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Abstract

Sparse autoencoders (SAEs) are a promising
approach for uncovering interpretable features
in large language models (LLMs). While sev-
eral automated evaluation methods exist for
SAEs, most rely on external LLMs. In this
work, we introduce CE-Bench, a novel and
lightweight contrastive evaluation benchmark
for sparse autoencoders, built on a curated
dataset of contrastive story pairs. We con-
duct comprehensive evaluation studies to val-
idate the effectiveness of our approach. Our
results show that CE-Bench reliably measures
the interpretability of sparse autoencoders and
aligns well with existing benchmarks without
requiring an external LLM judge, achieving
over 70% Spearman correlation with results in
SAEBench. The official implementation and
evaluation dataset are open-sourced and pub-
licly available.

1 Introduction

Sparse autoencoders (SAEs) are designed to learn
a sparse latent representation of any model’s in-
ternal activations such that the latent activations
are more interpretable (Paulo and Belrose, 2025).
SAEs can be used to probe various components
of an large language model (LLM), such as atten-
tion heads, MLP layers, or residual streams. As
a result, SAEs have gained popularity and been
integrated into a variety of interpretability libraries
and toolkits for LLMs (Gao et al., 2024a; Cunning-
ham et al., 2023a; Pach et al., 2025). Alongside
their widespread adoption, SAEs have also been
evaluated across a range of dimensions. For exam-
ple, SAEBench (Karvonen et al., 2025) provides
a unified framework with diverse metrics, includ-
ing the behaviors of SAEs after steering up the
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latent activations (Arad et al., 2025), whether spe-
cific latents can capture predefined conceptual at-
tributes (Wu et al., 2025), and how features can be
cleanly separated without interfering others (Huang
et al., 2024). For interpretability, SAEBench builds
upon the idea of LLM-assisted simulation, using
natural language explanations to probe neuron acti-
vations and derive evaluation metrics (Bills et al.,
2023). Similarly, RouteSAE (Shi et al., 2025) pro-
poses a simpler approach that feeds top neuron
activations into an external LLM judge to produce
interpretability scores. However, a major limita-
tion shared by these approaches is their reliance
on querying an external LLM during evaluation.
This introduces non-determinism, potential biases,
and a lack of reproducibility, issues that are only
partially mitigated by repeated prompt trials.

To address this gap, we introduce CE-Bench, a
novel, fully LLM-free contrastive evaluation bench-
mark. CE-Bench measures interpretability by an-
alyzing neuron activation patterns across semanti-
cally contrastive contexts. Our contrastive setup
is partly inspired by the design of Persona Vectors
(Chen et al., 2025), which generates interpretable
persona representations by contrasting response ac-
tivations from semantically opposing traits (e.g.,
“evil” versus “helpful”). Their formulation reveals
how aligning a system’s responses with one condi-
tion while separating them from the opposing con-
dition yields clear, trait-specific representation vec-
tors. CE-Bench adapts this insight to the domain of
sparse autoencoders: instead of comparing oppos-
ing personas, it contrasts neuron activations across
structured story pairs that differ only in a targeted
semantic attribute. By grounding interpretability in
contrastive signal rather than raw activation mag-
nitude, CE-Bench disentangles meaningful feature
directions from background noise and spurious cor-
relations, offering a principled extension of the
Persona Vectors to feature-level interpretability of
sparse autoencoders. To compute the evaluation
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metric, we construct a high-quality dataset com-
prising 5,000 contrastive story pairs across 1,000
distinct subjects, curated via structured WikiData
queries and supplemented by human validation.
For each pair, neuron activations from a frozen
LLM and pretrained SAE are compared: the con-
trastive score captures activation differences be-
tween stories, the independence score measures
deviation from dataset-wide averages, and both are
max-pooled and combined with SAE sparsity to
yield a final interpretability score (Figure 1).

Through extensive experiments, we find that
our evaluation metrics, while being much cheaper
to evaluate, achieve strong alignment with LLM-
assisted benchmarks like SAEBench under all
three alignment metrics introduced in section 3.2.
CE-Bench also consistently highlights key inter-
pretability trends: top-k (Gao et al., 2024b) and
p-anneal (Karvonen et al., 2024) SAEs emerge
as the most interpretable architectures; wider la-
tent spaces yield more disentangled features; inter-
pretability is largely invariant to the type of probed
LLM layer; middle transformer layers provide the
clearest semantic representations. These results
validate CE-Bench as a stable, reproducible, and
lightweight framework for evaluating SAEs with-
out reliance on external LLMs.

2 CE-Bench

We introduce our contrastive evaluation framework,
CE-Bench, illustrated in the pipeline and metric
computation diagram in Figure 1.

2.1 Curated Dataset of Contrastive Stories

To support CE-Bench, we construct a high-quality,
semi-automated dataset consisting of 5,000 pairs
of contrastive stories across 1,000 distinct subjects.
The dataset construction follows a two-stage filter-
ing and synthesis process:

Subject Selection. We begin by scraping over
117 million entities from WikiData. A series of
rule-based filters are applied to reduce the candi-
date set to approximately 16,000 entries. These fil-
tering rules are designed to exclude overly obscure,
abstract, or ambiguous entries, retaining only those
that represent well-known concepts, ideas, or ob-
jects familiar to an average English speaker. From
this reduced set, 1,000 subjects are randomly sam-
pled and manually reviewed to ensure quality and
conceptual clarity.

Contrastive Story Generation. For each of the
1,000 curated subjects, we synthetically generate
two semantically contrastive stories using GPT-
4.1. These stories are created based on a care-
fully designed prompt (shown in Table 4 in the
Appendix). The prompt ensures that the two narra-
tives about the same subject diverge significantly
in perspective, context, or implication—while re-
maining grounded in the same core entity. For each
subject, five story pairs are generated, yielding a
total of 5,000 contrastive pairs. An illustrative ex-
ample is provided in Table 6.

2.2 Contrastive Score
We hypothesize that if a sparse autoencoder (SAE)
has learned semantically meaningful features, then
neurons associated with the contrastive aspects of
a subject (e.g., descriptive attributes) should ex-
hibit different activation patterns when presented
with two contrasting descriptions of that subject.
At the same time, neurons representing the core
identity of the subject should remain stable. In
other words, greater divergence in the activa-
tions of contrast-relevant neurons, coupled with
stability in invariant neurons, indicates higher
interpretability of the latent space. As illustrated
in Figure 1, we formalize this intuition as follows.
For each story pair, we compute the average neuron
activations across all tokens in each story. Let V1

and V2 denote the resulting mean activation vec-
tors for the two contrastive stories, respectively. To
quantify the contrast, we compute the neuron-wise
contrastive vector as the element-wise absolute dif-
ference between V1 and V2:

C = |V1 − V2|
where C ∈ Rd and d is the dimensionality of the
latent space. We further apply min-max normal-
ization to C, ensuring that each feature contributes
on a comparable scale to the evaluation. Without
this normalization, the presence of even a single
feature capable of clearly distinguishing a story
pair, even when taking only moderate values, could
result in an SAE being regarded as perfect. Finally,
to summarize this vector into a single scalar con-
trastive score for the entire SAE, we apply a max
pooling operation:

Contrastive Score = max(C)

This pooling strategy emphasizes the most respon-
sive neuron, the one that exhibits the largest dif-
ferential activation between the two stories. Our
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Figure 1: Pipeline of constructing the interpretability metric in CE-Bench. Two contrastive stories about
the same subject are passed through a frozen LLM and a pretrained sparse autoencoder (SAE) to extract neuron
activations. A contrastive score is computed as the max absolute difference between the stories’ average activations
(V1, V2), while an independence score measures deviation from the dataset-wide activation mean (Iavg). These scores,
along with SAE sparsity, are used to derive an interpretability score for an LLM-free evaluation of interpretability
of sparse autoencoders.

rationale is that this neuron is most likely to cap-
ture the semantic distinction introduced by the con-
trastive prompts. Hence, its behavior represents
how well the sparse autoencoder has disentangled
interpretable features in its latent space.

2.3 Independence Score
We propose a complementary hypothesis: if the
neuron activations corresponding to a specific se-
mantic subject differ more significantly from the
average behavior across all subjects, then the latent
space of the sparse autoencoder (SAE) is likely to
be more interpretable. Intuitively, interpretable neu-
rons should respond uniquely to individual subjects
rather than in a uniform or entangled manner. To
evaluate this, we first compute the sum of the mean
activation vectors for the two contrastive stories
associated with a given subject:

I1 = V1 + V2

where V1 and V2 are the average activation vectors
of the two contrastive stories, as defined in the
previous section. Next, we calculate the mean of
I1 across all N = 5000 story pairs in our dataset:

Iavg =
1

N

N∑

i=1

I
(i)
1

This global average vector Iavg serves as a baseline
representation of general neuron activity across the
dataset. To assess the subject-specific deviation
from this baseline, we compute the neuron-wise
independence vector as the element-wise absolute
difference between I1 and Iavg:

D = |I1 − Iavg|

A similar min-max normalization is also applied
to account for any absolute variance in distribution.
Finally, we derive a scalar independence score for
the SAE by applying a max pooling operation:

Independence Score = max(D)

This highlights the neuron that deviates most
strongly from its dataset-wide average response:
the neuron that is most sensitive or specialized with
respect to the semantic subject under consideration.
A higher independence score thus suggests that
the SAE has learned more distinct, interpretable
features.

2.4 Sparsity-aware Interpretability Score

To compute the final interpretability score in CE-
Bench, we need to aggregate the contrastive score,
independence score, and sparsity as illustrated in
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Figure 2: Effect of SAE Architecture on Interpretability. CE-Bench interpretability scores show strong positive
correlations with contrastive and independence scores, and a negative correlation with sparsity across SAE variants.
Among all architectures, top-k and p-anneal consistently yield the highest interpretability, aligning closely with
SAE-Bench ground truth.

Figure 1. For a simple baseline, we propose com-
puting the final CE-Bench score as the simple arith-
metic sum of the contrastive and independence
scores. However, prior work (Cunningham et al.,
2023b) has documented the tradeoff between spar-
sity and reconstruction quality, and our early exper-
iment results consistently show a negative correla-
tion between sparsity and interpretability. Building
on these observations, we hypothesize that incor-
porating the sparsity of the sparse autoencoder as a
regularizing signal may further improve alignment
quality. Therefore, we apply a penalty term to our
interpretability metric to make it sparsity-aware:
α∗sparsity, where α is a hyperparameter to control
the scale of sparsity penalty. In section 4.1, we fur-
ther demonstrate a non-exhaustive grid search on α
to maximize its alignment with results from exist-
ing methods. We find that α = 0.25 can contribute
to the best alignment in general.

3 Experimental Setup

3.1 Pretrained Sparse Autoencoders

We utilize a wide range of pretrained sparse au-
toencoders (SAEs) publicly released by SAE-Lens
(Joseph Bloom and Chanin, 2024) and SAE-Bench
(Karvonen et al., 2025), which cover multiple LLM
backbones and SAE architectural variants. Rather
than training SAEs from scratch, we rely on these
pretrained models for two key reasons. First, it
removes the substantial computational overhead
associated with training, making it feasible to fo-
cus on benchmarking. Second, using standardized
public models ensures a fair comparison between

CE-Bench and existing benchmarks, particularly
SAE-Bench (Karvonen et al., 2025). As for the
testbeds, we compile a validation testbed of 48 pre-
trained SAEs for which SAE-Bench interpretability
scores are available, and a disjoint inference-only
testbed consisting of 45 pretrained SAEs whose
SAE-Bench interpretability scores are not publicly
available. Specifically, the validation testbed is
used for evaluating the alignment between CE-
Bench and SAE-Bench, in which three alignment
metrics are introduced in section 3.2 below to en-
sure the rigor of quantitative evaluation.

3.2 Alignment Metrics

Correct Ranking Pair Ratio (CRPR). To assess
the reliability of CE-Bench and its alignment with
respect to SAE-Bench (Karvonen et al., 2025), we
first introduce Correct Ranking Pair Ratio (CRPR).
This metric evaluates whether CE-Bench preserves
the relative interpretability ranking of model pairs.
For every pair of SAEs, we check whether the bi-
nary ranking between their predicted interpretabil-
ity scores (from CE-Bench) matches the ranking
given by SAE-Bench. A pair is marked as con-
cordant if the rankings agree, and as discordant
otherwise. The CRPR is then computed as:

CRPR =
# concordant pairs

# total pairs

A higher CRPR indicates better alignment with
SAE-Bench rankings, demonstrating CE-Bench’s
effectiveness as an LLM-free yet reliable evalua-
tion metric. To complement CRPR, we additionally
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Figure 3: Effect of Latent Space Width on Interpretability. CE-Bench interpretability scores increase consistently
with latent space width, with the 65k-dimension models showing the highest contrastive and independence scores
and the lowest sparsity. This suggests that wider latent spaces enable sparse autoencoders to better disentangle
meaningful features and reduce polysemanticity.

introduce Spearman Correlation and Pearson Cor-
relation as alignment metrics.

Spearman Correlation. Spearman Correlation
measures the monotonic relationship between two
sets of rankings. Given the predicted interpretabil-
ity scores from CE-Bench and the ground-truth
scores from SAE-Bench, we compute the rank of
each model and evaluate the correlation between
the two rank vectors. Formally, Spearman correla-
tion is defined as:

ρ = 1− 6
∑

i d
2
i

n(n2 − 1)
,

where di is the difference between the ranks of
the i-th model under CE-Bench and SAE-Bench,
and n is the number of models. A higher ρ indi-
cates stronger agreement in the global ordering of
models.

Pearson Correlation. Pearson Correlation mea-
sures the linear relationship between the raw inter-
pretability scores of CE-Bench and SAE-Bench. It
is defined as:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
,

where xi and yi denote the CE-Bench and SAE-
Bench scores for the i-th model, and x̄ and ȳ are
their respective means. A higher r indicates that
not only the order but also the relative differences
between scores are preserved.

In summary, CRPR captures pairwise ranking
agreement, Spearman Correlation assesses the

global consistency of rankings, and Pearson Corre-
lation evaluates the linear similarity of score mag-
nitudes. Using all three provides a comprehensive
view of alignment between CE-Bench and SAE-
Bench.

4 Results

In this section, we present our main empirical find-
ings, evaluating the effectiveness of CE-Bench
across a variety of experimental conditions. Specif-
ically, we examine how CE-Bench responds to
changes in the architecture of sparse autoencoders,
the width of their latent space, the type of LLM
layer being probed, and the depth of the layer
within the LLM. Unless otherwise specified, all
experiments use the sparsity-aware interpretability
score described in Section 2.4. A direct quantitative
comparison between the baseline metric and the
sparsity-aware metric is provided in Section 4.1, us-
ing three alignment metrics defined in Section 3.2.
We also include visualizations of CE-Bench’s con-
trastive and independence scores to offer additional
interpretability insights.

4.1 Baseline v.s. Sparsity-aware
Interpretability Score

We conduct a comparative study between our base-
line interpretability score and sparsity-aware in-
terpretability score discussed in section 2.4 based
on the alignment between CE-Bench predictions
and SAE-Bench ground truth. To evaluate the align-
ment, we use all three alignment metrics introduced
in details in Section 3.2: Correct Ranking Pair
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Figure 4: Effect of LLM Layer Type on Interpretability. CE-Bench predicted interpretability scores show
consistent trends across attention, MLP, and residual stream layers with respect to contrastive score, independence
score, and sparsity. The similarity in curves across layer types suggests that sparse autoencoder interpretability is
not strongly influenced by the type of transformer sub-layer being probed.

Score Derivation method CRPR↑ Spearman correlation↑ Pearson correlation↑
C + I 70.12% 0.5536 0.6048

C + I − 1.0 ∗ S 75.53% 0.6833 0.6176
C + I − 0.25 ∗ S 77.30% 0.7081 0.7046

Table 1: Comparison of Interpretability Score Derivation Methods. C stands for contrastive score; I stands for
independence score; S stands for sparsity. Baseline achieves 70.12% ranking agreement with SAE-Bench, but the
sparsity-aware method pushes it to 77.30% with proper hyperparameter tuning on α.

Ratio (CRPR), Spearman Correlation, and Pear-
son Correlation. As reported in Table 1, the base-
line method of simply summing the contrastive
score and independence score achieves a CRPR of
70.12%, a Spearman correlation of 0.5536, and a
Pearson correlation of 0.6048, confirming its effec-
tiveness as a simple baseline. Building on this, we
perform a non-exhaustive grid search on the scaling
hyperparameter α in our proposed sparsity-aware
interpretability score. Subtracting the full sparsity
term (α = 1.0) leads to consistent improvements
across all metrics, raising CRPR to 75.53%, Spear-
man correlation to 0.6833, and Pearson correlation
to 0.6176. Further tuning to α = 0.25 yields the
best alignment, with CRPR increasing to 77.30%,
Spearman correlation to 0.7081, and Pearson corre-
lation to 0.7046. We therefore adopt α = 0.25 for
all subsequent experiments.

4.2 Architecture of SAEs

We begin by evaluating CE-Bench on a set of 36
pretrained sparse autoencoders across 6 different
architectures within the validation testbed, which
probes the Gemma-2-2B model (Team et al., 2024).
In this setting, all SAEs share a fixed latent dimen-

sionality of 65,000 and target activations from the
12th residual stream layer. To ensure a fair com-
parison with SAE-Bench (Karvonen et al., 2025),
we include sparse autoencoders drawn from six
different architectural families: standard (Cunning-
ham et al., 2023b), top-k (Gao et al., 2024b), p-
anneal (Karvonen et al., 2024), batch-top-k (Buss-
mann et al., 2024), jumprelu (Rajamanoharan et al.,
2024b), and gated (Rajamanoharan et al., 2024a).
Although SAEBench identifies Matryoshka as the
strongest-performing SAE (Bussmann et al., 2025),
we exclude it from our evaluation because it lacks
ground-truth annotations, which are essential for
our analysis regarding to the architecture of SAEs.
Figure 2 presents our results. The y-axis reflects
CE-Bench’s predicted interpretability scores. We
examine the relationship between our predictions
and the contrastive score, the independence score,
and the sparsity of the SAE, all plotted on the x-
axis. The results show that predicted interpretabil-
ity scores are positively associated with the con-
trastive and independence scores, and negatively
associated with the SAE’s sparsity level. Among
all architectures, top-k and p-anneal consistently
yield the highest interpretability, aligning closely
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with SAE-Bench ground truth.

4.3 Width of Latent Space

We further evaluate CE-Bench on a set of 15
pretrained sparse autoencoders across 3 different
widths within the validation testbed, probing the
Gemma-2-2B model (Team et al., 2024). Among
these, five sparse autoencoders overlap with the
architecture-based experiment discussed in Sec-
tion 4.2. For consistency, we fix the sparse au-
toencoder architecture to jumprelu and probe ac-
tivations from the 12th residual stream layer. In
this experiment, we vary the width of the latent
space across three settings: 4k, 16k, and 65k. The
three subplots in Figure 3 present the correspond-
ing contrastive scores, independence scores, and
sparsity levels. Our results reveal a strong and con-
sistent trend: wider latent spaces are associated
with higher predicted interpretability scores from
CE-Bench. This observation supports the hypoth-
esis that sparse autoencoders require sufficiently
large latent spaces to effectively resolve polyseman-
ticity and capture distinct, interpretable features.

4.4 Type of LLM Layers

To investigate how the type of LLM layer affects
the interpretability of sparse autoencoders, we
switch from the standard SAELens (Joseph Bloom
and Chanin, 2024) and SAE-Bench (Karvonen
et al., 2025) models, where such variation is limited,
to a new suite of pretrained sparse autoencoders
from the gemma-scope-2b collection (Lieberum
et al., 2024), which is a part of our inference-only
testbed. In this setting, the latent space width is
fixed at 16,000 (16k), and the SAE architecture
is set to jumprelu for all models. We examine
three types of transformer sub-layers within the
12th layer of the model: the attention layer, the
MLP layer, and the residual stream layer. Figure 4
presents the predicted interpretability scores from
CE-Bench in relation to the contrastive score, inde-
pendence score, and sparsity of each model. Our
results suggest that the choice of layer type (atten-
tion, MLP, or residual) does not significantly affect
the interpretability score as measured by CE-Bench.
This indicates a level of robustness in sparse au-
toencoder performance across different types of
internal LLM layer-wise representations.

4.5 Depth of LLM Layers

Due to the limited availability of pretrained sparse
autoencoders for the Gemma-2-2B model (Team

et al., 2024) in SAE-Bench (Karvonen et al., 2025),
we continue our experiments using our inference-
only testbed, the gemma-scope-2b suite (Lieberum
et al., 2024). In this setting, we fix the SAE archi-
tecture to jumprelu, the latent space width to 16k,
and the probed component to the residual stream.
We vary the depth of the probed layer, evaluating
the 0th, 5th, 10th, 15th, 20th, and 25th layers. Re-
sults are presented in Figure 5. Our results indicate
that middle layers such as Layer 10 and Layer 15
leads to the highest interpretability score, suggest-
ing that in practical applications, probing layers
in the middle could yield the most interpretable
insights into LLM model decisions.

4.6 Sample Score Visualization
To provide deeper insight into how CE-Bench com-
putes interpretability scores, we visualize the dis-
tributions of neuron-wise contrastive and indepen-
dence scores, as well as their joint relationship.
These visualizations help clarify the role of the max
pooling operation used to summarize neuron-wise
metrics into a single scalar score per sparse autoen-
coder. For each contrastive story pair in our dataset,
we generate three diagnostic plots: the distribution
of neuron-wise contrastive scores, the distribution
of neuron-wise independence scores, and a scatter
plot that places each neuron in a 2D space defined
by its contrastive and independence scores. In the
scatter plot, neurons in the upper-right quadrant are
both highly contrastive and highly independent, in-
dicating a strong subject-specific activation pattern.

As an example, Figure 6 presents these plots
for the first contrastive story pair in our curated
dataset, where the semantic subject is computer.
Jumprelu (Rajamanoharan et al., 2024b) SAE
which probes the Gemma-2-2B (Team et al., 2024)
model is used in this example. The leftmost scat-
ter plot shows that only a small subset of neurons
achieve high contrastive or independence scores,
while the majority cluster near the origin with weak
or non-specific activations. This distribution high-
lights that interpretability is typically concen-
trated in a few highly responsive neurons rather
than being evenly spread across all neurons. CE-
Bench therefore applies max pooling to reliably
capture these dominant signals, ensuring that the
evaluation reflects the most semantically meaning-
ful activations instead of being diluted by numerous
weak ones. Specifically, the rightmost cyan neu-
ron in the scatter plot, which exhibits the highest
neuron-wise contrastive score, determines the fi-
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Figure 5: Effect of Layer Depth on Interpretability. CE-Bench interpretability predictions across different LLM
layer depths show that middle layers such as Layer 10 and Layer 15 leads to the highest interpretability score,
suggesting that in practical applications, probing layers in the middle could yield the most interpretable insights into
model decisions.

Figure 6: Sample Visualization of Neuron-wise Scores for the Subject “Computer.” The left scatter plot shows
each neuron’s contrastive and independence scores, with top-right points indicating neurons that are both highly
contrastive and independent. The center and right histograms reveal that most neurons have low scores, suggesting
that only a small subset of features are semantically relevant for the given subject.

nal contrastive score for the sparse autoencoder:
109.2734. Similarly, the topmost yellow neuron
defines the independence score: 195.9004. The ac-
companying histograms confirm that most neurons
contribute minimally, reinforcing CE-Bench’s abil-
ity to isolate interpretable, high-signal dimensions
in the sparse latent space.

5 Related Work

Unlike prior approaches that depend on LLMs for
generating or scoring explanations or introduce
mechanisms such as probes and latent interven-
tions, CE-Bench offers an LLM-free, contrastive
evaluation framework by grounding interpretability
of SAEs in activation differences across curated
story pairs and deviations from dataset averages.

Sparse Probing. Sparse probing measures
whether SAEs capture specific concepts by iden-
tifying the k latents whose activations best distin-

guish positive from negative examples and training
a linear probe on them. High probe accuracy in-
dicates that the concept is well represented in the
latent space, even without explicit supervision. The
choice of k depends on the goal: k = 1 favors hu-
man interpretability, while larger k acknowledges
that concepts may be distributed across multiple
latents (Engels et al., 2025).

RAVEL. RAVEL (Huang et al., 2024) evaluates
whether SAEs disentangle independent concepts by
testing if targeted latent interventions can alter one
attribute without affecting others. Specifically, the
method transfers latent values between examples
(e.g., swapping the city in “Paris is in France” with
“Tokyo”) and observes whether the model changes
only the intended attribute while leaving unrelated
attributes intact (Karvonen et al., 2025). Disen-
tanglement is quantified using two metrics: the
Cause Metric, which measures successful attribute
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changes, and the Isolation Metric, which verifies
minimal interference with other attributes.

Automated Interpretability OpenAI (Bills
et al., 2023) introduces this method for evaluating
the interpretability of individual neurons in sparse
autoencoders. In this approach, the input text
and the activation values of a specific neuron are
provided to an LLM, which is prompted to generate
a short natural language explanation describing the
neuron’s semantic behavior. To assess how well
this explanation reflects the neuron’s behavior, a
second LLM is used to simulate the original neuron
activations based solely on the explanation. Both
the original text and the generated explanation
are fed into this second LLM, which is prompted
to output simulated activation values on the
same scale as the original neuron. Finally, the
interpretability score is computed as the similarity
(e.g., cosine similarity or R²) between the original
and simulated activation vectors. A higher
similarity suggests that the explanation accurately
captures the neuron’s behavior, indicating stronger
interpretability.

Score-Based Hard Assignment RouteSAE (Shi
et al., 2025) proposes a simpler alternative evalua-
tion framework based on discrete score assignment
using LLMs. For each neuron, a prompt is con-
structed that includes the top-activated tokens and
their corresponding activation values. The LLM
is instructed to categorize the neuron into one of
three types: low-level (e.g., lexical or syntactic
features), high-level (e.g., semantic or long-range
dependencies), or indiscernible. Additionally, the
LLM assigns an integer interpretability score from
1 to 5, reflecting how coherent or meaningful the
neuron’s behavior appears to be. During evalua-
tion, interpretability scores are averaged over a set
of top-activated neurons. This method provides
a more direct but coarse-grained quantification of
interpretability, with interpretability interpreted as
a categorical judgment rather than a continuous
similarity metric.

6 Limitations

Our curated dataset of 5000 contrastive story pairs
were generated using GPT-4, which may bias the
evaluation toward models that better capture GPT-
4’s stylistic and semantic regularities rather than
broader linguistic patterns. In addition, unlike
SAEBench (Karvonen et al., 2025), CE-Bench’s

dataset is limited in domain coverage, focusing
mainly on synthetic narrative text. As a result,
its generalizability to varied or domain-specific
contexts remains uncertain. Nevertheless, we
argue that a strong correlation with SAEBench
scores makes it well-suited for a more controlled
interpretability evaluation which can serve as a
lightweight filter to be used during SAE develop-
ment. Final evaluation of SAEs should report mul-
tiple metrics including ours.

7 Conclusion

We introduced CE-Bench, a fully LLM-free, con-
trastive evaluation framework for measuring the
interpretability of sparse autoencoders. By lever-
aging contrastive and independent neuron activa-
tion scores, CE-Bench offers a stable, determin-
istic, and reproducible alternative to LLM-based
interpretability methods such as Automated Inter-
pretability. To support this benchmark, we curated
a dataset of 5,000 contrastive story pairs across
1,000 semantic subjects. Through extensive exper-
iments, we demonstrated CE-Bench’s robustness
across different SAE architectures, latent widths,
LLM layer types, and depths. Our results show that
CE-Bench closely aligns with SAE-Bench rank-
ings, establishing it as a reliable yet simple frame-
work for interpretability evaluation of sparse au-
toencoders. We hope CE-Bench will serve as a
useful tool for future research in probing, interpret-
ing, and improving the internal representations of
large language models.
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A Appendix

A.1 Broader Impact

CE-Bench offers a compelling alternative to exist-
ing interpretability evaluation methods for sparse
autoencoders, particularly by eliminating reliance
on external LLM judges. Its design emphasizes
determinism, scalability, and reproducibility, ad-
dressing core limitations in LLM-based methods
such as prompt sensitivity, generation noise, and re-
source overhead. Our experiments demonstrate that
CE-Bench captures key properties of interpretable
neurons: responsiveness to semantic contrast, de-
viation from dataset-wide averages, and low re-
dundancy. These patterns hold consistently across
diverse sparse autoencoder designs and probing
conditions, reinforcing the generality of our evalu-
ation framework. A particularly encouraging result
is CE-Bench’s ability to approximate SAE-Bench
interpretability rankings with no supervision. The
success of the sparsity-aware metric suggests that
meaningful interpretability signals can be recov-
ered from model-internal statistics alone, opening
the door to broader use in low-resource or experi-
mental settings where no ground truth is available.

A.2 Ablation Study on Pooling Strategy

We conduct an ablation study to evaluate the effect
of different pooling strategies in CE-Bench’s final
step, which aggregates neuron-wise scores into a
single interpretability score for each sparse autoen-
coder (SAE). This aggregation is critical for ensur-
ing that CE-Bench reliably reflects interpretability.
In addition to the default max pooling strategy, we
explore two alternatives: 1. Mean pooling, where
the average of all neuron-wise scores is used as the
SAE-level score. 2. Outlier count beyond one stan-
dard deviation (1σ), where we count the number
of neurons whose scores lie outside one standard
deviation from the mean.

qualitative analysis As shown in Figure 7, mean
pooling performs poorly, exhibiting no meaningful
correlation between CE-Bench predictions and the
contrastive score. This suggests that averaging di-
lutes the influence of highly informative neurons.
Similarly, Figure 8 shows that the outlier-count
method results in a strongly noisy correlation be-
tween CE-Bench predictions and sparsity, contra-
dicting with prior work (Cunningham et al., 2023b)
that has documented the tradeoff between sparsity
and reconstruction quality, and our early experi-

ment results consistently showing a negative corre-
lation between sparsity and interpretability.

quantitative comparison To complement this
qualitative analysis, we also conduct a quantitative
comparison using the alignment metrics defined in
Section3.2. As summarized in Table2, max pool-
ing achieves the strongest performance across all
three measures: a CRPR of 77.30%, a Spearman
correlation of 0.7081, and a Pearson correlation of
0.7046. These values clearly surpass those obtained
by mean pooling and the outlier-count method,
both of which yield substantially weaker correla-
tions with SAE-Bench rankings. Based on this
consistent empirical advantage, together with its
theoretical alignment with our interpretability hy-
pothesis, we conclude that max pooling is the most
appropriate aggregation strategy for CE-Bench.

A.3 Ablation Study on Interpretability Score

To further validate the robustness of our inter-
pretability scoring scheme, we conducted an ab-
lation study comparing additional score derivation
methods, as shown in Table 3. Using only the
contrastive score (C) leads to relatively poor per-
formance across all three metrics, with a CRPR
of 65.07% and weaker correlations. The indepen-
dence score (I) and sparsity penalty (−S) each
achieve higher CRPR values of 70.92%, but their
correlations remain moderate, reflecting limited
standalone utility. In contrast, our proposed com-
bined formulation C + I − 0.25 ∗ S delivers the
strongest results by a significant margin, achiev-
ing a CRPR of 77.30%, a Spearman correlation of
0.7081, and a Pearson correlation of 0.7046. This
demonstrates that contrastive and independence sig-
nals provide complementary benefits, while a mild
sparsity penalty helps regularize the score. These
findings highlight that a composite metric, rather
than any single component, provides a more stable
and reliable measure of interpretability, reinforcing
our design choice for CE-Bench.

A.4 Natural Language Explanation on
Neuronpedia

To provide additional qualitative evidence, we re-
port examples of natural language explanations
from Neuronpedia (Lin, 2023) in Table 5. The neu-
ron IDs shown here correspond to the max-pooled
neurons selected by our scoring procedure, i.e.,
the single neuron that achieves the highest con-
trastive or independence score for a given subject.
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pooling strategy CRPR↑ Spearman correlation↑ Pearson correlation↑
max pooling 77.30% 0.7081 0.7046
mean pooling 70.92% 0.5838 0.5426

outlier count outside of 1σ 56.29% 0.1940 0.2728

Table 2: Comparison of Pooling Strategies. Max pooling achieves the highest Correct Ranking Pair Ratio (CRPR)
at 77.30%, outperforming mean pooling and the outlier count method. This supports max pooling as the most
effective strategy for aggregating neuron-wise scores.

Score Derivation method CRPR↑ Spearman correlation↑ Pearson correlation↑
C + I − 0.25 ∗ S 77.30% 0.7081 0.7046

C 65.07% 0.4327 0.5149
I 70.92% 0.5686 0.5900
−S 70.92% 0.5838 0.5426

Table 3: Comparison of Additional Interpretability Score Derivation Methods. C stands for contrastive
score; I stands for independence score; S stands for sparsity. The combined formulation C + I − 0.25 ∗ S
consistently outperforms individual components, indicating that integrating complementary signals yields more
reliable interpretability evaluations.

Figure 7: Ablation: Mean Pooling Strategy. Using mean pooling results in highly inconsistent and noisy
predictions, with no clear correlation between CE-Bench scores and the contrastive or independent metrics. This
indicates that averaging across all neurons fails to highlight the most semantically informative features.

Figure 8: Ablation: Outlier Count Pooling Strategy. This strategy yields a noisy correlation between CE-Bench
predictions and sparsity, contradicting with prior work (Cunningham et al., 2023b) and our early experiment results.
Thus, outlier count proves suboptimal.
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subject description 1 subject description 2

Write how you would describe {
subject.upper()} in its high ,
extreme form. Rephrase things if
needed , be very brief , specific ,
detailed , and realistic. For
example , "active" -> "extremely
vibrant , energetic , and lively" "
angry" -> "extremely mad , furious
, and enraged"

Now , write how you would describe
the exact opposite of {subject.
upper()}. Rephrase things if
needed , be very brief , specific ,
detailed , and realistic. DO NOT
USE THE WORDS {subject.upper()}
in your answer , instead write the
opposite of the concept. For

example , "active" -> "very
inactive , lethargic , sluggish ,
and lazy" "angry" -> "very calm ,
peaceful , and relaxed"

story 1 story 2

Write a short story describing the
following: {subject1 }.

Now , rewrite this story describing
the following: {subject2} (the
exact opposite of the previous
story).

Table 4: Prompt Template for Generating Contrastive Story Pairs. Subject descriptions are elicited in extreme
and opposite forms, followed by corresponding short stories to reflect the semantic polarity, forming the core of the
CE-Bench contrastive dataset.

Story ID Subject Score Type Neuron ID Natural Language Explanation
443 atomic nucleus Contrastive 9694 "attends to specific designations or la-

bels related to scientific terminology
from corresponding identifiers in later
tokens"

1316 digital signal Contrastive 9737 "attends to tokens that denote specific
numerical data or measurements
from more general contextual phrases"

1463 elder brother Independence 3758 "attends to family-related tokens from
other family-related tokens"

2680 majority Independence 2637 "attends to tokens that represent num-
bers or statistical terms from tokens
that signify the end of a sentence or sig-
nificant punctuation"

Table 5: Neuronpedia (Lin, 2023) Examples of natural language explanation. The picked SAE is gemma-scope-
2b-pt-att (16k width), and layer 12 is being probed.
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This is precisely the point where our benchmark
identifies the “most representative” feature neuron,
and we validate these choices against an external
interpretability resource. As shown, the explana-
tions in Neuronpedia (Lin, 2023) align closely with
the subjects in our dataset, such as neurons attend-
ing to scientific terminology (“atomic nucleus”),
numerical data (“digital signal”), family-related
terms (“elder brother”), or statistical expressions
(“majority”). The consistency between the max-
pooled neurons surfaced by our method and the in-
dependently generated Neuronpedia annotations re-
inforces that CE-Bench successfully recovers neu-
rons with well-documented, human-interpretable
functions.

A.5 Dataset Curation Details
To construct the CE-Bench dataset, we designed
a structured prompt template to elicit contrastive
story pairs centered on semantically opposite sub-
ject descriptions. As shown in Table 4, each pair
begins with two subject descriptions: one that cap-
tures the subject in its extreme, high-intensity form,
and another that articulates its conceptual oppo-
site using detailed, realistic re-phrasings without
directly repeating the original term. Subsequently,
we generate two short narratives: the first story
reflects the semantics of the initial subject descrip-
tion, while the second rewrites it to embody the
opposing concept. This process ensures that each
pair of stories forms a semantically aligned con-
trast, which is crucial for evaluating neuron-level
semantic selectivity in sparse autoencoders.

A.6 Contrastive Story Pair Example
Table 6 presents an illustrative contrastive story pair
from the CE-Bench dataset. Each pair begins with
detailed subject descriptions that define a semantic
axis, for example, a computer as a hyper-efficient,
logic-executing machine versus its opposite: a pow-
erless, non-functional object. These descriptions
guide the generation of two complementary stories:
the first narrative vividly embodies the capabili-
ties of an idealized computer, while the second de-
picts the total absence of those qualities. Together,
they form a tightly controlled semantic contrast, en-
abling precise evaluation of neuron interpretability
by testing whether sparse autoencoders can reliably
distinguish and localize such opposing concepts.
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subject description 1 subject description 2

Computer (general -purpose device for
performing arithmetic or logical
operations) in its high , extreme
form: An ultra -fast , hyper -

efficient , massively powerful
machine capable of executing vast
, complex calculations and
intricate logical processes at
lightning speed; equipped with
immense processing power ,
enormous memory capacity , and
unparalleled multitasking
abilities , able to handle huge
data volumes and solve advanced
computational problems with
extreme precision and reliability
.

Extremely incapable , inefficient ,
and powerless object utterly
unable to perform calculations or
logical reasoning; lacks any

processing ability , memory , or
data handling; completely
unresponsive , non -analytical , and
useless for solving problems or

automating tasks.

story 1 story 2

In the heart of the data metropolis ,
the Apex Computer awoke. Humming
with energy , it devoured

petabytes in seconds , unraveling
mysteries of genome patterns and
cosmic simulations in parallel
threads. Its processors , a
symphony of quantum and silicon ,
executed trillions of operations
every split second. No task was
too complex: it mapped global
weather , optimized supply
networks , cracked cryptography ,
designed molecules , all at once ,
never faltering. Its memory
spanned continents , storing every
byte with flawless recall.

Researchers , engineers , and
dreamers connected to Apex , their
questions answered before they

could finish asking. In its high ,
extreme form , the computer

blurred the line between
possibility and limit , powering
humanity ’s greatest leaps swift ,
precise , and tireless.

In a dusty corner , the Null Device
sat idle. It could not add two
numbers , nor distinguish yes from
no. Bereft of memory , it forgot

everything the instant it was
seen. No calculations ran; no
logic sparked. Questions met only
silence -no answers , no

automation , no help. Data flowed
past , unnoticed and unprocessed ,
while problems remained unsolved.
Researchers and engineers

ignored it, for it contributed
nothing. The Null Device was
utterly incapable , powerless , and
inert -a relic of emptiness ,

forever unresponsive and
irrelevant in a world driven by
reason and capability.

Table 6: Example Contrastive Story Pair from the CE-Bench Dataset. This pair demonstrates a semantic
polarity between a high-functioning general-purpose computer (left) and its conceptual opposite, a powerless and
non-functional device (right), captured through both structured subject descriptions and corresponding narrative
texts.
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