An instructive implementation of semantic parsing and reasoning using
Lexical Functional Grammar

Mark-Matthias Zymla, Kascha Kruschwitz, Paul Zodl
Department of Linguistics
University of Konstanz
Konstanz, Germany
{mark-matthias.zymla | kascha.kruschwitz | paul.zodl}@uni-konstanz.de

Abstract

This paper presents a computational resource
for exploring semantic parsing and reasoning
through a strictly formal lense. Inspired by the
framework of Lexical Functional Grammar, our
system allows for modular exploration of dif-
ferent aspects of semantic parsing. It consists
of a hand-coded formal grammar combining
syntactic and semantic annotations, producing
basic semantic representations. The system pro-
vides the option to extend these basic semantics
via rewrite rules in a principled fashion to ex-
plore more complex reasoning. The result is
a layered system enabling an incremental ap-
proach to semantic parsing. We illustrate this
approach with examples from the Fracas test-
suite, demonstrating its overall functionality
and viability.

1 Introduction

Formal approaches to computational linguistics
have been surpassed by quantitative methods in
the fast-paced task-driven field of NLP. However,
modern NLP approaches trade explainability and
interpretability for performance gains. This puts a
larger burden on researchers who need to evaluate
whether a system captures the expected linguistic
generalizations, and limits the possibility to test
the effect of small tweaks to a system. Thus, un-
derstanding and exploring patterns in syntax and
semantics is challenging and potentially affected
by confounding factors (e.g., McCoy et al. 2019).
Formal approaches inherently require accu-
rate descriptions of patterns. Computational ap-
proaches, in particular, often highlight wanted and
unwanted interactions between linguistic descrip-
tions. Detecting these is an essential skill of (com-
putational) linguists and, thus, we deem it a worth-
while goal to make corresponding resources acces-
sible. Concretely, we present a system for semantic
parsing and reasoning based on Lexical Functional

35

Grammar (LFG; Kaplan and Bresnan 1982).! LFG
is characterized by modular but interconnected lin-
guistic descriptions, allowing researchers to make
comparatively simple statements about particular
domains of language. We build on XLE+Glue (Dal-
rymple et al., 2020) designed for exploring the syn-
tax/semantics interface in LFG. However, while
XLE+Glue has been used in formal semantic re-
search to verify analyses, it has not been used in a
task oriented setting as is typical in computational
linguistics and NLP. This is the main drawback
that this paper attempts to address by extending
the XLE+Glue? pipeline to also incorporate reason-
ing tools, particularly, the Vampire theorem prover
(Kovécs and Voronkov, 2013). This allows us to lay
the foundation for task-oriented semantic parsing
(i.e., for NLI). We take inspiration from the sem-
inal work on semantic parsing by Blackburn and
Bos (2005) but also consider more recent proposals,
particularly Haruta et al. (2020, 2022).

The contribution of this paper is a comprehen-
sive implementation of semantic parsing that is
grounded in a rigorous formal framework. The
system is designed to be accessible and extensible,
building on the discipline of grammar engineering.
It enforces incremental development of linguistic
analyses and enables testing the interplay of these
analyses in a task-oriented fashion. The paper is
structured as follows: section 2 presents LFG as
the formal foundation of our system. Section 3
describes the full system, focusing on the novel
interface between XLE+Glue and Vampire. Sec-
tion 4 presents a qualitative evaluation of the sys-
tem based on examples from the Fracas testsuite.
Section 5 discusses some limitations and, finally,
section 6 concludes.

"For recent introductions see Borjars (2020); Asudeh
(2022), or Dalrymple (2023).

2h'ctps://gi'chub.(:om/Mmaz1988/><1eplusg1ue/tree/
2024_inference

Proceedings of the Second Workshop on the Bridges and Gaps between Formal and Computational Linguistics (BriGap-2), pages 35-51

September 24, 2025, Licensed under the Creative Commons Attribution 4.0 International License

https://github.com/Mmaz1988/xleplusglue/tree/2024_inference
https://github.com/Mmaz1988/xleplusglue/tree/2024_inference
https://creativecommons.org/licenses/by/4.0/

2 Formal background

Lexical Functional Grammar (LFG) is a grammar
formalism that is well-known for its formal rigor, al-
lowing for a faithful computational implementation
in the form of the Xerox Linguistics Environment
(XLE; Crouch et al. 2017). From its beginnings,
it has established itself as a crosslinguistically vi-
able tool for describing language. This is partic-
ularly highlighted by the ParGram project (Butt
et al., 2002) which produced computational LFG
grammars illustrated by virtue of the ParGramBank
(Sulger et al., 2013).3

2.1 Lexical Functional Grammar

The main appeal of LFG lies in its modular archi-
tecture that allows researchers and grammar en-
gineers to make comparatively simple statements
about linguistic facts in one domain of analysis
(e.g., syntax), while maintaining a clearly defined
mapping to other aspects of grammar (e.g., prosody,
semantics). This design is sometimes called paral-
lel projection architecture. To make this intuition
more clear, let us first look at the syntactic compo-
nent of LFG which consists of two individual pro-
jections: c(onstituent)- and f(unctional)-structure.
C-structure is stated in terms of phrase structure
rules and captures information about constituency
and linear order. F-structure captures information
about grammatical functions, such as SUBJ, OBJ
(i.e., dependencies; Meurer 2017), as well as func-
tional features such as number and tense. It is
stated in terms of the quantifier-free logic of equal-
ity (Kaplan, 1989). More concretely, equality terms
are co-descriptively added to phrase structure rules
and lexical entries using the meta variables 1 and
|. 1 points at the c-structure node of the mother
and | at the current node. Thus, The NP rule in
(1), for example, states that the determiner and the
noun equally contribute to the f-structure of the
NP. There, the lexical entry of the determiner in (2)
specifies a substructure, SPEC, subordinating the
determiner to the content word.

S NP VP
(TsuBJ) = | T=|
(D) N
1) NP —
=1 T=|
VP \% AP
1= l (T PREDLINK) zl
*Hosted at https://clarino.uib.no/iness/page

(Rosén et al., 2012).

36

(2) the D (1 SPEC PRED) = ‘the’
Jofi = (GF+ 1)
APAQ.3z[P(z) A Q(z)] :

(Te‘OTl‘,) - (TP‘O %ft) - O/E)'Ft

(1 PRED) = ‘cat’
Ax.cat(x) : Te—ols

cat N
is V(1 PRED) =

‘be< (1 PREDLINK)>(?} SUBJ)’
(1 PREDLINK SUBJ) = (1 SUBJ)

fast A (1 PRED) = ‘fast<(! SUBJ)>’
Az fast(z) :

(1 SUBJ), — 1;

Generally, by resolving equalities, meta variables
pointing at individual c-structure nodes are re-
solved to f-structure indices (many-to-one map-
ping). This process is visualized in Figure 2. As
the figure indicates, the dependencies that LFG’s f-
structure captures are more articulated than classic
dependencies as they can share structures across
different PREDs, as annotated in the lexical entry
for is. For a more comprehensive comparison in-
volving further differences between f-structure and
dependencies see Haug (2023).

2.2 Glue semantics

LFG’s Glue semantics (Asudeh, 2023) specifies
meaning representations, called meaning construc-
tors (MCs).* They can be defined in two ways: co-
descriptively, i.e., in parallel to c- and f-structure
information in the lexicon (highlighted in blue in
(2)) and phrase structure, or via description-by-
analysis, which takes an assembled f-structure as
input and rewrites it into a semantic representation.
As we propose a hybrid approach (Wedekind and
Kaplan, 1993), this warrants further explanation.
Description-by-analyis (DBA) rules provide in-
dependent way of introducing meaning construc-
tors to syntactic representations, here f-structures
(e.g, Andrews 2010).> Compared to co-descriptive
semantics, they are more suitable to capture varia-
tion in the immediate syntactic and semantic con-
text that affects semantic interpretation (Zymla,
2017). For example, the comparative complemen-
tizer than in Figure 2 is interpreted differently de-

* A more comprehensive introduction can be found in Dal-
rymple (1999). See also Dalrymple et al. (1993).

SDBA is technically a framework agnostic way of intro-
ducing meaning constructors that can be applied to different
types of syntactic representations. Notably, It has been applied
to Universal Dependency parses Findlay et al. (2023); Zymla
(2018).

https://clarino.uib.no/iness/page

pending on its complement (e.g., elided VP vs
overt VP). A simplified rule that produces the MC
used in Figure 2 is illustrated in Figure 1. There,
#f . . .#j are variables over f-structure nodes which
are related via the given relation labels. Thus, the
left-hand side can be understood as a query search-
ing for a matching graph structure. Given that it
matches the f-structure in Figure 2, the MC on
the right is added to the premise set, essentially en-
abling the interpretation of the comparative clause.

#f PREDLINK #h SUBJ #g & #h DEGREE 'comparative'
& #h ADJUNCT #a in_set #o OBL-COMP #i OBJ #j ==>
#i GLUE
AR Mz A\y.36[R(8)(z) A —=R()(y)] :
(#gy —o #g, —o #f1) —o (#g, —o #], —o #fy).

Figure 1: DBA-rule for the comparative construction

MCs separate the logic of composition (linear
logic; Girard 1995) and meaning language, allow-
ing for some flexibility in the choice of the lat-
ter. Composition is resource-sensitive and flex-
ible.” The Curry-Howard isomorphism (Curry
et al., 1958; Howard, 1980) postulates parallels
between lambda calculus operations and deduction
processes in linear logic proofs. Thus, example
(3) draws the parallel between function applica-
tion and implication (—o) elimination, and example
(4) describes the parallels between lambda abstrac-
tion and implication introduction. Consequently,
Glue semantics is compatible with any meaning
language whose combinatorial possibilities can be
stated in A-terms. We use A-FOL (first-order logic)
and A\-DRT (discourse representation theory; Kamp
and Reyle 1993) to illustrate this.

f:A—B a:A

3

(3) fa) B B
[z :.A]"

) :
f(z): B oy

Ax.f(x): A— B

% The first argument of the comparative semantics is the
semantic contribution of the adjective. However, the rule
requires a predicate with a degree variable which is not pro-
vided by the lexical entry in (2). Reconciling this mismatch is
discussed in section 4.

"Linear logic is commutative and non-associative by de-
fault. According to Moot and Retoré (2012), this is too flexible.
However, this issue has been at least partially addressed in,
e.g., Lev (2007); Findlay and Haug (2022); Zymla (2024)
from a computational perspective. We do not explore this
point further in this paper.

37

2.3 Reasoning

Reasoning based on XLE’s LFG grammars has
been pursued, for example, by Bobrow et al. (2007)
and Lev (2007). These two works represent two
general approaches respectively: 1) reasoning via
rewriting with a focus on intensional semantics
(see also, e.g., Condoravdi et al. 2001), and ii)
reasoning with theorem provers. The work pre-
sented here aligns with Lev’s (2007) approach. Fur-
thermore, it is inspired by more recent work in
formal computational semantics by Haruta et al.
(2020, 2022), who compose meanings via categori-
cal grammar parsers and use the Vampire theorem
prover to prove inferences by refutation (Kovécs
and Voronkov, 2013). As the focus of this paper is
the educational value of computational tools based
on formal linguistics, we also draw parallels to
Blackburn and Bos (2005), who developed a con-
versational agent, CURT (clever use of reasoning
tools), and highlighted how reasoning may affect
dialogue interactions.

Consequently, two categories of reasoning can
be considered: reasoning for natural language infer-
ence (NLI) and reasoning in dialogue. The first one
is aptly exemplified by the Fracas testsuite (Cooper
et al., 1996), which consists of examples like:

A Swede won a Nobel prize.

Every Swede is a Scandinavian.

Did a Scandinavian win a Nobel prize?
— YES

&)

As (5) shows, NLI examples consist of one or more
premises, a conclusion, and a label corresponding
to the entailment status of the conclusion (YES,
NO, Don’t know; MacCartney and Manning 2009).
The goal of the task is to predict the correct label.

As part of their dialogue system, Blackburn and
Bos (2005) establish informativity (+/-I) and con-
sistency (+/-C) checks as essential tasks for reason-
ing in dialogue.® The NLI task can also be broken
down to consist of these two tasks:

+C <
NLI < —1I — entailment

—C' - contradiction
8While these checks are too strict to model the nuances of
real world data, they provide useful insights into the incremen-
tal tracking of (shared) knowledge in dialogue settings.

+1 — unknown

(6)

S _
PRED ‘be<fast>cat’
PRED ‘cat’
VP B
SUBJ ®|SPEC [PRED ‘the’
the cat (AP) [PRED ‘fast<cat>’ 1
PN } SUBI [g]
is A CP PRED ‘more<than>’
‘ /\ PREDLINK h PRED ‘than<dog>"’
AD
faster | C NP ! OBL-COMP PRED ‘dog’
‘ i OBJ
than | the dog | DEGREE comparative 1
AR Az Ay.36[R(6)(z) A —R()(y)] : A zx. fast(z,0) :
(gd_oge._oft)_o(ge_o _Oft) qr]_o(/(’_o./t Y
Az Ay.30[fast(z,d) A —fast(y,0)] : g i
(X" ge
Je —© —0 f,, o
Ay.3o[fast(X,0) A —fast(y,d)] : v}
—o [t
30[fast(X,8) A —fast(Y,)] : E
i oy
AQ.3z[dog(z) A Q(x)] : Ay.36[fast(X,0) A —fast(y,0)] : "
Jyldog(y) ~ 30[fast(X,0) n —Fast(y,0)]] 3
Tt
___ A
AQ.3z[cat(z) A Q(x)] : Az.Ty[dog(y) A I[fast(x,d) A —fast(y,d)]] :
(ge = f1) — f1 ge = fi o

i

Jz[cat(z) A Fy[dog(y) A F&[fast(x,d) A —fast(y,d)]]] : E

Figure 2: LFG example derivation: The cat is faster than the dog. This example illustrates the modular
representation of c-structure, f-structure, and compositional semantics in LFG. C-structure captures linear order and
constituency. F-structure abstracts away from surface form via a many-to-one mapping from c- to f-structure nodes.
The semantics use f-structure indices as linear logic resources to encode combinatory possibilities which are stated
in terms of a prooftree. Generally, hierarchical structures are broken down and re-assembled.

3 Computational implementation

This section presents our system that computation-
ally implements the pipeline described in Figure
(3). The main innovation presented in this paper
is the use of LiGER (Linguistic graph expansion
and rewriting) to mediate between syntax, compo-
sitional semantics and reasoning. Furthermore, we
put some focus on the Blackburn and Bos (2005)-
style interface to the Vampire theorem prover. How-
ever, we also briefly discuss the contribution of the
other components.

3.1 Parsing via XLE+Glue

We build on computational Glue resources that
have been developed in the past few years, pri-

38

marily, the Glue semantics workbench (GSWB;
MefBmer and Zymla 2018), a Glue prover heavily
inspired by Lev’s (2007) work, building on Hepple
(1996), and an interface to XLE called XLE+Glue
(Dalrymple et al., 2020).° Generally, the current
main use of these tools is the verification of anal-
yses with a focus on semantics and its interfaces,
e.g., Przepiérkowski and Patejuk (2023). Recently,
Butt et al. (2024) have presented a system that al-
lows for the incorporation of prosodic information
to disambiguate semantic analyses of questions in
Urdu, thus, covering the full pipeline from speech
signal to semantic parsing.

"While XLE itself is available only under a restrictive
license, the semantic resources developed for it are all open
source, including the new tools presented in this paper.

Syntax Semantics

Input

XLE

Reasoning and Update

Figure 3: The XLE+Glue pipeline: three modular systems cover syntax, semantics, and reasoning. The syntax
is specified in terms of LFG grammars written in the XLE. The XLE also specifies a core semantics that can be
enriched and contextualized via LIGER. The GSWB calculates DRT-style meaning representations following Glue
semantics principles. The DRSs are resolved in the reasoning module and translated into FOL for reasoning. LiGER
optionally contributes additional axioms which are triggered by specific syntactic and semantic configurations to

ensure correct reasoning.

The work presented in this paper is based on a
newly developed Grammar for English that covers
part of the Fracas testsuite, particularly, the section
on quantifiers and the section on adjectives. With-
out going into detail, this grammar makes use of the
various tools that XLE provides to develop larger-
scale grammars, particularly, morphological ana-
lyzers, templates, parameterized rules, and more.
To constrain ambiguities it makes use of OT-marks
(loosely based on optimality theory). In terms of
the presented syntactic analyses, it closely follows
the large English ParGram grammar and Butt et al.
(1999), but is extended with a co-descriptive se-
mantics (cf. examples (1) and (2)). The semantics
are resolved by the GSWB which generates Boxer-
style DRT representations via a simple interface to
Blackburn and Bos’s Prolog code.!”

3.2 Simple reasoning

For reasoning, DRSs are translated into first-order
logic and then to the TPTP format (Sutcliffe et al.,
2006). We built a Python interface that queries the
Vampire theorem prover (Kovacs and Voronkov,
2013) with positive and negative consistency and
informativity checks. The positive checks rely on
model building rather than satisfiability checking.
Vampire supports this in addition to several other
proof search strategies, but is mainly geared to-
wards finding proofs via refutation.

Various aspects of the code have been adapted in accor-
dance with the GNU license. The original files are available at
https://www.let.rug.nl/bos/comsem/software2.html.

39

@) For some (set of conjoined) premise(s) p
and a hypothesis g:
a —(p—9q) +informative
b. p—ogq -informative
c. pPAgQ +consistent
d p—->—q -consistent

We extract meaningful labels from the Vampire out-
put to present to users, concretely: the termination
reason, whether a finite model was found, and the
SZS status (Sutcliffe, 2008).!! From these labels,
we heuristically determine the success of the indi-
vidual checks, and, consequently, the status with
respect to the NLI task (cf. example (6)).

3.3 Extended reasoning mediated by LiGER

The system so far is essentially a re-implementation
of Blackburn and Bos (2005) modeling the syn-
tax/semantics interface in a different manner.
While we believe that this has merits in its own
right (particularly, the modularization of syntax and
semantics), we extend its coverage with a princi-
pled approach to tackling more complex reasoning
problems, such as those presented in Haruta et al.
(2022). The key tool for this is LIGER which al-
lows for the specification of rewrite rules to apply
to f-structures. It plays two roles: i) non-invasively
extending the semantics, and ii) determining rele-
vant axioms needed for correct reasoning.

""'Vampire’s termination reason describes its result which
also includes technical reasons, e.g., timeouts, whereas the
SZS status focuses on the outcome of the reasoning process.
Although there generally is a clear mapping from termination
reason to SZS status, we use both for maximal informativity.

https://www.let.rug.nl/bos/comsem/software2.html

The first role is simply a rendering of the
description-by-analysis idea presented in section
2.2. The important conceptual idea here is that
the base grammar is self-sufficient, i.e., it produces
semantic representations which can be optionally
extended via DBA (see section 4).

The second role is inspired by Bobrow et al.
(2007), who use DBA as an interface to external
resources to enrich semantic representations. Con-
cretely, we re-model Haruta et al.’s (2022) system
for interpreting gradable adjectives and general-
ized quantifiers (a Python interface between a CCG
parser and Vampire) into a system that is extensi-
ble and variable without the need to understand a
complex code structure. To illustrate this, let us
look at a core component of Haruta et al.’s (2022)
analysis of gradable adjectives, particularly, their
comparative use: the consistency postulate.

(CP) VaVy[Io[A(z,d) A —A(y,d)] —
Vo[A(y,0) — A(z,0)]].
where A is an arbitrary gradable adjective.

(Haruta et al., 2022, p. 148)

()

The axiom in (8) is not intuitively part of the
compositional semantics of an utterance, but rather
is required for the semantics of gradable adjectives
to fall out correctly. However, it essentially requires
quantification over properties (indicated by the use
of the variable A). This is accounted for in terms
of a DBA rule of the following kind:

#a PRED %adj #a DEGREE 'comparative' ==>
VaVy[36[%adj(z,d) A —=%adj(y,d)]

#a AXIOM — V6[%adj(y, §) — %adj(z,d)]].

Figure 4: DBA-rule for extracting axioms

In essence, this (simplified) rule introduces an
axiom based on the presence of an adjective with
a comparative form and generates a CP axiom for
that adjective. This information is integrated with
the call to Vampire, as it affects how the prover
is called. Concretely, reasoning about degrees fol-
lowing Haruta et al. (2022) requires arithmetic rea-
soning, a non-finite domain that eliminates model
building as a proof search strategy.

In summary, LiGER is used on two fronts to
extend the expressiveness of the compositional se-
mantics and to trigger the axioms required to main-
tain correct results during inference. The LiGER
output also affects the interface to Vampire directly
to account for different input requirements and out-
puts for different kinds proofs.

40

‘ BB-DRT J)]
XLE
C (0] 5
[0} %) 3
m =
s} © @

Figure 5: System architecture: a modularized service
architecture that is accessed via a browser-based user
interface.

3.4 Technical details

The whole system is couched in a modular ser-
vice architecture, where individual modules are
deployed in Docker containers. A browser-based
application allows users to access the containers
and links their functionalities (see Figure 5). The
LiGER container also provides a lightweight in-
terface to XLE.!? This architecture enables cross-
platform use of the system and minimizes the need
for technical know-how. The Prolog code for
BB-DRT is not deployed in a separate container
but is copied across containers as it is relatively
lightweight, reducing traffic across containers.

3.5 User interface and visualization

The system provides seperate interfaces to i) pars-
ing, ii) regression testing, and iii) inference. Num-
ber i) and iii) are (partially) illustrated in Figure 7.
The inference interface is inspired by Blackburn
and Bos’s (2005) conversational agent CURT. It
provides access to the conversation history with the
possibility to prune it. Furthermore, it allows the
manual specification of axioms to test their effect
on reasoning (not in the picture).

We use a glyph to optionally relay the detailed
results of the inference checks to users. This is illus-
trated in Figure 6. The example there is an instance
of a contradiction, as indicated by the refuted posi-
tive consistency check and successful negative con-
sistency check. Although this makes informativ-
ity checks obsolete according to example (6), the
glyph always displays all checks, highlighting the
interplay between consistency and informativity.

"2For licensing reasons, the XLE is not packed with the
system but needs to be acquired independently and added to
the repository.

AAA
RAAAM
| AAo

AAo’

Figure 6: Reasoning result glyph: Green triangles indi-
cate positive results (satisfiability), red triangles indicate
negative results (refutation), and yellow symbol indi-
cate unknown results (timeout/saturation). The glyph
is horizontally separated into consistency (C) checks
and informativity (I) checks with negative and positive
polarity respectively. The vertical line separates satisfia-
bility checks (left) and model building attempts (right).

Generally, the various interfaces are designed
with explorative use in mind but they also enable
incremental development of analyses with the re-
gression testing interface, which is tailored towards
developing new description-by-analysis rules. This
supports the development of larger grammars.

4 Worked examples

We will now elaborate on the semantics we assume.
This includes simpler cases including reasoning
about properties and relations, but also more com-
plex cases for which we employ a version of degree
semantics following Haruta et al. (2022).

4.1 Basic semantic assumptions

Our semantics are based on a Neo-Davidsonian
event semantics rendered in DRT. The first worked
example is shown in Figure 7, demonstrating the
correct reasoning for the problem in example (5)."

Due to quantifier ambiguity, the second hypothe-
sis of (5) has two parses, presented in their equiva-
lent FOL form in (9) and (10).'* Here, the represen-
tation of be does not express anything meaningful,
just that there is a being-eventuality (in the sense
of Bach 1986) with two arguments.

9) Vy[swede(y) — Fz[scandinavian(z) A
Je[be(e) A argl(e) =y A arg2(e) = z]]]

(10) 3Jz[scandinavian(x) A Yy[swede(y) —
Je[be(e) nargl(e) = zrarg2(e) = y]]]

13 All analyses are laid out in detail in the appendix.

' Although the reading in (10) is not intuitively sensible, it
does allow for the same inference. Nonetheless, this indicates
the need for more fine-grained management of quantifier am-
biguities, wich we leave for future work (first steps are taken
in Zymla 2024).

41

For the inference in (5) to come out correctly, we
need to add a meaning postulate (Zimmermann,
1999), as in (11).1

(11) Va,y,el[be(e) A argl(e) = xn

arg2(e) =y — x = y]

This is to show that there is a wide range of axioms
that one can consider adding to an analysis. Intro-
ducing meaning postulates via DBA-rules allows
for the exploration of their impact on reasoning
before integrating them into the grammar proper.

4.2 Layered analysis

In this section, we finalize the analysis of gradable
adjectives following Haruta et al. (2022). How-
ever, note first that the Fracas testsuite contains
several examples containing gradable adjectives
that can be analyzed as simple properties, such as
(12). Here, the challenge rather lies in modeling
the syntax/semantics interface correctly to capture
the modifying nature of the relative clause (e.g.,
Heim and Kratzer 1998).

(12) Some great tenors are Swedish.

Are there great tenors who are Swedish?

This extends to examples with more complicated
constructions like the superlative:

An Italian became the world’s greatest
tenor.

(13) Was there an Italian who became the

world’s greatest tenor?

Thus, in many cases, reasoning via pattern match-
ing is sufficient: as the noun phrases perfectly
match, their exact semantics become less relevant.

However, often, gradable adjectives are chal-
lenging for automated reasoning because they are
highly context sensitive. To make this intuition
clear, first consider example (14), which illustrates
the context sensitivity of the adjective large, whose
meaning is mediated by the immediate context,
here the modified noun. Generally, positive in-
stances of gradable adjectives are evaluated based
on contextually determined comparison classes.'®

SWe use a classic analysis of be also used in Blackburn
and Bos (2005), which could also be stated directly in the
semantics.

15The examples in the Fracas testsuite determine compari-
son classes in the immediate linguistic context, but comparison
classes may be determined by the wider context, including
extralinguistic cues (e.g., Kennedy and McNally 2005).

Test sentence:

Every Swede is a Scandinavian.

[17:55:58] Parsing successful.

Currently loaded grammar: ./grammars/fracas._inference_grammar/main_fracas_grammar.Ifg.glue

ol i Yo iputios Y show grapn vis X Show oot i3

Meaning constructors:

14
2//Grammar
3 lam(V,merge(drs([E], [1),app(V,E))) : ((13_v -0 13_t) -0 12_t)
41am(V, am(X, Lan(E, merge (app(V,E) ,drs([], [rel(arg2,E,X)1))))) & ((13_v -0 13_t) -0 (15_e
51am(X,drs([], [pred('swede’,X)]1)) : (11_e -0 11_t)
6lan(V,drs([], [pred(be,V)1)) : (13_v o 13_t)
7 lan(P, \an(Q, drs((], [imp(merge(drs((X], [1),app(P,X)),app(Q,X))1))) : ((11_e -0 11_t) o (
& lam(V, an(X, lan(E,merge(app(V,E) ,drs([], [rel(argl,E,X)]))))) & ((13v -0 13_t) -0 (11e
9 lam(P, an(Q, merge (drs((X1, [1),merge(app(P,X),app(Q,X))))) : ((15_e -0 15_t} -0 ((15_e o
olam(P,P) : (12t -0 14_t)
1lam(X,drs([], [pred (‘scandinavian',X)])) : (15_e -0 15_t)
2
Y
Settings:
Prover: Output Style:
Lev ~ Prolog DRT v |
() Parse Semantics Explanation
() Debugging Natural deduction style:
Full semantics /|

Semantics:

1 drs([_19448], [pred(scandinavian, 19448),imp(drs([_21838], [pred (swede, 21838)]),drs([_23'

5 | scandinavian(x3)

| |
| swede(x1) | ==> | be(x2)

9 | |

10| | | | arg2(x2,x3) |

11 | | argl(x2,x1) |

2 | | |

3|

16 drs([], [imp (drs([_30624] , [pred (swede,_30624)]),drs(([_33032,_34616], [pred(scandinavian, :

| 4

18 |
Resize o Defaul Eler aname

User:

A Swede won a Nobel prize.

Bot:

@7 00

User:

Every Swede is a Scandinavian.

Bot:

Your input is consistent and informative.

User:

A Scandinavian won the Nobel prize.

Bot:

Your input is not informative.

Type your message.

Figure 7: XLE+Glue browser-based user interface: On the left, the parsing interface is highly customizable and
allows for the exploration of the compositional semantics underlying a parse. On the right, the chat interface allows

for testing of the inference capabilities.

All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal? — NO

(14)

By making adjectives sensitive to a comparison
class, the two different meanings of large in (14)
can be explained. Concretely, we want to express
that Mickey surpasses the threshold for a large
mouse but not the threshold for a large animal.
However, first we need to type-raise large to be-
come a degree predicate.!” The two steps can be
encoded in terms of DBA-rules that extend the
compositional semantics, as shown in Figure 8.

#a PRED %adj & #a DEGREE %d ==>
AP Az %adj(z, §)

#a (#ae —o #at) —o (#aq —o #a. —o #ae).

GLUE

#n
#a

PRED %pred & #n ADJ #a PRED %adj &
DEGREE 'positive' ==>
APAx.36[8 > Oyaai(%pred) A P(0)(z)]

#a (#ag —o #ae —o #ar) —o #a. —o #ae.

GLUE

Figure 8: DBA-rule for positive gradable adjectives

17 Accordingly, we have to slightly change the rule in Figure
1, which we simplified for sake of exposition. We accept this
extra step to preserve the integrity of the core grammar.

42

In addition to the CP (see example (8)), we need
to further specify the meaning of large a positive
adjective, and small, a negative adjective:

(up) Va, o' [large(x, ') —
(15) V"[6" < & — large(x,0”)]]
(down) Vz,d'[small(x,d") —

Vo'[6 < & — small(z,6")]]

These axioms say that if something is large to
some degree 4 it is also large to any degree smaller
than that. Conversely, if something is small to a
degree 4, it is also small to any larger degree.'®
Together with axioms for the antonym relation be-
tween large and small, the inference in (14) suc-
ceeds. An appropriate DBA-rule generalizes over
positive and negative adjectives accordingly.

The type-raising rule also resolves the mismatch
mentioned in footnote 6, allowing us to deal with
comparatives as in (16) (see Appendix A.5).

8 A reviewer points out that Haruta et al. (2022) show that
the CP, (8), follows from up and down questioning the neces-
sity of these axioms. However, the inverse is not true. Thus,
they are required for cases like (14) which do not contain
explicit comparatives (see Appendix A.4).

The PC-6082 is faster than every ITEL
computer.

The ITEL-ZX is an ITEL computer.

Is the PC-6082 faster than the
ITEL-ZX?

(16)

— YES

5 Limitations

While the present system is developed in a task-
oriented fashion, it suffers from the usual draw-
backs of formal computational linguistics, such as
a lack of robustness (particularly, with respect to
unseen data), and tedious ambiguity management
(Bunt, 2008), particularly as one attempts to scale
up grammars (Flickinger et al., 2017). Thus, the
present system should not be seen as ready for real
NLP applications (yet). Nonetheless, it contributes
to closing the gap between formal and computa-
tional linguistics, by making the latter more acces-
sible to practitioners of the former, which should
be mutually beneficial for both disciplines (e.g.,
Bender 2008; King 2016). Furthermore, through
regression testing (Chatzichrisafis et al., 2007), the
grammar presented here, as well as the system as a
whole, are continuously expanded.

Although we see the modular architecture of
LFG as a benefit regarding the explainability of
different aspects of language that affect semantic
interpretation, the reliance on XLE can be a draw-
back. To address this, we also provide an integra-
tion of the semantics tool with Stanza’s dependency
parser (Qi et al., 2020).!° However, we do not yet
provide a reasonably-sized set of semantic rules
ready for inference testing. This is an avenue for
future work.

6 Summary

This paper presents an open source computational
resource that enables the exploration of computa-
tional semantics and reasoning through the lense of
LFG’s Glue semantics. Its hallmarks are i) an inter-
face to the Vampire theorem prover, ii) a principled
system for exploring formal semantics and their use
in automated reasoning at various levels of com-
plexity, and iii) a grounding in the seminal work on
formal approaches to natural language inference by
Blackburn and Bos (2005). These hallmarks come
with various avenues for future work. On the LFG-
side, Butt et al. (2024) integrate prosodic informa-
tion into a fully formal system for semantic pars-

19https ://github.com/Mmaz1988/xleplusglue/tree/
2025 _xleplusud

43

ing, thus, enabling a comprehensive exploration
of formal linguistic insights from the speech sig-
nal to reasoning. Linking their work with present
resources would grant an even deeper understand-
ing of the interplay between syntax, prosody, and
semantic interpretation.

On the reasoning side, the present work not only
allows users to explore Blackburn and Bos (2005),
but also extends to their (unpublished) material
on discourse representation theory, enabling, for
example, the exploration of anaphora and presup-
positions. Furthermore, this paves the way for the
exploration of discourse relations (Asher and Las-
carides, 2003) further down the line.

More speculatively, we believe that aiming for
a hybrid system, where machine-learning methods
are used to intervene at various levels of linguis-
tic analysis (syntax, semantics, pragmatics) could
be mutually beneficial, potentially increasing the
explainability of large language models (as a rep-
resentative of the most prevalent machine learning
methods in current NLP), but, importantly also im-
proving the robustness of the present system, e.g.,
by helping with disambiguation and possibly by
modulating the reasoning process.

All in all, we present a principled and thus in-
structive way to explore formal semantics and rea-
soning. The system can be locally deployed as
a browser app with an accessible user interface,
making it interesting for a broad audience within
computational linguistics and adjacent fields.

Acknowledgments

We thank the German Research Foundation (DFG)
for financial support within the project D02 of the
SFB/Transregio 161.

References

Avery D. Andrews. 2010. Propositional Glue and the
correspondence architecture of LFG. Linguistics and
Philosophy, 33(3):141-170.

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Cambridge University Press.

Ash Asudeh. 2022. Glue semantics. Annual Review of
Linguistics, 8:321-341.

Ash Asudeh. 2023. Glue semantics. In Handbook of
Lexical Functional Grammar, pages 651-697. Lan-
guage Science Press, Berlin.

Emmon Bach. 1986. The algebra of events. Linguistics
and Philosophy, 9(1):5-16.

https://github.com/Mmaz1988/xleplusglue/tree/2025_xleplusud
https://github.com/Mmaz1988/xleplusglue/tree/2025_xleplusud
https://doi.org/10.1146/annurev-linguistics-032521-053835
https://doi.org/10.5281/zenodo.10185963

Emily M. Bender. 2008. Grammar engineering for lin-
guistic hypothesis testing. In Proceedings of the
Texas Linguistics Society X Conference: Computa-
tional Linguistics for Less-Studied Languages, pages
16-36, Stanford, CA. CSLI Publications.

Patrick Blackburn and Johannes Bos. 2005. Represen-
tation and inference for natural language: A first
course in computational semantics. Center for the
Study of Language and Information, Stanford, CA.

Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi,
Lauri Karttunen, Tracy Holloway King, Rowan
Nairn, Valeria de Paiva, Charlotte Price, and An-
nie Zaenen. 2007. PARC’s bridge and question an-
swering system. In Proceedings of the GEAF 2007
Workshop, pages 1-22.

Kersti Borjars. 2020. Lexical-functional grammar: An
Overview. Annual Review of Linguistics, 6:155-172.

Harry Bunt. 2008. Semantic underspecification: Which
technique for what purpose? In Computing Meaning,
pages 55-85. Springer.

Miriam Butt, Tina Bogel, Mark-Matthias Zymla, and
Benazir Mumtaz. 2024. Alternative questions in
urdu: From the speech signal to semantics. In Pro-
ceedings of the LFG’24 Conference, Konstanz. Pub-
liKon.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
parallel grammar project. In Proceedings of the 2002
Workshop on Grammar Engineering and Evaluation,
volume 15, pages 1-7. Association for Computa-
tional Linguistics.

Miriam Butt, Tracy Holloway King, Maria-Eugenia
Nifio, and Frédérique Segond. 1999. A Grammar
writer’s cookbook. CSLI Publications.

Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway
King, Rowan Nairn, Manny Rayner, and Marianne
Santaholma. 2007. Regression testing for grammar-
Based systems. In Proceedings of the Grammar En-
gineering Across Frameworks (GEAF07) Workshop,
pages 128-143, Stanford, CA. CSLI Publications.

Cleo Condoravdi, Dick Crouch, John Everett, Valeria
Paiva, Reinhard Stolle, Danny Bobrow, and Mar-
tin van den Berg. 2001. Preventing existence. In
Proceedings of the International Conference on For-
mal Ontology in Information Systems - Volume 2001,
FOIS ’01, pages 162—-173, New York, NY, USA.
ACM.

Robin Cooper, Dick Crouch, Jan van Eijck, Chris Fox,
Josef van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, and
Steve Pulman. 1996. Using the framework. Techni-
cal Report LRE 62-051 D-16, The FraCaS Consor-
tium.

44

Dick Crouch, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, John T. Maxwell III, and Paula
Newman. 2017. XLE documentation. Palo Alto Re-
search Center.

Haskell Brooks Curry, Robert Feys, William Craig,
J. Roger Hindley, and Jonathan P. Seldin. 1958. Com-
binatory logic, volume 1. North-Holland Amster-
dam.

Mary Dalrymple. 1999. Semantics and syntax in lexical
functional grammar: The resource logic approach.
The MIT Press, Cambridge, MA.

Mary Dalrymple, editor. 2023. Handbook of Lexical
Functional Grammar. Number 13 in Empirically Ori-
ented Theoretical Morphology and Syntax. Language
Science Press, Berlin.

Mary Dalrymple, John Lamping, and Vijay Saraswat.
1993. LFG semantics via constraints. In Proceed-
ings of the Sixth Conference on European Chapter of
the Association for Computational Linguistics (EACL
'93), page 97-105, USA. Association for Computa-
tional Linguistics.

Mary Dalrymple, Agnieszka Patejuk, and Mark-
Matthias Zymla. 2020. XLE+Glue — a new tool for
integrating semantic analysis in XLE. In Proceedings
of the LFG’20 Conference, pages 89-108, Stanford,
CA. CSLI Publications.

Jamie Y. Findlay and Dag T. T. Haug. 2022. Managing
scope ambiguities in Glue via multistage proving. In
Proceedings of the LFG’22 Conference, pages 144—
163, Konstanz, Germany. PubliKon.

Jamie Y Findlay, Saeedeh Salimifar, Ahmet Yildirim,
and Dag T. T. Haug. 2023. Rule-based semantic
interpretation for Universal Dependencies. In Pro-
ceedings of the Sixth Workshop on Universal De-
pendencies (UDW, GURT/SyntaxFest 2023), pages
47-57.

Dan Flickinger, Stephan Oepen, and Emily M. Bender.
2017. Sustainable development and refinement of
complex linguistic annotations at scale. In Nancy Ide
and James Pustejovsky, editors, Handbook of Linguis-
tic Annotation, pages 353-377. Springer, Dordrecht.

Jean-Yves Girard. 1995. Linear logic: Its syntax and
semantics. London Mathematical Society Lecture
Note Series, pages 1-42.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2020. Logical inferences with comparatives and
generalized quantifiers. In Proceedings of the 58th
Annual Meeting of the ACL: Student Research Work-
shop, pages 263270, Online. ACL.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2022. Implementing natural language inference
for comparatives. Journal of Language Modelling,
10(1).

https://lfg-proceedings.org
https://lfg-proceedings.org
https://doi.org/10.1145/505168.505184
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://doi.org/10.5281/zenodo.10037797
https://doi.org/10.5281/zenodo.10037797
https://doi.org/10.3115/976744.976757
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/lfg2020-dpz.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/lfg2020-dpz.pdf
https://lfg-proceedings.org/lfg/index.php/main/article/view/18
https://lfg-proceedings.org/lfg/index.php/main/article/view/18
https://doi.org/10.1007/978-94-024-0881-2_14
https://doi.org/10.1007/978-94-024-0881-2_14
https://doi.org/10.18653/v1/2020.acl-srw.35
https://doi.org/10.18653/v1/2020.acl-srw.35

Dag T. T. Haug. 2023. LFG and dependency grammar.
In Mary Dalrymple, editor, Handbook of Lexical
Functional Grammar, chapter 43, pages 1829-1859.
Language Science Press, Berlin.

Irene Heim and Angelika Kratzer. 1998. Semantics in
generative grammar. Blackwell, Oxford, UK.

Mark Hepple. 1996. A compilation-chart method for lin-
ear categorial deduction. In Proceedings of the 16th
Conference on Computational Linguistics, volume 1,
pages 537-542. Association for Computational Lin-
guistics.

William A. Howard. 1980. The formulae-as-types no-
tion of construction. 7o HB Curry: Essays on Com-
binatory Logic, Lambda calculus, and Formalism,
44:479-490.

Hans Kamp and Uwe Reyle. 1993. From discourse to
logic: Introduction to modeltheoretic semantics of
natural language, formal logic and Discourse Repre-
sentation Theory, volume 42 of Studies in Linguistics
and Philosophy. Kluwer Academic Publishers, Dor-
drecht/Boston.

Ronald M. Kaplan. 1989. The formal architecture of
Lexical-Functional Grammar. Journal of Information
Science and Engineering, 5(4):305-322.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: A formal system for grammat-
ical representation. In Mary Dalrymple, Ronald M.
Kaplan, John T. Maxwell III, and Annie Zaenen, edi-
tors, Formal Issues in Lexical-Functional Grammar,
pages 1-102. Stanford University, Stanford, CA.

Christopher Kennedy and Louise McNally. 2005. Scale
structure, degree modification, and the semantics of
gradable predicates. Language, pages 345-381.

Tracy Holloway King. 2016. Theoretical linguistics
and grammar engineering as mutually constraining
disciplines. In Proceedings of the Joint 2016 Con-
ference on Head-driven Phrase Structure Grammar
and Lexical Functional Grammar, Polish Academy of
Sciences, Warsaw, Poland, pages 339-359, Stanford,
CA. CSLI Publications.

Laura Kovacs and Andrei Voronkov. 2013. First-order
theorem proving and vampire. In International Con-
ference on Computer Aided Verification, pages 1-35.
Springer.

Iddo Lev. 2007. Packed computation of exact meaning
representations. Ph.D. thesis, Stanford University.

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceedings
of the eight International Conference on Computa-
tional Semantics, pages 140-156.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association for

45

Computational Linguistics, pages 3428-3448, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Moritz MefBmer and Mark-Matthias Zymla. 2018. The
Glue semantics workbench: A modular toolkit for
exploring linear logic and Glue semantics. In Pro-
ceedings of the LFG’18 Conference, pages 249-263,
Stanford, CA. CSLI Publications.

Paul Meurer. 2017. From LFG structures to dependency
relations. Bergen Language and Linguistics Studies,
8(1).

Richard Moot and Christian Retoré. 2012. The logic of
categorial grammars: A deductive account of natural
language syntax and semantics. Number 6850 in
Lecture Notes in Computer Science. Springer, Hei-
delberg.

Adam Przepioérkowski and Agnieszka Patejuk. 2023.
Filling gaps with Glue. In Proceedings of the LFG’23
Conference, pages 223-240, Konstanz, Germany.
PubliKon.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108, Online. As-
sociation for Computational Linguistics.

Victoria Rosén, Koenraad De Smedt, Paul Meurer, and
Helge Dyvik. 2012. An open infrastructure for ad-
vanced treebanking. In META-RESEARCH Work-
shop on Advanced Treebanking at LREC2012, pages
22-29.

Sebastian Sulger, Miriam Butt, Tracy Holloway King,
Paul Meurer, Tibor Laczké, Gyorgy Rakosi, Cheikh
M Bamba Dione, Helge Dyvik, Victoria Rosén, Koen-
raad De Smedt, Agnieszka Patejuk, Ozlem Cetinoglu,
I Wayan Arka, and Meladel Mistica. 2013. ParGram-
Bank: The ParGram parallel treebank. In ACL, pages
550-560.

Geoff Sutcliffe. 2008. The SZS ontologies for auto-
mated reasoning software. In Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated
Provers and Proof Assistants (KEAPA 2008), and the
7th International Workshop on the Implementation of
Logics (IWIL-2008), volume 418 of CEUR Workshop
Proceedings, pages 38—49. CEUR-WS.org.

Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and
Allen Van Gelder. 2006. Using the TPTP language
for writing derivations and finite interpretations. In
Automated Reasoning — IJCAR 2006, volume 4130
of Lecture Notes in Computer Science, pages 67-81,
Seattle, WA, USA. Springer.

Jiirgen Wedekind and Ronald M. Kaplan. 1993. Type-
driven semantic interpretation of f-structures. In Pro-
ceedings of the Sixth EACL, pages 404—411.

https://aclanthology.org/C96-1091
https://aclanthology.org/C96-1091
https://doi.org/10.21248/hpsg.2016.18
https://doi.org/10.21248/hpsg.2016.18
https://doi.org/10.21248/hpsg.2016.18
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf
https://lfg-proceedings.org/lfg/index.php/main/article/view/41
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://ceur-ws.org/Vol-418/KEAPA-08-1.pdf
http://ceur-ws.org/Vol-418/KEAPA-08-1.pdf
https://doi.org/10.1007/11814771_7
https://doi.org/10.1007/11814771_7
https://doi.org/10.3115/976744.976791
https://doi.org/10.3115/976744.976791

Thomas Ede Zimmermann. 1999. Meaning postulates
and the model-theoretic approach to natural language
semantics. Linguistics and Philosophy, 22(5):529—
561.

Mark-Matthias Zymla. 2017. Comprehensive annota-
tion of cross-linguistic variation in tense and aspect
categories. In Proceedings of the 12th International
Conference on Computational Semantics (IWCS) —
Long Papers, Montpellier, France.

Mark-Matthias Zymla. 2018. Annotation of the syn-
tax/semantics interface as a bridge between deep lin-
guistic parsing and TimeML. In Proceedings 14th
Joint ACL-1SO Workshop on Interoperable Semantic
Annotation, pages 53-59.

Mark-Matthias Zymla. 2024. Ambiguity management
in computational Glue semantics. In Proceedings of
the LFG’24 Conference, pages 285-310, Konstanz,
Germany. PubliKon.

46

https://doi.org/10.1023/A:1005409607329
https://doi.org/10.1023/A:1005409607329
https://doi.org/10.1023/A:1005409607329
https://aclanthology.org/W17-6817/
https://aclanthology.org/W17-6817/
https://aclanthology.org/W17-6817/

A Worked examples
A.1 Example (12)

(17) a. Some great tenors are Swedish.
Jz, e[tenor(x) A great(x) A swedish(e) A be(e) A argl(e) = z]
b. There are some great tenors who are Swedish.
Jx,y, e1,esltenor(z) A great(x) A swedish(e) A be(er) A argl(e) = x A be(ez) A
argl(es) =y A arg2(e2) = x|

Generated semantics:

argl(x1,x3)
arg2(x1,x2)

x2 x1		x2 x4 x3 x1
=mmmmmmees	.	
great(x2)		great(x2)
tenor(x2)		tenor(x2)
swedish(x1)		swedish(x4)
be(x1) I	be(x4) I	
argl(x1,x2)		argl(x4,x2)
R | | be(x1) I

I I

I I

Used axioms:

fof (be_axiom, axiom,
10X,Y,Z] @ ((be(X) & argl(X,Y) & arg2(X,2)) => Y = 2)).

Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +
Model found + + - +

A.2 Example (5)

(18) a. A Swede won a Nobel prize
Jz, e[swede(x) A prize(y) A win(e) A argl(e) =z A arg2(e) = y]
b. Every Swede is a Scandinavian
Vz, e[swede(x) — Je[scandinavian(e) A be(e) A argl(e) = z]]
¢. A Scandinavian won the Nobel prize.
3z, e[scandinavian(zx) A prize(y) A win(e) A argl(e) = x A arg2(e) = y]

Generated semantics:

| x3 x2 x1 | | | | x3 x2 x1 |
|=mmmmmmmmes T I |
swede(x3)			scandi(x3)			
prize(x2)		x1		x3 x2		prize(x2)
win(x1)		-=mmmm -	R —		win(x1)	
argl(x1,x3)		swede(x1)	==>	scandinavian(x3)	argl(x1,x3)	
arg2(x1,x2)	[be(x2)	arg2(x1,x2)			

I I
I I
| argl(x2,x1) |
| arg2(x2,x3) |
I I

47

Used axioms:

fof (be_axiom, axiom,
1IX,Y,Z] : ((be(X) & argl(X,Y) & arg2(X,Z)) => Y = Z7)).
Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +
Model found + + - +

A.3 Example (13)
(19) a. An Italian became the greatest tenor.
Jx,y, e[italian(x) A great(y) A tenor(y) A become(e) A arg2(e) = x A argl(e) = y]
b. There was an Italian who became the greatest tenor.
Jx,y, e[italian(x) A great(y) A tenor(y) A become(e) A argl(e) = x A arg2(e) = y]

| x2 x3 x1 | | x3 x5 x4 x2 x1 |

| =mmmmmmmees | | === |
italian(x2) italian(x3)
great(x3) great(x5)
tenor(x3) tenor(x5)

become (x4)
arg2(x4,x5)
argl(x4,x3)
be(x1)

arg2(x1,x3)
argl1(x1,x2)

arg2(x1,x3)

I I
I I
I I
| become(x1) |
I I
| argl(x1,x2) |

Used axioms:
fof (be_axiom, axiom,
1IX,Y,Z] : ((be(X) & argl(X,Y) & arg2(X,Z)) => Y = Z7)).

Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +
Model found + + - +

A4 Example (14)

(20) a. All mice are small animals.

Va[mouse(xz) — 3y, 4, e[animal(y) A small(y,d) A Osmari(animal) = 6 A be(e) A
argl(e) =z A arg2(e) = y]

b. Mickey is a large mouse.
dz,y,0,e[x = Mickey A mouse(y) A large(y,d) A Orarge(mouse) = 6 A be(e) A
argl(e) =z A arg2(e) = y]

c. Mickey is a large animal.
Jz,y,0,e[x = Mickey n animal(y) A large(y,d) A Grarge(animal) = 6 A be(e) A
argl(e) =z A arg2(e) = y|

48

Generated semantics:

| | x1 | | x3 x4 x2 |
| =mmmmmeees I R |
| | mouse(x1) | ==> | th_small(animal) = x4 |
[| | small(x3,x4) |
I | animal(x3) |
I | be(x2) I
I | arg2(x2,x3) I
| | argl(x2,x1) |
I I I
I

| x2 x4 x3 x1 | |

| =mmmm e | |

th_large(mouse) = x4

I

| large(x2,x4)
| mouse(x2)

| x3 = mickey
| be(x1)

| argl(x1,x3)
| arg2(x1,x2)
I

Used axioms:
% adjectives

tff(large_type, type, large:
tff(small_type, type, small:

%comparison classes

$i * $int) > $0).
$i * $int) > $0).

tff(large_cc_type, type, th_large: $i > $int).
tff(small_cc_type, type, th_small: $i > $int).

%predicatives

tff(be_type, type, be: $i >
tff(argli_type, type, argl:
tff(arg2_type, type, arg2:

%nouns

$0).

$i % $i) > $0).
$1 x $i) > $0).

tff(mouse_type, type, mouse: $i > $0).
tff(animal_type, type, animal: $i > $0).

%names

tff(pn_typel, type,
tff(pn_type2, type,
tff(pn_type3, type,
tff(pn_type4, type,

mickey:

animal:

$1).

minni: $i).

$1).

mouse: $i).

%predicative meaning postulate

tff(axioml,axiom, (![A : $i]:
).

%from events to adjectives

tff(axiom2,axiom, (![A : $i]:

tff(axiom3,axiom, (![A : $i]:

tff(axiom4,axiom, (![A : $i]:

I[B :

I[B :
I[B :

?[B :

$i]:

$i]:
$i]:

$int]:

x2 x4 x3 x1
th_large(animal) = x4
large(x2,x4)

animal (x2)

x3 = mickey

be(x1)

argl1(x1,x3)
arg2(x1,x2)

I[C : $i]: be(A) & (argl(A,B) & arg2

I[C : $int]: argl1(A,B) & large(A,C))

I[C : $int]: argl(A,B) & small(A,C))
large(A,B) & © (?[C : $int]:

49

A,€))) => (B =C)))

=> large(B,C)))))).
=> small(B,C)))))).

$greater(C,B) & large(A,C))

).
tff(axiom5,axiom, (![A : $i]: (![B : $int]: (large(A,B) <=> (![C : $int]: ($lesseq(C,B) => large(A,C))

2.

tff(axiom6,axiom, (![A : $i]: (?[B : $int]: (small(A,B) & ~ (?[C : $int]: ($greater(B,C) & small(A,C))

NN
tff(axiom7,axiom, (![A : $i]: (![B : $int]: (small(A,B) <=> (![C : $int]: ($lesseq(B,C) => small(A,C))

).

%comparison class
tff(cclass,axiom, (![D: $int, D1: $int]:((th_large(animal) = D & th_small(animal) = D1) => $less(D1,D
NN

%antonym

tff(antonyml, axiom, ![X: $i, D: $int]l: (large(X,D) <=> “small(X,D))).
tff(antonym2, axiom, ?[X: $i, D: $int]: (large(X,D)) <=> ?[X1: $i, D1: $int]: (small(X1,D1))).

Inference output:

I+consistent -consistent +informative -informative

Termination reason - ? ? ?
SZS status - ? ? ?

A.5 Example (16)

21 a. The PC-6082 is faster than every ITEL computer.

Vy[computer(y) A kind(y,itel) — 3z, d, e[fast(e,d) A argl(e) = z A x = PC-6082 A
arg2(e) = yl]

b. The ITEL-ZX is an ITEL computer.
Az, y, e[x = ITEL-ZX A computer(y) A kind(y, itel) Abe(e) nargl(e) = z narg2(e) =
y]

c. The PC-6082 is faster than the ITEL-ZX.
Jx,y,0,¢e[fast(e,0) A z = PC-6082 A y = ITEL-ZX A argl(e) = = A arg2(e)
y A =3[fast(e/,0) A argl(e) = y]]

| computer(x1) | ==>
| rel(kind,x1,itel) |
I I

X3 = pc-6082 |
fast(x2,x5) |

| argl(x4,x1) |

be(x2)

I

I

I

I

I

| | | fast(x4,x5) |
I

I

I

| arg1(x2,x3)
I

50

| x2 x4 x1 x5 | | x2 x3 x1 |

X2 = pc-6082 | computer(x2)
x4 = itel-zx | rel(kind,x2,itel)
fast(x1,x5) | X3 = pc-6082

argl1(x1,x3)

|

I

I
_____________ | | be(x1)

I

| arg2(x1,x2)

I

| | fast(x3,x5) |
| arg1(x3,x4) |

be(x1)
argl(x1,x2)

Used axioms:

%adjectives
tff(fast_type, type, fast: ($i * $int) > $o).

%modifiers
tff(kind_type, type, kind: ($i * $i) > $o0).

%»predicatives

tff(be_type, type, be: $i > $0).
tff(argi_type, type, argl: ($i * $i) > $o).
tff(arg2_type, type, arg2: ($i * $i) > $o0).

%nouns
tff(computer_type, type, computer: $i > $0).

%names
tff(pn_typel, type, 'pc-6082': $i).
tff(pn_type2, type, 'itel-zx': $i).

%»predicative meaning postulate
tff(axioml,axiom, (![A : $il: ('[B : $il: (![C : $i]: be(A) & (argl(A,B) & arg2(A,C))) => (B = C))))
).

%from events to adjectives
tff(axiom2, axiom, (!'[A: $i]: (![B: $il: (![C: $int]: argl1(A,B) & fast(A,C)) => fast(B,C)))))).

tff(axiom3, axiom, (![A: $il: (![B: $int]: (fast(A,B) <=> (![C: $int]: ($lesseq(C,B) => fast(A,C)))))

).
tff(axiom4, axiom, (![A: $i]: (![B: $il: ?[C: $int]: (fast(A,C) & “fast(B,C))) => (![D: $int]:

fast(B,D) => fast(A,D))))))).
tff(axiom5, axiom, (![A: $il: (?[B: $int]: (fast(A,B) & "(?[C: $int]: ($greater(C,B) & fast(A,C))))))

).

Inference output:
I+consistent -consistent +informative -informative

Termination reason ? ? - ?
SZS status ? ? - ?

» For comparatives, only a partial answer based on the refutation of the positive informativity check is
given.

* 7 refers to proof searches that have timed out.

* The search strategy differs in this examples as model building is not an option.

51

