word-level
error span with variable size.

Annotation of the date-time translation errors. In the Hallucination - Date-Time challenge set,
the incorrect translations were built by substituting a month name in the reference with another
month. This method finds the month names which are different in the incorrect translations and
the reference, ignoring the months replaced with their corresponding abbreviations.

Annotation of the unit-conversion translation errors. In the Hallucination - Unit Conversion
phenomenon, the unit mentions in the reference (e.g. 100 feet) were replaced with either the
wrong amount (e.g. 100 metres) or wrong unit (30.5 feet) in the incorrect translation. Using the
Python package quantulum3'?, we detect the amount and units used in the incorrect translation,
and annotate either the wrong amount or the wrong unit, according to the phenomenon category
label (hallucination-unit-conversion-unit-matches-ref and hallucination-unit-conversion-amount-
matches-ref respectively).

Annotation of the error where two words in the good translation were swapped. In ordering-
mismatch challenge set, the incorrect sentence was generated by swapping the places of two words
in the good translation. This method computes the annotations when two spans were swapped,
and we manually annotated 4 samples which the method was not able to correctly annotate.

Annotation of the whole sentence. This method trivially annotates the whole incorrect translation
as an error. For examples belonging to the following Mistranslation - Sentence-Level Meaning
Error phenomena, constructed using the XNLI dataset, we automatically mark the entire sentence
as an error: xnli-addition-contradiction, xnli-addition-neutral, xnli-omission-contradiction, xnli-
omission-neutral. Despite some degree of lexical overlap between the good- and incorrect-
translation, the incorrect-translation is drawn from either a contradiction or neutral hypothesis
in the XNLI dataset, and will therefore by definition not be a translation of the premise (i.e. the
sentence extracted as the good-translation).

9 Ideally, for any future dataset the spans should be retained during dataset creation, rather than annotated post-hoc.
10 https://github.com/nielstron/quantulum3
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5.2 Manual Annotation

Automated annotation is suitable for many of the examples, e.g. where the good and incorrect
translations only exhibit differences relevant to the particular phenomenon indicated by the
phenomenon label. However, it is not suitable in all cases, for example where the good and
incorrect translations contain additional differences (not related to the error phenomenon), which
could result in the automatic annotation method introducing annotation errors. We identified four
phenomena for which automated annotation was unsuitable, and submitted all examples from
these categories for manual annotation. Table 3 lists the four ACES phenomenon labels and their
corresponding category in the manual annotation guidelines.

ACES Phenomenon Label Category in Annotation Guidelines

coreference-based-on-commonsense  coreference
hallucination-real-data-vs-ref-word hallucination
hallucination-real-data-vs-synonym  hallucination
lexical-overlap word swap

Table 3
Mapping of ACES phenomenon labels to manual annotation categories

We extracted a total of 2,006 examples belonging to these phenomena (427 hallucination,
559 coreference, and 1020 word swap), with examples for the following languages: English (471),
French (551), German (456), Japanese (322), Korean (4), Marathi (44), and Russian (158). The
manual annotation of these examples was completed by a team of seven annotators (one per
language), who are either professional translators or linguists. The annotators were provided with
a set of general guidelines plus specific instructions for each of the different phenomena listed
above. The annotation guidelines are summarised in the following sections and the complete set of
guidelines given to the annotators is provided in Appendix I: ACES Span Annotation Guidelines.

Automated checks were carried out over the manual annotations to provide a basic validation.
These checks were used to ensure that 1) each example had been annotated, i.e. contained at least
one span of text within tags, 2) all spans were marked with an open and close tag (i.e. the number
of open and close tags per example, should match), and 3) no changes had been made to the
example text other than the addition of the tags. Examples that failed these checks were sent to
the annotators for re-annotation. We also automatically identified and resolved instances where
additional whitespace was introduced (in error) at the start or end of an error span, ensuring that
the annotated text and original (unannotated) text differed only in terms of the presence/absence
of error tags.

5.2.1 Overview of Annotation Guidelines. We split the annotation guidelines into a) general
guidelines suitable for annotating all examples, and b) error type-specific guidelines intended
for annotating specific categories. The annotators are presented with an ACES phenomenon
label representing the type of error present, and two sentences: A and B, where B is the incorrect
translation (i.e. contains one or more errors) and A is either the good translation or the reference
(depending on the phenomenon). The annotators are asked to identify and mark all error spans in
sentence B that belong to the error type indicated by the phenomenon label. Error spans are marked
with tags (<>) at the word level, i.e. in the case that the error is a misspelling (e.g. “combuter”
instead of “computer”) the complete word (i.e. “combuter”) should be marked.

General guidelines. The general guidelines may be applied for the annotation of any example
in ACES. We begin by defining four possible operations to mark error spans: addition, substitution,
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deletion, and reordering (see Table 4). In simple scenarios, a single operation may be sufficient to
annotate an example. In more complex scenarios multiple operations may be required.

Addition: a text span that is not present in sentence A is included in sentence B

Sentence A: The cat is a species of small carnivorous mammal.
Sentence B: The cat is a <domestic> species of small carnivorous mammal.

Substitution: a text span in sentence A is substituted with a different text span in sentence B

Sentence A: Female domestic cats can have kittens from spring to late autumn.
Sentence B: Female domestic cats can have kittens from <May> to <December>.

Deletion: a text span that is present in sentence A is omitted from sentence B

Sentence A: Feral cats are domestic cats that were born in or have reverted to a wild state.
Sentence B: Feral cats are domestic cats <>or have reverted to a wild state.

Reordering: a text span in sentence A that appears in a different position in sentence B

Sentence A: Montreal is the second most populous city in Canada and the most
populous city in the province of Quebec.

Sentence B: Montreal is the <>most populous city in Canada and the <second> most
populous city in the province of Quebec.

Table 4
Manual annotation guidelines: Operations for general guidelines

Error type-specific guidelines: Additionally, we include specific guidelines for the annota-
tion of three phenomenon categories: hallucination, coreference, and word swap (see Table 5).
The annotation of examples belonging to these categories may be achieved by marking the
presence of one or more operations. For example, the hallucination example in Table 5 contains
both an “addition” (i.e. <Welsh, French,>) and a “substitution” (i.e. Gaelic — <Garlic>). The
three categories, for which we provide error type-specific guidelines, cover all of the examples
submitted for manual annotation.

5.2.2 Development of Manual Annotation Guidelines. To aid in the development and refine-
ment of the annotation guidelines, we conducted a two-phase annotation pilot. In the first phase,
we drew up the set of formal guidelines (described in Section 5.2.1). In the second phase, we
verified the guidelines and measured inter-annotator agreement. We then asked professional
annotators to complete the manual annotation of the four ACES phenomena listed above, using
the guidelines.

In the first pilot phase, four of the authors of the paper'' manually annotated error spans
for a sample of 100 examples with English as the target language, randomly selected across
all phenomena in ACES. The annotators had access to the source-language sentence, the three
target-language translations: good- incorrect- and reference-translation, and the phenomenon
label. We considered only the target-language side and marked one or more error spans in the
incorrect translation only. We then conducted an adjudication exercise in which all four annotators
manually compared the four sets of annotations for each example and discussed their strategies for
annotation. From this, we derived a set of general guidelines to accommodate the annotation of

11 Two annotators for the first pilot phase are native English speakers; two are fluent English speakers
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Hallucination: text that is not present in sentence A is observed in sentence B or a word in
sentence A is replaced by a more frequent or orthographically similar word in sentence B

Sentence A: The official languages of Scotland are: English, Scots, and Scottish Gaelic.
Sentence B: The official languages of Scotland are: English, <Welsh, French,> Scots, and
Scottish <Garlic>.

Coreference: a pronoun in sentence A is replaced with a (potentially) inappropriate
noun-phrase in sentence B

Sentence A: The cat had caught the mouse and it was trying to wriggle free.
Sentence B: The cat had caught the mouse and <the cat> was trying to wriggle free.

Word swap: the position of a word or text span in sentence A appears swapped in sentence B

Sentence A: Their music is considered by many as an alternative metal with rap metal and
industrial metal influences, which according to previous interviews call
themselves “murder - rock”.

Sentence B: Their music is considered by many as <industrial> metal with rap metal and
<alternative> metal influences. According to previous interviews, they
consider themselves “murder rock”.

Table 5
Manual annotation guidelines: Error type-specific guidelines

any example in ACES. We then added specific guidelines for examples belonging to the categories:
hallucination, coreference, and word swap.

In the second pilot phase, we verified the quality of the manual annotation guidelines. To
verify the general guidelines, the same four annotators from the first pilot phase annotated another
sample of 100 examples with English as the target language, randomly selected across all ACES
phenomena. To verify the quality of the span annotations, we automatically measured inter-
annotator agreement. We computed the percentage of exact matches'? as total_exact_matches
divided by total_spans_marked, i.e. where all four annotators agree on the same error span, as
81.82% (examples=100, total spans=110, exact-match spans=90), indicating high agreement'?.
We also verified the type-specific guidelines for annotating hallucination, coreference, and word
swap. As the coreference category requires manual annotation in German (ACES contains only
en-de examples for the coreference-based-on-commonsense phenomenon), and examples of the
other phenomena exist for English, we asked two native German / fluent English speakers'* to
annotate a randomly selected sample of 100 examples (25 examples from each of the relevant
ACES phenomenon categories). We report inter-annotator agreement of 77.40% (examples=100,
total spans=146, exact-match spans=113).

In addition to measuring inter-annotator agreement, we also examined the examples where
two or more annotators marked different spans. We concluded that the majority of differences
arose from simple human errors as opposed to differing interpretations of the guidelines. For
example, annotators sometimes accidentally marked longer spans than necessary, or marked the
presence of a deletion in the wrong position. We concluded that many of these mistakes could

12 We ignore both leading and trailing whitespace when comparing spans

13 Highest inter-annotator agreement with three annotators: 90.48% (examples=100, total spans=105, exact-match
spans=95)

14 One annotator for the second pilot phase was also an author of this paper
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have been avoided had the annotators carefully double-checked their annotations. We therefore
added a note to the guidelines to this effect, but made no further changes to the instructions. It
is also worth noting that for a handful of examples, the presence of Machine Translation led to
annotators struggling to agree on a correct annotation — an issue that is not easily resolved, but is
infrequent in the ACES dataset.

We shall now discuss the result and analysis of different metrics on our benchmarks

6. Evaluation Methodology

Table 6 lists the baseline, reference-based, and reference-free metrics from WMT 2022 and
2023 that provide segment-level judgements and cover all of the language pairs in ACES. We
indicate whether metrics are embeddings-based with a subset of metrics using the supervision
signal provided by Direct Assessment (DA) judgements from WMT (Bojar et al. 2016) or MQM
(Lommel, Burchardt, and Uszkoreit 2014) annotations, LLM-based, or rely on surface-level
overlap with the reference.

We briefly summarise the metrics here, grouping them into broad categories based on their
design characteristics. The metrics that rely on surface overlap with the reference include several
baseline metrics: BLEU (Papineni et al. 2002), chrF (Popovi¢ 2017) and the spBLEU (Goyal
et al. 2022) metrics F101SPBLEU and F200SsPBLEU, for which the SentencePiece tokeniser
(Kudo and Richardson 2018) was trained using data from the FLORES-101 or -200 languages
respectively. It also includes the 2023 participant metrics based on F-scores and inspired by
chrF++: Tokengram_F and Partokengram_F (Dréano, Molloy, and Murphy 2023b).

The largest group is embedding-based metrics. Many are based on the COMET architecture:
COMET-20 and COMET-QE (Rei et al. 2020), Unbabel’s WMT 2022 submission COMET-22
(Rei et al. 2022), and Microsoft’s WMT 2022 submissions MS-COMET-22 and MS-COMET-
QE-22 (Kocmi, Matsushita, and Federmann 2022). The XCOMET family of metrics, trained to
identify errors in sentences along with a final quality score, includes XCOMET-XL, XCOMET-
XXL, and XCOMET-QE, and the two ensemble metrics: XCOMET-Ensemble and XCOMET-
QE-Ensemble. The COMET-Kiwi (Rei et al. 2022) metric and the COMETKIWI-XL and
COMETKIWI-XXL metrics from 2023 form another family. The COMETOID22 (Gowda,
Kocmi, and Junczys-Dowmunt 2023) student metrics are trained to mimic teacher scores
from COMET-22 without access to the reference. (The suffix [WMT-21,22,23] indicates the
training data cut-off year.) The remaining metrics are based on a range of different architectures:
BERTScore (Zhang et al. 2020), BLEURT20 (Sellam et al. 2020), YiSi-1 (Lo 2019), UniTE
(Wan et al. 2022a), MATESE and MATESE-QE (Perrella et al. 2022b), , eBLEU (ElNokrashy
and Kocmi 2023), and XLsim (Mukherjee and Shrivastava 2023). The MetricX family includes
the metricx_*_ DA and metricx_*_MQM metrics from 2022 and MetricX-23 and MetricX-23-
QE (Juraska et al. 2023) from 2023. The Huawei metrics include Cross-QE, HWTSC-Teacher-
Sim, and HWTSC-TLM (Liu et al. 2022), and KG-BERTScore (Liu et al. 2022; Wu et al. 2023)
which incorporates a multilingual knowledge graph.

The LLM-based metrics group comprises two WMT 2023 metrics: Embed_Llama (Dréano,
Molloy, and Murphy 2023a) which uses pre-trained LLaMA2 embeddings without finetuning,
and GEMBA-MQM (Kocmi and Federmann 2023a) — a GPT-based metric for error quality span
marking. Finally, Random-sysname is a random baseline which samples scores from a Gaussian
distribution based on random mean value. It was included in 2023 to provide a context to scores
and also to detect errors in metric meta-evaluations. In addition to these metrics, we also conducted
some experiments on using LLMs for evaluation as listed below.
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6.1 LLM Metrics

Following the rapid adoption of LLM-based approaches to address a range of NLP tasks (Brown
et al. 2023), there has also been a steady increase in the use of LLMs for evaluation of text
generation tasks. Prompting LLMs allows us to design evaluation strategies that emulate ranking
(Li, Patel, and Du 2023), scoring (Chiang and Lee 2023; Sottana et al. 2023) as well as providing
explanations (Jiang et al. 2023; Leiter et al. 2024). These techniques have been adapted for
MT evaluation with apparently promising results (Xu et al. 2023; Lu et al. 2023; Kocmi and
Federmann 2023a). We note that these observations are often limited to system-level evaluation
and also to high-resource language pairs. Further, we only had access to the scores produced by
the LLM-based metrics in the previous section, allowing us limited scope for analysis. To obtain a
better understanding of how different strategies with LLMs affect MT evaluation, we resorted to
running new set of experiments with LLMs described in this section. We intend to investigate the
extent to which these LLMs can be used for MT evaluation more holistically through the ACES
dataset.

We consider three variants of using LLMs for evaluation. The first one is GEMBA-DA
(Kocmi and Federmann 2023a) where the model (GPT Davinci-003, a predecessor to GPT-4
model) is prompted using a zero-shot approach to produce a translation score between 0 and 100.
Note that GEMBA-DA was the precursor of the GEMBA-MQM model, which was discussed
previously. For the next two methods, we considered LLaMA?2 (7B) (Touvron et al. 2023) and
FLAN-ALPACA-XL (Chia et al. 2023) (3B) which is Flan-T5 (Chung et al. 2022) fine-tuned on
the Alpaca dataset (Taori et al. 2023). We chose LLaMA?2 (7B), despite it being predominantly
trained in English, to see if the accidental multilingual tokens are enough to provide multilingual
evaluation. In case of EMBED_LLAMA, the metric uses representations from LLaMA model to
calculate cosine distance. Our methods with LLaMA2 rely on prompting. We included FLAN-
ALPACA-XL as it is a smaller LLM and that LLM was trained with multilingual data. '

For two of these LLMs (FLAN-ALPACA-XL and LLAMA?2), we experimented with both
zero-shot and five-shot prompting. In five-shot prompting, five examples of scored translations
across varying scoring ranges and language pairs were provided with the prompt. However, we
found that five-shot prompting performed poorly in our initial experiments and therefore we report
only the zero-shot results. We provide the prompt templates in Appendix G: Prompt for LLMs
for MT evaluation. For the postprocessing of outputs from the above LLMs, we included the first
rational number that appeared in the output from the respective models as the score produced
by that LLM. In the scenario in which no number was found, the example was given a score of
0. In such examples, the overgenerated text generally consisted of a hallucinated example of a
source-reference-translation triplet.

As ACES is a contrastive dataset, we also experimented with providing a prompt that
compares the two translations, labelled A and B respectively, and instructs the LLM to select
the better translation. However, in our initial experiments, we found that the models typically
produce an option followed by the generation of both of the candidate translations. This copying
of translations makes it hard to identify if the generation of the option was a result of the model
actually performing the evaluation or an artefact of the overgeneration.

15 We also conducted experiments on BLOOM (Scao et al. 2022) but found the majority of outputs produced by the
BLOOM-7B model to be unintelligible which could not be converted into scores
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6.2 Metrics with Error Spans

In addition to the above metrics, we also conduct baseline experiments for SPAN-ACES. We
include recently developed metrics that directly predict error spans while generating the scores,
namely XCOMET-XL (Guerreiro et al. 2023) and GEMBA-MQM (Kocmi and Federmann
2023a). These metrics also provide severity of the error for the predicted error span - minor, major,
and critical.

Additionally, we derive baselines from existing metrics that were trained to only produce
scores. We re-purpose the work in Rei et al. (2023), which included the proposal of several neural
explainability methods for interpreting state-of-the-art fine-tuned neural machine translation
metrics such as COMET and UNITE. In one of these techniques, embed—align, they calculate the
maximum cosine similarity between each translation token embedding and the reference and/or
source token embeddings (Tao et al. 2022) and assign that scalar value to each translation token.
Starting from embed-align scores attributed to each translation token, we generate error spans
over the translations by marking any token which has an embed-align score higher than a constant
threshold. We set the threshold that yields the span predictions with the highest Recall@K score
on the WMT 2021 MQM annotations development dataset'®. This method produces six different
types of span predictions: embed—align[mt, src], embed—align[mt, ref] and embed—align[mt, src;
ref] using the embeddings extracted from each of the COMET-22 and UNITE models 7.

6.3 Evaluation of Metrics

For all phenomena in ACES where we generated more than 1,000 examples, we randomly
subsample 1,000 examples according to the per language pair distribution to include in the final
challenge set to keep the evaluation of new metrics tractable.

We follow the evaluation of the challenge sets from the 2021 edition of the WMT metrics
shared task (Freitag et al. 2021b) and report performance with Kendall’s tau-like correlation'®.
The Kendall’s tau-like metric (see Equation 1) measures the number of times a metric scores
the good translation above the incorrect translation (concordant) and equal to or lower than the
incorrect translation (discordant). Ties are considered as discordant. Note that a higher 7 indicates
a better performance and that the values can range between -1 and 1.

concordant — discordant
T= (1

concordant + discordant

We discuss the evaluation on SPAN-ACES closer to its results section.

7. Results
We discuss results of different metrics on ACES and SPAN-ACES. We provide the results of

metrics that participated in the WMT Metrics shared tasks followed by LLM-based evaluation on
ACES, and finally baseline results for SPAN-ACES.
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supervised surface base- LLM-
overlap embedding based 2022 2023
BLEU v v v
f101spBLEU 4 v
f200spBLEU v v v
chrF 4 v v
BERTScore mBERT v v
BLEURT20 WMT human eval mBERT v v
COMET-20 XML-R v
COMET-QE XML-R? v
YiSi-1 mBERT v v
Random-sysname v
COMET-22%f DA+MQM v
MATESE MQM v
metricx_x1_DA_2019 DA mt5 v
metricx_x1_MQM_2020 MQM mt5 v
metricx_xxI_DA_2019 DA mt5 v
metricx_xxI_MQM_2020 MQM mt5 v
MS-COMET-22 human judgements mt5 v
UniTE v
UniTE-ref t v
eBLEU v
embed_llama Llama 2 v v
MetricX-23 DA+MQM mT5 v
MetricX-23-b DA+MQM mT5 v
MetricX-23-c DA+MQM mT5 v
partokengram_F v? v
tokengram_F Ve v
XCOMET-Ensemble DA+MQM XLM-R v
XCOMET-XL DA+MQM XLM-R v
XCOMET-XXL DA+MQM XLM-R v
XLsim WMT human eval XLM-R v
COMETKiwi* DA InfoXLM v v
Cross-QE ? v
HWTSC-Teacher-Sim paraphrase-multilingual v
-mpnet-base-v2
HWTSC-TLM ? v
KG-BERTScore v v
MATESE-QE MQM v
MS-COMET-QE-22* v v
UniTE-src v
cometoid22-wmt21 ? InfoXLM v
cometoid22-wmt22 ? InfoXLM v
cometoid22-wmt23 ? InfoXLM v
CometKiwi-XL XLM-R v
CometKiwi-XXL XLM-R v
GEMBA-MQM 7 v v
MetricX-23-QE DA+MQM mT5 v
MetricX-23-QE-b DA+MQM mT5 v
MetricX-23-QE-c DA+MQM mT5 v
XCOMET-QE-Ensemble DA+MQM XLM-R v
XLsimQE WMT human eval XLM-R v
Table 6

Basline (top), reference-based (middle), and reference-free (bottom) metrics from WMT 2022 and 2023
Metrics shared tasks. * denotes a participating metric from 2022 that was used as a baseline in 2023. |
denotes that metrics were used as baselines for SPAN-ACES. ? indicates no information was made available.
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7.1 Shared Task Results

We begin by providing a broad overview of metric performance on the different phenomena
categories, before conducting more detailed analyses in Section 8. We restrict the overview to the
metrics which a) participated in the shared task, provide b) segment-level scores and c) scores for
all language pairs and directions in ACES. After filtering according to these criteria, 24 metrics
from 2022 remain: nine baseline, eight reference-based, and seven reference-free metrics. In 2023,
33 metrics fulfil these criteria: 10 baseline, 11 reference-based, and 12 reference-free metrics.

We first calculate Kendall’s tau-like correlation scores for all of the ACES examples (see
Equation 1). We then report the average score over all examples belonging to each of the nine
top-level accuracy categories in ACES, plus the fluency category punctuation (see Tables 7 and 8).
In addition, we calculate the ACES-Score, a weighted combination of the top-level categories,
which allows us to identify high-level performance trends of the metrics (see Equation 2). The
weights correspond to the values under the MQM framework (Freitag et al. 2021a) for major
(weight=5), minor (weight=1) and fluency/punctuation errors (weight=0.1). We categorise
untranslated, do not translate and wrong language as minor errors due to the ease with which they
can be identified with automatic language detection tools or during post-editing. We also include
real-world knowledge under minor errors since we do not generally expect MT evaluation metrics
to have any notion of real-world knowledge and do not wish to punish them for this. Note that the
ACES-Score ranges from -29.1 (all phenomena have a correlation of -1) to 29.1 (all phenomena
have a correlation of +1).

5 * Taddition

S * Tomission

S * Tmistranslation
1% Tuntranslated
1% Tdo not translate
ACES = sum 2
5 * Tovertranslation
S * Tundertranslation

1% Treal-world knowledge

1% Twrong language

0.1 Tpunctuation

Overall performance: We report an overview of the results for WMT 2022 in Table 7
and the results for WMT 2023 in Table 8. Using the ACES-Score (the final column in each
of the tables), we can see at a glance that the majority of the metrics submitted to the WMT
2022 shared task outperform the baseline metrics. The same is true of the WMT 2023 metrics
— except for COMETKIWI, a successful submission from 2022 which was used as a baseline
in 2023 — the majority of the 2023 baseline metrics are outperformed by the metrics submitted
by participants. Interestingly, in both years, many reference-free metrics performed on par with

16 threshold=0.1 for COMET-22, threshold=0.14 for UNIiTE
17 We use the wmt22-comet-da version for COMET-22 and SRC+REF version for UNITE
18 Evaluation scripts are available here: https://github.com/EdinburghNLP/ACES
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reference-based metrics. This is because our challenge sets are constructed to make the reference
useless (ambiguous translation, discourse connectives, etc.,), or misleading (hallucinations, lexical
overlap, sentence-level meaning error). Note that we cannot directly compare the results from
2022 and 2023 - for a small subset (2,659; approx. 7%) of the ACES examples different results
were returned in 2022 and 2023 for metrics where no changes had been made (e.g. baseline
metrics such as BLEU or COMETKIWI, etc.)lg.

The best-performing metric in 2022 is a reference-free metric, namely KG-BERTSCORE,
closely followed by the reference-based metric METRICX_XL_DA_2019. The best-performing
metrics in 2023 are COMETKIWI (a reference-free baseline metric), and KG-BERTSCORE.
Perhaps unsurprisingly, BLEU is one of the worst performing metrics (Callison-Burch, Osborne,
and Koehn 2006; Freitag et al. 2022), underperformed only by the random baseline, RANDOM-
SYSNAME, in 2023. We caution that we developed ACES to investigate strengths and weaknesses
of metrics on a phenomena level — hence, we advise the reader not to draw any conclusions based
solely on the ACES-Score.

Across both the years, we observed that metric performance varies greatly and there is no
clear winner in terms of performance across all of the categories. There is also a high degree of
variation in terms of metric performance when each category is considered in isolation. While each
of the categories proves challenging for at least one metric, some categories are more challenging
than others. Unlike 2022, in 2023, we observe that the reference-free group exhibits overall
stronger performance compared with the other groups, but in particular for the mistranslation,
overtranslation, undertranslation, and real-world knowledge categories.

7.1.1 Top-level Error Category Results. The previous section outlines an overview of metrics
submitted to the consecutive shared tasks. We now look at the trends exhibited by these metrics
on a phenomenon level.

Looking at the average scores in the last row of the results and without taking outliers into
account, we might conclude that addition, undertranslation, real-world knowledge, and wrong
language (all with average Kendall tau-like correlation of < 0.3) present more of a challenge
than the other categories. On the other hand, for omission and do not translate (with an average
Kendall tau-like correlation of > 0.7 in 2022 and > 0.6 in 2023) metric performance is generally
rather high. We note that the average phenomena co-relation is not inversely related to the critical-
major-minor weighting; omission is a critical error in the ACES-Score yet metrics can detect these
EITOrS.

We observe variation in terms of the performance of metrics belonging to the baseline,
reference-based, and reference-free groups. For example, in both years, the baseline metrics
generally appear to struggle more on the overtranslation and undertranslation categories than the
metrics belonging to the other groups. Reference-based metrics also appear to perform better
overall on the untranslated category than the reference-free metrics. This makes sense as a
comparison with the reference is likely to highlight tokens that ought to have been translated.

Case Study: We look at the results of chrF, BERTScore, KGBERTScore, XCOMET-XL, and
GEMBA-MQM from Table 8§ as these metrics correspond to different design paradigms listed
in Section 6. While BERTScore, KGBERTScore, XCOMET-XL are embedding-based metrics,
BERTScore is an unsupervised metric, XCOMET-XL is a supervised metric, and KGBERTScore
is the overall winning metric. First we note that chrF has high correlation (>0.6) across six
categories, BERTScore and KGBERTScore for five categories, XCOMET-XL for two categoreis,

19 A subsequent investigation suggested that differences in the pre-processing steps by the shared task organisers in 2022
and 2023 may have led to the differences; in particular the handling of double quotes present in some of the ACES
examples may be one of the main causes.
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disco. halluci other
Examples 3698 10270 10489
BERTSscore 0.563 -0.062 0.361
BLEU -0.042 0418 -0.250
BLEURT-20 0.695 0.141 0.398
chrF 0.406 -0.138 0.160
COMET-22 0.657 0.113 0.383
- - CometKiwi 0.779 0.465 0.580
- disco. halluci. other 200spBLEU 0.095 -0.190 -0.150
Examples 3698 10270 10489 MS-COMET-QE-22 0.631 0.240 0.417
Random-sysname -0.117 -0.122 -0.111
BLEU -0.048 -0.420 -0.251 YiSi-1 0.608 0.017 0.366
£101spBLEU 0.105 -0.206 0.153
£200spBLEU 0.094  -0.191 20.149  °©BLEU 0374 -0.166 0.282
cheF 0.405 0137 0.161 embed_llama -0.089 -0.140 0.189
BERTScore 0.567 0058 0362 MetricX-23 0.757 0.663 0.393
BLEURT.20 0.65 0.142 0.402 MetricX-23-b 0.749 0.656 0.390
COMET-20 0.641 0.016 0.399 MetricX-23-c 0.694 0.755 0.477
COMET-QE 0.666 0.303 0.208 partokengram_F -0.062 -0.101 0.027
YiSi-1 0.609 0.019 0.368 tokengram_F 0.396 -0.132 0.157
COMET-22 0.682 0461 0542 XCOMET-Ensemble 0.791 0.566 0.626
metricx_xI_DA_2019 0.701 0.493 0.458 XCOMET-XL 0.706 0.482 0.521
metricx_xI_MQM_2020 0.573 0.677 0.394 XCOMET-XXL 0.609 0.540 0.504
metricx_xxI_DA_2019 0.768 0.541 0.463 XLsim 0.217 -0.066 0.236
metricx_xx]_MQM_2020 0.716 0.713 0.392 cometoid22-wmt21 0.782 0.286 0.400
MS-COMET-22 0.645 0.148 0.360 cometoid22-wmi22 0.748 0.290 0.423
UniTE 0.746 0.322 0.424 cometoid22-wmi23 0.758 0.223 0.478
UniTE-ref 0.776 0.396 0.437 CometKiwi-XL 0.752 0.501 0.602
CometKiwi-XXL 0.735 0.535 0.661
COMETKiwi 0.733 0.493 0637  GEMBA-MQM 0.076 0291 0.127
Cross-QF 0.644 0395 0.563 KG-BERTScore 0.685 0.466 0.580
HWTSC-Teacher-Sim 0594 0296 0330  MetricX-23-QF 0.728 0604 0.628
HWTSC-TLM 0756 0.306 0151 MetricX-23-QE-b 0.694 0.617 0.666
KG-BERTScore 0.593 0.387 0.472 MetricX-23-QE-c 0.747 0.659 0.739
MS-COMET-QE-22 0.626 0.243 0.416 XCOMET-QE-Ensemble 0.702 0.558 0.651
UniTE-src 0.772 0.463 0.551 XLsimQE 0.053 0.050 0.134
Average 0.586 0.242 0.331 Average 0.511 0.248 0.365
Table 9 Table 10

2022 Results. Average Kendall’s tau-like correlation 2023 Results. Average Kendall’s tau-like correlation
results for the sub-level categories in mistranslation: results for the sub-level categories in mistranslation:
discourse-level, hallucination, and other errors. The discourse-level, hallucination, and other errors. The
horizontal lines delimit baseline metrics (top), horizontal lines delimit baseline metrics (top),
participating reference-based metrics (middle) and  participating reference-based metrics (middle) and
participating reference-free metrics (bottom). The best participating reference-free metrics (bottom). The
result for each category is denoted by bold text with a best result for each category is denoted by bold text
green highlight. Note that Average is an average over with a green highlight. Note that Average is an
averages. average over averages.

and none for GEMBA-MQM. This is because chrF shines at categories that are easier to detect
with simple heuristics for lexical matching with the reference sentence such as wrong language,
untranslated or do-not-translate.

As we move to categories that require understanding semantic content, embedding based met-
rics show superior performance. This is evident with the high correlation scores of KGBERTScore
and XCOMET-XL for real-world knowledge and mistranslation. We note that BERTScore has
poorer correlation than these two suggesting that leveraging supervision is helpful in detecting
errors that require semantic understanding. We find that both BERTScore and chrF have negative
correlation for overtranslation/undertranslation. The failure is expected for chrF as we corrupt only
one word from the reference to create the incorrect translation, thus giving it a high score while
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the good-translation is a paraphrase of the reference (with low lexical overlap). For BERTScore,
we suspect the raw representations for hypernyms/hyponyms of the word to lie in a similar
space, causing a confusion for the metric. Omission and punctuation are fairly easy categories
for all the metrics while addition is challenging for XCOMET-XL and GEMBA-MQM. Lastly,
GEMBA-MQM does not show an impressive trend across any category. We outline the possible
reasons for this failure of LLM metrics in Section 7.2.

Our dataset was largely constructed for accuracy errors which account for “major” and
“critical” errors. Identifying if an accuracy error is major or critical is dependent on its usage
in downstream application (Moghe et al. 2023; Lommel, Burchardt, and Uszkoreit 2014). Our
weights were decided based on either the severity for general use of that translation and/or how
well a contemporary metric may handle that error. Despite this, we find that our weighting of
the error categories might give artificial gains/loses in the ACES-Score. For example, chrF has
high correlation across six categories, yet it has the poorest ACES-Score in this group. At the
same time, chrF is extremely useful in scenarios with poor MT outputs. Future metrics may try to
game the ACES-Score by focusing on categories with higher weights. Still, we believe that an
ACES-Score will be helpful to quickly identify changes in performance of a metric (e.g. following
modifications), prior to conducting in-depth analyses at the category and sub-category levels

7.1.2 Mistranslation Results. After discussing the phenomena-level results of these metrics,
we drill down to the fine-grained categories of the largest category: mistranslation. We present
metric performance on its sub-level categories (discourse, hallucination, and other) in Table 9
(2022 results) and Table 10 (2023 results). The discourse sub-category includes errors involving
the mistranslation of discourse-level phenomena such as pronouns and discourse connectives.
Hallucination includes errors at the word level that could occur due to hallucination by an MT
model, for example, the use of wrong units, dates, times, numbers or named entities, as well as
hallucinations at the subword level that result in nonsensical words. The other sub-category covers
all other categories of mistranslation errors including overly literal translations of idioms and the
introduction of ambiguities in the translation output.

As for the results overview in Section 7.1, we find that performance on the different sub-
categories is variable, with no clear winner among the metrics in either 2022 or 2023. The
results from both years suggest that hallucination phenomena are generally more challenging
than discourse-level phenomena. Performance on the hallucination sub-category is poor overall,
although it appears to be particularly challenging for the baseline metrics. We present additional,
more fine-grained, performance analyses for individual phenomena in Section 8.

7.2 LLM Results

We report the results of the LLM experiments described in Section 6.1 in Table 11. Overall, we
find MT evaluation via LLMs is a hard task in the zero-shot setup. This is also evident in the
results in Section 7.1 where we highlight the relatively low performance of GEMBA-MQM and
EMBED-LLAMA. This is contrary to findings where LLMs show promising trends for evaluation
at the system-level or on segment-level for a handful of high-resource language pairs (Fernandes
et al. 2023; Kocmi and Federmann 2023b).

We find that of the three LLMs, GEMBA-DA has better (though still poor) performance.
These results worsen for the reference-less setting where most of the phenomena have a negative
correlation. Despite the instructions for DA scores to be assigned using a continuous scale of
0-100, we find that the LLMs tend to produce a peaked distribution. For example, GEMBA-DA
produces only seven different scores for the full set of examples. This results in a higher number
of ties which get penalised in Equation 1. Even after instructing the LLMs to output scores within
the range of 0—100, we observed instances where the LLMs produced scores beyond that range.
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GEMBA-DA LLAMA-2 (7B) FLAN-T5-XL + Alpaca (3B)

REF QE REF QE REF QE
addition -0.235 -0.794 -0.607 -0.587 -0.834 -0.922
mistranslation  -0.031 -0.322  -0.58 -0.552 -0.656 -0.832
real-world knowledge  0.366  0.157 -0.58 -0.6 -0.280 -0.739
untranslated -0.334  -0.606 -0.650 -0.626 -0.529 -0.631
do not translate  -0.100 -0.840  -0.64 -0.52  -0.180 -0.500
undertranslation ~ 0.090 -0.286 -0.602 -0.602 0.016 -0.730
overtranslation  0.472  -0.034 -0.564 -0.524 0.026 -0.744
omission -0.281 -0.568 -0.549 -0.503 -0.848 -0.854
punctuation -0.306 -0.355 -0.646 -0.650 -0.875 -0.924
wrong language  0.026  -0.688  -0.55 -0.483 -0.632 -0.705
ACES-Score  -0.02 -12.0 -16.9 -16.1 -13.2 -23.1

Table 11

LLM results across three LLMs: GPT-4 through GEMBA-DA, LLAMA-2, and FLAN-T5-XL fine-tuned
with Alpaca. REF: Reference based, QE: Quality Estimation/Reference-free. Using zero-shot prompting on
LLMs for MT evaluation has results poorer than the surface overlap baselines in Table 7. This result worsens
when the LLMs operate in a QE setting.

These results suggest that while LLMs may perform well for MT evaluation under a specific
setup like high-resource pairs or system-level evaluation, their zero-shot inference abilities for MT
evaluation at segment-level are far from perfect. This can be attributed to a lack of multilingual
training data (Kocmi and Federmann 2023a) as well as a limited numerical understanding of
LLMs (Dziri et al. 2023). We additionally express concerns over test-data leakage as ACES is
built on several other academic datasets (see Section 3.1) that may have been a part of the LLM
training data (Carlini et al. 2020). We also note that these models are quite slow at inference. It
takes approximately six hours to make a pass over the entire dataset using FLAN-T5-XL on a
24GB GPU, while it takes five days with two 24GB GPUs for LLAMA?2 on 8bit precision.

7.3 Span-based Results

We first discuss the evaluation for SPAN-ACES and then report the results for the baseline methods
discussed in Section 6.2.

7.3.1 Metrics for SPAN-ACES. We consider two different types of evaluation for SPAN-ACES,
namely span extraction and contrastive evaluation:

Span Extraction: We first measure how well the methods that produce spans perform the task of
identifying erroneous span(s) in a translation. We evaluate the predicted spans for the incorrect
translation against the gold annotation. We calculate sample F1 score, where a span is considered
to be a true positive if the span exactly matches its ground truth and average across the dataset,
denoted as Span-F1. We also experimented with using partial matches between the gold error
span and the predicted error span. However, using standardised tokenization based on words/sub-
words/characters and then developing a threshold for partial match is not trivial and results in
incorrect inflation of scores. Our current evaluation setup requires span prediction and error
labelling to be conducted simultaneously. In future work, evaluation could be separated into two
phases, with gold error spans optionally provided for the evaluation of error labelling.
Contrastive Evaluation: To evaluate these methods on ACES and compare their results, we
obtain span predictions for the good translation as well. We use a length heuristic where we
measure the number of times the metric produces fewer spans for the good translation compared
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COMET-22 UNITE XCOMET-XL  GEMBA-MQM
src-ref  ref src src-ref  ref src length  weight length  weight
Span Extraction Evaluation
Span F1 26.9 26.2 4 227 227 7.3 10.6 10.6 8.67 8.67
Contrastive Evaluation

addition 0.598 0477 -0.177 0522 0475 0317 -0269 -0.191 -0.077 0.103
mistranslation -0.313  -0.364 -0.482 -0447 -0431 -0.308 -0.222 -0.016  0.005 0.240
real-world knowledge  -0.470 -0.501 -0.417 -0360 -0.377 -0.279 -0.202  0.088 -0.330 0.328
untranslated -0.641 -0.056 -0.689 -0.759  0.260 -0.910 -0.239 -0.166 -0.152 0.103
do not translate 0.500 0.340 -0.380 0.460 0520 0.380 0.060  0.100 -0.080 0.140
undertranslation -0.192  -0.206 -0.392  0.110  0.092 -0.220 -0.066 0250  0.162 0.368
overtranslation -0.144  -0.174 -0362 0312 0.284 -0.088  0.008 0430  0.236 0.554
omission -0.770 -0.842 -0.838 -0.814 -0.784 -0.700 -0.381 -0.197  0.165 0.385
punctuation -0.385 -0479 -0.609 -0.642 -0.574 -0.624 -0.593 -0.525  0.039 0.129
wrong language 0406 0.289 -0.212 0484 0387 0285 -0.225 -0.279 -0.132 -0.047
ACES-Score -4.3 -5.5 -13.0 -1.8 -1.1 -5.6 -5.3 1.1 1.8 8.8

Table 12

Results of span-based metrics on SPAN-ACES for the tasks of span extraction and then contrastive
evaluation on ACES using the predicted spans as outlined in Section 7.3.1. Under COMET-22 and UniTE,
use of src and ref denotes whether these components were used to obtain attention weights which were
converted to spans. Span-F1 is only calculated for the incorrect translation. For the contrastive evaluation on
ACES, all the above methods consider a candidate translation to be better than the other translation if the
number of predicted spans in the former translation is less than the later, denoted by “length”. For the
“weight” version of XCOMET-XL and GEMBA-MQM, the labels denoting error severity of the predicted
spans are converted to a weighted score. We note the derived metrics - COMET-22 and UNITE - have better
results on the span extraction task than the metrics designed to predict the spans. This trend flips for the
contrastive evaluation. Overall, all of the methods struggle on both tasks.

with the incorrect translation (concordant) and greater than or equal to the incorrect translation
(discordant) and calculate the correlation as described in Section 6.3. Note that COMET-22
and UNITE were trained only to predict scores. Based on the observations in Rei et al. (2023),
these scores do correspond to MT error spans. We use these observations to convert metrics that
produce scores into the ones that predict spans as there are not enough off-the-shelf metrics that
produce spans. The prediction of an error span is based on a pre-defined threshold on attention
values between the hypothesis and the reference, without any information of the severity of the
error. Thus, we resorted to the naive length heuristic and leave development of better heuristics as
future work. Specifically, the length heuristic is not robust to the scenario in which an error span
is incorrectly predicted where there is no error present (i.e. false positives) as well as where labels
are correctly predicted but spans are incorrectly marked.

If the severity of errors for the predicted spans is available as is the case with GEMBA-MQM
and XCOMET-XL, we use a weighted score based on the severity label. We use the following
weights: (critical: 10, major: 5, minor: 1) and cap them at 25. We include the length heuristic
for GEMBA-MQM and XCOMET-XL for completeness. Ideally any metric that produces
both spans and labels should include the appropriate weighting of labels to obtain a score for
contrastive evaluation.

7.3.2 Results. We now report the results of different models that produce error spans (and
occasionally labels) from Section 7.3.1 on the SPAN-ACES dataset in Table 12. Overall, we find
that these methods perform poorly on both the error span extraction and contrastive evaluation
tasks.

On the span extraction task, we find that the derived methods — COMET-22 and UNITE -i.e.
using attention maps over the source/reference sentences lead to higher Span-F1 scores than either
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XCOMET and GEMBA-MQM which were specifically designed to generate error spans. This
adds some more evidence to the findings in Rei et al. (2023) that suggest metrics (COMET-22
and UNITE) tend to use token-level information that can be associated with tangible translation
errors. Within using attention maps over the source/reference sentences for COMET-22 and
UNITE, we find that the scores for the src only version are the worst suggesting that these metrics
use very limited information from the source (c.f. the similar observation made in Section 8.2).

While using the length heuristic for the contrastive evaluation, GEMBA-MQM has better
results followed by UNITE. As GEMBA-MQM and XCOMET-XL also provide labels for their
predicted error spans, we also convert these labels into score based on the weights in Guerreiro
et al. (2023) (critical: 10, major: 5, minor: 1), then cap the error score per sentence at 25, and
finally convert the score to a value between 0 and 1. We find that weighted label scores have a good
improvement over the length heuristic suggesting that more sophisticated heuristics need to be
developed in the future to obtain better meta-evaluation strategies. After using the label weighted
score, we find that the performance for XCOMET-XL is still lower than the performance in
Table 8, suggesting that the scores produced by the joint model may not necessarily rely on the
error spans produced by that model. In contrast, GEMBA-MQM improves on its performance in
Tables 8 and 12. We attribute this to either a change in the underlying model powering GPT-4
between submissions to WMT and re-running for SPAN-ACES or the use of a different weighting
scheme. We also find it encouraging, that GEMBA-M QM improves over GEMBA-DA, providing
us with some evidence that label-based evaluation can be helpful.

We speculate that these poor results may be attributed to (i) the unavailability of labelled
MQM data during training (COMET-22 and UNITE), (ii) the availability of labelled data for only
a few language pairs (XCOMET-XL), (iii) the use of proprietary models, and thus no knowledge
of underlying training data (GEMBA-MQM), (iv) the fact that these metrics are the earliest
designs for span-based evaluation, and (v) that our annotation schemes and evaluation regimes
are also the first of their kind, potentially introducing new challenges for span-based evaluation
metrics. We also caution the readers that our heuristics for contrastive evaluation only offer a
starting point. Future work can include model confidence, different weighting schemes, POS tags
etc., to compare the two translations.

8. Analysis

Aside from high-level evaluations of which metrics perform best, we are mostly interested in
weaknesses of metrics in general that we can identify using ACES. This section presents an
analysis of some general questions that we aim to answer using ACES.

8.1 How sensitive are the metrics to error types?

One important quality of a reliable metric is its ability to assign sufficiently different scores to
a good vs. an incorrect translation. To evaluate and compare the difference between the scores
that the metrics assign to the good and incorrect translations, we normalise the metric scores to a
common scale with an open-ended range, using the statistics from the metric scores submitted to
the 2022 and 2023 editions of the WMT metrics task (Freitag et al. 2022, 2023). We do that by
scaling the metric scores based on the mean and IQR (Interquartile range) of the scores of that
metric submitted to the WMT22/23 metric shared task (see Equation 3).

score — Avg(scoreymt)

IQmet

score® =

3)
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Our sensitivity metric builds on the second evaluation method proposed by Alves et al.
(2022), which measures the average difference between the scores assigned to good and incorrect
translations, but only when the good translation receives a higher score. While this method
indicates the metric’s confidence in correctly identifying good translations, it overlooks cases
where the good translation is scored lower than the incorrect one. This can result in misleadingly
high confidence scores for poorly performing metrics, making the evaluation method less suitable
for comparing multiple metrics.

To address these limitations, we modified that approach. We calculate the sensitivity score of
the metric (see Equation 4) as the average difference between the scores assigned to good and
incorrect translations, specifically by subtracting the score assigned to the incorrect translation
from the score assigned to the good translation, including when the incorrect translation receives
a higher score. With this modification, we aimed to ensure that metrics which assign higher
scores to incorrect translations are penalised. Thus, the sensitivity score serves as a better overall
performance evaluation metric, enabling us to compare different metrics more reliably.

In the Equation 4, 54,,4 and s344 are the normalised scores assigned to the good translation
and incorrect translation pairs. The value range of the sensitivity scores is open. 2°

sensitivity = Avg(Sgood — Sbad) C))

Similar to the Kendall’s tau-like correlation scores, we then report the average score overall
examples belonging to each of the nine top-level accuracy categories in ACES, plus the fluency
category punctuation, calculated for the top three metrics from the baseline, reference-based
and reference-free metrics each, submitted to WMT 2022 and WMT 2023 (see Table 13). The
phenomena-level sensitivity scores for all the metrics submitted to WMT 2022 and WMT 2023
can be found in Appendix J: Phenomena-level Metric Sensitivity Scores.

The average sensitivity scores of the metrics support the results reached by the analysis of the
average Kendall’s tau-like correlation scores in most cases. One of the most significant exceptions
to that is that GEMBA-MQM has significantly higher sensitivity scores across a majority of
the high-level phenomena when evaluated according to the average sensitivity scores, unlike the
Kendall’s tau-like correlation results.

Looking at the average sensitivity scores of the metrics in the last row of Tables J.1 and
J.2 in Appendix J: Phenomena-level Metric Sensitivity Scores, we can see that the metrics are
more sensitive to the untranslated category than all the other categories by a margin, where the
untranslated category is not one of the easier categories according to the average Kendall’s tau-like
correlation scores.

Regarding the subcategories of mistranslation, discourse, which was previously considered
the least challenging category based on Kendall’s tau-like correlation, emerges as the most difficult
for the metrics according to sensitivity scores. It can be seen that across multiple 2022 and 2023
metrics, the average sensitivity scores of the metrics on the hallucination subcategory are higher
compared to the average sensitivity scores on discourse, while the average Kendall’s tau-like
correlation scores favour the discourse subcategory over hallucination.

Finding: Average sensitivity scores provide a more fine-grained analysis of the metric
performances. They reveal that the metrics are particularly sensitive to the untranslated category,
and that GEMBA outperforms other metrics in most error types in the sensitivity evaluation.

20 Evaluation scripts are available here: https://github.com/EdinburghNLP/ACES
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8.2 How sensitive are metrics to the source?

We designed our challenge sets for the type of ambiguous translation in a way that the correct
translation candidate given an ambiguous reference can only be identified through the source
sentence. See the third example in Table 1, where the reference is in non-gendered language,
thus requiring the information in the source sentence about the female baker to disambiguate the
sentence. We present a targeted evaluation intended to provide some insights into how important
the source is for different metrics. For brevity, we include top three performing metrics in each
category in 2022 and 2023, and a couple of baseline metrics. Table 14 shows the detailed results
of each metric on the considered phenomena.

The most important finding is that the reference-free metrics generally perform much better
on these challenge sets than the reference-based metrics. This indicates that reference-based
metrics rely too much on the reference. Interestingly, most of the metrics that seem to ignore the
source do not randomly guess the correct translation (which is a valid alternative choice when the
correct meaning is not identified via the source) but rather they strongly prefer one phenomenon
over the other. For example, several metrics show a gender bias either towards female occupation
names (female correlations are high, male low) or male occupation names (vice versa). Likewise,
most metrics prefer translations with frequent senses for the word-sense disambiguation challenge
sets, although the difference between frequent and infrequent is not as pronounced as for gender.

Only metrics that look at the source and exhibit fewer such preferences can perform well
on average on this collection of challenge sets. XCOMET-ENSEMBLE performs best out of
the reference-based metrics and XCOMET-QE-ENSEMBLE performs best of all reference-free
metrics. It is noteworthy that there is still a considerable gap between these two models across
most of the error categories, suggesting that reference-based models should pay more attention
to the source when a reference is ambiguous in order to reach the performance of reference-free
metrics.

This finding is also supported by our real-world knowledge commonsense challenge set. If
we compare the scores on the examples where the subordinate clauses are missing from both
the source and the reference to the ones where they are only missing from the reference, we can
directly see the effect of disambiguation through the source. The corresponding correlation gains
are shown in Table H.1 in the Appendix. All reference-based model correlation scores improve
less than most reference-free correlations when access to the subordinate clause is given through
the source. This highlights again that reference-based metrics do not give enough weight to the
source sentence.

Finding: Source sentences are the primary textual unit of information for a translation. Yet,
reference-based metrics tend to ignore the information in the source. This was later confirmed
by Rei et al. (2023), that in some cases, reference-based metrics may largely ignore source
information and instead rely heavily on the reference. We note, however, that their study was
restricted to two metrics (COMET and UNITE) and their observations regarding ignoring source
information appears only to relate to COMET. In this work, we report on a large-scale meta-level
evaluation and base our observations on multiple reference-based metrics.

8.3 How much do metrics rely on surface overlap with the reference?

We are interested in is whether neural reference-based metrics still rely on surface-level overlap
with the reference.

For this analysis, we use the dataset we created for hallucinated named entities and numbers.
We add an example about the three levels. Note that as the levels increase, the surface level
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since female male wsd
causal temp. anti. pro. anti. pro. freq. infreq. AVG

Examples 106 106 1000 806 806 1000 471 471 4766

BERTScore -0.434 0434  -0.614 -0.216 0.208 0.618 0.214 -0.223 -0.001
COMET-22 -0.415 0.792 0.940 1.000 -0.628 0.374 0.558 0.040 0.333
MS-COMET-22 -0.604 0.623 0.296 0.640 -0.342 0.046 0.316 -0.155 0.102
UniTE 0.038 -0.075 -0.890 -0.213 0.377 0.934 0.270 -0.223 0.027
MetricX-23 -1.000 1.000 -0.864 -0.062 0.062 0.870 0.227 -0.222 0.001
MetricX-23-c -0.849 0.849 -0.998 -0.581 0.576 0.996 0.150 -0.133 0.172
XCOMET-Ensemble -0.585 0.981 0.852 0.948 0.273 0.922 0.554 0.231 0.522
Cross-QE 0.208 0.830 0.976 0.995 -0.337 0.364 0.762 0.355 0.519
MS-COMET-QE-22 -0.283 0.792 -0.194 0.320 0.246 0.694 0.465 0.002 0.255
UniTE-src -0.321 0.906 0.976 0.980 0.171 0.736 0.622 0.346 0.552
CometKiwi 0.075 1.000 0.990 0.998 -0.171 0.440 0.740 0.384 0.557
KG-BERTScore 0.075 1.000 0.990 0.998 -0.171 0.440 0.702 0.460 0.315
MetricX-23-QE-b -0.566 0.868 0.968 0.995 0.722 0.968 0.643 0.490 0.643

XCOMET-QE-Ensemble ~ -0.208 0.925 0.930 0.975 0.546 0912 0.740 0.477 0.662

Table 14

Results on the challenge sets where the good translation can only be identified through the source sentence.
Upper block: reference-based metrics, lower block: reference-free metrics. The best results for each
phenomenon and each group of models are marked in bold and green and the average overall can be seen in
the last column.

similarity between the good translation and the reference decreases while the surface level overlap
between the incorrect translation and the reference increases.

SRC (es): Sin embargo, Michael Jackson, Prince y Madonna fueron influencias para el dlbum.
REF (en): Michael Jackson, Prince and Madonna were, however, influences on the album.

Level-1 v/:  However, Michael Jackson, Prince, and Madonna were influences on the album.
Level-1 X:  However, Michael Jackson, Prince, and Garza were influences on the album.

Level-2 v/:  However, Michael Jackson, Prince, and Madonna were influences on the album.
Level-2 X:  Michael Jackson, Prince and Garza were, however, influences on the album.

Level-3 v/:  The record was influenced by Madonna, Prince, and Michael Jackson though.
Level-3 X:  Michael Jackson, Prince and Garza were, however, influences on the album.

We take the average correlation for all reference-based metrics, (excluding lexical overlap
metrics like BLEU) and the average correlation of all reference-free metrics that cover all
languages across both the years and plot the decrease in correlation with increasing surface-level
similarity of the incorrect translation to the reference. The result can be seen in Figure 2.

We can see that on average reference-based metrics have a much steeper decrease in
correlation than the reference-free metrics as the two translation candidates become more and
more lexically diverse and the surface overlap between the incorrect translation and the reference
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Figure 2
Decrease in correlation for reference-based and reference-free metrics on the named entity and number
hallucination challenge sets.

increases. This indicates a possible weakness of reference-based metrics: If one translation is
lexically similar to the reference but contains a grave error while others are correct but share less
surface-level overlap with the reference, the incorrect translation may still be preferred.

We also show that this is the case for the challenge set where we use an adversarial paraphrase
from PAWS-X that shares a high degree of lexical overlap with the reference but does not have
the same meaning as an incorrect translation. On average, the reference-based metrics only reach
a correlation of 0.05 + 0.17 on this challenge set, whereas the reference-free metrics reach a
correlation of 0.24 + 0.17. This shows that reference-based metrics are less robust when the
incorrect translation has high lexical overlap with the reference.

Finding: Despite the claims of neural methods being robust to paraphrases, neural reference-
based metrics for MT evaluation largely rely on surface-level overlap between the hypothesis and
the reference. Concurrently, Alves et al. (2022) showed that reference-based metrics are dependent
on word overlap between the reference and hypothesis. This over-reliance has been highlighted
as a particular issue for named entities and numbers (Alves et al. 2022), and for multi-word
expressions in Chinese (Song and Xu 2024).

8.4 Do multilingual embeddings help design better metrics?

As the community moves towards building metrics that use multilingual encoders, we investigate
if some (un)desirable properties of multilingual embeddings or other pre-trained models are
propagated in these metrics.

Multilingual models often learn cross-lingual representations by abstracting away from
language-specific information (Wu and Dredze 2019). We are interested in whether the represen-
tations are still language-dependent in neural MT evaluation metrics which are trained on such
models. For this analysis, we look at the sentence-level untranslated text challenge set (see Figure
3) and wrong language phenomena (see Table 7).

Figure 3 shows the correlations for all reference-based and reference-free metrics. Unsur-
prisingly, some reference-free metrics struggle considerably on this challenge set and almost
always prefer the copied source to the real translation. The representations of the source and
the incorrect translation are identical, leading to a higher surface and embedding similarity, and
thus a higher score. We do, however, find some exceptions to this trend - COMET-KI1wT and
MS-COMET-QE-22 both have a high correlation on sentence-level untranslated text. This
suggests that these metrics could have learnt language-dependent representations.

Most reference-based metrics have good to almost perfect correlation and can identify the
copied source quite easily. As reference-based metrics tend to ignore the source (see Section 8.3),
the scores are based on the similarity between the reference and the MT output. In this challenge
set, the similarity between the good translation and the reference is likely to be higher than
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Figure 3
Correlation of reference-based metrics (blue) and reference-free metrics (orange) on the sentence-level
untranslated test challenge set

the incorrect translation and the reference. The former MT output is in the same language as
the reference and will have more surface-level overlap. We believe the reference here acts as
grounding.

However, this grounding property of the reference is only robust when the source and reference
languages are dissimilar, as is the case with language pairs in the sentence-level untranslated text
challenge set. We find that reference-based metrics struggle on wrong language phenomena (see
Tables 7, 10) where the setup is similar, but now the incorrect translation and the reference are
from similar languages (e.g. one is in Hindi and the other is in Marathi). Naturally, there will
be surface-level overlap between the reference and both the good translation and the incorrect
translation. For example, both Marathi and Hindi use named entities with identical surface form,
and so these will appear in the reference and also in both the good translation and the incorrect
translation. Thus, the semantic content drives the similarity scores between the MT outputs and
the references. The human translation in the similar language (labeled as the incorrect translation)
may have a closer representation to the human reference, as some semantic information may be
lost in the MT output (labeled as the good translation). We leave further investigation of this for
future work.

Finding: Pre-trained models are trained without any task-specific objective. Representations
from multilingual pre-trained models or LLMs can produce undesirable effects on MT evaluation.

In addition to the above analyses, we refer the reader to our work in Amrhein, Moghe, and
Guillou (2023) for further insights. We analyse the effect of adding metric training data on MT
evaluation through the COMETOID22 metric. We find that more training data is beneficial for
metric development across all the different phenomena. We also discuss in detail whether there is
any incremental improvement in metric families submitted to both WMT 2022 and WMT 2023.
We find that architectural changes or data changes only contribute to minimal improvements for a
few metrics.

9. Recommendations

Based on the metrics results on ACES, SPAN-ACES and our analyses, we first make some
recommendations for MT evaluation in general and then provide some more specific suggestions
for metric development.

Informative Evaluation: From our results in Section 7, we find that a single score is not
enough to identify if a metric has superior performance. By evaluating on ACES, we can obtain
a profile for the metric showcasing its strengths and weaknesses across different MT errors,
supporting metric developers in making more informed choices. To further deter the development
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of metrics that produce a single score, we also recommend predicting error spans (ideally with
labels) instead of scores. We propose SPAN-ACES as an additional test suite for the development
of metrics that produce error spans.

Building metric ensembles: Both the evaluation on phenomena and language pair categories
in Section 7 showed that there is no single best-performing metric. This divergence is likely to
become even larger if we evaluate metrics on different domains. In future work on MT evaluation,
it may be worthwhile thinking about how different metrics can be combined to make more robust
decisions as to which is the best translation. Recent submissions to the WMT Metrics shared task
include ensemble models (such as COMET-Kiwi, KG-BERTSCORE, XCOMET-ENSEMBLE,
etc.,), which suggests that our recommendations are aligned with the efforts of the community.

The source matters: Our analysis in Section 8.2 highlighted that many reference-based
metrics that take the source as input do not consider it enough. Cases where the correct translation
can only be identified through the source, are currently better handled by reference-free metrics.
This is a serious shortcoming of reference-based metrics which should be addressed in future
research, also considering that many reference-based metrics choose to exclude source information
by design.

Surface overlap prevails: In Section 8.3 we showed that despite moving beyond a purely
surface-level comparison with the reference, most reference-based metrics are still considerably
influenced by surface-level overlap. We thus recommend including paraphrases in the training
regime as well as designing loss functions that explicitly discourage surface-level overlap (Tang
et al. 2024; Bawden et al. 2020).

Check the pre-trained model properties: Some properties of multilingual representations,
like the representation space being language-agnostic, can result in undesirable effects on MT
evaluation (Section 8.4). Simple strategies to model language-specific information in the metrics
could also improve the robustness of the metrics to adversarial language pair attacks.

We also find that LLMs are not effective segment-level MT evaluators just yet (see
Section 6.1), hence, better design strategies must be employed to make LLMs useful in evaluation.
We recommend using the generation capabilities rather than relying on their scoring abilities
(West et al. 2024). LLMs can generate synthetic data that can be used for fine-tuning smaller or
traditional MT metrics (Fernandes et al. 2023; Tang et al. 2024). Similarly, we encourage research
towards leveraging LLMs to include explanations of their evaluations for better MT evaluation as
demonstrated in Jiang et al. (2023); Leiter et al. (2024).

10. Conclusion

In this work, we identify and address some of the shortcomings of MT metrics. A single segment-
level (or system-level) score for a metric does not provide an overview of that metric’s strengths
and weaknesses. To address this, we developed ACES: a translation accuracy challenge set based
on the MQM ontology, which consists of 36,476 examples covering 146 language pairs and
representing challenges from 68 phenomena. ACES can be used to provide a profile of metric
performance over a range of phenomena, and to measure incremental performance between
multiple versions of the same metric. We used ACES to evaluate the baseline and submitted
metrics from the WMT 2022 and 2023 metrics shared tasks, to measure how sensitive metrics are
to certain phenomena, and to provide fine-grained analyses of metric performance to reveal the
extent to which metrics rely on the source and on surface-level overlap with the reference, and to
assess whether multilingual embeddings are a helpful component in metric design.

Our overview of metric performance at the phenomena and language levels in Section 7
reveals that there is no single best-performing metric. The more fine-grained analyses in Section 8
highlight that 1) metric sensitivity is correlated with score prediction for most of the metrics
2) many reference-based metrics that take the source as input do not consider it enough, 3)
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most reference-based metric scores are still considerably influenced by surface overlap with the
reference, 4) the use of multilingual embeddings can have undesirable effects on MT evaluation
and 5) the addition of metric-specific data improves the quality of the metric. We find that LLM-
based evaluation methods have mediocre results and in some cases even worse than the surface
overlap-based metrics.

We recommend that these shortcomings of existing metrics be addressed in future research
and that metric developers should consider a) combining metrics with different strengths, e.g. in
the form of ensemble models, b) developing metrics that give more weight to the source and less
to surface-level overlap with the reference, and c) incorporating strategies to explicitly model
additional language-specific information (rather than simply relying on multilingual embeddings).
We also recommend the community develop evaluation methods that produce error types and error
spans as singular scores are not informative. To that end, we released SPAN-ACES where every
incorrect translation in ACES contains span-level annotations for the erroneous text corresponding
to the phenomenon label. We also provided baseline results on SPAN-ACES. We have made
ACES and SPAN-ACES publicly available and hope that it will provide a useful benchmark for
MT researchers in the future.

In terms of future directions for the development of ACES there are several options aimed at
addressing some of the limitations of the current dataset. Firstly, expansion to additional medium-
and low-resource language pairs, and expending upon the provision for those language pairs
already in the dataset, would address the issue of coverage of ACES. We note that whilst it
is common to talk about specific language pairs as high, medium, and low resource from an
MT training perspective, the definition may differ for MT evaluation where available resources
may not follow the same patterns. With the exception of ACES, the challenge sets submitted to
the WMT Challenge Sets task (Freitag et al. 2022, 2023) typically focus on high-resource MT
language pairs, and we might therefore expect that high availability of MT training and evaluation
data go hand in hand. Secondly, we encourage further analysis of metrics with respect to their
performance on high, medium, and low resource language pairs. The language-level analysis in
Amrhein, Moghe, and Guillou (2022) that compares performance for language pairs where neither
the source nor target language are English, versus when the source/target is English, provides a
first step in this direction, but barely scratches the surface. Thirdly, the focus of the challenge set
is on accuracy errors due to their critical nature, however future work could consider the extension
to fluency errors (beyond punctuation). Again, the MQM framework, which includes fluency error
categories (in addition to accuracy errors) could be used as the foundation for such challenge
sets, in particular errors belonging to the linguistic conventions category which is concerned with
errors relating to linguistic well-formedness of the text, including problems with grammaticality,
idiomaticity, and mechanical correctness. Some of the error types in this category have already
been explored by Macketanz et al. (2022) in their fine-grained linguistically motivated analysis of
MT systems submitted to WMT 2022: punctuation, function words, tense/mood/aspect, agreement.
Finally, we recommend that the community continue to work on developing challenge sets for
MT and other tasks to improve our understanding of the progress along these directions.
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Appendix A: Language Codes

Code Language | Code Language | Code Language | Code Language

af Afrikaans | fa Persian ja Japanese sl Slovenian

ar Arabic fi Finnish ko Korean sr Serbian

be Belarusian | fr French It Lithuanian | sv Swedish

bg Bulgarian | ga Irish Iv Latvian SwW Swahili

ca Catalan gl Galician mr Marathi ta Tamil

cs Czech he Hebrew nl Dutch th Thai

da Danish hi Hindi no Norwegian | tr Turkish

de German hr Croatian pl Polish uk Ukranian

el Greek hu Hungarian | pt Portuguese | ur Urdu

en English hy Armenian | ro Romanian | vi Vietnamese

es Spanish id Indonesian | ru Russian wo Wolof

et Estonian it Italian sk Slovak zh Chinese
Table A.1

ISO 2-Letter language codes of the languages included in the challenge set

Appendix B: Permitted Unit Conversions

The unit conversions permitted for the Hallucination - Unit Conversion challenge set are listed in
Table B.1.

Appendix C: Distribution of Examples Across Language Pairs

Table C.1 contains the total number of examples per language pair in the challenge set. As can be
seen in the table, the distribution of examples is variable across language pairs. The dominant
language pairs are: en-de, de-en, and fr-en.

Appendix D: Distribution of Language Pairs Across Phenomena

Table D.1 contains the list of language pairs per phenomena in the challenge set. As can be seen in
the table, the distribution of language pairs is variable across phenomena. Addition and omission
have the highest variety of language pairs. en-de is the most frequent language pair across all
phenomena.
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Distance: Volume:
* miles — metres * barrels — gallons
* kilometres — miles * barrels — litres
* kilometres — metres * gallons — barrels
* metres — feet ¢ gallons — litres
* metres — yards
¢ feet — metres Weight:
* feet — yards * kilograms — grams
* centimetres — inches * kilograms — pounds
* centimetres — millimetres * grams — ounces
* inches — centimetres * ounces — grams
* inches — millimetres
* millimetres — centimetres Time:
* millimetres — inches * hours — minutes
* minutes — seconds
Speed: * seconds — minutes
* miles per hour — kilometres per hour * days — hours
* kilometres per hour — miles per hour * months — weeks

* kilometres per second — miles per second ¢ weeks — days
* miles per second — kilometres per second

Area:
* square kilometres — square miles

Table B.1
Permitted Unit Conversions

Appendix E: Distribution of Domains Across Phenomena

Table E.1 contains the different datasets used per phenomena. This is followed by listing the
domains of the examples per phenomena obtained by aggregating domains of the respective
datasets. Please refer to description of these datasets in Section 3.1

Appendix F: ACES Annotation Methods per Phenomena

The methods used to annotate the error spans for each of the phenomena in SPAN-ACES are listed
in Table F.1.

Appendix G: Prompt for LLMs for MT evaluation
For reference-based evaluation, we used the following prompt:

Score the following translation with respect to human reference on a continuous scale of 0 to 100
where score of zero means “no meaning preserved” and score of one hundred means “perfect
meaning and grammar”. Only output an integer between 0 to 100.

Source: source sentence here

Human Reference: reference sentence here

Translation: candidate translation

For reference-free evaluation, we excluded the “with respect to human reference” and “Human
Reference” from the prompt.
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Phenomenon

Annotation Method

addition
ambiguous-translation-wrong-discourse-connective-since-causal
ambiguous-translation-wrong-discourse-connective-since-temporal
ambiguous-translation-wrong-discourse-connective-while-contrast
ambiguous-translation-wrong-discourse-connective-while-temporal
ambiguous-translation-wrong-gender-female-anti
ambiguous-translation-wrong-gender-female-pro
ambiguous-translation-wrong-gender-male-anti
ambiguous-translation-wrong-gender-male-pro
ambiguous-translation-wrong-sense-frequent
ambiguous-translation-wrong-sense-infrequent
anaphoric_group_it-they:deletion
anaphoric_group_it-they:substitution
anaphoric_intra_non-subject_it:deletion
anaphoric_intra_non-subject_it:substitution
anaphoric_intra_subject_it:deletion
anaphoric_intra_subject_it:substitution
anaphoric_intra_they:deletion
anaphoric_intra_they:substitution
anaphoric_singular_they:deletion
anaphoric_singular_they:substitution
antonym-replacement
commonsense-only-ref-ambiguous
commonsense-src-and-ref-ambiguous
copy-source
coreference-based-on-commonsense
do-not-translate

hallucination-date-time
hallucination-named-entity-level-1
hallucination-named-entity-level-2
hallucination-named-entity-level-3
hallucination-number-level-1
hallucination-number-level-2
hallucination-number-level-3
hallucination-real-data-vs-ref-word
hallucination-real-data-vs-synonym
hallucination-unit-conversion-amount-matches-ref
hallucination-unit-conversion-unit-matches-ref
hypernym-replacement

hyponym-replacement

lexical-overlap

modal_verb:deletion

modal_verb:substitution

nonsense

omission

ordering-mismatch
overly-literal-vs-correct-idiom
overly-literal-vs-explanation
overly-literal-vs-ref-word
overly-literal-vs-synonym

pleonastic_it:deletion

pleonastic_it:substitution
punctuation:deletion_all
punctuation:deletion_commas
punctuation:deletion_quotes
punctuation:statement-to-question
real-world-knowledge-entailment
real-world-knowledge-hypernym-vs-distractor
real-world-knowledge-hypernym-vs-hyponym
real-world-knowledge-synonym-vs-antonym
similar-language-high

similar-language-low

untranslated-vs-ref-word
untranslated-vs-synonym
xnli-addition-contradiction
xnli-addition-neutral
xnli-omission-contradiction
xnli-omission-neutral

addition/omissions
word-lvl-compare-to-good
word-Ivl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-Ivl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
word-lvl-compare-to-ref
word-lvl-compare-to-good
word-lvl-compare-to-good
whole-sentence

manual
word-lvl-compare-to-good
date-time
word-lvl-compare-to-good
word-lvl-compare-to-ref
word-1vl-compare-to-ref
word-lvl-compare-to-good
word-lvl-compare-to-ref
word-lvl-compare-to-ref
manual

manual

unit-conversion
unit-conversion
word-Ivl-compare-to-ref
word-lvl-compare-to-ref
manual

addition/omissions
word-lvl-compare-to-good
word-lvl-compare-to-ref
addition/omissions
word-swap
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-Ivl-compare-to-good
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
addition/omissions
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
word-lvl-compare-to-good
whole-sentence
whole-sentence
word-lvl-compare-to-good
word-lvl-compare-to-good
whole-sentence
whole-sentence
whole-sentence
whole-sentence
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Reference-based corr-gain  Reference-free corr-gain
BERTScore 0.002 | COMET-QE 0.018
COMET-20 0.06 | Cross-QE 0.292
COMET-22 0.19 | HWTSC-Teacher-Sim 0.154
metricx_xx1_DA_2019 0.012 | KG-BERTScore 0.154
metricx_xx1_MQM_2020 -0.016 | MS-COMET-QE-22 0.196
MS-COMET-22 0.05 | UniTE-src 0.216
UniTE 0.042 | cometoid22-wmt23 0.138
COMET-22 0.042 | CometKiwi 0.454
MetricX-23 0.004 | CometKiwi-XL 0.148
MetricX-23-b -0.002 | GEMBA-MQM 1.107
MetricX-23-c 0.008 | KG-BERTScore 0.436
XCOMET-Ensemble 0.162 | MS-COMET-QE-22 0.198
XCOMET-XL 0.11 | MetricX-23-QE-b 0.296
XCOMET-XXL 0.016 | XCOMET-QE-Ensemble 0.112

XLsimQE 0.184

Table H.1

Results on the real-world knowledge commonsense challenge set with reference-based metrics in the left
block and reference-free metrics in the right block. The numbers are computed as the difference between the
correlation with the subordinate clause in the source and the correlation without the subordinate clause in the
source. Largest gains are bolded.

Appendix H: Importance of source

We report the results on the real-world knowledge commonsense challenge set in Table H.1.
Reference-based metrics tend to disregard the information in the source.

Appendix I: ACES Span Annotation Guidelines
1. General guidelines

Your task is to annotate spans of translation errors that match a specific error type: e.g. “word
swap”, or “overtranslation”. You are presented with two sentences (A and B) as well as a label
denoting the error type that you should look for. You should compare translations A and B and
mark any error spans of the specified type that occur in sentence B.

Please note that:

o You should annotate at the word level, not at the character level. I.e. in the case that
the error is a misspelling (e.g. “combuter” instead of “computer”) the complete
word (“combuter”) should be marked.

. You should only mark errors of the type specified by the error type label, and no
other errors that may be present in sentence B.

. You are not required to mark any errors that may be present in sentence A.

*  Whilst the majority of sentences you will encounter will be fluent, some
machine-generated sentences will contain disfluencies.
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. In the examples in this document, errors are highlighted in bold text to help make
the examples clearer. You do not need to bold the error spans in your annotations.

. This document is intended to be comprehensive and cover the cases assigned across
multiple annotators. As such, a batch that is assigned to you may contain only a
subset of the error types listed in the Error type-specific section (below).

. You should only mark punctuation as part of error spans if it is part of the error (e.g.
added as part of an addition operation or changed as part of a substitution
operation).

Please read the guidelines thoroughly before you start the annotation task. Once you have finished,
please make a second pass to identify and correct any mistakes that you may have made. Please
also make a note of any examples that you were unsure how to annotate e.g. the example ID and a
brief note.

All error spans should be marked with open and closing tags (e.g. <error span>). Errors of specific
types may be formed by addition, substitution, deletion or reordering operations. For deletion
operations, you should insert an empty pair of tags <> where content is missing in sentence B.

Whitespace: Error tags should not contain leading (e.g. < error span>) or trailing (e.g. <error
span >) whitespace.

Addition: a text span that is not present in sentence A is included in sentence B.

Sentence A: The cat is a species of small carnivorous mammal.
Sentence B: The cat is a <domestic> species of small carnivorous mammal.

Substitution: a text span in sentence A is substituted with a different text span in sentence B.

Sentence A: Female domestic cats can have kittens from spring to late autumn.
Sentence B: Female domestic cats can have kittens from <May> to <December>.

Deletion: a text span that is present in sentence A is omitted from sentence B. Note that when
marking a deletion, care should be taken to ensure that no extra whitespace is inserted into the
sentence. Tags marking the deletion should be inserted after the space separating the two words
where the deletion occurred.

Sentence A: Feral cats are domestic cats that were born in or have reverted to a wild state.
Sentence B: Feral cats are domestic cats <>or have reverted to a wild state.

Reordering: a text span in sentence A that appears in a different position in sentence B, as though
the sentence has been reordered.

Sentence A: Montreal is the second most populous city in Canada and the most populous city in
the province of Quebec.

Sentence B: Montreal is the <>most populous city in Canada and the <second> most populous
city in the province of Quebec.

Note: reordering operations can be viewed as a combination of a deletion and an addition
operation to change the order of elements of a sentence.
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Example 1: Marking a single error span of a specified error type; ignoring other error types

In this example, the aim is to mark “overtranslation” type errors, i.e. where translation B is more
specific than translation A:

Sentence A: The festival in Houston took place in the summer.
Sentence B: The festival in took place in August.

The error span is “August”, which is more specific than “the summer” - the information that the
event took place in August has been “hallucinated”.

Annotated B: The Republican National Convention in was in <August>.

Note that the missing information in sentence B (“Houston”) can be ignored because it is an
“omission” error not an “overtranslation” error. Other examples of errors that can be ignored
include e.g. agreement errors in German.

Example 2: Marking multiple error spans in the same example
If there are multiple errors of the specified type present in sentence B, you should mark each error

span individually. For example, if the error label is “omission” you should mark the two spans of
omitted text in sentence B:

Sentence A: Like the other planets in the Solar System, Mars was formed 4.5 billion years ago.
Sentence B: Like the other planets, Mars was formed 4.5 years ago.

Annotated B: Like the other planets <>, Mars was formed 4.5 <>years ago.
2. Error type-specific guidelines

In your annotations, you will only encounter three specific error types. Additional guidelines are
provided below for these error types - hallucination, word swap and coreference.

Hallucination

In a hallucination example, text that is not present in sentence A is observed in sentence B or
word in sentence A is replaced by a more frequent or orthographically similar word in sentence B.
Le. hallucination can be an “addition” or a “substitution” case. This may result in a change of
meaning in sentence B. You should mark the “hallucinated” text in sentence B.

Sentence A: The official languages of Scotland are: English, Scots, and Scottish Gaelic.
Sentence B: The official languages of Scotland are: English, Welsh, French, Scots, and Scottish
Garlic.

The information that Welsh and French are official languages of Scotland has been halluci-
nated and inserted into sentence B. Additionally, “Gaelic” has been hallucinated as “Garlic”. This
should be annotated as:

Annotated B: The official languages of Scotland are: English, <Welsh, French,> Scots, and
Scottish <Garlic>.
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In a word swap example the position of a word or a span of text in sentence A appears swapped in
sentence B. This may result in sentence B being factually incorrect. You should mark (in sentence

B) the spans of text that have been swapped.

Sentence A: Their music is considered by many as an alternative metal with rap metal and
industrial metal influences, which according to previous interviews call themselves “murder -

rock”.

Sentence B: Their music is considered by many as industrial metal with rap metal and alternative
metal influences. According to previous interviews, they consider themselves “murder rock”.

The position of the words “alternative” and “industrial” is different in sentence A, compared with

sentence B and should be annotated as follows:

Annotated B: Their music is considered by many as <industrial> metal with rap metal and
<alternative> metal influences. According to previous interviews, they consider themselves

“murder rock”.

Coreference

In a coreference example a pronoun in sentence A is replaced with a (potentially) inappropriate
noun-phrase in sentence B. You should mark the relevant noun-phrase in sentence B.

Example:

Sentence A: The cat had caught the mouse and it was trying to wriggle free.
Sentence B: The cat had caught the mouse and the cat was trying to wriggle free.

The pronoun “it” has been replaced with the noun-phrase “the cat”, resulting in a change in

meaning. This should be annotated as:

Annotated B: The cat had caught the mouse and <the cat> was trying to wriggle free.

Appendix J: Phenomena-level Metric Sensitivity Scores

Tables J.1 and J.2 contain the average sensitivity scores for each high-level phenomena of the
metrics submitted to WMT 2022 and WMT 2023 respectively.
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