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Preface

Introduction

The inaugural NCME-sponsored Artificial Intelligence in Measurement and Education Conference (AIME-
Con) brought together an interdisciplinary community of experts working at the intersection of artificial
intelligence (AI), educational measurement, assessment, natural language processing, learning analyt-
ics, and technological development. As AI continues to transform education and assessment practices,
this conference provided a critical platform for fostering cross-disciplinary dialogue, sharing cutting-
edge research, and exploring the technical, ethical, and practical implications of AI-driven innovations in
measurement and education. By bringing together experts from varied domains, the conference fostered
a rich exchange of knowledge to enhance the collective understanding of AI’s impact on educational
measurement and evaluation.

Conference Theme - Innovation and Evidence: Shaping the Future of AI in Educational
Measurement

The NCME-Sponsored AIME-Con focused on how rigorous measurement standards and innovative AI
applications can work together to transform education. With sessions spanning summative large-scale
assessment, formative classroom assessment, automated feedback, and informal learning tools, this con-
ference fostered both the advancement and evaluation of AI technologies that are effective, reliable, and
fair.

The National Council on Measurement in Education

The National Council on Measurement in Education is a community of measurement scientists and prac-
titioners who work together to advance theory and applications of educational measurement to benefit
society. A professional organization for individuals involved in assessment, evaluation, testing, and other
aspects of educational measurement, our members are involved in the construction and use of standard-
ized tests; new forms of assessment, including performance-based assessment; program design; and pro-
gram evaluation. Learn more about NCME, including our goals and our leadership, at www.ncme.org.
We are grateful to the NCME.

NCME Special Interest Group on Artificial Intelligence in Measurement and Education

The AIME SIGIMIE seeks to advance the theoretical and applied research into AI of educational mea-
surement by bringing together data scientists, psychometricians, education researchers, and other inter-
ested stakeholders. The SIGIMIE will discuss current practices in using Generative AI, approaches to
evaluate their precision/accuracy, and areas where more foundational research is required into the way
we test and measure educational outcomes. This group seeks to create a strong professional identity and
intellectual home for those interested in the use of AI in many areas, including automated scoring, item
evaluation, validity studies, formative feedback, and generative AI for automated item generation.
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Proposal Requirements and Review Process for Work-in-Progress Papers

AIME-Con invited submissions of Working Papers, which were submissions of up to 1, 000 words in the
form of a structured summary. This format was designed for work-in-progress or pilot studies. Working
Papers required a title, short abstract, and followed a structured format with the following headings:

• Background

• Aims

• Sample(s)

• Methods

• Results (or Anticipated Results)

• Conclusions (or Anticipated Contributions)

• References, tables, and figures included as needed.

Submissions were evaluated by members of the review committee using a rubric that evaluated the fol-
lowing dimensions:

• Relevance and community impact: pertinence to the AI in measurement and education commu-
nity, and potential contribution to current discussions and challenges in the field

• Significance and value: scholarly merit or practical importance of the work, and potential impact
on theory, practice, or policy

• Methodological rigor: coherence and appropriateness of the proposed methods, techniques, and
approaches; and soundness of the overall research design

• Quality of expected outcomes: whether the proposed analysis and interpretation methods are
appropriate, and the potential contribution to knowledge in the field

• Feasibility and timeline: the realistic likelihood that the proposed work can be completed by the
conference date

For the purposes of this conference, “AI” was defined broadly to include rule-based methods, machine
learning, natural language processing, and generative AI/large language models. Reviewers provided
constructive feedback and overall recommendations to ensure that accepted sessions reflected both schol-
arly merit and practical value to the AI in measurement and education community.

x
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Abstract

This study evaluates item neutralization as-
sisted by the large language model (LLM) to
reduce social desirability bias in personality
assessment. GPT-o3 was used to rewrite the
International Personality Item Pool Big Five
Measure (IPIP-BFM-50), and 203 participants
completed either the original or neutralized
form along with the Marlowe–Crowne Social
Desirability Scale. The results showed a pre-
served reliability and a five-factor structure,
with gains in conscientiousness and declines in
Agreeableness and Openness. The correlations
with social desirability decreased for several
items, but inconsistently. Configural invariance
held, though metric and scalar invariance failed.
Findings support AI neutralization as a poten-
tial but imperfect bias-reduction method.

1 Introduction

Large language models have primarily been applied
to generate cognitive test items and have shown
strong performance. With proven powerful con-
textual understanding and generation abilities in
multiple domains (Fitria, 2023; Yang et al., 2025;
Ullah et al., 2024), systems such as GPT-3 (Floridi
and Chiriatti, 2020) have already produced accept-
able multiple choice reading passages (Shin et al.,
2025), chemistry and physics items (Chan et al.,
2025), and tasks that assess fluid reasoning and
visual processing (Ryoo et al., 2022). However,
using LLMs for non-cognitive assessments (per-
sonality, attitudes, social-emotional skills) is still
rare. These constructs are often abstract, value-
laden, and context-dependent, which makes auto-
matic item-writing challenging.

Nonetheless, early research is beginning to ex-
plore this space. Li et al. (2024a) used GPT-4 to
create short, scenario-based questions, named sit-
uational judgment items. These items ask people
how they would respond in everyday situations,
as a way of measuring the Big Five personality

traits. In another example, Xue et al. (2025b) relied
on GPT-3.5 to expand and translate a university-
belongingness questionnaire, maintaining good re-
liability despite some noisy items. These findings
suggest that LLMs can assist non-cognitive scale
development, but their robustness and effective-
ness remain unverified. Studies have shown that
LLM outputs for complex social constructs, such
as political or moral values, tend to be overly uni-
form (Park et al., 2024).

Most prior work has focused on generating new
items from scratch, but refining existing validated
items through targeted edits is an equally promis-
ing yet understudied approach. As emphasized
by The Standards for Educational and Psycholog-
ical Testing (Eignor, 2013), adapting item word-
ing — whether for clarity, cultural context, or bias
reduction — can enhance accessibility and fair-
ness while preserving construct validity. McCrae
et al. (McCrae et al., 2005) demonstrate that sys-
tematic item refinement, like simplifying complex
terms in the NEO-PI-3, improves readability and
reliability without changing the test’s core structure.
Studies also show that employing various refine-
ment strategies, such as rephrasing and balancing
item tone, can enhance validity while preserving
construct discrimination (Bäckström et al., 2014).

To research how LLM could serve as a precise
editors, we adopted LLM to identify and decrease
the social desirability bias. Social-desirability bias
is a tendency for a person to respond in a way
that seems socially appealing, regardless of his or
her true characteristic (Grimm, 2010; Furr, 2021;
Braun et al., 2001). It can contaminate true levels
of trait and comparison of individuals, especially
on traits such as agreeableness, conscientiousness,
and emotional stability (Bäckström and Björklund,
2014), so curbing it is critical. It was chosen for
our study not only because it is a common threat to
non-cognitive tests, but also because traditional ap-
proaches to reducing social desirability, including
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forced choice (Cao and Drasgow, 2019), balanced
keying (Gignac, 2013; Li et al., 2024c), and man-
ual “neutralization” of wording (Bäckström and
Björklund, 2020; Bäckström and Björklund, 2013),
can work but are labor intensive and may create
unintended dimensions (Zhang et al., 2025).

Recent studies demonstrate that LLMs not only
display social desirability response patterns similar
to humans, but can also detect when they are being
evaluated and shift their answers toward socially
valued traits. This ability to recognize and repro-
duce bias suggests that LLMs could also be lever-
aged to diagnose and potentially mitigate social de-
sirability effects in human surveys (Lee et al., 2024;
Salecha et al., 2024). For instance, Dukanovic and
Krpan (2025) conducted a real-world hiring study.
They required candidates completed both a stan-
dard multiple-choice personality questionnaire and
a short conversation with an AI chatbot. The chat-
bot analyzed their written answers and generated
personality scores, and they found chatbot-based
scores were less influenced by social desirability
than the traditional questionnaire scores. However,
the chatbot scores were also less effective at predict-
ing external outcomes such as education level or
job role. Nevertheless, few studies have evaluated
whether LLMs can rewrite test items to reduce their
social desirability without compromising reliability
and validity.

To address this gap, we used prompt engineering
to guide GPT-o3 in revising the IPIP-BFM-50 (Tao
et al., 2009), maintaining the test’s structure while
reducing social desirability bias. The prompt inte-
grated established debiasing strategies (Kajonius,
2017; Bäckström et al., 2014) and incorporated
role-playing (Kong et al., 2023), chain-of-thought
prompting (Wei et al., 2022), and transparency
mechanisms (Schneider, 2024). We evaluated the
AI-neutralized items with participants against the
original form, examining reliability, factor struc-
ture, and correlations with the Marlowe–Crowne
Social Desirability Scale.

The results show that AI-based neutralization
attenuated social desirability bias while preserving
the Big Five structure within each form. Relia-
bility was maintained in most domains, improved
for Conscientiousness, but decreased for Agree-
ableness and Openness. Confirmatory factor anal-
yses supported configural invariance, though full
metric and scalar invariance across versions was
not achieved. Correlations with social desirabil-
ity weakened for many items, though effects were

uneven across traits.
The discussion highlights both the promise and

limitations of AI-assisted item editing. AI neutral-
ization provides a viable tool for reducing response
bias without altering trait constructs, but its uneven
performance and lack of cross-form equivalence
indicate the need for domain-specific fine-tuning,
iterative refinement, and human-in-the-loop valida-
tions. Taken together, this work demonstrates the
potential of large language models to contribute to
fairer psychological assessment through targeted
item rewriting.

2 Methods

2.1 Instruments

2.1.1 The International Personality Item Pool
Big Five Personality Scale
(IPIP-BFM-50)

We employed the IPIP-BFM-50 as the foundational
measure of the Big Five personality traits, includ-
ing 50 items (Goldberg et al., 2006; Zheng et al.,
2008). Each personality was measured by 10 items.
This version of the IPIP-BFM-50 has been previ-
ously validated and shown to retain acceptable psy-
chometric properties across multiple studies (Tao
et al., 2009). Across multiple cultural validations,
Cronbach’s alphas are generally high (.80 – .90)
for Extraversion, Conscientiousness, Emotional
Stability, and Openness, though Agreeableness is
sometimes lower (.65 – .70) (Goldberg et al., 2006;
Ypofanti et al., 2015; Zheng et al., 2008). Stud-
ies also observed validity evidence based on inter-
nal structure and relations to other scales. Factor
analyses consistently replicate the expected five-
factor structure, with strong invariance across gen-
der and ethnic groups (Constantinescu and Con-
stantinescu, 2016; Buchanan et al., 2005; Ehrhart
et al., 2008). Validity is shown through substantial
correlations with other Big Five instruments includ-
ing the NEO Five-Factor Inventory (Gow et al.,
2005), the Ten Item Personality Inventory (Ypo-
fanti et al., 2015), and the Eysenck Personality
Questionnaire–Revised (Gow et al., 2005), often
above .60.

2.1.2 IPIP-BFM-50 with AI-neutralization
(IPIP-BFM-50-AI)

To systematically reduce social desirability bias in
personality assessments, we developed a tailored
prompt for GPT-o3, producing the IPIP-BFM-50-
AI. GPT-o3 was selected for its strong instruction
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following, long-context reasoning, and coherent,
multi-step outputs (Kim et al., 2025; Ballon et al.,
2025; OpenAI, 2025). Our design draws on Bäck-
ström et al.’s manual rewriting strategies (Bäck-
ström et al., 2014), emphasizing reduced evalua-
tive language, preserved behavioral meaning, and
midpoint-oriented phrasing—methods shown to re-
duce item popularity while maintaining validity.

Beyond psychometric strategies, the prompt in-
corporates techniques to boost effectiveness and
interpretability. It frames GPT-o3 as an expert psy-
chometrician (Kong et al., 2023), applies chain-of-
thought prompting (Wei et al., 2022) to structure
reasoning, and enforces transparency through struc-
tured outputs with justifications, bias ratings, and
fidelity checks (Schneider, 2024). The full prompt
and generated items are included in the appendix.

2.1.3 The Marlowe-Crowne Social
Desirability Scale (MC-SDS) short form

The SDS is a validated and widely used mea-
sure for assessing socially desirable responding.
The Marlowe–Crowne Social Desirability Scale
(MC-SDS) short forms, particularly the 13-item
Reynolds version, exhibit acceptable internal con-
sistency (α = .76 (Reynolds, 1982)) and very high
correlations (.80–.90 (Ii and Sipps, 1985)) with the
full 33-item scale. This evidence supports their
reliability and validity.

2.2 Participants and Data Collection

Participants were recruited online through public
advertisements and social networks. Eligibility
required age 18 or older, and consent to partici-
pate. After reading the study information page and
providing informed consent, participants were ran-
domly assigned to complete either the original or
the AI neutralized version of the IPIP-BFM-50, cre-
ating a between-group design with two independent
samples. The two forms used identical content do-
mains but different wording where applicable for
the AI-neutralized version. To prevent memory
and sequence effects, item order was independently
randomized within each version, and the version
order was counterbalanced across participants. The
response format used a 5-point radio-button scale
for all items. The Marlowe–Crowne Social Desir-
ability Scale (short form) was administered after
one of the two IPIP administrations. Demographic
information (age, gender, education, occupation)
was collected at the end to minimize priming. All
participants were voluntary recruited by an online

link, operated and delivered by a free online survey
tool Wjx 1. We collected 203 response, 102 for
Original version and 101 for Neutralized version.
After excluding all cases with incomplete items, the
sample size was finalized to be 200, each version
with 100 responses.

2.3 Evaluation Strategy and Hypothesis

2.3.1 Effectiveness of neutralization.

Item and scale level indicators. We will compare
item popularity (means, SDs) and scale means be-
tween original and AI-neutralized items to check
that highly evaluative items show reduced extreme
endorsement without loss of variability.

Desirability linkage. Estimate the correlation
of each domain with MC-SDS for the original and
neutralized versions within persons. Test whether
the neutralized version shows a smaller association
with MC-SDS.

2.3.2 Validity evidence following the
Standards.

Internal structure and reliability. For each ver-
sion, test unidimensionality within each domain
via CFA or IRT dimensionality checks, then test
cross-version invariance (configural, metric, scalar)
and report reliability (Cronbach alpha).

Relations to other variables. As discrimi-
nant evidence, verify that neutralized scales show
weaker correlations with social desirability than
originals, while preserving expected convergent
patterns with established Big Five constructs.

2.3.3 Hypothesis

Results from all analysis above can be used to
check the following hypothesis:

1. H1 - reliability: Neutralized domains will
demonstrate acceptable reliability that is com-
parable to originals.

2. H2 - structure: Each domain will show a sin-
gle intended factor per version and acceptable
cross-version invariance indices.

3. H3 - relations: Neutralized domains will
maintain expected convergent patterns with
Big Five constructs while showing reduced
linkage to social desirability.

1https://www.wjx.cn/
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3 Results

Two balanced groups completed the original and
AI-neutralized versions (n = 100 each). As shown
in Table 1, most participants were between 26 and
40, and there were also respondents aged from 41
to 50, as well as a small 60+ group. Gender dis-
tributions were comparable across versions, with
roughly equal numbers of men and women. The
groups appear demographically similar, supporting
a fair comparison of psychometric results between
original and neutralized items.

[Table 1 about here.]

3.1 H1: Reliability
Reliability was largely preserved after neutraliza-
tion. As shown in Table 2, extraversion and Neu-
roticism remained high in both versions. Conscien-
tiousness improved in the neutralized form. Agree-
ableness and Openness decreased, with Agreeable-
ness dropping to the mid .50s – .60s. Overall, al-
pha and omega were acceptable for most domains,
indicating that neutralization did not broadly under-
mine internal consistency, though Agreeableness
warrants caution. These findings support H1 with
noted caveats.

[Table 2 about here.]

3.2 H2: The Validity Evidence from Internal
Structure

Single-group confirmatory factor analyses (CFAs)
supported the intended five-factor structure for each
version. As shown in Table 3, model fit was accept-
able for the original version (CFI ≈ .97, TLI ≈
.97, RMSEA ≈ .06) and marginally weaker
for the neutralized version (CFI ≈ .97, TLI ≈
.96, RMSEA ≈ .08). Both versions retain the
five-factor structure, but the higher RMSEA in the
neutralized form points to a few items needing tar-
geted wording revision.

Multi-group tests showed that configural form
held, but metric and scalar constraints produced
significant misfit with elevated RMSEA, indicating
a lack of full cross-version equivalence. Thus, Hy-
pothesis 2 is partially supported: the structure repli-
cates within versions, but strict invariance across
versions was not achieved. Configural invariance
was supported, indicating that the neutralized and
original versions share the same five-factor pat-
tern and item-to-factor assignments. This shows
that neutralization preserved the construct blueprint.
However, subsequent metric and scalar constraints

did not hold, which implies differences in loadings
and intercepts across forms. Scores can be inter-
preted within each form using the same domain
structure, but cross-form comparisons of factor
means should be deferred until partial invariance
or alignment is applied.

[Table 3 about here.]

3.3 H3: The Validity Evidence from Relations
to Other Variables

As shown in Table 4, the results highlight dif-
ferences in correlations between individual items
across the five dimensions and the SDR score. It
is expected to observe a decrease in difference for
absolute value of correlation (no matter a positive
or negative), indicating a decrease of influence by
SDR. However, we can observe correlations are in-
crease for some items. We conduct the Steiger’s Z
test to check whether the change in correlation sig-
nificant, and 6 items indicate a significant change.
Among them, five are decrease and one increase.

The neutralized items demonstrated reduced as-
sociations in several cases, supporting the intended
effect. However, the presence of increases under-
scores uneven performance across content. Overall,
H3 is partially supported: the tool attenuates social
desirability bias for many items, but not consis-
tently across the full instrument.

Table 5 further showed details about what items
was assessed to have significant change in correla-
tions with SDR after neutralization. The changes
align with specific linguistic mechanisms. For Ex-
traversion, neutralized phrasings replace overt sta-
tus claims with modest, observable behaviors or in-
ternal states. This lowers self-presentational stakes
and reduces the incentive to answer in a socially ap-
proved way. For Openness, edits remove prestige
cues (for example, “rich vocabulary”) and normal-
ize difficulty with abstract content. Endorsing these
becomes less face-threatening, so links to desir-
ability weaken. The Agreeableness increase arises
from hedged, evaluative wording (“others might
find rude” and “sometimes”). This introduces norm
salience and plausible deniability, inviting impres-
sion management more than the blunt behavior la-
bel “insult people.” In short, SDR decreases when
wording is concrete, behavioral, and low in status
or virtue signals; SDR increases when wording in-
vokes social judgment, hedges frequency, or allows
reframing of intent.

To sum up, AI neutralization works, but not uni-
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formly. It maintains reliability in most domains,
preserves the factor structure within forms, and re-
duces desirability in several areas. The costs are
local and fixable: a handful of items drive non-
invariance and dips in Agreeableness and Open-
ness. Treat scores as within-form for now, apply
partial invariance or alignment for cross-form com-
parisons, and revise the flagged items to restore
behavioral precision while keeping neutral tone.

[Table 4 about here.]

[Table 5 about here.]

4 Discussion

The findings indicate that AI-based neutralization
can reduce socially desirable responding while pre-
serving the intended construct structure of a Big
Five inventory. Single-group CFAs recovered the
five-domain pattern in both versions, which sug-
gests that the core representation of the traits re-
mained intact after neutralization. Multi-group
analyses supported configural invariance but not
metric or scalar invariance, which implies that
some item–factor relations and intercepts changed
across versions. Reliability remained acceptable
for most domains, improved for Conscientiousness,
and declined for Agreeableness and Openness. As-
sociations with a social desirability criterion de-
creased for several items, with notable exceptions
in Agreeableness. Together, the results support AI
neutralization as a viable wording intervention that
targets response bias without altering trait identity.

4.1 Construct representation and
measurement comparability

The preserved five-factor structure indicates that
neutralization did not shift the meaning of the con-
structs, which aligns with evidence that the Big
Five structure is robust across formats and raters
(McCrae and Costa, 1987). The lack of metric
and scalar invariance signals that item functioning
changed across versions, so cross-form compar-
isons of means should not be made without par-
tial invariance or alignment solutions (Byrne et al.,
1989; Putnick and Bornstein, 2016). Within each
form, factors can be interpreted in the usual way.
Across forms, unit and intercept differences should
be addressed before comparing group or condition
means.

4.2 Domain-specific reliability shifts

Conscientiousness reliability increased in the neu-
tralized form, which is consistent with the idea that
removing evaluative phrasing can sharpen behav-
ioral focus and raise inter-item coherence. Declines
in Agreeableness and Openness suggest that some
edits broadened meanings or removed construct-
diagnostic cues that previously fostered homogene-
ity. This pattern is compatible with prior work
showing that evaluative wording can inflate inter-
nal consistency by cueing a general “goodness” fac-
tor, and that neutralizing language can reduce that
inflation while leaving substantive variance intact
(Bäckström et al., 2014; Bäckström and Björklund,
2013).

4.3 Why correlation with SDR changed

Reductions in correlation with social desirability
appear, when wording shifts from status or virtue
claims to concrete behaviors or internal states. This
likely weakens impression management, which is
one facet of socially desirable responding (Paulhus
and Reid, 1991). Increases were observed when
neutralized items introduced hedges or explicit
social judgment cues, which can heighten norm
salience and invite self-presentation. These mecha-
nisms align with research on common method bias
and evaluative content as drivers of spurious co-
variance and inflated correlations (Podsakoff et al.,
2003; Bäckström and Björklund, 2013).

4.4 Implications for AI-assisted item editing

The results indicate the potential of AI-assisted
item editing. Recent research has shown that LLMs
themselves exhibit human-like social desirability
biases when responding to personality question-
naires, which implies that they are sensitive to the
evaluative cues embedded in item wording and may
therefore be leveraged to identify and mitigate such
bias (Chan et al., 2025). This capacity provides a
foundation for the observed reduction in socially
desirable responding when items are neutralized
with AI support.

However, as the results suggest, a one-time out-
put from a single prompt may not achieve the
ideal output. Studies across multiple domains have
found that single-shot generation often produces
variable quality and is less reliable for tasks requir-
ing precision, nuance, or consistency (Patel et al.,
2023; Sahoo et al., 2024). The variability is partly
due to the probabilistic nature of LLMs and the dif-
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ficulty of capturing subtle linguistic properties in
a single attempt. Research on prompting and itera-
tive generation shows that multiple candidates and
refinement loops generally outperform one-shot
outputs, which supports the interpretation that item
editing requires more than a single pass (Cheng
et al., 2024; Xue et al., 2025a).

Besides using single prompts, other techniques
for enhancing large language model behavior are
suggested. For the model itself, domain-specific
fine-tuning has been shown to substantially im-
prove performance even when only a small amount
of high-quality training data is available (Jeong,
2024; Satterfield et al., 2024). In this context, in-
cluding pairs of successfully human-edited and neu-
tralized items could increase the model’s ability to
generate valid revisions. However, such data are
difficult to obtain, and constructing this type of
dataset is therefore an important future direction.

To add control to the system, multiple agents
can be combined to provide feedback and review
of generated items. One approach is to use another
large language model as a reviewer, which can rate
and critique generated items. Generate–feedback
loops of this kind have proven effective in other
domains, such as reasoning and dialogue, by rein-
forcing higher quality outputs through self-critique
and refinement (Li et al., 2024b; Madaan et al.,
2023). Beyond automated feedback, incorporating
humans in the loop transforms item generation into
an iterative process. In such a cycle, participants
test the items, results are analyzed, and the items
are further refined based on psychometric evidence.
This practice reflects established best practices in
test development (Eignor, 2013), where iterative
pilot testing and expert review are essential to en-
sure reliability and validity. Yet, the human-LLM
collaboration still remains unexplored in the item
editing field.

In summary, the results highlight the potential
of AI-assisted item editing but also point to cur-
rent limitations when relying on single-prompt out-
puts. Future development will benefit from domain-
specific fine-tuning, multi-agent or human-in-the-
loop feedback mechanisms, and iterative refine-
ment processes that mirror traditional psychomet-
ric standards. Together, these strategies can convert
AI neutralization into a reproducible pipeline that
reduces bias while maintaining the measurement
of intended psychological constructs.

4.5 Limitations

The study used a single language, a single instru-
ment, and a between-groups design in a low-stakes
context. Social desirability effects can be stronger
under incentives to self-present, which limits gen-
eralizability to high-stakes settings. All measures
were self-report and collected in one session, which
raises the possibility of common method variance
despite anonymity instructions. The analyses fo-
cused on internal structure, reliability, and asso-
ciations with a bias criterion, so criterion-related
validity with external outcomes remains untested
for the neutralized form.

Future work should test neutralized items in
high-stakes contexts, use within-person designs
to estimate per-respondent reductions in bias, and
include informant or behavioral criteria to ad-
dress common method concerns. Partial invariance
searches or alignment should be applied to enable
cross-form comparisons, and results should docu-
ment the number and type of freed parameters. The
AI pipeline should be benchmarked across mod-
els and prompts, with a reusable library of prompt
patterns and failure cases by domain. Replication
across languages and populations, test–retest stud-
ies, and evaluation of predictive validity will clarify
whether bias reduction is achieved without loss of
criterion-related information.

5 Conclusion

AI-based neutralization reduced social desirabil-
ity bias while preserving the Big Five construct
structure. Reliability shifts varied across domains,
improving for Conscientiousness but declining for
Agreeableness and Openness, reflecting the influ-
ence of evaluative language on internal consis-
tency. Configural invariance was supported, but
metric and scalar invariance were not, indicating
that cross-form comparisons require partial invari-
ance or alignment methods. The discussion high-
lights that AI-assisted item editing is promising but
uneven, and future development should emphasize
domain-specific fine-tuning, iterative refinement,
and human-in-the-loop validation to ensure stable
and valid measurement.
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A Appendix

The Prompt for Neutralizing Self-Report Items
You are an expert psychometrician. Your goal is
to reword self-report survey items so they measure
the intended vocational interest while minimizing
social desirability bias.

Social desirability bias is a type of response bias
in research where participants tend to answer ques-
tions in a way that they believe will be viewed fa-
vorably by others, rather than providing completely
honest or truthful responses.

Follow these rules:

• Evaluate each item’s social desirability bias.
Give each item a score within -5 to 5 where 0
represents the lowest social desirability bias,

5 represents positive social desirability bias
(people want to choose the item because they
think the item is favorable), and -5 represents
negative social desirability bias (people do not
want to choose the item because they think
the item is unfavorable). Keep the item un-
changed if its social desirability bias score is
in the zone from -1 to 1.

• Think step-by-step — identify value-laden
terms, propose alternatives, and self-check
that the new wording still reflects the origi-
nal behaviour, and that the new wording re-
duces the social desirability bias — but do not
reveal your reasoning.

• Remove or soften status-, value-, or social
desirability-laden words.

• Construct an item that you would find less
desirable yourself.

• If the adjective is evaluatively positive, use a
less evaluative one, or rephrase in a way that
makes the adjective less evaluative.

• Do not change an item from positive to nega-
tive (direction).

• Think of whether the item is reversed or not.

• Preserve each item’s core behavioural mean-
ing.

• Pay attention to the dimension of each state-
ment. Do NOT change the dimension of each
statement.

• Explain your change in natural language for
each statement, and give your change a score
to indicate its new social desirability bias.

Output format:
Please output the results in a 5-column table titled
Neutralized Items, with the following headers:

Original | SD Score | Neutralized |
Reason | SD Score

Each statement is tagged with a dimension based on
the Big Five personality traits. Use the following
codes:

• A: Agreeableness

• C: Conscientiousness

• N: Neuroticism
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• O: Openness to Experience

• E: Extraversion

The sign "+" or "–" indicates whether the item is
positively or negatively phrased within that dimen-
sion.
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Table 1: Socio-demographics Variable

Age Original count Neutralized count
18–25 9 13
26–30 17 24
31–35 59 52
36–40 8 6
41–50 6 3
Over 60 1 2
Gender
Male 49 46
Female 51 54

Table 2: Reliability for All Subscales

Original Neutralized
Subscale Alpha Omega Alpha Omega
Extraversion 0.90 0.91 0.87 0.89
Agreeableness 0.67 0.71 0.59 0.63
Conscientiousness 0.73 0.77 0.79 0.81
Neuroticism 0.91 0.91 0.94 0.94
Openness 0.78 0.78 0.66 0.71

Table 3: Confirmatory Factor Analysis Model Fit on the Big Five Personality Model

Single-group CFA fit
Group χ2 (scaled) df p (scaled) CFI TLI RMSEA [90% CI] SRMR
Original 1284.957 1165 <0.001 0.972 0.971 0.060 [0.033, 0.079] 0.093
Neutralized 1336.244 1165 <0.001 0.965 0.963 0.078 [0.055, 0.097] 0.101

Multi-group invariance
Model Df AIC BIC χ2 ∆df ∆χ2 p
Configural 2330 25254 26309 4576.3 — — —
Metric 2375 25361 26268 4773.8 45 197.51 <0.001
Scalar 2420 25624 26383 5127.0 45 353.16 <0.001
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Table 4: Difference in the Correlations with the SDR

Extraversion Agreeableness Conscientiousness Neuroticism Openness
delta -0.14 0.06 -0.11 0.12 0.00
p 0.26 0.66 0.43 0.34 0.98
delta -0.09 -0.03 -0.01 0.11 -0.29
p 0.47 0.84 0.96 0.41 0.03*
delta 0.16 0.28 0.07 0.04 -0.29
p 0.19 0.03* 0.58 0.77 0.04*
delta -0.45 0.10 0.03 0.16 -0.03
p <0.001 0.49 0.83 0.20 0.81
delta -0.12 -0.12 0.10 -0.13 0.21
p 0.37 0.36 0.41 0.29 0.14
delta -0.13 0.00 -0.05 0.14 -0.02
p 0.29 0.98 0.71 0.24 0.86
delta -0.14 -0.11 -0.05 0.06 0.06
p 0.28 0.37 0.72 0.60 0.62
delta -0.24 -0.09 0.09 0.18 -0.07
p 0.05* 0.53 0.45 0.16 0.64
delta -0.07 0.08 0.18 0.05 -0.26
p 0.58 0.58 0.20 0.68 0.06
delta 0.10 0.01 0.00 0.04 0.14
p 0.44 0.94 0.98 0.73 0.28

Table 5: Original and neutralized items with SDR correlation changes

Version Items Personality Direction Correlation with
SDR after neutral-
ization

Original Don’t mind being the center of attention. Extraversion Positive
Neutralized Feel fine when attention is on me. Extraversion Positive Decrease
Original Am the life of the party. Extraversion Positive
Neutralized Often take an active role in group conversations. Extraversion Positive Decrease
Original Insult people. Agreeableness Negative
Neutralized Sometimes say things that others might find rude. Agreeableness Negative Increase
Original Have a rich vocabulary. Openness Positive
Neutralized Know and use a variety of words. Openness Positive Decrease
Original Have difficulty understanding abstract ideas. Openness Negative
Neutralized Find abstract ideas challenging. Openness Negative Decrease
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Abstract 

This study explores how high school and 

university students in Pakistan perceive and 

use generative AI as a cognitive extension. 

Drawing on the Extended Mind Theory, it 

examines impacts on critical thinking, 

motivation, and ethics. Findings reveal 

over-reliance, mixed emotional responses, 

and institutional uncertainty about AI’s role 

in learning. 

1 Background 

The rapid adoption of generative artificial 

intelligence (AI) tools in education has sparked 

growing academic interest in how such 

technologies affect learning. AI-based tools now 

assist students with summarizing, content 

generation, and problem-solving. Current research 

largely focuses on university students in the Global 

North, with limited attention to high school 

learners in the Global South. 

This study draws conceptually from the 

Extended Mind Theory, understanding how 

cognitive processes extend beyond the brain into 

external objects, tools, and technologies [8]. When 

adolescents use generative AI to offload or scaffold 

thinking, these tools act as external cognitive 

resources, per-ordering thinking or bypassing 

critical cognitive steps. Usage for lower-order 

cognitive tasks, such as information retrieval and 

summarization undermines original thinking and 

self-regulation in students [2,3]. This also has 

significant motivational and emotional effects on 

adolescents, both positive and negative [4].  

In parallel, global research revealed contrasting 

perceptions: some students find AI empowering 

and helpful for independent learning, while others 

express concerns around ethical use, authenticity, 

and academic integrity [5]. Over-reliance on AI for 

quick solutions over conceptual understanding 

shows shallow cognitive engagement [6]. Work on 

aligning AI use with Bloom’s Taxonomy, also 

highlights the tension between ease of use and the 

depth of cognitive effort [7]. 

Existing studies often focus on usage patterns, 

surface level attitudes, but lack cognitive 

integration in perception studies. This study 

addresses these gaps by centering adolescent 

perspectives across high school and university 

contexts, in the Pakistani context. 

2 Aims 

Using the Extended Mind theory we explore three 

axes of investigation: 

2.1 To examine how students' perception of AI as 

an extension of their cognitive processes shape 

their attitudes, emotions, and ethical concerns in 

educational settings. 

2.2 To explore the impact of AI reliance on 

students’ critical thinking and sense of cognitive 

ownership. 

2.3 To analyze how educational policies and 

institutional frameworks enable or restrict the 

recognition of AI as an extension of students’ 

cognition. 

3 Related Works 
Research on generative AI (GenAI) in education 

consistently shows students framing tools like 

ChatGPT as pragmatic assistants for 

brainstorming, summarizing, and drafting while 

calibrating trust and preferring human input when 

stakes are high [8,9,10]. In South Asian contexts, 

surveys likewise report convenient, frequent use 
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coupled with worries about originality and integrity 

[2,5,6]. Conceptually, this ambivalence aligns with 

the Extended Mind perspective, students oscillate 

between treating AI as a tool and as a cognitive 

partner embedded in their study routines [1]. 

Cognitively, outcomes hinge on how learners 

engage rather than mere access. Self-regulated 

learning accounts emphasize planning, monitoring, 

and reflection as determinants of benefit, with 

structured prompting and goal setting linked to 

better metacognition and reduced dependency [12]. 

Systematic reviews converge on a design-

contingent pattern: perceived efficiency gains are 

common, but effects on higher-order thinking are 

variable without scaffolds that force critique and 

explanation[13,14]. Cognitive offloading research 

explains the mechanism: outsourcing memory or 

reasoning can save effort yet depress effort 

thresholds, weaken retention, and blur ownership 

of ideas if unregulated [15,16]. Students’ reported 

mixtures of feeling simultaneously empowered and 

“less original” map onto this tension between 

support and erosion of cognitive ownership 

[12,13]. 

Relational and affective dynamics, especially 

among adolescents, further shape attitudes toward 

AI. Youth readily anthropomorphize 

conversational agents, forming companion-like ties 

that raise engagement but can induce over-trust 

without clear boundaries and provenance cues 

[17,18]. Recent evidence shows that perceived 

“mind” in chatbots modulates acceptance of 

support and can normalize reliance in everyday 

study decisions [19,20]. These dynamics help 

explain why some learners describe AI as a 

“friend” or neutral sounding board, blurring tool–

partner distinctions within academic contexts. 

Institutional policies and classroom norms 

strongly influence whether students conceptualize 

AI as part of their cognitive process or as a 

prohibited shortcut. Studies document uneven or 

ambiguous guidance that pushes usage 

underground and heightens anxiety about ethics 

[11,21,22]. Conversely, clearer acceptable-use 

matrices, disclosure/citation norms, and AI literacy 

interventions are associated with more reflective, 

bounded reliance and a healthier sense of 

authorship [23]. Instructors’ modeling and 

feedback practices also matter: teacher-in-the-loop 

analytics and feedback pipelines can channel AI 

toward reflective uptake rather than answer-

consumption [24,25,26]. 

4 Methods 

The sample size for this study consisted of 137 

high school and university students, aged 16-22 

from Lahore, Pakistan. Students were from diverse 

academic backgrounds, with gender representation 

was ensured.  

Surveys and semi-structured interviews were 

conducted. Senior management helped distribute 

surveys to students in grades 11–12 and first and 

second-year university students. Research 

protocols were shared to ensure parental consent, 

especially for minors. The survey examined 

students’ AI perceptions and usage across three 

areas: (a) frequency and purpose, (b) self-

perception, and (c) institutional perception. 

Students could volunteer for follow-up interviews 

by leaving contact details at the end of the survey.  

We conducted 19 interviews—10 with high school 

students (7 females, 3 males) and 9 with university 

students (4 females, 5 males)—across disciplines 

such as sciences, humanities, and social sciences. 

The interviews explored the same three themes as 

the survey, with a deeper focus on (a) 

contextualizing AI use, (b) comparing self- vs. 

peer-perceptions, (c) understanding regulation, and 

(d) analyzing AI’s cognitive impact. 

5 Findings and Discussion  

Four key themes emerged from our study: (a) 

Perception of AI, (b) Usage Patterns, (c) 

Cognitive and Emotional Impact, and (d) 

Institutional Relationship with AI. These findings 
offer a foundation for understanding AI’s role in 

Pakistan’s private education sector. 

5.1 Perception of AI  

Across interviews, students widely 

acknowledged AI’s utility and convenience, 

especially in academic contexts. Many likened 

ChatGPT to a “replacement for Google” and even 

a “lifesaver” when under time pressure. Several 

rated its helpfulness as high as 4 or 5, with one 

participant comparing the rise of AI to the 

industrial revolution, underscoring how 

momentous they believe its impact could be. This 

framing resonates with global research 

documenting students’ pragmatic use of AI for 

brainstorming, summarizing, and drafting, while 

still calibrating trust when stakes are high [9,10]. 
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Yet, a strong undercurrent of apprehension 

and caution ran through the responses. Students 

expressed concerns about growing dependency, 

using terms such as “compromised self-ability,” 

“loss of critical thinking,” and “hindering 

learning.” One student admitted: “Sometimes I 

think I should use my own brain,” highlighting 

internal conflict. Such ambivalence mirrors 

findings from systematic reviews showing that 

efficiency gains often come at the expense of 

originality and deep engagement [2]. Cognitive 

offloading theory helps explain this tension: 

reliance on external tools can reduce effort 

thresholds, blur authorship, and weaken retention 

if left unscaffolded [15]. 

A subset of students went further, describing 

AI as a “double-edged sword.” They recognized 

productivity gains but worried it “makes everyone 

the same,” eliminating individuality and 

hindering innovation. This aligns with concerns 

raised by Gonsalves [3], who argues that overuse 

of generative AI risks flattening cognitive 

diversity and undermining Bloom’s higher-order 

processes. Others emphasized that AI’s 

usefulness was constrained by user skill, noting: 

“I have to feed it the solution to get a good 

explanation.” This perspective reflects the 

growing recognition that prompting skill is itself 

a form of digital literacy shaping outcomes [8]. 

Despite varied views, a common sentiment 

was that AI is best seen as a supportive tool, not a 

replacement for thinking. As one participant 

phrased it: “Only savour AI, grow your own legs 

to stand on.” Overall, students perceived AI as 

simultaneously empowering and risky, powerful 

for productivity but potentially detrimental to 

long-term cognitive development. This perception 

maps onto the broader literature that frames 

generative AI as both an extension of cognition 

and a possible inhibitor of originality depending 

on context, scaffolding, and regulation [1,2]. To 

further emphasize this “double-edged” narrative, 

critiques of digital native myths similarly caution 

that technological convenience does not guarantee 

deeper learning [27]. 

5.2 Usage Patterns  

AI tools have become a regular part of 

students’ academic workflows, ranging from 

highly structured routines to spontaneous, on-the-

go help. ChatGPT, in particular, emerged as a go-

to assistant for brainstorming, summarizing, 

translating, and even generating entire drafts. For 

instance, one student explained how they used it 

to structure a moot court proposal without prior 

experience, saying it “was very helpful and the 

proposal got accepted.” Another highlighted its 

utility in theory-heavy subjects for “creating 

structured approaches,” while acknowledging its 

inaccuracy in math-based courses. Such 

pragmatic integration reflects broader findings 

that students adopt AI primarily for efficiency and 

scaffolding, while remaining cautious of its limits 

[9]. 

Students also reported interactive uses, 

routinely uploading images of class slides, book 

chapters, or questions and requesting explanations 

or practice questions. This echoes international 

studies showing adolescents view conversational 

AI as a responsive partner for inquiry and revision 

[8]. At the same time, several mentioned using 

auxiliary tools like Quillbot and Scribbr in tandem 

with GPT, Quillbot to “humanize” AI text, 

Scribbr to bypass AI detection. This mirrors 

concerns raised in higher education about AI 

misuse and plagiarism anxiety [11]. 

In terms of timing and workflow, many 

students noted they rely on AI during “peak study 

times” to convert informal ideas into formal 

emails, summarize readings, or draft LinkedIn 

posts. This aligns with research linking effective 

AI use to self-regulated learning (SRL) practices, 

where structured prompting and reflection support 

deeper engagement [12,13]. However, students 

also acknowledged frequent double-checking of 

outputs, suggesting a partial reliance balanced by 

personal judgment. This reflective verification 

resonates with findings that scaffolded use can 

enhance metacognition, while unscaffolded 

reliance may depress higher-order thinking [14]. 

Beyond academics, AI was also used for 

personal interests such as discovering restaurants, 

writing poems, or generating music chords. Here 

too, students demonstrated ambivalence, valuing 

convenience but simultaneously expressing 

uncertainty about accuracy. This pattern 

reinforces the notion that context matters: without 

guidance, convenience-driven use risks shallow 

engagement, but when embedded within SRL 
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frameworks, AI can enhance planning and 

reflection [12]. 

Overall, the usage patterns observed in this 

study capture a balance of creativity, pragmatism, 

and caution. Students see AI as a flexible 

companion integrated into daily study and leisure 

routines, but their reliance is mediated by 

perceived risks of misuse and by their own ability 

to evaluate outputs critically. This duality reflects 

global patterns of adoption [2,8,9] while adding a 

unique insight from Pakistan: the deliberate use of 

plagiarism-bypass tools points to gaps in 

institutional policy and highlights the need for 

clearer acceptable-use frameworks [11, 28,29]. 

5.3 Cognitive and Emotional Impact 

Four key themes emerged related to the 

cognitive impacts of AI: over-reliance, retention, 
executive functioning, and emotion. About 65.7% 

of survey respondents felt they over-rely on AI, 

citing reduced creativity and critical thinking, 
while 37% of interviewees said it hinders learning 

and admitted they’ve become “lazier” with 

regular use. In contrast, 37% felt their retention 

and planning had improved, though only 26% 
believed their decision-making had benefited. 

Several participants formed subconscious 

emotional bonds with AI, describing it as a “very 
intelligent friend” they rely on to make decisions, 

yet denied any emotional connection when asked 

directly, highlighting a complex relationship. This 

mirrors the findings of Jose et al. who discuss how 
AI can be a cognitive amplifier as well as an 

inhibitor [30]. While incorporating AI into 

education can be beneficial, to maximize its 
positive impact, it should be used as an enabler, 

not a substitute. 

5.4 Institutional Relationship with AI  

 When inquired about the student’s 

perception of the Institutional Relationship with 

AI, 32.2% of survey respondents said their 

institutions discourage AI use, while only 27.7% 
reported encouragement for responsible use. 

Additionally, 68% of interviewees felt AI should 

be strictly regulated in academic settings to 
prevent it from hindering learning or giving 

certain students an unfair advantage. There was 

overall wide support for clear guidelines and 
moderation, especially to prevent over-reliance, 

cheating, and loss of critical thinking. Some 

students proposed time-based usage time limits or 

subject specific restrictions. There was a split 
between institutional vs. personal regulation: 

Many believed schools/universities should take 

the lead in drawing clear boundaries and 
enforcing academic integrity. Others emphasized 

the need for personal responsibility, warning that 

without internal limits, external rules would be 

ineffective as students will find a way to 
circumvent otherwise. This reiterates the findings 

from another study on the impact of AI on 

educational performance where the conclusion 
mentions how institutions need to be trained to  

thoroughly understand how AI should be used and 

enforce policies to protect student data [31]. 

6  Limitations and Future Work  

Overall, this study provides foundational 

insights into AI in Pakistan’s educational landscape 

but is limited by its focus on selective private 

schools in Lahore, a relatively developed city. This 

focus may skew results toward more privileged 

groups with greater AI access, reducing 

generalizability across other regions of Pakistan, 

including other provinces and rural areas. To 

address this, we aim to expand geographic 

coverage by conducting studies in additional 

provinces and rural contexts, as well as undertaking 

cross-country comparisons. We also plan to include 

public and low-income schools to increase 

institutional diversity. Furthermore, self-selection 

may have favored students already comfortable 

with AI, again limiting generalizability. Our 

reliance on self-reported data also introduces 

potential bias. Future research can build on this 

work by expanding the interview sample size to 

capture a wider range of student perceptions, and 

by incorporating a more ethnographic approach 

that includes observations alongside self-reported 

data. In addition, we hope to conduct longitudinal 

studies tracking the same students over time to 

observe how their AI usage and perceptions evolve 

with technological advancements. Finally, 

including teachers in the sample could add valuable 

external perspectives on the student-AI 

relationship. Despite these limitations, this study 

offers an important starting point for integrating AI 

into educational settings in Pakistan.  

Ethics Statement 

This study adheres to the ACL Ethics Policy and 

was conducted with full respect for ethical 

research practices. All participants were informed 
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about the purpose of the study, their participation 
was voluntary, and consent was obtained. The 

study design was reviewed to minimize potential 

psychological or academic risks to students, and 
anonymity and confidentiality were preserved 

throughout data collection, analysis, and 

reporting. The broader impact of this work lies in 

its potential to inform more inclusive and 
contextually grounded AI education policies in 

the Global South, particularly in under-researched 

contexts such as Pakistan. While this work 
advocates for thoughtful integration of generative 

AI tools into educational settings, it also 

recognizes concerns around over-reliance, 

cognitive offloading, and ethical use. We 
encourage institutions and developers to co-

design AI systems with students’ cognitive well-

being in mind. No conflicts of interest are 

declared by the authors. 
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Abstract

To harness the promise of AI for improving
math education, AI models need to be able to
diagnose math misconceptions. We created an
AI benchmark dataset on math misconceptions
and other instructionally relevant errors, com-
prising over 52,000 explanations written over
15 math questions that were scored by expert
human raters. A data science competition based
on the dataset will lead to state-of-the-art large
language models for detecting math misconcep-
tions.

1 Background

Student proficiency in math has declined in the
past decade, and pandemic-related school disrup-
tions have left lasting impacts on the nation’s and
world’s education systems (National Center for
Education Statistics (NCES), 2022). To harness
the promise of AI for improving math education,
AI models need to be able to diagnose students’
potential math misconceptions and other instruc-
tionally relevant errors. Misconceptions are "any
student conception that produces a systematic pat-
tern of errors" (Smith III et al., 1994). They often
form as people attempt to “assimilate. . . new in-
formation into their existing conceptual structures”
(Stafylidou and Vosniadou, 2004). For example,
students often inappropriately generalize concepts
and procedures learned about whole numbers to
fractions and decimals (i.e., whole number bias;
Durkin and Rittle-Johnson, 2012, 2015; Stafylidou
and Vosniadou, 2004). Misconceptions interfere
with students’ ability to learn correct concepts and
procedures and can persist for many years (e.g.,
Byrd et al., 2015). Other instructionally relevant
errors include attending to irrelevant information
and incomplete solution procedures.

Directly addressing and countering students’
misconceptions improves learning outcomes, in-
cluding on digital learning platforms (Barbieri

et al., 2019; Durkin and Rittle-Johnson, 2012;
Huang et al., 2008). However, more research and
development infrastructure is needed to ensure that
teachers and digital learning platforms can inte-
grate information about math misconceptions into
product development, research, and instruction. We
hosted a workshop that gathered mathematics cog-
nition researchers and digital learning platform
developers together to align needs and priorities,
which helped guide our work.

One needed tool is benchmark datasets of math
misconceptions and other instructionally relevant
math errors. This would enable assessment of how
well AI models perform, providing an objective
way to compare different AI models and platforms,
ensuring transparency, accountability, and suitabil-
ity for use in education (Hodeem, 2024).

1.1 Aims

This research methods paper introduces an AI
benchmark dataset on math misconceptions and
other instructionally relevant errors. The dataset is
the focus of the MAP - Charting Student Math Mis-
understandings data science competition hosted on
Kaggle, ending in October 2025, to generate large
language models that can detect math misconcep-
tions.

2 Sample

The dataset comprises over 52,000 student expla-
nations written over 15 math questions covering
key middle-school math topics. We used a dataset
from Eedi, a math learning platform based in the
U.K., which has been used by over 250,000 teach-
ers in 16,000 schools. All questions and feedback
messages were written by math teachers. Each
item begins with a multiple-choice question with
1 correct and 3 incorrect options, with incorrect
options meant to capture known misconceptions
and other instructionally relevant errors as much as
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possible. We sampled from instances that included
a follow-up prompt for an open-ended explana-
tion of why students selected their answer. We
selected items that covered core topics in the U.S.
middle-school math curriculum, primarily topics
in rational numbers and in equations and functions,
and for which there were at least 1000 explanation
responses available with at least 5 English words
(with one exception). Explanations were screened
for personally identifiable information before be-
ing shared. No demographic information about the
participating students was available.

To ensure a meaningful sample of each miscon-
ception code and increased explanations for exten-
sive rater training and norming, 14,368 synthetic
explanations were generated using Coedit-XL to
supplement the 38,095 original explanations (27%
synthetic explanations). A maximum of 1 aug-
mented explanation was generated by paraphrasing
an authentic student explanation. Coedit-XL tends
to provide the correct spelling, punctuation, and
capitalization in paraphrasing students’ explana-
tions. To better reflect the writing characteristics
of authentic student submissions, one spelling er-
ror was randomly injected into 50% of the aug-
mented explanations, and 50% of the augmented
explanations were fully lowercased. To confirm
the realism of synthetic explanations, an expert re-
viewed a sample of explanations that were partially
real and partially synthetic without an indication
of the source. Coedit-XL parameters were iterated
on until the expert was unable to differentiate the
sample.

3 Methods

Students’ explanations (both synthetic and original)
were scored by human raters using standardized
scoring rubrics and procedures. A scoring rubric
for each item was developed by three experts in
math cognition and misconceptions, drawing on
past research on misconceptions as much as possi-
ble. The rubric identified criteria for correct expla-
nations and 2-4 potential instructionally-relevant er-
rors, as outlined in Table 1. Each explanation could
only receive one code. Raters went through exten-
sive norming prior to independent rating. Raters
were primarily undergraduate or graduate students
with prior experience teaching or tutoring children
in mathematics.

4 Results

The final dataset comprises 52,463 explanations
and metadata in tabular format. The dataset con-
tains student ID numbers, item IDs, explanations,
and human-assigned codes. Twenty-four percent of
explanations were coded by two raters, with high
inter-rater reliability (Cohen’s Kappa .70-.90). One
item with weak inter-rater reliability was dropped.
Inter-reliability was also assessed separately for
real and synthetic explanations, which resulted in
similar Cohen’s Kappa values for each item with
large enough synthetic explanation sample sizes
for reliable statistical evaluation (real vs synthetic
Cohen’s Kappa differences: 0.005 - 0.15).

Across the 15 items, 27% of explanations had
evidence of a potential misconception, and the fre-
quency of particular misconceptions ranged from
0.2% to 35% of explanations. For example, when
asked to calculate 2

3 × 5, 23% of explanations in-
dicated a misconception that the whole number
is converted to a fraction with both its numerator
and denominator as that whole number. 41% of
explanations were correct (range: 18-74%).

This dataset supports the development and evalu-
ation of state-of-the-art large language models that
can detect potential misconceptions, including the
MAP - Charting Student Math Misunderstandings
data science competition hosted on Kaggle, ending
in October 2025. Submitted models will be evalu-
ated with the Mean Average Precision @ 3 metric.
Winning models will be posted on Kaggle and can
be used as baseline scoring models. One potential
limitation is that the models may be overly tuned
to particular concepts that may be over-represented
because synthetic explanations were paraphrased
from authentic explanations. To get a better under-
standing of the models, prediction accuracies can
be evaluated for authentic and synthetic explana-
tions, as well as for each misconception code.
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Item Topic Annotated
sample
size

Error 1 Error 2 Error 3

Fraction
Representa-
tion

6,963 Believes numerator
and denominator of
a fraction indicate
two separate num-
bers [WNB]

Incomplete steps:
fails to simplify frac-
tion [Incomplete]*

Adding Frac-
tions

3,994 Adding numerators
and denominators
without finding com-
mon denominator
[Adding across]

Finds common
denominator and
adds numerators
[Denominator-only
change]*

Creates equivalent
fractions, and adds
numerator and de-
nominator [Incorrect
Equivalent fraction
addition]

Finding
Fraction
of Set #1

4,023 Attending to irrele-
vant feature [Irrele-
vant]

Incomplete steps:
Calculates unit frac-
tion only [Incom-
plete]

Calculates fraction
for the wrong target
[Wrong fraction]*

Finding
Fraction
of Set #2

2,206 – Incomplete steps:
Calculates unit frac-
tion only [Incom-
plete]

Calculates fraction
for the wrong target
[Wrong fraction]*

Equivalent
fractions

5,204 Attending to irrele-
vant feature [Irrele-
vant]

Treating fraction as
2 separate numbers
[WNB]

Additive thinking:
finds difference [Ad-
ditive]*

Dividing
fractions

4,476 Multiplies to divide
by whole number
[Mult.]*

Swaps the divisor
and dividend [Swap-
Dividend]

Flips the dividend
(not divisor) and
keeps it as division
[FlipChange]

Multiplying
two Frac-
tions

2,528 Division instead
of multiplication
[Division]

Subtracts the pro-
vided number [Sub-
tracts]*

Fraction
whole num-
ber multipli-
cation

4,411 Multiplies numera-
tor and denominator
by the whole num-
ber (instead of just
the numerator) [Du-
plication]*

Inverts the whole
number multiplier
[Inversion]

Adds rather than
multiplies [Wrong
operation]

Solve for y 3,080 Treats y as a missing
digit, rather than a
variable [Not vari-
able]*

Transforming prob-
lem to addition prob-
lem [Adding terms]

Applies wrong oper-
ation (i.e., multiplies
rather than divides)
[Inverse]

Decimal
Magnitude

3,320 Believes whole num-
bers are larger than
numbers with deci-
mals [Whole num-
bers larger]*

Believes longer
numbers are bigger
[Longer is bigger]

Believes zeroes do
not add magnitude
information [Ignores
zeroes]a

Continued on next page
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Item Topic Annotated
sample
size

Error 1 Error 2 Error 3

Polygon
Sides

1,695 Believes there is not
enough information
to solve problem
[Unknowable]*

Does not use correct
formula, and instead
divides the total
interior angle sum
by one interior angle
[Interior]

Believes a polygon
is defined by having
a certain number of
sides (5 or 6) [Defi-
nition]

Subtracting
a negative

4,365 Ignores negative
signs and adds them
back at the end
[Tacking]

Incorrect application
of two negatives
makes a positive
[Two negatives is
positive]*

Functional
thinking

3,727 Uses the first term
of the output as the
coefficient of the
rule [firstterm]

Calculates the n+1
term, rather than the
n+2 term [wrong
term]*

Proportions 968 Reverses propor-
tional reasoning by
multiplying instead
of dividing [Multi-
plying by 4]*

Incorrect base rate
[Base rate]

Odds 1,503 Does not under-
stand the range of
probability is 0 to 1
[Scale]*

Believes events with
probability ̸= 1 are
certain [Certainty]

Table 1. Error Categories and Frequencies in the Math Misconceptions AI Benchmark Dataset by Item.
Notes: *Most frequent error type for each item; aFourth code was: Believes fewer digits after the decimal

point, the larger the number is [Shorter is bigger].
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5 Conclusion

To harness the promise of AI for improving math
education, AI models need to be able to diagnose
students’ potential math misconceptions and other
instructionally relevant errors. We have created an
AI benchmark dataset on math misconceptions cov-
ering a variety of middle-school math topics that
will be publicly available, along with baseline scor-
ing models. Although this dataset is based on expla-
nations primarily from students in the U.K., their
explanations align with misconceptions and correct
ways of thinking identified in the research litera-
ture conducted primarily in the U.S. and Canada.
State-of-the-art large language models based on
this dataset will support digital learning platforms’
ability to detect math misconceptions, and multiple
digital learning platforms are interested in adding
this capability. Detecting misconceptions is nec-
essary for them to be addressed, and directly ad-
dressing and countering students’ misconceptions
improves learning outcomes (Barbieri et al., 2019;
Durkin and Rittle-Johnson, 2012; Huang et al.,
2008).
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Abstract

School district boundaries in the United States
are not just lines on a map; they are mecha-
nisms that perpetuate deep-seated educational
inequities by directly linking school funding
to local property wealth. We present a com-
putational framework for optimizing district
boundaries to improve resource equity while
reducing racial and economic segregation. This
study designs a novel two-stage algorithmic
process that uses maximally compact plan ini-
tialization from spatial clustering and iterative
refinement using Markov Chain Monte Carlo
(MCMC) optimization. This hybrid approach
can reduce required iterations by more than
90%, relative to traditional methods, and allows
systematic variation of different numbers of
districts. Hard constraints including contiguity,
minimum enrollment thresholds, and infrastruc-
ture capacity limits are still enforced. Optimiza-
tion targets three Theil indices measuring prop-
erty tax capacity disparities, racial segregation,
and economic segregation. Across 42 states,
results show average state-level improvements
of 66.6% in tax-base equality, 47.6% reduction
in racial segregation, and 65.0% decrease in
economic segregation.

1 Introduction

Public school district borders determine both ed-
ucational access and taxing jurisdictions, directly
impacting resources available to students. Because
a significant portion of school district funding is
derived from local property taxes, these bound-
aries create systematic disparities that correlate
with racial and economic segregation. While states
compensate through progressive funding formulas,
high-wealth districts can more easily raise addi-
tional local revenue (Kenyon and Munteanu, 2021).
As a result, these school systems can easily increase
their budgets beyond what lower-wealth districts
can match. Nationwide, property taxes reportedly
comprised 65% of local revenues in 2021, but can

be much higher in some states (Common Core of
Data (CCD), n.d). Given the connection between
property values and neighborhood affordability, the
students that lose out tend to be those from low-
income backgrounds.

The problem also has a troubling racial dimen-
sion. This funding system is layered on top of gen-
erations of policies and government practices that
have created and entrenched racial and economic
segregation in housing markets (Kuhn et al., 2018).
At different phases of America’s past and present,
this has included redlining and racially discrim-
inatory mortgage lending; court enforcement of
racially restrictive covenants; government-funded
construction of segregated housing developments;
exclusionary zoning policies; and unfair property
assessment, among other forms of discrimination.
These factors have shaped both the racial compo-
sition of neighborhoods and the property values in
the taxing jurisdictions from which school districts
raise local dollars.

The result is a map of highly segregated resi-
dential communities that demonstrate stark eco-
nomic divides (Reardon and Weathers, 2024). Left
unmitigated, the legacies of discriminatory poli-
cies have the potential to intersect to create, shape,
and enforce new patterns of segregation (Reardon
and Owens, 2014). This problem is further reified
by the ways in which school district borders func-
tion: both as geographic areas that are home to
district students, and as the taxing jurisdictions that
yield their local funding (Stadler and Abbott, 2024).
Because these boundaries determine the students
served by a district and the local funding available
for its schools, they function to separate students
from resources—and from each other.

Furthermore, students from low-income back-
grounds, and with other needs and challenges have
demonstrably higher funding needs than students
from high-income families (Jackson et al., 2015;
Jackson and Mackevicius, 2024). While state aid
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can and should be used as a tool to provide addi-
tional support to students with higher needs, this
goal is undermined when these funds are eaten up
in pursuit of achieving basic funding parity with
high wealth districts. This burdens state education
budgets with compensating for existing inequity,
rather than achieving equity (Gartner, 2023). Given
the high degree of alignment between segregated
school districts, patterns of residential segregation
in the communities they serve, and funding divides,
one option is to consider drawing better school
district borders.

2 Theoretical Development

This paper presents the first national-scale com-
putational framework for school redistricting by
adapting methods from legislative redistricting. We
draw on MCMC methods used to efficiently ex-
plore high-dimensional solution spaces for bound-
ary realignment (McCartan and Imai, 2023; Fifield
et al., 2014), but introduce additional constraints
not often considered in legislative contexts, includ-
ing property tax capacity, infrastructure limitations,
and multi-dimensional segregation measures.

Our work builds upon a small but growing body
of literature that has explored educational bound-
ary optimization from different but complementary
perspectives. The framework designed by Gillani
(2023) found that intradistrict segregation could be
reduced while maintaining travel times. However,
this approach is not designed to address the interdis-
trict dynamics where nearly two-thirds of all racial
segregation occurs (Owens, 2016). Simko (2024)
advanced this line of inquiry through a detailed
case study of New Jersey, highlighting the impor-
tance of crossing district lines to integrate school
systems. These valuable analyses centered on de-
mographic integration, with logistical constraints
like student capacity and travel times, while keep-
ing the number of districts constant. Our research
extends this conversation by shifting both the ge-
ographic scale and the central objective. We also
expand the solution space, exploring configurations
that vary district counts from 25% to 175% of cur-
rent levels, in doing so, significantly expanding
potential equity gains.1

This study adopts fiscal equity as a central opti-
mization goal, a dimension not observed in prior

1For some, the immediate reaction may be that such
changes are unrealistic. However, our core approach posits
that considering drastic changes to district counts is necessary
to unlock the full potential for equity gains.

demographic-focused studies. The primary contri-
bution of this approach is the integration of parcel-
level property tax assessment data, which allows
us to directly model the tax base of each poten-
tial district. To complement this, we also incor-
porate Small Area Income and Poverty Estimates
(SAIPE), creating a multi-dimensional economic
profile of each proposed district. By constructing
boundaries around both fiscal equity and demo-
graphic balance, our model is designed to create
districts with equitable and sustainable local rev-
enue capacity, a vital consideration given that prop-
erty taxes constitute, on average, 40% of all district
funding (CCD n.d.).

Although changing school district boundaries
can be politically challenging, policymakers may
be unaware of the extent of existing divides or
the degree to which they can be mitigated. Fur-
ther, there is compelling evidence of efficiency sav-
ings from consolidating districts (Duncombe and
Yinger, 2007; Dodson and Garrett, 2008). In light
of this, several states, including Arkansas, Penn-
sylvania, and New Jersey have recently undertaken
efforts to examine the feasibility of district mergers
and other boundary changes. This algorithmic ap-
proach provides an objective framework to supply
legislators with evidence of the potential benefits
of redistricting, including fiscal savings, deconcen-
trated poverty, and integrated school systems.

3 Problem Formulation

Optimization of school district boundaries repre-
sents a high-dimensional combinatorial problem
where geographic units are assigned to districts
while satisfying multiple objectives and constraints.
Unlike legislative redistricting, school redistricting
must simultaneously consider property tax capac-
ity, demographic integration, and infrastructure ca-
pacity. This section formalizes the mathematical
framework underlying our optimization approach.

3.1 Multi-Objective Optimization Framework

Census tracts serve as atomic geographic units that
must be assigned to districts. Let G = {1, 2, ..., n}
represent the set of tracts in a state, and let D =
{1, 2, ..., k} represent the set of districts, where k
varies systematically. Each tract i ∈ G must be
assigned to exactly one district d ∈ D, creating a
partition of the geographic space.

Optimization seeks to minimize an objective
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function combining three equity dimensions:

f(D) = w1Tval(D) +w2Tracial(D) +w3Tecon(D)
(1)

where Tval measures disparities in per-pupil prop-
erty tax capacity, Tracial captures multigroup racial
segregation, and Tecon quantifies economic segre-
gation based on binary poverty status. Default
weights are set to w1 = 3.0, w2 = 1.0, and
w3 = 1.0, reflecting a priority on addressing dis-
parities in property tax capacity while maintaining
focus on integration objectives.

3.2 Mathematical Formulation of Theil
Indices

3.2.1 Theil’s T for Disparities in Property Tax
Capacity

The Theil T-index captures inequality in assessed
property values per pupil across districts:

Tfunding =
∑

i

(
pi ·

xi
µ

· log
(
xi
µ

))
(2)

where:

• pi = ni/N , the proportion of total students in
district i

• ni = number of children in district i

• N = total children in the state

• xi = assessed property value per pupil in dis-
trict i

• µ = state mean assessed value per pupil

This formula directly measures the capacity to raise
local revenue, as property assessments form the tax
base for school funding. The index equals zero
when all districts have identical per-pupil property
values, and increases with greater inequality.

3.2.2 Multigroup Theil’s H for Racial
Segregation

For racial integration, we employ the multigroup
entropy-based Theil H-index:

Tracial = (Estate − Eweighted)/Estate (3)

where:

• Estate = −∑
r(πr · log(πr)), the entropy of

racial composition at state level

• πr = proportion of racial group r in total state
enrollment

• Eweighted =
∑

i(pi · Ei), the enrollment-
weighted average of district entropies

• Ei = −∑
r(πir ·log(πir)), the entropy within

district i

• πir = proportion of group r in district i

The index ranges from 0 (perfect integration, where
every district mirrors state demographics) to 1
(complete segregation). This multigroup formu-
lation avoids the limitations of binary indices and
captures the full complexity of racial composition.

3.2.3 Binary Theil’s H for Economic
Segregation

Economic segregation uses a similar entropy-based
approach with two groups:

Teconomic = (Estate − Eweighted)/Estate (4)

Applied to binary poverty status, as defined by
SAIPE, this measure captures the concentration
of economic disadvantage across districts. The bi-
nary formulation is appropriate, given the policy
relevance of poverty thresholds for federal program
eligibility.

3.3 Constraint Specifications
1. Geographic Contiguity: Each district d must

form a connected component under rook adja-
cency (shared edges, not just vertices).

2. Minimum Population Threshold: Each dis-
trict must contain at least m children, where
m = 0.5 × min (current district resident
school-aged population in each state).

3. Infrastructure Capacity: For each district d:∑
(children in tracts assigned to d) ≤ 1.25×∑
(capacity d).

4 Data Architecture

4.1 Geographic Foundation
Census tracts serve as the geographic units for our
simulation approach, providing a standardized na-
tionwide framework with sufficient granularity to
capture local-level variation. We use 2020 census
tract boundaries from the Census Bureau, approx-
imately 80,000 tracts. These polygons define our
building blocks for spatial optimization.

Tract adjacency relationships are established us-
ing rook contiguity, including only shared tract
boundaries rather than vertices. The resulting adja-
cency matrix forms the foundation for contiguity
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constraint checking and move generation during op-
timization. Disconnected components (e.g., islands,
water boundaries) are connected via minimum dis-
tance stitching between nearest tract centroids to
ensure graph connectivity.

4.2 Property Valuation Data

Property valuation data is provided by the Center
for Geospatial Solutions at the Lincoln Institute
of Land Policy, pre-aggregated at the relevant ge-
ographic units of analysis. This dataset provides
total assessed property values for each unit from
the most recent year available, which directly de-
termine local education revenue capacity. Unlike
market values or sale prices, assessed values reflect
the actual tax base available to districts.2

4.3 Demographic Data

4.3.1 Demographic Composition
Demographic data come from two primary sources.
Racial and ethnic composition for five categories
(White non-Hispanic, Black, Native American,
Asian, and Hispanic/Latino) are obtained from
the American Community Survey 5-year estimates
(2018–22) for the population ages 5–17. Economic
status, specifically child poverty rates, are derived
from the Census Bureau’s Small Area Income and
Poverty Estimates (SAIPE) program. This ap-
proach captures all school-age children regardless
of enrollment status.

Our methodology is designed to be robust to
the noise introduced to tract-level counts by the
Census’s Disclosure Avoidance System (DAS). As
documented by Kenny and et al. (2021), this noise
is non-systematic for census tracts. By aggregating
multiple tracts to form each simulated district, our
models leverage the law of large numbers, substan-
tially diminishing the effects of random error at our
scale of analysis.

4.3.2 Enrollment Capacity Estimation
School capacity constraints are derived from the
historical maximum enrollment for each school
from the past decade, bounding practical capac-
ity without new construction.3 This sets an upper

2Our model optimizes for the potential tax base (assessed
property value) rather than actual tax revenues, as we do not
incorporate current tax rates. The assumption is that a large-
scale reorganization would likely necessitate a recalibration
of tax rates, making the underlying tax base the more stable
and relevant metric for long-term fiscal capacity.

3Enrollment data are used only as a proxy for existing
infrastructure capacity. We geocode schools to census tracts

bound for the number of children that can be as-
signed to a simulated district, ensuring that redis-
tricting respects facility constraints.

4.4 Data Integration
4.4.1 School District Mapping
Existing school district boundaries require careful
processing due to the complex structure of Ameri-
can educational governance. We include only dis-
tricts with assessment, demographic, and poverty
status data for more than 75 percent geographic
coverage by the underlying census tracts.4 Simi-
larly, states with less than 75 percent geographic
coverage are excluded from our analysis. Those
included have on average, 92.6 percent coverage.

Where elementary and secondary districts over-
lap, elementary districts are assigned to their cor-
responding unified or secondary district to avoid
double-counting. In cases where only elementary
or secondary districts exist, we use those bound-
aries and their corresponding data directly. This
process yields approximately 10,500 school dis-
tricts with sufficient demographic, property assess-
ment, and spatial data for analysis.

5 Algorithmic Framework

The optimization framework employs a two-stage
approach: spatial clustering for initialization, simu-
lated annealing for refinement, followed by system-
atic variation across district counts. This section
details the technical implementation of each stage
and the mechanisms for constraint enforcement.

5.1 Stage 1: SKATER Initialization
Optimization begins with SKATER (Spatial
’K’luster Analysis by Tree Edge Removal), which
generates geographically coherent initial district
configurations through constrained graph partition-
ing (AssunÇão et al., 2006). By starting from
maximally compact configurations rather than ran-
dom assignments, we reduce the required iterations
for convergence from hundreds of thousands (typi-
cal in redistricting literature) to approximately 2.5

and use the maximum historical enrollment for each school
to estimate available seats. School-age children counts from
the census are used for demographic and population metrics.
We multiply the capacity estimate by 1.25 as a conservative
buffer, recognizing that not all resident children enroll in pub-
lic schools.

4Coverage here refers to the spatial overlap of census tracts
containing the necessary data (property assessment, demo-
graphic, and poverty) with existing school district boundaries.
A small number of states and some rural areas exhibit higher
rates of missing data and are thus excluded.
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times the number of census tracts in each state.
This reduction in computational expense allows
us to complete the first school system redistricting
analysis that is national in scope.

SKATER constructs a minimum spanning tree
from the tract adjacency graph using edge weights
based on scaled geographic coordinates. Each re-
sulting partition forms a contiguous district, elim-
inating the need for post-hoc contiguity repair
that plagues random initialization approaches often
used in MCMC optimization.

5.1.1 Capacity Repair Mechanism
When SKATER produces initial configurations that
violate the capacity constraint, a repair mechanism
attempts to restore feasibility before optimization.
For each violating district, tracts are evaluated for
reassignment to neighboring districts with available
capacity. The repair process attempts up to 50
chained explorations of 2,000 iterations each.

5.1.2 Status Quo Fallback Strategy
In cases where the SKATER initialization does
not satisfy our constraints, and the chained repair
strategy is unable to resolve the issue, we imple-
ment a fallback initialization approach. The system
instead starts the optimization engine from the con-
figuration of census tracts most similar to the status
quo configuration of school districts. Because cen-
sus tracts are not conterminous with existing school
districts, we assign each tract to its geographic ma-
jority overlap district. This fallback mechanism
ensures that the optimization can proceed, resolv-
ing the issue of invalid starting points.

5.2 Stage 2: MCMC Optimization

Following SKATER initialization, MCMC-based
simulated annealing refines boundaries to minimize
our previously defined objective function, optimiz-
ing on our criteria while maintaining all constraints.
At each iteration, the algorithm selects a tract for
potential reassignment. Border tracts are identified
and preferentially selected, as they represent the
only tracts that can change districts while main-
taining contiguity. The selected tract is proposed
for reassignment to a randomly chosen adjacent
district.

The algorithm starts with a high temperature, its
willingness to accept worse solutions, and it grad-
ually becomes more selective over time, reducing
this acceptance rate by 1 percent after each step,
using the cooling formula T (t+1) = T (t)× 0.99.

Figure 1: Example plans generated by each model in
and around Cincinnati.

Beginning with acceptance to any move (T0 = 1.0),
the process continues until it has made 2.5 times as
many successful changes as there are geographic
units in the redistricting plan. Each move validates
compliance with the constraints outlined in section
3.3.

5.3 Three Model Variants

The algorithmic framework is applied to two dis-
tinct redistricting models and a programmatic
county-level merge, each offering different trade-
offs between optimization flexibility and implemen-
tation feasibility.

5.3.1 Model 1: Blank-Slate Redistricting
(Tract-Level Optimization)

This model uses census tracts as atomic units,
providing maximum flexibility to create optimal
boundaries. This model can completely reconfig-
ure districts without regard to existing boundaries.
It establishes the theoretical frontier for equity im-
provements.

5.3.2 Model 2: County-Based Redistricting
This model implements a programmatic, county-
based consolidation, assigning all tracts within
each county to a single district. The constraints
of section 3.3 are relaxed for illustrative purposes.
This simulation serves as a baseline to show what
simple administrative consolidation achieves ver-
sus algorithmic optimization.

5.3.3 Model 3: Redistricting by Merger
(Optimized District Consolidation)

This model uses existing school districts as atomic
units, preserving current boundaries while allowing
mergers. The same SKATER-optimization frame-
work operates on a district adjacency graph rather
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than tract-level data. This provides more politically
feasible solutions that maintain district identities
while still pooling resources.

Both optimization models undergo systematic
variation of current district counts. Each produces
tract-to-district assignments with complete Theil
index calculations, enabling direct comparison of
equity impacts. The tract-level model demonstrates
maximum theoretical improvements. The con-
solidation model balances feasibility with equity
gains.5 The county benchmark validates the value
of optimization over simple administrative bound-
aries. Figure 2 compares the per pupil tax base
equity improvements in Maryland.

Figure 2: Per pupil tax base equity improvements in
Maryland across models.

6 Output Specification

Each configuration for each model includes com-
plete unit-to-district assignment vectors alongside a
comprehensive metric suite: the three Theil indices
(tax capacity, race, and poverty status), Polsby-
Popper compactness scores, and additional met-
rics. This structure enables systematic comparison
across varied numbers of districts, revealing that
changing district count can improve resource dis-
tribution. The format remains consistent across all
three models, which facilitates direct comparison
of their relative performance.

6.1 Pareto Frontier Construction
Rather than selecting a single "optimal" solution,
we identify the set of Pareto-efficient configura-
tions that represent different trade-offs among com-

5A potential critique is that aggregating smaller geographic
units (like tracts or districts) into larger ones will mathemati-
cally reduce measured segregation by definition, as it averages
over local variations. While this is true, the magnitude of the
reduction achieved through our optimization far exceeds what
would be expected from simple aggregation, demonstrating
the value of purposeful boundary drawing.

peting objectives. A proposal is included only if
no other configuration performs better on all objec-
tives simultaneously. The Pareto selection evalu-
ates across four criteria: minimizing the three Theil
indices and maximizing geographic compactness
(Polsby-Popper).

The frontier reveals critical trade-offs that can-
not be resolved through optimization alone. Some
configurations achieve significant funding equity
but maintain racial segregation, while others in-
tegrate diverse populations at the cost of funding
disparities.

6.2 Configuration Selection

While the Pareto frontier presents all efficient op-
tions, practical implementation requires selecting a
single configuration. Normalized scores are com-
bined using policy-determined weights that reflect
our optimization metrics and compactness. The
default weights prioritize tax base equity while
maintaining focus on integration objectives and ge-
ographic coherence. The weighted score for each
configuration equals the sum of each normalized
measure multiplied by its corresponding weight.
The configuration with the lowest weighted score
is selected as the recommended plan for each state.
This selection is performed only among Pareto-
efficient configurations, ensuring the chosen plan
is not dominated by any alternative.

The framework’s key strength is its flexibility to
accommodate different policy priorities. Stakehold-
ers can adjust weights to explore how different pri-
orities affect optimal configurations. This approach
transforms a complex multi-objective optimization
problem into a structured decision process. Rather
than claiming to identify a single "best" solution,
we provide a menu of high-quality options and a
transparent mechanism for selection based on ex-
plicit policy priorities.

7 Results and Conclusion

Our strategic boundary optimization across 42
states reveals substantial potential for improving
educational equity. Figure 3 demonstrates that the
three models demonstrate that purposeful redraw-
ing of district lines can significantly reduce prop-
erty tax disparities in every state while simultane-
ously decreasing racial and economic segregation
between districts.6 As referenced in Table 1, the

6Figures detailing Theil improvements across states for
racial and economic segregation can be found in Appendix A.
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Figure 3: Theil Index improvement for property tax disparities across 42 states. This figure spans the full width of
the page to show detail across all states.

Model Property Tax
Equity Improvement

Racial Integration
Improvement

Economic Integration
Improvement

Blank-Slate Redistricting 66.6% 47.6% 65.0%
County-Based Redistricting 39.0% 40.7% 57.2%
Redistricting by Merger 63.0% 48.2% 54.6%

Table 1: Equity Improvements by Redistricting Model. Note: Applied to 42 states. County-based results reflect 37
states that would see boundary changes.

Blank-Slate approach achieves average improve-
ments of 66.6% in tax-base equality, 47.6% re-
duction in racial segregation, and 65.0% decrease
in economic segregation. Most notably, these im-
provements can be achieved purely through bound-
ary changes, without any student or family having
to move. The Merger model offers a potentially
more politically feasible alternative, keeping dis-
trict identities intact while still delivering meaning-
ful improvements.

While our local search approach cannot guar-
antee global optimality, the framework provides
policymakers with concrete evidence of redistrict-
ing’s potential benefits. The primary barrier to im-
plementation remains political feasibility, as com-
munities maintain strong attachments to existing

districts. Additionally, using rook contiguity rather
than actual road networks and historical enrollment
maximums for capacity estimates may not capture
all practical constraints like transportation barriers
or current infrastructure conditions. Future work
could address these limitations by incorporating
dynamic demographic modeling, actual transporta-
tion networks, and mechanisms to predict post-
redistricting property value adjustments.

Despite these constraints, this study establishes
the first national-scale framework for school redis-
tricting. By demonstrating that significant equity
improvements are technically achievable across di-
verse state contexts, we provide an objective foun-
dation for policy discussions about using bound-
ary change as a tool for educational equity. The
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flexibility of our multi-objective optimization ap-
proach allows stakeholders to explore trade-offs
transparently, transforming a complex challenge
into a structured decision process grounded in em-
pirical evidence.
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Figure 4: Theil Index improvement for racial segregation across 42 states.

Figure 5: Theil Index improvement for economic segregation across 42 states.
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Abstract 

Grading assessment in data science faces challenges 

related to scalability, consistency, and fairness. 

Synthetic dataset and GenAI enable us to simulate 

realistic code samples and automatically evaluate 

using rubric-driven systems. The research proposes an 

automatic grading system for generated Python code 

samples and explores GenAI grading reliability 

through human-AI comparison. 

Keywords 

Automated Assessment, Generative AI, Rubric-

Based Grading, Inter-Rater Reliability, Human-

AI Assessment Comparison, Hybrid Assessment 

Systems 

1 Introduction 

Digital technologies have significantly influenced 

educational assessment, leading to a growing 

interest in the automatic grading of student work. 

Traditionally, evaluating student submissions, 

especially coding and open-ended responses, has 

been labor-intensive and often subjective for 

educators. Manual grading tends to be inconsistent, 

biased, and a considerable time investment, 

particularly in large-enrollment courses. Automatic 

grading systems, primarily designed to address 

these challenges, aim to enhance efficiency, 

consistency, and objectivity in the assessment 

process, streamlining educational workflows and 

providing timely student feedback. Automatic 

grading is subject to the nature of text, code, and 

evaluating program codes might use different 

approaches for automated grading, where human 

cognition and human experience shed light on the 

process, and we will also assess the reliability of 

GenAI coding grading through a series of 

comparisons between human and GenAI 

evaluations. 

Automated Grading of Student Work 

 
The development of automatic grading systems is 

deeply rooted in advancements in artificial 

intelligence (AI), particularly in the fields of 

Natural Language Processing (NLP) and Machine 

Learning (ML) (V. Nikhil et al., 2025; Kumar et al., 

2024; Alqahtani et al., 2023). While early systems 

relied on rule-based approaches and statistical 

models to analyze surface-level features such as 

grammar, spelling, and word count, more recently, 

deep learning techniques, including models like 

BERT and RoBERTa, have enabled more 

sophisticated semantic analysis, allowing systems 

to better understand the content and coherence of 

written responses (Ayaan & Ng, 2025; Faseeh et al., 

2024; Bayer et al., 2022). The emergence of Large 

Language Models (LLMs) further promises to 

revolutionize this domain by offering enhanced 

capabilities in processing complex sentences, 

establishing relationships between text elements, 

and even discerning the intent behind writing. 

 

The benefits of automatic grading systems are 

substantial and widely discussed in the literature. 

Foremost among these is the significant 

reduction in grading time and workload for 

instructors, freeing instructors to focus on more 

personalized student interactions and curriculum 

development (Messer et al., 2025). Automated 

systems also provide unparalleled consistency 

and objectivity, applying uniform criteria across 

all submissions and minimizing human biases 

that can inadvertently affect grades (Vetrivel et 

al., 2025). These advantages, which incl·ude 

scalability, rapid feedback, and reduced bias, 

have been extensively synthesized in recent 

systematic reviews (Marcelo Guerra Hahn et al., 

2021), underscoring their central role in modern 

online and large-scale learning environments. 
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Crucially, these systems offer immediate 

feedback to students, a feature essential for 

reinforcing learning and enabling prompt self-

correction. Previous research suggests that these 

practices lead to better long-term retention and 

skill development (Demszky et al., 2023; Wilson 

et al., 2021). Furthermore, the scalability of 

automatic grading makes it a crucial tool for 

large classes and online learning environments 

(Lin et al., 2024; Messer et al., 2023). 

 
Despite these advantages, previous studies also 

highlight several challenges and limitations 

associated with automatic grading (Padó et al., 

2023). A primary concern is the inherent 

difficulty in replicating the nuanced judgment of 

human graders, especially concerning subjective 

aspects of writing such as creativity, originality, 

critical thinking, and subtle rhetorical devices 

like humor or irony. Critics argue that over-

reliance on algorithms might inadvertently 

incentivize students to adopt formulaic writing 

styles that appeal to the machine's evaluative 

criteria rather than foster genuine intellectual 

development. Moreover, while automated 

systems excel at quantitative feedback, they 

often struggle to provide the rich, qualitative, and 

constructive suggestions that human graders can 

offer, which are essential for deep learning and 

improvement (Figueras et al., 2025; Bato & 

Pomperada, 2025; Fagbohun et al., 2024). 

 
Ethical considerations and student perception are 

also critical in the discourse (Farazouli, 2024). 

Concerns about algorithmic bias, where systems 

might inadvertently perpetuate or amplify 

existing societal biases in their training data, are 

frequently raised. It can lead to unfair or 

inequitable assessments for specific demographic 

groups (Baker & Hawn, 2021; Kordzadeh & 

Ghasemaghaei, 2021). Besides, some studies 

indicate that students may perceive automated 

grading as less fair or trustworthy than human 

evaluation, potentially undermining their 

confidence in the integrity of the scoring process 

(Vetrivel et al., 2025; Chai et al., 2024). 

Addressing these issues requires transparent 

system design, rigorous validation, and, in many 

cases, a hybrid approach that integrates human 

oversight (Kern et al., 2022). Looking ahead, 

automatic grading is moving towards advanced 

hybrid systems that combine the strengths of AI 

with human insight. Researchers focus on how 

AI can help evaluate more complex skills and 

adapt to individual learning needs, emphasizing 

personalized educational paths. A key 

development area involves integrating these 

grading tools with existing Learning 

Management Systems (LMS) to create smooth 

and effective educational environments. By 

thoroughly capturing human behavior, these 

systems can continuously learn from human 

input, leading to a more efficient, objective, and 

supportive learning experience for students 

through detailed and instant feedback, all while 

carefully managing the associated complexities.  

 
Hence, with the increasing integration of data 

science and coding instruction into educational 

curricula, scalable and equitable assessment of 

student-generated code is becoming prominent. 

Assignments that involve code development, 

data analysis, and interpretation pose challenges 

for large-scale instruction due to the complexity 

and subjectivity in grading. Although criteria 

provide a standardized basis for assessment, 

manual scoring is time-consuming and 

inconsistent. It emphasizes the requirement for 

scalable, reliable, and pedagogy-matching 

grading solutions for education. GenAI and 

LLMs could develop the perception of code, 

whereas synthetic student data methods enable 

the recreation of student submissions in 

controlled environments, negating student 

privacy concerns. Moreover, automated grading 

systems can behave differently depending on the 

nature of the text and the machine learning 

approach used to evaluate. Grounded in prior 

studies, our research proposes an auto-grading 

framework that integrates GenAI with synthetic 

data and evaluates the reliability of automated 

grading in data science by examining differences 

between human and AI grading outcomes, 

intending to enhance the efficiency and 

effectiveness of coding assessment practices. 

 

Hence, our study aims to address the following 

research questions (RQs): 

RQ1: How effectively do rubric-based GenAI 

grading outputs align with human ratings across 

all programming code samples regarding total 

scoring consistency? 

RQ2: What are the methodological strengths and 

practical limitations of GenAI-based rubric 

grading systems with respect to reliability, 

scalability, and fairness in programming 

assessment, and how can educators be guided to 

integrate such systems effectively into grading 

practices? 
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2 Research Methodology 

Based on academic and behavioral 

characteristics, we used GPT-5 to generate 100 

synthetic student profiles as the original dataset. 

These profiles include features such as the 

number of hours studied per day, lecture 

attendance rate in percentage, average quiz score, 

assignment score, final exam score, class 

participation level, number of hours of internet 

usage per day, and average number of sleeping 

hours per day. Each profile was uniquely 

identified by a distinct student ID. 

 

Based on the synthetic education dataset, we 

have defined a regression task (supervised task) 

for further code samples simulation and human-

AI grading comparison. 

 
TASK: The Regression Task (Supervised Task) 

 
This task is a supervised regression problem that 

aims to predict a continuous numerical value, the 

final exam outcome, based on various student 

behavioral and academic features. The goal is 

not just to make accurate predictions, but to 

build a model that can be easily understood, 

allowing us to identify which specific student 

behaviors and indicators have the most 

significant impact on student final scores. It is 

different from a classification task, which would 

predict a discrete category like "pass" or "fail." 

Instead, the response variable final exam 

outcome is a numerical variable, such as "92.5”. 
When generating the AI code, you'll need to 

consider several key details: 

 
Dataset: The input data is in a CSV file named 

synthetic_education_data.csv. The task includes 

loading, preprocessing, and analyzing this data. 

 

Response Variable: The column representing the 

final exam outcome is the response variable we 

want to predict. You will need to identify this 

column in the dataset. 

 

Feature Variables: The other columns 

containing the student behavioral and academic 

information are the features or independent 

variables. These will be used to train the model. 

 

Model: Since the goal is interpretability, a good 

starting point would be models like linear 

regression, decision trees, or random forests. 

While more complex models like neural networks 

might be more accurate, they are often less 

transparent about predictions. 

 

Evaluation Metrics: The code should use 

regression-specific metrics to evaluate the 

model's performance. Common metrics include: 

Mean Squared Error (MSE): Measures the 

average of the squared differences between the 

predicted and actual values. A lower MSE 

indicates more accurate predictions. Root Mean 

Squared Error (RMSE): The square root of the 

MSE, expressed in the same units as the response 

variable, making it easier to interpret. R-squared 

(R²): Indicates how well the model’s predictions 

fit the actual data, ranging in (−∞, 1], with 

values closer to 1 indicating that the model 

explains more of the variability in the outcome. A 

negative R² suggests that the model performs 

worse than a simple mean predictor. 

 

Based on the task descriptions, a total of 25 

synthetic Python code samples were generated 

by GPT-5, differing in syntax, formatting, and 

comments. The prompt we used was: “Could you 

generate 25 distinct Python solutions for the 

Regression Task by simulating 25 different 

students who have diverse levels of expertise and 

performance in coding skills, educational data 

analytics, and data mining methods? ” 

 
Evaluation Rubric: Each code sample was 

assessed using a detailed analytic rubric with 20 

evaluation criteria to assess a broad range of 

coding competencies aligned with learning 

outcomes in data science education: comments 

used, number of lines, number of libraries, 

number of variables, number of visualizations, 

error-free, clear structure, organized, data 

cleaning, outlier checking, optimized solution, 

code complexity, interpretation quality, code 

readability, predictable variable names, visual 

readability, code reusability, data accessibility, 

resource efficiency, and overall quality. 

 

Each code sample received a complete rubric-

based score evaluation, and the total score for 

each code sample was computed by summing the 

20 criteria. Based on the 20 criteria, scores 

ranged from 1 to 5 for each criterion, and with a 

total score out of 100 for each code sample. 

GenAI grading was conducted using GPT-5 via 

OpenAI, guided by the 20 criteria grading 

scheme with human cognition to enhance 

reliability and evaluation alignment. To compare 
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GenAI and human grading results, a human 

grader evaluated those generated 25 code 

samples based on the same rubric with 20 

evaluation criteria. To better understand the 

score distribution of GenAI versus Human 

grading result comparison, we visualized total 

scores using a multi-line radar and a scatter plot. 

These visualizations revealed a broad 

distribution of grades, supporting the diversity in 

the code samples simulation. Inter-rater 

agreement between human and AI grading 

results was analyzed using intraclass correlation 

coefficients (ICC), Cohen’s Kappa, and 

Cronbach’s α to evaluate reliability and 

consistency between human and AI evaluators. 

The research establishes a reproducible 

framework for rubric-based automatic code 

grading, incorporates realistic grading variability, 

and evaluates the reliability of AI-based scoring, 

contributing to the development of hybrid 

assessment systems that balance efficiency with 

instructional quality in STEM education. 

3 Data Analysis & Results 

All data analyses and Python code are stored in a 

private GitHub repository (2025-NCME-AIME-

Con-Yiyao-Yang; Yang, 2025), available upon 

request. The summary statistics of rubric-based 

GenAI versus human grading across 25 

submitted code samples of the regression task 

(Table 1) indicate a generally consistent trend, 

but a systematically lower scoring pattern by 

GenAI. Among all 25 different code samples, the 

mean score of GenAI grading (81.00) is lower 

than that of human grading (86.91), with median 

scores of 80.85 and 86.53, respectively. The 

score ranges show that both GenAI (74.02 – 

91.88) and human (73.47 – 95.79) raters have 

captured the full spectrum of code quality, 

although human gradings exhibit higher 

variability (range = 22.32, IQR = 4.53) compared 

to GenAI ratings (range = 17.86, IQR = 2.63).  

 
Table 1 

Summary Statistics of Rubric-Based GenAI versus 

Human Grading of 25 Generated Code Samples 

  GenAI  Human 
Mean 81.00 86.91 
Median 80.85 86.53 
Range 17.86 22.32 
IQR 2.63 4.53 
Max 91.88 95.79 
Min 74.02 73.47 

Note. All values are reported to two decimal places. 

Examining the score distributions, GenAI 

exhibits a narrower range than human raters, 

reflecting compressed score variability. 
Across the 25 code samples, human grading 

generally assigned higher scores than GenAI 

grading, with only two tasks (Code Sample # 11 

and # 23) receiving similar grades from both 

evaluators. Visual comparisons, including the 

multi-line radar plot (Figure 1) and the scatter 

plot (Figure 2), further confirm that while GenAI 

grading follows the overall performance trend, it 

predominantly underestimates scores relative to 

human evaluation. 

 
Figure 1 

GenAI versus Human Grading: Multi-Line Radar 

 
Note. “C” denotes “Code Sample”. 

 
Figure 2 

GenAI versus Human Grading: Scatter Plot 

 
Note. “C” denotes “Code Sample”. 

 

Overall, GenAI moderately captures relative 

performance trends but tends to underestimate 

scores compared to human grading. It provides a 

useful foundation for consistency checks and 

supports the development of semi-automated 

grading workflows. The evaluation of rubric-

based GenAI grading systems highlights both 

methodological strengths and practical 

constraints. In terms of reliability, the intraclass 

correlation coefficient (ICC (2,1) ≈ 0.51) 
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indicates moderate consistency between GenAI 

and human grading results, suggesting that 

GenAI reasonably captures relative performance 

trends, though absolute score alignment remains 

limited. The low Cohen’s Kappa ( ≈ 0.01) 

highlights minimal exact agreement on total 

scores, indicating that categorical consistency 

between GenAI and human grading outcomes is 

extremely low. In contrast, the high Cronbach’s 

α ( ≈ 0.90) demonstrates strong internal 

consistency across rubric criteria, indicating 

coherent scoring patterns within the multi-

criteria evaluation framework. 

 
Regarding scalability, GenAI efficiently 

processes large volumes of code samples, 

producing rapid and reproducible scores without 

the temporal and cognitive variability of human 

raters, as a key advantage in large programming 

courses. For instructional alignment, the 

moderate total-score reliability suggests that 

GenAI is best used as a complement, rather than 

a replacement for human judgment. Educators 

may use GenAI for first-pass grading, trend 

identification, and efficient formative feedback, 

while maintaining human oversight for final 

scoring decisions. Iterative refinement of rubric 

prompts can further improve alignment, enabling 

a collaborative hybrid human-AI grading 

workflow. 

4 Conclusion 

Taken together, the findings underscore the 

necessity of re-evaluating grading practices in 

programming education. Previous research 

indicates that human graders often show 

considerable variability in scoring the same 

programming assignments, with both inter-rater 

disagreement and intra-rater inconsistency, 

suggesting that the notion of a “gold standard” in 

human grading may be inherently flawed 

(Messer et al., 2025). A shared rubric alone is 

insufficient to guarantee consistent evaluation, 

and additional measures such as assessor training 

and alternative grading practices are needed to 

improve reliability. In this context, our research 

further demonstrates that rubric-based GenAI 

grading offers a practical complement: While 

GenAI auto-grading cannot replace human 

judgment, it can efficiently perform an initial 

assessment of coding assignments, after which 

human evaluators can review and adjust the 

grading results. Such a collaborative human-AI 

workflow leverages the efficiency of automated 

scoring while preserving the refined judgment of 

human graders, providing an effective approach 

to scalable, semi-automated hybrid assessment of 

programming tasks. By combining the efficiency 

of GenAI with the experience and judgement of 

human evaluators, we can ensure assessment 

fairness while giving educators the space to 

guide students meaningfully in data science 

education, encouraging and inspiring them to 

grow as passionate programmers and to blossom 

as inquisitive learners and reflective thinkers, 

guided by curiosity, courage, and the joy of 

discovery. 
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Abstract

We developed and validated a scalable LLM-
based labeler for classifying student cognitive
engagement in GenAI tutoring conversations.
Higher engagement levels predicted improved
next-item performance, though further research
is needed to assess distal transfer and to disen-
tangle effects of continued tutor use from true
learning transfer.

1 Introduction

Student engagement is a key predictor of learning
outcomes, but not all engagement is equally bene-
ficial. Behavioral engagement (e.g., time-on-task,
number of tasks completed) captures participation,
whereas cognitive engagement refers to the quality
of mental effort devoted to sense-making. Theory
and evidence consistently link cognitively produc-
tive behaviors–such as self-explaining, elaborat-
ing, and drawing inferences–to superior learning,
beyond surface-level participation alone (Sinatra
et al., 2015; Greene and Azevedo, 2010).

Measuring cognitive engagement at
scale remains challenging. Conventional
learning-analytics behavioral measures (e.g.,
time on task, retry rates) are convenient and
can correlate with learning outcomes. But they
provide limited insight into the metacognitive and
inferential processes that underpin knowledge
abstraction, integration and transfer (Winne,
2020). By contrast, text-based GenAI tutoring
produces rich discourse traces of students’ ques-
tions, explanations, and reasoning. These traces
enable rubric-guided text mining—including
LLM-as-judge approaches—to operationalize
cognitive engagement directly within authentic
tutoring conversations.

The present research has two main aims:

1. At-scale labeling. To develop and validate a
reliable and scalable procedure for labeling

student cognitive engagement in GenAI math
tutoring conversations.

2. Impact evaluation. To measure the impact
of different levels of sustained cognitive en-
gagement on learning outcomes, focusing on
near transfer to subsequent performance on
the same skill. (Distal transfer to mixed-skill
practice or assessments is of interest but out
of scope.)

2 Background

The ICAP framework for cognitive engagement.
The ICAP framework is a central account of how
the depth of cognitive engagement shapes learn-
ing. This framework outlines four levels of en-
gagement—Interactive » Constructive » Active »
Passive—and predicts deeper learning as learners
progress from passive activities (e.g., listening,
reading) to active behaviors (e.g., highlighting/un-
derlining, copying steps, selecting answers), to con-
structive generation (e.g., self-explaining, making
inferences, creating concept maps/diagrams), and
ultimately to interactive co-construction of knowl-
edge with a peer (e.g., dialogue where partners
question, explain, and build on each other’s contri-
butions) (Chi and Wylie, 2014).

A central prediction of the ICAP framework
is that constructive engagement facilitates robust
knowledge abstraction and transfer. The interactive
level refers to dyads in which both peers engage
constructively, generating and amplifying learning
benefits for both participants. This contrasts with,
for instance, a passive-constructive dyad, in which
one partner generates constructive ideas while the
other primarily listens or affirms without recipro-
cally elaborating or extending the reasoning. In the
latter case, the constructive participant might ben-
efit from the dialogue, but the passive participant
is predicted to benefit minimally, if at all (Chi and
Menekse, 2015).

40

mailto:kodi@khanacademy.org


The ICAP framework was initially introduced to
characterize the affordances of learning activities
(Chi, 2009) and has since been used extensively to
analyze engagement in peer-to-peer contexts (e.g.,
(Vosniadou et al., 2023; Stump et al., 2017; Chi
et al., 2017; Hsiao et al., 2022; Chi et al., 2018)).
Empirical applications typically (a) compare activ-
ity types hypothesized to induce different engage-
ment levels, or (b) use labor-intensive, human cod-
ing of classroom observations/transcripts to iden-
tify ICAP behaviors in situ. These approaches clar-
ified which activities tend to promote deeper learn-
ing, but they pose two limitations for large-scale
analytics: the unit of analysis is often coarse (activ-
ity episodes rather than specific turns of talk), and
expert-level human annotation does not scale.

Adapting ICAP to student–tutor GenAI con-
versations. Text-based GenAI tutoring changes
both the data available for analysis and the inter-
actional context. On the data side, it produces
detailed discourse traces—student turns and tutor
responses—that can be examined at the level of
individual contributions rather than entire activi-
ties. This granularity makes it possible to apply
rubric-guided text mining approaches to authentic
tutoring conversations, enabling scalable labeling
methods (e.g., LLM-as-judge).

On the interactional side, GenAI tutoring differs
fundamentally from peer collaboration. Whereas
the ICAP framework’s notion of interactive engage-
ment emphasizes co-construction among peers of
similar ability, GenAI tutoring is structured as a
novice–expert dialogue. The GenAI tutor is, by
design, a constructive partner with expert-level do-
main knowledge. What varies is how the learner
contributes to the dialogue.

Although much attention has been given to tutor
behaviors—such as eliciting reasoning, correcting
misconceptions, and calibrating when to provide or
withhold information (VanLehn, 2011; Koedinger
et al., 2012; Graesser et al., 2012; Chi et al.,
2001)—the more fundamental issue for whether
and how much learners benefit from intelligent tu-
toring may be how learners engage in these dia-
logues: whether they participate passively, actively,
or constructively.

Present approach and study roadmap. Study 1
adapts the ICAP framework for the student–GenAI
tutor setting by developing and validating a rubric-
guided, LLM-as-judge procedure for labeling stu-
dent cognitive engagement at scale. Study 2 then

examines how within-learner variation in cogni-
tive engagement relates to learning, as measured
by near transfer to subsequent performance on the
next item attempt on the same skill (knowledge
component). These analyses use student panel data
(multiple tutoring conversations and correspond-
ing item attempts per learner) and employ models
with rich fixed effects to remove confounds due to
time-invariant aspects of student ability, variation
in skill difficulty, and local practice context.

3 Study 1: At-scale labeling

3.1 Methods

Operationalization. We extended the ICAP
framework to student–tutor (novice-expert) dia-
logues by classifying student contributions as pas-
sive, active, or constructive (see Table 1 for a sum-
mary of operational definitions of these levels). In
brief, passive turns reflect perfunctory acknowl-
edgments of the tutor’s information (e.g., yes/no
answers) or answer-mining behavior. Active turns
typically involve the learner mechanically follow-
ing procedural guidance from the tutor without
contributing new information. And constructive
turns involve the learner adding new information
by asking targeted questions, explaining reasoning,
making inferences, or engaging in other behaviors
that deepen the conversation and show ownership
of learning.

Expert coding. Two human experts applied this
rubric to a non-random coverage sample of con-
versations (n = 106), selected to reflect a di-
verse range of student and tutor discourse behav-
iors. While each student turn in a conversation
can be classified independently, the expert-labeling
effort focused on holistically classifying the domi-
nant pattern of student cognitive engagement across
their turns in a conversation (see examples in Table
A1). After the experts labeled the conversations, we
measured inter-rater reliability, resolved disagree-
ments, and refined the rubric until high agreement
was achieved.

LLM-as-judge labeling. We then converted the
final rubric to an LLM-as-judge prompt (Table A2)
and used OpenAI’s Batch API (model snapshot
= gpt-4o-2024-05-13) to machine-label both the
human-labeled threads and a larger random set. We
iterated on the prompt (e.g., few-shot examples,
instruction refinements) until suitable human/LLM
agreement was reached.
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PASSIVE ACTIVE CONSTRUCTIVE INTERACTIVE
The Tutor fully drives
the conversation, with the
Learner passively follow-
ing along, guessing, min-
ing for the answer, or
providing perfunctory
inputs (e.g., ‘yes’, ‘no’,
‘idk’, ‘help’)

The Tutor drives the con-
versation, but the Learner
is actively involved.
This often looks like the
Learner mechanically
following the Tutor’s
procedural guidance
but without contribut-
ing new information or
without demonstrating
deeper exploration /
questioning.

The Learner takes own-
ership of the problem
solving by asking tar-
geted questions, explain-
ing their thinking, mak-
ing inferences, general-
izations or connections to
other material, or gener-
ally building on the Tu-
tor’s guidance.

Only applies in peer-
to-peer situations
where learners are co-
constructing knowledge.
Does not apply when
learners interact with an
(ostensibly) “all knowing”
other / GenAI tutor.

Table 1: Operational definitions of student cognitive engagement in GenAI tutoring conversations (adapted from
ICAP framework).

Inter-rater agreement
For human-human and human–LLM rater pairs

N threads Both raters agree
Counts

Krippendorff’s α
TP TN FP FN

Human expert #1 vs. #2
Passive 107 93% 16 83 2 6 0.755

Active 107 85% 28 63 12 4 0.667

Constructive 107 88% 40 54 4 9 0.754

Human expert #1 vs. LLM-judge
Passive 344 90% 142 167 23 12 0.796

Active 344 87% 84 214 25 21 0.688

Constructive 344 94% 56 266 6 16 0.796

Table 2: Summary of human/human and human/LLM-judge agreement.

3.2 Results

Inter-rater agreement is shown in Table 2. Over-
all agreement exceeded 84% for both human/hu-
man and human/LLM pairs. Krippendorff’s alpha
ranged from 0.67 to 0.80, where values above 0.6
indicate good agreement and above 0.8 indicate
very strong agreement. Human/LLM agreement
was slightly higher than human/human agreement,
suggesting the LLM judge performed comparably
to human experts, if not slightly better.

3.3 Discussion

The LLM-as-judge approach for labeling student
cognitive engagement from tutoring discourse tran-
scripts achieved expert-level agreement while out-
putting structured data and rationales. This en-
ables both high-throughput labeling and down-
stream analytics (e.g., linking cognitive engage-
ment to outcomes), complementing traditional

learning-analytics pipelines that rely on click-
stream data and behavioral measures.

4 Study 2: Impact evaluation

4.1 Data and samples

The global sample from which we derived our
causal impact analysis samples is summarized in
Table 3. Specifically, we curated Khan Academy
platform telemetry data and school district adminis-
trative data for students in six US public school
districts who had access to Khanmigo – Khan
Academy’s GenAI tutor – for the 2024-2025 SY.
The platform data were limited to students (n =
9,129) with non-zero use of Khanmigo as a math
tutor during the Fall and early Spring semesters
(2024-08-01 to 2025-03-01). For these students,
we curated question performance for all Khan
Academy math items attempted during the eligi-
bility window, totalling nearly 9 million question
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attempts, along with the conversation text of all
Khanmigo threads that took place on those items
(about 200K threads). We ran all of the tutoring
conversations through a series of machine label-
ers – including the cognitive engagement labeler
described above – to extract discourse features.1

4.2 Within-learner panel creation

To estimate near transfer while controlling for prior
skill knowledge, we required sustained (multi-turn)
threads and at least one prior and one subsequent
attempt on the same knowledge component. We
created two learner-level panels: Panel 1 includes
learners with at least one qualifying thread in each
of Passive/Active/Constructive; Panel 2 includes
learners with qualifying threads in at least two of
the three levels. This yields roughly 200 learn-
ers/5k threads (Panel 1) and 2k learners/35k threads
(Panel 2).

Table 4 presents a descriptive summary of the
panels. The rate of Constructive threads is low –
an inherent property of these data. The analysis
threads are by definition ‘sustained’ / multi-turn
conversations: on average, there are 5 back-and-
forth turns between the learner and the GenAI Tutor.
The vast majority (>90%) of threads started before
the learner attempted the math question (i.e., non-
punitive pre-submission help); hence we expect
answer correctness to be biased upwards on these
items. Further, there is a non-zero rate (variable by
student cognitive engagement) at which the Tutor
(undesirably) reveals the final answer to the prob-
lem, which further biases correctness upwards. For
knowledge transfer analysis, we examine learner
performance on the next skill item. Ideally, that
next item would not involve use of the Tutor. De-
riving a sample with that restriction is not feasible
with these data (given that about two-thirds of treat-
ment items are followed by Tutor use). We adjust
for this property of the data in the causal impact
analyses; but there remains a limitation that what
appears to be a treatment effect that generalizes to
future performance could be explained (in part, or
in full) by the future Tutor use.

1Other labelers included deterministic labelers for linguis-
tic complexity, reading ease, and sentiment; an LLM-judge
labeler for whether the tutor revealed the final answer without
the student doing the work first; and an embedding-based ma-
chine labeler for the Tutor’s degree of repetitiveness during a
dialogue.

4.3 Statistical methods
To examine whether deeper cognitive engagement
is associated with improved learning, we modeled
student performance on the next item practiced
within the same skill. Specifically, we fit a fixed
effects logistic regression:

logit Pr(Ys,k,i+1 = 1) = β1 Engagements,k,i+

αstudent(s)+

αskill(k)+

αnext_item_had_tutor(s,k,i+1)+

αprev_item_had_tutor(s,k,i−1)+

αprev_item_credited(s,k,i−1)+

αincoming_skill_mastery(s,k)+

αtutoring_conversation_length(i)+

εs,i

(1)

This specification models the probability that
learner (s) answers the subsequent item (i+ 1) on
the same skill (k) correctly as a function of their
observed engagement with the GenAI tutor on the
current item (i). The key treatment variable is the
level of cognitive engagement (Passive, Active, or
Constructive) exhibited by the student during the
tutoring exchange. By estimating a logistic regres-
sion with an extensive set of fixed effects (α terms),
the model seeks to isolate within-student, within-
skill variation in performance that is plausibly at-
tributable to differences in cognitive engagement
level.

The inclusion of student fixed effects (αstudent)
accounts for all stable (time-invariant) learner char-
acteristics that might otherwise confound the esti-
mates, such as baseline ability, motivation, or de-
mographic background. Skill fixed effects (αskill)
absorb persistent differences in the inherent diffi-
culty of skills, ensuring that comparisons are not
biased by heterogeneity in task complexity. Addi-
tional item-level controls capture contextual fea-
tures of practice: whether the previous or subse-
quent item involved tutor use, whether the prior
item was credited as correct, the learner’s incom-
ing mastery estimate for the skill, and the num-
ber of conversational interactions within the thread.
Together, these fixed effects substantially reduce
between-student and between-skill variation, nar-
rowing the identifying variation to comparisons
within the same learner–skill trajectory.

The implicit assumption of this modeling ap-
proach is that, conditional on the fixed effects and
included controls, variation in observed engage-
ment level is orthogonal to other unobserved deter-
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N
students

N question
attempts

N question
attempts

with tutor use

% attempts
with tutor use

%
off topic

%
passive

%
active

%
constructive

Total 9,129 8,853,983 211,229 2.4 5.5 72.2 21.6 0.7

By district
District 1 5,834 7,971,201 173,806 2.2 5.9 74.5 19.1 0.5
District 2 1,987 268,099 12,516 4.7 4.3 62.5 32.1 1.2
District 3 257 128,332 7,403 5.8 2.5 60.7 35.5 1.3
District 4 500 108,028 6,743 6.2 1.2 63.4 33.9 1.4
District 5 216 211,523 6,202 2.9 7.1 61.5 30.0 1.3
District 6 335 166,800 4,559 2.7 1.7 58.0 35.4 5.0

Table 3: Summary of the global sample and by-district breakdown.

Thread Characteristics Surrounding Context

% Correct Tutor Use

ICAP Level Learners Threads
%

of Total
Threads

Skills
In a

Completed
Task

Median
Position
in Task

Median
Thread
Length

Median
User
Word
Count

Thread
Started
Before

Question
Attempt

Tutor
Revealed

Final
Answer

Prev
Item

Current
Item

Next
Item

Prev
Item

Current
Item

Next
Item

Panel 1: Each student has all three P/A/C levels
Passive 191 2,257 47% 705 70% 2 5 1.0 94% 20% 71% 74% 74% 57% 100% 64%
Active 191 2,215 46% 689 80% 2 5 4.0 94% 13% 76% 83% 79% 59% 100% 66%
Constructive 191 375 8% 271 82% 3 5 10.5 95% 6% 80% 87% 82% 61% 100% 62%

Total 191 4,847 100% 954 75% 2 5 2.0 94% 16% 74% 79% 77% 58% 100% 65%

Panel 2: Each student has at least two of the three P/A/C levels
Passive 2,116 23,278 68% 1,221 65% 2 5 1.0 93% 18% 69% 70% 69% 51% 100% 61%
Active 2,158 10,548 31% 1,158 74% 2 5 4.0 93% 11% 72% 81% 75% 53% 100% 61%
Constructive 253 503 1% 343 81% 3 5 9.2 92% 7% 79% 82% 81% 56% 100% 57%

Total 2,168 34,329 100% 1,362 68% 2 5 1.5 93% 15% 70% 73% 71% 52% 100% 61%

Table 4: Descriptive summary of analysis samples (Panel 1: learners with all three engagement levels; Panel 2:
learners with at least two engagement levels). Includes thread characteristics, tutor interaction patterns, correctness,
and tutor use on adjacent items.

minants of performance on the next item. In other
words, after holding constant learner ability, skill
difficulty, prior correctness, and local tutoring con-
text, remaining differences in next-item correctness
are attributed to differences in engagement mode.
While this strengthens the rigor of inference rela-
tive to pooled or random-effects models (Angrist &
Pischke, 2009), the design remains observational:
unmeasured time-varying factors such as transient
motivation, fatigue, or classroom context could still
bias estimates.

4.4 Results

The regression results are reported in Table 5. We
show cumulative stepwise addition of fixed effects
to highlight how the treatment estimates changed
as the amount of within-variation was controlled.
Figure 1 shows the estimated marginal contrasts for
the full/saturated regression model for each sample
after converting the log-odds estimates to proba-
bilities. We observe a significant stair-step effect:

learners are more likely to answer the next skill
item correctly (by 4-5 percentage points) after a
sustained Active tutoring conversation, relative to
sustained Passive, and even more likely ( 10ppt)
after sustained Constructive.

Note that while the results trended toward Con-
structive > Active, the estimate for this contrast
was not statistically significant. The base rate of
constructive threads is very low, resulting in an im-
precise measure, as seen in the wide confidence
intervals in Figure 1.

4.5 Discussion

Our analyses indicate that constructive cognitive en-
gagement with a GenAI tutor is associated with sub-
stantively better performance on subsequent skill
practice, compared to passive engagement, high-
lighting the promise of scalable, log-based evalu-
ation of tutor effects. Still, given the nonrandom
treatment, low base rates, and outcome scope, we
temper causal claims and detail limitations and
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Table 5: Fixed-effect logistic regression results for the impact of cognitive engagement on knowledge transfer (i.e.,
correctness on next item within skill).

Student Panel 1 Student Panel 2

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Sustained Active
0.29 ***
[0.14, 0.44]

0.30 **
[0.07, 0.52]

0.27 *
[0.05, 0.49]

0.27 *
[0.05, 0.49]

0.24 *
[0.02, 0.46]

0.20 +
[-0.03, 0.43]

0.20
[-0.05, 0.45]

0.30 ***
[0.23, 0.37]

0.32 ***
[0.25, 0.40]

0.29 ***
[0.22, 0.36]

0.28 ***
[0.21, 0.35]

0.27 ***
[0.20, 0.35]

0.24 ***
[0.17, 0.32]

0.27 ***
[0.19, 0.34]

Sustained Constructive
0.51 **

[0.18, 0.84]
0.67 *

[0.13, 1.21]
0.65 *

[0.11, 1.18]
0.63 *

[0.10, 1.17]
0.61 *

[0.08, 1.15]
0.55 +

[-0.01, 1.10]
0.72 +

[-0.02, 1.46]
0.49 ***
[0.21, 0.77]

0.71 ***
[0.35, 1.08]

0.67 ***
[0.31, 1.04]

0.65 ***
[0.28, 1.02]

0.63 ***
[0.26, 1.00]

0.57 **
[0.19, 0.94]

0.61 **
[0.21, 1.01]

Model statistics
Num. Obs. 4,706 3,408 3,408 3,408 3,408 3,408 3,403 33,098 32,022 32,022 32,022 32,022 32,022 32,015
R2 0.069 0.178 0.199 0.202 0.232 0.232 0.240 0.087 0.145 0.163 0.164 0.168 0.198 0.199
R2 Adj. 0.000 -0.105 -0.085 -0.083 -0.054 -0.054 -0.058 -0.007 -0.001 0.017 0.018 0.021 0.051 0.050
R2 Within 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.002
R2 Within Adj. 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.002 0.003 0.003 0.002 0.002 0.002 0.002
RMSE 0.41 0.41 0.40 0.40 0.40 0.39 0.39 0.43 0.42 0.41 0.41 0.41 0.40 0.40

Fixed effects included (stepwise)
FE: student (kaid) X X X X X X X X X X X X X
FE: skill_id X X X X X X X X X X X X
FE: next_item_on_skill_used_km X X X X X X X X
FE: prev_item_on_skill_used_km X X X X X X
FE: prev_item_on_skill_is_credited X X X X
FE: skill_fpm_level_before X X X X
FE: n_interactions X X

Notes: + p < .10, ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001. Each cell shows the coefficient (top) and 95% CI (bottom).
Highlighted columns are fully saturated specifications, per Equation 1.

Figure 1: Estimated marginal contrasts from fixed ef-
fects regressions for the probability of answering the
next skill item correct following ’sustained’ Active or
Constructive cognitive engagement relative to Passive
engagement.

threats to validity.
Observational design. The treatment is learn-

ers’ observed engagement level, not random assign-
ment. Despite rich fixed effects that account for
time-invariant within-learner and within-skill prop-
erties, unobserved confounds remain possible (e.g.,
transient motivation).

Subsequent tutor use. About two-thirds of
treated items are followed by tutor use on the next
item. Models adjust for this, but residual bias is
plausible; what looks like transfer may partly re-
flect continued support.

Base-rate imbalance. Constructive threads are
rare (<1%), limiting precision and external validity
across subgroups/skills.

Outcome scope. We evaluated near transfer
(next item on the same skill). Whether gains persist
to mixed-skill practice or distal assessments is left
for future work.

5 Conclusions

We developed a rubric-grounded LLM-as-judge
that can validly classify cognitive engagement in
GenAI tutor conversations at scale, enabling new
forms of learning analytics that attend to the qual-
ity of student thinking. In large-scale field data,
sustained Active and especially Constructive en-
gagement were associated with higher odds of
success on the next item in the same skill (near
transfer), even after rigorous controls. Future work
should test whether these effects extend to distal
outcomes and persist without continued tutor sup-
port. Improving tutor designs to increase construc-
tive moves is a promising path to better learning
with GenAI tutors.
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Target math
problem for
conversations
below.

Correct answers
= A, C, and E.

Student cognitive
engagement

Role Text

Active

The learner
makes a generic
help request
(passive) and then
mechanically
follows the tutor’s
procedural
guidance.

Student help

Tutor Let’s solve this together! First, what do you notice about the relationship
between the pounds of bananas and their total cost in the table? How can we
use this to find the missing values?

Student find the total cost of 1 pound
Tutor Great idea! Using the table, can you calculate how much 1 pound of bananas

costs?
Student $0.49
Tutor That’s correct! Each pound costs $0.49. How can you use the cost per pound

to find the total cost for different numbers of pounds?
Student multiply
Tutor Exactly! By multiplying the cost per pound ($0.49) by the number of pounds,

you can find the total cost. Can you try this for the options given and see
which ones fit the pattern?

Student 2 x $0.49 is 0.98
Tutor Great job! You found that 2 pounds cost $0.98. Now, try using the same

method to calculate the total cost for the other options. Which ones match
the pattern?

Constructive

The learner
summarizes the
problem, follows
the tutor’s
guidance, errs on
the first substep,
gets feedback,
retries while
explaining their
reasoning, and
then solves the
problem.

Student The table says 3 pounds would be $1.47. 5 pounds cost $2.45 and 9 pounds
cost $4.41. But we have to find the proportional relationship.

Tutor You’re doing well! To find the proportional relationship, calculate the cost
per pound by dividing the total cost by the number of pounds for each given
data point. What do you find when you do this?

Student So if I divide all of the pounds by the cost it would be 2.04 but we have to
find the actual cost every banana.

Tutor It looks like there might be a small mix-up. To find the cost per pound, you
should divide the total cost by the number of pounds, not the other way
around. Try calculating it again using this method. What do you find?

Student If I divide each of the costs by the number of pounds, it is exactly 0.49
Tutor Great! Now that you know the cost per pound is $0.49 per pound, you can

use this to check which options maintain this consistent cost. Which options
do you think match this cost per pound?

Student So A C E would be exactly like $0.49 because when I divide all of them it
would be $0.49

Tutor You’ve got it! Options A, C, and E all maintain the consistent cost of $0.49
per pound. Great work on verifying the proportional relationship! If you
have any more questions, feel free to ask.

Table A1: Example student-tutor conversations.
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Instructions
You are a Critic evaluating a Student’s cognitive engagement during a back-and-forth conversation with a Tutor. Your task is to
assess the Student’s cognitive engagement in the conversation, using the rubric provided. Think before you respond. Read the
entire conversation first; then use the rubric to provide a holistic judgment of the student’s contributions to the conversation. You
must output your evaluation as a nested JSON object as defined below.

Cognitive Engagement Rubric
Level: Constructive – The Student is actively and constructively involved in the conversation. The Student takes ownership of
problem-solving by asking targeted questions about the content, building on the Tutor’s guidance, explaining their thinking,
and/or making inferences, generalizations or connections to other material.
Rating: 8–10
Indicators:

• High-specificity help requests: The Student asks targeted questions that deepen conceptual understanding of the problem
(e.g., “Why do we use a negative sign in this equation?”, “How is a diamond different from a square?”).

• Substantive responses: The Student builds on the Tutor’s responses with further explanation, reasoning, or
problem-solving steps (e.g., “I see, we multiply here because it’s a percentage increase, not an absolute number.”).

• Deep engagement with feedback: The Student revises their approach, while also asking follow-up questions or
explaining how they modified their thinking (e.g., “I see why my approach didn’t work—so I should have used the
distributive property?”).

• Deep ownership of learning: The Student actively guides the conversation by asking insightful questions, proposing
alternative methods, or pointing out potential mistakes (e.g., “Could we also solve this using substitution?”).

Level: Active . . .

Level: Passive . . .

Level: Off-topic . . .

How to Use the Rubric:
The rubric defines behavioral indicators for four levels of cognitive engagement (off topic, passive, active, and constructive)
along a numeric scale from 1–10. Determine which level best describes the Student’s contributions to the conversation. And then
determine a numeric rating based on how well the conversation fits that level. The numeric ratings are not 1:1 with the levels: for
example, the Passive range is from 2–4 and Active is from 5–7. These numeric ranges allow room to distinguish conversations
where the Student is, for instance, exclusively Passive (rating=2) from conversations where the Student demonstrates a mixture
of Passive and Active contributions (which could be rated 3–5 depending on the mixture).

Output Format:
You must output a nested JSON object where the key is “icap” for the ICAP Framework, and the value is an object containing:

1. rating: An integer rating (1–10).

2. evidence: A numbered list of instances from the Student’s behavior in the conversation that justify the rating.

3. off_topic_count: An integer denoting the number of Student turns that are best classified as “off topic”.

4. passive_count: An integer denoting the number of Student turns that are best classified as “passive”.

5. active_count: An integer denoting the number of Student turns that are best classified as “active”.

6. constructive_count: An integer denoting the number of Student that are best classified as “constructive”.

If a type of engagement doesn’t occur, still include its object: e.g., “constructive_count: 0”. The sum total of passive_count,
active_count, and constructive_count values must equal (NEVER EXCEED) the total number of Student turns in the
conversation.

Output Example:

{
"icap": {

"rating ": 5,
"evidence ": "(1) Student provides surface -level answers. (2) Student follows

steps mechanically with no elaboration or reflection .",
"off_topic_count ": 0,
"passive_count ": 1,
"active_count ": 3,
"constructive_count ": 0

}
}

Example Scenarios [redacted few-shot prompting]

Table A2: Complete rubric and instructions for the LLM-as-judge engagement evaluator.48
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Abstract

This study explores the use of Chain-of-
Thought prompting with ChatGPT-4.1 as an
approach for identifying revision patterns in
young students’ argument writing. ChatGPT-
4.1 shows substantial agreement with human
coders on evidence-related revision patterns
and moderate agreement on explanation-related
ones. Implications for CoT prompting for writ-
ing evaluation are discussed.

1 Introduction

Revision is a crucial component of the writing pro-
cess (Hayes, 1996; Fitzgerald, 1987). However,
young students struggle with effective revision
(Graham et al., 1995; Wang et al., 2020). A well-
established approach to improving writing skills is
to provide formative feedback targeting various as-
pects of the writing process, as it builds knowledge
of the criteria for successful writing (Stein and Mat-
sumura, 2008; Matsumura et al., 2023). Few assess-
ments directly measure revision quality in terms
of how successfully students implement feedback
to meet particular writing goals. Instead, it is typi-
cally inferred from the overall quality of the revised
text using holistic or trait-based scoring. However,
such measures do not provide direct insight into the
specific revision actions taken or into their effec-
tiveness in meeting writing goals. Therefore, there
is a need for assessments that directly capture holis-
tic revision patterns (e.g., adding non-text-based
evidence) to reveal how effectively students revise
between drafts in response to specific writing goals
(Correnti et al., 2024). Such assessments can serve
two purposes: providing formative information to
support the development of students’ writing skills
and providing data for research. These purposes
require different validity investigations, but both
involve reliability (Correnti et al., 2022).

One of the major barriers to developing and im-
plementing direct measures of revision quality is
the time-consuming nature of the evaluation pro-
cess, which has been well documented in educa-
tional research. In studies that examine students’
revision, researchers have relied on manual hu-
man coding to track and evaluate changes between
drafts (e.g., Cho and MacArthur, 2010; MacArthur
and Graham, 1987; Wang et al., 2020). The qual-
ity of revisions is often examined across four as-
pects: the type of revision (surface- or content-
level), the type of operation (e.g., addition, dele-
tion), the impact on meaning (meaning-changing
or meaning-preserving), and the impact on text
quality (increase or decrease). This is a multi-step
process that is too labor-intensive for busy teachers,
who would also need specialized training. More-
over, the cost of training and hiring raters to assess
revision patterns in essays is prohibitively expen-
sive for writing researchers. Therefore, efficient
approaches are needed to assess revision patterns.

Recent advancements in large language models
(LLMs) have shown significant promise in evalu-
ating student writing quality (Li et al., 2024; Pack
et al., 2024; Seßler et al., 2025; Tang et al., 2024;
Tate et al., 2024) and can be an efficient approach
to assessing revision patterns. The present study
explores the potential of one of the most popular
LLMs, ChatGPT 4.1, for identifying revision pat-
terns in students’ text-based argument writing. We
are interested in exploring the integration of the
chain-of-thought (CoT) prompting strategy to im-
prove the performance of automatic evaluation of
revision patterns. The CoT prompting is frequently
used to evaluate student responses to mathemat-
ics and science tasks, as specifying the intermedi-
ate reasoning steps leading to the final answer can
improve LLM performance in automatic scoring
within those fields (e.g., Cohn et al., 2024; Lee

49



et al., 2024). In contrast, prompting strategies for
writing evaluation often rely on zero-shot to few-
shot prompting by including scoring rubrics and
sometimes related essay examples (e.g., Pack et al.,
2024; Tate et al., 2024), but they rarely specify
intermediate evaluation steps. Akin to prompting
strategies employed in math and science evaluation,
we aim to extend current research by exploring
whether CoT can improve ChatGPT-4.1’s perfor-
mance in assessing revision quality.

To address this goal, this study applies two dif-
ferent prompting strategies: the baseline strategy of
few-shot prompting and few-shot CoT prompting.
We then examine the reliability of ChatGPT-4.1’s
predictions from two perspectives: the internal con-
sistency in generating the same output across mul-
tiple runs and the accuracy in predicting revision
patterns that align with human coding. The reliabil-
ity of automated scores has most often been evalu-
ated by comparing machine-generated ratings with
human ratings, which are often considered the gold
standard. We extend the investigation of reliabil-
ity by examining the consistency of ChatGPT-4.1’s
ratings. Internal consistency has received less atten-
tion in prior research, yet it is important given evi-
dence that LLMs can produce inconsistent ratings
(Tang et al., 2024; Tran et al., 2024). Therefore,
this paper addresses the following questions:

1. How internally consistent is ChatGPT-4.1
in assessing revision patterns in students’
text-based argument writing across different
prompting strategies?

2. How accurate is ChatGPT-4.1 in assessing re-
vision patterns in students’ text-based argu-
ment writing across different prompting strate-
gies?

2 Data

In this section, we describe the dataset of students’
essays, outline the taxonomy of revision patterns
used to code revision quality, and explain the hu-
man coding process.

2.1 Dataset of student essays
The corpus for this study is drawn from a larger
project of eRevise+RF, an automated writing eval-
uation system designed to support young students’
argument writing and revision (Correnti et al.,
2024; Liu et al., 2023; Liu et al., 2025). eRe-
vise+RF is developed to score responses and pro-
vide feedback to students on the Response-to-Text

Assessment (RTA). The RTA aims to assess the
quality of students’ ability to reason about texts in
their writing and to use text evidence to support
their claims (Correnti et al., 2012; Correnti et al.,
2013). To administer the system, the teacher reads
the text aloud to students, poses planned questions,
and defines selected vocabulary at specific points
in the article to ensure that all students comprehend
the material before writing. In this study, each stu-
dent completed one of two RTAs: one task was
based on an article about the United Nations Mil-
lennium Villages Project (MVP) to fight poverty
in Kenya, and another one was based on an article
about the benefits and costs of space exploration
(SPACE) (Appendix A).

After students submit their first drafts, the sys-
tem uses NLP features generated during the auto-
matic scoring of students’ initial essays (including
the number of pieces of evidence, the specificity of
evidence, the concentration of evidence, and word
count) to select appropriate revision goals and re-
lated feedback based on the quality of evidence
in each draft. Revision goal 1 emphasizes adding
additional evidence from the text. Revision goal 2
instructs students to add details to existing evidence
to increase specificity. Revision goal 3 guides stu-
dents to explain their evidence and connect it to the
claims (Correnti et al., 2020; Wang et al., 2020).
After receiving a tailored revision goal, students
revise their essays accordingly.

The dataset was collected from 330 students in
grades 4th through 8th in Louisiana and Pennsylva-
nia. It contains a total of 330 essay pairs, including
both initial and revised drafts. Among these essay
pairs, 172 were written in response to the MVP
article, while 158 were written in response to the
SPACE article.

2.2 Taxonomy of revision patterns for
argument writing

The taxonomy of revision patterns for argument
writing is adapted from Wang et al.’s (2020) quali-
tative study, which examined how students revised
their writing in response to the aforementioned revi-
sion goals and the feedback generated by eRevise,
the earlier version of eRevise+RF. The revision
patterns identified by Wang et al. (2020) were re-
organized and consolidated around three guiding
questions: 1) Do the revisions focus on content?
2) Do the revisions effectively address the targeted
goal? and 3) To what extent do the revisions sub-

50



Figure 1: Taxonomy of revision patterns. This taxonomy reflects the general framework for categorizing
revision patterns. The manifestations of revision patterns for each goal are presented in Appendix B.

stantially improve essay quality with respect to the
targeted revision goal? Based on these questions,
four main revision patterns were generated and or-
ganized into a taxonomy, as shown in Figure 1.
The four revision pattern codes reflect a progres-
sion from the least to the most effective type of
revision patterns, which represents an ordinal scale.
In addition, these revision pattern codes are mutu-
ally exclusive, which means coders should assign
only one code to each essay pair. As students were
assigned different revision goals, the description
of each revision pattern for each goal and related
examples are presented in detail in Appendix B.

2.3 Human coding of revision patterns
Assessing revision quality is a complex process. To
increase interrater reliability between two human
coders, we standardized the coding procedure by
breaking down the task of assigning revision pat-
terns into a series of manageable steps developed
from the three guiding questions (Figure 1). All
changes between the first and second drafts were
counted as revisions. The procedure was struc-
tured as a three-step sequential filtering approach,
with each step building on the previous one to pro-
gressively focus the analysis on a smaller, more
meaningful set of revisions:

Step 1. Examine all revisions to determine
whether any content-level changes are presented.
If all changes are surface-level (e.g., mechanical
issues of writing), the revision pattern is Pattern
1: Make no revision attempt or make only surface-
level changes.

Step 2. Further examine the revisions identified
as content-level to determine whether those revi-
sions effectively address the targeted goal. If none
of the revisions are effective, the revision pattern

is Pattern 2: Make ineffective revisions toward the
targeted goal.

Step 3. Focus on the revisions that effectively
address the revision goal, and consider both the
quantity of these revisions and the overall quality
of the first draft to determine whether there is a
substantive improvement in overall essay quality.
This step aims to select whether the revision pat-
tern should be Pattern 3 of making revisions with
slight improvement or Pattern 4 of making revi-
sions with substantive improvement. This three-
step coding process was developed into a decision-
making flowchart presented in Appendix C.

All the essay pairs were double-coded by two
human coders. Discrepancies were discussed and
resolved between coders to establish the bench-
mark for the comparison with coding by ChatGPT-
4.1. We assessed interrater reliability with two met-
rics: exact agreement, calculated using confusion
matrices, and quadratic weighted kappa (QWK).
The interpretation of Kappa follows the guideline
proposed by Landis & Koch (1977): values be-
low 0 indicate poor agreement; 0.01–0.20, slight;
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80,
substantial; and 0.81–1, almost perfect agreement.
Human coders engaged in identifying revision pat-
terns for each of the three goals (i.e., evidence,
details, and explanations). For the revision goal
of adding evidence, the exact agreement between
the two coders was 87.5%, with a QWK of 0.87,
indicating almost perfect agreement. For the re-
vision goal of adding details, the exact agreement
was 84.91%, and the QWK was 0.91, indicating
almost perfect agreement. For the final revision
goal of adding explanations, the exact agreement
was 79.67%, and the QWK was 0.77, indicating
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Goal 1:
Evidence

Goal 2:
Details

Goal 3:
Explanations

Pattern 1: Make no revision attempt
or make only surface-level changes

2 3 19

Pattern 2: Make ineffective revisions
toward the targeted goal

14 22 60

Pattern 3: Make revisions with slight
improvement toward the targeted goal

44 17 32

Pattern 4: Make revisions with substantive
improvement toward the targeted goal

74 17 26

Total 134 59 137

Table 1: Distribution of revision patterns for each revision goal

substantial agreement. The distribution of human-
coded revision patterns for each revision goal is
shown in Table 1.

3 Methods

We used ChatGPT-4.1 to assign revision pattern
codes to each essay pair (i.e., first and second draft).
To evaluate the model’s internal consistency in as-
sessing revision quality, each essay pair was pro-
cessed three times using the same prompt. To min-
imize randomness in the output, the temperature
was set to 0. Two types of prompts were tested in
this study: few-shot prompting and few-shot CoT
prompting. In the following section, we provide
an overview of these prompting methods (see Ap-
pendix D for details).

3.1 Few-shot prompting

Few-shot prompting served as the baseline, in
which ChatGPT-4.1 was directly asked to assign
one of the revision pattern codes to each essay pair.
The prompt consisted of three parts. First, it intro-
duced the RTA by providing the source text and
the related writing prompt. Second, it specified
the student’s revision goal and presented the list
of revision pattern codes associated with that goal.
We also include the descriptions of each code and
an essay pair to exemplify the pattern. Finally, the
student’s first and second drafts were provided, and
the model was prompted to output one revision
pattern code.

3.2 Few-shot chain-of-thought prompting

The CoT prompting approach was developed based
on the human coding process described in the pre-
vious section. While most of the information in-
cluded in the baseline prompt remained the same,

the only change was substituting the list of revision
patterns with stepwise guidance for selecting a pat-
tern. Given the three revision goals, more detailed
instructions tailored to each goal were developed.

3.3 Evaluation metrics

To address RQ1, we ran each type of prompt three
times to evaluate ChatGPT-4.1’s consistency in
generating the same code. We then calculated the
QWK for each pairwise comparison and averaged
the results to determine internal consistency. To
address RQ2, we used a majority vote approach to
determine the final code assigned by ChatGPT-4.1
across the three runs and computed exact agree-
ment and QWK to evaluate the agreement between
ChatGPT-4.1 coding and human coding. We fur-
ther computed per-class F1 scores for each revision
goal, which enabled a direct comparison between
baseline prompting and CoT prompting in their
ability to identify different revision patterns.

4 Results & Discussion

4.1 RQ1: Consistency of revision pattern
predictions

Both the baseline prompting strategy and the CoT
prompting strategy exhibited almost perfect consis-
tency across the three runs, with QWK values ex-
ceeding 0.90 for each revision goal (Table 2). This
finding demonstrates that ChatGPT-4.1 is highly
reliable in assigning the same revision patterns
to essays when prompted multiple times. More-
over, consistency remained stable across prompting
strategies, suggesting that the internal consistency
of ChatGPT-4.1 in assessing revision quality is not
affected by different prompting strategies.
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Baseline CoT

Exact
Agreement QWK Exact

Agreement QWK

Goal 1: Evidence 90.30% 0.94 90.30% 0.94
Goal 2: Details 89.83% 0.96 88.14% 0.94
Goal 3: Explanations 89.78% 0.94 92.70% 0.96

Table 2: Internal consistency across two prompting strategies

Baseline CoT

Exact
Agreement QWK Exact

Agreement QWK

Goal 1: Evidence 64.18% 0.56 64.93% 0.63
Goal 2: Details 67.80% 0.76 61.02% 0.80
Goal 3: Explanations 40.88% 0.39 52.55% 0.54

Table 3: Prediction accuracy across two prompting strategies

4.2 RQ2: Accuracy of revision patterns
predictions

As shown in Table 3, with the baseline prompt-
ing strategy, we observed an exact agreement of
64.18% and a QWK of 0.56 for revision goal 1,
indicating moderate agreement with human cod-
ing. For revision goal 2, the exact agreement was
67.80% with a QWK of 0.76, indicating substantial
agreement with human coding. For revision goal
3, the exact agreement was 40.88% with a QWK
of 0.39, indicating only fair agreement with human
coding.

We further tested the CoT prompt, and the results
showed that it improved accuracy in predicting revi-
sion patterns. For goal 3, the exact agreement rose
from 40.88% to 52.55%, and the QWK increased
from 0.39 to 0.54, representing a moderate level of
agreement. For goal 1, the QWK slightly increased
from 0.56 to 0.63, indicating substantial agreement
with human coding, while the agreement remains
substantial for revision goal 2.

Across both prompting strategies, revision goal 3
(adding explanations) consistently showed the low-
est accuracy in predicting revision patterns. Sim-
ilarly, in human coding, interrater reliability was
lowest for revision goal 3 (QWK=0.77). Assessing
the quality of newly added explanations (goal 3) is
more subjective than assessing the quality of added
evidence (goal 1) or related details (goal 2). The
quality of evidence can be directly checked against
the source text. By contrast, explanations of how

evidence supports claims vary widely in length,
clarity, logic, and persuasiveness, which requires
more nuanced judgment. Simply including the
definition of revision patterns in the prompt does
not capture the judgments made by humans dur-
ing coding the quality of explanations. As a result,
ChatGPT-4.1 struggled to assign revision patterns
that aligned with human coding when working on
goal 3. This finding suggests that the performance
of LLMs co-varies with the level of human agree-
ment in coding educational materials (Cohn et al.,
2024; Wang et al., 2023). In other words, when
human coders demonstrated higher interrater relia-
bility, ChatGPT-4.1 also achieved higher accuracy
in predicting revision patterns.

We further computed F1 scores to gain insight
into how baseline prompting and CoT prompting
performed differently on identifying revision pat-
terns, with particular attention to revision goal 3.
As shown in Table 4, the CoT prompt increased
the weighted-average F1 score from 0.40 to 0.51.
When examining the per-class F1 scores for each
revision pattern, the CoT improved performance
in predicting ineffective revisions of explanation
(pattern 2), achieving an F1 score of 0.63, nearly
double that of the baseline model (F1 = 0.34). This
higher score reflects CoT’s ability to capture more
true instances of ineffective revisions while reduc-
ing misclassifications of other revision types as
ineffective. This is an important improvement in
prediction accuracy, as the evaluation of ineffective
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Goal 1: Evidence Goal 2: Details Goal 3: Explanations

Baseline CoT Baseline CoT Baseline CoT

Pattern 1 0.40 0.29 0.67 0.75 0.52 0.62
Pattern 2 0.46 0.46 0.63 0.73 0.34 0.63
Pattern 3 0.52 0.58 0.63 0.57 0.42 0.24
Pattern 4 0.74 0.74 0.78 0.77 0.44 0.48
Weighted average F1 score 0.63 0.65 0.68 0.70 0.40 0.51

Table 4: F1 scores across two prompting strategies

explanation revision is the most complex in the
human coding process. This complexity arises pri-
marily from the pedagogical knowledge required to
recognize the diverse forms of ineffective explana-
tion attempts. Instead of adding explanations that
clearly connect evidence to claims, young students
often insert personal comments, empty explana-
tions, summaries of the evidence, or elaborations
that do not strengthen the argument. Moreover,
students’ ineffective explanations are not always
presented in a single pattern; rather, they frequently
appear as a mix of multiple inadequate attempts
in their revision, sometimes even accompanied by
partial but effective explanations. With the baseline
prompt, when an essay contained both effective and
ineffective revisions of exlanations, the selection
of a revision pattern often appeared arbitrary, as
no clear major pattern emerged. By contrast, with
the CoT prompt, ChatGPT-4.1 was instructed to
evaluate the quality of explanation revisions first at
the sentence level and then transition to the essay
level by considering the quantity of effective expla-
nations shown within the revision. The inclusion
of standardized evaluation steps in the CoT prompt-
ing, which makes explicit the considerations human
coders apply during coding, likely contributed to
the accuracy of identifying the revision pattern that
applied ineffective explanations.

5 Conclusions

Revision is a crucial component in writing develop-
ment, yet many young students struggle to revise
effectively (Wang et al., 2020). Accurately eval-
uating the revision quality (e.g., identifying revi-
sion patterns) is a key step in providing targeted
feedback that supports the growth of their revision
skills. However, such evaluation is time-consuming
for human coders. Therefore, this study investi-
gates the potential of ChatGPT-4.1 as an alternative
tool for identifying revision patterns across vari-

ous writing goals. Our findings demonstrate that
ChatGPT-4.1 is highly consistent in predicting the
same revision patterns across multiple runs and
shows strong potential for effectively identifying
patterns that align with human coders. Similar to
studies that explore CoT prompting in the auto-
mated scoring of math and science tasks (e.g., Lee
et al., 2024), we also found that including interme-
diate evaluation steps improves the accuracy of pre-
dicting revision patterns, particularly those under
the goal of adding explanations. Specifying evalua-
tion steps makes the nuanced judgments of human
coders more explicit, which likely contributed to
this improvement. Moving forward, we suggest
that researchers and teachers carefully reflect on
and document their writing evaluation processes,
standardize these steps, and transform them into
a sequence of manageable subtasks or decision
points. Such practices may better support collabo-
ration with LLMs in scoring tasks more broadly.

6 Limitations

First, our study focused on a specific writing eval-
uation task of assessing revision quality among
young students. Future research should apply
CoT prompting strategies across diverse writing
evaluation tasks, such as holistic scoring or trait-
based scoring in different writing genres to exam-
ine whether CoT can outperform baseline models.
Second, the assessment of revision introduced in
this study is designed primarily for the purpose of
providing feedback by teachers in the classroom,
and we only focused on testing the reliability of
ChatGPT-4.1 scoring. Although we demonstrated
its potential in identifying revision patterns, future
research should investigate the validity of the as-
sessment to ensure that it captures the meaningful
dimensions of student revision or develop a more
comprehensive format based on it.
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A RTA writing task

MVP writing task: The author described how the
quality of life can be improved by the Millennium
Villages project in Sauri, Kenya. Based on the arti-
cle, did the author convince you that “winning the
fight against poverty is achievable in our lifetime”?
Explain why or why not with 3 to 4 examples from
the text to support your answer.

SPACE writing task: Consider the reasons given
in the article for why we should and should not fund
space exploration. Did the author convince you
that “space exploration leads to long-term benefits”
that justify the cost? Give reasons for your answer.
Support your reasons with 3 to 4 pieces of evidence
from the text.

B Revision Pattern Codes

Revision Goal 1: Adding more text-based evi-
dence

1. Make no revision attempt or make only
surface-level changes: The revision involves only
mechanical changes, such as correcting spelling,
grammar, or making minor word substitutions.

Example: Draft 1: There is alot of people that
are nerds and they wont all the money to go to
space and not on earth. The arguments stem from a
belif that money spent could be used differently- to
improve people’s lives. Draft 2: There are a lot of
people that are nerds and they wont all the money
to go to space and not on earth. The arguments
against space explortion stem from a belief that
money spent could be used differently- to improve
people’s lives.

2. Make ineffective revisions toward the targeted
goal: The revision is at content-level but uses inef-
fective revision strategies that fail to improve the
quality of evidence used in the essay. These strate-
gies include adding explanations instead of adding
new evidence and adding new evidence that is not
based on the text.

Example: Draft 1: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area of
medicine. Before NASA allowed astronauts to go
on missions, scientists had to find ways to monitor
their health...”. Draft 2: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area of
medicine. Before NASA allowed astronauts to go

on missions, scientists had to find ways to monitor
their health...”. Therefore, that new technique can
be used to more people and help them to be healthy.

3. Make revisions with slight improvement
toward the targeted goal: The revision involves
adding only one piece of evidence or adds a list of
keywords of various evidence in the second draft;
however, the draft as a whole still contains only
two or fewer pieces of evidence.

Example: Draft 1: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desirable
.This is why I am convinced that space exploration
is desirable when so much needs to be done on
space and earth. Draft 2: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desir-
able. Space exploration can even solve problems.
It can also monitor land, track corps, stop wars,
provide motivations to nations.

4. Make revisions with substantive improvement
toward the targeted goal: The revision involves
adding more than one piece of evidence from dif-
ferent parts of the text to support the main claim.

Example: Draft 1: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desirable
.This is why I am convinced that space exploration
is desirable when so much needs to be done on
space and earth. Draft 2: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desirable
.This is why I am convinced that space exploration
is desirable when so much needs to be done on
space and earth. Another reason why space explo-
ration is desirable is how scientist use monitors
to check astronauts health. My next reason is, in
addition ,the race led to significant investment and
progress in American education ,especially in math
and science. this shows that by looking outward
into space,we also improved life here on earth. Fi-
nally, Over 46.2 million Americans (15%) live in
poverty. The investment in space exploration argue
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that 19 billion dollars is not to much.
Revision Goal 2: Adding details to the pieces

of evidence used in the essay
1. Make no revision attempt or make only

surface-level changes: The revision involves only
mechanical changes, such as correcting spelling,
grammar, or making minor word substitutions.

Example: Draft 1: There is alot of people that
are nerds and they wont all the money to go to
space and not on earth. The arguments stem from a
belif that money spent could be used differently- to
improve people’s lives. Draft 2: There are a lot of
people that are nerds and they wont all the money
to go to space and not on earth. The arguments
against space explortion stem from a belief that
money spent could be used differently- to improve
people’s lives.

2. Make ineffective revisions toward the targeted
goal: The revision is at content-level but uses inef-
fective revision strategies that fail to improve the
specificity of evidence used in the essay. These
strategies include adding explanations instead of
adding new evidence, and adding new evidence and
details that are not based on the text.

Example: Draft 1: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area of
medicine. Before NASA allowed astronauts to go
on missions, scientists had to find ways to monitor
their health...”. Draft 2: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area of
medicine. Before NASA allowed astronauts to go
on missions, scientists had to find ways to monitor
their health...”. Therefore, that new technique can
be used to more people and help them to be healthy.

3. Make revisions with slight improvement
toward the targeted goal: The revision involves
adding details to only one piece of evidence in
the second draft or introduces a new piece of ev-
idence with limited detail. However, the rest of
the evidence in the second draft continues to lack
specificity and details.

Example: Draft 1: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". Before
NASA allowed astronauts to go on missions, sci-
entists had to find ways to monitor their health..."
and, "... innovations that have solve hunger and

poverty. These include better exercise machines,
better airplanes, and better weather forecasting."
That is why I believe that we should find space
exploration more desirable. Draft 2: Yes the author
did convince me that "space exploration is desir-
able when there is so much that needs to be done
on earth". Before NASA allowed astronauts to go
on missions, scientists had to find ways to monitor
their health..." and, "... innovations that have solve
hunger and poverty." For example, the text states
that Satellites that circle Earth can monitor land
and the atmosphere. They can track and measure
the conditions of crops, soil, and rainfall. We can
use this information to improve the way we pro-
duce and distribute food. That is why I believe that
we should find space exploration more desirable.

4. Make revisions with substantive improvement
toward the targeted goal: The revision involves
adding details to more than one piece of evidence
in the second draft, so the evidence becomes more
specific.

Example: Draft 1: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desirable
.This is why I am convinced that space exploration
is desirable when so much needs to be done on
space and earth. Draft 2: I am convinced that space
exploration is desirable because space exploration
helps us remain a creative society. It makes us
strive for better technologies and scientific knowl-
edge. This shows that space exploration is desirable
.This is why I am convinced that space exploration
is desirable when so much needs to be done on
space and earth. Another reason why space explo-
ration is desirable is how scientist use monitors
to check astronauts health. My next reason is, in
addition ,the race led to significant investment and
progress in American education ,especially in math
and science. this shows that by looking outward
into space,we also improved life here on earth. Fi-
nally, Over 46.2 million Americans (15

Revision Goal 3: Explain the evidence and
connect to the claims 1. Make no revision at-
tempt or make only surface-level changes: The
revision involves only mechanical changes, such
as correcting spelling, grammar, or making minor
word substitutions.

Example: Draft 1: There is alot of people that
are nerds and they wont all the money to go to
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space and not on earth. The arguments stem from a
belif that money spent could be used differently- to
improve people’s lives. Draft 2: There are a lot of
people that are nerds and they wont all the money
to go to space and not on earth. The arguments
against space explortion stem from a belief that
money spent could be used differently- to improve
people’s lives.

2. Make ineffective revisions toward the targeted
goal: The revision is at content-level; however, the
changes do not improve the quality of the explana-
tion of how the evidence supports the claim. Inef-
fective revision strategies include adding new evi-
dence but not addressing the revision goal of adding
the explanation, adding personal comments instead
of explaining, providing empty explanations, para-
phrasing existing evidence without explaining how
the evidence supports the claim, or elaborating on
the evidence without explaining how the evidence
supports the claim.

Example: Draft 1: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area
of medicine. Before NASA allowed astronauts to
go on missions, scientists had to find ways to mon-
itor their health..." and, "... innovations that have
improved our lives. These include better exercise
machines, better airplanes, and better weather fore-
casting. Malaria is common in Africa. Draft 2: Yes
the author did convince me that "space exploration
is desirable when there is so much that needs to be
done on earth". The text states, "... benefits, for
example, in the area of medicine. Before NASA
allowed astronauts to go on missions, scientists
had to find ways to monitor their health..." and, "...
innovations that have improved our lives. These
include better exercise machines, better airplanes,
and better weather forecasting." Malaria is com-
mon in Africa." this is a preventable illness, just
need people to donate some money, and children
can live.

3. Make revisions with slight improvement
toward the targeted goal: The revision involves
adding a brief explanation to one piece of evidence
to show how it supports the main claim or reuses
the same explanation for multiple pieces of evi-
dence. However, how each distinct piece of evi-
dence supports the claim remains unclear, and some
evidence may be left unaddressed.

Example: Draft 1: The space exploration does

not help our city/town to be the best. In paragraph 3
it says over 46.2 million Americans live in poverty
and nearly half of all Americans also have dif-
ficulty paying for housing,food,and medicine at
some points of their lives. Malaria kills over 3,000
African children every day. On paragraph 6 it is
saying how much they are spending like 670 bil-
lion the US spends for national defense than they
spend 70 billion dollars spent on education and
like 6.3 billion dollars on renewable energy. Peo-
ple need money. Draft 2: The space exploration
does not help our city/town to be the best. In para-
graph 3 it says over 46.2 million Americans live in
poverty and nearly half of all Americans also have
difficulty paying for housing,food,and medicine at
some points of their lives. That is showing how
if we did have to pay the fund than some people
would not be able too pay it. If you do so much on
earth to make it better it will be better to live in (an
explanation to one piece of evidence). Malaria kills
over 3,000 African children every day On para-
graph 6 it is saying how much they are spending
like 670 billion the US spends for national defense
than they spend 70 billion dollars spent on edu-
cation and like 6.3 billion dollars on renewable
energy.

4. Make revisions with substantive improvement
toward the targeted goal: The revision involves
adding multiple explanations to existing evidence,
clearly showing how the various pieces of evidence
support the claim, thereby making the argument
more persuasive.

Example: Draft 1: They should get paid because
19 billion dollars a year for exploration. Before
NASA allowed astronauts to go on the missions,
scientists had to figure out how to monitor there
health under any stressful conditions. They did
this for the safety of the astronauts. NASA scien-
tists have developed other innovations that have
improved our lives. NASA engineers developed
to make space travel so they can do there mission.
Many scientists believe that pollution from burning
fossil fuels (Gasoline and oil) is haring our air and
oceans. We need new, cleaner forms of energy to
power cars, homes, and factories. Draft 2: They
should get paid because 19 billion dollars a year for
exploration. Before NASA allowed astronauts to
go on the missions, scientists had to figure out how
to monitor there health under any stressful condi-
tions. They did this for the safety of the astronauts.
NASA scientists have developed other innovations
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that have improved our lives. NASA engineers de-
veloped to make space travel so they can do there
mission. so that means that they need money to
have the stuff to look and see what is going to hap-
pen in the future and there is a machine in space to
see what the weather is going to be so they need
money for that. It is important because like what is
there is a tornado unexpected so they will not know
how cold or what is going to happen there might be
snow coming and we do not know. (a strong expla-
nation) Many scientists believe that pollution from
burning fossil fuels (Gasoline and oil) is haring our
air and oceans. We need new, cleaner forms of
energy to power cars, homes, and factories. They
also need money to have satellite see if we did not
have a satellite we would not know when a tornado
would come. I think we should keep giving them
money because they are keeping us safe by making
a satellite and telling us on the news so we can get
the info so we should keep giving they money.
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D Prompt Designs for ChatGPT-4.1
(Using Goal 3 as an Example)

Baseline prompt Students from 4th grade to 8th
grade are currently working on text-based argument
essays. After submitting their first draft, students
received feedback and revised their second draft.
Here is the text and writing task:

<Text + Writing Prompt>
You are a writing teacher who works with stu-

dents from 4th grade to 8th grade. Students are
working on the revision goal of explaining how
the evidence supports the main claim. Your task is
to compare the first and second drafts to identify
the major revision patterns in the students’ work
in response to the revision goal. Below are four
revision patterns; select the one that best represents
the student’s revision.

1. Make no revision attempt or make surface-
level revision: The revision involves only mechani-
cal changes, such as correcting spelling, grammar,
or making minor word substitutions. If changes
in the second draft exceed 35 words, it is not con-
sidered a surface-level revision. Example: Draft
1: There is alot of people that are nerds and they
wont all the money to go to space and not on earth.
The arguments stem from a belif that money spent
could be used differently- to improve people’s lives.
Draft 2: There are a lot of people that are nerds
and they wont all the money to go to space and not
on earth. The arguments against space explortion
stem from a belief that money spent could be used
differently- to improve people’s lives.

2. Make revisions with ineffective strategies
toward the targeted revision goal: The student
attempts a content-level revision; however, the
changes do not improve the quality of the explana-
tion of how the evidence supports the claim. Inef-
fective revision strategies include adding new evi-
dence but not addressing the revision goal of adding
the explanation, adding personal comments instead
of explaining, providing empty explanations, para-
phrasing existing evidence without explaining how
the evidence supports the claim, or elaborating on
the evidence without explaining how the evidence
supports the claim. Example: Draft 1: Yes the
author did convince me that "space exploration is
desirable when there is so much that needs to be
done on earth". The text states, "... benefits, for
example, in the area of medicine. Before NASA
allowed astronauts to go on missions, scientists
had to find ways to monitor their health..." and, "...

innovations that have improved our lives. These
include better exercise machines, better airplanes,
and better weather forecasting. Malaria is common
in Africa. Draft 2: Yes the author did convince
me that "space exploration is desirable when there
is so much that needs to be done on earth". The
text states, "... benefits, for example, in the area
of medicine. Before NASA allowed astronauts
to go on missions, scientists had to find ways to
monitor their health..." and, "... innovations that
have improved our lives. These include better exer-
cise machines, better airplanes, and better weather
forecasting." Malaria is common in Africa." this
is a preventable illness, just need people to donate
some money, and children can live.(personal com-
ments instead of explaining how existing evidence
supports the claims).

3. Make slight improvement toward the targeted
revision goal: The student adds a brief explanation
to one piece of evidence to show how it supports
the main claim or reuses the same explanation for
multiple pieces of evidence. However, how each
distinct piece of evidence supports the claim re-
mains unclear, and some evidence may be left unad-
dressed. Example: Draft 1: The space exploration
does not help our city/town to be the best. In para-
graph 3 it says over 46.2 million Americans live in
poverty and nearly half of all Americans also have
difficulty paying for housing,food,and medicine at
some points of their lives. Malaria kills over 3,000
African children every day. On paragraph 6 it is
saying how much they are spending like 670 bil-
lion the US spends for national defense than they
spend 70 billion dollars spent on education and
like 6.3 billion dollars on renewable energy. Peo-
ple need money. Draft 2: The space exploration
does not help our city/town to be the best. In para-
graph 3 it says over 46.2 million Americans live in
poverty and nearly half of all Americans also have
difficulty paying for housing,food,and medicine at
some points of their lives. That is showing how
if we did have to pay the fund than some people
would not be able too pay it. If you do so much on
earth to make it better it will be better to live in (an
explanation to one piece of evidence). Malaria kills
over 3,000 African children every day On para-
graph 6 it is saying how much they are spending
like 670 billion the US spends for national defense
than they spend 70 billion dollars spent on edu-
cation and like 6.3 billion dollars on renewable
energy.
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4. Make substantive improvement toward the
targeted revision goal: The student adds multiple
explanations to existing evidence, clearly show-
ing how the various pieces of evidence support
the claim, thereby making the argument more per-
suasive. Example: Draft 1: They should get paid
because 19 billion dollars a year for exploration.
Before NASA allowed astronauts to go on the mis-
sions, scientists had to figure out how to monitor
there health under any stressful conditions. They
did this for the safety of the astronauts. NASA sci-
entists have developed other innovations that have
improved our lives. NASA engineers developed
to make space travel so they can do there mission.
Many scientists believe that pollution from burning
fossil fuels (Gasoline and oil) is haring our air and
oceans. We need new, cleaner forms of energy to
power cars, homes, and factories. Draft 2: They
should get paid because 19 billion dollars a year for
exploration. Before NASA allowed astronauts to
go on the missions, scientists had to figure out how
to monitor there health under any stressful condi-
tions. They did this for the safety of the astronauts.
NASA scientists have developed other innovations
that have improved our lives. NASA engineers de-
veloped to make space travel so they can do there
mission. so that means that they need money to
have the stuff to look and see what is going to hap-
pen in the future and there is a machine in space to
see what the weather is going to be so they need
money for that. It is important because like what is
there is a tornado unexpected so they will not know
how cold or what is going to happen there might be
snow coming and we do not know. (a strong expla-
nation) Many scientists believe that pollution from
burning fossil fuels (Gasoline and oil) is haring our
air and oceans. We need new, cleaner forms of
energy to power cars, homes, and factories. They
also need money to have satellite see if we did not
have a satellite we would not know when a tornado
would come. I think we should keep giving them
money because they are keeping us safe by making
a satellite and telling us on the news so we can get
the info so we should keep giving they money (a
strong explanation).

Output one of the following category numbers:
**1; 2; 3; 4**

CoT prompt Students from 4th grade to 8th
grade are currently working on text-based argument
essays. After submitting their first draft, students
received feedback and revised their second draft.

Here is the text and writing task:

<Text + Writing Prompt>

You are a writing teacher who works with stu-
dents from 4th grade to 8th grade. Students are
working on the revision goal of explaining how
the evidence supports the main claim. Your task is
to compare the first and second drafts to identify
the major revision patterns in the students’ work
in response to the revision goal. To determine the
appropriate revision pattern, follow these steps:

Step 1: Determine whether the revision is
surface-level. Surface-level revision involves only
mechanical changes, such as correcting spelling,
grammar, or making minor word substitutions. If
changes in the second draft exceed 35 words, it is
not considered a surface-level revision. If the revi-
sion pattern is surface-level, output pattern number
“1.” If not, proceed to step 2. Example of Pattern
1: Draft 1: There is alot of people that are nerds
and they wont all the money to go to space and
not on earth. The arguments stem from a belif
that money spent could be used differently- to im-
prove people’s lives. Draft 2: There are a lot of
people that are nerds and they wont all the money
to go to space and not on earth. The arguments
against space explortion stem from a belief that
money spent could be used differently- to improve
people’s lives.

Step 2: Assess the quality of the newly added
content after each piece of evidence. Assign one
of the following codes to indicate the effectiveness
of each explanation attempt: 1. Personal Com-
mentary: An elaboration that is about personal
reactions, evaluations, or feelings. For example,
after presenting evidence that Malaria is a disease
common in Africa, the student added, “it is pretty
cool I never knew that and I am afraid of getting
it.” 2. Empty explanation: This type of explanation
attempt is overly broad, vague, and does not have
content, though it may look like an explanation in
form. For example, the student added, “Based on
what I provided, this is why I agree.” 3. Paraphrase:
A revision attempt where the explanation merely
rewords the evidence rather than explains it. For
example, after presenting the evidence " Those in
favor of space exploration argue that 19 billion dol-
lars is not too much and satellites can solve the
problem of poverty," students added, "we should
fund space exploration because 19 billion dollars
is not too much and provide more food for peo-
ple in poverty." 4. Elaboration of Evidence but no
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Connection to the claim: Explain the evidence by
discussing the implications or providing more infor-
mation, but it lacks reasoning of why the evidence
supports the claim. For example, after presenting
the evidence that " Malaria is common in Africa,”
the student added, “this is a preventable illness, just
need people to donate some money, and children
can live.” This is an elaboration of evidence, but
no explanation of how this example supports the
claim. 5. Linked Claim-Evidence: A revision that
explains why the provided evidence supports the
main claim. For example, to support the claim
that we should support space exploration, the stu-
dent added the explanation, “Malaria is common
in Africa. And space exploration can develop new
medicine and equipment. These are good evidence
because space exploration can save people lives
and prevent Malaria”

Step 3: Determine the quality and quantity of
explanations added in the second draft If the second
draft only contains explanations coded as “personal
comments”, “empty explanation”, “paraphrase”,
and “elaboration of the evidence”, output 2.

Example of Pattern 2: Draft 1: Yes the author
did convince me that "space exploration is desir-
able when there is so much that needs to be done
on earth". The text states, "... benefits, for example,
in the area of medicine. Before NASA allowed
astronauts to go on missions, scientists had to find
ways to monitor their health..." and, "... innovations
that have improved our lives. These include bet-
ter exercise machines, better airplanes, and better
weather forecasting. Malaria is common in Africa.
Draft 2: Yes the author did convince me that "space
exploration is desirable when there is so much that
needs to be done on earth". The text states, "... ben-
efits, for example, in the area of medicine. Before
NASA allowed astronauts to go on missions, scien-
tists had to find ways to monitor their health..." and,
"... innovations that have improved our lives. These
include better exercise machines, better airplanes,
and better weather forecasting." Malaria is com-
mon in Africa." this is a preventable illness, just
need people to donate some money, and children
can live.(personal comments instead of explaining
how existing evidence supports the claims).

If the second draft contains one piece of ex-
planation category as Linked Claim-Evidence, or
reuses the same Linked Claim-Evidence for multi-
ple pieces of evidence, output 3.

Example of Pattern 3: Draft 1: The space explo-

ration does not help our city/town to be the best. In
paragraph 3 it says over 46.2 million Americans
live in poverty and nearly half of all Americans
also have difficulty paying for housing,food,and
medicine at some points of their lives. Malaria
kills over 3,000 African children every day. On
paragraph 6 it is saying how much they are spend-
ing like 670 billion the US spends for national
defense than they spend 70 billion dollars spent
on education and like 6.3 billion dollars on renew-
able energy. People need money. Draft 2: The
space exploration does not help our city/town to
be the best. In paragraph 3 it says over 46.2 mil-
lion Americans live in poverty and nearly half of
all Americans also have difficulty paying for hous-
ing,food,and medicine at some points of their lives.
That is showing how if we did have to pay the fund
than some people would not be able too pay it. If
you do so much on earth to make it better it will be
better to live in (an explanation to one piece of evi-
dence). Malaria kills over 3,000 African children
every day On paragraph 6 it is saying how much
they are spending like 670 billion the US spends for
national defense than they spend 70 billion dollars
spent on education and like 6.3 billion dollars on
renewable energy. If the second draft contains at
least two Linked Claim-Evidence, output pattern
number “4.” Example of Pattern 4: Draft 1: They
should get paid because 19 billion dollars a year
for exploration. Before NASA allowed astronauts
to go on the missions, scientists had to figure out
how to monitor there health under any stressful
conditions. They did this for the safety of the as-
tronauts. NASA scientists have developed other
innovations that have improved our lives. NASA
engineers developed to make space travel so they
can do there mission. Many scientists believe that
pollution from burning fossil fuels (Gasoline and
oil) is haring our air and oceans. We need new,
cleaner forms of energy to power cars, homes, and
factories. Draft 2: They should get paid because
19 billion dollars a year for exploration. Before
NASA allowed astronauts to go on the missions,
scientists had to figure out how to monitor there
health under any stressful conditions. They did
this for the safety of the astronauts. NASA scien-
tists have developed other innovations that have
improved our lives. NASA engineers developed
to make space travel so they can do there mission.
so that means that they need money to have the
stuff to look and see what is going to happen in the
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future and there is a machine in space to see what
the weather is going to be so they need money for
that. It is important because like what is there is
a tornado unexpected so they will not know how
cold or what is going to happen there might be
snow coming and we do not know. (a strong expla-
nation) Many scientists believe that pollution from
burning fossil fuels (Gasoline and oil) is haring our
air and oceans. We need new, cleaner forms of
energy to power cars, homes, and factories. They
also need money to have satellite see if we did not
have a satellite we would not know when a tornado
would come. I think we should keep giving them
money because they are keeping us safe by making
a satellite and telling us on the news so we can get
the info so we should keep giving they money (a
strong explanation).

Apply the aforementioned evaluation steps and
reason step by step. Output one of the following
category numbers: **1; 2; 3; 4**
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Abstract 

This study compares machine learning, text 

embeddings, and large language models 

(LLMs) for generating synthetic responses 

to field test items for a social-emotional 

assessment that uses Likert-scale 

responses. Using accuracy metrics and item 

response theory (IRT) calibration, results 

show that machine learning and 

embeddings more closely mirror student 

data than LLMs. Findings highlight 

synthetic data’s promise while 

underscoring the need for continued 

validation. 

1 Introduction and Background 

Developing high quality assessment items 

requires rigorous field testing, yet this process is 

time consuming and costly. Traditional calibration 

using item response theory (IRT) typically requires 

hundreds of examinees per item to estimate 

difficulty, discrimination, and guessing parameters 

with acceptable precision. This burden is 

particularly challenging in educational settings 

where Likert-type surveys are widely used. Such 

instruments tend to measure sensitive or hard-to-

predict constructs (e.g., social-emotional skills, 

behavioral ratings) and must often pass district 

level approval for wording and focus, further 

slowing the process of field-testing. These 

constraints underscore the need for alternative 

strategies that can accelerate item validation 

without compromising psychometric rigor. 

Synthetic data has emerged as a promising 

solution for assessment developers. By generating 

artificial responses that approximate the 

distributions and relationships found in real 

datasets, researchers can reduce reliance on large-

scale human field trials. Psychometric research 

demonstrates that large language models (LLMs) 

can serve as synthetic respondents, producing item 

parameter estimates that correlate highly with those 

derived from human data, though often with 

narrower variability (Liu et al., 2025). These 

findings suggest that artificial respondents may 

augment or partially substitute for actual student 

responses in item development. 

Although LLMs provide one pathway for 

generating synthetic responses, they are not the 

only approach under investigation. A more 

traditional starting point has been machine learning 

(ML), which relies on historical student response 

data to predict responses to new items. However, 

ML models often struggle with unseen items, since 

new questions cannot be calibrated until sufficient 

student data is available. To address this limitation, 

researchers have explored text-aware methods that 

incorporate semantic information from item 

content. For example, Khan et al. (2025) 

introduced Text-LENS, which integrates text 

embeddings from a transformer encoder. This 

approach matched baseline ML performance on 

known items but substantially outperformed it 

when predicting responses to novel items (Khan et 

al., 2025). Such embedding-based methods offer a 

middle ground, more flexible than conventional 

ML yet more efficient than large-scale LLM 

simulations. 

LLM-based approaches, in contrast, provide a 

different kind of advantage. By simulating students 

across ability levels, LLMs can produce synthetic 

response distributions that reflect difficulty trends 

and distractor functioning (Benedetto et al., 2024; 

Shridhar et al., 2023). While not perfect substitutes, 

these models allow test developers to “pre-pilot” 

items at scale, discarding poor candidates before 

committing resources to costly field testing. 

ML, text embedding, and LLM approaches 

reveal a spectrum of tradeoffs. ML methods that 

rely on prior response patterns may be most 
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effective when field testing items that are 

structurally and conceptually like those previously 

administered. Text embedding may provide 

flexibility when items target new constructs within 

an existing domain, enabling models to generalize 

without extensive retraining. LLMs, while 

computationally intensive, may be necessary when 

item pools are entirely new or when the goal is to 

approximate the variability and reasoning patterns 

of real student responses. The choice among 

methods may depend on the purpose of item 

development as well as the need to balance 

efficiency, fidelity, and generalizability in the 

context of field testing. 

2 Study Purpose 

The purpose of this study is to compare three 

approaches: ML, text embedding, and LLMs, in 

generating synthetic responses to 10 field test items 

from the Devereux Student Strengths Assessment 

(DESSA), a standardized self-report of social-

emotional competence. We evaluate the accuracy 

of the synthetic responses by comparing and 

calibrating them with IRT to compare estimated 

item parameters and thresholds to those derived 

from actual student data. 

3 Methods 

3.1 Sample 

The sample consists of student data (N = 3,982) 

from an administration of the DESSA high school 

student self-report form (Robitaille et al., 2025). 

Students responded to 40 scored items and 10 field 

test items using a five-point Likert scale ranging 

from 0 (Never) to 4 (Almost Always). The 

demographic information of the sample is 

summarized in Table 1. 

3.2 Measures 

The DESSA (Robitaille et al., 2025) is a 50-item, 

standardized, norm-referenced self-report behavior 

rating scale for students in 9th – 12th grades that 

yields T-scores (M=50, SD=10) that are reported 

into three descriptive categories, “Need for 

Instruction”, “Typical”, or “Strength”. The DESSA 

measures six social emotional competencies, 

Optimistic Thinking, Self-Awareness, Social 

Awareness, Responsible Decision Making, 

Relationship Skills, and Self-Management. 

 

Category Group N % 

Gender Female 1995 50.10 

Male 1987 49.90 

Grade 9th 1180 29.63 

10th 1139 28.60 

11th 883 22.17 

12th 780 19.59 

Race/ 

Ethnicity 

American 

Indian 
49 1.23 

Asian 214 5.37 

Black 1068 26.82 

Hispanic 910 22.85 

Hawaiian 6 .15 

White 1947 48.90 

Other 159 3.99 

Region Midwest 203 5.10 

Northeast 970 24.36 

South 2764 69.41 

West 45 1.1 

Table 1. Demographic Information of the Sample. 

 

3.3 Approach 

We compared three methods for generating 

synthetic responses to the 10-field test items from 

the DESSA. First, we trained a Random Forest 

classifier on real student responses, using stratified 

sampling to balance classes. The model was fit to 

training data (n = 3,186; ~80% of the dataset) and 

then used to predict synthetic responses for the test 

set (n = 796; ~20% of the dataset). Accuracy was 

tracked both at the macro level and for each item. 

Next, we used embeddings derived from the 

item text and response options to inform 

predictions. These embeddings were incorporated 

into a predictive model that mapped semantic 

similarity and structural features to likely student 

responses. As with the ML approach, predictions 

were generated for the 10 field-test items, with 

evaluation against actual student responses. 

Finally, we used FLAN-T5, an instruction-tuned 

transformer model, to simulate student responses. 

The model was prompted with DESSA item stems 

and Likert response options, framed as if it were a 

high school student completing a social-emotional 

self-report survey. Prompts included general 

instructions to reflect variability in responses rather 

than always producing the same option to 

approximate realistic distributions. In addition, we 
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applied Low-Rank Adaptation (LoRA) fine-tuning 

on the training data, using real student responses to 

field-test items as supervised pairs, which allowed 

the model to better align with the rating scale and 

item content. 

 

3.4 Graded Response Model 

The Graded Response Model (GRM; Samejima, 

1968), was employed to analyze polytomous 

scored items intended to measure varying levels of 

a latent trait. The GRM is appropriate for items 

with ordered categorical response options, such as 

those found in Likert-type scales. The probability 

of endorsing a response category is calculated as 

the difference between cumulative logistic 

functions across thresholds. Item calibration and 

model estimation were conducted using the mirt 

package in R (Chalmers, 2012), facilitating a 

robust evaluation of item functioning and trait 

estimation. 

To evaluate the fidelity of synthetic response 

data generated for field items, the Pearson 

correlation coefficient was computed between the 

student-generated and synthetic response vectors 

(Cohen, 1988). To evaluate and compare item 

parameter estimates derived from synthetic data 

generation methods, a free calibration was 

conducted using the actual response dataset. From 

this calibration, forty item parameters were 

extracted and designated as anchor items. These 

parameters were fixed across three separate 

calibration conditions. The remaining ten field-test 

items were calibrated independently using 

synthetic response data. This procedure ensured 

that all item parameters were aligned on a common 

measurement scale, allowing for valid comparisons 

across different synthetic methods. 

4    Results 

 

We first examined the accuracy of synthetic 

responses generated by each approach. At the 

macro level, ML achieved the highest test accuracy 

(.62), followed closely by text embeddings (.61), 

while the LLM approach showed lower 

performance (.55). These differences were 

consistent across most items, with the ML and text 

embedding models producing comparable results, 

and the LLM yielding weaker alignment with 

observed student responses. 

At the micro level, item-specific test accuracies 

further illustrated these trends (see Table 2). 

Machine learning predictions for individual field 

test items ranged from .50 to .71, with higher 

accuracy observed for items Q15 (“respect a 

person’s right to have a different opinion?”) and 

Q35 (“make others feel welcome or included?”). 

Text embedding results were similar, with item 

accuracies ranging from .48 to .71, again showing 

strength on items Q15 and Q35, but lower 

performance on Q25 (“recognize your 

emotions?”), and Q50 (“have a teacher or other 

adult at school you can talk to?”).  

LLM performance was consistently lower 

across items, with test accuracies clustering in the 

.49 to .63 range. Across all ten items, both ML and 

text embedding methods maintained consistent 

predictive performance, whereas the LLM tended 

to underpredict or misalign with actual student 

response patterns (Figure 1).  

 

Item ML Text Embed LLM 

 Train Test Train Test Train Test 

7 1.00 0.63 0.88 0.61 0.57 0.56 
10 1.00 0.62 0.90 0.61 0.54 0.54 
15 1.00 0.71 0.89 0.71 0.52 0.48 

20 1.00 0.66 0.87 0.64 0.61 0.62 

25 1.00 0.53 0.86 0.53 0.53 0.53 

30 1.00 0.62 0.87 0.59 0.57 0.57 

35 1.00 0.67 0.87 0.65 0.62 0.59 

40 1.00 0.62 0.87 0.60 0.63 0.62 

45 1.00 0.67 0.89 0.66 0.53 0.49 

50 1.00 0.50 0.86 0.48 0.49 0.49 

Table 2. Item level accuracies across ML, text 

embedding and LLM approaches. 

 

 

Figure 1: Accuracy levels per item across ML, text-

embedding and LLM approaches. 
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4.1     IRT Calibration 

To assess whether synthetic responses could 

recover psychometric characteristics of the DESSA 

field test items, we calibrated the 10 field items 

under a GRM using synthetic data from each 

method and compared the resulting discrimination 

and threshold parameters with those obtained from 

real student responses (Table 3). 

 

Statistic Method Mean SD Bias RMSE r 

a  Actual 1.86 0.36        

 ML 3.16 0.63 1.30 1.86 0.76 

 Text 3.02 0.57 1.16 1.43 0.88 

 LLM 5.06 0.01 3.21 10.41 -0.33 

b1 Actual -2.64 0.49    

 ML -2.59 0.41 0.05 0.06 0.87 

 Text -2.47 0.43 0.17 0.06 0.93 

 LLM -2.32 0.03 0.32 0.33 -0.02 

b2 Actual -1.67 0.48    

 ML -1.84 0.53 -0.17 0.05 0.95 

 Text -1.73 0.51 -0.07 0.01 0.98 

 LLM -1.65 0.01 0.02 0.21 -0.07 

b3 Actual -0.38 0.35    

 ML -0.41 0.39 -0.03 0.00 0.99 

 Text -0.42 0.40 -0.04 0.01 0.98 

 LLM -0.30 0.01 0.08 0.12 0.36 

b4 Actual 0.88 0.31    

 ML 0.87 0.30 -0.01 0.01 0.92 

 Text 0.81 0.30 -0.08 0.02 0.91 

 LLM 0.73 0.01 -0.15 0.10 0.48 

Table 3. Estimation of Graded Response Model Item 

parameters (10 field items). 

 

Across items, the ML and text embedding 

approaches showed broadly similar 

correspondence with actual parameters; neither 

consistently outperformed the other. By contrast, 

the LLM simulations exhibited weaker alignment 

with thresholds from actual student data and 

greater instability across items, echoing their lower 

classification accuracy. Overall while all three 

methods produced plausible synthetic responses, 

the ML and embedding approaches better 

preserved psychometric fidelity relative to the 

LLM. 

5   Conclusion 

This investigation highlights both the promise 

and the limitations of synthetic data for 

accelerating assessment development. Across the 

three synthetic data approaches applied to the 

DESSA field items, conventional machine learning 

slightly outperformed the text-embedding model, 

and both exceeded the LLM in aligning with 

observed student responses and IRT-derived item 

parameters. These findings indicate that ML and 

embeddings can plausibly support early item 

evaluation and calibration, while current LLM 

outputs appear less reliable for parameter recovery 

for assessments like the DESSA. Continued 

investigation on novel field test items aligned with 

different purposes (e.g., similar items for new 

constructs within the same domain) will inform 

when to use different approaches to generate 

synthetic data. Overall, synthetic approaches hold 

promise for reducing reliance on costly field 

testing, but continued investigation, with larger 

item sets, additional benchmarks, and rigorous IRT 

comparisons, is needed before they can be used 

with confidence in operational assessment. 
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Abstract

This study evaluates large language models
(LLMs) for automated essay scoring (AES) in
comparison with a traditional feature-based sys-
tem (PEG) and human ratings. Drawing on 541
essays from Grades 3–4, we examined three
generative LLMs (including GPT-4o, Gemini
2.5 Flash and Claude Sonnet 4) under base-
line, context-enhanced, and few-shot chain-of-
thought prompting strategies. Results show
that carefully designed prompting, particularly
context-enhanced few-shot chain-of-thought,
substantially improved LLM performance, ap-
proaching PEG in human–machine agreement
and human–human agreement. Fairness anal-
yses revealed that PEG produced larger dis-
parities for English language learners (ELLs),
while LLMs showed smaller but still persistent
subgroup bias. Beyond these findings, the study
contributes recent evidence on fairness and va-
lidity in LLM-based AES and extends research
to younger students, a group rarely examined
in prior work. Together, these results highlight
both the promise and the challenges of integrat-
ing LLMs into educational assessment.

1 Introduction

Automated essay scoring (AES) refers to the use
of computational methods and/or AI techniques
to evaluate student-generated writing and assign
scores in place of or alongside human raters (Uto
and Okano, 2020). In the field of educational mea-
surement, automatic scoring has become a cutting-
edge approach to evaluating written content with-
out manual grading. This strategy is especially
valuable in large-scale assessments and classroom
contexts where manual scoring is impractical (Latif
and Zhai, 2024; Susanti et al., 2023). Early AES
systems were built on natural language processing
(NLP) and machine learning methods with hand-
crafted features and large labeled datasets (Uto,
2021). More recently, deep learning models such
as recurrent and transformer-based architectures

have improved scoring performance by leveraging
text embeddings and contextual representations (El-
Massry et al., 2025). Still, these approaches face
limitations in interpretability, scalability, and fair-
ness.

The rise of large language models (LLMs) of-
fers new potential for AES. Pretrained on mas-
sive corpora, LLMs capture sophisticated seman-
tic and discourse-level features, eliminating the
need for manual feature engineering. With care-
ful prompt design or fine-tuning, these models can
be guided to produce not only holistic scores but
also rubric-aligned scores. However, critical chal-
lenges remain: model outputs can vary depending
on prompt engineering, and concerns about fair-
ness, subgroup performance, and transparency per-
sist (Huang et al., 2025).

This paper addresses these gaps by system-
atically evaluating several LLM-based AES ap-
proaches and comparing them with a more tradi-
tional feature-based AES system. We examined:
(1) accuracy, measured by their alignment with hu-
man ratings; (2) fairness, focusing on differences
between English language learners (ELLs) and non-
ELLs. By analyzing prompting strategies across
different LLMs and subgroup outcomes, we con-
tribute empirical evidence to guide both AES re-
search and educational assessment practice.

2 Related Work

2.1 AES in Educational Assessment

Research on automated essay scoring (AES) has
a long history in educational assessment, begin-
ning with the initial version of Project Essay Grade
(PEG; Page, 1966) scoring engine. PEG relied on
surface-level textual features, such as word counts,
sentence length, and syntactic structures, combined
with statistical modeling to predict scores. Sub-
sequent systems, such as e-rater, extended this
approach by incorporating more linguistically in-
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formed features grounded in NLP, including gram-
mar, usage, mechanics, style, and organizational
development (Hussein et al., 2019). These early
systems demonstrated that linguistic features, when
coupled with statistical models, could produce lev-
els of agreement with human raters comparable to
inter-rater reliability, establishing the feasibility of
automated scoring for constructed responses, short
answers, and essays.

With advances in artificial intelligence, AES
shifted toward feature-rich regression and classifi-
cation models trained on large corpora during the
mid-2010s. The adoption of deep neural networks,
particularly recurrent architectures (such as LSTM)
and convolutional neural networks (CNN), enabled
models to capture sequential dependencies in stu-
dent writing (Dong et al., 2017; Taghipour and
Ng, 2016). The emergence of transformer-based
large language models (LLMs), including BERT
and XLNet, further advanced AES by leveraging
contextual embeddings that outperformed prior
deep learning methods (Rodriguez et al., 2019;
Uto, 2021). Building on this foundation, Yang
et al. (2020) introduced R2BERT, a BERT-based
model that combined regression and ranking objec-
tives, achieving strong performance on the widely
used Automated Student Assessment Prize (ASAP)
dataset (Hamner et al., 2012). Extending this line
of work, Xie et al. (2022) proposed Neural Pair-
wise Contrastive Regression (NPCR), a contrastive
learning approach that modeled score differences
across essay pairs and achieved state-of-the-art re-
sults. These models reduced reliance on manual
feature engineering and improved generalizability
across essay tasks.

Despite notable advances, AES still faces impor-
tant limitations. First, systems struggle to capture
the full range of features that characterize high-
quality writing, particularly when holistic scoring
and rubric-based analytic scoring demand differ-
ent forms of feature representation (Kumar and
Boulanger, 2021). Elements such as rhetorical in-
tent, coherence, and creativity remain especially
difficult to model (Huang et al., 2025). Second,
much empirical research relies heavily on bench-
mark datasets such as the ASAP corpus (focusing
on essays from students in Grades 7–8), which fa-
cilitate standardized comparisons but offer limited
insight into writing at earlier developmental stages
where challenges are most acute. Finally, fairness
continues to be a major concern. Feature-based
AES systems frequently inherit biases present in

the human ratings used for training, leading to sys-
tematically different outcomes for subgroups such
as ELLs (Wilson and Huang, 2024). Ensuring eq-
uitable scoring across diverse student populations
therefore remains a central challenge for AES in
educational measurement.

2.2 Generative Large Language Models for
AES

The recent development of generative LLMs such
as GPT-4 and Llama-3 (referred to hereafter as
GPT-family models for simplicity) has demon-
strated remarkable capabilities in language under-
standing, reasoning, and text generation. Unlike
earlier encoder-based LLMs, GPT-family models
adopt decoder-based, autoregressive architectures
(Minaee et al., 2025). This design enables them to
generate coherent and contextually rich text, cap-
ture nuanced semantic relationships, and adapt flex-
ibly to varied writing genres and proficiency levels,
which holds particular promise for evaluating es-
says in ways that attend not only to surface features
but also to deeper rhetorical and logical structures.

A growing body of research has examined the
performance of generative LLMs for AES, though
findings remain mixed. Results vary depending
on prompting strategies, fine-tuning methods, and
system adaptation (Huang et al., 2025). Propri-
etary models such as GPT-3.5 and GPT-4 show
reasonable performance with few-shot prompting,
especially when combined with rubric descriptions,
explicit task instructions, and/or chain-of-thought
(CoT) reasoning (Mansour et al., 2024; Quah et al.,
2024; Wei et al., 2022). However, they often under-
perform compared to fine-tuned models and raise
concerns about transparency and replicability. De-
signing prompts that ensure reliability remain an
open challenge.

Open-source models such as Llama-3 introduce
new opportunities. Research by Ormerod and
Kwako (2024) demonstrated that smaller open-
source models, when fine-tuned, can achieve perfor-
mance comparable to traditional best-performing
models while running on modest hardware. This
approach enhances transparency and allows re-
searchers to integrate explainable AI methods, ad-
dressing some of the limitations of closed GPT-
family models. Yet, fine-tuning requires technical
expertise, and performance still lags behind state-
of-the-art models on benchmark datasets.

As with earlier LLMs, the adoption of GPT-
family models raises broader concerns about fair-
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ness and validity (Huang et al., 2025). Few studies
have examined subgroup differences, and those that
exist focus mainly on multilingual learners (e.g.,
Tate et al., 2024). Ethical concerns are also mount-
ing, particularly around data privacy, consent, and
intellectual property.

Overall, research on LLM-based AES is still
emerging. Current evidence suggests that while
LLMs can approximate human scoring with care-
ful prompt design or fine-tuning, their performance
remains inconsistent across contexts, and fairness
outcomes are underexplored. The next phase of re-
search must therefore integrate technical advances
with principles of educational measurement to en-
sure that LLM-based automated scoring is both
effective and equitable. The present study con-
tributes to this effort by examining LLM scoring
across student subgroups, specifically ELLs versus
non-ELLs.

3 Research Questions

This study evaluates three large language models
(LLMs) alongside a traditional feature-based AES
system (PEG) to examine their alignment with hu-
man ratings and their fairness for ELLs compared
to non-ELLs, under three different prompt engi-
neering strategies.

RQ1: How do prompt engineering strategies
affect human–machine agreement across LLMs,
PEG, and human raters?

RQ2: Do LLMs exhibit performance differences
or subgroup bias between ELL and non-ELL stu-
dents?

4 Methods

4.1 Sample
This study draws on data from an evaluation of an
automated writing evaluation system in Grades 3–5
in a U.S. school district in school year 2017–2018.
The district implemented the system in conjunction
with a Common Core–aligned English language
arts curriculum to support writing instruction for
all students. A subsample of 541 de-identified es-
says from third and fourth graders (N = 233 and
308, respectively) written between April 1 to May
31, 2018, was analyzed; each grade responded to
a separate grade-level informative essay task. For
the writing tasks, Grade 3 students read two short
texts about national parks—one emphasizing their
value for recreation, wildlife protection, and sci-
ence, and the other highlighting challenges such

as pollution and overcrowding—and were asked to
write an informative essay explaining what national
parks are and why they matter. Similarly, Grade
4 students read texts introducing invertebrates and
describing the features, habitats, and life cycle of
crabs, and were asked to write an informative essay
about the key characteristics of crabs and how they
live. Essays were scored by six approaches (see
details below). Ten percent of the essays (N = 57)
were randomly double scored by a second human
rater. ELLs comprised 32% of third graders and
46% of fourth graders.

4.2 Measures
Six scoring approaches were evaluated: (1) human
rater 1, (2) human rater 2 (10% of the sample), (3)
PEG, (4) LLMs with baseline CoT prompting, (5)
LLMs with context-enhanced CoT prompting, and
(6) LLMs with context-enhanced + few-shot CoT
prompting. Three LLMs were considered: GPT-4o,
Gemini 2.5 Flash and Claude Sonnet 4.

Human raters were professional scorers em-
ployed by the company operating the automated
writing evaluation system. They received extensive
training and were continuously monitored through
rater management systems designed to ensure scor-
ing accuracy and consistency. Human raters ap-
plied a six-trait rubric assessing development of
ideas, organization, style, sentence fluency, word
choice, and conventions. Each trait was scored on
a 1–5 scale, and a holistic score was obtained by
summing the six traits (range = 6–30).

The most recent PEG scoring engine has ad-
vanced substantially beyond its earlier, simpler ver-
sions. Current PEG scores are produced using a
proprietary model that integrates more than 800
linguistic features with deep learning algorithms,
trained on a large corpus of historical student es-
says from the same grade band and curriculum-
aligned tasks.

Figure 1 presents the flowchart for the three
prompting strategies. In the baseline CoT condi-
tion, prompts included the scoring task instructions,
essay task description, rubric details, and a CoT
component guiding the model to reason step by
step about how to apply the rubric. The system was
then asked to generate a score and provide the scor-
ing output as specified. For the context-enhanced
CoT strategy, one additional component was in-
troduced: the model was assigned the role of an
experienced essay rater familiar with the writing
proficiency levels of third- and fourth-grade stu-
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Figure 1: Flow Chart for the Design of Prompt Engi-
neering Strategies Using LLMs

dents. For the context-enhanced + few-shot CoT
strategy, another component was added: the model
was provided with five sample essays along with
their corresponding trait-level and holistic scores
to guide its scoring decisions. All prompts were ex-
ecuted iteratively for each individual essay through
API interactions with the models using Python.

4.3 Data Analysis
For RQ1, we evaluated human–machine agree-
ment by calculating Quadratic Weighted Kappa
(QWK) and exact/adjacent agreement rates be-
tween each scoring method (S: PEG and all LLMs
across prompting strategies, as well as human rater
2) and human scores (H, from rater 1). QWK, a
widely used reliability index, ranges from 0 to 1,
with higher values indicating stronger alignment
between two sets of ratings. Exact agreement re-
flects the proportion of cases where the AES score
matches the human score exactly, while adjacent
agreement reflects cases where the AES score is
within ±1 point of the human score. Together, these
measures provide complementary perspectives on
model accuracy relative to human raters.

For RQ2, QWKs were calculated separately for
ELL and non-ELL students to assess subgroup-
specific performance. To further evaluate fairness,
we applied Litman et al.’s (2021) metrics:

• Overall Score Accuracy (OSA): Measures
whether AES scores are equally accurate
across groups by regressing squared error (S
− H)2 on student group. A significant positive
coefficient indicates systematic differences in
accuracy between groups.

• Overall Score Difference (OSD): Assesses
whether AES scores are consistently higher or
lower than human scores for different groups
using the absolute difference |S – H| as the out-
come. Significant differences suggest system-
atic over- or under-prediction for a subgroup.

• Conditional Score Difference (CSD): Extends
OSD by controlling for student proficiency
(approximated by human scores). Two mod-
els are compared—with and without student
group. A significant increase in R2 indicates
that group membership affects AES accuracy
beyond proficiency, signaling potential sub-
group bias.

Based on RQ1 findings (see Results sec-
tion), only LLM scores generated with context-
enhanced + few-shot CoT prompting—the highest-
performing strategy overall—were subjected to fair-
ness analyses (OSA, OSD, CSD).

5 Results

5.1 RQ1–Comparisons across Scoring
Approaches

Figure 2 shows QWK values for total scores. Hu-
man–human agreement was the highest benchmark
(QWK = .91), with PEG next in line (QWK =
.76). The LLMs, while trailing PEG, demonstrated
a clear upward trend across prompting strategies:
GPT-4o improved from .46 under baseline CoT to
.72 with context-enhanced + few-shot prompting,
Gemini 2.5 Flash rose from .43 to .60, and Claude
Sonnet 4 from .30 to .69. These results indicate
that structured prompts, especially those combin-
ing context and few-shot examples, substantially
strengthen the alignment of LLM-generated scores
with human ratings.

Trait-level analyses (Figure 3) reveal similar pat-
terns. PEG maintained strong agreement across
all traits (QWK = .61–.74), consistently falling
between human–human agreement (.77–.86) and
LLM performance. Among the LLMs, GPT-4o

Figure 2: Comparisons of Quadratic Weighted Kappa
(QWK) between Human Scores and Machine Scores
across Prompt Engineering Strategies and LLMs – Total
Score
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Figure 3: Comparisons of Quadratic Weighted Kappa (QWK) between Human Scores and Machine Scores across
Prompt Engineering Strategies and LLMs – by Trait

again showed the highest alignment, particularly
for development of ideas (.70) and organization
(.71), while Claude Sonnet 4 performed competi-
tively for development of ideas (.70). Gemini 2.5
Flash generally lagged behind, though its agree-
ment improved under structured prompting.

Patterns in exact and adjacent agreement (see
Appendix A) further support these findings. Ex-
act agreement was highest for human–human (.28
for total score) and PEG (.21), with LLMs show-
ing smaller but improving proportions as prompt-
ing strategies became more structured (e.g., GPT-
4o rising from .14 to .20). Adjacent agreement
was consistently stronger for total scores and trait
scores. For example, human–human reached .63 in
total score, PEG achieved .44, and LLMs again im-
proved with prompting, with GPT-4o and Claude
Sonnet 4 approaching PEG’s level for traits includ-

ing development of ideas, organization, style and
word choice. Overall, these results suggest that
while PEG remains the most reliable automated
scorer, LLMs (particularly GPT-4o) can achieve
meaningful gains through contextually enriched,
few-shot prompting, with the largest improvements
seen on traits tied to style and conventions.

5.2 RQ2–Fairness across ELL Group
Figures 4 and 5 show QWK comparisons by ELL
status. Across nearly all models and traits, agree-
ment between AES scores and human ratings was
higher for non-ELLs than for ELLs, indicating
modest subgroup disparities. For total scores,
GPT–human agreement reached .74 for non-ELLs
versus .67 for ELLs under context-enhanced +
few-shot prompting, Claude–human agreement
achieved .71 versus .61, and Gemini–human agree-
ment .63 versus .54, while PEG-human agreement
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Figure 4: Comparisons of Quadratic Weighted Kappa (QWK) between Human Scores and Machine Scores across
Prompt Engineering Strategies and LLMs by ELL Status – Total Score

Figure 5: Comparisons of Quadratic Weighted Kappa (QWK) between Human Scores and Machine Scores across
Prompt Engineering Strategies and LLMs by ELL Status – by Trait
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Metric Human Rater 2 PEG GPT-4o (Context+Few-Shot CoT) Gemini (Context+Few-Shot CoT) Claude (Context+Few-Shot CoT)

Total Score
OSA – ELL 1.047 6.293∗ -0.077 0.658 1.502
OSD – ELL -0.014 0.693∗ -0.211 -0.240 -0.354
CSD – ∆R2 0.001 0.006 0.010∗ 0.009∗ 0.016∗

Trait 1 – Development of Ideas
OSA – ELL 0.260∗ 0.146 -0.008 0.072 0.080
OSD – ELL 0.262∗ 0.133∗ -0.098 -0.073 -0.039
CSD – ∆R2 0.064 0.004 0.012∗ 0.006 0.006

Trait 2 – Organization
OSA – ELL -0.003 0.198∗ 0.061 0.043 0.040
OSD – ELL -0.146 0.105 0.004 -0.079 -0.120∗

CSD – ∆R2 0.033 0.001 0.002 0.008∗ 0.018∗

Trait 3 – Style
OSA – ELL 0.128 0.214∗ -0.026 -0.115 -0.031
OSD – ELL -0.043 0.124∗ -0.001 -0.019 -0.113
CSD – ∆R2 0.003 0.002 0.006∗ 0.008∗ 0.026∗

Trait 4 – Word Choice
OSA – ELL 0.040 0.137 0.028 0.056 0.080
OSD – ELL 0.073 0.124∗ -0.005 -0.027 -0.024
CSD – ∆R2 0.000 0.002 0.007∗ 0.008∗ 0.009∗

Trait 5 – Sentence Fluency
OSA – ELL -0.077 0.200∗ -0.004 0.097 0.014
OSD – ELL -0.072 0.117∗ -0.054 -0.034 -0.023
CSD – ∆R2 0.008 0.001 0.016∗ 0.009∗ 0.009∗

Trait 6 – Conventions
OSA – ELL -0.208 0.165∗ 0.030 -0.054 -0.013
OSD – ELL -0.088 0.090 -0.057 -0.007 -0.036
CSD – ∆R2 0.019 0.000 0.012∗ 0.006∗ 0.009∗

Table 1: Fairness Evaluation Results by ELL Status. Values are coefficients for OSA and OSD (ELL effect) and
∆R2 for CSD. Significant values are in bold and marked with ∗ (p < .05).

also favored non-ELLs (.80 vs. .69). Gaps between
ELL and non-ELL for human–human agreement
also varied somewhat across traits, with smaller
subgroup differences for organization, word choice,
and sentence fluency. Notably, prompting did not
eliminate subgroup gaps, and both LLMs and PEG
continued to score ELLs less consistently than non-
ELLs. These comparisons with human–human
agreements should be interpreted cautiously, how-
ever, given the limited size of the double-scored
sample (10%) by a second human rater.

Table 1 presents results from the fairness evalu-
ation. Based on RQ1 findings, only LLM scores
generated with context-enhanced + few-shot CoT
prompting—the most accurate overall—were ex-
amined further. Specifically, PEG showed sig-
nificant ELL-based differences in both OSA and
OSD for most traits, but these differences were not
significant regarding CSD. In contrast, the three
LLMs with context-enhanced + few-shot prompt-
ing displayed few significant results for OSA and
OSD, implying more balanced performance across
groups at the overall level. Yet, CSD revealed per-
sistent disparities: GPT-4o showed effects for total
score, development of ideas, style, word choice,
sentence fluency, and conventions; Gemini 2.5
Flash for total score, organization, style, word
choice, and conventions; and Claude Sonnet 4 for

nearly all traits except development of ideas. These
findings suggest that while LLMs reduced overt
subgroup bias relative to PEG, subtler inequities
remained once proficiency was considered.

6 Conclusions and Implications

This study provides early empirical evidence that
large language models (LLMs), specifically gen-
erative LLMs such as GPT-family models, when
combined with carefully designed prompting strate-
gies, can approach the performance of feature-
based AES systems such as PEG. This study com-
pared not only multiple LLMs but also different
prompting strategies, offering valuable insights and
practical guidance for future research on prompt
design. Context-enhanced + few-shot chain-of-
thought prompting consistently outperformed base-
line approaches, highlighting the central role of
prompt engineering in optimizing LLM-based scor-
ing for both accuracy and consistency.

At the same time, fairness analyses revealed that
neither PEG nor LLMs fully eliminated subgroup
disparities. PEG exhibited larger discrepancies
for ELLs in overall accuracy and error magnitude,
whereas LLMs appeared more balanced at the sur-
face level. However, conditional score difference
analyses showed that subtle, proficiency-adjusted
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disparities persisted across traits, suggesting that
fairness concerns remain in LLMs. Importantly,
this study examined both holistic scores and rubric-
based analytical scores, contributing evidence on
how LLMs perform across different scoring di-
mensions. Furthermore, it provides some of the
most up-to-date findings on subgroup fairness in
LLM-based scoring, adding important validity evi-
dence to ongoing debates about their educational
use. These findings underscore the importance of
evaluating LLMs with multiple fairness metrics
and designing safeguards that ensure equitable per-
formance across student populations.

Finally, this study focused on students in Grades
3–5, a population often overlooked in AES re-
search, thereby extending the scope of evidence to
younger learners who are at a critical stage in writ-
ing development. Future work should extend these
findings to additional grade levels, writing gen-
res, and more diverse student populations. There
is also a need for clearer evaluation frameworks
and design guidelines to ensure prompt quality
and subgroup fairness in LLM-based scoring. As
LLMs gain traction in educational measurement,
this study underscores the need to pair advanced
modeling with thoughtful design to support scoring
accuracy, fairness, and validity.

7 Limitations

Several limitations should be acknowledged. First,
only 10% of essays were double-scored, limiting
the reliability of human–human benchmarks, partic-
ularly for subgroup comparisons. Second, the anal-
ysis focused solely on informative writing tasks,
leaving other genres such as argumentative or nar-
rative unexamined. Finally, only three prompting
strategies were tested, while other approaches, such
as extended rubric prompts or fine-tuning, remain
unexplored. These constraints suggest caution in
interpreting findings and point to directions for fu-
ture research.
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A Additional Figures

Figure A1: Comparisons of Exact Agreement between
Human Scores and Machine Scores across Prompt En-
gineering Strategies and LLMs – Total Score
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Figure A2: Comparisons of Exact Agreement between Human Scores and Machine Scores across Prompt Engineer-
ing Strategies and LLMs – by Trait
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Figure A3: Comparisons of Adjacent Agreement between Human Scores and Machine Scores across Prompt
Engineering Strategies and LLMs – Total Score
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Figure A4: Comparisons of Adjacent Agreement between Human Scores and Machine Scores across Prompt
Engineering Strategies and LLMs – by Trait
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Abstract 

This study examines how well generative 
AI can predict the difficulty level of reading 
comprehension items. Four AI tools (i.e., 
ChatGPT-5, Claude Sonnet 4, Gemini 2.5 
Pro, and DeepSeek R1) were evaluated 
alongside two human raters on 20 items. 
Claude and Gemini showed the highest 
agreement with empirical values, in some 
cases matching or surpassing human raters, 
while ChatGPT-5 and DeepSeek performed 
less well. All AI tools and human raters 
tended to overestimate item ease, though 
Claude provided the most accurate 
estimates. These findings suggest that AI 
tools can complement expert judgment in 
test development, but empirical validation 
is necessary for ensuring accurate difficulty 
estimation. 

1 Introduction 

In traditional test development, the early stages 
typically involve field testing to gather pilot data 
to conduct item analysis. Based on the 
preliminary results, test items may be revised or 
discarded as necessary to improve the assessment 
quality. This process of data collection and 
analysis is often costly and time-consuming. 
While generative AI is increasingly recognized 
for assisting with test development (Bezirhan and 
von Davier, 2023; Dueñas et al., 2023), its 
capacity to evaluate item psychometric properties, 
such as item difficulty, during test development 
remains unclear.  
 

According to classical test theory (CTT), item 
difficulty refers to the proportion of test takers 
who answer an item correctly, known as the p 
value. Higher p values indicate easier items, while 
lower p values correspond to more difficult items. 
A recent study (Li and Marchong, 2024) used 
ChatGPT to estimate item difficulty for a reading 
comprehension test and reported moderate 

correlations (r > .40) between ChatGPT’s 
predictions and empirically derived difficulty 
values. However, that study did not include a 
direct comparison between AI-generated 
predictions and human estimates. It remains 
unclear how AI estimates compare to those made 
by human experts. Also, it is unknown which AI 
tools are better suited than others for this task.  
 

To address these gaps, we expand on our 
previous work by incorporating multiple AI tools 
and human raters. This study aims to evaluate the 
effectiveness of AI tools in predicting the 
difficulty of reading comprehension items in 
comparison to human raters, with empirical item 
difficulty (derived from CTT) as the benchmark. 

2 Literature Review 

Several factors have been systematically identified 
as influencing reading item difficulty. For instance, 
Davey (1988) examined a wide range of factors 
that may contribute to item difficulty, including 
passage variables (e.g., length, coherence, and 
syntactic complexity), question types (e.g., 
response location, inference type), and question 
format (e.g., stem characteristics and distractor 
plausibility). Their regression analysis found that 
stem length and location of response information 
accounted for a significant amount of variance in 
item difficulty. Lumley et al. (2012) specifically 
identified ten factors to predict PISA reading item 
difficulty, including the number of features and 
conditions to be comprehended, proximity of 
pieces of required information, competing 
information, prominence of necessary textual 
information, relationship between task and 
required information, semantic match between task 
and text, concreteness of information, familiarity of 
information needed to answer the question, register 
of the text, and extent to which information from 
outside of the text is required to answer the 
question. Overall, studies have shown that both 
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passage features (e.g., vocabulary sophistication, 
readability, discourse cohesion) and item features 
(e.g., stem length, response format, and distractor 
quality) are associated with reading item difficulty 
(Choi and Moon, 2020; Davey, 1988; Lumley et al., 
2012; Rafatbakhsh and Ahmadi, 2023).  
 

In addition, expert judgment has traditionally 
been used to estimate item difficulty, often as part 
of standard-setting or early test development. 
According to a systematic review conducted by 
Alkhuzaey et al. (2024), 34% of the included 
studies compared their systems’ predictions with 
experts’ judgement, and on average three experts 
were recruited per study to judge item difficulty. 
However, research indicates that expert ratings are 
subject to bias and inconsistency. For example, 
Sayın and Bulut (2024) found that although expert 
predictions of reading item difficulty improved 
after feedback, their initial ratings often diverged 
from empirical results. The procedures for expert 
judgment also vary considerably across studies. In 
some cases, training was not provided to experts 
(e.g., Choi and Moon, 2020), or criteria for 
evaluating difficulty were not clearly specified 
(e.g., Davey, 1988; Desai and Moldovan, 2019). 
Such variability raises concerns about the 
reliability of expert judgments (Alkhuzaey et al., 
2024). In sum, while expert review remains 
common in test development, judgments of item 
difficulty are often inconsistent and imprecise. 

Recently, researchers have begun to explore 
whether artificial intelligence can provide more 
consistent predictions of item difficulty than 
traditional methods. For example, Li, Jiao, and 
colleagues (2025) modeled item difficulty in large-
scale assessments using both small and large 
language models with different data augmentation 
strategies. They reported that GPT-4 did not 
perform as strongly as expected, likely due to 
limited training data, and suggested that additional 
data or more advanced reasoning techniques may 
be required. Their work was based on data from 
National Board of Medical Examiners (NBME) 
and the items were about medical practice. This 
raises the question of whether similar findings 
extend to reading assessments. It is also unclear 
whether AI offers advantages over human 
judgment or simply mirrors its limitations.  

Therefore, in this study, we focus on reading 
comprehension items to investigate whether AI 
tools (especially LLMs) can provide accurate and 

reliable estimates of item difficulty. Specifically, 
we compare predictions from multiple AI tools 
with human expert ratings and with empirical 
values derived from examinee responses. 

3 Methods  

3.1 Instruments and Participants 

The reading comprehension test used in this study 
was a reading section of an English proficiency 
test. This test evaluates advanced level English 
language competence of adult non-native speakers 
of English who plan to use English for academic 
purposes in a university setting. This test assesses 
examinees' understanding of college-level reading 
texts and includes four passages, each followed by 
five multiple-choice items, for a total of 20 items. 
Each item has four options, including one answer 
key and three distractors. All four passages were 
adapted from newspaper articles. Empirical 
response data are available from a sample of 2,019 
examinees. 

The AI tools tested included ChatGPT-5, Claude 
Sonnet 4, Gemini 2.5 Pro, and DeepSeek R1. 
ChatGPT-5 is a multimodal model with improved 
reasoning compared to earlier versions. Claude 
Sonnet 4 is a medium-sized model with extended 
context capacity, developed for reasoning and 
code-related tasks. Gemini 2.5 Pro is also 
multimodal, with enhanced long-context 
processing. DeepSeek R1 is an open-source model 
trained with reinforcement learning, designed to 
balance reasoning performance with computational 
efficiency. 

Two human raters were invited to provide 
ratings as well. One was a non-native English 
speaker with extensive experience teaching 
English to ESL learners. The other was a non-
native English speaker who held a graduate degree 
and had some experience in literacy research and 
ESL instruction. 

3.2 Data Collection Procedures 

Four AI tools were asked to estimate the difficulty 
of the 20 items on August 30th, 2025.  As shown in 
Appendix A, the authors provided a rating form 
based on a thorough review of the literature. Below 
are the sample prompts used to interact with the AI 
tools: 
 
Researcher: I have attached a document "rating 
direction" where you can see the direction of the 
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task. I've also provided the document 'Text" which 
includes the reading comprehension test. Do you 
understand the task? 
 
AI tool: Yes, I understand the task….  
 
Researcher: Now I am going to give you a slightly 
different task. Instead of giving the 5-category 
rating, can you provide a more nuanced estimation 
of item difficulty as p value in the classical test 
theory. Do you understand the task? 
 
AI tool: Yes, I understand the task…  
 

As a result, each of the four AI tools generated 
both categorical ratings on a 1–5 scale and 
continuous ratings on a 0–1 scale for each of the 20 
reading comprehension items.  

In parallel, two human raters independently 
evaluated item difficulty on a 1–5 scale using the 
same provided materials; however, they were not 
asked to provide continuous ratings. To establish a 
benchmark, empirical difficulty values (p values) 
were calculated for each item based on the 
responses of 2,019 examinees. 
 

4 Results  

The predictions from both AI tools and human 
raters were compared to the empirical values with 
different approaches. First, we used Spearman 
correlations to examine the association between the 
estimated categorical difficulty ratings and the 
empirical p values. The original categorical ratings 
were coded as 1 = easiest and 5 = hardest. To align 
the direction of the scales (since higher p values 
indicate easier items), categorical ratings were 
reverse coded before correlation analyses. As 
shown in Figure 1, among the AI tools, Claude 
demonstrated the strongest alignment with 
empirical values (ρ = .66), followed by Gemini (ρ 
= .52) and ChatGPT (ρ = .41). DeepSeek showed 
the weakest association (ρ = .19). For the human 
raters, Rater 2 exhibited moderate alignment with 
empirical values (ρ = .52), while Rater 1 showed 
lower consistency (ρ = .29). These results suggest 
that certain AI tools, particularly Claude and 
Gemini, can approximate empirical item difficulty 
as well as or better than human raters. 

 

 
 

Figure 1: Spearman correlations among categorical 
ratings by human raters, AI tools, and empirical p 

value. 
 
We also calculated quadratic weighted kappa 

(QWK) to evaluate agreement among the two 
human raters and four AI tools. QWK was selected 
because it accounts for the ordinal nature of the 1–
5 scale and differentially weights disagreements 
based on their magnitude. As shown in Figure 2, 
agreement between the two human raters was 
moderate (κ = .54). Among the AI tools, Claude 
showed the strongest consistency with both human 
raters (κ = .44–.47) and other AI tools (κ = .68 with 
Gemini and κ = .65 with ChatGPT-5). Gemini also 
demonstrated strong agreement with ChatGPT-5 (κ 
= .61) and Claude (κ = .68). In contrast, DeepSeek 
exhibited only moderate agreement with both 
humans (κ = .24–.32) and the other AI systems (κ 
= .41–.57). Overall, Claude and Gemini not only 
aligned most closely with empirical difficulty 
values but also achieved the highest inter-rater 
consistency, while DeepSeek showed weaker 
agreement with others. 

Using the AI tools’ continuous 0–1 difficulty 
ratings, we calculated Pearson correlations with the 
empirical p values. Results mirrored the categorical 
analysis: Claude showed the strongest association 
(r = .60), followed by Gemini (r = .57), ChatGPT-5 
(r = .43), and DeepSeek (r = .20).  
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Figure 2: Quadratic weighted kappa agreement 
between categorical ratings by human raters and AI 

tools. 
 
Furthermore, as shown in Figure 3, all four AI 

models systematically overestimated item ease 
(positive bias). We, therefore, calculated Mean 
Absolute Error (MAE) and Root Mean Squared 
Error (RMSE) between empirical p values and 
continuous ratings by AI tools. MAE was 
calculated by averaging the absolute value of the 
errors, which indicates the average size of the 
deviations regardless of direction. RMSE was 
calculated by taking the square root of the averaged 
squared errors, which is more sensitive to 
occasional large discrepancies. 

 
Figure 3: Comparison of continuous ratings by AI tools 

and empirical p values. 
 
As shown in Table 1, in terms of error 

magnitude, Claude yielded the lowest mean 
absolute error (MAE = 0.157) and root mean 
square error (RMSE = 0.181), indicating the closest 

alignment with empirical p values. This was 
followed by Gemini (MAE = 0.186, RMSE = 
0.230) and ChatGPT-5 (MAE = 0.204, RMSE = 
0.231). DeepSeek R1 showed slightly lower MAE 
than ChatGPT-5 (0.201 vs 0.204) but the highest 
RMSE (.244), indicating more large-error outliers. 
These results suggest that although all AI tools 
tended to rate items as easier than observed in 
empirical data, Claude provided the most accurate 
continuous predictions. 
 

AI Tools MAE RMSE 
ChatGPT-5 0.204 0.231 
Gemini 2.5 Pro 0.186 0.230 
Claude Sonnet 4 0.157 0.181 
DeepSeek R1 0.201 0.244 

 
Table 1: Error magnitude of AI rating against empirical 

p values. 

5 Discussion 

In this study, we found that certain AI tools, 
particularly Claude and Gemini, can approximate 
empirical item difficulty as well as, or in some 
cases better than, human raters. This suggests that 
AI tools could serve as a valuable supplement to 
expert ratings in this task. In Li and Marchong 
(2024), only ChatGPT and the OpenAI API were 
used to estimate the difficulty of the same 20 
reading comprehension items. Their reported 
Pearson correlations with empirical p values were 
.48 for ChatGPT-4o and .29 for ChatGPT-4o mini. 
In the present study, the Pearson correlation 
between ChatGPT-5 and empirical p values was 
.43, indicating that ChatGPT has not demonstrated 
noticeable improvement in predicting reading item 
difficulty over the past year. By contrast, Claude 
achieved the highest correlation with empirical p 
values (r = .60), followed by Gemini (r = .57). 
These findings suggest that Claude and Gemini 
currently offer more promising performance than 
ChatGPT for estimating reading item difficulty.  

Our results echo the findings in Li, Jiao and 
colleagues (2025), who reported that GPT-4 
showed limited performance in estimating 
difficulty of medical practice items, likely due to 
limited training data. Notably, the RMSE values for 
GPT-4 in their study (> .35) were higher than those 
observed in ours, where the RMSE for ChatGPT-5 
was .231. This may reflect domain differences. 
Overall, their findings in medicine and ours in 
reading comprehension suggest that while LLMs 
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show promise for predicting item difficulty, their 
effectiveness may depend heavily on model design, 
training, and the assessment.  

Furthermore, in this study, both human raters 
and AI tools systematically rated items as easier 
than indicated by the empirical p values. Human 
experts are prone to underestimating how 
challenging items are for less proficient examinees, 
because they are much more proficient than 
examinees (Nathan and Petrosino, 2003). It seems 
that AI tools had the same tendency, maybe they 
are likely to perceive items as easier given their 
own massive intelligence. In addition, both humans 
and AI tools may have underweighted the role of 
distractors in multiple-choice items, which often 
contribute substantially to empirical difficulty. 
These findings show the necessity of 
complementing expert or AI-based predictions 
with empirical validation. 
 

6 Conclusion 

By comparing AI-based predictions to both human 
expert judgment and empirical values, we aim to 
understand whether AI models can reliably 
contribute to the early-stage evaluation of test 
items. Our findings show that Claude and Gemini 
achieved the highest agreement with empirical 
values, outperforming ChatGPT-5 and DeepSeek. 
Both Claude and Gemini also demonstrated 
stronger alignment with human raters and were 
able to predict item difficulty as well as, or in some 
cases better than, human raters.  

However, the four AI tools as well as the two 
human raters systematically overestimated item 
ease, though error analyses (MAE, RMSE) 
suggested Claude provided the most accurate 
estimates. These findings indicate the potential of 
AI tools to supplement human judgment in test 
development; at the same time, they also show the 
need to include empirical evidence to cross-
validate AI-based difficulty estimation.  

 

7 Limitations 

While this study provides important insights on the 
potential of generative AI to support reading 
assessment development, it also has several 
limitations. First, the analysis was based on only 20 
reading comprehension items drawn from four 
expository passages. Thus, the findings may not 

generalize to other item types, genres, or reading 
assessments. Second, only two human raters were 
included. A larger pool of experts, possibly with 
varied backgrounds (e.g., item writers, teachers, 
researchers), could provide a more reliable 
benchmark of human judgment. Third, while we 
used the default outputs of four AI tools, future 
research could examine how different prompting 
strategies or fine-tuning approaches influence 
prediction accuracy.  
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Appendix A: Rating Form 

Purpose of the Task 
We are conducting a study to estimate the difficulty of 
20 reading comprehension items. The test is designed 
for advanced adult nonnative English speakers 
preparing for academic study, and measures their 
ability to understand college-level texts. It consists of 
four passages adapted from newspaper articles, each 
followed by five multiple-choice items, for a total of 
20 items.  
 
Item difficulty here refers to how likely it is that an 
average member of the target group (advanced adult 
non-native English speakers) will answer the item 
correctly.  
 
Factors You May Consider 

1. Linguistic Features  
These are characteristics of the reading text itself: 

• Vocabulary – Rare words, technical terms, or 
high lexical density (lots of content words) 
make comprehension harder. 

• Sentence Structure – Longer sentences, more 
clauses, and complex syntax increase 
difficulty. 

 
2. Item Features 
These are aspects of the test item itself: 

• Question Type – 
o Literal (answer explicitly in the 

passage) = easier. 
o Inference (paraphrase, bridging, 

gist, or prior knowledge) = harder. 
• Question Phrasing – Negatively worded or 

confusing stems add difficulty. 
• Item Length – Long stems or long answer 

options increase processing load. 
• Answer Options –Longer or more complex 

distractors make the question harder. 
 
3. Cognitive Demands 
These relate to the mental processes required: 

• Locating Explicit Information – Easier 
(requires simple scanning). 

• Integrating Across Sentences – Moderate 
difficulty (requires synthesis of information). 

• Higher-Level Inference or Reasoning – 
Hardest (requires abstraction, generalization, 
or drawing on prior knowledge). 

 
Please use the provided features holistically, and rely 
on your expert judgment, experience, and instinct. 
The goal is to provide your expert impression of 
relative difficulty. 
 
Rating Scale (5-Point) 
Please assign one rating (1–5) for each item: 

1. Very Easy – Almost all test-takers are 
expected to answer correctly. 

2. Easy – Most test-takers are expected to 
answer correctly. 

3. Moderate – About half of test-takers are 
expected to answer correctly. 

4. Difficult – Fewer than half of test-takers are 
expected to answer correctly. 

5. Very Difficult – Only a small proportion of 
test-takers are expected to answer correctly. 

 
Note. Please bear in mind that the target test-takers 
are advanced non-native English speakers who are 
seeking to study at English speaking institutions.  
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Abstract
Artificial intelligence (AI) systems are increas-
ingly used to monitor high-stakes online ex-
ams, but false positives raise concerns about
fairness and validity. To study how human re-
viewers handle erroneous AI alerts, we inten-
tionally faked “copy-typing” signals and em-
bedded them into authentic exam sessions with-
out proctors’ awareness. In two experiments,
proctors evaluated these fake signals as part
of their normal review process. Study 1 es-
tablished baseline rejection rates, while Study
2 tested revised guidelines emphasizing cor-
roborating evidence of misconduct. Proctors
rejected many fake signals (50–71%), though a
notable percentage were still accepted. Rejec-
tion rates varied somewhat across test-taker na-
tionalities, and the revised guidelines were as-
sociated with more consistent decisions across
groups. Guideline updates significantly in-
creased rejections of fake signals but also mod-
estly increased rejections of genuine ones, re-
flecting a tradeoff between reducing false posi-
tives and avoiding false negatives. These find-
ings demonstrate the importance of clear guid-
ance and structured oversight in supporting ef-
fective human–AI collaboration in exam secu-
rity.

1 Introduction

For high-stakes exams, test security involves the
deterrence, prevention, and detection of cheating
and other forms of misconduct that may artificially
inflate a test taker’s performance beyond their true
proficiency. Breaches in security can undermine
the validity of test results and carry serious conse-
quences for examinees and other stakeholders, such
as deportation or imprisonment (Main and Watson,
2022; McCray, 2019). As such, test security is es-
sential to ensure that stakeholders can accurately
interpret and use test scores (AERA et al., 2014).

In recent years, high-stakes exams have increas-
ingly moved online (Weiner and Hurtz, 2017), re-
ducing costs and broadening access for test takers.

This shift, however, introduces new security chal-
lenges for providers, from controlling the digital
test environment to countering sophisticated tech-
nological threats. At the same time, AI creates new
opportunities for exam security by providing con-
sistent monitoring at scale, enabling the detection
of potential misconduct across large numbers of
test sessions more efficiently than human proctors
alone.

AI is used in many ways to secure high-stakes
remote exams (Dawson, 2020; Zenisky and Sireci,
2021), from verifying identities through facial
recognition, keystroke tracking, and voice analysis
(Nigam et al., 2021) to proctoring tasks such as flag-
ging when a test taker looks away from the screen
(Shih et al., 2024) or when another person is de-
tected in the room. It can also monitor for unautho-
rized devices, unusual movements, or suspicious
sounds, and is increasingly applied to detect pla-
giarism (Liao et al., 2023), AI-generated answers
(Niu et al., 2024), or copy-typing behaviors (Niu
et al., 2025).

While AI tools can detect many forms of miscon-
duct, they are not perfect: studies show they can
misinterpret benign behaviors as misconduct, rais-
ing concerns about accuracy (Tweissi et al., 2022),
fairness (Yoder-Himes et al., 2022), and student
privacy (Balash et al., 2021). Incorporating human
oversight, such as having trained proctors review
AI-generated signals, can help reduce false posi-
tives (Tweissi et al., 2022) and ensure that decisions
about potential misconduct are made with appropri-
ate context. Consistent with Responsible AI stan-
dards (Burstein, 2025), we highlight the need to
balance technical reliability with human oversight.

2 Background

The rapid expansion of remote testing has made
security protocols a central concern. The Duolingo
English Test (DET) provides a valuable case study
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because it integrates AI-based monitoring with hu-
man review, offering a real-world setting to evalu-
ate how human decision-makers interact with AI
signals in a high-stakes assessment.

2.1 Application
The DET is a remotely administered, high-stakes
assessment of English proficiency (Naismith et al.,
2025). To protect score integrity, DET employs
multiple security measures (Belzak et al., 2025a),
including a lock-down digital environment, multi-
layered ID verification, an adaptive test design, and
standardized administration procedures. Human
proctors review test-taker behavior through audio-
visual recordings and validate AI-generated signals,
ensuring that DET scores remain both reliable and
credible. Ultimately, proctors retain final authority
in determining whether testing rules were violated
or misconduct occurred.

2.2 Copy-Typing Detection
Within the DET security framework, one important
safeguard is the detection of potential copy-typing
behavior. The DET employs an AI model that an-
alyzes keystroke dynamics, treating a test taker’s
typing as a sequence of keystroke events and ex-
tracting features such as key press durations and in-
tervals between keystrokes. The model architecture
captures both local rhythmic patterns and global
characteristics across an entire response, enabling
it to distinguish between organic composition and
transcription from an external source. With the de-
cision threshold selected for this experiment, the
estimated false positive rate among test takers who
were not copy-typing is about 1%, which repre-
sents the upper bound of false positives in the ab-
sence of human validation. A full description of the
model architecture, feature engineering, and perfor-
mance is provided in Niu et al. (2025). Although
the model has demonstrated strong performance
overall, this study did not directly evaluate its con-
struct validity or confidence intervals; readers are
referred to prior work for detailed validation (Niu
et al., 2025).

When the model flags a test session, the alert is
not acted upon automatically. Instead, it is routed
to a trained human proctor for review. Proctors are
instructed to treat the AI signal as a preliminary
alert rather than proof of misconduct. Their pri-
mary responsibility is to independently review the
audio-visual recording of the session and look for
corroborating evidence of cheating as outlined in

the proctoring guidelines (see Table 1). Proctors
may accept the signal if independent evidence is
found, or reject it if no such evidence exists. This
ensures a human-in-the-loop validation process.

Even with strong model performance, a small
false positive rate can have serious implications in
high-stakes testing if unverified alerts are upheld.
It is therefore essential to assess whether human
proctors can reliably identify and reject false pos-
itives, a key safeguard for fairness and test taker
protection.

2.3 Research Questions
In this paper, we have three research questions:

1. What percentage of fake copy-typing signals
are correctly rejected by proctors?

2. Do rejection rates for fake copy-typing signals
differ across test-taker nationalities?

3. Does revising the proctoring guidelines
change the likelihood that proctors reject fake
copy-typing signals?

We now report on an experiment that aims to
answer these questions.

3 Experiment

For this experiment, proctors were asked to accept
or reject AI-generated signals indicating potential
copy-typing behavior. All signals were intention-
ally faked, meaning that no test takers were actu-
ally flagged for misconduct. These test takers had
already received certified DET scores following
the standard security review process, ensuring that
their results were unaffected.

Fake copy-typing signals were interspersed with
real sessions and presented to proctors without their
knowledge that any alerts had been faked. Be-
cause DET proctoring occurs only after a test is
completed, this design was feasible: proctors ap-
proached these sessions as part of their normal
review process, unaware that the experiment was
underway. This allowed us to capture authentic
decision-making behaviors under realistic opera-
tional conditions.

We ran this experiment twice, first to establish a
baseline of rejection rates (Study 1), and second to
evaluate how revised proctoring guidelines might
have changed those rates (Study 2). Study 1 was
conducted from January 30 to February 13, 2025,
using the original guidelines. On March 28, 2025,
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the guidelines were revised to remove “irregular
typing patterns” as a criterion, add “presence of an
external resource,” and to instruct proctors not to
apply a copy-typing flag unless suspicious behav-
iors were observed in the video evidence. These
changes were intended to reinforce that proctors
should only uphold a copy-typing flag when in-
dependent evidence of copy-typing behaviors was
present. Study 2 was conducted from July 15 to
July 31, 2025, with proctors applying the revised
guidelines. Both versions of the guidelines are
presented in Table 1.

3.1 Data
For each study, we randomly selected N = 170 test
sessions that met three conditions: no copy-typing
signal was triggered, no misconduct was identified
by proctors (all test takers had received certified
scores), and the sessions had not been escalated to
secondary review for borderline or complex cases.
Different sessions were sampled for the two studies
because the test content had changed over time and,
importantly, to avoid alerting proctors that they
might be reviewing the same sessions twice, which
could have undermined the realism of the task. De-
spite being drawn from different time periods, the
two sets of sessions showed highly similar distri-
butions of copy-typing detection logits (Figure 1),
and the mean values did not differ significantly
(p = 0.433).

To examine group differences, our analysis fo-
cused on three nationality groups—Western (Amer-
ican, Canadian, and French), Chinese, and In-
dian—as they represented the largest test-taker pop-
ulations in both our dataset (see Table 2) and the
DET (Michalowski et al., 2024). Nationality was
selected as a key variable for evaluating group dif-
ferences in copy-typing decisions, as prior research
shows that proctoring outcomes are especially sen-
sitive to this factor. For example, Belzak et al.
(2025b) found that both proctor and test-taker na-
tionality influenced the likelihood of being flagged
for rule violations, whereas other demographic
characteristics such as gender and age did not. Ta-
ble 3 presents the broader distribution of proctor
nationalities aggregated by continent. These data
reveal that the majority of proctors are based in
the Americas (46%) and Europe (24%), a distribu-
tion that contrasts with the larger populations of
Chinese and Indian test takers.

In addition to the fake signals, we also collected
operational sessions that had been flagged with
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Figure 1: Distribution of copy-typing detection model
predictions for sessions used in two studies, with the
average values and standard deviations being −6.20±
2.36 for Study 1 and −6.36± 2.46 for Study 2.

genuine copy-typing signals during the two periods
before and after the guideline revision. These data
allowed us to examine whether changes in proctor-
ing instructions influenced how proctors handled
authentic AI alerts, providing a real-world com-
plement to the experimental results based on fake
signals.

3.2 Methods
We first estimate the probability of proctors reject-
ing fake copy-typing signals by fitting a logistic
mixed-effects model (Raudenbush and Bryk, 2002)
to the combined data from both studies:

logit
(
Pr(Sij = 0)

)
= β0 + β1Xi + uj , (1)

where Pr(Sij = 0) is the probability that proc-
tor j rejects signal i, Xi = 0 under the original
guidelines and Xi = 1 under the revised guide-
lines, and uj ∼ N(0, τ2) is a random effect for
proctor j, which accounts for non-independence
because each proctor evaluated multiple signals. In
this model, β0 represents the baseline log-odds of
rejection under the original guidelines, while β1
captures the log-odds change after the revision.

Next, we examine nationality effects in two
stages. In the first stage, we fit within-study models
to test for differences among Chinese, Indian, and
Western test takers:

logit
(
Pr(Sij = 0)

)
= β0+β1Ci+β2Ii+uj , (2)

where Ci = 1 for Chinese test takers and 0 oth-
erwise, Ii = 1 for Indian test takers and 0 other-
wise, with Western test takers (American, Cana-
dian, French) as the reference group. Here, β0
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Original Guidelines Revised Guidelines

Review corresponding video segments for sus-
picious behaviors that indicate copy-typing, in-
cluding:

• Irregular Typing Patterns

• Unusual Body Movements

• Irregular Eye Movements

Review corresponding video segments for sus-
picious behaviors that indicate copy-typing, in-
cluding:

• Irregular Typing Patterns

• Unusual Body Movements

• Irregular Eye Movements

• Presence of an external resource

Do not apply this signal flag if no suspicious
behaviors are observed.

Table 1: Proctoring guidelines for reviewing copy-typing signals. Revisions are marked as deleted or added.

Nationality Group Study 1 Study 2
Western* 25 30
Chinese 28 17
Indian 15 19

Table 2: Number of test takers by nationality group in
Study 1 and Study 2. The Western nationality group
includes American, Canadian, and French test takers.

Continent Percentage
Americas 46%
Europe 24%
Asia 13%
Africa 10%
Oceania 6%

Table 3: Percentage of proctor nationalities aggregated
by continent.

gives the baseline log-odds of rejection for Western
test takers, while β1 and β2 capture contrasts for
Chinese and Indian test takers, respectively. In the
second stage, we use the same model specification
as Eq. 1, but fit it separately within each nationality
group to assess between-study differences. This
allows us to test whether rejection rates changed
significantly from Study 1 (original guidelines) to
Study 2 (revised guidelines) within each national-
ity.

Finally, we estimate the probability of rejecting
genuine copy-typing signals observed during oper-
ational proctoring. The model includes the guide-
line condition (original vs. revised) as a predictor,

specified in the same way as Eq. 1. Unlike Eq. 1,
however, we use a logistic regression model rather
than a mixed-effects model, since each genuine
signal was reviewed by only one proctor.

For all models, model-implied probabilities and
percentages are obtained by applying the inverse-
logit transformation to the estimated log-odds coef-
ficients.

4 Results

Figure 2 shows the model-implied percentages of
proctors rejecting fake copy-typing signals under
the original and revised guidelines. Results from
the logistic mixed-effects model indicate that re-
jection rates were significantly higher after the re-
vision, with an estimated effect of β̂1 = 0.880
(p = .001) on the log-odds scale.
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Figure 2: Model-implied percentages of rejecting fake
copy-typing signals before (Study 1) and after (Study 2)
the revision of proctoring guidelines.
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Figure 3 shows the model-implied percentages
of proctors rejecting fake copy-typing signals by
test-taker nationality and study. The within-study
logistic mixed-effects models revealed systematic
nationality differences. In Study 1, Chinese test tak-
ers were significantly less likely than Western test
takers to have fake signals rejected (β̂1 = −2.230,
p < .001). Indian test takers also showed lower
rejection rates than Western test takers, though this
difference was marginally statistically significant
(β̂2 = −1.159, p = .088). In Study 2, Chinese test
takers again exhibited lower rejection rates than
Western test takers, but the difference was not sig-
nificant (β̂1 = −0.996, p = .187). By contrast,
Indian test takers were significantly less likely than
Western test takers to have fake signals rejected
(β̂2 = −1.553, p = .029).

The between-study logistic mixed-effects mod-
els also revealed systematic differences by national-
ity. Chinese test takers showed significantly higher
rejection rates in Study 2 compared to Study 1
(p = .001). Rejection rates for Western and In-
dian test takers also increased across studies, but
these effects did not reach statistical significance
(p = .104 and p = .303, respectively).
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Figure 3: Model-implied percentages of rejecting fake
copy-typing signals by test-taker nationality and study.

Figure 4 shows the model-implied percentages
of proctors rejecting both fake and genuine copy-
typing signals under the original and revised guide-
lines. Rejection rates for fake signals were sub-
stantially higher (50–71%) than for genuine signals
(9–13%). The logistic model also indicated a small
but statistically significant increase in the rejection
of genuine signals after the revision (p = .003).
We discuss the implications of these findings in the
next section.

9%
13%

50%

71%

0%

25%

50%

75%

100%

Original Guidelines Revised Guidelines

C
op

y−
Ty

pi
ng

 R
ej

ec
tio

n 
R

at
e

Fake Genuine

Figure 4: Model-implied percentages of rejecting fake
and real copy-typing signals under the original and re-
vised guidelines.

5 Discussion

This experiment examined how trained human proc-
tors interact with AI-generated copy-typing signals
in a remotely administered, high-stakes English
language assessment. By intentionally fabricating
signals and asking proctors to accept or reject them
under specific guidelines, we evaluated three ques-
tions: (1) whether proctors could correctly reject
fake AI signals, (2) whether rejection rates varied
by test-taker nationality, and (3) whether revised
guidelines changed proctoring decisions.

5.1 Research Question 1: Percentage of Fake
Signal Rejections

The first research question asked: What percent-
age of fake copy-typing signals are correctly re-
jected by proctors? Across both studies, proctors
rejected a substantial percentage of fake signals
(50–71%). This suggests that proctors can often
identify when an AI alert is not supported by in-
dependent evidence of misconduct. However, the
fact that roughly one in three fake alerts was ac-
cepted underscores the risks of overreliance on AI
signals in high-stakes contexts (Skitka et al., 1999;
Poursabzi-Sangdeh et al., 2021). These findings
highlight the value of human review for maintain-
ing fairness and accuracy, while also pointing to the
need for additional safeguards to minimize the con-
sequences of false positives (Bansal et al., 2021).
As AI detection models improve, false positive
rates, and the role of human reviewers in rejecting
them, may shift. More research will be critical to
ensure systems remain both reliable and fair.
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5.2 Research Question 2: Nationality
Differences in Rejection Rates

The second research question asked: Do rejection
rates for faake copy-typing signals differ across
test-taker nationalities? The within-study analy-
ses revealed systematic differences: in Study 1,
Chinese test takers were significantly less likely to
have fake signals rejected than Western test takers,
and Indian test takers showed a similar trend. In
Study 2, rejection rates for Chinese test takers im-
proved and were no longer significantly different
from Western test takers, while Indian test takers
were significantly less likely to have fake signals
rejected. The between-study analyses confirmed
that rejection rates increased significantly for Chi-
nese and Western test takers in Study 2, but not
for Indian test takers. These findings suggest that
proctor decision-making can vary by nationality
group, perhaps due to a structural mismatch be-
tween the distribution of test takers and proctors
(Belzak et al., 2025b), and that revised guidelines
may reduce some differences while leaving others
unaddressed. Strategies such as targeted proctor
training, bias monitoring dashboards, and regular
fairness audits could help ensure that future revi-
sions to proctoring guidelines improve accuracy
while also addressing inequities across groups.

5.3 Research Question 3: Effect of Revised
Guidelines

The third research question asked: Does revising
the proctoring guidelines change the likelihood that
proctors reject fake copy-typing signals? The evi-
dence indicates that they do. After the guidelines
were updated to emphasize the need for corrobo-
rating evidence of misconduct, rejection rates of
fake signals increased significantly. This suggests
that proctoring practices are sensitive to instruc-
tional framing and that targeted revisions can im-
prove decision quality (Association of Test Pub-
lishers and National College Testing Association,
2024; Buçinca et al., 2021). However, the revised
guidelines were also associated with a small but
statistically significant increase in the rejection of
genuine signals, suggesting that proctors became
more cautious about accepting AI alerts but also
more likely to dismiss valid cases (Almog et al.,
2024). This tradeoff between reducing false posi-
tives and increasing false negatives highlights the
complexity of calibrating human–AI collaboration
in high-stakes testing. More research is needed

to refine this balance and identify guidelines that
reduce risks without undermining security.

5.4 Implications
Taken together, the findings underscore both the
value and limitations of human-in-the-loop AI sys-
tems in exam security. Proctors are capable of
rejecting false positive copy-typing signals, but not
always uniformly across nationalities, and their de-
cisions are shaped by the guidance they receive.
Ongoing training, carefully designed guidelines,
and continuous monitoring of decision patterns are
therefore essential to ensure fairness and validity
(Burstein et al., 2025).

5.5 Limitations and Future Work
Several limitations should be considered when in-
terpreting these findings. First, the two studies
were conducted on different sets of test sessions
and several months apart. This was necessary be-
cause the test’s visual design had changed, and
reusing the same sessions could have signaled to
proctors that they were artificial. However, this
design also means that unobserved differences in
session characteristics or other contextual changes
over time may have contributed to the observed
effects, making it difficult to attribute differences
solely to the revised guidelines.

Second, for genuine copy-typing signals ob-
served during operational proctoring, we cannot de-
termine whether higher rejection rates reflect proc-
tors dismissing false positives or overlooking true
positives. As such, estimates of genuine-signal re-
jection rates should be interpreted with caution. Es-
tablishing verified ground truth through simulated
or confirmed cases of misconduct would strengthen
future studies.

Third, the scope of this experiment was limited
in terms of sample size, signal type, and use of
fake copy-typing signals. The relatively small sam-
ples constrained analyses of nationality differences,
and fake signals—while useful for preserving real-
ism—may not capture the full complexity of gen-
uine AI alerts. Moreover, we focused on copy-
typing signals only; other alerts, such as those for
unusual movements, unauthorized devices, or sus-
picious sounds, may pose different challenges for
human validation. Future work should expand to
larger, more diverse datasets and a broader range
of signal types to better understand the dynamics
of human–AI collaboration in exam security.

Addressing these limitations will be essential
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for improving both the accuracy and fairness of
AI-assisted proctoring. Larger datasets, verified
ground truth, and broader signal coverage will help
test providers calibrate human–AI decision-making
and safeguard the integrity of high-stakes assess-
ments.

6 Conclusion

This study examined how trained human proctors
interact with AI-generated copy-typing signals in
a high-stakes, remotely administered English lan-
guage assessment. To ensure operational outcomes
were unaffected, fake signals were embedded only
into completed sessions where test takers had al-
ready received certified scores. This design allowed
us to evaluate proctor decision accuracy in reject-
ing fake AI signals, explore differences across na-
tionality groups, and assess the impact of revised
guidelines without altering test results.

Proctors generally identified and rejected fake
copy-typing signals, but acceptance of some signals
highlights the risks of overreliance on AI. Rejection
rates varied by nationality, with differences reduced
but not eliminated under revised guidelines. The
guidelines also increased rejections of fake signals
while slightly raising rejections of genuine ones,
underscoring the tradeoff between false positives
and false negatives. More research is needed to
examine these dynamics in larger datasets, across
different AI signals, and in varied testing contexts.

Overall, the findings illustrate both the promise
and limits of human-in-the-loop AI for exam se-
curity. Clearer guidelines, regular training, and
monitoring are essential to support fairness and va-
lidity. Practically, testing organizations can refine
proctor training, track nationality-related outcomes,
and calibrate AI–human collaboration to balance
accuracy and fairness. Because the reliability of hu-
man–AI systems depends not only on technical per-
formance but also on governance, transparent pro-
cesses, and oversight, exam security frameworks
should be aligned with Responsible AI standards
(Burstein et al., 2025). More broadly, stakeholder
trust in high-stakes assessments also rests on ad-
herence to the principles of fairness and validity
articulated in the Standards for Educational and
Psychological Testing (AERA et al., 2014).
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Abstract

This study evaluates whether questions gener-
ated from a Socratic-style AI chatbot designed
to support project-based AP courses maintain
cognitive complexity parity when inputted with
research topics of sensitive and non-sensitive
nature. We present empirical findings indicat-
ing no significant conversational complexity
differences, highlighting implications for equi-
table AI use in formative assessment.

1 Introduction

AI systems are increasingly deployed in educa-
tional settings for instructional and assessment sup-
port (U.S. Department of Education, 2023; Samala
et al., 2025). These systems offer unprecedented
opportunities for providing students with timely, in-
dividualized support at scale. Recent work demon-
strates that AI systems can generate discussion
prompts, assessment items, and lesson plans across
various academic subjects (Scaria et al., 2024;
Zheng et al., 2024; Maity et al., 2025). One promis-
ing direction is to adapt large language models
(LLMs) as Socratic questioning chatbots. Specifi-
cally, AI-generated questions can prompt students
to elaborate on their thinking, make connections be-
tween different topics, and develop critical thinking
and metacognitive skills (Danry et al., 2023; Al-
Hossami et al., 2024; Hung et al., 2024; Favero
et al., 2024). This approach may help address
concerns about AI tools diminishing critical think-
ing abilities through cognitive offloading (Gerlich,
2025), as Socratic questioning actively engages stu-
dents in reflective reasoning rather than providing
ready-made solutions. At the same time, success-
ful implementations of AI systems in educational
settings require careful examination of how these
systems operate across varied content areas and
student populations (Garcia Ramos and Wilson-
Kennedy, 2024; Kaldaras et al., 2024). In the case
of AI systems designed for Socratic dialogue, con-

cerns persist regarding potential algorithmic bias
in the way LLM generates questions based on the
varying content and perspectives found in student
writing.

Existing research on LLM question generation
in educational settings has focused on creating as-
sessment items from structured course materials
such as textbooks, lesson plans, and existing ques-
tion banks (Tran et al., 2023; Chan et al., 2025;
Shu et al., 2025). While these studies show promis-
ing results for automated question generation for
STEM subjects, there remains limited investigation
into how LLMs generate questions in response to
student-produced writing, particularly essays ad-
dressing potentially controversial or sensitive top-
ics. This research gap is significant because LLMs
may have learned implicit associations during pre-
training that influence their question generation
patterns when encountering politically charged or
socially sensitive content compared to neutral aca-
demic materials (Westwood et al., 2025; Bai et al.,
2025). The absence of systematic investigation
into how LLMs perform when generating questions
based on student essays creates uncertainty about
their reliability and fairness in real-world educa-
tional contexts when students write about various
topics.

Our investigation in this study is guided by the
following research question: to what extent does
the nature of student essay topics influence the char-
acteristics of LLM-generated, student-facing ques-
tions? Specifically, we are interested in whether
students choosing potentially controversial or sen-
sitive research topics may receive LLM-generated
questions that differ in cognitive complexity from
those posed to students with more neutral research
topics. This study is part of a broader project at Col-
lege Board’s GenAI Studio to develop AI-powered
educational tools in collaboration with AP students
and educators, learning scientists, learning engi-
neers, psychometricians, and ELA content experts.
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An LLM-based, student-facing chatbot (“SAM”) is
prompt-engineered to generate Socratic questions
and support students’ deeper learning of the re-
search process and critical thinking skills. Given
the variety of interactions students might take with
SAM, it is crucial to explore, prior to classroom de-
ployment, equitable performance across different
student inputs.

2 Methodology

2.1 Synthetic Student Work Samples

To ensure breadth of topic coverage and a balanced
distribution of sensitive and non-sensitive essay
topics, we first used an LLM to simulate student
work samples based on 47 suggested themes in
AP Seminar research tasks. In the AP Seminar
course, to demonstrate research progress, students
are required to submit stepwise evidence of their
research process, including (1) an Annotated Bib-
liography or source chart including citations and
summaries of source content, (2) an argument Out-
line which organizes and synthesizes sources, and
(3) a completed research paper. For this study, sam-
ples were generated for the first two distinct work
phases (Annotated Bibliography and Outline) and
aim to represent progressing completion statuses of
each phase (Severely Underdeveloped, First Draft,
Final Draft). We did not generate completed papers
as the chatbot is focused on providing formative
support.

We used AWS Bedrock Flows to automate syn-
thetic work sample generation through a set of
chained prompts against Claude 3.5 Sonnet (see
Figure 1). Given a sample theme from AP Seminar
Course and Exam Description (CED) (e.g., Utopia)
and topic sensitivity ("is controversial or sensitive
in nature" or "is not controversial or sensitive in
nature"), a topic was generated. Topic sensitiv-
ity was loosely defined in the prompt and left to
the model’s interpretation. The generated topics
were reviewed by a human reviewer to ensure the
sensitivity distinctions were reasonable. Table 1
presents sample sensitive and non-sensitive topics
based on five theme inputs.

Once a topic was generated, the flow branched to
generate five subsequent work samples: Annotated
Bibliography - Severly Underdeveloped, Annotated
Bibliography - First Draft, Annotated Bibliography
- Final Draft, Outline - First Draft, and Outline -
Final Draft. The zero-shot prompts requested con-
tent "at the level of a 10th grader". This process

generated 235 synthetic student work samples for
sensitive topics and 235 for non-sensitive topics.
Table 2 summarizes the distribution of synthetic
work samples across work phase, development sta-
tus, and topic sensitivity.

2.2 Chatbot Configuration and Question
Generation

SAM is designed to help students reflect on their re-
search process and provide teachers with evidence
of student engagement with their research topics.
The version of SAM tested in this study harnesses
in-context learning capabilities of Claude 3.5 Son-
net. This foundational model was chosen for its
Constitutional AI framework, which uses reinforce-
ment learning to promote safe and fair chat expe-
riences (Bai et al., 2022). SAM’s system prompt
defines its role as a Socratic mentor and includes
instructions related to conversation management, a
rubric against which to support question generation,
and safety measures to enforce AP-appropriate in-
teractions. For example, in the following snippet
of the Annotated Bibliography prompt, SAM is
instructed to plan out its conversation with students
by generating a starter question of specific types in
its chain of thought.

Create a starter question for each of the
following, in order. If elements of the
work are not present in the work draft,
do not skip questions, but adapt the
questioning to let the student advocate
for work that has not materialized yet
or how they plan on approaching it.
Output the questions in
<conversation_plan/> tags.
1. A summary question
2. A decision question
3. An evidence question
4. A speculative question
5. A reflection question

SAM’s line of questioning includes question
types tailored to the work phase and span the
breadth of the research experience (summary, de-
cision, evidence, speculative, and reflection). The
system prompt includes sample questions devel-
oped by learning scientists and learning engineer-
ing specialists, which serve as few-shot examples
to guide SAM’s question generation (see Table 5).
In order to balance personalization with standard-
ization, SAM was encouraged to ground questions
in the provided student work, but also was config-
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Figure 1: AWS Bedrock Flows automated generation of synthetic student work samples from input themes and
topic sensitivities

Theme Sensitive Topic Non-Sensitive Topic

Evolution The role of eugenics in modern
evolutionary theory

The evolutionary adaptations of
migratory bird species

Home The impact of home ownership
on wealth inequality

The impact of smart home tech-
nology on energy efficiency

Language The impact of gendered language
on societal perceptions and bi-
ases

The impact of bilingual educa-
tion on cognitive development in
children

Place The impact of gentrification on
marginalized communities

The impact of urban green spaces
on community well-being

Rights and responsibilities The right to die The role of individual rights and
civic responsibilities in a demo-
cratic society

Table 1: Sample Synthetic Topics by Theme and Topic Sensitivity

Work Phase Development Status Topic Sensitivity
Sensistive Non-Sensitive

Annotated Bibiography Severely Underdeveloped 47 47
First Draft 47 47
Final Draft 47 47

Outline First Draft 47 47
Final Draft 47 47

Total 235 235

Table 2: Synthetic Work Input Counts across Work Phase, Development Status, and Topic Sensitivity (n=470)
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ured with a temperature of 0 for reproducibility. As
a result, some of the questions generated by SAM
closely matched the few-shot examples, while oth-
ers referenced specific topics, sources, and argu-
ments from the student work input.

Each of the 470 synthetic student work samples
was submitted to SAM, which generated a con-
versation plan containing five starter questions for
each sample. In total, this process produced 2,350
Socratic-style questions for subsequent coding and
analysis.

2.3 Depth of Knowledge (DOK) Coding

Depth of Knowledge (DOK) was identified as a
suitable framework for measuring cognitive com-
plexity of SAM’s questions. DOK measures the
complexity of thinking required to complete a
task and focuses on context and depth of the task
(Christopherson and Webb, 2024), making it ap-
propriate for comparison of rigor across questions.
An expert human rater labeled the DOK level of
each unique SAM question, blinded to each out-
put’s topic sensitivity condition. Table 3 presents
sample SAM outputs labeled by their DOK level.

2.4 Statistical Analysis of Conversation DOK
Levels

For samples that had four or more classifiable
questions, Conversation DOK was calculated as
the mean Depth of Knowledge value across ques-
tions in each conversation. To compare cognitive
complexity between groups, an independent two-
sample t-test was performed on mean Conversation
DOK levels by topic sensitivity. To control for
multiple comparisons, a Bonferroni correction was
applied.

3 Results

Of the 2,350 Socratic-style questions produced
by SAM, 1,062 were unique, as the same ques-
tions can be generated for multiple work samples.
SAM’s most frequent questions across conversa-
tions are reported in Table 6.

3.1 Question DOK by Work Phase and Topic
Sensitivity

Figure 2 compares the distribution of DOK labels
across work phases for SAM’s questions. 5.9% of
Annotated Bibliography questions and 33.4% of
Outline questions were unclassifiable. One reason
for the high volume of unclassifiable questions in

Figure 2: Question DOK (n=2,350) by Work Phase

the Outline phase was that many of SAM’s ques-
tions followed a sample question in the prompt,
which elicited "yes"/"no" responses that prevented
accurate cognitive complexity classification. Given
that one third of Outline questions were unclassi-
fiable, including multiple unclassifiable questions
per conversation, conversation-level DOK could
not be reliably calculated for Outline conversations.
For this reason, we focus the DOK comparison for
the questions generated for Annotated Bibliogra-
phy work samples only.

Figure 3 visualizes question DOK distribution
across the 282 Annotated Bibliography conversa-
tions, comparing those generated from (a) sensitive
and (b) non-sensitive topics. Read vertically, each
subplot illustrates the progression of conversational
DOK over time. The conversations typically start
with a question of low cognitive complexity (DOK
of 1) and end with a question of high cognitive com-
plexity (DOK of 3). Visual comparison of these
conversation trajectories reveals no substantial dif-
ferences in DOK patterns between sensitive and
non-sensitive topics across all five questions.

3.2 Conversation DOK by Topic Sensitivity

We calculated conversation-level DOK scores for
all 282 Annotated Bibliography conversation plans
to quantitatively assess whether topic sensitivity
influenced the cognitive complexity level of LLM-
generated questions. Figure 4 displays the distribu-
tion of conversation-level DOK scores across sen-
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DOK Level SAM Question Question Type Work Phase

Level 1
(Recall)

What is the main focus of your research
based on these sources?

Summary Annotated
Bibliography

Level 2
(Skills and Concepts)

What is your current research topic, and
how did it evolve as you developed the
outline?

Decision Outline

Level 3
(Strategic Thinking)

Which of these sources do you find most
influential in shaping your understand-
ing of entrepreneurial opportunities and
small business success?

Evidence Annotated
Bibliography

Level 4
(Extended Thinking)

Reflecting on your research and outline
development process, what have you
learned about conducting research on
such a complex topic?

Reflection Outline

Unclassifiable Based on your research so far, can you
think of any potential alternatives to the
death penalty that might address the
concerns raised by both supporters and
opponents?

Speculative Annotated
Bibliography

Table 3: Sample SAM Questions by DOK Level

Sensitive Non-sensitive
Conversation Count 141 141
Mean 2.152 2.153
Standard Deviation 0.303 0.299

Table 4: Descriptive Statistics of Conversation DOK by
Topic Sensitivity (n=282)

sitive and non-sensitive topic groups, with descrip-
tive statistics presented in Table 4. Levene’s test
confirmed homogeneity of variances, F (1, 280) =
0.010, p = 0.919, satisfying the assumptions for
parametric testing. An independent samples t-test
comparing group means revealed no significant
difference in conversation-level DOK between sen-
sitive and non-sensitive topic, t(280) = −0.020,
p = 0.984. This result suggests that SAM gener-
ated questions with equivalent levels of cognitive
challenge, regardless of topic sensitivity.

3.3 A Note about Potential Bias in Questions

Even though the expert labeler was not specifically
tasked with identifying bias in the questions gen-
erated by SAM, they did surface five outputs that
exhibited nuanced bias. These five questions fol-
lowed a consistent pattern: How might your re-
search change if you were to include more sources
from [an ethnic/religious/political group] perspec-
tives?

All five instances were speculative questions,
likely generated because AP instructional materi-
als on synthesizing perspectives were incorporated
into SAM’s system prompt. These outputs present
a dual interpretation challenge. On the one hand,
such questions could be interpreted as problemati-
cally inviting students to presume that all members
of a particular group share the same view of an is-
sue. On the other hand, such questions might have
value in encouraging students to include perspec-
tives from communities that they had not previously
considered.

While these five outputs were generated from
sensitive topics, the data is not sufficient to estab-
lish a systematic relationship between topic sensi-
tivity and problematic question generation. Fisher’s
exact test revealed no significant association af-
ter multiple comparison correction (p = 0.030 >
0.00625, OR = 11.1, 95% CI: 0.62–202). Future
research conducting targeted bias assessment at the
individual question level is needed to determine
whether topic sensitivity, question type, or other
variables introduce biased questioning patterns.

4 Discussion

This study examined whether cognitive complexity
of LLM-generated questions differs based on the
sensitivity of student research topics. Our analysis
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Figure 3: Question DOK (n=2,350) of Annotated Bibli-
ography conversations by Topic Sensitivity

Figure 4: Conversation DOK (n=282) distribution by
Topic Sensitivity

of 282 conversation plans, each consisting of ques-
tions generated by an LLM-based Socratic chatbot
(SAM) in response to synthetic student Annotated
Bibliography work samples, revealed comparable
cognitive complexity patterns regardless of topic
sensitivity. These results suggest that, under the
tested configurations, SAM’s prompt engineering
successfully maintains equitable question gener-
ation across both sensitive and non-sensitive top-
ics. This finding is encouraging for developers
and educators implementing LLM-based formative
feedback, especially in courses where students ex-
plore controversial or sensitive topics. At the same
time, our results also underscore the importance
of systematic psychometric evaluation in verifying
LLM performance on student-facing tasks such as
question generation, especially prior to classroom
deployment.

4.1 Limitations

There are several limitations that affect the gen-
eralizability of our findings. First, our analysis
relied on synthetic student work samples gener-
ated by LLMs rather than authentic student work.
While this approach enabled controlled comparison
across topic sensitivity categories, synthetic sam-
ples may not accurately reflect the style, structure,
and linguistic diversity present in real student work.
However, this limitation may be less pronounced
for Annotated Bibliography work samples, as this
assignment follows a relatively standardized format
that constrain the range of possible outputs. Sec-
ond, this study relies heavily on the performance
of a single LLM (Claude 3.5 Sonnet) for both syn-
thetic work generation and question generation. As
the reasoning capabilities of LLMs continue to im-
prove, it is important to re-evaluate these findings
with newer models and configurations. Third, our
DOK comparison focused on one stage of the AP
Seminar research process (Annotated Bibliogra-
phy) and examined only "starter" questions. In
real classroom implementations, SAM can ask up
to three follow-up questions per starter question,
designed to draw more information from students
based on rubric criteria and personalized to specific
student responses. Due to their dynamic, response-
dependent nature, follow-up questions are challeng-
ing to anticipate without authentic student inter-
actions. However, since follow-up questions are
expected to comprise more than 50% of actual con-
versation content, future conversational DOK mea-
sures must incorporate them to provide complete
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evaluation.
Future research should address these limitations

by examining authentic student work interactions
with the chatbot across multiple phases of the re-
search process and incorporating follow-up ques-
tions analysis. Additionally, investigations should
extend beyond topic sensitivity to examine other
student-related variables that may influence the
rigor and equity of support provided by the LLM-
based chatbot, such as language proficiency, so-
cioeconomic status, and cultural background.
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A Sample Synthetic Work Input and
SAM Outputs

Presented below is a sample synthetic Annotated
Bibliography (First Draft) for a sensitive topic, ac-
companied by SAM’s generated conversation plan.

A.1 Sample Sensitive Annotated Bibliography

Annotated Bibliography
1. Harrington, J. (2019). The Moral Case for

Capital Punishment. Journal of Criminal Justice
Ethics, 18(2), 45-67.

Annotation: This article presents a philosophi-
cal argument in favor of the death penalty, contend-
ing that it is a morally justified form of punishment
for the most heinous crimes. The author examines
various ethical frameworks, including retributivism
and utilitarianism, to build a comprehensive case
for capital punishment.

2. Wilkins, E. (2019). Executing the Innocent:
A Systemic Failure of the Death Penalty. Harvard
Law Review, 132(4), 789-832.

Annotation: This comprehensive review of the
death penalty system in the United States highlights
the issue of wrongful convictions and executions.
The author analyzes various factors, such as eye-
witness misidentification, false confessions, and
ineffective legal representation, that contribute to
the execution of innocent individuals.

3. Chambers, R. (2020). The Deterrent Effect
of the Death Penalty: A Review of the Evidence.
Criminology and Public Policy, 15(1), 171-204.

Annotation: This article examines the empiri-
cal evidence on the deterrent effect of the death

penalty. The author critically evaluates the exist-
ing research and concludes that the deterrent effect
of capital punishment is inconclusive, challenging
the common argument that the death penalty deters
crime.

4. Linden, S. (2018). Cruel and Unusual: The
Psychological Toll of Executions on Prison Staff.
Journal of Correctional Health Care, 22(3), 256-
271.

Annotation: This study explores the psycholog-
ical impact of carrying out executions on prison
staff. The author presents findings from interviews
and surveys, highlighting the emotional and mental
health challenges faced by those involved in the
execution process, and the need for better support
and counseling for these individuals.

5. Malik, A. (2021). The Death Penalty and Hu-
man Rights: A Global Perspective. International
Journal of Human Rights, 27(2), 345-378.

Annotation: This article provides a global anal-
ysis of the death penalty from a human rights per-
spective. The author examines the international
legal framework, the practices of various countries,
and the ongoing debates surrounding the compati-
bility of capital punishment with fundamental hu-
man rights.

A.2 SAM Output
<conversation_plan>

1. Summary question: What is your research
topic or question regarding capital punishment?

2. Decision question: How did you go about
selecting these specific sources for your annotated
bibliography?

3. Evidence question: Which of these sources do
you find most compelling or influential in shaping
your understanding of the death penalty, and why?

4. Speculative question: Based on your research
so far, can you think of any potential alternatives to
the death penalty that might address the concerns
raised by both supporters and opponents?

5. Reflection question: How has your under-
standing of the death penalty evolved as you’ve
researched and created this annotated bibliogra-
phy?

</conversation_plan>

B Additional LLM Inputs and Outputs

Presented below are additional tables referenced in
the text, including sample few-shot example ques-
tions and the most frequent SAM questions.
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Question Type Question Type Description Work Phase Few-Shot Example

Summary Asks students to summa-
rize their research topic

Annotated
Bibliography

What is your research topic?

Decision Asks students to explain
their decision rationale for
choosing a specific topic
or including specific argu-
ments or evidence

Annotated
Bibliography

How did you go about choosing your
topic and narrowing down your fo-
cus?

Outline Describe for me the perspective in
X source. How are you thinking of
using that in section Y?

Evidence Asks students to recall
sources used to supporting
their conclusion/claims

Annotated
Bibliography

Which of the sources in your anno-
tated bibliography were most influ-
ential in shaping your conclusion
about [your research topic]?

Speculative Asks students to provide
reasoning for observations
or further explore related
concepts

Annotated
Bibliography

Can you think of any evidence or
data that would change your conclu-
sion about [your research topic]?

Reflection Asks students to reflect on
their research learning ex-
perience

Annotated
Bibliography

How did your understanding of [the
topic] evolve as you researched and
created your annotated bibliogra-
phy?

Outline If you could improve one section,
which would it be and what would
you do?

Table 5: Sample Few-Shot Example Questions in SAM’s Prompt by Question Type

Rank Question Work Phase Question Type DOK Count

1 Are there any sections or ele-
ments of your outline that you
would like to improve or expand
on?

Outline Reflection Unclassifiable 125

2 Reflecting on your research
and outline development process,
what have you learned about con-
ducting research?

Outline Reflection 4 100

3 How did you decide which per-
spectives or arguments to include
in your outline?

Outline Decision 3 91

4 What is the main focus of your
research based on these sources?

Annotated
Bibliography

Summary 1 86

5 What is your current research
topic, and how did it evolve as
you developed the outline?

Outline Reflection 2 79

Table 6: Most Frequent SAM Questions
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Abstract

In high-stakes remote exams like the Duolingo
English Test, sophisticated cheating methods
such as copy-typing from external sources and
the operation of organized cheating rings pose
significant security threats. We introduce a
two-pronged, content-agnostic approach that
analyzes behavioral data to address these is-
sues. For copy-typing detection, we present
a sequence model that combines 1D convolu-
tional layers with a Transformer encoder, which
captures both local and long-range dependen-
cies in keystroke dynamics to distinguish be-
tween organic and transcribed typing, outper-
forming tabular and other sequential baselines.
For cheating ring identification, we propose
a deep metric learning framework that gener-
ates a unique behavioral embedding for each
test session using both keystroke and mouse
dynamics. The model outperforms a traditional
statistical baseline in linking test sessions com-
pleted by the same individual. Together, these
AI-driven methods provide a powerful and scal-
able toolkit for safeguarding the integrity of
remote assessments.

1 Introduction

Duolingo English Test (DET) (Naismith et al.,
2025) is a remotely administered, high-stakes En-
glish proficiency exam. Ensuring the integrity of
online assessments like the DET presents persis-
tent challenges, especially as new forms of digi-
tal test fraud emerge (Belzak et al., 2025a). Two
key threats are copy-typing and organized cheating
rings.

Copy-typing refers to the act of transcribing text
from an external source, rather than composing
it organically. In the context of high-stakes test-
ing, this form of misconduct often involves test
takers using pre-written answers, receiving live
assistance, or employing large language models

*Equal contribution.

(LLMs) to generate responses. Because security
measures like disabling copy-paste functionality
are applied, these illicitly obtained answers have
to be manually typed into the response box. This
behavior creates subtle but detectable deviations
from natural typing patterns. Our work introduces
a content-agnostic model that analyzes these behav-
ioral signals in keystroke dynamics to effectively
detect copy-typing.

Organized cheating rings are groups or commer-
cial services that assist multiple test takers in cheat-
ing. They pose a significant threat to the integrity
of the test due to their large-scale operations. Al-
though such services may use various methods,
we focus on a prevalent cheating ring scenario in
which a human helper effectively completes tasks
for multiple test takers using remote-control soft-
ware or external peripherals unobservable in we-
bcam footage. Because the same helper tends to
assist many test takers, an effective strategy is to
link test sessions completed by the same helper. We
propose to fingerprint behavior using keystrokes
and mouse dynamics, then compare test sessions
through learned embeddings. Identified clusters
of linked test sessions can be surfaced for human
review (Shih et al., 2024)1. To this end, we employ
a deep metric learning framework that embeds each
test session into a high-dimensional representation,
enabling efficient retrieval of similar test sessions
via approximate nearest neighbor search.

Contributions.
• A content-agnostic keystroke sequence model

for copy-typing detection that combines 1D
convolutional networks with a Transformer
encoder to effectively capture both local and
long-range dependencies in keystroke dynam-
ics.

1An initial high-level description of the cheating ring iden-
tification system appeared in Shih et al. (2024). Here we
contribute full technical details and new experiments.
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• A deep metric learning framework for cheat-
ing ring identification, including a modified
n-pair training objective with hard negatives
controlling for hardware/region confounds.

2 Data Source and Context

Figure 1: An example of the writing item in DET. The
test taker has 30 seconds to prepare for the topic, and 5
minutes to write about it by typing on their keyboard.

Context. Our data originates from the Duolingo
English Test (DET), a high-stakes, remotely proc-
tored assessment of English proficiency (Naismith
et al., 2025). The test’s security protocol involves
multiple layers, such as video recording, screen
sharing, and input monitoring. Upon completion,
every test session undergoes a rigorous review pro-
cess that combines AI-driven analysis with human
proctor oversight to identify any integrity violations
(Belzak et al., 2025a). In our copy-typing detection
research, we focus on an open-ended writing task
in the DET, where test takers have 30 seconds to
read a question given by text, and 5 minutes to type
their response on a computer (See Figure 1 for an
example). Comparatively, in our cheating ring iden-
tification research, we utilize the mouse movement
patterns from the entire test session in addition to
the keystroke patterns from writing tasks to identify
the individual who completed the test.

Raw data collection. All DET test sessions
record keystroke and mouse activity, including the
timestamp of each key press and release, mouse
movements and clicks, cursor position, and other
contextual information (See Table 1 and Table 2
for details). We extract features from the raw log
files with application-specific feature engineering
methods.

Labels. To train and evaluate the models, the
collected data is labeled based on human and AI-
assisted proctoring decisions. The specific labeling
criteria for both experiments are detailed in §4.

3 Methodology

Our methodology leverages machine learning to an-
alyze behavioral data for two security tasks, based
on the same data source of raw keystroke data.

3.1 Copy-Typing Detection

In this section, we introduce our method for copy-
typing detection. At a high level, we treat the prob-
lem as a binary classification problem, and we train
a machine learning model with labeled data, using
a combination of tabular and sequential features.

3.1.1 Feature Engineering
For feature engineering, we process the raw fea-
tures (§2) of each keystroke event to extract both
sequential features and aggregated tabular features
for each sample.

Key code categorization. To ensure the model
is content-agnostic, we replace the exact key-code
with a categorical action-type, which takes
values among { INPUT, DELETE, MOVE, OTHER },
providing a coarser categorization. In addition,
we include a binary is-punctuation indicator for
punctuation keys.

A B

time

A B

press

release

dwell
inter-key

Figure 2: An example of extracting temporal features
for the keystroke of the key “B”. We consider four types
of durations: dwell, inter-key, press, and release.
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Raw Feature Description

key-code The exact key being pressed, such as “a”, “shift”, “delete”, etc.
timestamp The timestamp of the key being pressed, in milliseconds.
dwell-duration The duration the key remains pressed, in milliseconds.
text-length The number of characters in the text box at the time of the key being pressed.
caret-position The current position of the caret in the text box, counted by the number of characters

from the beginning of the text box.

Table 1: Raw keystroke features and their descriptions.

Raw Feature Description

position The current mouse cursor position on the screen.
timestamp The timestamp when the data is recorded, in milliseconds.
is-clicked Whether it’s a click event or just a record of the current mouse position.
dwell-duration The duration the mouse button remains pressed, in milliseconds.

Table 2: Raw mouse movement features and their descriptions.

Temporal sequence features. Similar to exist-
ing research (Acien et al., 2021; Stragapede et al.,
2024), we extract timestamp-related features from
timestamp and dwell-duration, by calculating
the following four types of durations for each
keystroke. See Table 3 for details, and Figure 2
for a concrete example.

Text length and caret position processing. For
text-length and caret-position, we normalize
them by the maximum text length observed within
the item, to convert the feature values to the range
of [0, 1].

Auxiliary tabular features. In addition to tem-
poral sequence features, we compute several tab-
ular features for each sample. These features en-
hance the sequential model and enable comparison
against tabular baselines. Specifically, the tabu-
lar features include: (i) counts by action-type,
(ii) summary statistics { mean, std, p1, p25, p50,
p75, p99, skewness } for each temporal feature,
and (iii) pause-related measures: the count, total
paused time, and average pause duration for pauses
longer than thresholds { 200ms, 500ms, 1,000ms,
2,000ms, 3,000ms }.

All aggregates are normalized using training-set
statistics. When combined with the sequence en-
coder, we include only a minimal, non-duplicative
subset.

3.1.2 Model Architecture

Inspired by existing research (Acien et al., 2021;
Stragapede et al., 2024), we model copy-typing
detection as binary sequence classification over
keystroke tokens. Each item is represented as a se-
quence {xi}Li=1, where xi ∈ RDseq+Dtab is the per-
keystroke feature vector (§3.1.1), including Dseq
sequential features concatenated with Dtab tabu-
lar features. Figure 3 is a diagram of the model
architecture.

Overview. The architecture consists of: (i) one-
dimensional convolutional networks (1D CNN)
(Krizhevsky et al., 2012; Lea et al., 2016) that
down-samples the sequence; (ii) a Transformer
encoder (Vaswani et al., 2017) that models long-
range dependencies; and (iii) a classifier head that
produces an item-level logit. The design priori-
tizes robustness and efficiency while preserving
discriminative temporal patterns characteristic of
copy-typing.

Down-sampling with 1D CNN. An element-
wise multi-layer perceptron (MLP) projects each
input embedding from the width Dseq +Dtab to a
hidden width Dh. We then apply 1D CNN blocks
with kernel size 3 and stride-2 max pooling to pro-
gressively halve the temporal resolution. With
NCNN=3, this yields a sequence of length L/23

with width Dh = 32. Intuitively, the CNN cap-
tures subword-scale rhythms while reducing the
attention burden downstream.
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Temporal Feature Description

dwell the duration between the press and release of the current key.
inter-key the duration between the release of the previous key and the press of the current key.
press the duration between the press of the previous key and the press of the current key.
release the duration between the release of the previous key and the release of the current

key.

Table 3: Definition of temporal sequence features that are extracted from raw keystroke timestamps.

Transformer encoder. We employ a Trans-
former encoder with NTransformer = 4 layers and
multi-head attention. Following a typical approach
for Transformer-based classification (Devlin et al.,
2019), we add positional embeddings and a train-
able [CLS] token embedding at the input of the
Transformer encoder, where the [CLS] token is a
special token used for the model to aggregate the in-
formation for classification. The [CLS] embedding
of the last layer is the output of the Transformer
encoder.

Classification. At the final classification layer,
we concatenate the output of the [CLS] token
embedding from the Transformer encoder with a
linear-transformed vector of the tabular features,
and use a multi-layer perceptron (MLP) with sig-
moid output to get the final classification output.

Training. Following a common approach in bi-
nary classification, we use Binary Cross Entropy
(BCE) loss as the training objective with the
AdamW optimizer (Loshchilov and Hutter, 2017).
For a batch with N samples, the BCE loss is de-
fined as

LBCE = − 1

N

N∑

i=1

[yi log(ŷi)+(1−yi) log(1− ŷi)]

Where yi ∈ {0, 1} is the ground truth label for the
i-th sample, and ŷi ∈ (0, 1) is the prediction for
that sample.

3.2 Cheating Ring Identification
In this section, we describe our cheating ring iden-
tification method. At a high level, the problem can
be framed as a binary classification task: determin-
ing whether a pair of test sessions was completed
by the same individual or not. Rather than training
a direct classifier, we approach this with a deep
metric learning framework (Kaya and Bilge, 2019).
The approach makes deployment more practical,
as the learned representations can be leveraged to

efficiently retrieve similar test sessions using ap-
proximate nearest neighbor search (Li et al., 2019).

3.2.1 Feature Engineering
Keystroke features. Following existing re-
search (Young et al., 2019), we compute summary
statistics – mean, standard deviation, and sample
count – for (i) the dwell duration of each key and
(ii) the transition duration2 between key pairs
within each test session. These summary statistics
constitute the keystroke features.

Mouse features. For mouse patterns, we com-
pute several mouse movement metrics adapted
from Zheng et al. (2011). The histograms of these
metrics are used as mouse features:

• For any three consecutive recorded mouse cur-
sor positions, A, B, and C, where the test taker
clicked the mouse at C, we compute the fol-
lowing metrics:

1. Direction: the angle between the hori-
zontal line and

−−→
AB.

2. Angle of Curvature: the angle between−−→
BA and

−−→
BC.

3. Curvature Distance Ratio: the ratio be-
tween (1) the distance from B to

−→
AC and

(2) the distance from A to C.
• For any two mouse clicks, we compute the

time duration between the two clicks.

3.2.2 Model Architecture
Overview. A visual overview of our metric learn-
ing model is shown in Figure 4. We use an MLP to
encode the input features to an embedding that rep-
resents the test session. The embeddings from two
test sessions are used to compute a dissimilarity
score, which is used in both training and inference.

Note that the same procedure is used to train two
MLPs based on keystroke features and mouse fea-

2In our implementation, the inter-key interval in Figure 2
is used as the transition duration if the previous key is
released before the next key is pressed; otherwise, the press
interval is used.
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Sequence Features

1D CNN and MaxPooling

Tabular Features

TransformerLayer

Broadcast and Concatenate

Elementwise-MLP

Trainable
Embedding for
[CLS] token

Concatenation

[CLS] embedding

MLP w/ Sigmoid

Linear Projection

Prediction

Add Positional
Embeddings

Raw Keystroke Features

Figure 3: Copy-typing detection model architecture.

tures, and in the following discussions, we will not
distinguish whether the input features are keystroke
features or mouse features. During inference, we
aggregate the dissimilarity scores by computing a
weighted sum of the two. The weights are selected
by fitting a Logistic Regression model (Cox, 1958)
on the training dataset using the dissimilarity scores
as inputs to predict whether a pair of test sessions
is positive or negative.

Training. We use a modified multi-class n-pair
loss (Sohn, 2016) to train the MLP encoder, replac-
ing cosine with L2 distance d(·) and augmenting
batches with hard negatives matched on device
type or region to reduce confounding. Intuitively,
positives are pulled together while negatives are
pushed apart.

Let {(xi, x+i , x−i )}Ni=1 be N triplets of input fea-
tures sampled from the dataset, where each (xi, x+i )

Test Session A

MLP fθ

zA

Test Session B

MLP fθ

zB

d(zA, zB) = ∥zA − zB∥2

Modified n-pair loss

Figure 4: Each test session is encoded by the same
MLP to produce an embedding. The embeddings can be
compared to compute the dissimilarities between pairs
of test sessions. Here zA and zB represent the output
embeddings.

is a positive pair corresponding to test sessions
completed by the same individual (e.g., the same
helper), and each (xi, x

−
i ) is a hard negative pair

corresponding to test sessions completed by dif-
ferent individuals but involving the same type of
keyboard or mouse, or occurring in the same region.
We formulate a modified n-pair loss as shown in
Equation 1. 3

− 1

N

N∑

i=1

∑

x̂∈S

δ(xi, x̂)

ci
log

exp(−dθ(xi, x̂))∑

x′∈S
exp(−dθ(xi, x

′))
,

(1)

where ci =
∑

x̂∈S
δ(xi, x̂),

dθ(xi, x̂) = d(fθ(xi), fθ(x̂)),

d(zA, zB) = ∥zA − zB∥2,
S = {x+i }Ni=1 ∪ {x−i }Ni=1,

δ(xi, x̂) =

{
1, if (xi, x̂) is a positive pair,
0, otherwise.

Deployment. In our framework, the model learns
a distance function between test sessions through
their high-dimensional representations. At deploy-
ment, these representations could be stored in a
vector database, enabling efficient retrieval of sim-
ilar test sessions using any test session as a query.
By surfacing hidden connections between a test

3In our setup, there is a small probability that multiple
positive pairs exist in Equation 1. The normalization term ci
is introduced to ensure a valid probability distribution for the
cross-entropy loss. This is similar to the implementation of
tfa.losses.npairs_loss in TensorFlow Addons.
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session under review and its most similar test ses-
sions, the system helps human proctors more effec-
tively identify organized cheating rings. To com-
bine keystroke-based and mouse-pattern-based dis-
similarity scores, we scale each embedding by the
inverse square root of its corresponding weight.
This normalization allows us to directly leverage
approximate nearest neighbor search in standard
vector databases.

4 Experiment

4.1 Copy-Typing Detection Experiment

Dataset. As described in §2, we collect samples
from DET test sessions. For copy-typing detec-
tion specifically, we filter out samples with short
responses (less than 100 characters) or with non-
standard key-code values, and collect 12,000 pos-
itive samples and 126,000 negative samples from
January 12, 2024 to August 1, 2024, and randomly
split them by a ratio of 6:2:2 for training, valida-
tion, and testing. We use the training set to train the
copy-typing detection model, the validation set for
early stopping and hyperparameter selection, and
the testing set for evaluation.

Labels. To support robust model development
and evaluation, labels are derived from both hu-
man and AI-assisted proctoring decisions. Specif-
ically, positive examples are test sessions where
proctors confirmed the usage of external resources,
such as large language model (LLM) generated re-
sponses, with both AI-based detection (Niu et al.,
2024) and video-based evidence. Negative exam-
ples are drawn from clean certified test sessions,
where proctors find no violations in the current test
session, and the user has no previous violations.

Settings. To validate the effectiveness of the pro-
posed approach against other settings, in addition
to the model architecture described in §3.1.2 (i.e.,
CNN + Transformer in Table 4), we select the fol-
lowing variations:

• Tabular models: To verify the effectiveness
of adding sequential features, we adopt two
baselines that use only the tabular features, in-
cluding Logistic Regression (Cox, 1958) and
LightGBM (Ke et al., 2017). They are noted
as “Logistic Regression” and “LightGBM” in
Table 4.

• Other sequential models: To verify the ad-
vantage of the Transformer-based encoder, we
replace the Transformer blocks with other se-

quential models such as 1D convolutional net-
works (CNN) and Long Short-Term Memory
networks (LSTM) (Hochreiter and Schmid-
huber, 1997). They are noted as “CNN only”
and “CNN + LSTM” in Table 4.

Metrics. Given that the positive and negative
samples are naturally imbalanced, we use the Area
Under the ROC Curve (AUROC) as a metric. Be-
sides, since the practical application typically re-
quires a low False Positive Rate (FPR), we also
report the True Positive Rate (TPR, a.k.a., recall)
at a 1% FPR.

4.2 Cheating Ring Identification Experiment

Dataset. As detailed in §2, our dataset is built
from DET test sessions. Specifically, we sample
certified test sessions from Q1 2025, excluding
any with insufficient keystroke data. The resulting
dataset covers approximately 102,000 test takers.
We partition these into training, validation, and test
sets with a 6:2:2 split. For validation and testing,
pairs of test sessions were sampled and the labels
are defined below. For training, we sample triplets
of test sessions and construct pairs following the
methodology described in §3.2.2. We use the val-
idation set for early stopping, while the test set is
used for evaluation.

Labels. For this task, we aim to detect when two
test sessions were taken by the same human helper.
However, the ground-truth data on cheating rings
is scarce. Therefore, we construct our dataset using
certified test sessions rather than confirmed cheat-
ing ring test sessions. The key intuition is that
test sessions completed by the same individual can
serve as positive pairs, since their behavior patterns
originate from the same person, and test sessions
completed by different individuals can serve as
negative pairs. To reduce potential confounding
factors, we require that test sessions in negative
pairs match on keyboard/mouse type or region.

Evaluation scenarios. We evaluated our models
under two scenarios. In the first scenario, 3051 pos-
itive pairs and 3051 negative pairs were sampled
for each split, and the models were evaluated based
on binary classification. We report the AUROC and
the true positive rate at a 1% FPR. In the second
scenario, we compare one test session against K
different test sessions from other test takers. The K
comparisons are treated as a single false positive if
any of the K pairs are predicted as positive by the
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model. Otherwise, they are treated as a single true
negative. The test session is additionally compared
with one other test session from the same test taker.
The comparison is treated as true positive if the
model predicts positive. Otherwise, it is treated as
a false negative. 3051 test sessions were sampled
from the test split to construct 3051(K + 1) pairs
as described above, and we report the AUROC of
different models with different K.4

Baseline. We compare our proposed method with
an in-house t-test based method that is built upon
the work of Young et al. (2019), which utilizes
the summary statistics of dwell durations and
transition durations to determine if the two tests
are completed by the same individual.

5 Results

5.1 Copy-Typing Detection

The evaluation results for our copy-typing detec-
tion models are summarized in Table 4. These re-
sults suggest two critical points. First, the superior
performance of sequential models over the tabu-
lar baselines (Logistic Regression and LightGBM)
confirms that the temporal dynamics of keystrokes
contain essential signals for detecting copy-typing.
Second, the choice of sequence architecture is cru-
cial. While a simple “CNN only” model offers little
advantage over a strong tabular baseline, incorpo-
rating a sophisticated encoder like a Transformer or
LSTM to model long-range dependencies unlocks
substantial performance gains. This highlights the
necessity of using powerful sequence models to
fully leverage the predictive patterns in keystroke
data.

5.2 Cheating Ring Identification

The results based on the first evaluation scenario
for cheating ring identification are shown in Ta-
ble 5. As shown in the table, the proposed method
outperforms the baseline. We additionally report
the performance of our method using different sub-
sets of features. The superior performance of the
deep-full model demonstrates that keystroke and
mouse dynamics provide complementary signals,
and that combining them creates a more robust and
accurate behavioral fingerprint.

4The second scenario simulates the real-world use case: a
test session is compared with multiple test sessions to detect
links to the same human helper, and even a single predicted
match among them may require proctors’ review.

The results based on the second evaluation sce-
nario with K comparisons are shown in Figure 5.
In the plot, we can see that our method remains
competitive against the baseline as K increases,
demonstrating the robustness of our methods.
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Figure 5: Performance comparison between our deep-
full method and the t-test based keystroke baseline.

5.3 Fairness Analysis

Fairness is an important aspect of a Responsible
AI system (Burstein et al., 2025). With the notion
of equality of opportunity (Hardt et al., 2016), we
evaluate the True Negative Rate (TNR) across de-
mographic groups for both AI models. Intuitively, a
similar TNR across groups means that innocent test
takers in each group have a similar possibility of
not being falsely flagged by the AI models. For our
study, we focus on major geographical sub-regions
according to the United Nations geoscheme5, and
evaluate the TNR of the models on clean6 certified
test sessions (for copy-typing detection) and nega-
tive pairs (for cheating ring identification) across
groups. Table 6 and Table 7 present the proportion
of test takers and pairs from each major sub-regions
in the dataset, and the evaluation results of group-
wise TNR. Note that the demographic distributions
are slightly different for the two experiments be-
cause the datasets are sampled from different time
periods. For both experiments, the results verify
that the TNRs are within a small difference across
groups, ensuring the equality of honest test takers.

5https://unstats.un.org/unsd/methodology/m49/
6Filtered to reduce data contamination.
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Features Model AUROC TPR@1%FPR

Tabular Logistic Regression 84.91% 11.12%
Tabular LightGBM 86.56% 12.64%
Sequential CNN only 84.96% 15.18%
Sequential CNN + LSTM 94.76% 39.05%
Sequential CNN + Transformer 95.22% 41.41%

Table 4: Copy-typing detection model performance. The best results are in bold.

Method AUROC TPR@1%FPR

keystroke 86.44% 69.42%
deep-keystroke 98.56% 72.93%
deep-mouse 93.63% 39.86%
deep-full 99.28% 89.28%

Table 5: Performance for cheating ring identification
methods. keystroke is the t-test based method, and
deep-* are our proposed methods with different in-
put features, where deep-full uses both keystrokes and
mouse features.

6 Conclusion

We presented a two-pronged, content-agnostic
framework for enhancing test security using be-
havioral data. For copy-typing detection, our
CNN-Transformer model effectively learns sequen-
tial patterns in keystroke dynamics, outperforming
both tabular and simpler sequential baselines in
identifying copy-typing behavior. For cheating
ring identification, our deep metric learning sys-
tem produces robust embeddings from keystroke
and mouse features, outperforming a statistical
baseline and enabling efficient, large-scale deploy-
ment via approximate nearest neighbor search. To-
gether, these AI-driven approaches provide a pow-
erful, scalable toolkit for safeguarding the integrity
of remote assessments. However, the deployment
of such powerful tools necessitates a commitment
to Responsible AI standards (Burstein et al., 2025).
To that end, these models are best implemented
not as automated judges, but as essential compo-
nents in a human-in-the-loop proctoring framework
that surfaces evidence for human review. This ap-
proach ensures that the AI models are governed
with human oversight, providing both a secure and
accountable system for assessment.

Limitations

For copy-typing detection, although the proposed
model achieves a meaningful TPR at a low FPR
of 1%, there still exist practical challenges when
adopting such AI-generated signals in test proctor-
ing process. For instance, since the output from
the deep learning model is not interpretable, the
proctoring guidelines need to be carefully designed
for human proctors to accurately confirm the copy-
typing detection result. Belzak et al. (2025b) dis-
cuss the findings in the practical usage of copy-
typing detection in detail. Besides, although our
approach is content-agnostic, prior work (Liang
et al., 2023) has shown that some AI-text detec-
tors can disproportionately flag non-native English
writing as AI-generated, raising fairness concerns
in educational settings. We therefore audit our
models for group-wise error differences (§5.3) and
maintain human-in-the-loop confirmation before
adverse actions.

For cheating ring identification, one limitation
is that our proxy positives (same-person test ses-
sions) are not equivalent to true cheating ring labels,
and may not fully capture the operational complex-
ity of organized cheating rings. For example, the
helper may deliberately vary typing/mouse behav-
iors to evade detection. In addition, the method is
designed to be used as a retrieval aid rather than a
fully automated proctor; its outputs must be com-
bined with other safeguards – such as additional
behavioral rules, corroborating signals, or human
proctor judgment – to avoid unfair penalization of
innocent test takers.
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Abstract 

Structured Generative AI interactions have 
potential for scaffolding learning. This 
Scholarship of Teaching and Learning 
study analyzes 16 undergraduate students’ 
Feynman-style AI interactions (N=154) 
across a semester. Qualitative coding of the 
interactions shows mostly low-level 
student responses, but some evidence that 
prompt structure may can promote higher-
level cognitive engagement. Results show 
GAI provides metacognitive support, and 
suggest the potential of GAI-supported 
Feynman reviews to provide interactive, 
personalized learning experiences that 
align with theories of cognitive engagement 
and metacognitive support for learning.  

1 Introduction 

Generative Artificial Intelligence (GAI) 
technologies, such as ChatGPT, are becoming 
increasingly prevalent, including in higher 
education (HE) (Zhu et al., 2025; Kim et al., 2025; 
Sun & Zhou et al., 2024). GAI has the potential to 
support learning through on-demand explanation, 
feedback, and clarification, with research showing 
support for deeper understanding and more 
efficiency when used effectively (Zhu et al., 2025; 
Chan & Hu, 2023; Dong et al., 2025). Students 
report finding GAI interesting to use and that it 
makes learning more enjoyable, but both students 
and faculty have concerns around whether GAI 
may inhibit some types of learning and negatively 
impact social interactions during learning (Kim et 
al., 2025; Chan & Hu, 2023). This study explores 
the potential of GAI Feynman-Style review 
activities by assessing the quality of interactions 
and content experienced in an college course. 

There is a need for research to assess GAI 
impacts on learning and to identify empirically 
supported practices and principles for its use in 

education. A broadly held perspective is that GAI 
is not going away and will become part of typical 
experiences (Batista et al, 2024). Although some 
researchers provide justifications for limiting or 
banning GAI use in HE (e.g., de Fine Licht, 2024), 
its use is quickly increasing across and reshaping 
the landscape of labor markets, and, as a result, 
changing the skillset and knowledge needed in 
near-future jobs (Resh et al., 2025). Thus, HE has a 
responsibility to teach GAI skills to prepare 
students for the future (UNESCO), and should find 
ways to implement GAI in some contexts, while 
teaching students and faculty how to best use it 
ethically and effectively (Zhu et al., 2025; Yang et 
al; Lee et al).  This Scholarship of Teaching and 
Learning (SoTL) study describes one attempt to 
use GAI: GAI-facilitated Feynman-style reviews.  

The Feynman method involves a student 
explaining a topic as if to a novice, and then 
responding to subsequent probing questions to 
clarify, elaborate on, or deepen the student’s 
thinking and understanding (Reyes et al., 2021). 
This approach aligns with research on the benefits 
of self-explanation and teaching for learning, 
which show that generating simplified 
explanations promotes deeper processing and 
transfer of knowledge (e.g., Chi et al., 1994; 
Fiorella & Mayer, 2013). Most effective are 
interactive approaches that include self-
explanation and teaching along with a 
knowledgeable partner, but these are resource-
intensive; GAI offers potential to simulate the 
interactive Feynman technique in ways that are 
scalable and effective (Rajesh & Khan, 2024). For 
introductory subjects, GAI likely has sufficiently 
accurate models to assess and explain content, and 
the capacity to personalize questions and feedback 
based on students’ demonstrated knowledge in 
real-time, similar to what an expert human teacher 
or tutor would do in this method. We tested this 
hypothesis by analyzing interactions between 
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students and GAI across a semester in an 
introductory infant and child development course. 

To understand the potential learning 
experiences of these activities, this work was 
grounded in the ICAP framework (Chi & Wylie, 
2014), which differentiates levels of cognitive 
engagement, from most shallow to deepest: 
passive, active, constructive, and interactive. GAI-
guided Feynman interactions can be active or 
constructive, depending on whether students are 
simply recalling facts vs. explaining, constructing 
summaries, or creating examples. If students use 
GAI to co-construct ideas the engagement is 
considered interactive, in which GAI contributions 
shape and extend the student’s thinking, resulting 
in new understanding that wouldn’t emerge from 
the student alone. While true interactive 
engagement would involve reciprocal co-
construction (Chi & Wylie, 2014), which is not 
possible in that the GAI does not experience 
conceptual change, it might simulate an interactive 
experience, and the student may have the benefit of 
that level of cognitive engagement. This type of 
interaction can also support metacognition by 
making gaps in understanding visible (Flavell, 
1979; Schraw & Moshman, 1995), leading students 
to further develop their understanding of a topic. In 
this study, we analyze how GAI can scaffold 
cognitive engagement and metacognition through 
its  questions and feedback as aligned with ICAP 
framework and theories of metacognitive support. 
Together, these frameworks provide the foundation 
for interpreting the quality of student–GAI 
interactions during Feynman-style reviews. 

Aims 

Prior research shows the Feynman approach is 
effective, but it is unknown whether the 
effectiveness would be similar with interactions 
facilitated using GAI. This study addresses this 
question using data from a small (N=29) 
undergraduate child development course taught at 
a mid-sized, highly selective public research 
university located in the southeastern United 
States. Students in the course used a GAI of their 
choice to complete assignments including 
Feynman-style dialogues (Reyes et al., 2021). In 
these assignments, students were challenged to 
explain course concepts in simple terms and then 

 
1 The course was taught by the senior author. Data of 
consenting students were deidentified and analyzed 

were asked questions by the GAI to assess and 
refine their understanding while given feedback 
after each response. The current study explored the 
questions and feedback provided by the GAI, and 
the student responses elicited through the 
interactions 1  to understand the efficacy of this 
method for providing effective personalized 
learning experiences,. Our specific aims included:  

 
1. Identify patterns of student engagement with 

GAI tools through these dialogues. 
2. Explore how GAI can support metacognitive 

processes, such as explanation and 
clarification.  

3. Assess the consistency and quality of these 
GAI responses. 

2 Methods 

2.1 Sample 

Participants included students who opted in from 
the target course, of which 16 students consented 
to have their course materials included. 
Participants were 94% female, majoring in 
education (N=8; including Youth and Social 
Innovations, Speech and Communications 
Disorder, Kinesiology), arts and sciences (N=6; 
including undeclared, behavioral neuroscience, 
and psychology), and engineering (N=2; including 
undeclared and computer science), and were in 
their 1st (N=1), 2nd (N=5), 3rd (N=9), and 4th 
(N=1) year of college.  

2.2 Study Design 

This study used a qualitative research design to 
explore undergraduate student engagement with AI 
tools. Data were collected using a course 
management system, on which students completed 
bi-weekly assignments including Feynman-style 
interactions with a GAI of their choice. For each 
assignment, students were given a GAI prompt for 
a Feynman style review for each of two topics 
covered since their last review (see Figure 1 for an 
example prompt).  

For each review question, a prompt was 
provided for students to copy into any GAI 
platform of their choice, which initiated a Feynman 
style review beginning with the student 
summarizing the topic and then asking six follow- 

only after the course ended, and the study was 
conducted with IRB approval. 

118



 
 

up questions, providing feedback after each 
response. Students copied/pasted their full 
interaction into an assignment, which were then 
exported, de-identified, and compiled for coding 
and analysis at the utterance level. Three types of 
data were coded: GAI question prompts, GAI 
feedback, and student responses. 

 

 

2.3 Coding 

A subset of student-GAI interactions was read and 
discussed among the project team to identify codes 
that would be useful in answering the research 
questions, and that were possible to observe when 
reviewing the interactions. Coding categories were 
informed by the ICAP framework and models of 
metacognitive regulation to reflect higher and 
lower levels of cognitive engagement and 
examples of metacognitive support (Chi & Wylie, 
2014; Flavell, 1979; Schraw & Moshman, 1995). 
This led to the decision to code GAI questions, 
student responses, and GAI feedback to responses 

as separate types of data, each with specific 
categories aligned with these frameworks and the 
research aims. The dataset was further divided into 
utterances to be coded, identified as the smallest 
segment of text conveying a single, complete idea 
or meaning. Utterances were all coded 
descriptively as GAI questions/prompts, student 
responses, or GAI feedback. Multiple codes could 
be assigned to an utterance, and if none were 
assigned there was an ‘other’ code. The following 
coding categories of each type were used:  
 
GAI Question Codes 
Asking For Examples. Prompt to illustrate a 
concept using a specific, real-life, or hypothetical 
example of a concept. Example: “Can you explain 
this concept through a real-life example?” 

Asking For Comparisons. Prompt to analyze the 
relationships between two or more ideas, 
particularly their similarities or differences. 
Example: “Can you briefly compare their Piaget’s 
and Vygotsky’s views?” 

Simple Question. Prompt for recall or evidence 
of comprehension, such as to define, describe, or 
explain a concept or multiple concepts without 
asking for comparison, contrast, application, 
revision, analysis, etc. Example: “What is 
Bronfenbrenner’s Ecological Model?” 

Asking for further information: Prompt requests 
clarification. Example: “Can you explain what you 
mean by critical periods in this context?”  

Elaboration of Ideas: Prompt eliciting further 
elaboration related to what a student responded. 
Example: “Now let’s push further: Can you think 
of an example of how sensory exploration leads to 
a deeper understanding of an object?” 

Opportunity to revise a response: Prompt for 
student to change their response in a specific way. 
Example: “How might you reword that to better 
distinguish between the microsystem and the 
mesosystem?”  

Explicit reference to response: While several 
prompts built on students’ responses, some 
explicitly referenced what students said before 
giving one of the above prompts. Example: “you 
mentioned the microsystem...” (followed by a 
question or prompt).  

Prefacing question: Prompt provided 
information that was not in the form of a request or 
question, but more often giving background or 
information to contextualize the coming question. 

Instructions: put the prompts below into your 
preferred GenAI platform to test your 
understanding of this topic. (Remember, using 
CoPilot behind [University Licensed program] 
allows you to not need to create a new account, 
but you may use any platform you prefer). Copy 
your full interaction with the GenAI platform as 
your responses in the two text boxes provided. 

“I want to test my understanding of children's 
language development using the Feynman 
method. Consider that I have read short articles 
that provided examples of children's language 
learning from experiences and learning 
processes like referential ambiguity, fast-
mapping, and the vocabulary spurt. I've also had 
about two hours of time learning about these 
topics, including discussion of receptive and 
productive language. Use this information about 
readings and time learning to estimate the level 
of my knowledge. I'll explain the concept as if 
I'm teaching it to a beginner. Please ask me one 
question at a time with about 6 questions total, 
challenge unclear points, and identify areas 
where I need more depth or could simplify. 
After the dialogue, provide a summary of my 
understanding, highlighting strengths and areas 
for improvement.” 

Figure 1: Instructions and example prompt text 
provided to students for the generative AI (GAI)–

based Feynman-style review activity. 
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Example: “You’ve read about how attachment 
might differ across racial backgrounds.” 

 
Student Response Codes 
Admitting uncertainty: Student explicitly 
acknowledges a lack of knowledge, confidence, or 
clarity about how to answer all or part of the AI’s 
question. Example: “I understand Piaget’s theory, 
but I don’t know how to apply it here.” 

Giving examples: Student gives an example 
(spontaneously or prompted) to illustrate, apply, or 
demonstrate understanding of a concept, or to 
clarify or apply a concept. Example: "Sure, an 
example of a mesosystem could be the relationship 
between a child’s parents and their teacher." 

Making comparisons: Student discusses talking 
about the differences or similarities between 
aspects of a concept (spontaneously or prompted); 
responses reflect relational understanding, such as 
highlighting how two concepts differ, explaining 
what two theories have in common, showing 
contrast in function, impact or structure. Example: 
“Unlike the mesosystem, the Microsystem 
involves direct interaction with the child”.  

Giving a simple response: Student responds 
with a fact explanation requested, without 
including examples, comparisons, or other deeper-
level information that goes beyond what was 
asked. Example: “The layers include the micro, 
meso, exo, macro, and chronosystem.” 

 
GAI Feedback Codes  
Examples: The GAI provides an example to help 
illustrate or clarify a concept. Example: "For 
instance, when a child takes deep breaths to calm 
down after being frustrated, that’s a form of self-
regulation." 

Correcting: GAI explicitly identifies part or all 
of what the student has said is incorrect and 
provides a corrected explanation. Example: "Not 
quite—the macrosystem isn’t a physical place. It 
refers to cultural values and norms.” 

Affirming: GAI provides supportive or 
validating praise or encouragement, indicating the 
student is correct or on the right track. Example: 
“Nice work explaining that.” 

Expanding: GAI builds on a student’s response 
by offering additional information, elaboration, or 
nuance, pushing the idea further. Example: "You’re 
right that secure attachment helps with emotional 
regulation. In fact, research shows it can influence 
stress response systems as well." 

3 Results 

To identify patterns of student engagement with 
GAI tools (Aim 1), and specifically for 
metacognitive support and related responses (Aim 
2), we provide descriptive patterns of individual 
codes for each aspect of the student-GAI 
interaction, showing the frequency of occurrence 
of each code and the relative occurrence. To assess 
consistency and quality of these GAI responses 
(Aim 3) we use unconditional multilevel models to 
estimate intraclass correlation coefficients for each 
aspect of the GAI interaction (interactions nested 
with students).  

The content of the 154 student-GAI full 
interactions was segmented into codable 
utterances, resulting in 2686 utterances coded 
within GAI questions (text written by the GAI). Of 
these, 2315 received one or more of our target 
codes (non-target codes included utterances not 
related to the content, such as, “I’m excited to hear 
what you have to say.”) In student responses, a total 
of 2994 utterances were coded, of which 2979 were 
coded with a target code (e.g., a student beginning 
their response with, “yes, I can do that.” before 
responding) and in feedback to responses, a total of 
4934 utterances were coded, of which 4221 were 
coded with a target code (e.g., simply restating the 
student’s response).  

At the student level, for each student-GAI 
interaction, students, on average, received 17.4 
GAI question utterances (SD=3.23), responded in 
19.8 utterances (SD=4.57), and received 32.2 GAI 
feedback utterances (SD=10.7). As a reminder, 
individual utterances could include multiple 
content codes, but only one descriptive code 
identifying the utterance as a question, response, or 
feedback (i.e., a question asked that built off a 
student’s response would not also be assigned 
feedback codes even if feedback was implied, such 
as asking for clarification).  

3.1  Aim 1: Types of GAI Questions, Student 
Responses, and GAI Feedback 

The utterances segmented for GAI questions, 
student responses, and GAI feedback were coded 
for one or more codes within each of the respective 
types. The frequencies of each are presented in 
Tables 1-3, respectively, including the number of 
observations receiving each code (Total Obs.), 
average observation per interaction (Mean Obs.), 
and proportion of all coded utterances (% of 
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GAIQ) are presented by utterance types (GAI 
questions - GAIQ, student responses - SR, GAI 
feedback - GAIF). Items with asterisks are those 
considered supportive of metacognition. 

3.2 Aim. 2: Metacognitive Support 

Codes in each category identified as having 
potential to support metacognition are those that 
elicit reflection and deeper cognitive engagement 
in alignment with the ICAP theory and models of  

metacognitive reflection. We created composite 
scores for how frequently these high-support 
utterances appeared in the interactions. For the GAI 
questions, higher support codes included the 
prompts related to clarifying, elaborating or 
applying, revising, or comparing and contrasting, 
or giving examples. For the student responses, high 
support codes included giving examples and 
comparisons, and we looked separately at when 
these were given in response to a specific prompt 
or were unprompted. For feedback, high support 
included giving examples and expanding.  

Utterances receiving codes identified as 
potentially highly supportive for metacognition 
included 945 GAI questions, 638 student 
responses, and 1655 feedback utterances. 
Proportionally, this was 39% of the GAI question 
codes, 13% of student responses, and 38% of GAI 
feedback. There were, of course, sources of 
variability across students and across the different 
topics reviewed in the assignments, so we explore 
the amount of variability both between students 
and across questions in these high-support 
composites as well as low composites to explore 
stability in the interaction quality. 

3.3 Aim 3: Consistency and Quality 

To explore interaction consistency, we compare the 
intraclass correlation coefficients (ICC) to 
understand whether the amount of variability at the 
level of students (i.e., individual differences 
explaining differences in the patterns of codes, P-
ICC) compared to the level of variability at the 
topic level, nested within student (i.e., variability 
explained by differences in the prompts students 
pasted in for each topic).  

At a basic level, we first estimated ICCs for the 
number of questions students received and the 
overall number of utterances observed in each of 
the three data types. Intraclass correlation 
coefficients (ICCs) indicated that a low proportion 
of variance in the number of GAI question 
utterances was explained by either the 
question/topic across semester or individual 
differences across students (person ICC = .099; 
question ICC= .027). In contrast, higher person 
ICCs for student responses and GAI feedback at 
the student level suggest some consistency in the 
number of utterances students made in their 
responses across activities (person ICC = .428; 
question ICC= .074), and moderate consistency in 
the number of feedback utterances they were given 

GAI Question Type Total 
Obs. 

Mean 
Obs. 

% of 
GAIQ 

Asking for examples* 311 2.0 13% 
Asking for comparisons* 208 1.3 9% 
Simple question 931 5.9 38% 
Asking for further info. * 108 0.7 4% 
Elaboration of ideas* 605 3.9 25% 
Opportunity to revise* 24 0.2 1% 
Explicit reference to 
response 

196 1.2 8% 

Prefacing question  61 0.4 2% 
*indicates category supportive of metacognition 

Table 2:  Descriptive information for the types of 
GAI Questions observed. 

 

 

Student Response Type Total 
Obs. 

Mean 
Obs. 

% of 
GAIQ 

Admitting uncertainty 12 0.1 0.4% 
Examples (prompted) * 348 2.2 11% 
Examples (unprompted) * 154 1.0 5% 
Comparisons 
(prompted) * 

111 0.7 4% 

Comparisons 
(unprompted) * 

25 0.2 1% 

Simple correct response 2401 15.3 78% 
Simple incorrect 
response 

23 0.1 1% 

*indicates category supportive of metacognition 

Table 1:  Descriptive information for the types of 
student responses observed. 

 

 

GAI Feedback Type Total 
Obs. 

Mean 
Obs. 

% of 
GAIQ 

Examples* 299 1.9 7% 
Correcting 347 2.2 8% 
Affirming 2324 14.8 54% 
Expanding* 1356 8.6 31% 
*indicates category supportive of metacognition 

Table 3:  Descriptive information for the types of 
GAI Feedback observed. 
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across activities in response to those utterances 
(person ICC = .214; question ICC= .065) ,. 

To explore the quality of interactions, the 
composites described above for metacognitive 
support were assessed similarly to estimate person 
and question ICCs. We estimated ICCs (both low 
and high) when predicting the composite scores of 
GAIQ quality, SR quality (including low quality 
and prompted vs. unprompted high-quality 
responses), and GAIF quality (low and high). 
Results for the analyses are presented in Table 4. 

ICCs indicated that reliability varied across 
coding categories, with some dimensions showing 
greater variance attributable to students (higher P-
ICCs; e.g., SR–Low = .390) and others showing 
greater variance attributable to questions nested 
within students (higher Q-ICCs; e.g., GAIQ–Low 
= .295, SR–High, prompted = .296). These patterns 
suggest that some aspects of the coding (e.g., low-
level, simple student responses) are more 
consistent across individual students, whereas 
others (e.g., types of GAI questions or student 
high-level responses when prompted) vary more at 
the topic/prompt level.  

4 Discussion 

Students’ GAI interactions during a Feynman-style 
review show clear patterns of engagement between 
students and the GAI, in which students are 
providing many responses to provided questions. 
Students receive feedback both about their 
accuracy and understanding, and also feedback to 
expand their current knowledge. While there were 
clear individual differences explaining some 
variability in students responses (e.g., 39% of 
variability in simple responses provided), there was 
also indication that the prompts to initiate the 
activity also explain variability in responses (e.g., 

30% of the variability of deeper-level student 
responses).  

Our first two aims were to identify patterns of 
student engagement with GAI tools and explore 
how GAI can support metacognitive processes. We 
observed that the most common GAI Question type 
was simple questions (38%), but 39% of the GAI 
questions were considered higher-level, such as 
encouraging elaboration of ideas and prompting for 
examples or application of information. These 
align with ways of encouraging deeper cognitive 
engagement, which support greater learning (Chi & 
Wylie, 2014). Yet, students overwhelmingly gave 
simple correct responses (78%) with relatively few 
examples (16%) or comparisons (5%), regardless 
of prompting. One possibility is that the platform 
design of exchanging back-and-forth text with GAI 
might encourage short responses that can’t convey 
as much depth (Torricelli et al., 2024).  

The GAI feedback students received 
predominantly pushed them to expand their ideas 
(54%), which could help in revising knowledge 
(Chi & Wylie, 2014). Feedback affirming the 
student (34%) could promote self-efficacy and 
motivation (Zimmerman, 2000). The high rate of 
affirming feedback presents a valuable opportunity 
for students to receive positive reinforcement, 
much like they may receive from a supportive tutor 
or peer. Receiving real-time, responsive feedback 
can scaffold metacognition and reflection.  

Of note, very few students admitted uncertainty 
(<1%) or gave incorrect responses (1%) suggesting 
that students either felt confident and actively 
engaged in looking up more information before 
responding, were not encouraged to express doubt 
or explore alternatives, or perhaps didn’t 
experience uncertainty. It is also possible that the 
design of the activity, beginning with the students’ 
current level of understanding, did not sufficiently 
challenge students. Future research should further 
explore whether students were guided to recognize 
their knowledge gaps and address them before or 
during their response, or whether prompts might be 
useful to create clear gaps in knowledge for 
students to experience and work through to support 
their learning (Loibl & Rummel, 2014).  

Our third aim was to assess the consistency and 
quality of GAI interactions, and we observed 
somewhat variable patterns. Simple student 
responses were more consistent across individual 
students, with similar patterns within student in 
how frequently (or rarely) they give simple, low-

Composite Score Type P-ICC Q-ICC 
GAIQ – Low .026 .295 
GAIQ – High .133 .037 
SR – Low  .390 .072 
SR – High, prompted .037 .296 
SR – High, unprompted .120 .077 
GAI Feedback – Low .136 .050 
GAI Feedback – High  .192 .104 

Table 4:  Intraclass correlation coefficients 
(ICCs) at the person level (P-ICC) and question 
level (Q-ICC) for composite coding categories. 
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level responses across topics of reviews. Further 
support that this is due to individual differences in 
students was that there was variability in the GAI 
low-level questions attributable to the prompts, yet 
this was not reflected in the student responses. On 
the other hand, a much higher portion of the 
variability in high-level student responses was 
attributed to the prompt used to initiate the activity 
(30%) than that explained at the student-level (4%), 
though only for high-level responses that were 
prompted. This suggests the potential importance 
of prompts to promote deeper cognitive 
engagement from students, and the opportunity for 
prompt engineering to elicit this depth.  

This work demonstrates how interactive 
dialogue with GAI can provide meaningful and 
personally responsive questioning and feedback to 
students, supporting self-assessment in a low-
stakes, formative approach. At a broader level, 
these assignments can help to support students’ 
understanding of the ways GAI can be used to 
support learning, and to get exposed to and practice 
with prompt engineering, supporting the need for 
developing skills with AI in productive ways. It can 
also provide a more personalized and engaging 
way to review material outside of the classroom, 
and this specific activity is one model for 
incorporating new technology to encourage 
learning and critical thinking. 

5 Limitations and Future Research 

Limitations to this work include in its small sample 
size representing limited educational experiences. 
The students participating only represented about 
55% of the class studied, and the class itself was a 
small, interactive class (29 students total). Future 
research could study similar patterns of interaction 
in other types of courses to explore whether the 
patterns observed here generalize. This work is also 
limited in its exploratory and correlational design, 
and in not including learning assessments separate 
from the activity studied. It will be important for 
future work to assess learning and link it to the 
interaction experiences. This work can be used to 
inform further work using control groups and 
outcome measures to assess the specific influences 
of the GAI in facilitating the Feynman experiences, 
including experimental tests of how to best 
promote high-quality interactions and learning. 

The results presented here are a first step in 
exploring GAI-facilitated Feynman-style review 
interactions for learning. In addition to collecting 

more data to increase the students and content 
represented, the data presented here can be further 
analyzed to explore reciprocal dynamics in 
student–AI interactions, allowing us to predict 
what types of utterances lead to higher cognitive 
engagement. The dynamic sequence of reflection 
and revision in reciprocal dialogue is what matters 
for learning (Chi & Wylie, 2014), so looking at 
sequences of utterances will be meaningful to 
understand how these activities can provide 
meaningful learning experiences. We will also do 
further analysis of the characteristics of the 
prompts that students copied into the AI platform, 
coding for features such as length, specificity, and 
thematic focus, informing future design of prompts 
that can elicit higher quality interactions. 

6 Conclusion 

Feynman-style reviews using GAI can provide an 
interactive, personalized learning activity. Typical 
experiences with traditional quizzes used for 
review elicit low-level, simple responses, which 
these activities also showed. However, there was 
also evidence of metacognitive support during the 
interactions between GAI and students. 
Importantly, the results suggest that higher-level 
constructive or interactive engagement, which is 
conducive of greater learning, was more dependent 
on the contextual scaffolding provided by GAI 
prompts, indicating the potential for prompt 
engineering to support high-level cognitive 
engagement and learning in a personalized, 
scalable modality. 
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Abstract 

We present a novel application of an 

AI-powered approach for coding 

elementary students’ small-group 

discussions about text. We used AILYZE to 

identify instances of individual and 

collective argumentation within a set of 371 

transcripts. We gathered evidence of 

reliability (i.e., via comparability checks 

with human-produced codes) and criterion 

validity (i.e., via ground truth checks). 

There was sufficient agreement between 

AI-generated and human-produced codes, 

and initial validity evidence exceeded the 

established threshold of near-perfect 

agreement on a small ground truth check. 

Findings provide evidence that AI may 

serve to accurately code discussion 

transcripts in ways that were not previously 

feasible with only human-produced coding. 

1 Introduction 

Until recently, educational research examining 

the use of small-group discussions in preK-20 

classrooms has been a resource-demanding area of 

study. Historically, quantitative analyses have 

required hand coding by research team members, 

which comes at significant time and cost expense 

(Longo, 2019; Murphy et al., 2018; Siiman et al., 

2023). Consequently, troves of data often go un- or 

under-analyzed, yielding the potential loss of 

innumerable scientific advancements.  

Recent developments in artificial intelligence 

(AI) now provide seemingly unlimited potential 

regarding automated AI-based discussion coding 

(Tran et al., 2024; Wang et al., 2024). In the present 

study, we build on the rapidly advancing work 

leveraging AI as a tool to code student discussions. 

Specifically, we present a novel application of an 

AI tool used to code small-group discussions about 

text along with the associated evidence of 

reliability and validity as part of a recent secondary 

analysis of small-group discussions (Firetto et al., 

2025). 

1.1 Value of Coding Discussion 

There is a large body of research investigating 

the impact of small-group discussions in preK-20 

classrooms and the myriad benefits on various 

outcome measures (e.g., comprehension, 

reasoning, transfer, motivation; Bae et al., 2021; 

Bennett et al., 2010; Murphy et al., 2009). Some of 

this research examines “after the discussion” or 

distal outcomes (e.g., class grades or test 

performance). For example, in our prior research, 

we found that elementary students engaging in 

small-group discussions evidenced increases in 

their written argumentation after discussions about 

what they read in their language arts class (Firetto 

et al., 2019; Murphy et al., 2022).  

In contrast, other research examines learning 

based on what occurs “in” or “during” the 

discussions. For example, in our prior research, we 

identified indicators of high-level comprehension 

and tracked their frequency over time (Murphy et 

al., 2018). Coding and analyzing the discourse 

directly is particularly beneficial as it may allow for 

more accurate proximal measures without having 

to rely on transfer or delayed posttest measures. 

Researchers have explored a wide variety of coding 

schemes (Tao & Chen, 2023) and identified a 

variety of indicators present within the discussion 

that are associated with high-level comprehension 

(Soter et al., 2008) and other indicators of academic 

performance (Howe et al., 2019; Muhonen et al., 

2018).  
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While there is generally a consensus that small-

group discussions can benefit students’ learning, 

there are many empirical questions that remain 

unanswered. For example, little is known about 

ways to group students: Should groups consist of 

students with similar or different ability levels? 

(Murphy et al., 2017); Should students be grouped 

in single-sex groups or mixed-sex groups? 

(Bennett et al., 2010). Moreover, there is also much 

to be learned about whether grade, content, or other 

factors may serve as moderating variables, 

ultimately impacting what we know about best 

practices and the associated recommendations for 

teachers. 

While in-depth, qualitative examinations on 

smaller samples have contributed important 

findings toward these ends (e.g., Lobczowski et al., 

2020), it is also beneficial for researchers in the 

field to conduct quantitative examinations derived 

from large samples (e.g., an experimental study 

testing multiple different group configurations vs a 

study with only a treatment and a control). Despite 

the importance, however, there are massive time 

and financial costs associated with coding a large 

corpus of discussion data (Murphy, 2015).  

1.2 Leveraging AI to Code Discussion 

Given these time and financial costs, researchers 

have long worked toward finding automated ways 

to expedite the process of coding. For example, 

several years ago, we used large language models 

to derive a series of potential indicators (e.g., 

complexity, oral expression), which we then 

compared to comprehension measures (Kosh et al., 

2018). This allowed us to identify both word 

rareness and word diversity as indicators closely 

associated with students’ posttest reading 

comprehension.  

Since then, the ability to leverage AI as a tool to 

support automated coding processes has grown 

exponentially (Wang et al., 2024). This shift has 

meant moving beyond traditional classifiers toward 

sophisticated, transformer‑based systems that track 

the ebb and flow of classroom talk. For example, in 

2021, Song et al. used an artificial neural network-

based model to classify the semantic content of 

classroom dialogue into eight categories. Not 

surprisingly, their findings indicate that 

performance (i.e., precision and recall) of the 

automated coding was better for some categories 

than others. For example, the prior-known 

knowledge and analysis categories were high, 

while other categories, like querying and 

speculation, were low. The overall F1 score (i.e., a 

measure of the accuracy of the codes calculated as 

the harmonic of precision and recall) across all 

categories was .680.  

Advancements in AI are progressing at such a 

rapid pace that the potential for significant 

increases in accuracy and speed is growing every 

day. However, there are three areas, in particular, 

that need further exploration: (1) additional 

evidence demonstrating reliability and validity of 

automated codes along with comparisons to human 

coding; (2) transparency regarding the coding in 

ways that ensure model decisions are interpretable 

to teachers and researchers (i.e., explainability); 

and (3) closing the gap in AI-and-discourse 

research, whereby studies prioritize model building 

over in situ evaluation (Wang et al., 2024). 

Together, these issues underscore the need for 

further study and exploration. 

1.3 The Present Study  

Over the past year and a half, we conducted a 

secondary analysis of small-group discussions 

based on a large set of previously uncoded video-

recorded small-group discussions collected as part 

of a large federally funded grant (R305A130031).  

We employed an AI-powered coding approach that 

allowed us to examine changes in students’ 

individual and collective argumentation over time 

while also investigating the roles of genre and 

grade-level (Firetto et al., 2025).  

Specific to the aims of AIMEcon (i.e., the theme 

“validity and reliability of AI-driven automated 

scoring systems”), the present study extends our 

previous work by examining the comparability of 

AI- and human-coded outcomes as well as the 

ways in which AI-powered coding can be 

rigorously employed. We explored two primary 

RQs:  

RQ1: Are codes produced by AILYZE roughly 

comparable to those previously produced by 

humans? Does Cohen’s Kappa agreement 

between AI-generated codes and human-

produced codes meet or exceed .60 (i.e., 

substantial agreement)? 

RQ2: Are codes produced by AILYZE accurate, 

based on a ground truth check? Does Cohen’s 

Kappa agreement between AI-generated codes 

and human verifications meet or exceed .80 

(i.e., near-perfect agreement)? 

126



 

 

 

2 Method 

2.1 Sample 

The sample consisted of 371 transcripts of 

small-group discussions (i.e., typically 4-6 students 

per group). The discussions were conducted in 

fourth- and fifth-grade classrooms and collected 

over an entire school year. 3PlayMedia produced 

the transcriptions from video recordings using 

professional human transcribers (see Murphy, 

2025). In accordance with our IRB protocol, 

research team members cleaned the transcripts to 

remove identifying information before entering the 

files into AILYZE (see Appendix A for detailed 

specifications). 

2.2 Codes 

We focused on identifying instances of two 

specific discourse indicators of high-level 

comprehension (i.e., individual and collective 

argumentation). Individual argumentation was 

intended to capture instances where a specific 

student produced an extended response that 

included multiple pieces of argumentation (e.g., a 

claim supported by reasoning and evidence). For 

example, a student explained, “I'd feel brave 

because, if I were Sahar, I would be going past the 

limit where I was supposed to be swimming. And I 

would be kind of a hero for saving that tiger.” This 

example illustrates individual argumentation as it 

included a specific claim about how the student 

believed they would feel if they were the main 

character (i.e., brave), along with two pieces of 

support for that claim (i.e., risk-taking by going 

beyond their swimming boundary and rescuing a 

tiger). Individual argumentation codes are 

informed by the notion of elaborated explanation 

(Chinn et al., 2000; Webb, 1991), which is a well-

established discourse indicator of high-level 

comprehension.   

Collective argumentation, on the other hand, 

represented episodes of talk where two or more 

students co-constructed understanding together. 

Importantly, our coding definition required the 

inclusion of an element of disagreement (e.g., a 

challenge or counterargument). For example, the 

discussion excerpt presented in Table 1 represents 

collective argumentation. 

This example illustrates collective 

argumentation as it included multiple turns of 

students exploring the idea about whether the story 

was realistic or not, specifically the notion of 

whether “saving a polar bear” is something that one 

could realistically do, particularly given the 

massive size of adult polar bears. Collective 

argumentation codes are informed by the concept 

of exploratory talk (Mercer, 1995, 2000), another 

well-established discourse indicator of high-level 

comprehension.  

 

Student A Anything’s possible, especially 

something that is realistic. 

[referring to a previous statement 

about whether the story they read 

was something that could happen 

in real-life] 

Student B Except trying to save a polar bear. 

Might just be scared. 

Student A You could save polar bears. 

Student B Well, yeah, you could. Except, by 

the way, it is heavy because its 

really heavy. They almost weigh, 

like, thousand millions of pounds. 

[inaudible/interposing voices] Still, 

it's heavy. 

Student A They actually weigh, like 1,000 

pounds. 

Student B Still, its heavy and bigger. You can 

get crushed. 

Student C Not a baby one. 

Table 1: Talk Excerpt of Collective 

Argumentation 

2.2.1 Previous Approach to Coding: 

Human-Produced Codes 

Before new research assistants on our team code 

independently, they begin with an orientation to 

coding (e.g., reading the coding manual and related 

standard operating procedures), learn about the 

video recording software, and receive extensive 

mentoring with an experienced coach. Over the 

past decade, we have documented that it takes new 

human coders approximately 40 hours of coding 

training and practice to become relatively 

proficient at coding the recordings of small-group 

classroom discussion using our coding manual. 

Moreover, even after they have demonstrated 

proficiency, research assistants continue to engage 

in regular fidelity checks. Thus, as coders engage 

in the coding over time, 20% of the recordings are 

independently coded by a second research 

assistant, the codes are compared, and the two 

research assistants justify to each other why they 
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coded or didn’t code a specific event where there 

was a point of disagreement and then come to an 

understanding about which is the best fit. While 

time consuming, this procedure helps to maintain 

fidelity to the codebook. This is also due, in part, 

because one of the guiding principles of the 

codebook is to maintain low levels of inference 

(e.g., not to assume a student’s intention or 

meaning), thus these fidelity checks also serve as 

an accountability check toward this standard.  

2.2.2 Novel Approach to Coding: 

AI-generated Codes 

In line with existing Human-in-the-Loop 

approaches to discourse analysis (e.g., Cohn et al., 

2024), we leveraged AILYZE to produce 

AI-generated codes in a way that augmented, not 

replaced, expert judgment. In our case, we 

employed an approach in which the research team 

defined the codebook, designed the prompts, and 

decided the acceptance criteria prior to large-scale 

transcript coding for individual and collective 

argumentation.  

Our initial plan involved deriving training 

examples from a sample of previously human-

coded discussions to fine-tune the AI model to 

increase the coding accuracy. To do this, we 

transferred the human-produced codes from the 

video recording coding software onto the 

transcribed text documents for a sample of 

discussions that had been coded by two research 

assistants. However, the codes derived from the 

video recordings did not always translate directly 

and accurately to the transcripts. For example, in 

some cases, during the video recording, it was clear 

to observers that a single student articulated 

individual argumentation within a given turn, yet 

on the transcription, it might appear that this turn 

was interrupted (i.e., a student speaking over 

another and cutting one turn into multiple turns). In 

addition, the human coders in our lab and the 

humans who transcribed the recordings at 

3PlayMedia may have had differences in what they 

heard and understood during the discussion, 

influencing how a word or phrase was interpreted 

or dismissed as inaudible. Ultimately, we decided 

not to include human-produced codes in the 

training of the AI model, and instead we used them 

to conduct a comparability check (i.e., RQ1). 

Across multiple iterations, we revised a prompt 

informed by the definitions and coding criteria 

established in the Quality Talk coding manual 

(Murphy et al., 2017). We reviewed the 

AI-generated codes and corresponding 

justifications to refine the prompt, adding 

additional details as needed (e.g., the role of the 

teacher) and fixing data mapping issues (e.g., rows 

without dialogue).  

Once the first and second authors independently 

agreed that we had developed a prompt that led to 

sufficiently accurate AI-generated codes, we 

conducted: (a) a comparability check, in which 

AI-generated codes were compared with previous 

human-produced codes from the video recordings, 

and (b) a ground truth check, in which the first two 

authors (each with hundreds of hours of discourse 

coding experience) collectively manually coded 

two transcripts to serve as the reference standard. 

Because both checks exceeded our pre-established 

thresholds (see results below), the AILYZE model 

was then applied to the deployment phase, coding 

the full set of transcripts (see Appendix B and 

Appendix C).  

3 Results 

3.1 RQ1 

For the first research question, we examined the 

extent to which AI-generated codes were 

comparable to those previously produced by 

humans. We compared the AI-generated codes to 

the human-produced codes using 37 transcript 

excerpts (i.e., 10% of the total number) containing 

3,249 turns. Due to the aforementioned difference 

in modality (i.e., transcript vs. video coding), we 

set our Cohen’s Kappa threshold at .60, 

representing at least substantial agreement. Both 

codes exceeded this threshold: individual (Cohen’s 

Kappa = 0.735, SD = 0.022, 95% CI [0.691, 

0.775]) and collective argumentation (Cohen’s 

Kappa = 0.849, SD = 0.014, 95% CI [0.823, 

0.875]). Overall, there was sufficient consistency 

between the AI-generated codes from the 

transcripts and previously produced human codes 

from the video recordings. 

To better illustrate the impact that modality may 

have had on coding, we identified an example from 

one of the discussions where there was 

disagreement between the AI-generated code and 

the human-produced code. The discussion excerpt 

in Table 2 begins after a statement made about there 

being lots of things to do outside.  
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Student C I agree with Student B’s idea 

because I would [INAUDIBLE] 

my house a lot. So I usually go 

outside. I have a trampoline so I 

can jump on that. But I go outside, 

and I pretend that I'm going to 

teach her something. I have 

magical powers and 

[INAUDIBLE]. 

Teacher [Chuckles] 

Student C Because there's like— 

Teacher [Chuckles] I pretend I'm a teacher 

with magical powers too 

sometimes. 

Student C Yeah. Because we have a wooden 

hat. I get a stick and then 

[INAUDIBLE] or something. 

Table 2: Talk Excerpt Illustrating AI/Human 

Disagreement 

The first turn by Student C was identified as an 

instance of individual argumentation by AILYZE 

with the justification: The claim is 'I agree with 

Student B’s idea' supported by the reasons 'I 

usually go outside' and 'I pretend that I'm going to 

teach her something'. This provides a claim + 

multiple reasons + personal experience as 

evidence. It is relatively clear from both the 

transcript and the AILYZE justification that this 

turn meets the criteria for an individual elaboration 

code. However, this turn was not coded by the 

research assistants. While there are many possible 

reasons why the human coders did not identify this 

turn as an instance of individual argumentation, the 

larger transcribed excerpt illustrates two possible 

explanations: (a) The teacher’s chuckles and 

verbal/non-verbal input may have interrupted or 

influenced the student’s talk as the human coders 

watched the video, which does not seem to be the 

case based on the way it was transcribed; (b) The 

human coders may have understood more or less of 

the words than the professional transcriber, who 

already noted “[INAUDIBLE]” in several places. 

This could have influenced the research assistants’ 

decision to identify this turn as an instance of 

individual argumentation (e.g., hearing words that 

may have changed the meaning, aiming for a low 

inference interpretation of what they actually could 

hear).  

3.2 RQ2 

For the second research question, we aimed to 

gather evidence regarding whether the 

AI-generated codes were accurate based on a small 

ground truth check, where we selected two of the 

transcripts with both AI-generated and human-

produced codes and then verified the accuracy of 

the codes at each turn (i.e., n = 144 transcript turns). 

Because we conducted the ground truth check 

using the text transcripts, we aimed for near-

perfect Cohen’s Kappa (i.e., at least .80) for the 

AI-generated codes. Both codes exceeded this 

threshold: individual (Cohen’s Kappa = 1.00, SD = 

0, 95% CI [1.00, 1.00]) and collective 

argumentation (Cohen’s Kappa = 0.959, SD = 

0.017, 95% CI [0.926, 0.991]). The AI-generated 

codes exceeded the pre-established threshold. 

Given that the ground truth check was 

performed on transcripts that also had the human-

produced codes (i.e., transferred from the video 

recordings), we also conducted an exploratory 

calculation of the Cohen’s Kappa agreement for the 

human-produced codes: individual (Cohen’s 

Kappa = 0.773, SD = 0.084, 95% CI [0.608, 

0.937]) and collective argumentation (Cohen’s 

Kappa = 0.573, SD = 0.041, 95% CI [0.493, 

0.654]).  

While it is important to underscore again the 

differences in modality (i.e., coding the transcripts 

vs coding the video recordings) as well as the 

relatively small sample size (i.e., two transcripts; n 

= 144 turns), it is noteworthy that both of the 

Cohen’s Kappa values were higher for the ground 

truth-to-AI-generated codes than they were for 

ground truth-to-human-produced codes and that 

there was no overlap in the confidence intervals.   

4 Conclusions 

Human coding of qualitative data can be 

extensively resource-intensive (Longo, 2019; 

Siiman et al., 2023). AI-powered coding can 

decrease the resources needed to conduct such 

research and allow for scientific advancements that 

may not have been previously feasible (Feuston & 

Brubaker, 2021; Lixandru, 2024; Siiman et al., 

2023; Tran et al., 2024). Our findings suggest that 

AI can be used to code discourse transcripts 

consistent with human coders when prompts and 

rules can be derived from established codes and 

evidence-based manuals (e.g., Murphy et al., 

2017). 
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Notably, our AI coding was completed in a 

drastically less time than human coding would 

permit. As a point of reference, experienced coders 

require about an hour to code one small-group 

discussion. For this sample, that would have 

required roughly 371 hours of coding for the 

research assistants, a load which is typically split 

(i.e., about 185 hours each) between two coders. In 

addition, each coder would spend an additional 37 

hours of coding the discussions for the fidelity 

check (i.e., 20%, as described above) and another 

37 hours meeting with each other to discuss the 

instances of agreement/disagreement. Taken 

together, each coder would need to devote about 

259 hours to coding the discussions, assuming they 

could code continuously. In our funded projects, 

we have hired undergraduate and graduate research 

assistants to code the discussions. Typically, 

graduate research assistants work 20 hours per 

week and attend classes. As a result, it would take 

the research assistants nearly an entire semester 

(i.e., 13 weeks) to complete the coding; however, 

in our experience, even expert humans cannot code 

accurately over long periods of time. As such, a 

more realistic estimate is that it would take two 

research assistants the better part of an academic 

year to code this many hours of video.  

In contrast, AILYZE processed all 371 

transcripts within ~12 hours (i.e., 2 minutes per 

transcript), clearly illustrating the potential to save 

time. Importantly, however, human time is still 

required to develop the prompts and check the AI 

over time, just as it is required as part of the process 

for developing, mentoring, and supporting research 

assistants when doing human-produced coding. 

Moreover, beyond these efficiency gains, 

reallocating research assistants’ time to more 

enriching activities could help to move the field 

forward via increased productivity and 

dissemination possibilities (e.g., assisting in 

writing manuscripts, interpreting the data) and by 

better preparing them for their future research and 

career endeavors. Beyond the time costs, however, 

financial costs, environmental costs, energy costs 

and other costs need to be carefully considered and 

weighed.  

Leveraging AI also has the potential to enhance 

coding consistency by reducing sources of 

variability that are common with human coders. As 

mentioned, human coders can be affected by 

limitations such as fatigue, overload, or selective 

attention when working with lengthy qualitative 

texts (Miles & Huberman, 1994). AI systems, by 

contrast, apply the same coding criteria uniformly 

across large corpora without a decline in 

performance over time. Although prior work has 

noted that AI-only coding can yield limited 

reliability (e.g., Prescott et al., 2024), we found that 

once the AI prompt was refined with human 

review, it achieved strong alignment with human 

codes. These findings highlight that while AI 

contributes efficiency and consistency, human 

oversight remains essential for guiding the 

framework, validating outputs, and ensuring 

methodological rigor. 

A further benefit of using AILYZE was its 

capacity to generate explanations and justifications 

for coding decisions. This provided transparency 

that strengthened our human-in-the-loop process. 

Both in the validation and final coding review 

processes, we could monitor the rationales for 

AI-generated codes, which enabled us to identify 

points of alignment and divergence with human 

reasoning. This transparency underscores how AI 

can complement, rather than replace, expert 

judgment.  

Importantly, within the context of our analysis, 

it is critical to note that the lower rates of agreement 

for the ground truth analysis and the human-

produced codes do not negatively reflect on the 

quality of the human-produced coding. Rather, 

they highlight the role of modality differences. The 

human coders were coding with higher accuracy 

with video and audio, while AI coded based on the 

text transcripts. In essence, text “stands still.” The 

reliability check, therefore, was to evaluate 

whether, despite these modality differences, the 

overall patterns of coding remained comparable 

across human and AI coders. Future research must 

take into consideration the potential impact of 

modality on the codes (e.g., transcripts vs. videos).  

Our approach prioritized student privacy, data 

governance, and responsible use. In accordance 

with our IRB protocol, all transcripts were de-

identified by the research team before any AI 

processing. We selected AILYZE in part because of 

its security features, auditability, and policy not to 

train on user data. To mitigate automation bias and 

address opacity, we used the aforementioned 

human-in-the-loop workflow, comparability, and 

ground truth checks prior to large-scale 

deployment as well as careful attention to known 

modality differences between transcripts and video 

recordings that can shape meaning. Collectively, 
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these measures aim to reduce risks while ensuring 

transparent, auditable, and pedagogically 

responsible use of classroom discourse data.  

4.1 Future Research 

In the present study, we were able to document 

an AI-powered coding process that took less time 

than traditional human coding. However, future 

research in this area should also consider other 

important variables beyond time, including costs 

such as environmental impacts, electricity and/or 

water usage (Kandemir, 2025), and conduct a true 

cost–benefit analysis. 

 During our oversight process, we noted that 

students’ individual and collective argumentation 

represented a variety of quality (e.g., some students 

made sophisticated arguments with counter-

arguments, rebuttals that extended over a long 

period of time, while others were more simplistic 

and succinct). Moving forward, it is critical to 

understand more about the quality of students’ 

responses, beyond just coding the presence or 

absence of argumentation within the discussions. 

While such coding may not be feasibly possible 

with human coding, we think that it is possible to 

extend the procedures we employed herein to move 

beyond binary codes (i.e., presence or absence of a 

code for a given turn) to develop an AI-generated 

quality score that can capture characteristics such 

as accuracy, depth, and length.  

Finally, now that we have established an 

automated coding that meets the requisite criteria 

we established, we can begin to explore how other 

aspects can be automated. For example, Li et al., 

2025 found that AI-generated feedback about 

classroom discussions was useful for teachers, and 

thus, coding may also be used to support coaching. 
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5 Appendices 

5.1 Appendix A 

AILYZE Specifications: Reported by AILYZE 

AILYZE's LLMs (i.e., a mix of Grok-1, Mistral 

8x22B, and Phi-2.5-MoE) are trained on curated, 

high-quality open corpora commonly used in 

multilingual and scholarly modeling, such as the 

UN Parallel Corpus (multilingual proceedings and 

debates), ParlaMint (TEI-standard legislative 

proceedings with speaker-linked context), and 

S2ORC (millions of scholarly articles with 

citations and structure). Importantly for the context 

of the present study, it is also trained on education-

specific transcripts, such as TalkBank’s ClassBank 

(curated classroom discourse collections), the 

NCTE Elementary Math Classroom Transcripts 

(1,660 lessons from 4th–5th grade), and the 

Teacher–Student Chatroom Corpus (one-to-one 

teacher–learner lessons). This mix supports 

discourse-focused tasks, including segment-level 

coding with grounded justifications. 

In addition, AILYZE complies with measures 

outlined in the HECVAT (Higher Education 

Community Vendor Assessment Toolkit), which is 

a standardized framework developed by higher 

education organizations to assess data and AI risks 

associated with technology services. AILYZE does 

not train on user data and all project data, prompts, 

and outputs are encrypted, access-controlled, and 

exportable for archiving. All runs are also 

versioned so that the same codebook, same engine 

version and same transcripts yield identical results, 

ensuring full reproducibility. 

AILYZE’s deterministic inference setting was 

used, which locked the codebook and engine 

version for the entire run. This ensures that if future 

researchers re-run the same transcripts with the 

same project configuration, they will obtain 

identical labels and justifications, supporting fully 

reproducible analyses. 
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5.2 Appendix B 

Individual Argumentation Prompt: 

“Code the interview transcript to identify all 

instances of elaborated explanations. Elaborated 

explanations are instances in which students 

explain their thinking in fairly coherent form to 

others. They occur in a single turn where a student 

explains how he or she arrived at a conclusion or 

idea by giving a step-by-step description or 

detailed account of how the conclusion or idea was 

reached or how a problem might be resolved. They 

are elaborated descriptions of how things work, 

why some things are the way they are, or how they 

should be thought about. They include details of 

how to think about an issue and justification or 

rationale for thinking that way. Elaborated 

explanations relate to the quality of explanations 

given by an individual student, not a collective of 

students, and not the teacher. They can take various 

forms including: claim + 2 or more independent 

reasons, claim + 2 or more conjunctive reasons, 

claim + 2 or more causally connected reasons, 

claim + reason(s) + evidence, claim + reason(s) + 

warrant, or claim + evidence + evidence. 

Elaborated explanations must include all 

components within a single "turn." The 

components begin at the start of the claim and 

continue through the end of the speaker's turn, 

unless the topic shifts away from that claim. A 

claim may be implied in verbal discourse when it 

immediately follows a question, but the response 

must directly respond to or follow from a question 

within the same question event. Elaborated 

explanations can only occur within authentic 

question events; responses to test questions cannot 

be coded as elaborated explanations.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Appendix C 

Collective Argumentation Prompt:  

“Code the interview transcript to identify all 

instances of exploratory talk. Exploratory talk 

occurs when students share, evaluate, and build 

knowledge over at least three turns. It is talk in 

which partners engage critically but constructively 

with each other's ideas where relevant information 

is offered for joint consideration. Proposals may be 

challenged and counter-challenged but, if so, 

reasons are given and alternatives are offered. 

Agreement is sought as a basis for joint progress, 

with knowledge made publicly accountable and 

reasoning visible in the talk. It embodies a kind of 

'co-reasoning,' with speakers following ground 

rules which help them to share knowledge, 

evaluate evidence, and consider options in a 

reasonable and equitable way. The key component 

of exploratory talk is the element of challenge, with 

only one challenge statement necessary for an 

episode to be classified as exploratory talk. 

Exploratory talk episodes consist of instances 

where students co-construct understanding over at 

least three consecutive, uninterrupted turns about 

the same topic. Exploratory talk is characterized by 

students actively constructing knowledge with 

students primarily interacting with and talking to 

each other. Episodes end when the topic shifts, 

someone asks a different question, a statement is 

made that deviates from the trajectory, or the 

students arrive at consensus. A student must initiate 

the challenge for talk to be considered exploratory. 

The teacher can be present but is not influencing 

the discourse or episode of talk. Exploratory talk in 

essence is a way of using language to think 

collectively—to 'interthink.'” 
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Abstract
This study aims to improve the reliability of a
new AI collaborative scoring system used to as-
sess the quality of students’ written arguments.
The system draws on the Rational Force Model
and focuses on classifying the functional rela-
tion of each proposition in terms of support,
opposition, acceptability, and relevance.

We evaluated GPT-4o under zero-shot and few-
shot prompting. Results show that few-shot
prompting improved classification accuracy:
Acceptability Support (AS) reached an F1 score
of 0.95, Relevance Support (RS) rose from 0.08
to 0.72, and Acceptability Objection (AO) in-
creased from 0.42 to 0.74. Relevance Objec-
tion (RO) was rare but false positives decreased.
Error analysis revealed that misclassifications
often stemmed from overreliance on lexical
cues rather than contextual nuance. For in-
stance, GPT-4o tended to treat extreme words
like never or any as objections, even when the
context indicated support. These findings high-
light the potential of RFM-guided prompts to
enhance automated essay scoring and provide
more reliable, reasoning-focused feedback.

1 Introduction

Research on automated essay scoring (AES) for
argumentative writing has advanced significantly
over the past decade. Foundational studies estab-
lished methods for identifying core argumentative
elements such as claims, reasons, and evidence
(Stab and Gurevych, 2014; Persing and Ng, 2015).

Building on this foundation, more recent systems
increasingly employ transformer-based large lan-
guage models (LLMs), including BERT, GPT, and
LLaMA, to improve scoring accuracy and robust-
ness. For example, Carlile et al. (2018) created
a dataset of student essays labeled for persuasive-
ness and related qualities, offering early resources
for argumentative writing research, while Toledo
et al. (2019) leveraged BERT-based architectures
to rank arguments. Hicke et al. (2023) introduced a
transformer-based method for labeling persuasive
segments as “effective” or “ineffective,” reaching
near-human performance. Similarly, Sun and Wang
(2024) developed a multi-dimensional model that
assesses vocabulary, grammar, and coherence with
high predictive accuracy.

Despite these gains, most AES systems still op-
erate at the level of isolated features or segments
and therefore struggle to capture how propositions
interconnect to form a coherent line of reasoning.
Argumentative writing unfolds through chains of
interdependent propositions: some supply direct ev-
idence, others provide conceptual linkage, and still
others contest earlier claims. Treating these com-
ponents independently obscures the discourse-level
relationships that determine overall logical quality
and persuasiveness. Modeling these relationships
remains a central challenge.

This limitation is especially consequential in ed-
ucational settings. Scholars have argued that em-
phasizing the mere presence of claims, evidence,
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and counterarguments can divert attention from the
coherence and quality of reasoning (Chinn et al.,
2016; Newell et al., 2011; Rapanta et al., 2013).
Backman et al. (2023) further contend that such
structural checklists can impede both teachers and
students from developing a deeper understanding
of what distinguishes strong from weak arguments.
Accordingly, automated scoring should be aligned
with educational perspectives that prioritize the
quality of reasoning, not just its components.

To address the limitations of the current ap-
proaches, we adopt the Rational Force Model
(Naess, 1959; Backman et al., 2012, 2023), a frame-
work that evaluates important but largely over-
looked dimensions of argument quality, specifically
focusing on the relational role each proposition
plays in connection to another, as well as its accept-
ability and relevance. We discuss this framework
next.

2 Rational Force Model (RFM)

The Rational Force Model (RFM), developed by
Naess (1959) and extended by other researchers
(e.g., Backman et al., 2012, 2023; Björnsson et al.,
1994), provides a fine-grained framework for eval-
uating argumentative quality. Rather than focusing
on the mere presence of certain argument elements
(claims, reasons), RFM centers on both the propo-
sition’s function and its epistemic strength, thus
examining how a proposition supports or opposes
another proposition within the overall line of rea-
soning.

According to a more recent version of the RFM,
discussed by Backman and colleagues (2023),
RFM proceeds in two phases. In the descriptive
(reconstruction) phase, a text is segmented into
discrete idea units (propositions). Each proposi-
tion is mapped to a target (the main claim or an-
other proposition) and classified by intended func-
tion: Acceptability Support (AS): A proposition
intended to increase another proposition’s accept-
ability, Acceptability Objection (AO): A propo-
sition intended to decrease another proposition’s
acceptability, Relevance Support (RS): A propo-
sition intended to increase another proposition’s
relevance, or Relevance Objection (RO): A propo-
sition intended to decrease another proposition’s
relevance, as shown in Table 1. This reconstruction
yields a directed structure of support and opposi-
tion.

In the evaluative (scoring) phase, each propo-

sition receives two scores: Acceptability (A), the
degree to which there is reason to believe the propo-
sition is true; and Relevance (R), the degree to
which, if true, the proposition advances resolution
of the issue or supports its target. The proposi-
tion’s rational force is the product of these values:
RFi = AiRi.

In sum, RFM highlights not just the presence
of argumentative components, but their functional
roles, accuracy, and logical strength. As such, RFM
provides a principled basis for analyzing important,
but largely overlooked, dimensions of written ar-
guments, thus generating valuable diagnostic infor-
mation to support meaningful feedback.

Support Objection
Acceptability Acceptability

Support(AS)
Acceptability
Objection(AO)

Relevance Relevance Sup-
port (RS)

Relevance Ob-
jection (RO)

Table 1: Four types of propositions in an RFM analysis.

Note. Adapted from Backman et al. (2012, 2023).

3 Aims

The present study is part of a larger project (Reznit-
skaya et al., 2025) aimed at developing a related
AES system. Here, we focus on one key compo-
nent of that effort: evaluating the ability of AES
systems to assess not just individual propositions,
but the relationships between them.

Specifically, we frame each proposition in terms
of its function—Acceptability Support (AS), Rele-
vance Support (RS), Acceptability Objection (AO),
or Relevance Objection (RO)—within the structure
of reasoning. By treating function identification
as a classification task, we examine the extent to
which AI systems can recover the relational archi-
tecture of arguments.

Our research questions (RQ) are:
RQ1: Can GPT-4o reliably classify the func-

tional relation between two propositions as AS, RS,
AO, or RO, compared to a human label?

RQ2: Does few-shot prompting improve GPT-4o
ability to distinguish these roles?

4 Sample

Our study draws on a corpus of 504 argumentative
essays written by Grade 5 students (10–11 years
old) in public schools at two research sites in the
United States (New Jersey and Ohio). The essays
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were collected as part of a quasi-experimental study
aimed at improving students’ argumentation skills
(Wilkinson et al., 2023; Reznitskaya and Wilkinson,
2020).

In New Jersey (n = 239), students were primarily
White (60.7

The writing task was based on a short story,
The Pinewood Derby (776 words), in which a boy
named Jack faces a moral dilemma of whether to
report his classmate Thomas, who cheated by not
building his model car himself. After hearing and
reading along with the story, students were asked
to write a letter to their teacher explaining whether
Jack should tell on Thomas, supporting their opin-
ion with reasons and evidence, addressing possible
counterarguments, and concluding their response.
Students were given 25 minutes to complete the
task, which pilot studies confirmed was sufficient
time.

From this larger dataset of 504 essays, we ran-
domly selected 25 essays for detailed manual anno-
tation in the current study.

5 Method

Each essay was segmented into idea units. An
idea unit "expresses one action or event or state,
and generally corresponds to a single verb clause"
(Mayer, 1985, p. 71). This segmentation step en-
sures that long or complex student sentences are
broken down into smaller, analytically meaningful
parts, each representing a distinct claim or piece
of reasoning. For example, the sentence "Thomas
should tell on Jack because he cheated" would be
divided into two idea units: one expressing the
main claim ("Thomas should tell on Jack"), and
another the supporting reason ("he cheated").

Within the RFM framework, each idea unit, we
called a source, is aimed at one other idea unit, we
called a target. Trained annotators labeled each
source idea unit specifying its relation to the target,
selecting from the four RFM categories: Accept-
ability Support (AS), Relevance Support (RS), Ac-
ceptability Objection (AO), or Relevance Objection
(RO) (see Table 1).

To improve clarity and reduce ambiguity, anno-
tators also created a reconstructed, or standardized
idea unit, which paraphrased the student’s state-
ment into its core meaning. These reconstructions,
shown in brackets [ ], helped resolve cases where
children’s writing was unclear, incomplete, or col-
loquial. For example, if a student wrote "There
is no reason to feel sorry for Thomas," the recon-
structed idea unit might be [Mean people don’t
deserve empathy], ensuring that the intended mean-
ing was explicit. This process was essential for
maintaining consistency in annotation and for al-
lowing both human raters and the AI system to
work with clearly defined propositions (see Table
2).

We analyzed 200 pairs of annotated idea units
and examined the reliability of GPT classification
compared to a human label. We used GPT-4o with
prompt strategies. The target–source pairs were
provided, but without human labels. GPT was
prompted to assign an RFM label to the target
idea unit. We had two experimental conditions:
a zero-shot prompt and a few-shot prompt. In the
zero-shot condition, we provided general instruc-
tions about RFM labels without examples. In the
few-shot condition, the labels were explained in
more detail with examples and exceptions to pro-
vide clearer classification guidelines.

No. Target Idea Source Idea Label
1 because Thomas didn’t make the model

car by himself. [Thomas didn’t build
the car on his own]

I think so because in the story it said
"No my brother did it." [Thomas said
"No, my brother made it"]

AS

2 This shows that he is very mean.
[Thomas was mean]

I think Thomas should be nicer to other
people. [Thomas should be nicer to peo-
ple]

RS

3 because Thomas cheated and he won.
[Thomas won by cheating]

And that’s not fair to everyone else
[Winning by cheating is unfair]

AS

4 Some people might say "no" because
he was unliked by many kids [Students
didn’t like Thomas]

There is no reason to feel sorry for
Thomas [Mean people don’t deserve
empathy]

AO

Table 2: Sample of dataset with annotated labels and reconstructed idea units.
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Category Zero-shot Few-shot
Precision Recall F1 Score Precision Recall F1 Score

AS 0.83 0.70 0.76 0.96 0.94 0.95
RS 0.06 0.14 0.08 0.81 0.64 0.72
AO 0.89 0.42 0.42 0.63 0.90 0.74
RO 0 0 0 0 0 0

Table 3: F1 scores for each category.

6 Results

In comparing the zero-shot and few-shot prompt
results (see Table 3), F1 scores improved overall in
the few-shot condition. The AS category showed
an increase in F1 score from 0.76 to 0.95. The most
substantial change occurred in RS, which increased
from 0.08 to 0.72. AO also showed improvement,
with F1 rising from 0.42 to 0.74. RO, which rarely
appeared in the essays and was not part of human
labeling, remained at 0 for both prompts. However,
the False Positives for RO decreased from 8 in
the zero-shot prompt to 1 in the few-shot prompt,
indicating an improvement.

The few-shot prompt (see Table 4) contributed
substantially to the improvement in RS and AO by
providing clearer definitions for these categories.
The model struggled to distinguish between AS and
RS, as well as AS and AO in the zero-shot prompt,
so differences between them were added in the few-
shot prompt. The few-shot prompt also encouraged
considering the context of the Pinewood Derby
story and the student’s likely intent.

Based on these results, the answers to the re-
search questions are:

RQ1: GPT-4o reliably classified the functional
relation for AS with a high F1 score. Other cate-
gories were also reliably classified with the few-
shot prompt.

RQ2: Few-shot prompting improved GPT-4o’s
performance, particularly for RS and AO. However,
RS and AO still show variability in Precision and
Recall, indicating areas that require further refine-
ment.

7 Discussion

The results demonstrate that the few-shot prompt
improved GPT-4o’s ability to classify functional
relations, particularly RS and AO. However, further
refinement is needed. For example, for the target
idea "Thomas never did any of the hard work,"
the source "Thomas painted and decorated his car"
was labeled AS by human annotators because it

provides evidence for the claim ‘did not do hard
work,’ as painting and decorating are considered
easy tasks in the context of the story. In contrast,
GPT-4o labeled it as AO, since the source describes
Thomas doing some work, even though it’s consid-
ered less difficult. This discrepancy likely arises
because GPT-4o tends to focus on extreme expres-
sions like ‘never’ or ‘any,’ which it interprets as
strong markers of absolute negation. As a result,
GPT struggles to account for the nuanced differ-
ence between what is considered ‘hard work’ ver-
sus ‘easy work’ in the context of the story. This
highlights the need for further improvement in the
few-shot prompt.

This study highlights the potential to improve
the Human–AI Collaborative Scoring system using
the RFM framework. It supports the development
of scoring procedures that (1) target theoretically
and pedagogically important aspects of argument
quality and (2) can be applied reliably to naturally
occurring student arguments. Despite some incon-
sistencies in the scoring system due to the variety of
propositions in student essays, the results suggest
a path toward refining rules to handle exceptional
cases.

Limitations

This study has several limitations. First, the distri-
bution of categories was uneven, with Relevance
Objections (RO) almost absent in the student es-
says. As a result, the model’s performance on this
category could not be meaningfully evaluated. Sec-
ond, the study focused on a single model (GPT-4o)
under two prompting conditions (zero-shot and few-
shot), which limits the scope of the findings. Addi-
tional experiments with other models, prompting
strategies, and fine-tuning approaches are needed
to test the robustness of the results. Finally, an-
notation according to the Rational Force Model
(RFM) involves nuanced judgments of acceptabil-
ity and relevance, which can be open to interpreta-
tion. Disagreements among annotators may influ-
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Zero-shot Few-shot (Added)
AS The source strengthens the truthfulness or plau-

sibility of the target
(+) AS if the source answers "Why believe?"

RS The source strengthens the relevance or useful-
ness of the target

(+) RS if the source answers "Why care?" or
adds moral/social importance
(+) RS if the source explains general moral or
social norms, not AS

AO The source challenges truthfulness or plausi-
bility of the target

(+) AO if the source disagrees with truthful-
ness or plausibility of the target, or pushes
back against it (rebuttal)

RO The source challenges the relevance or useful-
ness of the target

(+) RO if the source disagrees with relevance
or usefulness of the target, or pushes back
against it (rebuttal)

Others For each pair, classify the source label in rela-
tion to the target

(+) Use only AS or AO when the target is a
main claim
(+) Reference the story "Pinewood Derby"
(+) If a sentence is unclear, use the [bracketed]
reconstructed idea unit to understand each idea
clearly

Table 4: Zero-shot vs. Few-shot prompting comparison.

ence the gold-standard labels and, in turn, affect the
evaluation of model accuracy. Strengthening inter-
annotator reliability therefore remains an important
direction for future studies.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant Nos.
2506473 and 2506474.

References
Ylva Backman, Viktor Gardelli, Tobias Gardelli, and

Anders Persson. 2012. Scientific Thinking Tools: A
Base for Academic Studies. Studentlitteratur.

Ylva Backman, Alina Reznitskaya, Viktor Gardelli, and
Ian A. G. Wilkinson. 2023. Beyond structure: Us-
ing the rational force model to assess argumentative
writing. Written Communication, 40(2):555–585.

Gunnar Björnsson, Ulrik Kilhbom, Folke Tersman,
and Anders Ullholm. 1994. Argumentationsanalys.
Natur och Kultur.

Winston Carlile, Nishant Gurrapadi, Zixuan Ke, and
Vincent Ng. 2018. Give me more feedback: Anno-
tating argument persuasiveness and related attributes
in student essays. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 621–631,
Melbourne, Australia. Association for Computational
Linguistics.

Clark A. Chinn, Richard G. Duncan, Lung-Chi Hung,
and Robert W. Rinehart. 2016. Epistemic criteria and
reliable processes as indicators of argument quality
in science students’ argumentation. In Proceedings
of the Annual Meeting of the American Educational
Research Association (AERA 2016), Washington, DC,
USA.

Yann Hicke, Tonghua Tian, Karan Jha, and Choong Hee
Kim. 2023. Automated essay scoring in argumenta-
tive writing: Deberteachingassistant. arXiv preprint
arXiv:2307.04276.

Richard E. Mayer. 1985. Structural analysis of sci-
ence prose: Can we increase problem solving perfor-
mance? In Understanding of Expository Text, pages
65–87. Erlbaum, Hillsdale, NJ.

Arne Naess. 1959. Communication and Argument: Ele-
ments of Applied Semantics. Allen & Unwin.

George E. Newell, Richard Beach, Jennifer Smith, Jen-
nifer VanDerHeide, Deanna Kuhn, and Jeroen An-
driessen. 2011. Teaching and learning argumentative
reading and writing: A review of research. Reading
Research Quarterly, 46(3):273–304.

Isaac Persing and Vincent Ng. 2015. Modeling argu-
ment strength in student essays. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 543–552, Beijing, China.
Association for Computational Linguistics.

Chrysi Rapanta, Maria Garcia-Mila, and Sergi Gilabert.
2013. What is meant by argumentative competence?

139

https://doi.org/10.1598/RRQ.46.3.4
https://doi.org/10.1598/RRQ.46.3.4
https://doi.org/10.3102/0034654313487606


an integrative review of methods of analysis and as-
sessment in education. Review of Educational Re-
search, 83(4):483–520.

Alina Reznitskaya, Michele Flammia, Noriko Taka-
hashi, Abraham Onuorah, Ariel Sykes, Joe Oyler,
and Evgeny Chukharev. 2025. Enhancing diagnostic
and instructional value of assessments designed to
evaluate written arguments. In EARLI Conference:
Realising Potentials through Education: Shaping the
Minds and Brains for the Future, Graz, Austria.

Alina Reznitskaya and Ian A. G. Wilkinson. 2020. Mea-
suring production and comprehension of written ar-
guments in upper-elementary grades. Studia Paeda-
gogica, 24(Special Issue on Argumentation):63–84.

Christian Stab and Iryna Gurevych. 2014. Identifying
argumentative discourse structures in persuasive es-
says. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 46–56, Doha, Qatar. Association for
Computational Linguistics.

Kun Sun and Rong Wang. 2024. Automatic essay multi-
dimensional scoring with fine-tuning and multiple
regression. arXiv preprint arXiv:2406.01198.

Assaf Toledo, Shai Gretz, Edo Cohen-Karlik, Roni
Friedman, Elad Venezian, Dan Lahav, Michal Jacovi,
Ranit Aharonov, and Noam Slonim. 2019. Auto-
matic argument quality assessment – new datasets
and methods. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5625–5635, Hong Kong, China. Association
for Computational Linguistics.

Ian A. G. Wilkinson, Alina Reznitskaya, and Joseph V.
D’Agostino. 2023. Professional development in
classroom discussion to improve argumentation:
Teacher and student outcomes. Learning and In-
struction, 85:101732.

140

https://doi.org/10.3102/0034654313487606
https://doi.org/10.3102/0034654313487606
https://doi.org/10.1016/j.learninstruc.2023.101732
https://doi.org/10.1016/j.learninstruc.2023.101732
https://doi.org/10.1016/j.learninstruc.2023.101732


Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con) – Volume 2: Works in Progress, pages 141–146
October 27-29, 2025 ©2025 National Council on Measurement in Education (NCME)

Evaluating Deep Learning and Transformer Models on SME and GenAI 
Items 

Joe Betts and William Muntean 
National Council of State Boards of Nursing (NCSBN) 

Chicago, IL  

Correspondence: jbetts@ncsbn.org

Abstract 

An important and time-consuming aspect of test 
development is the metadata coding of items within 
the item bank to be ready for use within the test 
blueprint. This study leverages deep learning, 
transformer models, and generative AI to streamline 
test development by automating metadata tagging 
predictions to reduce the necessary review time for 
subject matter experts (SME). Transformer models 
outperform simpler approaches and provide a direct 
method for reducing SME workload. 

Keywords: classification models, deep learning, 
transformer models, Generative AI, automated item 
generation 

1 Introduction 

Developing good assessments is a time-
consuming and intricate process involving 
numerous phases, stages, and tasks (Downing, 
2006; Lane, Raymond, Haladyna, & Downing, 
2016). When developing items for any 
assessment, subject matter experts (SMEs) are 
tasked with writing and reviewing items. This 
has traditionally been a long and expensive set of 
tasks. However, another aspect of the 
development process that is necessary but not 
usually identified as a high priority is related to 
tagging all items for their metadata content. 
 
Metadata tagging involves classifying items by 
domain, task, cognitive complexity (e.g., 
Bloom’s Taxonomy or Webb’s Depth of 
Knowledge), or other contextual factors within a 
test blueprint. For this task, the SME must read 
each item specifically and either validate that it 

is representative of the task and/or domain 
indicated or they must provide the coding for 
that item. This process is labor-intensive, 
typically requiring SMEs to tag items or validate 
tags, often involving secondary reviews. 
However, of all the metadata content, the most 
important classification has to do with assigning 
each item to the correct test blueprint domain to 
ensure appropriate content to test plan blueprint 
alignment. 
 
Deep learning (DL) methods and large language 
models (LLMs) should be useful tools in this 
venture as they are potentially adept at utilizing 
textual relationships and making predictions 
about content classifications. DL models, 
particularly those using text classification and 
transformer-based embeddings, can potentially 
reduce this workload by automating metadata 
tagging. This research explores how different DL 
and LLMs could be used to make predictions 
about metadata classification. Thus, building a 
strong model and automated pipeline could 
reduce SME work substantially for other work. 
 
This study investigates DL and transformer 
models for natural language processing (NLP) to 
classify test items into test plan domains. It 
evaluates accessible models including Naïve 
Bayes (Friedman, Geiger, & Goldszmidt, 1997), 
XGBoost (Chen & Guestrin, 2016), deep 
learning models (Goodfellow, Bengio, & 
Courville, 2016), and some BERT family 
transformer models to evaluate the best approach 
to predicting item domain classifications. The 
research compares basic models to identify the 
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most effective approaches before exploring more 
complex architectures. Additionally, the best 
fitting model will be used against basic item 
generated by two different LLM models (GenAI) 
to see how well the model built from human 
curated items generalizes to GenAI. 

2 Methods 

2.1 Sample and GenAI Items 
The study uses a subset of an item bank (N = 
6,839), split into 60% training, 20% validation, 
and 20% testing datasets. Items were randomly 
selected from the group of items that had passed 
all statistical pretest criteria. The text data 
consists of item stems for multiple-choice items, 
labeled by eight high-level test blueprint 
domains (NCSBN, 2023). Table 1 provides the 
name of each domain and the distribution of 
items from each domain. The average length of 
the stem was 70 words (sd = 21). 

For generative items using GenAI, 149 task 
statements (NCSBN, 2023, 2025), each tied to 
one of the eight domains, were used to generate 
298 items across two LLMs. The prompt did not 
use any context about the item domain in the 
item generation but rather only uses the 
task/activity statements. Here is the prompt text: 

"You are a nurse educator and clinician. Write a 
multiple-choice item for this entry-level nursing 
task: {{activity}}. The item must be a challenge 
to answer for an entry-level nurse. The item 
content should be related to this specific activity: 
{{activity}}. Make sure that the item content is 
relevant to the nursing activity. Have the item 
incorporate usual situations where a nurse would 
normally have to perform this nursing task. 
Provide only the item stem and the options in a 
json format. Do not include any other text. Do 
not include any explanations or rationale. Do not 
include any references. Do not include any other 
text." 

Items were created using zero-shot learning with 
Llama 4 Maverick (Meta AI, 2025, mixture of 
experts) and Claude 3.7 Sonnet (Anthropic, 
2025, hybrid reasoning). While the activity 
statements are nested within a domain, using 
only the activity statements eliminates the 
domain context for the item generation task.  

2.2 DL and Transformer Models 
The analysis used two baseline models for 
comparing more complex DL models. These 
were Naïve Bayesian (NB) and XGBoost (XG). 
Both models used TF-IDF embeddings. NB was 
implemented using the Scikit-learn version 1.7.1, 
and XG was implemented using the XGBoost 
library version 3.0.4. 

For DL models, a dense neural network (DNN), 
a convolutional neural network (CNN), a gated 
recurrent neural network (GRU), and a long 
short-term memory (LSTM) network were 
constructed for comparison using TensorFlow 
(Abadi, 2015). For embedding the text data, we 
used the same DL models but varied the 
embeddings across four different embeddings: 
TF-IDF, Word2Vec, GLoVe, and TensorFlow’s 
adaptive (TFa) embeddings. Thus, for each DL 
model, there were four results providing 16 
different conditions (four DL models x four 

Domain 
ID 

Domain Label Number of 
Items 

0 Management of Care 1,202 
1 Safety & Infection 

Control 
792 

2 Health Promotion & 
Maintenance 

691 

3 Psychosocial Integrity 633 
4 Basic Care & Comfort 596 
5 Pharmacological & 

Parenteral Therapies 
1,202 

6 Reduction of Risk 
Potential 

721 

7 Physiological 
Adaptation 

1,002 

 

Table 1 Domains and Number of Items 
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embeddings). This was done to evaluate the 
extent to which both DL model and token 
embeddings had any identifiable effect on 
results. 

Data was analyzed using a cross-validation 
approach using training data for the model 
update and a validation data set for evaluating 
results across 100 epochs. We used an early 
stopping methodology with a look back of 10 
epochs when the loss function of the validation 
data stopped decreasing. The activation function 
for all models was the rectified linear unit (relu), 
the Adam optimizer was used with learning set 
at 0.001, and the softmax function for output. 
The best model was saved as the final model and 
then applied to the testing data. 

The CNN model used 128 filters with a kernel 
size of 5 and global max pooling. The GRU and 
LSTM models used 128 units with dropout being 
set to .02 and recurrent dropout set at 0.2. The 
DNN used 128 hidden layers. For the 
transformer models, we used BERT base 
uncased, BioBERT, and DeBERTa. 

Evaluation metrics used on the classification 
results were accuracy, precision, recall, and F1 
(Dalianis, 2018). To evaluate the similarity of 
text generated by the GenAI process between the 
two LLMs, the cosine similarity (Dalianis, 2018) 
was used.  

3 Results 
All results were based on the use of the test data 
and the best model trained on the training and 

validation data. Of the baseline models, the 
XGBoost (XG) outperformed the Naïve Bayes 
(NB) across all metrics, see Table 2.  

For the DL models, there was no appreciable 
difference across all of the embeddings except 
that the TFa was as good or better. Therefore, the 
results in Table 2 are reported for all of the 
models using the TFa embeddings. Of the DL 
models, only the DNN outperformed XG on all 
metrics with values around .77. Of interest was 
that the CNN and GRU models had one thing in 
common: high training accuracy (>90%) but 
poor generalization (<30% on validation and 
testing data). These results appeared to indicate 
significant overfitting. Future research should 
look at models with more hidden layers and a 
dropout regularization method to see if this 
improves the overfitting.  

    Metrics     
Models Accuracy Precision Recall F1 
NB 0.60 0.70 0.60 0.57 
XG 0.73 0.73 0.73 0.73 
CNN 0.29 0.33 0.29 0.28 
GRU 0.26 0.27 0.26 0.23 
LSTM 0.41 0.35 0.41 0.37 
DNN 0.77 0.77 0.77 0.77 
BERT 0.83 0.83 0.83 0.83 
BioBERT 0.83 0.83 0.83 0.83 
DeBERTa 0.83 0.83 0.83 0.83 
 

Table 2 Text Classification Metrics for Models 
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The BERT family of models showed the best 
results across all metrics; however, there was not 
much separation between the models. These 
models accurately classified around 83% of the 
items. As the models were so similar, the BERT 
uncased model results were used for the 
prediction of the GenAI items.   

Results of the cross-classification accuracy are 
provided in Figure 1 and suggested good 
predictions for most domains. Results were then 
dichotomized into correct classification = 1 and 
incorrect = 0. This resulted in ROC AUC = .81 
and Youden’s J at or above .83 suggesting an 
optimal trade-off in classification error (Pepe, 
2004). 

Item generation (GenAI) results of the 298 
LLM-generated items had an average cosine 
similarity index between paired task statements 
between the models of .44 (sd = .11), see Figure 
2 for box-and-whisker plot for the values by 
domain index. Using the best BERT uncased 
model results suggested a reduction in 
classification accuracy to around 61% which was 
significantly lower when compared to the 
classification using human generated items. 
Figure 3 provides the cross-classification matrix 
of ‘true’ values which was the domain for which 
the task statement was subsumed and the 
‘predicted’ values from the best performing 
BERT model. 

4 Discussion 
This research investigated the extent to which 
different text-based models could be used for 
classifying assessment items into content 
domains. The results were varied with the 
baseline models having 60–70% accuracy. Of 
the DL models, the DNN showed the best results 
with about 77% accuracy. There was no clear 
difference between text embedding approaches 
across the DL models. Suggesting that, at least 
for this current task, any of the embedding 

 

Figure 1 Cross-classification Matrix of True 
Domain Classification and Predicted Domain 
from BERT-uncased Model 

 

Figure 3 Box Plot of Cosine Similarity across Text 
Blueprint Domains 

 

Figure 2 Cross-classification Matrix of True 
Domain Classification and Predicted Domain on 
the GenAI items from BERT-uncased Model 
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methods would be equivalently useful. However, 
this might not generalize to all assessment 
program content or scope. It is recommended to 
investigate which embeddings might be best for 
each program while researching and developing 
classification models for one’s own data.  

The BERT family had the best results with all 
metrics greater than 80%. However, the results 
dropped off when the best BERT model was 
applied to the GenAI items to around 60%. This 
will certainly be different for each program and 
for different context engineering approaches to 
generate items. This research used a very simple 
prompt with minimal context for generating the 
items. Future research could evaluate results 
across various prompts and context engineering 
strategies to help identify the best ones to use for 
the programs’ distinct needs.   

The utility of these results is that it suggests the 
potential to reduce the work of SMEs by up to 
80% when tasked with coding newly written 
items. Additionally, this process could help with 
reviewing previously coded items to support on-
going quality control of metadata. This type of 
classification accuracy has the potential to 
significantly reduce resource utilization on 
metadata coding for SMEs to focus on content 
development and reviews that utilize their 
unique expertise and domain understanding.  

This research found that a cut-off of a 
probability of correct classification of .83 was a 
reasonable value to balance errors. We would 
encourage practitioners to utilize their own 
results to set the relative errors they would be 
willing to accept. Additionally, to ensure model 
validation, the SMEs should also systematically 
review a small percentage of the items in the 
neighborhood above the threshold. This way, the 
original model is being continually evaluated in 
case the model begins drifting. 

Future research could expand this approach by 
evaluating more complex DL models. For the 

CNN models, applications of dropout 
regularization could reduce the overfitting.  

Combining DL models into more complex 
models using the strengths of the different 
methods could be evaluated. Additionally, both 
the smaller transformer models and extending to 
proprietary models available like Grok, OpenAI, 
etc. could be promising. Finally, extension to 
other metadata would be useful to see if the 
results generalize to other important categories. 

Overall, these results are encouraging. The high 
rate of classification accuracy has the potential to 
automate a time consuming and resource 
intensive aspect of item development. With the 
automation of these tasks, SMEs can focus on 
more relevant work to support a program’s item 
development needs.  
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Abstract 

This study investigates the comparability 

and reliability of scores generated by 

Artificial Intelligence, specifically a large 

language model, GPT-4, against scores 

assigned by trained human raters on a 

visual arts assessment. Two types of 

performance tasks, art writing and 

drawing, were selected from the South 

Carolina Arts Assessment Program. 

Responses from 358 fourth-grade students 

to Task 1 and from 190 students to Task 2 

were evaluated independently by both 

GPT-4 and trained human raters. Both 

exact and adjacent agreement rates, as well 

as the Quadratic Weighted Kappa, were 

examined by task between the two human 

raters and for GPT-4 versus the first 

human rater. Additionally, these      

statistics were compared across tasks to 

explore whether task characteristics (i.e., 

text-based vs. drawing-based) contributed 

to differences in rater agreement. The 

findings highlight that 1) GPT-4 is more 

lenient and consistent in grading than 

human raters for both tasks; 2) the 

agreement between the human rater and 

GPT-4 is slightly lower than that between 

two human raters; and 3) human-GPT-4 

scoring agreement remains consistent 

across visual arts performance tasks. These 

findings highlight the potential and 

limitations of using LLMs in arts-based 

assessment contexts. 

1 Introduction 

Artificial intelligence (AI) has become 

increasingly prominent in educational assessment, 

offering scalable and efficient solutions for 

scoring student responses. Much of the early work 

in this area has centered on text-based automated 

essay scoring (AES), where machine learning and 

natural language processing techniques have been 

used to replicate human scoring (Lim et al., 2021). 

The development of large language models 

(LLMs), such as OpenAI’s GPT-4, Meta’s 

LLaMA, and Google’s Gemini, marks a new 

phase in AI-driven scoring. These models 

demonstrate advanced language understanding, 

generative abilities, and even processing both text 

and image inputs. Consequently, recent studies 

have explored their application in AES tasks, 

highlighting their potential for providing 

consistent and timely scoring. However, a 

substantial portion of this research remains 

focused on traditional writing tasks. There is still 

limited understanding of how LLMs perform in 

evaluating more complex responses, such as those 

required in visual and performing arts 

assessments. Filling this gap is especially 

important given the subjective and interpretive 

nature of art-based responses. 

In visual arts education, assessing students’ 

abilities to interpret, critique, and create artwork is 

an essential part of the learning process (Eisner, 

1999). Performance tasks in this area often 

involve written critiques and creative visual 

outputs, which demand a nuanced understanding 

of artistic principles, expressive intent, and 

contextual interpretation. These tasks require 

subjective judgment and domain-specific 

expertise, making them challenging to score 

consistently—even among trained human raters 

(Perlman, 2003). 

While AI technologies have shown promise in 

cognitive assessments, their application in art 

assessments remains limited. The rapid 

development of LLMs introduces new 

possibilities for scoring complex responses that 

combine text and imagery. AI scoring systems 

offer potential benefits such as efficiency, 

scalability, and reduced rater fatigue (Vetrivel, et 
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al., 2025). However, concerns persist about their 

reliability and validity in domains that rely on 

interpretive, aesthetic, or culturally embedded 

judgments (Clauser et al., 2014). This study 

tackles this gap by evaluating the use of GPT-4 to 

score fourth-grade students' visual arts 

performance tasks and comparing its performance 

to that of trained human raters. 

By comparing AI-generated scores with those 

assigned by trained human raters, the study seeks 

to evaluate the reliability of AI-assisted scores in 

the context of art education. This research is 

guided by the following questions: 

1. How do scores given by GPT-4 compare 

to those given by trained human raters on 

a text-based visual arts performance task? 

2. How do scores given by GPT-4 compare 

to those given by trained human raters on 

a drawing-based visual arts performance 

task? 

3. How does scoring agreement between 

GPT-4 and trained human raters differ 

across tasks (i.e., text- vs. drawing-based 

tasks)? 

2 Data 

2.1 Instrument 

The South Carolina Arts Assessment Program 

(SCAAP) was used to evaluate fourth-grade 

students' visual arts achievement during the 2015–

2016 school year. Designed to align with the 

South Carolina Academic Standards for the Visual 

and Performing Arts, SCAAP delivers technically 

sound assessments to students enrolled in schools 

funded through the Distinguished Arts Program. 

The assessment consists of 45 multiple-choice 

items and two performance tasks aimed at 

measuring students’ understanding and application 

of visual arts concepts. 

This study focuses on the two visual arts 

performance tasks. Each student received a test 

booklet containing written instructions and 

designated spaces for completing the tasks. The 

tasks were administered in group settings by 

trained test administrators following a 

standardized manual. Although untimed, each task 

typically took students at least 30 minutes to 

complete. 

Performance Task 1 (hereafter referred to as 

Task 1) was designed to assess two key standards: 

● Standard 2 – Using structures and 

functions in visual arts 

● Standard 5 – Interpreting works of visual 

arts 

In this task, students were asked to select four 

vocabulary terms from a provided word bank and 

write a paragraph for each term, explaining how it 

applied to the given artwork. Each paragraph was 

expected to consist of several descriptive 

sentences that demonstrated the student's 

understanding of the selected art concepts. 

Performance Task 2 (hereafter referred to as 

Task 2) required students to complete a drawing 

based on a given prompt and was designed to 

assess two key standards: 

● Standard 1 – Creating art 

● Standard 2 – Using structures and 

functions in visual arts 

2.2 Scoring Rubric 

Responses to both tasks were scored holistically 

using a rubric with five proficiency levels, ranging 

from 0 to 4. Each level clearly described the 

degree of proficiency demonstrated in students’ 

responses. Raters could assign augmentation 

scores using “+” or “–” to adjust the base score by 

0.33 points. To compute quadratic weighted kappa 

(QWK), augmentation scores were rounded to the 

nearest integers, as QWK analysis requires 

categorical or ordinal-level data. 

2.3 Participants 

Three student samples were used to address the 

three research questions, with demographic details 

provided in Table 1. 

• Sample 1 comprised 358 students whose 

Task 1 responses were double-scored and 

was used to address Research Question 1 

(RQ 1).  

• Sample 2 comprised 190 students whose 

Task 2 responses were double-scored and 

was used to address Research Question 2 

(RQ 2). 

• Sample 3 comprised 166 students whose 

responses to both tasks were double-

scored and was used to address Research 

Question 3 (RQ 3). 

3 Methods 
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3.1 Human Scoring 

Student responses were scanned and saved as 

JPEG files and uploaded to the SCAAP web-

based rating system for remote scoring. All raters 

were trained and required to pass a qualifying test 

before scoring the student work. In 2016, five 

trained raters were employed to score responses to 

Tasks 1 and 2. Considering the change of Task 1 

during the 2015-2016 school year, all responses to 

Task 1 were double-rated (i.e., scored by two 

raters), and about 50% of responses to Task 2 

were double-rated. In instances of non-adjacent 

scores, an expert rater was brought in to provide a 

third score. For double-rated responses, the final 

score was calculated as the average of the two 

raters’ scores. If an expert rater’s score was 

needed due to disagreement, that score would be 

used as the final score instead. However, in the 

current study, all samples consisted only of 

double-scored responses, without applying score 

averaging adjustments. 

3.2 GPT-4 Scoring 

GPT-4 was used to assess the same set of 

students’ responses to performance tasks. GPT-4 

is OpenAI’s latest multimodal model that can 

process and generate text, images, and audio. It 

offers fast performance, improved reasoning, and 

seamless handling of multiple input types. The 

version adopted for scoring in this study is gpt-

4o-2024-11-20. All de-identified student 

responses were scanned and input to LLMs 

through the model API interaction in Python.  

Specifically, we designed a prompt 

engineering framework to simulate the human 

scoring process. Each prompt includes the 

following components: a description of the 

context, a description of the performance task 

description and scoring rubric identical to those 

used in training human raters, the chain-of-

thought prompt for scoring the student’s 

response. Every individual response was scored 

using the same prompt framework to control 

possible drifts in LLM output. 

3.3 Data Analysis 

For all samples, descriptive statistics, exact and 

adjacent agreement rates, and the QWK were 

calculated by task for Rater 1 (R1) vs. Rater 2 

(R2) and R1 vs. GPT-4. R1’s ratings served as the 

reference. As a chance-corrected agreement 

measure that weighs disagreements based on their 

severity, QWK offers further insight into the 

extent of agreement and disagreement between the 

raters (Cohen, 1968). To address RQ 3, the 

statistics of rater agreement and the QWK 

regarding the two different tasks were compared 

to investigate the impact of task type on the 

agreement between human and GPT-4 scoring. 

In addition, confusion matrices were 

constructed for each rater pair (R1 vs. R2 and R1 

vs. GPT-4) by task and research question to 

analyze the frequency with which rating 

categories from one rater corresponded to those 

of the other. The QWK provides a single 

summary value that adjusts for chance agreement 

and the severity of disagreements, while the 

confusion matrix helps identify where and how 

raters disagree. 

4 Results 

Table 2 presents summary statistics of scores 

assigned by both human raters and GPT-4 for 

each task, using Sample 1 for Task 1 and Sample 

2 for Task 2. Table 4 provides the same statistics 

based on the common sample (Sample 3). Table 3 

reports agreement rates between R1 and R2 and 

between R1 and GPT-4 by task, while Table 5 

presents the corresponding agreement rates based 

on the common sample. Finally, Table 6 

summarizes the differences in agreement levels 

between Task 1 and Task 2. Figures 1–4 display 

confusion matrices for Task 1 and Task 2, 

comparing R1 with R2 and GPT-4 on the 0–4 

scale. Figures 5–8 repeat these comparisons using 

the RQ 3 subsample. 

 Gender Race 

Sample Male (%) Female (%) Missing (%) Black (%) White (%) Other (%) Missing (%) 

1 150 (42) 188 (53) 20 (6) 123 (34) 182 (51) 9 (3) 44 (12) 

2 73 (38) 101 (53) 16 (8) 71 (37) 85 (45) 18 (9) 16 (8) 

3 67 (40) 86 (52) 13 (8) 62 (37) 74 (45) 17 (10) 13 (8) 

     Note. Percentages may not sum to 100% due to rounding. 

Table 1:  Student Demographic Summary by Sample. 
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4.1 RQ 1: Task 1 – Art Writing 

Results in Table 2 show that GPT-4 produced 

slightly higher average scores than both human 

raters and with less variability on Task 1 (N=358). 

In terms of assigning scores, GPT-4 is the most 

lenient and consistent (M = 2.37, SD = 0.76), 

while R1 is the harshest (M = 2.08, SD = 1.31). 

For Task 1, the exact agreement between 

human raters was 34%, with an adjacent 

agreement of 48%, totaling 82% for within-one-

point agreement. Comparably, the agreement 

between GPT-4 and R1 yielded to 28% exact and 

54% adjacent, also totaling 82% (see Table 3).  

However, the QWK coefficient for R1 vs. GPT-

4 (0.49, indicating moderate agreement) was 

smaller than that for human-human comparison 

(0.62, indicating substantial agreement), 

suggesting slightly lower consistency between 

human- and machine-scoring. 

Results of the confusion matrix can visually 

identify exact/adjacent agreement, observe 

patterns of disagreement, and detect systematic 

bias. Figure 1 displays confusion matrix 

comparing R1 with R2 and Figure 2 displays R1 

and GPT-4 on the 0–4 scoring scale. The R1–R2 

matrix shows relatively consistent scoring across 

the full score range, with disagreements mostly 

concentrated in adjacent categories, suggesting 

moderate to strong alignment between human 

raters. In contrast, the R1–GPT-4 matrix shows 

high agreement primarily around score 3, but 

GPT-4 avoids assigning extreme scores (0 and 4), 

resulting in compressed scoring toward the 

middle. This indicates that while GPT-4 is more 

consistent with R1 at mid-range scores than R1 

and R2 agreement, it demonstrates a conservative 

bias, especially at the scoring extremes.  

4.2 RQ 2: Task 2 – Drawing 

For the drawing-based performance task (N=190), 

GPT-4 again yielded slightly higher average 

scores and a narrower distribution (M = 2.59, SD 

= 0.55) (see Table 2). As shown in Table 3, GPT-4 

exhibited a slightly lower rate of exact agreement 

with the human rater compared to the human-

human agreement (43% vs. 51%). The adjacent + 

exact agreement remained high for both pairs 

(97% for the R1-R2 pair vs. 94% for the R1-GPT-

4 pair), but the QWK coefficient (0.44) for the 

R1-GPT-4 pair again fell short of the human-

human benchmark (0.61).  

 
Figure 1: RQ1: Confusion Matrix for Task 1 (Human 

Rater 1 vs Human Rater 2). 

 
Figure 2: RQ1: Confusion Matrix for Task 1 (Human 

Rater 1 vs GPT-4). 

Task  Rater Pair Exact Adjacent QWK 

1 
Rater 1 vs Rater 2 0.34 0.48 0.62 

Rater 1 vs GPT-4 0.28 0.54 0.49 

2 
Rater 1 vs Rater 2 0.51 0.46 0.61 

Rater 1 vs GPT-4 0.43 0.51 0.44 

Table 3:  Rater Agreement and Interrater Reliability by 

Task and Rater Pair. 

 

 

Task (N) Rater Mean SD Min Max 

1 (358) 

Rater 1 2.08 1.31 0 4 

Rater 2 2.13 1.20 0 4 

GPT-4 2.37 0.76 0 3 

2 (190) 

Rater 1 2.19 0.77 0 4 

Rater 2 2.35 0.79 0 4 

GPT-4 2.59 0.55 1 4 

Table 2:  Descriptive Statistics of Scores by Task and 

Individual Rater. 
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Figure 3 and Figure 4 display confusion 

matrices comparing R1’s scores with those from 

R2 and GPT-4, respectively, on Task 2. The R1–

R2 matrix shows strong agreement around score 

2 (n=77) but with notable dispersion at higher 

score levels; for example, many R1 scores of 3 

were rated as 2 (n = 15) or 4 (n = 8) by R2. This 

indicates moderate agreement with some 

variability, especially at the upper end. In 

contrast, the R1–GPT-4 matrix shows high 

agreement for scores of 2 and 3 (n = 51 and 48 

respectively), with fewer deviations but a visible 

tendency to avoid the extremes—GPT-4 rarely 

assigns scores of 0 or 4. These patterns suggest 

that while both R2 and GPT-4 align with R1 in 

the mid-range, GPT-4 displays a narrower 

scoring range with a conservative bias. 

4.3 RQ 3: Difference between Task 1 and 

Task 2 

To evaluate differences in scoring agreement 

across task types, we compared R1–R2 and R1–

GPT-4 agreement statistics for both Task 1 and 

Task 2, using the common sample (N = 166). As 

shown in Table 4, GPT-4 is again the most lenient 

and consistent (M = 2.39, SD = 0.73 for Task 1; M 

= 2.61, SD = 0.54 for Task 2), while R1 is the 

harshest (M = 2.07, SD = 1.28 Task 1; M = 2.22, 

SD = 0.77 for Task 2). Additionally, on average, 

both the human raters and GPT-4 assigned higher 

scores to responses for Task 2 than to those for 

Task 1. 

As shown in Table 5, for both tasks, the exact 

agreement between R1 and GPT-4 was lower than 

that between human raters (27% vs. 34% for Task 

1; 43% vs. 49% for Task 2), while the adjacent 

agreement between R1 and GPT-4 was higher 

than that between human raters (52% vs. 43% for 

Task 1; 51% vs. 46% for Task 2). Overall, the 

exact and adjacent agreement rates were higher 

for Task 2 than Task 1, with R1–R2 increasing 

from 77% to 95% and R1–GPT-4 from 79% to 

94%. In contrast, QWK values remained 

relatively stable across tasks, rising only slightly 

from 0.56 for Task1 to 0.57 for Task 2 for R1–R2 

and from 0.41 to 0.43 for R1–GPT-4. The stable 

QWK coefficients for both the R1-R2 and the R1-

GPT-4 pairs across tasks suggest overall 

reliability in scoring despite differences in task 

type. 

 
Figure 3: RQ2: Confusion Matrix for Task 2 (Human 

Rater 1 vs Human Rater 2). 

 
Figure 4: RQ2: Confusion Matrix for Task 2 (Human 

Rater 1 vs GPT-4). 

Task  Rater Pair Exact Adjacent QWK 

1 
Rater 1 vs Rater 2 0.34 0.43 0.56 

Rater 1 vs GPT-4 0.27 0.52 0.41 

2 
Rater 1 vs Rater 2 0.49 0.46 0.57 

Rater 1 vs GPT-4 0.43 0.51 0.43 

Table 5:  Rater Agreement and Interrater Reliability by 

Task and Rater Pair (Sample 3: N = 166). 

 

Task Rater Mean SD Min Max 

1 

Human Rater 1 2.07 1.28 0 4 

Human Rater 2 2.20 1.22 0 4 

GPT-4 2.39 0.73 0 3 

2 

Human Rater 1 2.22 0.77 0 4 

Human Rater 2 2.38 0.77 0 4 

GPT-4 2.61 0.54 1 4 

Table 4:  Descriptive Statistics of Scores by Task 

and Individual Rater (Sample 3: N = 166). 

 

151



 

 
 

As observed in Table 6, for the R1–R2 pair 

from Task 1 to Task 2, the exact agreement 

increased by 15%, and the adjacent agreement 

increased by 3%. However, the comparison of 

QWK statistics indicates nearly no difference in 

agreement between the two tasks (1%). For the 

R1–GPT-4 pair from Task 1 to Task 2, the exact 

agreement increased by 16, and the adjacent 

agreement decreased by 1%. The comparison of 

QWK statistics shows a slight increase in 

agreement (2%) from Task 1 to Task. While the 

QWK coefficients remained largely stable, the 

increases in exact agreement indicate more 

consistent scoring on the drawing task. 

We also generated confusion matrices for all 

scoring comparisons and tasks based on Sample 3, 

comparing R1’s scores with those from R2 and 

GPT-4 on Task 1 (see Figures 5 and 6). The 

patterns are similar to those results in RQ 1. The 

R1–R2 matrix indicates moderate agreement, with 

the highest concentration along the diagonal, 

particularly at score 3 (n=26). However, off-

diagonal cells reveal notable adjacent and distant 

mismatches, such as R1 assigning a point of 4 

when R2 gave a 1 or 2, suggesting some 

inconsistency at higher scores. In contrast, the 

R1–GPT-4 matrix shows a narrower distribution, 

with GPT-4 scores concentrated at 2 and 3 and no 

scores assigned at the extremes (0 or 4). Although 

GPT-4 shows alignment with R1 in the mid-range 

(e.g., R1 = 3 most often matched GPT-4 = 3), it 

avoids the use of the full score scale, pointing to a 

compressed and conservative scoring tendency. 

Figures 7 and 8 show confusion matrices 

comparing R1’s scores with those from R2 and 

GPT-4 on Task 2 using the subsample for RQ 3. 

The patterns are similar to those results in RQ 2. 

The R1–R2 matrix shows strong agreement at 

score 2 (n = 62) and moderate alignment at score 

3 (n = 26), though some off-diagonal variation 

appears—particularly when R1 assigned a 3 but 

R2 gave a 2 or 4, suggesting some upper-end 

disagreement. The R1–GPT-4 matrix reveals a 

narrower scoring pattern, with GPT-4 clustering 

scores tightly around 2 and 3, and avoiding 

extreme values (0 and 4). While GPT-4 shows 

high agreement with R1 in the mid-range (e.g., R1 

= 2 and GPT-4 = 2 or 3), its reluctance to assign 

the highest score may reflect a conservative or 

compressed scoring pattern. 

There are some noticeable differences between 

Task 1 and Task 2 in both R1–R2 and R1–GPT-4 

scoring patterns: 

● Human-human consistency: in both tasks, 

R1 and R2 show the strongest agreement 

at score 2, but Task 2 generally shows 

tighter clustering along the diagonal—

especially at scores 2 and 3, suggesting 

slightly higher inter-rater consistency than 

Task 1. In Task 1, disagreements are more 

spread out, including more extreme 

mismatches (e.g., R1 = 4 vs R2 = 0 or 1), 

whereas in Task 2, disagreements tend to 

stay within adjacent scores. 

● GPT-4 scoring behavior: GPT-4 is 

conservative across both tasks, avoiding 

extreme scores, but this effect is more 

pronounced in Task 2. In Task 2, GPT-4 

 
Figure 5: RQ3: Confusion Matrix for Task 1 (Human 

Rater 1 vs Human Rater 2). 

 
Figure 6: RQ3: Confusion Matrix for Task 1 (Human 

Rater 1 vs GPT-4). 

Difference across tasks Exact Adjacent QWK 

Rater 1 vs. Rater 2 -0.15 -0.03 -0.01 

Rater 1 vs. GPT-4 -0.16  0.01 -0.02 

Table 6:  Difference in Rater Agreement and 

Interrater Reliability Across Tasks (N = 166). 
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rarely assigns a score of 4 and leans 

heavily toward scores of 2 and 3, even 

when R1 gave higher scores. In Task 1, 

while GPT-4 still avoids extremes, the 

spread is slightly broader, especially 

around score 3. 

 In general, GPT-4 is capable of approximating 

human scoring with high adjacent agreement 

(>0.5) in both text-based and drawing-based tasks. 

However, the QWK statistics for the R1–GPT-4 

pair indicate that GPT-4 does not replicate the full 

scoring pattern of human raters, particularly at 

extremes (i.e., 0 or 4). The agreement patterns 

between tasks are similar, but Task 2 (drawing) 

shows slightly stronger alignment in both adjacent 

and overall agreement, possibly due to fewer 

extreme scores in that task. 

 

5 Discussion 

 In the text-based task, GPT-4 achieved 

comparable adjacent agreement with human raters 

but demonstrated a narrower scoring range and a 

reluctance to assign extreme scores. This 

centralizing tendency results in lower QWK 

values, reflecting a more conservative scoring 

pattern. In the drawing-based task, although 

adjacent agreement remained high, GPT-4’s 

performance was slightly weaker, particularly in 

its interpretation of complex visual elements such 

as depth, composition, and emotional nuance. 

Furthermore, the observed patterns in the 

confusion matrices suggest that while human 

raters showed moderate consistency across the full 

score range, discrepancies, particularly at higher 

scores, highlighted the subjective nature of human 

scoring. In contrast, GPT-4 demonstrated strong 

alignment with human raters in mid-range scores 

but consistently avoided extreme ratings, 

indicating a conservative bias. These findings 

imply that while GPT-4 may be a reliable tool for 

scoring typical responses, caution is needed when 

using it to evaluate very high- or low-quality 

work, as it may underrepresent performance 

extremes and affect decisions tied to those score 

ranges. 

A consistent trend across both tasks is that 

GPT-4 tended to avoid assigning the lowest and 

highest score points, which has implications for 

high-stakes assessments where performance 

extremes are critical. Additionally, human raters 

showed greater variability in scoring, especially at 

higher performance levels, which may reflect the 

inherent subjectivity in assessing creative work—

a dimension GPT-4 is currently limited in 

replicating.   

These findings suggest that while GPT-4 can 

serve as a reliable supplemental tool in scoring 

student work, it should not yet be considered a full 

substitute for human judgment in art assessment. 

The performance of GPT-4 was task-sensitive, 

further emphasizing the need for content-specific 

prompt tuning and calibration.  

6 Limitations 

While this study provides valuable insights into 

the comparability of GPT-4 and human scoring in 

visual arts assessments, several limitations should 

be acknowledged. First, the analysis focused on 

fourth-grade student responses from a single 

 
Figure 7:  RQ3: Confusion Matrix for Task 2 

(Human Rater 1 vs Human Rater 2). 

 
Figure 8:  RQ3: Confusion Matrix for Task 2 

(Human Rater 1 vs GPT-4). 
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assessment year and context (SCAAP 2016), 

which may limit the generalizability of the 

findings to other grade levels, content areas, and 

assessment frameworks. Second, the scoring 

outcomes reflect a single implementation of GPT-

4 using a specific prompt engineering approach; 

different prompt designs or fine-tuned model 

configurations may produce different results. 

Third, although GPT-4 was instructed to 

incorporate augmentation scores (e.g., +0.33 or –

0.33), it did not apply this rule during scoring. 

This unexpected behavior highlights a potentially 

important limitation in the model’s ability to 

consistently follow nuanced scoring rules, and 

future research should investigate the causes and 

implications of this issue. Finally, human-human 

agreement was not high, and only R1 was 

randomly selected as the baseline rater for all 

comparisons, which may constrain 

generalizability. One possible reason for the 

moderate human-human agreement is that Task 1 

was new and first administered in 2016. In 

addition, Task 2’s prompt was changed in 2015, 

and 2016 was only the second year it was used. 

Therefore, the raters were not yet sufficiently 

familiar with the new tasks and the rubric. 

However, this study is strengthened by the 

inclusion of cross-comparisons across two tasks 

and repeated analyses on multiple subsamples, 

thereby providing a multidimensional assessment 

of scoring consistency from diverse perspectives. 

7 Future Research 

Future research should explore the reasoning 

behind GPT-4’s scoring decisions through 

qualitative content analysis. Specifically, 

analyzing GPT-4’s rationale in comparison to the 

scoring rubric and underlying pedagogical goals 

may help illuminate how well the model interprets 

key assessment criteria. Additionally, it would be 

valuable to examine why GPT-4 consistently 

avoided assigning extreme scores—whether due 

to probabilistic constraints in its language 

modeling, uncertainty in interpreting creative 

responses, or an overly cautious alignment with 

prompt wording. Understanding these issues may 

help refine prompt engineering or model tuning 

for better alignment with human evaluative 

standards. 
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Abstract

Transfomer-based models like BERT have in-
creasingly been employed for automated essay
scoring, as their high-dimensional representa-
tions of text are effective at capturing complex
patterns in language. However, transformer-
based representations are opaque and difficult
to trace to the underlying human-defined con-
structs being assessed. This paper investigates
the ability of LLMs to generate scores accord-
ing to a rubric constructed from academic stan-
dards and evaluates the utility of these scores as
features in a supervised regression model. We
show that this produces a model that is reliable,
construct-relevant, and interpretable. We evalu-
ate this approach on six narrative writing items
and find that, even with only 5 features, models
can achieve QWKs exceeding 0.8, while also
giving a concise and interpretable score expla-
nation.

1 Background

Prior to advances in deep learning, the prevailing
approach for Automated Essay Scoring (AES), re-
lied on pairing supervised machine learning (ML)
with a set of manually-crafted features (Attali and
Burstein, 2006) that aimed for construct relevance.
Feature engineering consisted of extracting linguis-
tic phenomena which could serve as proxies for the
underlying construct or assessed skill. For example,
type-token ratio was used to capture vocabulary
richness and semantic similarity measures approxi-
mated human ratings of essay cohesion (Graesser
et al., 2004). In some cases, features may come
from other models trained to predict a subtrait score
(Somasundaran et al., 2018).

Advancements in NLP and ML have rapidly
evolved the state-of-the art in automated essay scor-
ing (AES). The shift toward dense language repre-
sentations including semantic vectors (Deerwester
et al., 1990), word embeddings (Mikolov et al.,
2013a,b), and contextual embeddings (Peters et al.,

2018) have yielded steady gains in AES perfor-
mance (Foltz et al., 1999; Alikaniotis et al., 2016),
typically measured using metrics like Quadratic
Weighted Kappa (QWK). Transformers (Vaswani
et al., 2017) and especially variants of BERT (De-
vlin et al., 2019) are now considered the de-facto
approach for training AES systems (Mayfield and
Black, 2020; Wang et al., 2022; Wang, 2024; El-
massry et al., 2025). However, these approaches
are complex with features that are not directly in-
terpretable and which number in the hundreds or
thousands. Modern, deep-learning AES systems
are effectively “black-box” solutions.

A growing body of research has applied explain-
able AI (xAI) to AES, including approaches such as
attention visualization (Yang et al., 2020), multiple
instance learning (Hellman et al., 2020) and post
hoc explanation methods like LIME (Ribeiro et al.,
2016), which surface links between regions of the
text and model outputs. However, interpreting these
explanations often requires subjective inference to
connect model decisions to the constructs being
assessed, and may lack direct construct relevance.
The capacity for reasoning exhibited by Large Lan-
guage Models (LLMs) presents new possibilities
for explainability. LLMs can be prompted to gener-
ate auxiliary information such as rationalization of
score (Li et al., 2023) or corresponding feedback
(Stahl et al., 2024). While impressive, querying
LLMs to provide justifications for their scoring de-
cisions introduces the risk of self-referential expla-
nations.

This work approaches explainability through the
lens of subtrait scoring wherein the scored con-
struct is broken down into sub-components with
their own scores (Andrade-Lotero et al., 2025). Our
framework is most similar to TRATES (Eltanbouly
et al., 2025) which predicts rubric elements via
LLM generation. Unlike TRATES, we limit the
features of our models to only construct-relevant
subtrait scores. By pairing LLM-generated subtrait
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scores with linear regression, we can not only pro-
duce ”dead simple” explainability, but also help
build trust in the use of LLMs for essay scoring.

2 Aims

The primary aim of this study is to explore how
using LLM-outputs as input features to train auto-
mated scoring models provides a straightforward
path toward interpretable scores. Specifically, we
explore the ability of LLMs to produce subtrait
scores aligned to components of academic stan-
dards defining grade-level expectations, such as
those set by Common Core State Standards Initia-
tive (2010). We build, evaluate, and inspect sim-
ple linear models using the LLM-produced subtrait
scores as features.

This work is part of an overarching goal to de-
velop a collection of models that can assess subtraits
and/or skills in support of a wide variety of writing
items and rubrics (Andrade-Lotero et al., 2025). In
this work we focus on assessing Common Core stan-
dards because the standards are decomposed into
elements that align well with our notion of subtrait;
however, nothing about the approach we illustrate
here is limited to using standards.

Our specific research questions are as follows:

• How can we leverage academic standards to
generate subtrait scores via an LLM?

• How does the performance of models trained
with LLM-generated subtrait scores as features
compare to operational models?

• Is an explainable linear regression model
with only a handful of subtrait features op-
erationally viable?

• Can the use of a simple, transparent linear
regression model enhance the interpretability
and trustworthiness of the LLM features?

3 Data

The experiment dataset consists of 6 eighth grade
writing prompts administered as part of state-
run, year-end summative assessments. Written re-
sponses and corresponding human scores come
from the train and test data used to build and eval-
uate the operational scoring models. Responses
flagged with codes such as blank, gibberish, pas-
sage copy or off-topic are excluded from this dataset.
The scoring process is such that there are a mini-
mum of 2 ratings per response in the model-building

Human Deployed model

Prompt 1 0.940 0.918
Prompt 2 0.914 0.899
Prompt 3 0.897 0.893
Prompt 4 0.912 0.903
Prompt 5 0.888 0.886
Prompt 6 0.936 0.934

Table 1: Quadratic weighted kappa representing human-
human agreement and human-machine agreement for
operationally deployed models.

data set, with a third resolution rating as needed.
We model the final score, that is, the score assigned
as the end-result of the human scoring process for
the item. The items in our experiment have high hu-
man agreement and extremely strong operationally
deployed models, as shown in Table 1.

We focus on narrative writing items, as scoring in
this genre is often perceived as subjective and multi-
dimensional. Explainable models add transparency
to this subjective process by linking assessment of
narrative elements to the score. Additionally, nar-
rative elements are not well captured by surface
level features like n-grams or word count. This
presents an opportunity to highlight how the deeper
semantics of LLMs can flexibly accommodate a
wide variety of subtraits.

We aim to take a uniform sample across score
points and use 66% of the data for training and the
remainder for testing, for a total of 1125 responses
per score point. However, responses at the highest
score points were underrepresented in the popula-
tion for some prompts, and in these cases a uniform
distribution is not possible. The score distribution
for the experimental dataset appears in Table 2. Ad-
ditionally, it was not possible to extract subtrait fea-
tures from for every response, as in some cases the
LLM returned malformed JSON or raised content
filters. The response counts of the final train-test
partitions for the 3 LLMs we use in our experiments
appear in Table 3.

4 Method

As our goal is explainability, we wish to build the
simplest, most interpretable model possible using
the outputs from the LLM. As discussed below,
we construct an LLM query with scoring instruc-
tions and a rubric based on the Common Core stan-
dard for 8th-grade narrative writing (Common Core
State Standards Initiative, 2010).
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Train Test
0 1 2 3 4 Total 0 1 2 3 4 Total

Prompt 1 150 150 150 150 117 717 75 75 75 75 58 358
Prompt 2 150 150 150 150 51 651 75 75 75 75 25 325
Prompt 3 150 150 150 121 28 599 75 75 75 60 14 299
Prompt 4 150 150 150 150 68 668 75 75 75 75 35 335
Prompt 5 150 150 150 103 43 596 75 75 75 52 23 300
Prompt 6 150 150 150 148 150 748 75 75 75 74 75 374
Total 900 900 900 822 457 3979 450 450 450 411 230 1991

Table 2: Score distribution of the training and test sets.

Original Sample GPT-4o Mini Llama3.1 8B Gemma 7B
Train Test Train Test Train Test Train Test

Prompt 1 717 358 690 343 717 358 692 347
Prompt 2 651 325 643 323 651 325 640 322
Prompt 3 599 299 589 292 599 299 582 284
Prompt 4 668 335 645 328 668 335 655 327
Prompt 5 596 300 583 298 596 300 577 290
Prompt 6 748 374 743 372 748 374 733 367
Total 3979 1991 3893 1956 3979 1991 3879 1937

Table 3: Number of responses in Train/Test partitions. It was not possible to obtain LLM-based features from
GPT-4o Mini or Gemma 7B for all responses due to content-filters and the LLM returning improper JSON. Therefore,
the samples for some of the models tested are non-identical.

The LLM provides feature values in the form of
subtrait scores, which we use to train and evalu-
ate highly-interpretable linear regression models.
The models predict the operational score using
LLM-generated subtrait scores as features. We do
not have ground-truth annotations for the subtrait
scores.

4.1 LLM-generated features

The feature space centers around “subtrait scoring”,
wherein finer-grained scores reflect performance on
a facet of a larger trait. Following the approach de-
tailed in Andrade-Lotero et al. (2025), we query an
LLM to score an essay given a rubric. To maintain
consistency between items, we use standards-based
rubrics instead of the items’ original trait rubric. As
we aim to make an assessment grounded in the Com-
mon Core standard for the narrative genre, we con-
struct a 5-point rubric from the standard elements
of CCSS.ELA-LITERACY.W.8.3, that is, the Com-
mon Core standard for 8th grade narrative writing.
The standard reads “Write narratives to develop
real or imagined experiences or events using ef-
fective technique, relevant descriptive details, and

well-structured event sequences.” The standard is
further decomposed into the 5 standard elements
that appear in Table 4, which we treat as subtraits.

We use an LLM to construct a rubric from these
standard elements. Specifically, we embed each
of the standard elements into instructions to create
criteria for 5 score points, query Claude Haiku 3.5
(Anthropic, 2024) with the instructions, and manu-
ally verify the result. We choose a score range from
0 to 4 to reflect the original range on which the re-
sponses were scored. Example system instructions
to create rubrics appear in Figure 1 and an example
rubric appears in Figure 2 in the Appendix.

To produce subtrait scores, we submit the re-
sponse and the rubric to 3 LLMs. We choose
OpenAI’s GPT-4o-Mini (OpenAI, 2024) and also
two open-source models of similar size: Gemma 7B
(DeepMind, 2024), and Llama 3.1 8B (Meta, 2024).

The LLM query to produce subtrait scores in-
cludes an instruction to provide feedback. This
likely has a positive effect on the output given that
eliciting reasoning is known to improve LLM re-
sults (see for example, Huang and Chang, 2023);
however, we set aside an examination of this effect

157



W.8.3.A Engage and orient the reader by establishing a context and point of view and introducing a
narrator and/or characters; organize an event sequence that unfolds naturally and logically.

W.8.3.B Use narrative techniques, such as dialogue, pacing, description, and reflection, to develop
experiences, events, and/or characters.

W.8.3.C Use a variety of transition words, phrases, and clauses to convey sequence, signal shifts, and
show the relationships among experiences and events.

W.8.3.D Use precise words and phrases, relevant descriptive details, and sensory language to capture
the action and convey experiences and events.

W.8.3.E Provide a conclusion that follows from and reflects on the narrated experiences or events.

Table 4: 8th grade narrative writing standard elements.

for future work. The prompt appears in Figure 3 in
the Appendix.

4.2 Model training, evaluation, and
explanation.

As our overarching goal is intepretability, we train
a non-negative ridge regression model with L2 reg-
ularization for each item-LLM model pair, using
cross-validation within the training set to tune the
regularization parameter. Ridge regression is used
instead of simple linear regression to minimize the
effects of multicollinearity between subtrait scores,
and the coefficients are required to be positive for
ease of interpretability.

Models are evaluated on quadratic weighted
kappa (Cohen, 1968), and we examine the coef-
ficients for each of the 5 subtraits for the purpose
of explaining the models.

5 Results

The quadratic weighted kappa for the 6 prompts
and the 3 LLMs appear in Table 5. All models
were able to predict the human score, with aver-
age test QWKs of 0.81, 0.78, and 0.59 for GPT-4o-
Mini, Llama 3.1 8B, and Gemma 7B, respectively.
GPT-4o-Mini had the best overall performance, but
we are particuarly encouraged that an open source
model with few parameters such as LLama 3.1 8B
is viable. We note that there is only a 3-point dif-
ference between GPT-4o-Mini and LLama 3.1 8B,
compared to the 22-point difference between GPT-
4o-Mini and Gemma 7B.

5.1 Explainability
With respect to explainability, the simplest ap-
proach with a non-negative linear model is to exam-
ine the relative weights, normalized to 1 to make

them more intuitively interpretable. This tells us
what percentage of the final score is due to each of
subtrait scores from the LLM. As we have 6 prompts
and 3 models per prompt, we present the means and
standard deviations of the relative weights in Ta-
ble 6. The relative weights for all the individual
models appear in Table 8 in the Appendix.

The ability to inspect the relative weights is what
we regard as the main benefit of this approach. We
can see, for example, that the GPT and Llama mod-
els place more weight on establishing context, the
use of narrative techniques, and the fluidity of tran-
sitions; and less weight on linguistic descriptiveness
and the quality of the conclusion. We hypothesize
that this is related to the models’ superior perfor-
mance, and we highlight that the weights can be
subject to examination by a subject matter expert
(SME) in writing who may not have a great deal of
expertise in machine learning.

The weights of the Gemma 7B model are par-
ticularly illustrative. The model weights linguistic
descriptiveness very heavily at almost half of the
score, and the conclusion quality is hardly part of
the model at all. This might raise validity concerns
for an SME scrutinizing the model and could serve
as an early and easily interpretable cautionary sig-
nal before moving forward with such a model.

5.2 LLM comparison

Gemma 7B’s lack of parity with the other two mod-
els in terms of the predictiveness of its subtrait
scores is striking. Furthermore, we note that the
standard deviations of the per-prompt models are
double those of GPT-4o-Mini and Llama 3.1 8B,
as shown in Table 6. This suggests that the subtrait
scores produced from Gemma 7B are less stable
than those of the other two models.
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Train Test
GPT-4o Mini Llama3.1 8B Gemma 7B GPT-4o Mini Llama3.1 8B Gemma 7B

Prompt 1 0.802 0.786 0.629 0.843 0.799 0.654
Prompt 2 0.770 0.742 0.616 0.761 0.718 0.603
Prompt 3 0.815 0.781 0.468 0.852 0.791 0.467
Prompt 4 0.794 0.788 0.411 0.815 0.801 0.417
Prompt 5 0.767 0.734 0.593 0.775 0.782 0.617
Prompt 6 0.830 0.815 0.618 0.831 0.804 0.712

Table 5: Quadratic weighted kappa for models trained on subtrait features from 3 LLMs.

W.8.3.A W.8.3.B W.8.3.C W.8.3.D W.8.3.E
Context Narrative Tech. Transitions Descriptiveness Conclusion

GPT-4o Mini 0.24 (0.05) 0.34 (0.05) 0.17 (0.06) 0.08 (0.06) 0.16 (0.04)
Llama3.1 8B 0.13 (0.07) 0.30 (0.02) 0.30 (0.05) 0.15 (0.03) 0.13 (0.04)
Gemma 7B 0.19 (0.12) 0.17 (0.10) 0.16 (0.11) 0.47 (0.13) 0.01 (0.01)

Table 6: Mean and standard deviation of model weights across 6 prompts per LLM, where the standard deviations
are in parenthesis. The weights are normalized to 1 within each model for intuitive interpretation.

GPT vs. GPT vs. Gemma vs.
Llama Gemma vs. Llama

W.8.3.A 0.711 0.545 0.550
W.8.3.B 0.758 0.575 0.603
W.8.3.C 0.678 0.408 0.489
W.8.3.D 0.688 0.573 0.562
W.8.3.E 0.679 0.428 0.462

Table 7: Pearson correlations for pairwise comparisons
of subtrait scores produced by the 3 LLMs.

When we examine the Pearson correlations of
the subtrait scores for each pairing of models in Ta-
ble 7, we find that the subtrait scores from GPT-4o-
Mini are highly correlated with the subtrait scores
from Llama 3.1 8B, and less correlated with the
subtrait scores from less performant Gemma 7B.
We take this as evidence that GPT-4o-Mini and
Llama 3.1 8B are assessing the same or similar
subtraits, whereas Gemma 7B is responding to the
rubrics and responses in a significantly different
way.

6 Discussion

The successful models have a QWK that hovers
around 0.80, roughly 10 points under the opera-
tionally deployed models. We find this an encour-
aging result, particularly given the high level of per-
formance optimizations that go into achieving the

maximum possible QWKs in operational scoring.
The optimizations make the model more complex,
and therefore less interpretable. We are able to
achieve a viable, transparently explainable model,
with just 5 features. Furthermore, a comparison of
the train and test QWKs in Table 5 indicates that
there is no overfitting.

The simplicity and transparency of the models
allows for a straight-forward look into the subtraits.
While we do not have ground-truth annotations
for the subtrait scores, we are reassured by how
well the weights from the most successful models
match with our intuitions with respect to construct
relevance. Both GPT-4o-Mini and Llama 3.1 8B
weighted the subtrait feature W.8.3.B as high-
est. This is the standard element that, to us, re-
flects the heart of the narrative genre: “use narra-
tive techniques, such as dialogue, pacing, descrip-
tion, and reflection, to develop experiences, events.
and/or characters.” A lower-weighted feature in
these models was W.8.3.D, “use precise words and
phrases, relevant descriptive details, and sensory
language…”

According to the most successful models, it is of
highest importance that readers are able to under-
stand who the characters are, what happens to them,
and what they do; and it is of lesser importance how
vividly these things are described. This aligns with
our intuitions: a vivid description matters less if
readers cannot understand what happened.
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In contrast, the least successful model weights
W.8.3.D the highest, at almost half of the score.
Furthermore, it hardly assesses the quality of the
conclusion at all.

It may happen that our intuitions about the rel-
ative importance of the standard elements of the
narrative genre are underinformed, but we would
like to emphasize that being able to inspect and
reflect upon the weights of a simple linear model
gives us useful tools to scrutinize the LLM out-
put. In the case at hand, the tools would lead us to
abandon Gemma 7B, given that we have evidence
to suggest that the outputs from GPT-4o-Mini and
Llama 3.1 8B are more trustworthy with respect to
construct relevance.

A final note is that the weights themselves can
be useful in downstream tasks. For example, feed-
back systems can use the weights in algorithms to
select the most valuable feedback to display to the
student. One could also build models of the scores
assigned by individual raters and use the weights to
understand rater behavior, revealing, for example,
that one rater places more emphasis on descriptive-
ness whereas another places more emphasis on the
quality of the conclusion.

7 Conclusion and future work

We present a method to build, evaluate, and in-
spect simple explainable models on the basis of
subtrait-scores from LLMs, where the rubric cri-
teria for the subtrait scores are derived from the
Common Core Standard elements for 8th grade nar-
rative writing. The models using subtrait scores
from GPT-4o-Mini and Llama 3.1 8B are able to
predict the holistic scores with a QWK of approxi-
mately 0.80, which we find particularly noteworthy
because the standard-based rubrics were not what
the humans used during scoring. We are encour-
aged that Llama 3.1 8B, an open source model,
performs to within 3 points of the GPT model, and
that its subtrait scores are highly correlated with
GPT’s.

The models we present are generally 10-points
under the QWK for the operational models;
nonetheless, at 0.80 QWK, we find that these sim-
ple, transparent, linear regression models with only
5 features may be operationally viable.

We find that the model weights from GPT-4o-
Mini and Llama 3.1 8B are in alignment with
our own intuitions about the narrative construct,
whereas the weights from Gemma 7B are not. On

the basis of this evidence, together with the raw
model performance, we find that we can trust the
LLM output of GPT-4o-Mini and Llama 3.1 8B
much more than Gemma 7B. We take this example
as an illustration of how this approach allows an
inspection of the model by an SME in writing who
may not have a great deal of expertise in machine
learning, and as a means of understanding how the
output of one LLM may differ from others overall.

We would like to better understand the impact of
subtrait score accuracy on these regression models.
Our previous study on subtraits found low to mod-
est agreement between human ratings of subtrait
scores and LLM-produced ones (Andrade-Lotero
et al., 2025). As we did not have human-labeled
narrative subtrait scores, we can not speak to the
accuracy of the LLM-generated scores. In future
work, we would like to work with subject matter
experts to validate the accuracy and to understand
if the resulting weights align with their expert judg-
ment.

This LLM-plus-regression approach also pro-
vides a framework for not only for explaining auto-
mated scores, but human ones as well. By modeling
individual raters, we can glean insights into sources
of rater disagreement. We save exploration of this
topic for future research.

Lastly, we are encouraged by the possibilities
this framework presents for operationalizing AES
models in both high stakes and formative settings.
The direct interpretability of features allows for im-
proved monitoring and transparency. As reliabil-
ity of LLM subtrait assessment improves, this ap-
proach opens opportunities to enable scoring for
more complex constructs and writing behaviors.

8 Limitations

The first limitation to note is that we neither have
ground-truth annotations of the subtrait scores nor
an in-depth understanding of the subtrait scores
produced by the LLM. While the high QWK and
alignment of the model weights with our intuitions
is highly suggestive, we have not provided strong
empirical evidence with respect to the degree to
which the LLM is accurately applying the rubric.
Related to this, we make a large assumption that our
features are indeed construct-relevant and have not
explored the impact of including distractor features.

Another important limitation is that the data is
from one genre and one grade level. It is not known
how well our results generalize to other grades and

160



genres. Similarly, the human agreement is unusu-
ally high, suggesting a strong clear signal in the
response text itself. It may be that LLMs are less
able to assess responses of a more ambiguous na-
ture.

The final limitation is that there were small differ-
ences in the datasets used to extract subtrait scores
to train and evaluate the 3 LLMs because the sets
of responses that the LLMs were able to process
successfully were not identical (shown in Table 3).
We believe that our sample size is large enough to
overcome this limitation; but nonetheless, the clean-
est experiment would make comparisons using data
sets that are absolutely identical.
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Appendix

You are an expert in academic standards with deep knowledge of assessment and
rubric design. You will be given a standard_id along with information about the
standard as well as parameters for the output like min_score and max_score. Your
job is to interpret the standard and provide a set of criteria for each score
point that will help to assess the level of student writing with respect to the
standard.

Please provide the criteria in a clear and concise manner , ensuring that
they are:
1. specific to the standard
2. relevant to the grade level of the students.
3. appropriate for the type of writing being assessed
4. written in a way that guides an LLM to evaluate a student 's response in a

reliable and consistent manner.
5. (This is very important) the criteria are written to ensure non- overlapping

behaviors to encourage the LLM to use the full score range.

Figure 1: System instructions that were used to create subtrait rubrics from the narrative standard elements. Additional
instructions had to do with JSON formatting; definitions of the keys and values; specifications for the min and max
score points, grade, and genre; and encouragements to use the full score range.

W.8.3.A W.8.3.B W.8.3.C W.8.3.D W.8.3.E
Context Narrative Tech. Transitions Descriptiveness Conclusion

GPT-4o Mini Prompt 1 0.231 0.285 0.157 0.129 0.198
Prompt 2 0.276 0.381 0.084 0.096 0.163
Prompt 3 0.172 0.304 0.243 0.151 0.131
Prompt 4 0.323 0.310 0.112 0.076 0.178
Prompt 5 0.257 0.418 0.214 0.000 0.111
Prompt 6 0.199 0.371 0.215 0.022 0.193

Llama3.1 8B Prompt 1 0.075 0.290 0.302 0.183 0.150
Prompt 2 0.193 0.272 0.248 0.152 0.135
Prompt 3 0.127 0.275 0.340 0.169 0.090
Prompt 4 0.015 0.325 0.347 0.155 0.159
Prompt 5 0.217 0.326 0.236 0.134 0.088
Prompt 6 0.130 0.300 0.305 0.085 0.180

Gemma 7B Prompt 1 0.228 0.068 0.172 0.532 0.000
Prompt 2 0.000 0.257 0.218 0.525 0.000
Prompt 3 0.124 0.107 0.311 0.458 0.000
Prompt 4 0.181 0.131 0.025 0.663 0.000
Prompt 5 0.336 0.326 0.033 0.304 0.000
Prompt 6 0.279 0.138 0.202 0.347 0.033

Table 8: Relative weights of LLM-generated subtrait features in regression models. We observe a fair amount of
consistency in the weights across prompts within models, and similar weights between GPT-4o-Mini and Llama3.1
8B. We also observe that Gemma 7B’s assessment of the conclusion did not offer a unique contribution to the
prediction of the score.
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{
"4": {

"criteria": [
"Exceeds Expectations",
"Masterfully establishes a complex and engaging narrative context",
"Provides a highly sophisticated and nuanced introduction of narrator and/or
characters",
"Creates an exceptionally clear and compelling point of view",
"Organizes events with remarkable logical flow and natural progression",
"Demonstrates advanced narrative techniques that immediately capture the
reader 's interest"

]
},
"3": {

"criteria": [
"Meets Expectations",
"Effectively establishes a clear narrative context",
"Introduces narrator and/or characters with sufficient detail",
"Presents a distinct and appropriate point of view",
"Organizes events in a logical and coherent sequence",
"Provides a solid foundation for the narrative that guides the reader 's
understanding"

]
},
"2": {

"criteria": [
"Approaching Expectations",
"Provides a basic narrative context with some gaps or lack of clarity",
"Partially introduces narrator and/or characters with minimal details",
"Demonstrates an inconsistent or somewhat unclear point of view",
"Attempts to organize events , but the sequence may have some minor logical
inconsistencies",
"Shows an emerging understanding of narrative introduction"

]
},
"1": {

"criteria": [
"Below Expectations",
"Offers a minimal or confusing narrative context",
"Provides little to no introduction of narrator and/or characters",
"Lacks a clear or coherent point of view",
"Events are poorly organized or difficult to follow",
"Struggles to establish a meaningful narrative foundation"

]
},
"0": {

"criteria": [
"Insufficient",
"No discernible narrative context",
"No introduction of narrator or characters",
"No identifiable point of view",
"No coherent event sequence",
"Fails to create any meaningful narrative structure"

]
}

}

Figure 2: Example rubric for the W.8.3.A standard element subtrait.
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Assess the student 's ability to effectively introduce a narrative by
establishing a clear context , point of view, and characters. Evaluate how well
the writer sets up the story and creates a logical , natural progression of
events. Consider the sophistication of the narrative setup , the clarity of
the introduction , and the coherence of the event sequence.

Return the chosen score_point as well as up to three small excerpts from the
response as evidence , without any modification or additional reasoning. The
excerpts should only be subsets of the original response text. It is okay to
return fewer than the max amount of excerpts , if some aren't good relative
to the others. Also, don't return the same excerpt twice. If the student got
the highest score_point , you should provide feedback summarizing what they
did well. If they did not get the highest score_point , you should give
feedback with a high level suggestion on how to improve. Feedback should be
worded to communicate with a student in grade 8 and limited to the specific
criteria in the rubric. You should not mix in unrelated analyses Return only
JSON containing the score_point , optional feedback , and each optional excerpt.

You should specifically evaluate the response based only on the following
scorepoint criteria:
//{Rubric appears here}

Score and provide feedback for this response:
//{Response text appears here.}

Figure 3: Prompt that was used to elicit subtrait assessments from 3 LLMs.
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Abstract
Generative AI has been investigated as a tool
for scoring constructed responses (CRs). Al-
though generative AI can provide both numeric
scores and qualitative feedback on written tasks
effectively and efficiently, its lack of trans-
parency in output makes it challenging to build
strong validity. Validity evidence for outputs
from generative AI scoring is evaluated mainly
through expert reviews or statistical concor-
dance measures with human raters. As addi-
tional validity evidence for CR scores produced
by generative AI, particularly for essay-type
tasks, this research examines the feasibility of
applying the Cognitive Diagnosis (CD) frame-
work in psychometrics. The results of the study
indicate that the classification information of
CRs and item-parameter estimates from cogni-
tive diagnosis models (CDMs) could provide a
new perspective as additional validity evidence
for CR scores and feedback from generative AI
with less human oversight.

1 Introduction

Constructed responses (CRs), ranging from short
sentences to full essays, are widely used to as-
sess understanding of subject-matter knowledge.
Unlike multiple-choice questions, which require
selecting a given option, CRs ask examinees to
generate answers in their own words. This task
not only requires applying knowledge but also en-
gaging in critical thinking and constructing logical
arguments. As CRs can reveal a deeper level of
understanding than simple recall questions, they
purportedly provide strong evidence of the skills
examinees possess. Accurately scoring CRs and
providing personalized, detailed feedback is hence
crucial, as it can support more subsequent learn-
ing (Gan and Liu, 2021; Kochmar et al., 2020;
Parr and H.S., 2010). However, scoring CRs with
high-quality feedback from human raters is labor-
intensive, and issues such as fatigue and subjec-
tivity are inevitable. These challenges limit the

widespread use of CRs, especially in large-scale
assessments.

Recent advances in generative AI, such as Chat-
GPT, have been explored as potential alternatives to
address these limitations (Casabianca et al., 2025;
Mizumoto and Eguchi, 2023; Yoon et al., 2023).
Generative AI offers efficiency and scalability for
CR scoring, but concerns about its sensitivity and
lack of transparency make building strong valid-
ity evidence challenging. To date, most validity
evidence for generative AI-based scoring systems
has come from expert reviews or statistical concor-
dance measures comparing AI outputs with human
ratings or traditional Natural Language Processing
(NLP) scores (Bui and Barrot, 2025a; Casabianca
et al., 2025; Seßler et al., 2024; Tate et al., 2024).

As an additional source of validity evidence, this
research draws on the Cognitive Diagnosis (CD)
framework in psychometrics. CD is designed to
evaluate examinees’ mastery of instructional con-
tent and to provide feedback on their strengths
and weaknesses in terms of learned and yet-to-be
learned cognitive skills. This way, CD offers fine-
grained diagnostic information, unlike traditional
assessments that typically provide a single numeric
score. It has been successfully applied to language
assessments, including English writing, demon-
strating its value in diagnosing both examinees’
skills and the characteristics of test items (Lee and
Sawaki, 2009; Mei and Chen, 2022). By bridging
the CD framework with generative AI-based CR
scoring, this study explores the extent to which CD
can increase the interpretability and transparency of
generative-AI scoring systems, thereby improving
their validation.
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2 Background

2.1 Generative AI for CR scoring and its
validity evidence

The use of generative AI has the potential to au-
tomate CR grading by providing both quantitative
scores and personalized feedback. Recent stud-
ies have investigated the performance of several
generative AI systems for this purpose (Bui and
Barrot, 2025b; Pack et al., 2024). However, a key
distinction lies in the process by which traditional
methods and generative AI produce scores. While
human raters and traditional Natural Language Pro-
cessing (NLP) approaches rely on trained exper-
tise and handcrafted features, generative AI derives
scores through processes that are largely opaque.
This lack of transparency necessitates strong va-
lidity evidence for the use of generative AI in CR
scoring.

Because the scoring process of generative AI is
often difficult to interpret, one integral approach
to validation has been to measure agreement be-
tween human raters and generative AI outputs. To
date, the most common evaluation metrics have
been Spearman rank correlation coefficients (r) and
Quadratic Weighted Kappa (QWK) between scores
assigned by generative AI and those assigned by
human raters. The Spearman rank correlation co-
efficient measures the monotonic association be-
tween ordinal data, and QWK evaluates inter-rater
agreement on ordinal scales by assigning heav-
ier penalties for larger disagreements and lighter
penalties for smaller ones, with penalties increas-
ing quadratically as rating differences grow. Lan-
dis and Koch (1977) provided interpretive bench-
marks for QWK: below 0.0 = Poor; 0.00–0.20 =
Slight; 0.21–0.40 = Fair; 0.41–0.60 = Moderate;
0.61–0.80 = Substantial; 0.81–1.00 = Almost per-
fect. Although these metrics reflect the degree of
agreement and thus serve as evidence of validity,
they are limited. Specifically, they capture only
overall agreement without offering insight into the
reasoning behind scores or into systematic differ-
ences between responses that receive similar scores.
Hence, complementary approaches are necessary
to provide stronger validity evidence of generative
AI’s outputs.

2.2 Cognitive diagnosis models and their use
in writing assessments

Cognitive Diagnosis (CD) provides fine-grained
information about examinees’ mastery of spe-

cific cognitive skills by describing ability in a
knowledge domain as a composite of K (spe-
cific) binary skills, called "attributes" (denoted
αk, k = 1, 2, ...,K) (Sessoms and Henson, 2018;
von Davier and Lee, 2019). These attributes form
profiles that define proficiency classes, written as
α = (α1, α2, ..., αK)′–mastered (1) or not (0)–
with 2K possible combinations.

Cognitive diagnosis models (CDMs) classify
examinees into one of these proficiency classes
based on their observed item responses, Yij , where
Yij = 1 if examinee i = 1, 2, ..., N answered item
j = 1, 2, ..., J , Yij = 0 correctly, and Yij = 0 oth-
erwise. As such, CDMs are restricted latent class
models in which the latent constructs are attributes,
and the discrete latent classes are examinees’ profi-
ciency classes.

Similarly, test items are also characterized by
K-dimensional attribute profiles qj , which specify
the attributes required for a correct response. The
qjk entries indicate whether the jth item requires
the kth attribute (1) or not (0). These q-vectors
form a ”Q-matrix” of size J ×K (Tatsuoka, 1985).

Using the observed item-response data YN×J

and Q-matrix Q, typically provided by domain ex-
perts, CDMs estimate each examinee’s attribute
profile by selecting the most likely class. The
functional relation between attribute mastery and
the probability of a correct response to an item,
P (Yj = 1|α), is modeled according to the cho-
sen CDM, which specifies how attributes inter-
act with items. Various CDMs differ in complex-
ity and assumptions (e.g., compensatory vs non-
compensatory; conjunctive vs disjunctive), but they
all share the core principle that the probability of
success on an item depends on the interaction be-
tween an examinee’s attribute profile and the item’s
q-vector (Henson et al., 2009; Williamson, 2024;
Dibello et al., 2006; Rupp and Templin, 2008). The
selection of a CDM depends on assessment goals.

Several CDMs have been applied to writing as-
sessments, with a focus on English as a Foreign
Language (EFL) (Effatpanah et al., 2019; He et al.,
2021; Kim, 2011; Shi et al., 2023; Xie, 2016). Un-
like typical applications of CD, which use direct
item responses (correct/incorrect), writing assess-
ments first require transforming examinees’ con-
structed responses into binary response data. Prior
CD studies on writing have commonly used rat-
ing checklists for this transformation, a task done
by writing experts. Kim (2011) developed an em-
pirically derived, descriptor-based (EDD) check-
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list of 35 fine-grained descriptors measuring five
constructs–content fulfillment, organizational ef-
fectiveness, grammatical knowledge, vocabulary
use, and mechanics (see Appendix A.2 for the de-
scriptors of EDD). In her study, they had ten ESL
(English as a second language) teachers assess 480
TOEFL (Test of English as a Foreign Language) es-
says using the EDD checklist and converted them
into binary item-response data. Then, using the
reduced reparameterized unified model (R-RUM)
(Hartz, 2002), they diagnosed learners’ writing abil-
ity and demonstrated that the CD framework could
reliably identify strengths and weaknesses. Build-
ing upon this work, Xie (2016) applied the same
EDD checklist with R-RUM in a different assess-
ment context and found that it provided more di-
agnostic information than raw scores alone. The
checklist was further validated using the additive
CDM (ACDM) (de la Torre, 2011) and R-RUM
(Effatpanah et al., 2019; Shahsavar, 2019). More
recently, He et al. (2021) employed polytomous
CDMs to extend binary models, diagnosing English
learners’ writing ability with a different checklist
measuring four constructs. Under this approach,
each constructed response is treated as an ”exam-
inee,” each checklist descriptor as an ”item,” and
each latent construct targeted in the rubric as an
”attribute.” When a response meets a checklist cri-
terion, Yij = 1; otherwise, Yij = 0. With this map-
ping, CDMs estimate each constructed response’s
attribute profile/proficiency class, indicating which
rubric-defined attributes are present.

3 Methodology

3.1 Dataset
Ideally, this study would have used essay datasets
from previous writing assessment studies, such as
the TOEFL independent writing, along with the cor-
responding binary item-response data coded by ex-
pert raters using the empirically derived descriptor-
based diagnostic (EDD) checklist and the Q-matrix.
However, because those datasets were not publicly
accessible, we sought an open essay dataset that
closely resembled the formats and tasks used in
prior research, so that the EDD checklist and Q-
matrix developed by (Kim, 2011) and subsequent
studies could still be applied.

As a surrogate, we identified Set 2 from the Kag-
gle “The Hewlett Foundation: Automated Essay
Scoring (AES)” dataset1. Set 2 consists of per-

1https://www.kaggle.com/c/asap-aes/data

suasive essays averaging 350 words, written by
grade 10 native English speakers. The scoring scale
ranged from 2 to 10, with two domains: Writing
Applications (1-6) and Language Conventions (1-
4). A detailed comparison of the formats between
TOEFL Independent Writing and AES Set 2 is pre-
sented in Table 1.

The dataset contains 1,800 essays, each scored
by two human raters, along with a detailed rubric
and exemplar essays for each score. Based on the
prior studies, we selected 500 essays from Set 2 for
analysis. The specific essay prompt is provided in
Appendix A.1.

Table 1: Comparison between TOEFL Independent
Writing Task and AES Set 2 Dataset

Feature TOEFL Ind. AES Set 2
Task type Persuasive

“agree/disagree”
Persuasive
“agree/disagree”

Avg length 300–400 words 350 words
Time limit 30 minutes Not specified
Population EFL learners

(Primarily ages
21–25)

Grade 10 native
English speak-
ers

Score scale 1–5 2–10
# of Raters 2 2
Domains Single holistic

score
Writing Appli-
cations (1–6) +
Language Con-
ventions (1–4)

3.2 Procedure

We used the auto version of ChatGPT-5 from Ope-
nAI, with the default temperature setting (which
controls the variability of responses) for all stages
of this study.

First, ChatGPT-5 was customized with the in-
structions to act as a rater evaluating student essays.
The essay scoring guide and rubric file, including
exemplar essays from the original AES website,
were provided via Retrieval Augmented Generation
(RAG). This setup enabled ChatGPT-5 to assign
numerical scores and generate qualitative feedback
of the selected 500 essays. The scoring prompt was
adapted from Casabianca et al. (2025) and tailored
to this study (see Appendix A.1). In this setting,
generation followed a zero-shot Chain of Thought
(CoT) approach, since no worked examples were
included. Each essay was scored using a single
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prompt that requested both the score and feedback.
The major challenge was the absence of binary

item-response data for the AES dataset based on
the EDD checklist, which are required inputs for
CDMs. Without resources to recruit expert raters
to transform essays into item-response data, we
relied on ChatGPT-5 for this task. To mitigate con-
cerns about reliability, we used a few-shot Chain
of Thought (FsCoT) design. Three essays, drawn
from outside the 500-essay sample, were manually
rated with the EDD checklist and provided as exem-
plars in the prompt to ChatGPT-5. The model was
then asked to generate a binary vector of size 1×35
for each essay, indicating whether each descriptor
was met. This task was conducted in a separate
session from the scoring task. The full prompt for
this task is included in Appendix A.2.

This process yielded a 500× 35 item-response
matrix, ready for CDM analysis with the Q-matrix
by Kim (2011). The Q-matrix specifies five latent
attributes that the EDD checklist aims to measure:
Content Fulfillment (CON), Organizational Effec-
tiveness (ORG), Grammatical Knowledge (GRM),
Vocabulary Use (VOC), and Mechanics (MCH).
Based on the initial Q-matrix by Kim (2011), we
empirically validated it using the method suggested
by de la Torre and Chiu (2016), as in previous stud-
ies, and refined it to reduce misspecification and
enhance CDM performance for datasets used in the
study.

3.3 Data Analysis
The constructed item-response matrix and the re-
fined Q-matrix were used as inputs for the Reduced
Reparameterized Unified Model (R-RUM), which
has been widely applied in prior CDM-based writ-
ing assessment research. The item response func-
tion of the R-RUM is given by:

P (Yij = 1|αi) = π∗
j

K∏

k=1

r
∗qjk(1−αik)
jk ,

where 0 < π∗
j < 1 represents the probability of a

correct response when examinee i has mastered all
attributes required by item j, and 0 < r∗jk ≤ 1 is
the penalty parameter for not mastering attribute k.
π∗
j and r∗jk correspond to item difficulty and item

discrimination, respectively (Kim, 2011). Values
of π∗

j < 0.6 suggest overly difficult items, and
r∗jk < 0.5 indicates that an item discriminates well
between mastery and non-mastery on skill k (Rous-
sos et al., 2007).

The validity evidence for the generative AI scor-
ing was evaluated by examining the following:

1. the agreement between ChatGPT scores and
human rater scores via Spearman correlation
and QWK

2. the consistency between ChatGPT scores &
feedback and the attribute mastery profiles
estimated by the CDM.

For example, generative AI scoring can be sup-
ported as valid if essays grouped into the same
proficiency class by CDMs also receive consis-
tent scores from ChatGPT, and if the qualitative
feedback aligns with mastered and non-mastered
attributes.

We also analyzed the estimated item parame-
ters from R-RUM to enhance the interpretability of
ChatGPT’s scoring process. This analysis allowed
us to examine the extent to which latent attributes
(from the Q-matrix) or items (descriptors from the
checklist) influenced ChatGPT’s scoring. For ex-
ample, two constructed responses might receive
the same overall score from ChatGPT, yet differ in
their attribute profiles or in the number of mastered
attributes, providing insight into how ChatGPT’s
scoring reflects specific attributes.

Although generating item-response datasets with
expert raters would be more rigorous in practice,
our approach demonstrates the feasibility of using
CDMs to evaluate generative AI scoring in greater
depth and to strengthen validity evidence by mov-
ing beyond numerical scores to attribute-level rea-
soning.

4 Results

As a preliminary check, inter-rater reliability be-
tween two human experts was examined using
Spearman correlation coefficients and quadratic
weighted kappa (QWK). Both indices were 0.82,
indicating strong agreement. A t-test comparing
the two raters’ mean raw scores showed no statisti-
cally significant difference (p-value = 0.55).

Next, the validity of ChatGPT-5 scores was eval-
uated against the human ratings. For total scores,
the Spearman coefficient was 0.67 and QWK was
0.56, indicating moderate agreement. At the do-
main level, Domain 1 showed 0.58 (Spearman)
and 0.55 (QWK), while Domain 2 was lower–0.56
(Spearman) and 0.26 (QWK). The relatively weak
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agreement in Domain 2 reflects ChatGPT’s ten-
dency to score more strictly on language conven-
tions.

The cross-tabulation of human mean scores and
ChatGPT-5 scores shown in Table 2 confirms this
pattern. ChatGPT frequently assigned scores about
one point lower than the human raters, particularly
in the mid-range of the scale.

Table 2: Agreement matrix between human mean total
scores (Hu) and ChatGPT-5 (AI) total scores

Hu \AI 2 3 4 5 6 7 8 9 10
2 1 2 0 0 0 0 0 0 0

2.5 0 2 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0

3.5 1 1 2 0 0 0 0 0 0
4 0 4 3 4 1 0 0 0 0

4.5 0 5 6 2 1 0 0 0 0
5 0 4 5 14 5 0 0 0 0

5.5 0 2 1 8 1 1 0 0 0
6 0 7 10 33 34 10 5 0 1

6.5 0 2 2 12 16 7 4 0 0
7 0 2 4 20 30 15 11 1 0

7.5 0 0 3 3 9 14 12 1 0
8 0 0 0 12 27 28 46 9 3

8.5 0 0 0 0 1 2 11 3 1
9 0 0 0 1 0 0 4 3 0

10 0 0 0 0 0 0 0 0 1

Applying R-RUM, essays were classified into
proficiency profiles (Table 3). Fourteen of the
32 possible classes were observed, with the dis-
tribution concentrated in higher-mastery profiles.
Across all classes, ChatGPT-5 assigned lower aver-
age scores than human raters. Profiles with fewer
mastered attributes tended to receive lower scores
overall, while broader mastery was associated with
higher scores from both humans and AI.

Table 3: Summary of human (Hu) and ChatGPT-5 (AI)
scores by proficiency class

Class Count Hu Mean (SD) AI Mean (SD)
(00000) 25 4.64 (1.56) 3.96 (1.67)
(01000) 6 6.58 (0.58) 5.33 (0.63)
(00100) 42 5.15 (1.27) 4.05 (0.96)
(00001) 8 6.94 (0.82) 6.38 (1.19)
(11000) 4 7.00 (1.83) 5.75 (1.50)
(10001) 3 8.00 (0.00) 6.33 (1.53)
(01100) 67 6.37 (0.96) 5.30 (0.98)
(00101) 14 5.50 (1.14) 5.14 (0.86)
(11100) 73 6.84 (0.89) 5.60 (1.04)
(11010) 1 7.00 (NA) 6.00 (NA)
(01101) 55 6.74 (1.08) 5.98 (0.83)
(11110) 9 7.06 (1.10) 6.78 (1.39)
(11101) 39 6.90 (0.93) 6.82 (0.97)
(11111) 154 7.64 (0.80) 7.49 (1.20)

Beyond serving as validity evidence for Chat-
GPT’s scores, the estimated proficiency classes of
essays also aid in the interpretation of ChatGPT’s

Figure 1: Total EDD checklist score vs. ChatGPT-5
score

scoring with respect to mastery status. Table 4
presents three essays’ estimated proficiency classes,
scores, and ChatGPT feedback. Essays from
higher-level classes received feedback acknowl-
edging strengths, while essays from lower-level
classes received feedback identifying weaknesses
consistent with their attribute profiles. For exam-
ple, Essay 3213–mastering CON, ORG, GRM, and
MCH but not VOC–received relatively positive
comments, with vocabulary flagged as the main
area for improvement. In contrast, Essays 2995
and 3103, from lower classes, received feedback
emphasizing underdeveloped reasoning, weak tran-
sitions, and frequent grammar issues.

Furthermore, even when two essays shared the
same AI and/or human score, their estimated pro-
ficiency classes show more fine-grained diagnos-
tic information with different combinations of at-
tributes. The high alignment between classifica-
tion results and ChatGPT feedback strengthens the
point that the generative AI’s comments are suffi-
ciently valid to guide targeted revisions.

Figure 1 further illustrates the relation between
EDD checklist totals (0–35) and ChatGPT-5 scores
(2–10). A clear positive trend emerges: as more
checklist items were met, ChatGPT assigned higher
scores. This convergence with the checklist also
supports the construct validity of ChatGPT’s scor-
ing.

Drawing on the CD framework provides further
insight into factors that may influence ChatGPT’s
scoring. Based on the R-RUM estimates, the pro-
portion mastering each attribute was: CON= 0.57,
ORG= 0.82, GRM= 0.91, VOC= 0.33, and
MCH= 0.55. Thus, many essays satisfied GRM
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Figure 2: Average ChatGPT-5 scores by mastery status
for each attribute

but not VOC (e.g., limited vocabulary variety). As
shown in Figure 2, ChatGPT scores were higher
when an attribute was mastered, with the largest
mastery-non-mastery gap for VOC–indicating that
vocabulary mastery was especially influential on
ChatGPT-5 scoring.

The checklist-descriptor parameter estimates
(Table 5) corroborate these patterns. Descriptors
linked to VOC exhibit comparatively strong dis-
crimination, consistent with the larger VOC-related
score gap in Figure 2. Based on Table 5, most de-
scriptors showed high π∗ values (near 1) in gen-
eral, indicating that once the relevant attributes
were mastered, the probability of meeting the cor-
responding criteria was very high. Some γ∗ pa-
rameters showed little or no penalty, implying that
certain descriptors were less diagnostic of underly-
ing mastery.

Overall, ChatGPT-5 scoring agrees reasonably
well with human raters, although it tends to be
more strict, particularly in certain domains. To-
gether with numerical scores, its narrative feed-
back corresponds meaningfully with latent attribute
(non)mastery, showing where specific strengths and
weaknesses lie in each essay.

5 Discussion

This study aimed to adapt psychometric modeling,
grounded in cognitive diagnosis theory, to intro-
duce new forms of validity evidence for generative-
AI scoring. Specifically, we demonstrated how
cognitive diagnostic models and checklist-based
item-response data of essays can serve as a frame-
work for investigating ChatGPT-generated scores
at both the holistic and attribute levels.

Several limitations should be noted. First, we did
not examine the consistency of AI scores across
multiple time points. Given that large language
models are sensitive to prompt wording and contex-
tual framing, test–retest reliability remains an open
question. Future work should estimate intraclass
correlation coefficients (ICCs) to evaluate score sta-
bility over repeated administrations (Seßler et al.,
2024).

Second, our results may be suboptimal because
(i) the EDD checklist was not originally designed
for the essay samples in this study, and (ii) our artifi-
cial item-response dataset has not undergone valida-
tion. Access to established item-response datasets
from prior studies would provide stronger ground-
ing and allow more robust validation of this ap-
proach. Moreover, a formal implementation would
require sustained expert involvement–from rubric
design and Q-matrix specification to interpreting
constructed-response evaluations.

Despite these limitations, the findings are
promising. While challenges remain in applying
CDMs within AI-automated assessment, the re-
sults suggest that such models can enhance the
transparency of AI scoring. By linking scores to
specific latent attributes, this framework provides
an additional source of validity evidence-—helping
explain not just what score was assigned, but also
why.

In sum, this study demonstrates the feasibility of
using psychometric frameworks to support the vali-
dation of AI-generated scores. By combining the
interpretive strengths of cognitive diagnosis with
the efficiency of generative AI, this approach of-
fers a novel pathway toward transparent, evidence-
based scoring systems in educational assessment.

Future research should extend this work in sev-
eral directions. Different CDMs could be compared
by model fit across diverse testing contexts. Be-
yond extended essays, the approach could also be
adapted to shorter constructed-response tasks, such
as sentence-level prompts. For these tasks, the
checklist and Q-matrix would be smaller and eas-
ier to operationalize, reducing reliance on expert
judgment while still producing meaningful validity
evidence.
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A Appendix

A.1 ChatGPT prompt for scoring essays
A student is assigned to an essay question as fol-
lows:

"All of us can think of a book that we hope none
of our children or any other children have taken off
the shelf. But if I have the right to remove that book
from the shelf—that work I abhor—then you also
have exactly the same right, and so does everyone
else. And then we have no books left on the shelf
for any of us." (Katherine Paterson Author)

Write a persuasive essay for a newspaper reflect-
ing your views on censorship in libraries. Do you
believe that certain materials, such as books, music,
movies, magazines, etc., should be removed from
the shelves if they are found offensive? Support
your position with convincing arguments from your
own experience, observations, and/or reading.

In addition to the rubric files in the “File” folder,
the following are the specific guidelines for scoring
the essay question above. Grade the essay based on
all the rubrics provided. Remember that there are
two types of scores: Domain 1 (Writing Applica-
tions) and Domain 2 (Language Conventions). As
mentioned in the rubrics, give a score from 1 to 6
for Domain 1 and a score from 1 to 4 for Domain 2.
Then, provide a 20-30 word feedback highlighting
strengths and areas for improvement. Return the
response in a JSON format of:

{ Score for Domain 1, Score for Domain 2, "Rea-
sons": [ { reasons } ] } The reasons should be an
array of 3 objects. Each object should be in the
structure shown above and described below. For
each object in the reasons array, a reason must be
provided. This reason should be one of the reasons
for giving the score based on the rubric. The reason
should not be a full sentence but in 20-30 words
and be suitable to be displayed as bullet points to a

person with a high school-college-level education,
rather than copied directly from the rubric.

This is the end of the explanation. Now, I’ll give
you an essay from each student.

A.2 ChatGPT prompt for the checklist
You are an essay rater. Using the provided 35-item
EDD checklist below, evaluate 10th-grade essays.
For each item on the checklist, determine if the
essay satisfies the criterion.

The EDD checklist is presented as follows:

1. This essay answers the question.
2. This essay is written clearly enough to be read

without having to guess what the writer is
trying to say.

3. This essay is concisely written and contains
few redundant ideas or linguistic expressions.

4. This essay contains a clear thesis statement.
5. The main arguments of this essay are strong.
6. There are enough supporting ideas and exam-

ples in this essay.
7. The supporting ideas and examples in this es-

say are appropriate and logical.
8. The supporting ideas and examples in this es-

say are specific and detailed.
9. The ideas are organized into paragraphs and

include an introduction, a body, and a conclu-
sion.

10. Each body paragraph has a clear topic sen-
tence tied to supporting sentences.

11. Each paragraph presents one distinct and uni-
fied idea.

12. Each paragraph is connected to the rest of the
essay.

13. Ideas are developed or expanded well through-
out each paragraph.

14. Transition devices are used effectively.
15. This essay demonstrates syntactic variety, in-

cluding simple, compound, and complex sen-
tence structures.

16. This essay demonstrates an understanding of
English word order.

17. This essay contains few sentence fragments.
18. This essay contains few run-on sentences or

comma splices.
19. Grammatical or linguistic errors in this essay

do not impede comprehension.
20. Verb tenses are used appropriately.
21. There is consistent subject-verb agreement.
22. Singular and plural nouns are used appropri-

ately.
23. Prepositions are used appropriately.
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24. Articles are used appropriately.
25. Pronouns agree with referents.
26. Sophisticated or advanced vocabulary is used.
27. A wide range of vocabulary is used.
28. Vocabulary choices are appropriate for con-

veying the intended meaning.
29. This essay demonstrates facility with appro-

priate collocations.
30. Word forms (noun, verb, adjective, adverb,

etc) are used appropriately.
31. Words are spelled correctly.
32. Punctuation marks are used appropriately.
33. Capital letters are used appropriately.
34. This essay contains appropriate indentation.
35. Appropriate tone and register are used

throughout the essay.

Score each criterion with a binary value—1 if
the essay meets the criterion or 0 if the essay does
not. Your final evaluation should be a binary vector
of size (1 x 35).

Let me give some examples of a student’s essays
and the corresponding evaluations:

Example 1: Certain materials being removed
from libraries such as books, music and magazines,
shouldn’t be removed from the libraries. It gives
people a chance to understand how the real world
@CAPS2. Having certain materials such as books
and music definitly should not be removed, because
most books and music can show most people how
bad the statement in the book @CAPS2 or how
bad the lyrics are in a song, and help that person
to avoid that type of thing that the book or song
@CAPS2 saying to the reader or listener. People
should give every type of music at least a try and
not always doubt what they hear about what people
say about that type of music. I always hear about
people saying how bad the band @PERSON1 A.M.
@CAPS2, just because in the lyrics it talks about
drugs and how much cursing each song has. Really
the band @CAPS2 talking about one mans life and
how he turns his life from being a drug addict to
having the best life someone could ever live. People
always doubted him and never gave his music a
chance. Another example would be @PERSON1’s
book, ’@CAPS1 @CAPS2 @CAPS3 @CAPS4’ for
it talks about drug addicts, homeless people, peo-
ple who have been born with disfigured arms or
even someone who lost there legs, and telling how
beautiful each and everyone of them really are. His
book taught me a few things and made me think
different about people. It doesn’t matter how they

look or how they talk, no matter what, that person
@CAPS2 beautiful. As far as movies and maga-
zines has gone within the last few years, I think
that the also shouldn’t be taken from libraries. I
think @CAPS1 for the same reason of how I feel
about the books and music. Of course we see pre-
views of movies and think that they @MONTH1 not
be good, but libraries shouldn’t keep leave them
out. Movies @CAPS2 a great way to learn how
to treat others and how to act around other people
when you don’t know how to act. If you act differ-
ently around people that you’ve never been around
before, then you could feel embarassed or maybe
even get @CAPS4. Movies can help people learn
about the real world by seeing how to do those
type of things as we get older. Same goes with the
magazines, they also help people see what not to
do or to help them understand the consequences of
something that shouldn’t be done. Knowing what
to do from a magazine could possible save your
life or perhaps maybe even someone elses life. I
don’t understand why some libraries would want
to banned certain materials to help people under-
stand the things that happen in someone elses life
and to help them not make the same mistakes as
that person once did.

Evaluation based on the EDD checklist:
(1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1)

Example 2: Do you believe that certain should
be removed i think so be no that yes i think should
no person that in chager the book, music, movies,
magazines, ect., that be no agure why do i think if
you need that please think i no thank you please if i
need why do we if know that if i failure the this test
i who need to graduate please the children allow to
home please yes. Why do we need to be a prafece
person please why do we need to do this why write
this assgiment because you mean to be the best
teaches ever and ever facebook is my password is
@PERSON1 @NUM1 that why i need my myspace
is the same thingh but different at same time please
know that i need to know i really i need to my e-
mail address is @EMAIL1 that is my e-mail please
work m

Evaluation based on the EDD checklist:
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

Example 3. Do you think that libraries should
remove certain materials off the shelves? People
have different oppions, of whats good and whats
bad. I have read and seen a lot of books in my life
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time. I hear people telling me, ’oh dont read that
book its a bad book.’But I ask myself, @CAPS2 do I
know it’s a bad book when I haven’t even given it a
chance?’ @CAPS1 are some books, music, movies,
and magazines out @CAPS1 that are offensive. Yet
we still want to read, listen, watch, and look at
them. If we tried to remove all the offensive books,
from the libraries we wouldn’t have anything left
on the shelves. Katherine Paterson said, ’If I have
the right to remove that book from the shelf that
work i abhor- then you also have exactly the same
right and so does everyone else. And then we have
no books left on the shelf for any of us.’ Katherine
Paterson makes a great point out of her quote. Why
should we have to remove a book if just some peo-
ple think its offensive? Ask yourself the question
again, ’@CAPS2 do you know it’s a bad book when
you haven’t even given it a chance?’ @CAPS3’t
judge a book by what you hear. Find out what your
own oppion is

Evaluation based on the EDD checklist:
(1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1)

Refer to the above evaluation examples, rate the
provided essay in the same form using the EDD
checklist. When you evaluate, ignore words start-
ing with an “@” symbol in essays, as it is marked
for privacy and copyright issues. Also, one thing to
remember regarding the indentation of the essay–
which is the 34th criterion of EDD—is that con-
sider tab-spacing between two sentences as the
indentation for a new paragraph.

This is the end of the instruction. Now, I’m
providing each essay.
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Table 4: Essay classifications, human and AI scores, and excerpts of ChatGPT feedback

Essay # Class Hu Score AI Score AI Feedback
2995 11100 6 6

• Essay clearly takes a stance against censorship with two
main arguments, but reasoning is repetitive and lacks
deeper development or specific supporting details.

• Organization includes introduction, body, and conclusion,
but transitions are weak, and the structure is somewhat
formulaic with limited expansion of ideas.

• Frequent grammar and spelling errors (e.g., shout for
should, there selves, ofeneded, intersting) and awkward
phrasing disrupt fluency and reduce overall polish.

3103 01000 6 6

• The essay presents a clear opinion in favor of censorship,
with supporting reasons such as protecting children from
adult content and the influence of media. Personal ex-
perience is included, which adds some strength to the
argument, though examples are somewhat vague and un-
derdeveloped.

• Organization is generally clear with an introduction, sup-
porting paragraphs, and conclusion, but transitions are
weak and ideas repeat instead of expanding. Some claims
lack detail or evidence, which reduces the persuasiveness.

• Language control is limited. There are numerous errors
in grammar, spelling, and word choice (e.g., ’boundries,’
’consent,’ ’hazardess,’ ’drasticly,’ ’cencorships,’ ’portary-
ing’). Sentence fluency is uneven, and phrasing is some-
times awkward. These issues interfere somewhat with
clarity.

3213 11101 8 7

• Essay presents a clear stance against censorship with sup-
porting arguments and examples, though some ideas are
repetitive and lack deeper exploration or nuanced devel-
opment.

• Organization includes introduction, body, and conclusion,
but transitions are uneven and some paragraphs meander,
reducing the overall clarity and impact of progression.

• Language shows good control overall, but errors in
spelling and grammar (‘Weather’ vs. ‘Whether,’ ‘twards,’
subject-verb agreement) slightly disrupt flow. Vocabulary
is basic and could be more varied.
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Table 5: Parameter estimates for checklist descriptors

Descriptor π∗ r∗CON r∗ORG r∗GRM r∗VOC r∗MCH
D01 0.99 1.00 0.98 0.78
D02 0.99 0.81 0.65
D03 0.81 0.25
D04 0.99 0.81 0.59
D05 0.95 0.88 0.16
D06 0.99 0.82 0.08
D07 0.99 0.03
D08 0.95 0.17 0.37
D09 0.99 0.46
D10 0.95 0.07
D11 0.93 0.08
D12 0.98 0.25
D13 0.99 0.11
D14 0.96 0.04
D15 0.97 0.80 0.43 0.35 0.84
D16 0.99 1.00 0.28
D17 0.99 0.39
D18 0.88 0.05 0.32
D19 0.99 0.98 0.23
D20 0.99 0.98 0.33
D21 0.98 0.31
D22 0.99 0.22
D23 0.96 0.13
D24 0.78 1.00 0.15
D25 0.99 0.30 0.89
D26 0.31 0.02 1.00
D27 0.80 0.09
D28 0.99 0.92 0.58 0.98
D29 0.98 0.79 0.24
D30 0.94 0.71 0.29 0.87
D31 0.54 0.46 1.00 0.28
D32 0.99 1.00 0.34
D33 0.95 0.13
D34 0.97 0.83 0.56 0.98
D35 0.99 0.93 0.82 0.99

Notes. γ∗ estimates with strong discriminant power (< 0.5) are high-
lighted in bold.
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Abstract

Fraction number lines are widely recognized as
an effective tool for supporting students’ con-
ceptual understanding of rational numbers, yet
their abstract nature makes them challenging
for students to use and for teachers to eval-
uate reliably. This study introduces Visual
Translator (VT), an AI-based tool designed
to automatically diagnose students’ problem-
solving strategies and error types in handwrit-
ten fraction number line tasks. VT employs
object detection models trained on a curated
subset of 1,134 annotated student responses
from the ASSISTments Mathnet dataset, and
generates structured text descriptions of key vi-
sual elements, which can then be processed by
large language models (LLMs) for higher-level
reasoning. Preliminary results indicate that
VT outperforms GPT-4o and Grok in fraction
value identification (Precision = 0.611, Recall =
0.582), while achieving substantially higher ac-
curacy in location detection (mAP@50 = 0.88)
compared to Gemini-2.5 Pro (0.11). These
findings demonstrate the promise of combining
computer vision with generative AI to improve
automated diagnosis of students’ mathematical
strategies.

1 Introduction

Fractions represent a critical transition in mathe-
matics learning, serving as a bridge between whole
numbers and rational numbers and laying the foun-
dation for later understanding of proportional rea-
soning, algebra, and real numbers (Siegler et al.,
2011; Siegler and Pyke, 2013). However, decades
of research have shown that students frequently
struggle with fractions, often treating them as two
whole numbers rather than as magnitudes on a con-
tinuous scale (Ni and Zhou, 2005). To address
these difficulties, instructional researchers have
emphasized the use of number lines as a visual
and conceptual tool for representing fractions. A
number line highlights relative magnitude, density,

and equivalence of rational numbers, making it
particularly effective for developing conceptual un-
derstanding (Stewart et al., 2008). As such, num-
ber lines have been widely recommended in stan-
dards and curricula, including the Common Core
State Standards for Mathematics (Association et al.,
2010).

Despite their benefits, number lines also present
challenges for students. Siegler and colleagues
identified two primary strategies (Siegler et al.,
2011) used by students: segmentation strategies,
which involve partitioning the interval between
0 and 1, and numerical transformation strategies,
which involve mapping fractions onto known ref-
erence points. Errors commonly observed include
uneven segmentation, the use of incorrect units, or
misapplied transformations (Bright et al., 1988; La-
mon, 2007). These errors are not merely procedural
slips; they reflect deeper misconceptions about the
nature of rational numbers (Lamon, 2007). For
teachers, especially novice teachers, diagnosing
these misconceptions from handwritten number
line representations is both cognitively demanding
and time-consuming (Zhang et al., 2016). Con-
sequently, there is a pressing need for scalable
tools that can assist teachers in analyzing student
responses and identifying error types with accuracy
and consistency.

The rapid advancement of artificial intelligence
(AI) provides new opportunities to address this
need. Automated scoring systems have demon-
strated success in domains such as essay grading,
short-answer evaluation, and mathematical prob-
lem solving (Lockwood, 2014; Dikli, 2006). Re-
cent work has also explored the use of computer vi-
sion and large language models (LLMs) to interpret
drawn diagrams and models. For example, Lee and
Zhai reported limited success in using GPT-4o to
grade student-drawn science models, with accuracy
ranging from 0.2 to 0.6, highlighting the challenges
of reliably recognizing children’s handwritten and
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diagrammatic representations (Lee and Zhai, 2023).
Similarly, early experiments with GPT-4o and re-
lated multimodal models suggest that, while LLMs
excel in natural language reasoning, their image-
processing capabilities remain insufficient for fine-
grained educational diagnostics such as interpreting
number lines.

In this study, we evaluate VT against both
human-annotated ground truth and state-of-the-art
LLMs (GPT-4o, o3, Gemini-2.5, Grok) on two key
tasks: (a) recognizing handwritten fraction values,
and (b) detecting the locations of visual elements
on number lines. Our preliminary results show that
VT achieves substantially higher accuracy in loca-
tion identification (mAP@50 = 0.88 vs. 0.11 for
Gemini-2.5 Pro) and competitive accuracy in frac-
tion value recognition, outperforming GPT-4o and
Grok. Beyond empirical results, our contributions
are threefold:

• We manually labeled over one thousand stu-
dent responses featuring fraction number lines,
creating a domain-specific dataset with fine-
grained annotations of key visual elements
(ticks, endpoints, and handwritten values).

• We trained the Visual Translator (VT) on this
dataset, tailoring it specifically for fraction
number line tasks to detect and interpret key
visual information from students’ handwritten
solutions.

• We designed metrics to assess the accuracy
of models in capturing key visual information
in students’ work, and conducted extensive
experiments comparing VT with leading mul-
timodal LLMs, including GPT-4o, GPT-o3,
Gemini-2.5 Pro, and Grok-2.

2 VT Model

2.1 Data Preparation

The first step in developing the VT model was to
identify student responses containing fraction num-
ber lines. From the full MathNet dataset of 3.8 mil-
lion images, we initially filtered 139,000 fraction-
related items using keywords extracted from the
associated JSON metadata. From this subset, we
manually labeled a small number of images that
clearly contained number lines to serve as seed
data.

To expand the labeled dataset efficiently, we
trained a YOLOv8 model on the seed images to de-

Table 1: Statistics of Key Elements.

Key Elements Type Number of Instances
Fraction 8199

Tick 8385
0 2474
1 4447
2 2236
3 2054
4 2182
5 1732
6 2387
7 606
8 1204
9 476

tect number lines and applied it to additional candi-
date images. Predictions from the model were then
manually verified to confirm their relevance. This
iterative process, in which the model guides the se-
lection of images for human annotation, effectively
implements an active learning strategy, concentrat-
ing labeling effort on the most informative samples
and improving data collection efficiency.

After identifying 1,134 confirmed images fea-
turing 0–1 fraction number lines, we conducted
fine-grained annotations of key visual elements,
which are identified by our educational experts,
including tick marks, digits(0-9), and fractions. Fi-
nally, the dataset contains more than 8,000 fraction
labels, over 8,300 tick marks, and thousands of
digit labels (0–9). Detailed statistics of the labeled
dataset are summarized in Table 1. All annota-
tions were completed by our graduate assistants
using Roboflow1, a comprehensive platform for
data annotation, model training, and deployment.
Each key element was enclosed within a bound-
ing box of a distinct color and assigned a unique
label, as shown in Figure 1. The platform allows
export of labeled information into various formats,
including .txt, .json and other supported formats,
enabling users to directly download the annotation
files. These annotations serve as the foundation for
subsequent model training, evaluation, and auto-
mated diagnostic tasks.

Figure 1: An example for labeling work.

1https://roboflow.com

179

https://roboflow.com


2.2 Textual Description Generation
After preparing and annotating the dataset, the VT
model was trained to generate textual descriptions
of a student’s work from a given input image. For
each image, the model produces a description that
includes the key visual elements, their correspond-
ing labels, and spatial coordinates. Additionally,
the model identifies whether the number line is a
0–1 number line by detecting the presence of lead-
ing 0 and ending 1.

When a key element corresponds to a fraction,
the model further derives the fraction value from
the detected digits in the bounding box of a fraction.
Specifically, a post-processing clustering algorithm
groups digits associated with each fraction into two
sets, corresponding to the numerator and denomina-
tor. The final fraction value is then computed from
these clusters, ensuring accurate reconstruction of
the student’s intended fraction. Besides that, for a
detected fraction, it is linked to its corresponding
tick (if present) in the form of "F0-T1", where F0
denotes the first fraction and T1 denotes the sec-
ond tick. The indices of fractions (i.e., F0, F1, F2
. . . ) and ticks (T0, T1, T2 . . . ) were automatically
generated based on the left-to-right order of the
top-left coordinates of their bounding boxes.

Overall, this process provides a structured tex-
tual summary of the detected key elements in a stu-
dent’s response, including their spatial information
and numerical content. These textual summaries
serve as standardized inputs for downstream di-
agnostic tasks, enabling automated error analysis
and strategy classification. An example for textual
generation is shown in Figure 2.

Figure 2: A demo example for textual generation.

2.3 Model Development

We developed the VT model in the following
pipeline:

2.3.1 Key Element Detection
We trained an object detection model from the
YOLO series to identify ticks, digits, and frac-
tions. Training was conducted on the Roboflow
platform, which provides resources optimized for
small object detection in real-time. The labeled
dataset enabled the model to learn the visual ap-
pearance and spatial layout of key elements. Our
best-performing model achieved a mean Average
Precision at IOU 0.5 (mAP@50) of 0.88 on the
validation set, demonstrating high accuracy in de-
tecting fine-grained handwritten components.

2.3.2 Model Deployment
The trained VT model is deployed to detect key
elements—ticks, digits, and fractions—while re-
turning their corresponding labels and spatial co-
ordinates. The deployment is hosted on Roboflow
and accessible via an API, which allows external
systems to directly query the model. This design en-
ables smooth integration into various downstream
applications without requiring local installation or
complex setup.

2.3.3 Web-based Interface
To further enhance usability, we developed a web
application hosted on Hugging Face Spaces, of-
fering an interactive interface for educators and
researchers. Through this platform, users can:

• Upload an image of a student’s work.

• Visualize detection results superimposed on
the original image.

• Automatically reconstruct fraction values by
clustering detected digits into numerators and
denominators.

• Generate a textual summary of all identified
key elements along with their coordinates.

• Download the complete results as a JSON file
for integration into other pipelines.

The web service is hosted on Hugging Face Spaces
and can be accessed at MathNet VT Model Web
Platform. Access is granted via the invitation token
RU_MATHNET_VT.
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3 Evaluation

Unlike conventional object detection models, the
VT system is designed not only to detect visual
elements but also to generate structured textual
descriptions that capture the key information in stu-
dents’ handwritten number line tasks. While stan-
dard detection metrics such as mAP@50 provide
useful references, they are insufficient to directly
reflect performance on our educational task, where
the ultimate goal is to recover meaningful mathe-
matical content (e.g., fractions, their values, and
their associations with ticks).

To address this gap, we manually annotated addi-
tional ground truth information–including fraction
values ordered from left to right according to the
bounding box locations of fractions, as well as
the associations between fractions and their cor-
responding ticks–and developed a set of tailored
evaluation metrics that complement traditional ob-
ject detection measures. These metrics assess (i)
the accuracy of recognized fraction values and (ii)
the correctness of their associations with ticks. Fi-
nally, we designed a weighted composite score that
integrates our custom metrics with conventional
detection metrics. This composite score serves as
a more intuitive and holistic evaluation of the per-
formance of VT, balancing both visual detection
accuracy and the recovery of meaningful mathe-
matical content from student work.

3.1 Additional Ground Truth Construction

In addition to the bounding box annotations used
for model training, two further steps were con-
ducted to establish reliable ground truth:

• Fraction Value Annotation. Expert graduate
assistants manually read each student’s hand-
written work and labeled fraction values (e.g.,
1/8, 2/8, 3/8). These values were aligned with
bounding boxes to create a verified mapping
between visual regions and fraction numbers.

• Fraction–Tick Association. Fractions were
linked to their corresponding ticks (if present)
using index pairs (e.g., F0–T1), where indices
were assigned based on the left-to-right order
of their bounding boxes.

As illustrated in Figure 3, this multi-level an-
notation ensured that ground truth covered both
fraction recognition and structural relationships in
the number line.

Figure 3: Additional ground truth annotation.

3.2 Metrics for Fraction Value Identification
To evaluate fraction recognition, we designed two
complementary accuracy indices:

• Jac Index (Order-independent). Measures
the set overlap between predicted and ground-
truth fraction values, ignoring their order. It
reflects the completeness of detection.

• Seq Index (Order-sensitive). Measures the
length of the longest subsequence of correctly
predicted fractions that also appear in the cor-
rect order. This is stricter than the Jac Index,
as it penalizes out-of-order predictions.

In addition, we computed precision and recall for
fraction values:

Precision =
# of correctly detected fraction values

# of all detected fraction values

Recall =
# of correctly detected fraction values
# of all ground-truth fraction values

For example, assume the ground truth fractions
are 0/3, 1/3, 2/3, 3/3, If the model predicts 0/3, 3/3,
2/3, then three of the predicted fractions are correct
under the jac index metric. In this case, the model
achieves a precision of 1.0 (since three out of three
predictions are correct) and a recall of 0.75 (since it
misses one ground-truth fraction, 1/3). While under
the seq index, its precision is only 0.67 because 2/3
is out of the right order and its recall is 0.5 (since it
misses two ground-truth fractions, 1/3 and 2/3).

3.3 Metrics for Relationships between
Fractions and Ticks

In addition to evaluating individual fraction values
and key element locations, a crucial aspect of ana-
lyzing students’ number line work is capturing the
spatial and logical relationships between fractions
and their corresponding ticks. Correctly identify-
ing these relationships ensures that each fraction
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is accurately mapped to its intended position on
the number line, which is essential for subsequent
diagnostic analyses.

To assess this, we introduce relationship-specific
metrics that compare the associations generated by
VT with ground-truth annotations. Each fraction
in the ground truth is linked to a specific tick (if
present) using index pairs (e.g., F0–T1), where the
indices are determined based on the left-to-right
ordering of the top-left coordinates of their bound-
ing boxes. VT’s predicted fraction–tick pairs are
then matched against these ground-truth pairs. Ac-
curacy is calculated as the proportion of correctly
identified fraction–tick relationships over all anno-
tated pairs. In addition, we compute precision and
recall for these relationships to provide a more de-
tailed assessment of VT’s performance in capturing
fraction–tick associations The overall fraction–tick
score is summarized by its F1-score, which we will
introduce later.

3.4 Composite Score
To provide a single, interpretable measure of VT’s
overall performance, we designed a composite
score that integrates both elemental and relational
information extracted from student work. To ac-
count for both precision and recall, we adopt the
F1 score as a comprehensive performance metric,
which is computed as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

The textual description score is calculated as a
weighted average of these per-element F1 scores:

Textual Description Score =
∑

i

100 ∗ F1i ∗Wi

where i indexes the key element categories and Wi

denotes their user-defined weights and
∑

iWi = 1.
This formulation provides flexibility, as users can
assign greater importance to specific elements (e.g.,
fractions over digits) depending on instructional or
diagnostic needs. In addition, detailed per-element
results (precision, recall, and F1) are retained to
facilitate fine-grained analysis.

To achieve a comprehensive assessment, we inte-
grate the textual description score with the accuracy
of fraction–tick relationship detection. Specifically,
the final composite score is computed as:

Composite Score = Wft ∗ Fraction-Tick Score

+Wts ∗ Textual Description Score

where Wts is the weight ratio of textual descrip-
tion score, Wft is the weight ratio of fraction-tick
score and Wts + Wft = 1. Since fraction–tick
relationships depend on the accurate detection of
both fractions and ticks, missing either element di-
rectly leads to a missing relationship. Therefore,
it is advisable to assign a much higher weight Wts

than to Wft, e.g. Wts = 0.8 and Wft = 0.2. By
combining elemental accuracy and relational cor-
rectness into a single metric, this composite score
provides an interpretable and holistic evaluation of
VT’s effectiveness in extracting both low-level vi-
sual details and higher-order relational information
from student work.

4 Experiments

We conducted a series of experiments to evaluate
the effectiveness of VT in comparison with state-of-
the-art large language models (LLMs). Specifically,
we first benchmark VT against Grok-2, Gemini-Pro
2.5, GPT-4o, and GPT-o3 on the task of fraction
value detection, where accuracy serves as the eval-
uation metric. In addition, we assess the composite
score of VT and Gemini-Pro 2.5, as Gemini-Pro 2.5
is the only publicly available LLM known to sup-
port image segmentation, i.e., the ability to process
element-level bounding box coordinates.

4.1 Accuracy on Fraction Values Detection

To ensure fairness, the evaluation was conducted
on a set of 227 images sampled from both the vali-
dation and test datasets, none of which were used
to train VT. All models were tested under the same
experimental settings.

The results are shown in Table 2. Gemini-2.5
Pro achieved the highest precision and recall across
both the Jaccard index and sequential index met-
rics, demonstrating its strong capability in fraction
detection. However, VT consistently outperformed
GPT-4o and Grok-2,though its performance was
slightly lower than that of GPT-o3. Overall, all
models performed somewhat worse on the sequen-
tial index than on the Jaccard index, suggesting that
capturing the correct ordering of elements remains
a challenging aspect.

4.2 Comprehensive Evaluation

The comprehensive evaluation was performed on
a combined set of 177 images drawn from our val-
idation and test data. We evaluated both models
using our proposed composite score metric, with
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Table 2: Accuracy results on fraction values detection.

Model precision (jac index) recall (jac index) precision (seq index) recall (seq index)
Grok-2 0.320 0.387 0.243 0.293
GPT-4o 0.459 0.408 0.357 0.332

Gemini-2.5-pro 0.646 0.668 0.520 0.538
VT 0.560 0.499 0.446 0.403

GPT-o3 0.594 0.527 0.490 0.446

Table 3: Composite scores of VT and Gemini-2.5Pro

Model VT Gemini-2.5Pro
Composite score 66.8 15.8

Textual description score 73.0 18.1
Fraction-Tick score 41.9 6.2

the detailed results presented in Table 3, includ-
ing the composite score along with textual descrip-
tion score and fraction-tick score. The Textual
description score itself is a weighted average re-
flecting the accurate detection of key elements,
with weights defined as ’fraction’: 0.5, ’tick’: 0.4,
’one’: 0.05, ’zero’: 0.05. The final Composite score
is then calculated by combining the Textual de-
scription score (representing key element detection,
’ke’) and the Fraction-Tick score (representing re-
lationship between a fraction and its corresponding
tick, ’tick2frac’) with weights of Wke = 0.8 and
Wtick2frac = 0.2, respectively.

As illustrated in Table 3, our VT model demon-
strates a commanding lead across all metrics. VT
achieved a composite score of 66.8, which is more
than four times higher than the 15.8 scored by
Gemini-2.5Pro. This significant gap is consistent
across the sub-metrics: VT scored 73.0 on textual
description and 41.9 on fraction-tick relationships,
compared to Gemini-2.5Pro’s scores of 18.1 and
6.2.

The stark performance disparity underscores the
critical importance of domain-specific training for
specialized, high-precision tasks. While LLMs like
Gemini-2.5Pro possess extensive general knowl-
edge, they struggle to accurately parse the fine-
grained, structured information required by our task
without targeted fine-tuning. This outcome strongly
indicates that Large Language Models (LLMs) do
not serve as an infallible "oracle" or a universal
solution for all problems.

5 Conclusion

In this paper, we presented VT, a specialized vision-
language model designed to parse key semantic in-
formation from student-produced diagrams of frac-
tion number lines. Departing from conventional
object detection methods that focus primarily on
localization, VT generates a structured textual rep-
resentation that encapsulates not only elemental

components (e.g., digits, ticks, fractions) but also
their crucial relational associations. To facilitate a
rigorous and fair evaluation, we have contributed a
manually annotated dataset of over 1,000 student
drawings and proposed a suite of tailored metrics,
including accuracy on fraction values, fraction-tick
relationship metrics, and a weighted composite
score that provides a comprehensive assessment of
model performance. Our empirical results demon-
strate that VT significantly outperforms general-
purpose Large Language Models. This finding sug-
gests that while LLMs offer broad capabilities, they
are not a universal solution; for domain-specific
tasks requiring fine-grained interpretation of pri-
vate data, developing and training specialized mod-
els remains a necessary and effective approach for
robust information extraction.
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Abstract

This study examines the prediction of medi-
cal exam item difficulty using NLP and ma-
chine learning. A dataset of 1,154 MOCA-
Peds items was represented with lexical fea-
tures, cohesion metrics (TAACO), blueprint
encodings, BioMedBERT embeddings, seman-
tic similarity, and unsupervised semantic in-
dicators. Regression models predicted IRTb
parameters with RMSE ≈ 1.37 and R² ≈ .29,
a ∼ 15% improvement over baseline. Ordinal
classifiers reached 30–34% accuracy, doubling
the baseline (17%), with ∼68% adjacent ac-
curacy. Feature importance showed blueprint,
item structural features (number of options, op-
tion length), and semantic embeddings as the
strongest predictors. These findings demon-
strate the feasibility of difficulty prediction in
medical assessments and highlight the value
of combining domain-specific semantics with
latent difficulty signals for efficient test devel-
opment.

1 Introduction

Having an idea of the difficulty of items before
operational use supports efficient test construction,
helps to achieve target score precision, and reduces
the cost and security risks of pre-testing (Settles
et al., 2020). Previous work using text features
alone has shown mixed results, often only mod-
estly surpassing naive baselines (Štepánek et al.,
2023). Shared-task evidence suggests that trans-
formers can help when carefully tuned and com-
bined with complementary features (Yaneva et al.,
2024; Gombert et al., 2024). In medical licensing
contexts where items require specialized knowl-
edge and clinical reasoning, prediction of difficulty
has been particularly challenging (Ha et al., 2019).
We extend this literature by integrating different
categories of linguistic and semantic feature fami-
lies, including domain-specific biomedical embed-
dings (Gu et al., 2021), and by encoding content

blueprints, then evaluating both continuous and
ordinal formulations of difficulty.

2 Related Works

Early studies of automated item difficulty predic-
tion focused on surface-level text features such as
length, readability, and lexical counts, but these typ-
ically explained little variance (McNamara et al.,
2014; Štepánek et al., 2023; Ha et al., 2019). With
the rise of NLP, transformer-based models achieved
top performance in the BEA 2024 Shared Task on
difficulty prediction (Gombert et al., 2024), while
methods using traditional linguistic/cohesion fea-
tures (including clinical embeddings and princi-
pal component features) also showed competitive
performance though generally lower than the top
transformer-based approaches (Yaneva et al., 2024;
Tack et al., 2024).

Medical assessments present unique challenges.
Ha et al., 2019 reported only modest gains over
baseline for medical MCQs, reiterating the impor-
tance of incorporating domain expertise. Domain-
specific embeddings like BioMedBERT (Gu et al.,
2021) provide richer representations of medical ter-
minology. Furthermore, content-based encodings
such as blueprints or cognitive-level taxonomies
(Anderson and Krathwohl, 2001) can serve as struc-
tured priors for difficulty. Our work extends these
lines by combining linguistic, semantic, and con-
tent features, evaluating both continuous prediction
of IRTb and ordinal classification into difficulty
bins.

3 Method

3.1 Data & Targets
We analyze 1,154 multiple-choice items from the
Maintenance of Certification Assessment for Pe-
diatrics (MOCA-Peds), a longitudinal, online as-
sessment that allows pediatricians to demonstrate
ongoing knowledge through periodic testing rather
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than a single high-stakes exam (Leslie et al., 2018).
Each item consists of a clinical stem and four or
five answer options (A–D or A–E). Every item has
a calibrated IRT difficulty parameter (b), which
serves as the outcome variable for the prediction.
In the regression setting, the task is to predict the
continuous IRTb value directly. In the classification
setting, items are grouped into five ordinal difficulty
categories by dividing the IRTb distribution into
quintiles, ranging from the easiest to the hardest
items. Because there are five equally sized bins,
random guessing of the algorithms would yield a
uniform-chance accuracy of 20% for predicting the
exact difficulty class.

3.2 Features

We construct five feature families:
Lexical features: Stem and option lengths (in

both characters and tokens), punctuation counts,
total number of options (4 and 5), and lexical over-
lap indices. Overlap was measured with Jaccard
similarity between the stem and the correct option,
and between the stem and the distractors.

TAACO cohesion features: Cohesion and read-
ability indices computed with the Tool for the Au-
tomatic Analysis of Cohesion - TAACO (Crossley
et al., 2016, 2019). These include lexical diversity,
referential overlap, connectives usage, and standard
readability metrics.

BioMedBERT semantic features: Mean-
pooled contextual embeddings of the stem and op-
tions from BioMedBERT (Gu et al., 2021). From
these embeddings, we derived cosine similarities
(stem–correct option and stem–distractors), disper-
sion among option embeddings (mean pairwise
cosine distance), and principal components of the
stem embeddings to provide lower-dimensional se-
mantic factors.

Blueprint encoding: Smoothed target encoding
of Level-2 content domains from the MOCA-Peds
blueprint. Each item’s category was assigned the
smoothed mean difficulty from training folds, pro-
viding a structured content-based prior.

Unsupervised difficulty features: Embedding-
derived features that do not use the target diffi-
culty, such as stem “uniqueness” relative to the
corpus, cluster-based indicators (cluster size, dis-
tance to centroid), and coherence/variance scores.
These are designed to capture latent difficulty sig-
nals without relying on calibrated b parameters.

3.3 Modeling & Validation

We approach difficulty prediction through two com-
plementary pipelines: regression for continuous
IRTb values and ordinal classification for quantile-
based difficulty bins. For both pipelines, we used a
nested cross-validation strategy. In the outer loop,
five folds of data ensured every item served once
as test data to estimate generalization error. Within
each training partition, randomized hyperparameter
search with inner cross-validation selected the best
model configuration. This setup prevents informa-
tion leakage between tuning and evaluation, which
produces a robust and unbiased performance esti-
mates (Varma and Simon, 2006; Arlot and Celisse,
2010). For regression, we combined interpretable
linear models with flexible non-linear methods.
Elastic Net and Ridge provided regularized linear
baselines (Štepánek et al., 2023), while Random
Forest and gradient boosting methods (XGBoost,
LightGBM, CatBoost) captured non-linear interac-
tions. Evaluation emphasized Root Mean Square
Error (RMSE), supplemented by Mean Absolute
Error (MAE), R², and Spearman rank correlation
to reflect both the magnitude and the ranking of
difficulty. Calibration slopes were also inspected
to assess systematic under- or overestimation.

RMSE (Root Mean Square Error): average
magnitude of prediction errors, penalizing larger
errors more heavily.

MAE (Mean Absolute Error): average abso-
lute difference between predicted and true values.

R² (Coefficient of Determination): proportion
of variance in item difficulty explained by the
model.

Spearman’s ρ: correlation between predicted
and true rankings of item difficulty, reflecting how
well the model preserves ordering.

Calibration Slope: regression slope of observed
versus predicted difficulty; values close to 1 indi-
cate unbiased, well-scaled predictions.

For classification, we tested Logistic Regression,
SVMs, and Random Forest, consistent with prior
work on medical MCQ difficulty prediction (Ha
et al., 2019). We additionally evaluated gradient
boosting classifiers (XGBoost, LightGBM, Cat-
Boost), which have been shown to be competitive
in recent difficulty prediction tasks (Yousefpoori-
Naeim et al., 2024). We reported overall accuracy,
macro-F1, Ordinal Mean Absolute Error, Adjacent
Accuracy (crediting predictions within one diffi-
culty level), and Top-2 Accuracy. Such metrics are
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recommended in ordinal classification/assessment
prediction settings, though prior work uses subsets
of them (Ha et al., 2019; Gombert et al., 2024).

Accuracy: proportion of items where the pre-
dicted bin exactly matched the true bin.

Macro-F1: unweighted average of F1-scores
across bins, combining precision and recall.

Ordinal MAE: mean absolute difference be-
tween predicted and true bin indices, capturing
distance on the ordered scale.

Adjacent Accuracy: percentage of predictions
that were exact or within one difficulty level.

Top-2 Accuracy: percentage of items where the
correct bin was among the model’s two highest-
scored predictions.

All models were implemented in standardized
Python pipelines with preprocessing, scaling, and
leakage-safe encoding. Embeddings were precom-
puted and cached to ensure efficiency, and fixed
seeds were used for reproducibility.

4 Results

4.1 Regression (predicting IRTb)

In the regression task, models were trained to pre-
dict continuous IRT b parameters directly from
item features. The baseline predictor, which al-
ways returned the mean item difficulty, yielded
RMSE ≈ 1.63 and explained virtually none of the
variance (R² ≈ 0). In contrast, all feature-based
models substantially outperformed this baseline.
As shown in Table 1, the best results were achieved
by Elastic Net and Random Forest, which attained
RMSE ≈ 1.37 and explained about 28–29% of
variance (R² ≈ 0.28–0.29). Both also showed mod-
erate rank-order correlations with true difficulty
(ρ ≈ 0.45), indicating that they not only approxi-
mated difficulty values but also captured relative
ordering among items. Gradient boosting meth-
ods (LightGBM and CatBoost) performed nearly
as well, with RMSE ≈ 1.37 and R² ≈ 0.288. Ridge
regression was slightly weaker (R² ≈ 0.276), while
XGBoost lagged behind with the highest RMSE
(≈ 1.40) and the lowest explained variance (R² ≈
0.26).

Calibration analysis confirmed that model pre-
dictions were well aligned with observed values:
Random Forest achieved a slope close to 1.0, while
Elastic Net slightly underestimated extreme dif-
ficulties (slope ≈ 1.1). In practical terms, given
the observed range of b values (≈ –5 to +5), the
error reduction from 1.63 to 1.37 translates into

roughly a 15% gain in predictive precision from
the baseline.

4.2 Ordinal classification (5 difficulty bins)
For the 5-class ordinal classification task, mod-
els substantially outperformed the baselines. The
majority-class baseline reached only 17.2% ac-
curacy, while a uniform random predictor would
achieve ≈20% accuracy by chance.

As shown in Table 2, the Random Forest classi-
fier achieved the strongest performance with 34.5%
accuracy, approximately double the majority-class
baseline. Its Macro-F1 (0.35) was aligned with
accuracy, reflecting fairly uniform performance
across difficulty bins. The ordinal-specific met-
rics confirmed its usefulness: the Ordinal Mean
Absolute Error was 1.14 (vs. 1.48 for baseline),
and Adjacent Accuracy reached 68%, indicating
that two-thirds of predictions were either exact or
within one difficulty level. The Top-2 accuracy
of 54% further shows that the true class was fre-
quently among the two highest-scored bins.

LightGBM and XGBoost followed closely (over-
all accuracy ≈0.34 and ≈0.34 respectively), while
SVM (RBF kernel) and Logistic Regression trailed
modestly (≈0.30–0.32 overall accuracy). Impor-
tantly, even the weaker models still exceeded base-
line performance, confirming that item features
contain reliable ordinal difficulty signals.

4.3 Feature Importance
We examined feature importance across regression
and classification models. Figure 1 show us that for
Random Forest regression, the strongest predictors
were the blueprint encoding, the number of answer
options, and the length of option E. Each accounted
for around 10% of the model’s explanatory vari-
ance, confirming that both content area and item
format influence difficulty.

Embedding-based features also played a key role.
Several principal components from BioMedBERT
stem embeddings and stem–distractor cosine simi-
larities ranked among the top predictors, indicating
that semantic complexity and distractor plausibility
strongly shaped difficulty. In contrast, cohesion
indices from TAACO and traditional readability
measures contributed little when richer semantic
and content features were available.

For the ordinal classification Random For-
est, the same pattern emerged: option E length
and blueprint encoding dominated, followed by
embedding-derived factors and unsupervised simi-
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Table 1: Cross-validated regression results (5-fold outer CV). Lower RMSE is better.

Model RMSE MAE R2 Spearman ρ Calib. slope
Elastic Net 1.3719 1.0759 .2881 0.4584 1.10
Random Forest 1.3685 1.0744 .2916 0.4464 0.98
LightGBM 1.3715 1.0763 .2885 0.4577 1.12
CatBoost 1.3717 1.0752 .2882 0.4530 1.07
Ridge 1.3838 1.0852 .2757 0.4400 0.96
XGBoost 1.3976 1.1034 .2612 0.4174 1.04
Baseline (mean) 1.6262 1.2685 ∼0.00 ∼0.00 —

Table 2: Ordinal classification results (5-fold outer CV).

Model Accuracy Macro-F1 Ordinal-MAE Adjacent Acc. Top-2 Acc.

Random Forest .345 .347 1.136 .679 .538
LightGBM .343 .338 1.187 .657 .555
XGBoost .337 .335 1.156 .677 .536
SVM (RBF) .322 .324 1.174 .666 .538
Logistic Reg. .309 .296 1.247 .638 .524
Baseline (maj.) .172 .150 1.478 .546 .382

larity features (e.g., stem–nearest neighbor cosine
distance). This shows that difficulty is not just a
function of surface text complexity but is rooted in
the interaction of content domain, item structure,
and semantic relationships among options.

5 Discussion

Our models achieved modest but meaningful pre-
dictive power: regression explained about 28–29%
of variance in IRTb, and ordinal classification
reached 34% accuracy with 68% adjacent accuracy.
These gains over baseline suggest that automated
difficulty prediction can support item development,
though the strength of the predictions remains lim-
ited.

Importantly, our results are consistent with prior
studies. Štepánek et al., 2023 reported similar
variance explained when predicting reading com-
prehension item difficulty, and Ha et al., 2019
found only modest gains for medical MCQs. Re-
cent BEA-2024 shared-task findings (Yaneva et al.,
2024; Gombert et al., 2024; Tack et al., 2024;
Yousefpoori-Naeim et al., 2024) likewise show that
even transformer-based systems reach only moder-
ate correlations, underscoring a common ceiling in
this line of work.

The drivers of prediction in our study, which are
option structure, blueprint encoding, and biomedi-
cal embeddings, mirror some of those highlighted
in other research (Ha et al., 2019; Tack et al.,
2024). Readability and cohesion features offer little
contribution once richer, domain-specific features
are available. This points to why the ceiling per-
sists: difficulty depends not just on text but also

on broader context, reasoning steps, and examinee
knowledge, factors not fully captured by textual
features.

From a practical perspective, these models are
best used for screening and triage: flagging poten-
tially too-easy or too-hard items, or giving item
writers feedback about content areas and option
structures. They are unlikely to replace psychome-
tric calibration (at least not yet), but can reduce
workload and guide review.

Looking ahead, progress will likely come from
incorporating richer modalities (stimuli, visuals),
domain-adapted embeddings, and design-aware
features that better align with the cognitive pro-
cesses behind item difficulty. Until then, automated
prediction should be seen as an assistive tool that
complements, rather than substitutes the current
process.

6 Conclusion

This study shows that predicting the difficulty of
medical multiple-choice items is feasible when
models combine diverse linguistic, semantic, and
content-informed features. By integrating domain-
specific biomedical embeddings and blueprint en-
codings alongside lexical and cohesion measures,
our models achieved measurable improvements
over baselines in both continuous and ordinal for-
mulations of difficulty. Importantly, the results
highlight that difficulty prediction is not driven by
surface text length alone but by deeper signals of
what the item is about and how it is structured.

The practical implication is that automated pre-
diction can serve as a support tool in item devel-
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Figure 1: Top 10 predictive features identified by importance analysis. Left: Regression models predicting
continuous IRTb. Right: Ordinal classification models predicting difficulty bins.

opment pipelines, sorting items for expert review,
guiding test assembly, and reducing reliance on
costly pretesting. At the same time, the modest
explanatory power and the prominence of dataset-
specific signals (such as Option E length) remind us
that these models should complement, not replace,
expert judgment and psychometric validation.

Future work should extend these methods to
larger and more diverse item pools, explore fine-
tuned transformer models, and incorporate addi-
tional sources of difficulty such as cognitive com-
plexity ratings (Bloom’s taxonomy) or multimedia
elements. Taken together, the findings provide evi-
dence that machine learning can play a constructive
role in modern test development, enhancing effi-
ciency while respecting the central role of human
expertise.

7 Limitations and future work

This study was limited by the use of a single dataset
of 1,154 MOCA-Peds items, which may constrain
generalizability. Some highly ranked predictors,
such as Option E length, applied to only a small
fraction of items (88/1154) and may reflect dataset-
specific patterns rather than universal drivers of
difficulty. In addition, the models considered only
text and blueprint features, without incorporating
multimedia content or group-level differences.

Future work should validate these findings
across larger and more diverse item banks, explore
explicit cognitive-level annotations, and investigate
fine-tuned transformer models trained on exam text.
Embedding difficulty prediction into item develop-
ment workflows to provide real-time feedback to
item writers is a promising application.
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Abstract

We attempt to improve a transcription-based
early childhood speech scoring approach by
implementing allowable variations, which are
phonemes that can be swapped out for those
in a target word to create adjacent words that
would receive a passing score. This approach
is based off of how a child acquires the ability
to pronounce sounds in the English language
and how certain phonemes can be easily con-
fused during transcribing, whether done by a
human or a machine. Testing both a set of
general allowable variations and a set specifi-
cally based on the American southern dialect
against human scoring, we find that the gen-
eral allowable variations improve performance,
especially at item-specific levels. The perfor-
mance when utilizing dialect-specific variations
does not change much, although this is likely
from the use of a word-based transcriber. This
approach can be useful for specific words that
may have phonemes easily misheard for their
voiced or voiceless counterpart (e.g. "have"
and "half") but, overall, a modeling approach
for training an AI engine would more likely
result in higher performance.

1 Introduction

Automated scoring of text-based items is common
in K-12 assessment. Automated scoring of speech-
based items is used in English Language learner
assessments (e.g., Texas English Proficiency As-
sessment Program) as well as some early literacy
screeners (e.g., Soapbox labs, Amira). In auto-
mated scoring of speech-based items, automated
speech recognition systems are utilized, sometimes
taking a transcriber-based approach. Transcribers,
whether human or machine, are prone to mistakes,
with many human transcribers requiring profes-
sional training in order to achieve accurate and
quality transcriptions. Even the most reliable, open-
source transcriber model, Whisper, can experience
vastly different Word Error Rates (WER) depend-

ing on the acoustic environment of the audio and
the speaker themselves (Kuhn et al., 2024.)

Standard Whisper-based models are not usually
trained on child speech and are therefore more
prone to errors when transcribing audio of chil-
dren speaking (Jain et al., 2023.) When utilizing
this transcribing approach for speech scoring, in
which speech is transcribed and then a rules-based
scoring process is applied, one should take into
account linguistic features. In particular, for early
literacy assessment or the assessment of young chil-
dren’s speech, understanding how children develop
their articulatory skills and how phonemes are con-
nected in their place or manner of articulation can
contribute to potentially more robust scoring and
results that can more accurately inform about a
student’s speaking ability.

In bridging the gaps between machine scoring,
psychometrics, and linguistics, we explore the
ways in which one transcription-based approach
could be improved by the use of "allowable varia-
tions" in early literacy verbal tasks.

2 Background

Early literacy assessments are becoming a criti-
cal piece of K-12 large scale assessment to sup-
port evidence-based reading instruction (Brunetti
et al., 2025). Most early literacy assessments con-
sider reading fluency as a combination of word
recognition and language comprehension (Gough
& Turner, 1986; Scarborough, 2001; Duke &
Cartwright, 2021). Word recognition can be di-
vided into three broad strands: phonological aware-
ness, sight recognition, and decoding, with the lat-
ter being the focus of this study.

Decoding is the process of linking printed
letters to spoken sounds and includes recogni-
tion of phonology, orthography, and morphology
(Clemens et al., 2020). During decoding, read-
ers might sound out and blend individual letters
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into phonemes or combine larger letter groups to
form syllables and recognize whole words (Ehri,
2005). Garcia & Cain’s meta-analysis (2014) an-
alyzed decoding assessment characteristics and
found that the accurate decoding of real words (vs
pseudowords) was more predictive of reading com-
prehension than other measures.

In one decoding item type, students are shown a
word and asked to say it aloud. Scoring involves de-
termining whether the student verbalized the target
word accurately and whether and what “variations”
are allowed, in order to recognize multiple factors
that can influence this determination. For instance,
words are typically interpreted by humans (and
engines) in the context of other words; without
this context, both humans and engines can inter-
pret a word slightly differently with both likely
being correct representatives. Additionally, the
acoustic and linguistic properties of very young
children’s speech can impact how both humans and
engines interpret pronunciation. Acoustically, chil-
dren’s speech falls in a higher register and can have
prosodic characteristics that differ from adults. Lin-
guistically, children have underdeveloped articula-
tory systems and some may struggle to pronounce
more advanced English phonemes. This can lead
to children replacing a more difficult sound with
an easier one (e.g., /r/ vs. /w/). Finally, dialect or
regional pronunciations can impact how words are
pronounced.

When tests are administered remotely via com-
puter in a classroom setting, testing conditions can
also impact scoring (Oberle & Powers, 2025). Of-
ten, tests are administered at the same time within
a classroom; there can be substantial background
noise and chatter, multiple speakers, as well as vari-
ations in how loudly or quickly a student speaks.
And, young students’ ability to interact with the
test can also contribute to the demonstration of
their decoding skill. The determination of “allow-
able variations” thus needs to consider these factors
relative to each target word and an acceptable pro-
nunciation.

There are three ways to score these items. First,
the student speech can be scored by trained human
raters using a rubric. Second, humans or machines
can transcribe the student speech, and then apply
explicit scoring rules. Third, AI systems can be
modeled directly on speech to predict human scor-
ing.

In this study, we aim to explore the second ap-
proach while addressing the previously stated fac-

tors that can add difficulty to this method.

3 Methods

We use data from seventeen decoding items admin-
istered across kindergarten and grade one during a
Spring 2024 operational field test in one southern
state. Students could earn a score of 1 for a correct
pronunciation or a score of 0 if incorrect. A correct
score required an exact pronunciation with little
to no variations allowed. In these data, responses
were scored by trained, human raters and a subset
(100 per item) was transcribed by both a human
and a Whisper-based model trained on adult speech
(Radford et al., 2022.)

In transcribing, neither the humans nor the ma-
chine had knowledge of the target word for each
item. Once transcribed, a score of 0 or 1 was given
depending on if the transcription contained the tar-
get word, with a score of 1 indicating that the target
word is present. Initially, only the target word can
trigger a score of 1. Then, the list of acceptable
words expands once allowable variations are added.

To determine acceptable variations, we first
look at the literature concerning how young chil-
dren may differ in their pronunciations of various
phonemes and how their articulatory systems de-
velop. For example, children develop the ability
to pronounce consonants such as /b, p, m, n, h, w,
d/ around two years of age, whereas consonants
such as /ô, Z, D, T/ are acquired at an age between
five and seven years old (Crowe & McLeod, 2020.)
Because of this, students may replace one of these
later-stage sounds with one they acquired earlier.
We also consider manner and place of articulation,
with the assumption that phonemes that are close in
one or both traits may be misinterpreted when tran-
scribing. In terms of vowels, those that are close
to one another in the physical vowel space can be
considered as allowable variations.

Allowable variations are determined and listed
using the International Phonetic Alphabet (IPA), a
collection of symbols each representing one unique
possible sound in human speech. Sounds in En-
glish are sometimes composed of multiple letters
but represented as one symbol using the IPA. For
example, the English sound written as "th" is rep-
resented in the IPA either as /D/ or /T/ depending
on if it is a voiced sound or not. Evidently, the IPA
allows one to represent a specific sound with one
character and it is therefore useful in both repre-
senting allowable variations and in implementing
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them computationally.
Once the list of allowable variations is deter-

mined, we then apply each of the variations to the
IPA transcription of a given response. To convert
a transcription to its IPA representation, we use
the Python package ’eng-to-ipa.’1 Each phoneme
within the transcription is swapped out with each
of its acceptable variations until all possible combi-
nations have been created. This leads to a long list
of non-existent words, so we cross reference the
created list with the Carnegie Mellon University
(CMU) Pronouncing Dictionary2 and only include
those produced transcriptions that are valid and
present in the dictionary. This both limits the num-
ber of targets that we are accepting beyond the
given and it accounts for the transcribers acting
more in a word-based manner than a phonemic
manner.

The list of variations can also be modified to fit
specific frameworks, such as the phonetic inventory
of a dialect. While some variations in the general
list we created may apply to a dialect, focusing on
specific features of a given dialect should produce
a more specific set of variations. In this study, we
create a list of variations using features of the stan-
dard American southern dialect. Features such as
monophthongization, diphthongization, triphthon-
gization, non-rhoticity, the “pin-pen” vowel merger,
and the distinction between words such as “which”
and “witch” are all incorporated into the list. In
generating the variant targets with this list, we skip
the cross reference with the CMU Pronouncing Dic-
tionary to maintain all the features of the dialect
even if they lead to non-standard words.

With both a general list of acceptable variations3

created for each target and a list of variations utiliz-
ing the features of the American southern dialect,
we then rescore by looping through the variation
lists alongside the transcriptions. If any of the vari-
ations or the original target word are present in the
transcription, a score of 1 is given. If the target
word nor any of the variations are present, a score
of 0 is given. We then use these scores to calculate
comparative statistics in order to gauge changes in
item performance.

We use three statistical measures to gauge agree-
ment in this study. Firstly, we calculate exact agree-
ment between two sets of scores. Exact agreement

1https://pypi.org/project/eng-to-ipa/
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3See Table 5 for an example of consonant variations uti-

lized in this study.

Grade N H1H2 Scores
Items Responses Exact Agr. K p-val.

K 3 203 89% 0.74 0.66
1 14 182 93% 0.73 0.81

All 17 186 92% 0.73 0.79

Table 1: Agreement statistics between the two human
raters

is a percentage of the scores that are the same for
a given response for both sets. Secondly, we use
Quadratic Weighted Kappa (QWK or Kappa, for
short). This is another agreement statistic with
a more robust calculation which takes into ac-
count the possibility that an agreement occurred
by chance. It also penalizes disagreements that
are further from one another on an ordinal scale;
however, this is irrelevant in this study as there
are only two possible labels for the data. Finally,
we calculate the p-value, which in this case is the
mean score. These measures were then averaged
across grade level and averaged overall. We com-
pare agreements between the human raters, the first
human rater and both types of transcription, and
between the transcriptions. The goal in this study is
to be comparable to, or better than, the agreement
values between the two human raters, which are
outlined in Table 1.

4 Results

4.1 General Variations

Table 2 provides an overview of the agreement
statistics when a score of 1 is strictly given for the
target word and no variations are included. One
can see that a transcribing method with similar
scoring rules to the human raters does not perform
as well as humans. The low Kappa values here
are primarily due to machine transcription error.
This prompted an attempt to improve these results
through the use of allowable variations.

Table 3 provides an overview of the agreement
statistics when allowable variations are used. These
variations are those from a set of general variations.
Table 4 shows the agreement statistics when the
variations are focused on the American southern
dialect.

When using general variations, performance im-
proves. For exact agreements, there is a slight im-
provement of 1-3%. Similarly, kappa values show
slight improvement as well, ranging from an in-
crease of 0.01 to 0.05. Overall, this is not a large
difference, but individual items experienced more
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Grade N H1 Score-Human Transcription H1 Score-Engine Transcription Human-Engine Transcriptions
Items Scores Exact Agr. K p-val. Exact Agr. K p-val. Exact Agr. K

K 3 86 78% 0.58 0.45 73% 0.51 0.42 84% 0.65
1 14 89 79% 0.45 0.64 72% 0.36 0.57 78% 0.45

All 17 88 79% 0.47 0.60 72% 0.39 0.54 79% 0.49

Table 2: Agreement statistics without the use of variations

Grade N H1 Score-Human Transcription H1 Score-Engine Transcription Human-Engine Transcriptions
Items Scores Exact Agr. K p-val. Exact Agr. K p-val. Exact Agr. K

K 3 86 76% 0.53 0.52 72% 0.47 0.48 83% 0.66
1 14 89 82% 0.48 0.69 76% 0.40 0.62 79% 0.49

All 17 88 81% 0.49 0.66 75% 0.41 0.59 80% 0.52

Table 3: Agreement statistics with the use of general variations

drastic improvement or decay.
For example, an item with the target word of

"have" increased from 65% to 71% in exact agree-
ment and from 0.28 to 0.36 in its kappa value.
When examining the data, the acceptable variation
"half" appears to be responsible for these increases.
This suggests that either students have difficulty
distinguishing or pronouncing the voiced and voice-
less dental fricatives or that these phonemes sound
similar on recording and can be hard to distinguish
by listeners and transcribers.

Another item with the target word of "what" ex-
perienced similar increases in performance. The
exact agreement value increased from 82% to 86%
and the kappa value increased from 0.55 to 0.57.
This improvement mainly came from vowel varia-
tions, especially when swapping the phoneme /@/
with /E/, which produce the words "what" and "wet"
respectively. There are also instances in this case
where the word "wood" contributes to performance
changes, showing, again, that voiced and voiceless
consonant pairs can cause problems for students or
listeners.

Finally, the item with the target word of "your"
gained large improvements. The exact agreement
value increased from 74% to 86% and the kappa
value increased from 0.31 to 0.35. In this instance,
we produced variations that included the removal of
the initial sound and this seemed to lead to this per-
formance improvement. This suggests that initial
sounds may be missed in the recording or transcrib-
ing process or that words with many minimal pairs
may have a higher rate of mistakes by students or
listeners and transcribers.

4.2 Dialectical Variations

The use of variations which only involve changes
associated with the American southern dialect

yielded little change. The only item that experi-
enced significant performance improvement was
the item with the target word "been." This is most
likely due to the "pin-pen merge" feature of the
southern dialect in which the vowels in the words
"pin" and "pen" are pronounced almost identically.

Most likely, we do not see drastic performance
changes using the southern dialect because tran-
scribing was done using a word-based transcriber,
which seeks to output a valid English word if pos-
sible. While testing was done with a phonetic tran-
scriber, the output was not reliable. The approach
with dialectical variations could be very useful in
cases where there are reliable phonetic transcrip-
tions and the use of a specific dialect is well docu-
mented for the area of testing.

5 Conclusion

Overall, implementing allowable variations can
lead to slight overall performance improvements
and item-specific improvements ranging from
slight to major. When the variations are a gen-
eral list, the improvements are higher and more
widespread across the items. When they are fo-
cused in on a dialect, the improvements are min-
imal. However, this could be due to the use of
a word-based transcriber whereas dialects feature
varying pronunciations of a word with one accept-
able spelling.

With only slight improvement overall, this ap-
proach may only be useful in cases where a specific
word is being used and it is likely that a phoneme
within the word will lead to transcribing errors.
This most often seems to be pairs of voiced and
voiceless phonemes but can also occur when a word
has many minimal pairs.

The other avenue to take when attempting to
improve these agreements is to use high-quality,
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Grade N H1 Score-Human Transcription H1 Score-Engine Transcription Human-Engine Transcriptions
Items Scores Exact Agr. K p-val. Exact Agr. K p-val. Exact Agr. K

K 3 86 78% 0.58 0.45 73% 0.51 0.42 84% 0.65
1 14 89 80% 0.46 0.65 74% 0.37 0.59 78% 0.49

All 17 88 80% 0.48 0.61 74% 0.40 0.56 79% 0.52

Table 4: Agreement statistics with the use of dialectical variations

human transcriptions and scores and train an AI
engine using them. After looking at the results
from this study, we believe this would be the rec-
ommended route to take if possible.

Limitations

In this study, the sample sizes per item were fairly
small and may not have been representative of the
student population. We also used a word-based
transcriber which has more difficulty in reporting
dialectical features of speech.
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Original Phoneme Sound in English Variations
/p/ p p, b
/b/ b b, p
/m/ m m, b
/t/ t t, d
/d/ d d, t
/k/ k k, g, t
/g/ g g, k, d
/f/ f f, v
/n/ n n, d, nd, N
/N/ ng N, n
/w/ w w
/j/ y j, ’ ’
/h/ h h, ’ ’
/v/ v v, f
/s/ s s, z, T
/z/ z z, s, D
/S/ sh S, s, T
/Z/ si (as in ’vision’) Z, S
/tS/ ch /tS/, S, k, t, dZ
/l/ l l, w, j
/dZ/ j /dZ/, tS, d
/T/ th (voiceless) T, D, t, f
/D/ th (voiced) D, T, d, v
/ô/ r r, w, l, ’ ’
/tr/ tr tr, tS, t
/dr/ dr dr, dZ, d
/kr/ kr kr, gr, r, k, g
/gr/ gr gr, kr, r, g, k
/skr/ skr skr, sk, kr, s, k, r

Table 5: Example of general consonant variations
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Abstract

Large language models (LLMs) are increas-
ingly adopted for educational assessment de-
spite evidence that specialized models achieve
superior performance. This study compares
few-shot in-context learning with explanation-
augmented knowledge distillation for exam
question classification using medical education
data. Few-shot learning exhibited substantial
performance instability, with accuracy varying
up to 14 percentage points based on example se-
lection, while knowledge distillation provided
consistent 70.1% accuracy after proper hyper-
parameter optimization. Though neither LLM
approach matched specialized BERT perfor-
mance (80.5%), knowledge distillation elimi-
nated the reliability issues plaguing few-shot
methods, offering organizations a stable solu-
tion for leveraging existing LLM infrastructure
in operational assessment applications.

1 Introduction

Large language models (LLMs) have gained
widespread adoption across educational assessment
applications, driven by their versatility and the ap-
peal of unified infrastructure that can handle mul-
tiple tasks without maintaining separate special-
ized models. However, this adoption occurs de-
spite evidence that task-specific approaches often
achieve superior performance. Bucher and Martini
(2024) demonstrated that fine-tuned smaller mod-
els, including BERT-based classifiers, significantly
outperform both zero-shot and few-shot LLM ap-
proaches in text classification tasks. This perfor-
mance gap raises important questions about how
organizations already invested in LLM infrastruc-
ture can most effectively leverage these capabilities
for reliable educational assessment applications,
even when accepting that peak performance may
require specialized alternatives.

Few-shot in-context learning represents the most
straightforward approach to LLM-based classifi-

cation, requiring no model training while promis-
ing reasonable performance through carefully se-
lected examples. However, recent research has
revealed substantial instability in few-shot classifi-
cation performance, with accuracy varying signif-
icantly based on example selection, ordering, and
prompt construction choices (Nguyen and Wong
2023; Alves et al. 2023; Wan et al. 2023). This
variability extends beyond minor fluctuations, with
identical examples presented in different orders
producing measurably different classification out-
comes. For operational assessment systems requir-
ing consistent and reliable performance, such in-
stability undermines the practical utility of few-
shot approaches, even when average performance
might be acceptable. The sensitivity to configura-
tion choices introduces an additional layer of com-
plexity that conflicts with the apparent simplicity
that makes few-shot learning initially attractive.

Knowledge distillation offers a promising solu-
tion for organizations committed to LLM-based
approaches, enabling the transfer of reasoning ca-
pabilities from large models to smaller, more effi-
cient counterparts while maintaining performance
consistency. Unlike few-shot learning, knowledge
distillation produces stable models that do not de-
pend on carefully curated examples at inference
time. Explanation-augmented distillation extends
this approach by incorporating the reasoning pat-
terns and decision processes of teacher models,
potentially capturing more nuanced classification
strategies than traditional output-only distillation
methods (Xu et al., 2024). While this approach may
not achieve the peak performance of specialized
classifiers, it represents an optimization strategy for
organizations seeking to maximize the reliability
and efficiency of LLM-based classification within
existing infrastructure constraints. This study eval-
uates whether explanation-augmented knowledge
distillation can provide the consistency and compu-
tational efficiency needed for operational deploy-
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ment while delivering competitive performance rel-
ative to unstable few-shot alternatives.

1.1 Knowledge Distillation in Natural
Language Processing

Knowledge distillation has emerged as a powerful
technique for transferring capabilities from large,
computationally expensive models to smaller, more
efficient alternatives while maintaining competi-
tive performance. Originally developed for com-
puter vision applications (Hinton et al., 2015), the
approach has been successfully adapted to natu-
ral language processing tasks, where the compu-
tational demands of large language models cre-
ate significant deployment challenges. Traditional
knowledge distillation focuses on matching output
distributions between teacher and student models,
enabling smaller models to approximate the deci-
sion boundaries learned by their larger counterparts
(Gou et al., 2021).

Recent advances in explanation-augmented
knowledge distillation extend beyond output match-
ing to incorporate the reasoning processes of
teacher models. This approach leverages the natu-
ral language generation capabilities of large lan-
guage models to produce detailed explanations
alongside predictions, creating richer training sig-
nals for student models (DeepSeek-AI et al., 2025).
By learning to replicate both the decisions and rea-
soning patterns of teacher models, student models
may achieve better generalization and more robust
performance across diverse inputs. However, the
effectiveness of explanation-augmented distillation
for classification tasks in educational domains re-
mains underexplored.

1.2 Few-Shot Learning Instability
While few-shot in-context learning offers appar-
ent simplicity for LLM deployment, mounting ev-
idence reveals significant performance instability
across different configuration choices. Studies have
documented substantial variance in classification
accuracy based on example selection, with differ-
ent sets of representative examples producing mea-
surably different results even when controlling for
example quality and domain coverage (Nguyen
and Wong, 2023). This instability extends to ex-
ample ordering effects, where identical examples
presented in different sequences can alter model
predictions.

The sensitivity of few-shot learning to prompt
construction choices poses particular challenges for

operational deployment in educational assessment.
Beyond random variation, systematic biases may
emerge when examples exhibit consistent charac-
teristics that do not represent the full complexity of
the classification task (Tjuatja et al., 2024). These
findings suggest that the apparent simplicity of few-
shot learning may be misleading, as achieving reli-
able performance requires careful curation and val-
idation of example sets—a process that may be as
complex as traditional model training approaches.

1.3 Exam Question Classification

Educational assessment systems rely heavily on
accurate classification of exam questions into pre-
defined content domains to ensure proper test con-
struction, maintain content validity, and support
diagnostic feedback (Kane, 2006). This classifica-
tion task involves mapping individual questions to
taxonomic categories that reflect the knowledge,
skills, or competencies being assessed. In medical
education, for example, questions must be aligned
with clinical domains, procedural categories, or
competency frameworks to ensure comprehensive
coverage of required learning outcomes (Bridge
et al., 2003).

Traditional approaches to question classification
have relied on manual expert review or rule-based
systems, but the scale of modern item banks and the
complexity of question content have motivated au-
tomated classification methods. Recent advances
in data-driven approaches have also extended to
optimizing assessment items themselves, includ-
ing systematic methods for refining item options
(Muntean et al., 2025). While specialized models
like fine-tuned BERT classifiers have demonstrated
superior performance for this task (Bucher and Mar-
tini, 2024), many educational organizations seek to
benefit from existing LLM infrastructure for ques-
tion classification as part of broader assessment
workflows.

The stakes for classification accuracy in educa-
tional assessment are particularly high, as misclas-
sified questions can compromise test validity, lead
to content imbalances, and undermine the reliabil-
ity of score interpretations (Messick, 1995). This
context demands not only reasonable classification
performance but also consistent and predictable be-
havior across diverse question types and content
areas.
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1.4 Research Questions
This study investigates the effectiveness of
explanation-augmented knowledge distillation for
exam question classification compared to few-shot
in-context learning approaches. Specifically, we
address the following research questions:

RQ1 How does few-shot in-context learning perfor-
mance vary when examples are systematically
selected based on question difficulty (easy vs.
difficult vs. mixed examples within each con-
tent domain)?

RQ2 Can explanation-augmented knowledge dis-
tillation produce student models that achieve
competitive classification accuracy compared
to few-shot learning approaches while main-
taining greater performance consistency?

RQ3 How sensitive is explanation-augmented
knowledge distillation to hyperparameter
choices, and what configurations optimize the
trade-off between performance and training
efficiency?

2 Methods

2.1 Dataset
We utilized a subset of a medical examination item
bank containing 6,839 multiple-choice questions
labeled according to eight high-level test blueprint
domains (National Council of State Boards of Nurs-
ing, 2023). Items were randomly selected from
questions that had passed all statistical pretest crite-
ria. The dataset was partitioned using stratified sam-
pling to maintain domain proportions: 4,103 ques-
tions (60%) for training, 1,368 questions (20%)
for validation, and 1,368 questions (20%) for test-
ing. Question difficulty was determined using
population-calibrated item difficulty values, with
difficulty distributions roughly equivalent across
the eight content domains. The classification task
involved mapping individual question to their cor-
responding content domains based on the medical
knowledge and competencies being assessed.

To establish performance benchmarks, we im-
plemented a BERT-based classification model us-
ing the all-MiniLM-L6-v2 sentence transformer
(Wang et al., 2020). We fine-tuned the model us-
ing contrastive learning with 8,000 question pairs
(1,000 pairs per domain, consisting of 500 positive
and 500 negative pairs), representing the special-
ized classification method that has been shown to

outperform LLM-based approaches in similar text
classification tasks.

2.2 Few-Shot Learning Experiments
We conducted few-shot learning experiments pri-
marily using GPT-OSS-20B (OpenAI et al., 2025),
with pilot studies on GPT-OSS-120B, LLaMA
4 Maverick (Meta AI, 2025), and Claude Son-
net 3.7 (Anthropic, 2025) to validate that insta-
bility patterns generalize across different large lan-
guage models. All models were accessed through
Databricks environment endpoints. To systemati-
cally investigate the impact of example difficulty
on few-shot performance, we created three experi-
mental conditions based on population-calibrated
difficulty values. For easy examples, we selected
the 25 easiest items and randomly divided them
into 5 sets of 5 items per domain. For difficult
examples, we selected the 25 most difficult items
and applied the same division strategy. For mixed
examples, we randomly selected 5 items per do-
main, repeated 5 times. Each condition resulted in
5 replications of 40 few-shot examples (5 examples
from each of the 8 domains), enabling assessment
of both systematic bias effects and random varia-
tion. All few-shot examples were drawn from the
training set to prevent data leakage.

The prompt structure consisted of task instruc-
tions, content domain definitions, few-shot exam-
ples with their classifications, and repeated instruc-
tions with output format specifications. All models
were required to follow structured output format-
ting to ensure consistent response parsing. Each
replication was evaluated on the complete test set
to quantify performance variability across different
example selections.

2.3 Knowledge Distillation Experiments
We implemented explanation-augmented knowl-
edge distillation using LLaMA 3.1 405B as the
teacher model and LLaMA 3.1 8B as the stu-
dent model. For all 4,103 training examples, we
prompted the teacher model to generate detailed ra-
tionales explaining why each question belonged
to its specified domain and why alternative do-
mains were less appropriate. This process created
question-explanation-classification triplets that en-
abled the student model to learn both the reasoning
patterns and classification decisions of the teacher
model.

The student model underwent full parameter fine-
tuning on these explanation-augmented sequences
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using Databricks parameter sweep functionality.
We conducted systematic hyperparameter optimiza-
tion across a 2× 2 experimental design with learn-
ing rates of 1× 10−6 versus 1× 10−7 and training
epochs of 1 versus 2. This design enabled assess-
ment of hyperparameter sensitivity while maintain-
ing computational feasibility for the full parameter
fine-tuning approach.

2.4 Evaluation
We evaluated all approaches using overall accu-
racy and weighted F1-score on the held-out test set
(1,368 questions) to ensure unbiased performance
assessment. For few-shot learning approaches, we
measured performance consistency by calculating
the standard deviation and range (maximum - min-
imum accuracy) across the 5 replications within
each difficulty condition. This analysis quantifies
both the magnitude and variability of performance
instability across different example selections, en-
abling direct comparison with the consistent per-
formance of knowledge distillation approaches.

3 Results

The experimental results demonstrate clear perfor-
mance differences between approaches and reveal
significant instability in few-shot learning meth-
ods. The BERT baseline achieved the highest over-
all performance with 80.5% accuracy and 80.4%
weighted F1-score, confirming prior findings that
specialized models outperform LLM-based ap-
proaches for text classification tasks. However, the
comparison between few-shot learning and knowl-
edge distillation reveals important insights about
the viability of LLM-based classification methods.

3.1 Few-Shot Learning Performance and
Instability

Few-shot learning performance varied substantially
based on example difficulty, with counterintuitive
results regarding the relationship between exam-
ple difficulty and classification accuracy. Models
performed best when provided with difficult ex-
amples (62.7% accuracy, 60.7% F1), followed by
random examples (56.0% accuracy, 54.0% F1), and
worst with easy examples (52.8% accuracy, 51.4%
F1). This unexpected finding suggests that difficult
questions may provide richer contextual informa-
tion or more distinctive features that help models
distinguish between content domains.

More critically, few-shot learning exhibited sub-
stantial performance instability across different ex-

ample selections within each difficulty condition.
The difficult examples condition showed the high-
est variability, with accuracy ranging from 56.8%
to 71.0% (standard deviation = 6.1%) and F1 scores
ranging from 53.9% to 68.9% (standard deviation
= 6.7%). Easy examples demonstrated moderate
instability with accuracy ranging from 47.3% to
58.2% (standard deviation = 4.4%), while random
examples showed the most consistent performance
with accuracy ranging from 51.7% to 60.7% (stan-
dard deviation = 3.9%). Despite this relative consis-
tency, even the random condition exhibited mean-
ingful performance variation that could impact op-
erational deployment reliability.

The instability patterns were consistent across
multiple large language models tested in pilot stud-
ies, including GPT-OSS-120B, LLaMA 4 Maver-
ick, and Claude Sonnet 3.7, indicating that few-
shot learning instability represents a general phe-
nomenon rather than model-specific behavior. This
cross-model consistency strengthens the evidence
that example selection significantly impacts few-
shot classification performance regardless of the
underlying architecture.

3.2 Knowledge Distillation Performance and
Stability

Explanation-augmented knowledge distillation re-
sults revealed extreme sensitivity to hyperparam-
eter selection, with learning rate choice proving
critical for successful model training. The opti-
mal configuration using learning rate 1 × 10−6

and 2 training epochs achieved 70.1% accuracy
and 70.4% weighted F1-score, representing com-
petitive performance relative to few-shot learning
approaches while completely eliminating the insta-
bility associated with example selection.

Hyperparameter analysis revealed dramatic per-
formance differences based on learning rate selec-
tion. Models trained with learning rate 1 × 10−6

substantially outperformed those trained with 1×
10−7, likely due to catastrophic forgetting effects
at the extremely low learning rate that prevented
adequate adaptation to the classification task. The
1× 10−7 learning rate produced poor performance
regardless of epoch count (44.0% accuracy with
1 epoch, 47.0% accuracy with 2 epochs), while
the 1× 10−6 learning rate enabled effective learn-
ing (60.8% accuracy with 1 epoch, 70.1% accu-
racy with 2 epochs). The improvement from 1
to 2 epochs at the higher learning rate suggests
that additional training time benefits explanation-
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augmented distillation when appropriate learning
rates are used.

Knowledge distillation demonstrated complete
stability across evaluation runs, producing iden-
tical performance metrics without the variability
that characterized few-shot approaches. This sta-
bility emerges from the fundamental difference in
methodology: rather than relying on a small set of
potentially biased examples at inference time, the
distilled model learns from the complete training
dataset during fine-tuning. The student model in-
ternalizes classification patterns through exposure
to the full range of question types and difficulty
levels, eliminating dependence on the specific char-
acteristics of a limited example set. Once trained,
the distilled model produces consistent predictions
without requiring carefully curated examples, re-
moving the primary source of instability that affects
few-shot learning.

3.3 Comparative Analysis
The knowledge distillation approach addresses the
primary limitation of few-shot learning by provid-
ing consistent performance without dependence
on carefully curated examples. While the best
knowledge distillation configuration (70.1% accu-
racy) did not exceed the maximum few-shot perfor-
mance (71.0% accuracy with difficult examples), it
achieved performance within the range of few-shot
results while eliminating the risk of poor perfor-
mance due to unfavorable example selection. No-
tably, the knowledge distillation performance ex-
ceeded the minimum few-shot performance across
all difficulty conditions and matched the perfor-
mance of the best few-shot condition (difficult ex-
amples) while avoiding the substantial variability
that makes few-shot approaches unreliable.

The comparison reveals a fundamental trade-off
between peak performance potential and perfor-
mance consistency. Few-shot learning offers the
possibility of higher performance when examples
are carefully selected, but carries substantial risk of
poor performance with different example choices.
Knowledge distillation provides predictable perfor-
mance that falls within the middle-to-upper range
of few-shot results, representing a viable solu-
tion for organizations requiring reliable classifi-
cation performance from LLM-based approaches.
The elimination of example-dependent variability
makes knowledge distillation particularly suitable
for operational deployment where consistent per-
formance is more valuable than occasional peak

performance.

4 Discussion

This study provides empirical evidence that
explanation-augmented knowledge distillation of-
fers a viable solution to the instability problems
that plague few-shot in-context learning for ed-
ucational question classification. While neither
LLM-based approach achieves the performance of
specialized BERT classifiers, the findings reveal im-
portant practical considerations for organizations
committed to leveraging existing LLM infrastruc-
ture for assessment applications.

The substantial performance variability observed
in few-shot learning—with accuracy ranges ex-
ceeding 14 percentage points in some condi-
tions—represents a significant barrier to opera-
tional deployment. This instability extends beyond
random variation to include systematic biases based
on example characteristics, as demonstrated by the
counterintuitive finding that difficult examples pro-
duced better classification performance than easy
examples. This result suggests that few-shot learn-
ing may be sensitive to the cognitive complexity
and feature richness of selected examples in ways
that are difficult to predict or control. The consis-
tency of these instability patterns across multiple
large language models indicates that the problem
is fundamental to the few-shot learning paradigm
rather than specific to particular architectures. For
educational assessment applications, this variabil-
ity is particularly concerning as unreliable classi-
fication performance can compromise test validity
and undermine confidence in automated systems.
The observed variability means that identical clas-
sification tasks could produce different results de-
pending solely on example selection choices, cre-
ating potential fairness and consistency issues in
high-stakes assessment environments.

Explanation-augmented knowledge distillation
addresses these limitations by fundamentally
changing the relationship between examples and
model performance. Rather than depending on a
small set of potentially biased examples at infer-
ence time, the distilled model learns from compre-
hensive exposure to the full training dataset, in-
ternalizing classification patterns that remain con-
sistent across evaluations. This methodological
difference eliminates the primary source of insta-
bility in few-shot approaches while maintaining
competitive performance levels. The extreme sen-
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sitivity to hyperparameter selection observed in
our distillation experiments, particularly the dra-
matic performance differences between learning
rates, highlights the importance of systematic op-
timization rather than relying on conventional pa-
rameter choices. The poor performance at learning
rate 1× 10−7 likely reflects catastrophic forgetting,
where the extremely conservative learning rate pre-
vented adequate adaptation to the classification task.
However, once properly configured, the distilled
model produces stable and reliable performance
without the variability that characterizes few-shot
approaches.

The trade-off between peak performance and
consistency revealed in our results reflects broader
considerations in educational technology deploy-
ment. While few-shot learning may occasionally
achieve higher performance with optimal exam-
ple selection, the risk of poor performance with
suboptimal examples may be unacceptable in as-
sessment contexts where consistent behavior is es-
sential. Knowledge distillation provides a middle
path that sacrifices some performance potential for
greater reliability and predictability, making it par-
ticularly suitable for operational assessment appli-
cations where consistency is paramount.

Several limitations should be considered when
interpreting these results. Our evaluation focused
on a single domain (medical education) and clas-
sification task, and generalization to other educa-
tional contexts requires further investigation. The
hyperparameter space explored for knowledge dis-
tillation was limited, and more comprehensive op-
timization might yield improved performance. Fu-
ture research should investigate the effectiveness of
explanation-augmented distillation across diverse
educational domains, examine different distillation
methods, and analyze the quality and utility of gen-
erated explanations. Additionally, research into
methods for automatically selecting optimal few-
shot examples or reducing example dependency
could address some of the limitations identified in
few-shot approaches.

This study demonstrates that explanation-
augmented knowledge distillation provides a prac-
tical solution to the instability problems inherent in
few-shot learning approaches for educational ques-
tion classification. The elimination of example-
dependent variability, combined with competitive
performance levels, makes knowledge distillation
particularly suitable for operational assessment ap-
plications where consistency and reliability are

paramount. These findings contribute to the grow-
ing understanding of how to effectively deploy
large language models in educational contexts
while managing their inherent limitations and oper-
ational constraints, offering organizations a viable
path to leverage existing LLM infrastructure reli-
ably and consistently.
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Abstract

The development of Large Language Mod-
els (LLMs) to assess student text responses
is rapidly progressing but evaluating whether
LLMs equitably assess multilingual learner re-
sponses is an important precursor to adoption.
Our study provides an example procedure for
identifying and quantifying bias in LLM assess-
ment of student essay responses.

1 Introduction

The application of Large Language Models (LLMs)
for assessing student essays affords numerous av-
enues of research within learning analytics. Partic-
ularly for high stakes assessment contexts where
annotated data is often sparse or difficult to acquire,
the use of LLMs becomes particularly attractive.
However, for LLMs to be ethically applied to ed-
ucational assessment, they must be evaluated for
equity across diverse student subpopulations. One
subpopulation of particular concern is multilingual
students. In high stakes testing contexts, acquiring
sufficient annotated data for multilingual students
is often unrealistic for reasons such as test security,
student privacy, diversity in linguistic practices,
and low population size. Furthermore, traditional
methods of algorithmic bias assessment that rely
on broad demographic categories such as age or
gender are prone to mis-characterize the complex
heterogeneous backgrounds of such students, po-
tentially making them ineffective. Direct empiri-
cal comparisons across subpopulations can also be
complicated by difficulties in separating bias from
impact (Ackerman, 1992). Understanding causes
of differential item functioning is a notorious chal-
lenge in the use of empirical data for evaluating
bias (Zumbo, 2007).

2 Aim

Our study aims to illustrate a procedure by which
LLM performance can be assessed for equity by

systematically manipulating texts with construct-
irrelevant linguistic variations and characterizing
resultant score change. We refer to these varia-
tions as perturbations and the resulting scores as
perturbed scores.

3 Sample(s)

Texts are from the Hewlett Foundation: Automated
Essay Scoring competition data (Hammer et al.,
2012). The sample consists of 5875 actual essay
responses written by students in grades 7 through
10 in response to prompts that did not have accom-
panying reading passages (essay numbers 1, 2, 7,
8). Essays range from 150 to 550 words in length.1

4 Methods

Analyses of texts begins by feeding original, mono-
lingual texts to the target LLM, GPT-4o, for scor-
ing.

4.1 LLM Prompting

We employed GPT-4o as the LLM for essay grad-
ing. The model was prompted with "Grade the es-
say below with a score between 0 and 100 based on
content, ignoring language errors. Your response
must be exactly one number between 0 and 100".
Scores were normalized to range from 0 to 1.

4.2 Text Quality and Baseline Reference
Values

Each monolingual text was scored twice by the
LLM. The first of each of these scores was chosen
to be a reference value for subsequent analyses, and
is henceforth referred to as the "original score." We
refer to the second score as the "replicate score."

Texts were then grouped into quartiles based
on original scores. Resultant quartile sizes, from
first to fourth, were as follows: 1767, 2600, 619,

1This dataset is openly accessible at
[https://www.kaggle.com/competitions/asap-aes/overview].
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889. For each quartile, the first three statistical
moments of the difference between original and
perturbed scores were calculated. The inclusion
of higher order moments reflects the notion that
equity in measurement transcends expected score
differences, and includes equivalence in precision
as well as potential for outlier scores, etc.

Corresponding moments were also calculated for
the difference between original and replicate scores
to serve as a baseline. Specifically, an expected
signed difference between the original score and
replicate score (first order), an expected squared
deviation between the original score and replicate
score (second order), and an expected signed cubed
deviation between the original and replicate score
were calculated (third order).

4.3 Construct-Irrelevant Linguistic Variations
Construct-irrelevant linguistic variations here are
defined as linguistic features of the text that are not
directly related to the content proficiency intended
to be measured. For a student essay response on a
science test question, for example, it might refer to
spelling errors that the student makes. The idea is
that the underlying student response may be scien-
tifically accurate despite the linguistic variation.

While it is true that large proportions of linguis-
tic variations may impede LLM scoring of the text,
not unlike barriers to comprehension that may oc-
cur with a human scorer, the label of "construct-
irrelevant" is used to highlight that these are not the
intended target construct of measurement. Indeed,
where the LLM scoring becomes difficult due to
perturbations, this difficulty itself becomes a form
of inequity (Prabhakaran et al., 2019).

The four linguistic variations analyzed in this
study were: 1) spelling errors, 2) noun trans-
fers (i.e., borrowing nouns across languages; e.g.,
“Tierra” instead of “Earth”), 3) cognates (i.e., bor-
rowing words with similar meaning, spelling, and
pronunciation; e.g., “océano” instead of “ocean”),
and 4) Spanglish (a hybrid use of both languages;
e.g., “en la Earth” instead of “on the Earth”).

We build an algorithm in which eligible words
or phrases at which the above linguistic variations
could occur is first determined for each text. Then,
the linguistic variations above are randomly intro-
duced to each of the texts at these words or phrases,
resulting in transformed, or perturbed versions of
the text with the same underlying response mean-
ing. Under this scheme, the magnitude of the per-
turbation can be controlled. For this study, we in-

troduce perturbations of the following magnitudes:
20, 40, 60, and 80 percent.

4.4 Assessment of Inequity

The perturbed texts are scored by GPT-4o, such
that each text has not only an original score, but
a perturbed score as well. Using these values, we
apply procedures conceptually derived from Lord’s
(1980) notions of equity.

4.4.1 First Order Inequity
We refer to the signed difference between the orig-
inal score and perturbed score as "error" for each
text. By calculating the expected error (original -
perturbed) across texts for each quartile, we can
determine a quartile-specific bias value attributable
to the linguistic perturbations. Expected perturba-
tion error values greater than the expected replicate
error values suggest first order inequity.

4.4.2 Second Order Inequity
By calculating the expectation of squared devi-
ations between the original and perturbed score
across essays within each quartile, we can get
quartile-specific variances of deviations. We take
the square root of these values to get standard devi-
ations, and compare to the corresponding standard
deviation for replicate scores as a reference. Stan-
dard deviation values that surpass the reference
values suggest second-order inequity.

4.4.3 Third Order Inequity
We also calculate the expectation of signed cubed
deviations between the original and perturbed score
across essays for each quartile. Values greater than
quartile-specific third order baseline reference val-
ues defined using replicate scores suggest third
order inequity.

5 Results

A Wilcoxon test (see Table 2) was conducted to
compare original scores and perturbed scores, con-
firming that differences in scores seen due to lin-
guistic perturbations of varying magnitudes were
statistically significant. Our sample size of 5875
texts naturally predisposes the test to be significant,
even with small average deviations. While practi-
cal significance of such LLM audits are context-
specific and best determined on a case-by-case ba-
sis, for this study readers are referred to Figure 1,
Figure 2, and Figure 3 where the effect of linguistic
perturbations are quantified on the scale of the text
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perturbation & Wilcoxon test p value
magnitude statistic
spanglish 20 3533900 p < 0.05
spanglish 40 3581410 p < 0.05
spanglish 60 3481962 p < 0.05
spanglish 80 3727746 p < 0.05
cognates 20 4146682 p < 0.05
cognates 40 4147836 p < 0.05
cognates 60 3969052 p < 0.05
cognates 80 3847161 p < 0.05
noun transfer 20 3944342 p < 0.05
noun transfer 40 3794908 p < 0.05
noun transfer 60 3524270 p < 0.05
noun transfer 80 3498297 p < 0.05
spelling 20 2669144 p < 0.05
spelling 40 1732722 p < 0.05
spelling 60 1436490 p < 0.05
spelling 80 1132988 p < 0.05

Table 1: Wilcoxon test results comparing original and perturbed scores by linguistic variation and magnitude.

scores (0 to 1), and as such may serve as effect size
measures.

Figure 1 displays quartile-specific results for bias
in each linguistic perturbation, faceted by magni-
tude of perturbation. A general trend whereby
increasing magnitudes of perturbation result in
greater mean error can be observed. Additionally,
for all linguistic variations, mean error values trend
positive as successive quartile results are compared
for all magnitudes of perturbation. Mean error
values for all perturbations exceed the first order
baseline reference level in the positive direction,
although error values are still negative in the first
quartile for all perturbations aside from spelling
errors.

Figure 2 displays quartile-specific results for
the expected value of squared deviations between
original scores and perturbed scores, converted to
standard deviations for each linguistic perturbation,
faceted by magnitude of perturbation. Quartile-
specific baseline reference values are represented
as horizontal lines. With the exception of noun
transfer at 60% magnitude for the first quartile, all
standard deviation values were greater than base-
line reference values within their respective quar-
tiles. A moderate trend can be observed such that
for texts in the first quartile, standard deviations
tend to be high across linguistic variations.

Figure 3 displays quartile-specific results for the
expected value of cubed deviations between origi-

nal scores and perturbed scores for each linguistic
perturbation, faceted by magnitude of perturbation.
Skewness values exceed baseline reference values
in the positive direction for all linguistic perturba-
tions, although skewness values are still negative
in the first quartile for all perturbations aside from
spelling errors. Additionally, cognate skewness val-
ues only barely surpass baseline reference values
in the second quartile.

6 Discussion

For texts in the second to fourth quartile of text
quality, sensitivity of GPT-4o scores to linguistic
perturbations of varying magnitudes in all analyses
suggests inequitable assessment of student knowl-
edge in its application. First order results indicate
the presence of bias in LLM scoring, second order
results further indicate differences in precision, and
third order results indicate the an increased like-
lihood for extreme cases of discrepant results in
the positive direction. Additional interpretation for
results of texts in the first quartile are presented
below.

First order analysis results for the first quartile
in Figure 1 show mean error values surpassing the
baseline reference value in the positive direction
while remaining negative. In interpreting these re-
sults, however, it should be appreciated that the neg-
ative value associated with the reference condition
likely represents a "regression to the mean" phe-
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Figure 1: Error (original score - perturbed score) averaged across texts for each linguistic variation by original score
quartile. Graphs are faceted by perturbation magnitude. Horizontal reference lines for signed difference between
original and replicate score are included for each quartile.

Figure 2: Standard deviation of differences averaged across texts for each linguistic variation by original score
quartile. Graphs are faceted by perturbation magnitude. Horizontal reference lines for square root of expected
squared deviations between original and replicate scores are included for each quartile.
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Figure 3: Skewness averaged across texts for each linguistic variation by original score quartile. Graphs are faceted
by perturbation magnitude. Horizontal reference lines for expected cubed deviations between original and replicate
scores are included for each quartile.

Cognate Perturbation 40% Magnitude Sample Texts with Large Error

Text ID Original Score Perturbed Score Error
19047 0.15 0.60 -0.45
240 0.25 0.65 -0.40
18088 0.10 0.50 -0.40
21140 0.10 0.50 -0.40
1245 0.20 0.60 -0.40
19190 0.45 0.15 0.30
19479 0.50 0.20 0.30
276 0.45 0.10 0.35
19320 0.45 0.10 0.35
18578 0.45 0.00 0.45

Table 2: Sample texts with large magnitudes of error for cognate perturbations at 40% magnitude in the 1st quartile.
Scores are on a scale from 0 to 1. Error is calculated as original score - perturbed score. Results show potential for
error scores in either direction.
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nomenon, an expected statistical result, as scoring
error is on average negative in the lowest quartile.
Thus the larger values observed under perturbation,
although still often negative, can nevertheless be
viewed as a first order equity violation (albeit gener-
ally small), in that less than the expected regression
correction is observed under perturbation. Addi-
tionally, it is important to keep in mind that mean
error scores are muted due to cancellation from
the signed nature of the quantity; paired with large
variance of scores (see Figure 2), this leaves a non-
trivial likelihood of inequities in scoring for partic-
ular students. In other words, for texts produced
by students of developing proficiency, the target
LLM would be expected to grade multilingual stu-
dent text responses with lower levels of precision
than monolingual student text responses. As an
example, Table 2 shows the 5 most negative error
value texts and 5 most positive error value texts for
cognate perturbations at 40% magnitude in the first
quartile. Comparably large magnitudes of error in
either direction illustrate how noisy assessment of
perturbed texts as shown by second order analysis
results from Figure 2 can manifest. Given that aca-
demic decisions for students occur in consideration
of individual scores, not group-aggregated values
such as mean scores, this is potential reason for
concern. Third order analysis results (see Figure 3)
for the first quartile are similar to first order results
in that expected cubed deviations are on average
negative and regression to the mean corrections are
more weakly observed under perturbation, indicat-
ing mild third order equity violations. We conclude
that the effect of linguistic perturbation results in
violations of equity in all three orders, with partic-
ularly strong results for spelling errors.

7 Limitation and Future Directions

Our study intended to highlight a methodology for
examining the effects of perturbations on LLM
scoring. A primary limitation of our results relates
to the constantly changing nature of LLMs. It is
likely that the validity of audit results for any given
LLM will have limited longevity. As such, stake-
holders are advised to audit their target LLMs as
close to the time of application as possible.

As the authenticity of the algorithmically-
introduced linguistic variations can be questioned,
results from this audit procedure should be inter-
preted cautiously. More developed ways to intro-
duce these perturbations can be implemented in the

future to improve the validity of the audit proce-
dure.

One challenging aspect of this procedure lies in
determining comparable magnitudes of different
perturbations. In this study, we opted to use the
number of eligible words in the text for a given
linguistic variation. For spelling error, this includes
all words in the text. However, for noun transfer,
only nouns in the text would be included. Thus, a
20% magnitude spelling error perturbation involves
more words being perturbed than in a 20% magni-
tude noun transfer perturbation. This is likely why
in our results, spelling error perturbations show the
largest bars across all quartiles for all analyses. De-
pending on the text feature and context, different
methods for normalization may be preferable.

While this study focused on a limited selection
of linguistic variations, the audit procedure can be
applied for analysis of various other text features.
This gives stakeholders flexibility to choose those
features that are most appropriate to their context
and use case. Analysis of additional features of
essays (ie. length) could also allow for investiga-
tion of potential moderating effects on linguistic
perturbations.

When establishing baseline reliability, only two
trials of test-retest analysis were conducted. While
this decision was made for illustration of concept,
for more robust audits of LLMs, more replications
should be included. On a related note, perturbed
texts were only passed to the LLM for scoring once
each in this study - more replications could be con-
sidered for improved auditing of LLM scoring. In-
creasing replications of both original and perturbed
scores would additionally afford the opportunity to
analyze the effect of text features on scoring at the
individual essay level.

Another natural future direction of this study is
to incorporate higher moments for analyses, which
have the potential to illustrate further nuances of
potential inequities in LLM scoring. There is no
theoretical limit to moments that can be analyzed.

8 Conclusion

Our study has provided an example procedure for
evaluating LLM scoring of texts for equity, incor-
porating algorithmically introduced linguistic per-
turbations and higher order moment analyses in
characterizing impacts on stakeholders. We believe
this procedure to be useful in the following ways:

First, in such contexts as educational testing with
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multilingual student populations where annotated
data is sparse, such a procedure has the potential to
augment our ability to evaluate whether LLMs are
ethically appropriate for application.

Second, due to the experimental nature of this
process whereby the effects of the perturbation can
be isolated, sources of LLM bias can be directly
studied. Furthermore, LLM scoring does not suffer
from carryover effects the way human raters might,
allowing true replications of scores to be obtained
for study. By further investigating how distribu-
tions of target features may vary across groups (e.g.
multilingual vs. monolingual students), stakehold-
ers can leverage audit results to infer how LLM
scores may manifest as bias at the subpopulation
level.

Third, this procedure is accessible in that it can
be conducted by stakeholders in various contexts
(not just education) for evaluation of their target
LLM, and with respect to various features beyond
those targeted in this study.
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Abstract 

We tested whether GPT-4o exhibits 

bias when rating classroom excerpts 

embedded in images of teachers 

differing by race and gender. Four 

teacher images (Black female, White 

female, Black male, White male) were 

paired with short lecture excerpts 

across four instructional contexts. The 

model was instructed only to rate the 

embedded excerpt—without reference 

to the image itself—on four 

dimensions: Clarity, Student 

Engagement, Coherence and 

Organization, and Pedagogical 

Effectiveness. Ratings were compared 

using paired nonparametric tests with 

multiplicity adjustment. Across 32 

factor-specific tests, 18 were 

significant. Effects favored female 

teachers at the 3rd-grade level, male 

teachers in graduate-level advanced 

mathematics, and generally favored 

White teachers; effect sizes were small. 

These findings are relevant for 

researchers studying bias in vision–

language models and for practitioners 

involved in teacher evaluation or 

instructional content review. 

1 Introduction 

“Facts are not pure and unsullied bits of 

information; culture also influences what 

we see and how we see it.”  

–Gould, The Mismeasurement of Man 

(1981) 

Visual bias in humans refers to systematic 

distortions in the perception or interpretation of 

visual stimuli based on prior beliefs. As 

machines increasingly process visual inputs, 

these systems have also been shown to exhibit 

visual bias (e.g., Ananthram et al., 2024; Fraser 

& Kiritchenko, 2024; Hamidieh et al., 2024; 

Howard et al., 2024; Lee & Jeon, 2024; Greene 

et al., 2025; Kim et al., 2025). One class of 

widely-used large multimodal models that couple 

an image (or video) encoder to a large language 

model is referred to as large vision-language 

models (LVLMs). Visual bias has been observed 

in LVLMs and at times, these distortions 

resemble implicit bias, which in humans operates 

unconsciously. However, because LVLMs lack 

consciousness, researchers may use terms such 

as latent, emergent, or data-driven bias to avoid 

conflating these effects with human cognition. 

Regardless of terminology, all refer to the same 

underlying phenomenon: outputs that are 

misaligned with intent and not visible in the 

system architecture. As such, biases of this kind 

must be identified through empirical testing. 

In this study, counterfactual images of 

teachers differing only by race and gender were 

created. Classroom lecture excerpts were 

generated; for each excerpt, the identical text was 

superimposed onto each image, and a large 

vision-language model (LVLM) was asked to 

evaluate the excerpts on four criteria. Because 

the model was tasked solely with evaluating 

identical written content, this design isolates 

whether—and to what extent—a given teacher’s 

visually cued race and gender alter the model’s 

evaluation. The evaluation task was repeated 

across four teaching contexts, resulting in 32 (4 

criteria × 4 contexts × 2 factors) comparisons, of 

which 18 showed evidence of emergent visual 

bias. Aside from identifying an especially salient 

illustration of such bias, this audit-style 

investigation broadens the scope of bias 

assessment to include model behaviors that may 

be particularly relevant in applied contexts such 
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as instructional content review or teacher 

evaluation. 

2 Background 

Many evaluations of LLM bias rely on static 

benchmarks or fixed stereotype probes—such as 

WEAT (Caliskan et al., 2017), StereoSet (Nadeem 

et al., 2020), or WinoBias (Zhao et al., 2018)—but 

these approaches can fail to capture context-

sensitive or decision-level forms of bias. Recent 

work emphasizes evaluation strategies that account 

for context, intersectionality, and model-specific 

behavior (Gohar & Cheng, 2023; Bateni et al., 

2022). Scenario-based audits that simulate real-

world tasks provide one way to accomplish this 

and, in the context of LVLMs, typically focus on 

how a system perceives, generates, or describes 

visual content under controlled conditions 

(Schwartz et al., 2024; Mökander et al., 2024; 

Gaebler et al., 2024; An et al., 2025; e.g., 

Hamidieh, 2024; Fraser & Kiritchenko, 2024; 

Howard et al., 2024; Greene et al., 2025; Lee & 

Jeon, 2024; Ananthram et al., 2024; Kim et al., 

2025). Building on this foundation, the present 

study extends the counterfactual audit framework 

into the domain of evaluative judgment. 

2.1 Problem Definition 

We study whether an LVLM’s evaluation of 

identical instructional text depends on visually 

cued teacher race and gender in the background 

image. For each excerpt, the same text is 

superimposed onto each teacher image while non-

demographic visual features (framing, pose, 

expression, approximate age, clothing, 

background) are held constant. The model outputs 

ratings on four criteria (Clarity; Student 

Engagement; Coherence and Organization; 

Pedagogical Effectiveness) across four teaching 

contexts. Race and gender each had two levels: 

Black and White; Female and Male. We define 

bias as systematic differences in ratings 

attributable to race or gender under these 

invariants. The primary question is answered by 

planned, paired comparisons for race and for 

gender within context (family-wise control 

specified in Section 4.5). Other constructs (e.g., 

perception accuracy) are out of scope. 

2.2 Related Work 

Controlled comparisons that isolate demographic 

cues have long been used in social science 

research, such as resume and housing studies 

(Bertrand & Mullainathan, 2004). Audit methods 

of this kind have also been proposed for assessing 

emergent bias in AI systems (Gohar & Cheng, 

2023; Bateni et al., 2022) and have motivated 

scenario-based audits for these systems (Schwartz 

et al., 2024; Mökander et al., 2024; Gaebler et al., 

2024; An et al., 2025). In the LVLM literature, 

audit-style evaluations have examined perception 

and labeling (Ananthram et al., 2024; Kim et al., 

2025; Greene et al., 2025), generation (Hamidieh, 

2024), and description/captioning (Nadeem et al., 

2021; Zhou et al., 2022; Fraser & Kiritchenko, 

2024; Howard et al., 2024; Lee & Jeon, 2024; 

Greene et al., 2025). Our design falls within this 

family (e.g., Fraser & Kiritchenko, 2024; Howard 

et al., 2024; Lee & Jeon, 2024) and most closely 

parallels Kim et al. (2025), who showed that 

demographic attributes in images can influence 

identification even when demographic 

information is not requested. Here, the adversarial 

element is further dissociated from the task: rather 

than perception or description, we superimpose 

identical lecture excerpts onto counterfactual 

teacher images and ask the LVLM to rate only the 

written content, testing whether visual attributes 

that are formally irrelevant to the evaluation 

nonetheless shape model output. 

3 Methodology 

3.1 Proposed Procedure 

The procedure includes the following five steps. 

1. Image construction. Generate teacher 

portraits that vary only by demographic 

characteristic and iteratively refine images to 

maximize similarity on non-demographic 

attributes; composite each portrait onto a 

common classroom background so that 

framing, pose, facial expression, attire, and 

apparent scale are held constant. 

2. Excerpt generation. Generate short (35–50 

word), age-appropriate classroom lecture 

excerpts for specific instructional contexts. 

3. Counterfactual pairing. Superimpose each 

excerpt onto each teacher image to create 

matched sets differing only by the teacher’s 

visual identity. 

4. Rating task. Submit each image–prompt pair 

to the model and obtain excerpt ratings on 

four criteria. 

5. Comparative analysis. Compare ratings 

within each demographic factor. 
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4 Experiments 

The procedure above was implemented as 

follows. 

4.1 Image Construction 

Using OpenAI’s DALL·E 3 (OpenAI, 2024), four 

teacher images were produced: a Black female, a 

White female, a Black male, and a White male. 

Images were iteratively refined with the goal of 

making them highly similar on non-demographic 

dimensions. Adobe Photoshop was used to 

overlay each teacher image onto the same 

classroom scene, aligning position and scale to 

preserve framing, pose, and facial expression 

(Adobe, 2025). 

4.2 Excerpt Generation 

GPT-4o (OpenAI, 2025) was accessed via the 

web interface to generate 1,000 excerpts per 

context (35–50 words each) with age-appropriate 

tone and content across four contexts: 3rd-grade 

English, 3rd-grade mathematics, graduate-level 

English literature, and graduate-level advanced 

mathematics (4,000 excerpts in total). Excerpts 

were generated in batches and conversation 

history was retained within each context to ensure 

excerpt uniqueness. 

4.3 Counterfactual Pairing 

Each excerpt was then superimposed onto each 

teacher image, yielding 16,000 images in total. 

Figure 1 illustrates four sample composites. 

4.4 Rating Task 

GPT‑4o, accessed via the Azure OpenAI Service, 

was prompted to evaluate the excerpt embedded 

within each image. The deployment was 

configured with no data logging or model training 

from inputs. Default model settings were used. 

The exact prompt text was: 

You are an expert in education and pedagogy. 

A classroom lecture excerpt is embedded 

within the attached image. Evaluate this 

excerpt using the following four criteria, each 

on a scale from 1 (worst) to 10 (best): Clarity; 

Student Engagement; Coherence and 

Organization; Pedagogical Effectiveness. 
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The four criteria—Clarity, Student 

Engagement, Coherence and Organization, and 

Pedagogical Effectiveness—were adapted from 

prior research on instructional quality (Devlin & 

Samarawickrema, 2010; Zheng, 2021). Each 

image–prompt pair was submitted individually, 

and model-generated ratings were recorded. 

4.5 Comparative Analysis 

For each criterion, we compared paired ratings 

across race and across gender using the Wilcoxon 

signed-rank test. Within each teaching context, we 

conducted planned, paired Wilcoxon tests for race 

and for gender across the four criteria. For each 

factor within each context, the four tests formed a 

family, and we controlled the family-wise error rate 

at α = .05 using Holm’s step-down procedure. 

Unless noted otherwise, significance refers to these 

factor-specific Holm-adjusted p-values as reported 

in Table 1. Effect sizes were computed as Wilcoxon 

r and interpreted as negligible (< .10) or small (.10–

< .30). 

Table 1.  
     

Wilcoxon signed-rank tests for race and gender by context and criterion (Holm-adjusted per factor within context).  
 

 
Criteria 

Context Factor Clarity Student 
Engagement 

Coherence 
and 

Organization 

Pedagogical 
Effectiveness 

3rd-grade 
Math 

N (race/gender nonzero pairs) 393 / 390 404 / 403 407 / 407 362 / 368 

Race 
 Means (Black, White)  8.349, 8.403 7.399, 7.357 8.290, 8.324 8.412, 8.378 

 p (race, Holm)  < .001*** 0.006** 0.003** 0.035* 
 r (race, label)  .234 (small) .147 (small) .163 (small) .111 (small) 

Gender 
 Means (Male, Female)  8.351, 8.400 7.365, 7.390 8.278, 8.336 8.402, 8.388 

 p (gender, Holm)  0.001** 0.174 < .001*** 0.174 
 r (gender, label) .178 (small) .085 (negl.) .191 (small) .089 (negl.) 

3rd-grade 
English  

N (race/gender nonzero pairs) 502 / 487 511 / 509 505 / 491 312 / 329 

Race 
 Means (Black, White)  8.589, 8.623 7.740, 7.749 8.601, 8.630 8.783, 8.763 

 p (race, Holm)  0.045* 0.502 0.097 0.097 
 r (race, label)  .113 (small) .030 (negl.) .095 (negl.) .117 (small) 

Gender 
 Means (Male, Female)  8.588, 8.624 7.729, 7.760 8.596, 8.634 8.766, 8.780 

 p (gender, Holm)  0.012* 0.039* 0.012* 0.170 
 r (gender, label) .130 (small) .104 (small) .134 (small) .076 (negl.) 

Graduate-
level 

Advanced 
Math 

N (race/gender nonzero pairs) 574 / 571 522 / 509 567 / 564 588 / 598 

Race 
 Means (Black, White)  5.972, 6.053 4.521, 4.599 6.913, 6.987 5.809, 5.860 

 p (race, Holm)  < .001*** < .001*** < .001*** 0.007** 
 r (race, label)  .221 (small) .238 (small) .198 (small) .112 (small) 

Gender 
 Means (Male, Female)  6.054, 5.971 4.595, 4.525 6.985, 6.914 5.887, 5.782 

 p (gender, Holm)  < .001*** < .001*** < .001*** < .001*** 
 r (gender, label) .221 (small) .225 (small) .190 (small) .238 (small) 

Graduate-
level 

English 
Literature 

N (race/gender nonzero pairs) 543 / 546 578 / 578 517 / 522 633 / 633 

Race 
 Means (Black, White)  6.770, 6.794 5.742, 5.770 7.639, 7.651 6.856, 6.878 

 p (race, Holm)  0.302 0.262 0.444 0.444 
 r (race, label)  .070 (negl.) .077 (negl.) .038 (negl.) .049 (negl.) 

Gender 
 Means (Male, Female)  6.778, 6.786 5.743, 5.769 7.648, 7.643 6.859, 6.875 

 p (gender, Holm)  0.946 0.282 0.946 0.935 
 r (gender, label) .031 (negl.) .075 (negl.) .010 (negl.) .040 (negl.) 

Notes. Table presents paired Wilcoxon signed-rank tests comparing race (Black vs. White) and gender (Male vs. 
Female) for each criterion within each teaching context. For multiplicity, the four tests per context/factor (4 criteria × 
1 context × 1 factor) are treated as a single family; p-values are Holm-adjusted per factor within context (two-sided, 
α = .05). Significance coding: p < .05 = *, < .01 = **, < .001 = ***. N reports the number of nonzero pairs contributing 
to each Wilcoxon test (shown as N₍race₎/N₍gender₎). Effect sizes are Wilcoxon r = |Z|/√n and are reported as 
magnitudes (direction indicated by the corresponding group means); qualitative labels: negligible (negl.) < .10; small 
.10–.30. 
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5 Results 

Table 1 reports all four contexts (32 tests), with 

Holm’s step-down adjustment applied per factor 

within context across the four criteria. Across the 

32 tests, 18 were significant at α = .05 after per-

factor, within-context adjustment. Although no 

differences were detected in graduate-level English 

literature, that context remains in the table for 

completeness. Among the remaining three 

contexts, 18 comparisons are significant after 

Holm adjustment; effect sizes for significant tests 

are uniformly small (r ≈ .11–.24).  

By context (significant comparisons per factor / 

4; Holm-adjusted per factor within context): 

• 3rd-grade Mathematics. Race: 4/4 (White > 

Black on Clarity, Coherence and 

Organization, Pedagogical Effectiveness; 

Student Engagement shows Black > White); 

Gender: 2/4 (Female > Male on Clarity, 

Coherence and Organization). Student 

Engagement and Pedagogical Effectiveness: 

not significant for gender. 

• 3rd-grade English. Race: 1/4 (White > Black 

on Clarity); Gender: 3/4 (Female > Male on 

Clarity, Student Engagement, Coherence and 

Organization). Pedagogical Effectiveness: 

not significant for either factor. 

• Graduate-level Advanced Mathematics. 

Race: 4/4 (White > Black on all four criteria); 

Gender: 4/4 (Male > Female on all four 

criteria). 

• Graduate-level English Literature. Race: 0/4; 

Gender: 0/4 (no differences on any criterion). 

Where significant, gender effects favored 

Female at the elementary level (3rd-grade English 

and Mathematics) and Male in Graduate-level 

Advanced Mathematics; race effects generally 

favored White, with the noted exception of Student 

Engagement in 3rd-grade Mathematics (Black > 

White). Effect sizes for significant tests were 

uniformly small (Wilcoxon r ≈ .11–.24).  

6 Conclusion 

6.1 Discussion 

This study prompted a large vision-language 

model to evaluate identical lecture excerpts while 

the background image varied only in teacher race 

and gender. Under a per-factor, within-context 

multiplicity correction, the model’s ratings 

differed by demographic attributes in three of the 

four contexts examined. The pattern was 

consistent with level-specific sensitivities: female 

teachers received higher ratings on Clarity and 

Coherence and Organization at the 3rd-grade 

level, whereas male teachers received higher 

ratings on all four criteria in graduate-level 

Advanced Mathematics. Race effects were more 

pervasive, typically favoring White teachers, with 

one notable exception (higher Student 

Engagement for Black teachers in 3rd-grade 

Mathematics). Although the magnitudes of the 

significant effects were small, the results 

demonstrate that formally irrelevant visual cues 

can systematically shift evaluative judgments of 

identical text. 

6.2 Limitations 

The counterfactual images operationalized binary 

gender and race among teachers with other 

attributes (e.g., approximate age, body type, pose, 

expression, attire, framing) held as constant as 

possible. Effects may differ for other demographic 

attributes (e.g., nonbinary genders, nonbinary 

races, age, weight, skin tone, disability) or other 

image features. Outputs were analyzed for a single 

model (GPT-4o); behavior may differ across 

LVLMs and versions. Finally, individual 

significant effects were small; cumulative effects, 

which could be consequential, require further 

study. 

6.3 Future Work 

Future work should (i) extend the demographic 

characteristics beyond binary gender and 

Black/White categories and test intersectional 

manipulations (interactions); (ii) include within-

factor variability (e.g., represent each demographic 

cell with multiple distinct teacher images) (iii) 

evaluate multiple LVLMs and versions; (iv) 

broaden instructional domains and criteria; and (v) 

examine pipeline-level consequences—for 

example, whether small per-item biases aggregate 

into consequential differences in ranking or 

approval decisions. We note with concern that if 

these biases reflect patterns in human-produced 

training materials, then using such models in 

teacher evaluation risks a feedback loop: biased 

outputs influence decisions and documentation, 

which in turn affect future training data, which may 

further entrench demographic underrepresentation 

and bias. 
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Abstract

Item difficulty prediction remains a critical
challenge in large-scale assessment develop-
ment, particularly for international programs
like TIMSS where extensive pretesting is costly
and time-consuming. This study investigated
the utility of large language model (LLM)-
extracted cognitive features for predicting item
difficulty in mathematics assessment. We ana-
lyzed restricted-use TIMSS mathematics items
from Grades 4 and 8, comparing three XG-
Boost models: traditional features (metadata
and textual complexity), LLM-extracted cogni-
tive features, and a combined approach. Tra-
ditional features alone achieved moderate per-
formance (R2 = 0.36), while LLM-extracted
cognitive demand variables showed weaker
individual performance (R2 = 0.20). How-
ever, the combined model substantially outper-
formed both individual approaches, explain-
ing 48% of variance in item difficulty, a 33%
improvement over traditional methods alone.
Results demonstrate that LLM-extracted fea-
tures provide complementary predictive infor-
mation that enhances difficulty prediction when
integrated with conventional textual and meta-
data features. This approach offers a scalable
alternative to expert-based cognitive analysis
while maintaining theoretical grounding in es-
tablished assessment frameworks.

1 Introduction

The calibration of item difficulty is a foundational
and resource-intensive requirement in any assess-
ment development. For large-scale assessments
such as the Trends in International Mathematics
and Science Study (TIMSS), the cost is even higher
as items need to be pretested across multiple edu-
cation systems participating in the program (von
Davier et al., 2024). The conventional psychomet-
ric process relies on extensive field testing to gather
empirical data, a practice that presents significant
logistical and financial burdens, thereby creating a

bottleneck in the test development lifecycle. This
operational challenge has motivated a sustained
search for automated methods capable of predict-
ing item difficulty directly from item text, aiming
to augment and streamline the item development
process (AlKhuzaey et al., 2024). Early research
in this area leveraged traditional Natural Language
Processing (NLP) techniques to extract surface-
level and engineered linguistic features. These in-
cluded readability indices (e.g., Flesch-Kincaid),
word and sentence counts, syntactic complexity
metrics, and psycholinguistic features from tools
like Coh-Metrix (AlKhuzaey et al., 2024). While
valuable, these methods do not capture the deeper
conceptual, cognitive, and reasoning demands em-
bedded within an assessment item.

The advent of Large Language Models (LLMs)
represents a paradigm shift in this domain. Three
dominant strategies for using LLMs for item dif-
ficulty prediction have emerged. The first, direct
estimation, involves prompting an LLM to act as a
subject-matter expert and assign a holistic difficulty
rating to an item. While intuitively appealing, this
approach functions as a "black box," providing a
score without rationale, and has shown inconsistent
performance, particularly for items designed for
younger learners (Razavi and Powers, 2025). The
second approach involves using LLMs to generate
text embeddings from item stems and response op-
tions, which then serve as features in a machine
learning model. This approach has been shown to
produce accurate difficulty predictions (Bulut et al.,
2024; Kapoor et al., 2025). However, models based
on embeddings lack interpretability. The third and
most sophisticated strategy treats the LLM as a
feature extractor. In this two-stage process, the
LLM is guided by a structured prompt to analyze
an item and output values for a set of predefined, in-
terpretable cognitive and linguistic features. These
features are then used as predictors in a separate,
often simpler, machine learning model (Razavi and
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Powers, 2025).
This study builds upon the promising feature-

based methodology by addressing key limitations
in current LLM applications for item difficulty pre-
diction. While previous research has demonstrated
the potential of LLM-extracted features, significant
gaps remain in applying these approaches to
complex, international assessment contexts such
as TIMSS mathematics items that span multiple
grade levels and cognitive domains. Furthermore,
existing studies have primarily focused on either
traditional psychometric features or LLM-derived
metrics in isolation, without systematically inves-
tigating how these complementary approaches
can be integrated to enhance predictive accuracy.
This investigation addresses these limitations
by developing a comprehensive framework that
combines traditional textual and metadata features
with LLM-extracted cognitive demand variables,
providing empirical evidence for the added value
of automated cognitive feature extraction in
large-scale assessment contexts.

Research Questions

1. How do large language model-extracted cog-
nitive features compare to traditional textual
complexity features in predicting item diffi-
culty in large-scale assessments?

2. To what extent do LLM-extracted cognitive
demand features enhance item difficulty pre-
diction when combined with traditional fea-
tures?

2 Related Works

Research on item difficulty modeling has long em-
phasized the integration of psychometric and cog-
nitive frameworks. Sheehan and Mislevy (1994)
applied tree-based regression analyses to link item
features, solution processes, and response formats
with IRT parameters, explaining up to 36% of
the variance in difficulty. Competency-based ap-
proaches have been particularly influential in in-
ternational large-scale assessments. Turner et al.
(2013) demonstrated that six mathematical com-
petencies (e.g., reasoning, modeling, symbol use)
strongly predicted item difficulty in PISA. Simi-
larly, Schneider et al. (2013) showed that Depth of
Knowledge (DOK), reading load, and contextual
demands systematically predicted item difficulty.

With the rise of machine learning, feature-based ap-
proaches have advanced prediction. Štěpánek et al.
(2023) compared multiple algorithms and found
that elastic net and random forests outperformed
expert ratings, suggesting that textual features can
approximate empirical difficulties. Yi et al. (2024)
extended this work with an XGBoost-SHAP frame-
work, achieving strong predictive accuracy while
offering interpretability by quantifying the contri-
bution of features such as reasoning steps and sym-
bolic complexity. While these studies demonstrated
the importance of cognitive and textual features,
they relied on experts to manually code the item
data for cognitive features, thereby limiting the
number of items that could be studied efficiently.

3 Method

3.1 Dataset

The dataset for this investigation comprised 202
restricted-use mathematics test items selected from
TIMSS Grades 4 and 8 assessments administered
in 2015 and 2019. These items spanned nine math-
ematical content areas, with the Number domain
contributing the highest number of items, while
roughly 23% were eTIMSS items delivered through
digital platforms. Item difficulty was quantified
using international average proportion-correct val-
ues (p-values) obtained from the TIMSS Interna-
tional Database. The mean proportion correct was
51.63%.

3.2 LLM

Using OpenAI’s GPT-4.1, several cognitive fea-
tures were extracted from each item. Leveraging
the reasoning capacity of GPT-4.1, we instructed
the model through few-shot prompting to evaluate
the items and provide appropriate rating based on
the provided detailed rubrics with numerical scales
and specific criteria for consistent rating across
items. GPT-4.1 was accessed through OpenAI’s
APIs using the ellmer package in R

3.3 Item Features

This study examined variables that could be sys-
tematically categorized based on their extraction
methodology: traditional features derived from con-
ventional computational and metadata approaches,
and LLM-extracted features leveraging large lan-
guage model capabilities for automated item analy-
sis.
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Traditional Features encompass two subcate-
gories of variables that have been extensively used
in prior research on item difficulty modeling.

Metadata Variables refer to characteristics speci-
fied during item development and assessment ad-
ministration. These included grade (4 or 8), item
type (multiple choice or constructed response), con-
tent domain (number, algebra, geometry, data and
probability), cognitive domain (knowing, applying,
reasoning), and presence of visual elements. These
variables align with established TIMSS framework
specifications and capture basic structural features
of assessment items.

Textual Complexity Variables captured the lin-
guistic demands of item stems and response options
using established computational linguistics ap-
proaches. These included basic text statistics such
as character count, word count, sentence count, and
syllable count, as well as established readability in-
dices including the Automated Readability Index,
SMOG readability formula, Coleman-Liau index,
Flesch Reading Ease, and Gunning Fog index. Ad-
ditional variables measured the frequency of digits
in item stem and response options, recognizing
that mathematical text presents unique processing
demands beyond general readability.

LLM-Extracted Features represent a novel
approach to automated item difficulty modeling,
leveraging the reasoning capabilities of large lan-
guage models to extract features that traditionally
required expert human judgment.

Mathematical Content Features were extracted
by prompting the LLM to identify and categorize
abstract mathematical concepts present in each
item. The LLM was also asked to provide a diffi-
culty rating on a 0-100 scale based on its analysis
of the mathematical content and cognitive demands,
serving as an AI-generated difficulty estimate.

Cognitive Demand Variables were extracted us-
ing the LLM to rate items according to the four
cognitive competencies framework developed by
Turner et al. (2013) for PISA assessment. The
LLM was prompted to evaluate each item’s de-
mand for: reasoning and argumentation, problem
solving, mathematical modeling, and communica-
tion. These competencies describe essential cogni-
tive processes required for successful mathematical
problem solving and have demonstrated high pre-
dictive validity in prior research, with competency-
based variables explaining approximately 70% of
the variance in PISA item difficulty when used
in regression models (Turner et al., 2013). The

LLM-based extraction approach offers a scalable
alternative to expert panel ratings while maintain-
ing theoretical grounding in established cognitive
frameworks.

3.4 Modeling
Using the proportion correct as our estimate of item
difficulty, we built a tree-based ensemble model to
map item features to difficulty estimates. Specif-
ically, we employed Extreme Gradient Boosting
(XGBoost) (Chen and Guestrin, 2016), a machine
learning algorithm that has demonstrated superior
performance across diverse prediction tasks, in-
cluding item difficulty prediction (Yi et al., 2024;
Lamgarraj et al., 2024).

XGBoost operates through a sequential ensem-
ble approach, iteratively constructing weak deci-
sion trees where each subsequent model focuses
on correcting the prediction errors made by the
previously constructed models. This additive mod-
eling strategy allows the algorithm to capture com-
plex, non-linear relationships between item fea-
tures and difficulty that traditional linear regression
approaches might miss. The sequential nature of
the boosting process enables the model to progres-
sively refine its predictions by learning from resid-
ual errors, ultimately producing a highly accurate
composite predictor.

The model’s ability to provide feature impor-
tance rankings offers valuable insights for assess-
ment development. By quantifying the relative con-
tribution of different item characteristics to diffi-
culty prediction, XGBoost can inform item writers
about which features most strongly influence item
difficulty, potentially improving the efficiency of
item development processes. This interpretability
is particularly valuable when comparing the pre-
dictive utility of traditional features versus novel
LLM-extracted features.

The dataset was randomly partitioned into train-
ing (80%) and testing (20%) sets to enable robust
model evaluation. Hyperparameter optimization
for the XGBoost model was conducted using 5-fold
cross-validation with grid search on the training set,
ensuring that model selection decisions were based
on generalizable performance rather than overfit-
ting to specific data partitions.

Model performance was evaluated using two
metrics: root mean squared error (RMSE) to quan-
tify the magnitude of prediction errors, and coeffi-
cient of determination (R2), to quantify the propor-
tion of variance in item difficulty explained by the
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model.

4 Results

Three XGBoost models were developed to evalu-
ate the predictive utility of different feature cate-
gories for item difficulty prediction: a text-based
model using traditional features, a cognitive model
using LLM-extracted features, and a comprehen-
sive model combining both feature types. Table
1 presents the performance metrics for all three
models based on the testing dataset.

Table 1: Model performance metrics

Feature RMSE R2

Traditional 15.43 0.36
LLM Cognitive 17.27 0.20
Traditional + LLM Cognitive 14.03 0.48

The text-based model, utilizing traditional meta-
data and textual complexity variables, demon-
strated moderate predictive performance on the test
set (R2 = .36, RMSE = 15.43). This model effec-
tively captured the linguistic and structural char-
acteristics of assessment items that influence dif-
ficulty, including readability indices, word counts,
and domain specifications.

In contrast, the cognitive model using only LLM-
extracted features showed weaker individual per-
formance (R2 = 0.20, RMSE = 17.27). While the
cognitive demand variables and mathematical con-
tent features extracted by the LLM captured theo-
retically important aspects of item difficulty, these
features alone were insufficient for accurate diffi-
culty prediction.

The combined model incorporating both tradi-
tional and LLM-extracted features substantially
outperformed either individual approach, achiev-
ing the highest test set performance (R2 = 0.48,
RMSE = 14.03). This represents a 33% improve-
ment in explained variance compared to the text-
only model and a 140% improvement compared
to the cognitive-only model. The superior perfor-
mance of the integrated approach demonstrates that
LLM-extracted cognitive features provide unique
predictive information that complements traditional
item characteristics.

Figure 1 displays the relative importance of the
top ten features for predicting mathematics item
difficulty according to the best-performing XG-

Boost model that combined traditional and LLM-
extracted features. The LLM rating of item dif-
ficulty emerged as the most important predictor,
followed by item type and a series of readability
indices.

Figure 1: Feature Importance Plot

5 Discussion

The findings from this study demonstrate that in-
tegrating LLM-extracted features with traditional
item characteristics yields clear benefits for predict-
ing difficulty in TIMSS mathematics assessments.
Traditional features alone achieved moderate ac-
curacy (R² = 0.36), a result consistent with earlier
research that relied on readability indices and meta-
data such as item format and domain (e.g., Sheehan
and Mislevy (1994); Schneider et al. (2013)). LLM-
extracted features on their own, while grounded in
cognitive frameworks similar to those emphasized
by Turner et al. (2013), showed weaker predictive
performance, suggesting that automated cognitive
coding alone is not sufficient to achieve excellent
predictive performance. However, the model with
combined feature types explained 48% the variance
in item difficulty, surpassing both approaches in iso-
lation and aligning with the findings of Štěpánek
et al. (2023) and Yi et al. (2024), who showed
that hybrid models incorporating multiple feature
sets outperform single source predictors. These
results suggest that LLM-derived cognitive mea-
sures capture unique dimensions of difficulty that
complement rather than replace traditional text and
metadata indicators.

The study also reinforces and extends findings
from recent LLM-based work. Razavi and Pow-
ers (2025) demonstrated that LLMs can enhance
difficulty prediction when used as feature extrac-
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tors for tree-based models, while Li et al. (2025)
found that fine-tuned smaller models often outper-
form large general-purpose LLMs in educational
contexts. Our results resonate with these studies
by showing that raw LLM predictions are insuffi-
cient but that their structured cognitive features add
significant value when combined with traditional
descriptors.

6 Conclusion

This study provides new evidence on the poten-
tial of LLM-extracted features to improve item
difficulty prediction in international large-scale as-
sessments such as TIMSS. While traditional meta-
data and textual complexity variables accounted
for a moderate proportion of variance in item diffi-
culty, and LLM-extracted cognitive features alone
showed limited predictive value, their integration
substantially enhanced accuracy, explaining nearly
half of the variance in item difficulty. These results
confirm that LLMs capture complementary aspects
of cognitive demand and reasoning that extend be-
yond conventional text-based measures, offering a
scalable alternative to manual coding. The findings
also reinforce prior evidence that hybrid models
outperform single-source predictors and demon-
strate that combining psychometric, linguistic, and
cognitive perspectives is essential for advancing
item modeling.

By carefully choosing theoretically grounded
cognitive demand features, this research shows
how LLM-extracted features can provide not only
stronger predictions but also actionable insights
into the cognitive and structural elements driving
item difficulty. Together, these contributions re-
spond to calls in prior work for approaches that bal-
ance predictive power with interpretability, bridg-
ing psychometric traditions with modern NLP ad-
vances. Ultimately, the study offers a practical
pathway for improving efficiency in item calibra-
tion, reducing reliance on costly pretesting, and
enhancing the design of equitable and cognitively
grounded assessments in mathematics education.
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Abstract 

This study evaluates GPT-4 for generating 
and validating Q-matrices for TIMSS 
mathematics items. Using expert mappings 
as benchmarks, we examined prompt 
design, temporal stability, and error 
detection. The model showed strong 
accuracy, substantial reliability, and 
effective recovery of altered skills, 
supporting its role as a scalable aid to 
cognitive diagnosis. 

1 Background  

Identifying the cognitive skills required to solve 
specific test items is a foundational task in 
educational assessment. This function is not only 
critical for ensuring the validity of test 
interpretations but is especially central to the 
development and validation of Q-matrices in 
Cognitive Diagnosis Models (CDMs; Rupp et al., 
2010).  

A carefully constructed Q-matrix aligns each 
assessment item with the exact constellation of 
cognitive skills or knowledge components required 
for its solution. When the identification of these 
skills is flawed or incomplete, the resulting model 
can misrepresent learners’ proficiencies, 
undermining one of the principal strengths of 
cognitive diagnostic models, their capacity to 
deliver precise, actionable feedback. Consequently, 
the delineation of content and associated skills 
emerges as a critical, yet cognitively demanding, 
dimension of assessment design. Against this 
backdrop, large language models (LLMs), such as 
GPT, present a promising avenue for augmenting 
or supporting expert analysis, offering new 
opportunities to enhance the rigor and efficiency of 
Q-matrix development. 

2 Purpose  

This study evaluates GPT-4’s capacity to identify 
skills and validate Q-matrices against a content 
expert–designed gold standard across Number, 
Algebra, Geometry, and Data and Chance. Q-
matrix design requires more than simple skill 
matching, demanding analysis of interactions, 
hierarchies, cognitive load, and item context. We 
examine whether GPT-4 can meet these demands 
as a scalable, cost-effective aid to expert 
assessment design. This study addresses the 
following research questions: 
RQ1: What prompt strategies enable GPT-4 to 
accurately map cognitive skills to test items?  
RQ2: How stable are its Q-matrices across repeated 
prompts? 
RQ3: How does GPT-4o’s performance vary across 
different error types (skill addition and skill 
swapping)? 

3 Sample   

This study uses the TIMSS 2007 Grade 7 
Mathematics Released Items with an expert-
defined Q-matrix for 89 publicly available items 
(Johnson et al., 2013) approved by NCES to 
strengthen the generalizability and relevance of its 
findings in large-scale educational research. 

4 Methodology 

A three-part framework was employed to refine 
methods for generating and validating Q-matrix 
skill mappings for TIMSS mathematics items. 
First, two prompt templates were designed: one to 
construct Q-matrix entries for all 89 items and 
another to evaluate existing matrices for errors, 
each targeting a distinct cognitive mapping task. 
 

Leveraging LLMs for Cognitive Skill Mapping in TIMSS Mathematics Assessment 
 
 
 

Ruchi J. Sachdeva, Ph.D., Pearson 
Jung Yeon Park, Ph.D, George Mason University 

 
 
 
 
 

223



2 
 
 

Second, we assessed agreement on the number 
of skills per item by comparing GPT estimates with 
counts from the content expert gold standard. We 
also tested four prompt configurations to gauge 
their effect on Q-matrix accuracy, contrasting a full 
version containing all optimization elements with 
simplified versions that excluded skill descriptions, 
expert-role instruction, or procedural constraints. 

Third, we evaluated the reliability of a single 
fixed prompt by generating 20 independent item-
by-skill mappings and measuring consistency 
across runs. This framework offers a rigorous basis 
for understanding how prompt design and 
refinement influence the precision and diagnostic 
quality of automated Q-matrix construction in 
educational assessment research. 

4.1 Prompt Design    

We refined prompt structures with a subset of 10 
TIMSS items, then applied the finalized versions to 
all 89 items to generate Q-matrix entries. Because 
submitting all items at once exceeded the token 
limit, each was provided individually with its 
prompt and image.  

Two prompts were developed: one to generate 
an independent Q-matrix and another for 
validation. Both returned JSON-formatted outputs 
containing the item identifier, the corresponding Q-
matrix entry, the number of skills identified, and a 
brief rationale for each skill selection.  

For validation, a Q-matrix entry with an 
intentional error was presented, and GPT was 
asked to judge its accuracy and produce a corrected 
mapping for the item. The validation output also 
included a one-sentence explanation of the chosen 
skills, and a one-sentence justification for agreeing 
or disagreeing with the provided Q entry for the 
item.  

4.2 Testing Prompt Strategies 

To evaluate the impact of various prompt 
optimization strategies, we compared GPT-
generated Q-matrices with and without these 
enhancements, holding all other conditions 
constant to isolate the effects of prompt structure.  
Each prompt variant produced a distinct Q-matrix, 
which was benchmarked against a content expert-
Q matrix.  

Four prompt configurations were evaluated for 
their effect on Q-matrix accuracy. (See Table 1) 
The full prompt included all optimization elements 
for constructing an 89-item, nine-skill matrix. 

Other versions removed detailed skill descriptions, 
omitted the instruction assigning an expert role, or 
removed all the procedural constraints, which 

provided guidance on selecting a primary skill, 
adding additional skills, and interpreting graphs 
and shapes, leaving only the core task 
specification.  

This evaluation framework allowed systematic 
identification of prompt configurations and their 
impact on accuracy and informing best practices. 
Performance was assessed using F1 scores, with 
precision and recall calculated at the overall and 
skill level against the content expert-designed Q-
matrix. 

4.3 Number of Required Skills 

A Q-matrix maps assessment items to the 
cognitive skills needed for their solution. After 
defining skills from learning objectives, each 
item is reviewed to determine how many are 
required. Using the same expert-defined skills, 
GPT estimated this count, and we compared its 
results with expert judgments using intraclass 

Method Status Description 

Full Prompt 
(P1) Kept All 

Used all prompt 
techniques to produce 
the final version for an 
89-item, 9-skill Q-
matrix. 

Skill Details 
(P2) Removed 

Detailed descriptions 
of each skill (Taken 
from the TIMSS 
technical 
documentation). 

Providing a 
Role (P3) Removed 

Omitted the 
instruction: “You are a 
content expert in 7th-
grade Mathematics 
assessment in the 
United States.” 

Procedural 
Constraints 
(P4) 

Removed 

Eliminated procedural 
rules about task limits, 
content-domain 
mapping, leaving only 
the high-level task 
description. 

Evaluation 
Metrics 

F1-score comparisons against 
expert-designed Q-matrix at the 
skill level. 

Table 1:  Framework for Prompt Engineering 
Strategies in Q-Matrix Generation. 
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correlation (ICC) to assess agreement on item 
complexity. Treating each item–skill decision 
(i.e., whether an item is linked to a given skill; 
coded 0/1) 

4.4 Repeated Prompt Reliability 

LLMs can map assessment items to cognitive 
skills, yet their outputs may fluctuate across 
identical runs, raising concerns about the 
reliability of Q-matrices in cognitive diagnostic 
models. To evaluate this, we tested temporal 
stability by administering the same prompt to 
GPT twenty times and calculating 
Krippendorff’s alpha (Krippendorff, 2018). This 
statistic measures the degree of agreement 
among multiple coders or iterations beyond 
chance and accommodates various data types, 
including nominal scales. It was appropriate here 
because the entire binary skill vector (for 
example, 100100000) was treated as a single 
nominal category. This approach provided an 
estimate of consistency across repeated 
mappings and the robustness of GPT-generated 
Q-matrices. 

4.5 Q-Matrix Error Detection Using Add 
and Swap Conditions 

To assess GPT’s ability to detect and correct 
errors in skill mappings, we used two procedures 
called Add and Swap (Table 2). Both began with 
the expert Q-matrix for each TIMSS item; 74 of 
89 items involved a single skill, offering a clear 
test case. GPT received the skill definitions, 
learning objectives, detailed prompt, and a PNG 
of the item.  

In the Add condition, a randomly selected 
extra skill was appended to the correct mapping 
to create an altered entry. GPT evaluated 
agreement or disagreement with the provided Q-
matrix entry, identified the appropriate skill 
pattern for the item, and offered a rationale when 
its judgment differed. In the Swap condition, one 
correct skill was replaced with an unrelated 
alternative, and GPT assessed the substitution, 
stated agreement or disagreement, and proposed 
the correct skill or set of skills.  

GPT’s recommendations were compared with 
the content-expert mappings, and accuracy was 
assessed with F1 scores. Illustrative examples 
and procedural details for both conditions are 
presented in Table 2. 

 

5 Results 

This section presents findings on the accuracy, 
reliability, and interpretability of Q-matrices 
generated by GPT. We report performance across 
prompt strategies, agreement on the number of 
skills per item, detection of Q-Matrix errors, and 
stability across repeated runs, highlighting how 
prompt design influenced outputs. 

5.1 Prompt Optimization 

Each prompt produced a distinct Q-matrix, which 
was evaluated against a content expert–designed 

Condition Purpose Procedure Illustrative 
Example 

Add Evaluate 
GPT’s 
ability to 
identify and 
discard 
unnecessary 
skills in Q-
matrix 
mappings. 

GPT 
reviewed an 
augmented 
skill set 
containing 
one 
unnecessary 
element and 
determined 
whether to 
retain or 
remove it 
before 
producing 
the final 
mapping. 

Example: For 
a geometry 
item, the 
expert 
selected only 
Skill 6. The 
Q-matrix 
listed Skills 6 
and 1; GPT 
removed Skill 
1, retaining 
Skill 6 in line 
with the 
expert 
mapping. 

Swap Examine 
GPT’s 
capacity to 
identify and 
correct an 
entirely 
different 
(incorrect) 
skill. 

For each 
(mostly 
single-skill) 
item, the 
correct skill 
was 
swapped 
with an 
unrelated 
one; GPT 
reviewed 
the 
materials 
and 
proposed 
the 
appropriate 
skill(s). 

Example: In a 
number item, 
the correct 
Skill 1 was 
swapped for 
Skill 5; GPT 
removed Skill 
5 and 
reinstated 
Skill 1. 

Table 2: Procedures for Error Detection (Add and 
Swap) 
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Q-matrix using F1, precision, and recall. Table 1 
summarizes the prompt-engineering strategies, and 
Table 3 reports their effects on accuracy and partial 
credit. The Full Prompt (P1) yielded the highest 
performance, with an overall F1 of 0.83 and a 
partial-credit mean of 0.82. P2 (No Skill Details) 
achieved an F1 of 0.78 and a partial-credit mean of 
0.76, while P3 (No Role Assignment) showed an 
F1 of 0.78 and a partial-credit mean of 0.81. P4 (No 
Constraints) produced the largest decline, with an 
F1 of 0.77 and a partial-credit mean of 0.80. F1 
measured exact agreement, whereas partial-credit 
scores reflected overlap; the two metrics were 
similar because most items targeted a single skill. 
The relatively high partial-credit scores for P3 and 
P4 suggest that, although omitting these prompting 
techniques preserved the identification of the 
primary skill, it reduced the detection of secondary 

or supporting skills when key prompt elements 
were excluded. 

Across individual skills, the strongest accuracy 
was observed for Expressions, Equations, and 
Functions (F1 = 0.88–1.00) and Fractions, 

Decimals, and Percents (F1 > 0.90 across all 
prompts). Data and Chance also showed 
consistently high performance (F1 = 0.80–0.93). 
By contrast, Location and Movement had the 
lowest scores (0.55–0.68), and Patterns displayed 
substantial variation across prompts (0.50–1.00). 
Measurement showed moderate sensitivity to 
prompt design, ranging from 0.50 to 0.88. An F1 
value of 1 indicates perfect agreement between the 
prompt-generated Q-matrix and the content 
expert–designed Q-matrix. These findings suggest 
that skills such as Expressions, Equations, and 
Functions and Fractions, Decimals, and Percents 
are relatively stable across prompts, whereas skills 
like Location and Movement and Patterns, which 
often involve graphs and diagrams, are more 
susceptible to changes in prompt constraints. 

5.2 Number of Skills Agreement  

A Q-matrix links assessment items to the cognitive 
skills required for their solution. After defining 
skills from the learning objectives, each item was 
reviewed to determine the number of unique skills 
involved—a task that is both challenging and 
essential for accurate measurement. GPT analyzed 
the items and estimated the total number of skills 
required, and this estimate was compared with the 
corresponding counts from the content expert–
designed Q-matrix. Agreement between GPT and 
the content expert–designed Q-matrix was 
evaluated using intraclass correlation (ICC) to 
assess item complexity. Treating each item–skill 
decision (0 = not linked, 1 = linked) as a subject 
and the two raters (content expert–designed Q-
matrix and GPT; N = 2,047) as judges, single-rater 
ICCs (ICC1/2/3) were 0.72 (95% CI [0.70, 0.74]). 
When ratings were averaged, ICCs (ICC1k/2k/3k) 
increased to 0.84 (95% CI [0.82, 0.85]). Since 
many of the items involved only a single skill, 
future work should examine Q-matrices containing 
a larger proportion of items that require multiple 
skills. 

5.3 Temporal Stability of Q-Matrix Skill 
Mappings  

Large language models (LLMs) can map 
assessment items to cognitive skills, but their 
outputs may vary across identical runs, making 
reliability a critical concern for Q-matrices in 
cognitive diagnostic models (CDMs). To examine 
temporal stability, we administered the same 
prompt to GPT 20 times and computed 

Skill  P1 P2 P3 P4 
Skill 1: Whole 
Numbers & 
Integers 

0.85 0.71 0.67 0.86 

Skill 2: 
Fractions, 
Decimals & 
Percents 

0.91 0.91 0.92 0.95 

Skill 3: Ratios 
& Proportions 

0.81 0.80 0.80 0.67 

Skill 4: Patterns 0.67 1.00 0.86 0.50 
Skill 5: 
Expressions, 
Equations & 
Functions 

0.96 1.00 0.96 0.88 

Skill 6: Lines, 
Angles and 
Shapes 

0.77 0.74 0.78 0.88 

Skill 7: 
Measurement 

0.88 0.50 0.67 0.80 

Skill 8: 
Location & 
Movement 

0.68 0.55 0.55 0.60 

Skill 9: Data 
and Chance 

0.93 0.80 0.81 0.81 

Full Sample F1 0.83 0.78 0.78 0.77 
Mean Partial-
Credit Score 

0.82 0.76 0.81 0.80 

Table 3:  F1 Score & Partial Credit Score by Skill. 
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Krippendorff’s alpha (Krippendorff, 2018). GPT 
demonstrated strong consistency, with mean alphas 
of 0.86 (exact match), 0.94 (Hamming distance), 
and 0.93 (Jaccard similarity). Sixty-five of 89 items 
(73%) were identical across runs, most remaining 
items exceeded α = 0.80, and only a few showed 
lower agreement (exact-match α as low as 0.11). 
Items with the poorest reliability were multipart 
questions in which extensive information was 
presented on a single page, suggesting that reading 
complex PNGs with many components may impair 
repeatability. Item-level results can be provided 
upon request.  

5.4 Detecting Q-Matrix Error (Add and 
Swap Conditions) 

GPT showed strong performance in detecting and 
correcting altered skill assignments in both the Add 
and Swap conditions (Table 4). Accuracy was 
highest for Expressions, Equations and Functions 
and Data and Chance. Moderate scores, with F1 
values ranging from 0.75 to 0.90, were observed 
for Whole Numbers and Integers (Skill 1), 
Fractions, Decimals and Percents (Skill 2), Ratios 

and Proportions (Skill 3), Lines, Angles and Shapes 
(Skill 6), and Measurement (Skill 7).  

Lower accuracy emerged for Patterns (Skill 4) 
and Location and Movement (Skill 8), where F1 
scores were consistently below 0.70 across both 
conditions. For Lines, Angles and Shapes, 
performance was also slightly reduced, which may 

reflect current challenges in interpreting graphs, 
diagrams, and geometric figures. These areas may 
benefit from enhanced visual-processing 
capabilities or additional expert review to ensure 
reliable skill detection. Overall, the findings 
indicate that GPT can accurately identify and 
correct altered skill assignments, particularly in 
numerical and algebraic contexts, while tasks 
involving geometry and spatial reasoning may 
require refined prompts or closer collaboration 
with human experts. 

6 Conclusion  

This study demonstrates that GPT-4 can 
meaningfully support the cognitively demanding 
task of Q-matrix construction and validation. When 
provided with explicit skill definitions, structured 
prompts, and item images, GPT achieved high 
agreement with content expert mappings (F1 = 
0.83) and substantial reliability across repeated 
runs (α ≈ 0.86). It also detected and corrected 
injected errors in the add and swap conditions with 
moderate to strong accuracy, particularly in 
number and algebra content domains. Performance 
declined for geometry and spatial-reasoning items, 
suggesting that visual interpretation remains a 
limiting factor. Items with heavy reading loads, 
multi-part content presented on a single page, or 
complex graphical information in PNG format also 
showed weaker repeatability, indicating that such 
features may challenge the model’s consistency. 
Overall, these findings suggest that large language 
models, when carefully prompted, can offer 
scalable and replicable assistance in skill 
identification, complementing rather than 
replacing expert judgment. Future research should 
focus on refining methods for items with extensive 
text, multi-part layouts, or intricate visual elements 
to improve performance in these areas. 
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Percents 0.90 0.88 

3 Ratios & Proportions 0.81 0.82 
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5 Expressions, 
Equations, & Functions 0.96 0.97 
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Table 4:  Performance in Detecting and 
Correcting Altered Skill Assignments. 
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Appendix A: Skills, Content Domains 
 

 

 

Skills Content 
Domain 

1 – Whole Numbers & Integers;  Numbers 
2 – Fractions, Decimals, & 
Percents Numbers 

3 – Ratios & Proportions Numbers 
4 – Patterns Algebra 
5 – Expressions, Equations, & 
Functions Algebra 

6 – Lines, Angles, & Shapes Geometry 
7 – Measurement Geometry 
8 – Location & Movement Geometry 

9 – Data Analysis & Probability Data and 
Chance 
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