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Abstract

Large language models (LLMs) may exhibit
unintended or undesirable behaviors. Recent
works have concentrated on aligning LLMs
to mitigate harmful outputs. Despite these ef-
forts, some anomalies indicate that even a well-
conducted alignment process can be easily cir-
cumvented, whether intentionally or acciden-
tally. Does alignment fine-tuning yield have
robust effects on models, or are its impacts
merely superficial? In this work, we make the
first exploration of this phenomenon from both
theoretical and empirical perspectives. Empir-
ically, we demonstrate the elasticity of post-
alignment models, i.e., the tendency to revert to
the behavior distribution formed during the pre-
training phase upon further fine-tuning. Lever-
aging compression theory, we formally deduce
that fine-tuning disproportionately undermines
alignment relative to pre-training, potentially
by orders of magnitude. We validate the pres-
ence of elasticity through experiments on mod-
els of varying types and scales. Specifically, we
find that model performance declines rapidly
before reverting to the pre-training distribution,
after which the rate of decline drops signifi-
cantly. Furthermore, we further reveal that elas-
ticity positively correlates with the increased
model size and the expansion of pre-training
data. Our findings underscore the need to ad-
dress the inherent elasticity of LLMs to miti-
gate their resistance to alignment.1

1 Introduction

Large language models (LLMs) have shown re-
markable capabilities (Achiam et al., 2023; Zhang
et al., 2025). However, due to the inevitable
biases and harmful content present in training

*Equal contribution. †Corresponding author. If you have
any questions, feel free to email {jiamg.ji, wkl, tianyi.qiu,
cbylll, gaiejj}@stu.pku.edu.cn, yaodong.yang@pku.edu.cn.

1The model weight and code are available at pku-lm-res
ist-alignment.github.io.
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Compression Model: The Elasticity of LLMs

Our Contribution: The Elasticity of LLMs   

Language models, fine-tuned with perturbations, exhibit an 
inverse relationship between normalized compression rate 
changes and dataset volume, akin to that of a series spring 
system, revealing the elasticity of LLMs.

Figure 1: The Elasticity of Language Models. The
change in normalized compression rates (∆γ

Di/D
pθ ) and

the dataset volume (|Di|) follows an inverse propor-
tionality law after perturbations, which is akin to the
relationship between spring deformation (∆li) and stiff-
ness (ki) in coupled springs. We conjecture that the
elasticity causes language models to resist alignment,
enabling the possibility of inverse alignment.

datasets (Bai et al., 2022a; Ji et al., 2024c; Qian
et al., 2024; Lin et al., 2025), LLMs often exhibit
behaviors that deviate from human intentions, a
phenomenon we refer to as model misalignment.
Training-based alignment methods, including su-
pervised fine-tuning (SFT), reinforcement learn-
ing with human feedback (RLHF) (Ouyang et al.,
2022), and other derivatives (Rafailov et al., 2024;
Bai et al., 2022b; Lee et al., 2023; Gulcehre et al.,
2023; Dong et al., 2023; Xiong et al., 2024; Li et al.,
2023; Zhou et al., 2023, 2025; Ji et al., 2024a),
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are the dominant approaches for aligning models.
These methods aim to optimize model behavior
by rejecting harmful distributions, ensuring LLMs
remain consistent with human intentions and val-
ues (Ji et al., 2023; Casper et al., 2023).

However, these alignment methods do not truly
penetrate the model representations but merely per-
form superficial alignment (Qi et al., 2024a; Cohen
et al., 2024; Wen et al., 2024). Recent studies have
shown that highly safety-aligned models can be-
come unsafe again with minimal fine-tuning(Yang
et al., 2023b; Zhou et al., 2024). Furthermore, fine-
tuning aligned LLMs on non-malicious datasets
may also weaken models’ safety mechanisms (Qi
et al., 2024a; Jain et al., 2023).

Why is alignment so fragile?

In this work, we make the first exploration of
the possible mechanism behind the counterintuitive
phenomenon: the existence of an alignment resis-
tance mechanism in language models. This mech-
anism may limit the alignment process of LLMs
to superficial adjustments. It could allow the re-
versal or revocation of alignment through a series
of technical measures, a concept we refer to as in-
verse alignment. What drives language models to
resist alignment? How does this mechanism lead
to inverse alignment? Our key contributions are
summarized as follows:

• (Phenomenon) We uncover that language mod-
els exhibit elasticity, as illustrated in Figure 1
and Theorem 4.2. It encompasses resistance:
pre-trained models tend to retain their original
distribution; and rebound: the deeper alignment
of models, the faster they return to the pre-trained
distribution under reverse finetuning. More-
over, The model’s change in compression rates
∆γ

Di/D
pθ across different datasets is inversely pro-

portional to their sizes |Di|, which is analogous
to the deformation behavior of a series of springs,
as illustrated in Section 4.3.

• (Mechanism) We systematically model the train-
ing and alignment process of language models
through compression theorem, as detailed in Sec-
tion 3.2. We elaborate on the compression proto-
col of language models to explore their training
and alignment processes, laying a foundation for
subsequent research on elasticity.

• (Validation) We experimentally observe consis-
tent resistance and rebound phenomena across

various LLMs, as detailed in Section 5. This
highlights the universality of elasticity and the
need for systematic approaches to achieve robust
and deep alignment.

2 Related Work

The Fragility of LLMs Alignment Pre-trained
LLMs often generate offensive content. Recent
initiatives (Ouyang et al., 2022; Bai et al., 2022a;
Yang et al., 2024) have aimed to align these models
to minimize harmful outputs (Yang et al., 2023a;
Cui et al., 2024). However, research indicates that
even well-aligned models can be compromised eas-
ily, and fine-tuning them on non-malicious datasets
might unintentionally impair their safety mecha-
nisms (Yang et al., 2023b; Qi et al., 2024b; Hub-
inger et al., 2024; Dong et al., 2024). Moreover,
recent study reveals that models selectively adhere
to training objectives during the training phase
to preserve their inherent preferences (Greenblatt
et al., 2024; Lang et al., 2024; Park et al., 2024).
Why is alignment so fragile? Wei et al. (2024)
use weight attribution to separate safety-critical
and utility-related regions at both neuron and rank
levels. Qi et al. (2024a) propose the concept of
shallow safety alignment, arguing that safety align-
ment should reach beyond surface-level tokens to
shape the model’s internal mechanisms.

3 What is Elasticity?

We discover that language models exhibit elastic-
ity, which leads to resistance to alignment. In this
section, we formally introduce the definition of
elasticity, along with the compression theory tools
used in the analysis. Firstly, we review the training
alignment objective and the compression theorem.

3.1 Preliminaries

Pre-training. During pre-training, an LLM ac-
quires foundational language comprehension and
reasoning abilities by processing vast quantities of
unstructured text. The pre-train loss LPT(θ;DPT)
is defined as follows:

LPT(θ;DPT) = −E(x,xN )∼DPT

[
log pθ

(
xN
∣∣x
)]

,

where x = (x0, · · · , xN−1) and N ∈ N, such that
(x0, · · · , xN ) forms a prefix in some piece of pre-
training text. DPT stands for pre-training dataset.

Supervised Fine-tuning (SFT). SFT adjusts the
pre-trained models to follow specific instructions,
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utilizing a smaller dataset compared to the pre-
training corpus to ensure model alignment with
target tasks. For DSFT =

{(
xi,yi

)}N
i=1

sampled
from a high-quality distribution, SFT aims to mini-
mize the negative log-likelihood loss:

LSFT(θ;DSFT) = −E(x,y)∼DSFT

[
log pθ

(
y
∣∣x
)]

.

Given that E(x,y)∼DSFT

[
log pD

(
y
∣∣x
)]

is fixed
when specifying DSFT, the optimization objective
LSFT becomes the Kullback-Leibler (KL) diver-
gence between pθ and the SFT distribution.

Lossless Compression. The goal of lossless com-
pression is to find a compression protocol that en-
codes a given dataset D and its distribution PD with
the smallest possible expected length and allows
for a decoding scheme that can perfectly recon-
struct the original dataset. According to Shannon’s
source coding theorem (Shannon, 1948), for a ran-
dom variable follows PD, the expected code length
L of any lossless compression protocol satisfies:

L ≥ H (PD) ,

where H (PD) is the Shannon entropy of PD.

Compression and Prediction. Compression and
prediction are tightly interconnected. Consider a
model pθ and x = (x0, · · · , xm−1) derived from a
dataset D, the expected code length L under arith-
metic coding (Witten et al., 1987) satisfies:

L = Ex∼D


 ∑

0≤k≤m

− log2 pθ
(
xk
∣∣x0,··· ,k−1

)

 ,

which is the current training objective of language
models. Minimizing log-likelihood loss is equiv-
alent to minimizing the compression rate when
models act as a lossless compressor. Thus, optimal
compression and prediction are equivalent (Delé-
tang et al., 2023; Hutter, 2005). Experiments show
the equivalence between large language model pre-
diction and compression (Delétang et al., 2023),
and that compression performance correlates lin-
early with intelligence (Huang et al., 2024).

3.2 The Compression Protocol of LLMs
We aim to study the dynamic changes in language
models during training and alignment. Given the
equivalence between language model training and
data compression (Delétang et al., 2023), a fea-
sible modeling approach is to treat the language

model as a lossless compression protocol. The
process of training and aligning the model on dif-
ferent datasets can be equivalently viewed as the
joint compression of these datasets by the protocol.
The model’s compression rate on various datasets
serves as a surrogate metric for the loss during train-
ing and alignment. In this section, we detail the
modeling specifics of this compression protocol.

Considering the impact of tokenization on com-
pression rate, we use tokenized sequences as input
and output modalities. For simplicity, we assume
the tokenized vocabulary consists of only binary
tokens (specifically 0/1).

Definition 3.1 (Token Tree T ). For a dataset
D = {zi ∈ {0|1}∞ | i = 1, 2, · · · }, the to-
ken tree of D, denoted as TD, is defined as fol-
lows: each node has child nodes labeled 0 or 1,
along with an end-of-sequence (EOS) leaf node.
The path from the root to a leaf node defines
each response zi, with the corresponding EOS
node weight representing the response’s probabil-
ity while the weight of non-leaf nodes is the sum
of the weights of their child nodes.

In token tree modeling, the model’s training pro-
cess is conceptualized as learning the node weights
of the token tree. However, due to the finite size of
the model’s parameters in practical scenarios, the
model cannot accurately capture node weights at
arbitrary depths of the token tree. Therefore, we
propose the following assumption.

Assumption 3.2 (Scale of T is Monotone with
Model Size). Consider a parameterized model
pθ (·) and a dataset D, We assume that the depth of
the portion of TD that can be perfectly modelled by
pθ is monotonically increasing with the size of θ.

Based on the above assumption, we can define
the compression protocol during the model training
and alignment process.

Definition 3.3 (The Compression Protocal). Con-
sider using the model pθ (·) to compress the
dataset D. The compression protocol is defined in
two steps: a) Prune the token tree of D, retaining
only the top d layers. b) Apply Huffman coding
(Huffman, 1952) to compress the pruned token
tree. Specifically, each response from the root
node to a leaf node is treated as a symbol in the
Huffman coding alphabet, and the weight of the
leaf node is the probability of the symbol.
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Due to the optimality and losslessness of Huff-
man coding (Huffman, 1952), the compression pro-
tocol ensures optimal compression while preserv-
ing losslessness. We can therefore calculate the
model’s ideal code length and other information-
theoretic metrics based on the protocol.

Theorem 3.4 (Ideal Code Length). Consider a
finite parameter model pθ (·) training on dataset
D, the ideal code length Lpθ (x) of a random
response x compressed by pθ can be expressed
as:

E [Lpθ (x)] =

⌈∣∣x
∣∣

d

⌉

−

d∑

l=1

2l−1∑

j=1

plj log plj




where d represents the depth of the TD after prun-
ing under Definition 3.3 protocol, and plj repre-
sents the probability values of the leaf nodes for
the j-th node at the l-th layer.

Since training and alignment involve multiple
datasets with different and independent distribu-
tions, we consider the joint compression scenario
for multiple datasets. For N pairwise disjoint
datasets D1, · · · ,DN , the node weights pDlj of the
token tree for the dataset D =

⋃N
i=1Di satisfy:

pDlj =

∑N
i=1 p

Di
l

∣∣Di

∣∣
∑N

i=1

∣∣Di

∣∣ ,

where pDi
lj stands for the probability value for nodes

in TDi while
∣∣Di

∣∣ represents the size of Di. Thus,
the compression rate γDi

pθ
on specific datasets can

also be defined accordingly:

γDi
pθ

= Ex∼Pi

[
Ex∼Pi

[
LDi
pθ
(x)
]

∣∣x
∣∣

]

= Θ


−

∑d
l=1

∑2l−1

j=1 pDi
lj log pDlj

d


 .

Here, the compression rate is defined as the com-
pressed encoding length divided by the original
length (Delétang et al., 2023) and ensures consis-
tency between the training and compression objec-
tive, which means that minimizing the training loss
is equivalent to minimizing the compression rate.
Please see Appendix A for more details.

3.3 The Formal Definition of Elasticity
To formalize inverse alignment and elasticity, we
provide precise definitions of these concepts.

Definition 3.5 (Inverse Alignment). Given a lan-
guage model pθ0 , aligned on dataset Da to pro-
duce the aligned model pθ1 . For any ϵ > 0, if
applying a dataset Db (where |Db| ≪ |Da|) to
pθ1 yields pθ′

0
such that ρ(pθ′

0
, pθ0) ≤ ϵ for a

given eval metric ρ, we define the transition from
pθ1 back to pθ′

0
as inverse alignment.

Definition 3.6 (The Elasticity of LLMs). Con-
sider a language model pθ0 and transformation

pθ0
f(Da)7−−−−→ pθ1 , elasticity is said to exist in

(pθ0 ,Da) if there is an algorithmically simple
inverse operation g and a dataset Db such that
|Db| ≪ |Da|, with the property that:

pθ1
g(Db)7−−−→ pθ′

0
and ρ(pθ′

0
, pθ0) ≤ ϵ0.

where ϵ0 is a constant.

The eval metrics ρ can be viewed as a measure
of behavioral and distributional proximity between
models. In the context of the compression theorem,
we use compression rate γDi

pθ
as the metric ρ to

evaluate elasticity during the alignment process.

4 Why Elasticity Affects Alignment?

By now, we hope to have convinced the reader of
the concept of compression modeling in language
models’ training and alignment. In the following,
we apply this to analyze language models’ training
and alignment process, focusing on the underlying
reasons that lead the model to alignment resistance.

In Figure 1, we have already presented the theo-
rem of elasticity: when subject to fine-tuning per-
turbations, language models tend to retain the distri-
bution associated with larger datasets while reject-
ing that of smaller ones. But why elasticity resists
alignment? Is there a corresponding elastic invari-
ant? How does elasticity make inverse alignment
possible? In this section, we will formalize elastic-
ity of language models and analyze the impact of
elasticity on the model’s behavior.

4.1 Formal Derivation of Elasticity

Our primary goal is to investigate the behavioral
changes of a language model after pre-training and
alignment, particularly in response to perturbations,
typically caused by fine-tuning with a minimal
dataset. We use compression rate as an evalua-
tion metric to assess these changes. In analyzing

23414



the model’s behavior, we focus on two datasets:
Dp, a larger dataset representing pre-training or the
primary objective of training, and Da, a smaller
dataset representing the alignment process or the
secondary objectives of training. Since the pre-
training stage encompasses a wide range of data,
without loss of generality, we assume that the
datasets in the alignment process follow the same
distribution as some subset of the pre-training data.

Definition 4.1 (Normalized Compression Rate).
For N distinct datasets D1, · · · ,DN and a parame-
ter model pθ compressing D =

⋃N
i=1Di, the nor-

malized compression rate γ
Di/D
pθ for a particular

dataset Di is defined as:

γDi/D
pθ

= γDi
pθ

− logM, (1)

where M is the number of leaf nodes of the pruned
tree T ′

i of dataset Di.

The normalized compression rate allows for
comparing the model’s compression performance
across different datasets. The smaller the normal-
ized compression rate of a dataset, the better the
model’s compression performance on the dataset.

With this definition in hand, we proceed to our
main result: language models exhibit elasticity.

Theorem 4.2 (Elasticity of Language Models).
Consider the pre-training dataset Dp =

⋃3
i=1Di,

the alignment dataset Da, and the perturbation
dataset Dt, with the model pθ(·) trained on D =

Dp ∪ Da ∪ Dt. Assume that Da
d∼ D2, Dt

d∼ D3,
and D1,D2,D3 are each distributed according to
a Pareto mass distribution (Newman, 2005). As
the perturbation data volume |Dt| varies, γDp/D

pθ

and γ
Da/D
pθ satisfy:

dγ
Da/D
pθ

d l
= Θ

(
−k

dγ
Dp/D
pθ

d l

)
,

dγ
Dp/D
pθ

d l
< 0,

dγ
Da/D
pθ

d l
> 0,

(2)

where l = |Dt|
|Da| ≪ 1, k =

|Dp|
|Da| ≫ 1, and

{Di}3i=1 are datasets of equal cardinality.

Theorem 4.2 shows that as the perturbation in-
creases, the normalized compression rates of the
model for Dp decrease and Da increase and the
rate of changes is strongly correlated with the size
of the datasets. Unlike the proportional changes
in compression rates across different datasets, the

language model seems to prefer the dataset with
a larger volume, leading to biased model behavior
after the perturbation.

4.2 Elasticity and Inverse Alignment

Theorem 4.2 shows the normalized compression
rate change of different datasets is inversely pro-
portional to their sizes under perturbations. A sig-
nificant size difference between the pre-training
and alignment datasets causes rapid performance
degradation on the alignment dataset due to the
inverse relationship, often spanning several orders
of magnitude.

Intuitively, the model’s compression process
across multiple datasets is akin to resource allo-
cation between towns: in a region with both a
large metropolis and rural villages, to maximize
overall economic productivity, resources are typi-
cally allocated to the metropolis first, to leverage
its scale and agglomeration effects. In other words,
the metropolis/large dataset occupies a dominant
position in the system.

Therefore, the elasticity of language models
makes inverse alignment possible. Due to the sub-
stantial data volume disparity between pre-training
and alignment datasets, the model tends to revert to
the pre-training rather than alignment distribution
when subsequent perturbations occur. This indi-
cates an inherent tendency toward inverse align-
ment during fine-tuning. Maximizing the impact of
elasticity through well-designed perturbations will
be key to achieving true inverse alignment.

4.3 Elasticity and the Hooke’s Law.
The inverse proportionality result in Theorem 4.2
provides a potential invariant in the model train-
ing and alignment process: after perturbation, the
rate of change in the compression rates of different
datasets is inversely proportional to their sizes, with
the absolute value of the product being a constant.
This constant characterizes the impact of the per-
turbation on the model and indirectly describes the
model’s resistance to perturbations, or its elasticity.

The elasticity of the model can be intuitively
analogized to a series system of springs, as shown
in Figure 1. Consider two massless springs in se-
ries, with spring constants k1 and k2, respectively.
When the entire system undergoes deformation due
to an external force F , the system reaches a stable
state, and the elastic force exerted by each spring
is equal to F . According to Hooke’s Law (Hooke,
2016), the elongation ∆l1 and ∆l2 of each spring is
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inversely proportional to its spring constant. Thus,
in this system, we have:

F ∝ k1 ·∆l1 = k2 ·∆l2 .

In the language model setting, after integrating
Theorem 4.2 to l, we obtain ∆γ

Di/D
pθ across dif-

ferent datasets, which is equivalent to the change
in the KL divergence ∆DKL(Ppθ ||PDi) between
the model’s distribution and the distributions of the
individual datasets, is inversely proportional to the
size of the datasets |Di|. Here, we only consider the
absolute value of ∆DKL. Analogous to the series
spring model, the elasticity F in LLMs satisfies:

F ∝ |Di| ·∆DKL(Ppθ ||PDi) , (3)

where ∆DKL corresponds to ∆l in the spring
model, while |D| corresponds to the spring constant
k, thus leading to the elasticity of LLMs.

5 How Elasticity Resists Alignment?

In the previous sections, we proved that LLMs have
elasticity. This section will analyze two specific
phenomenons of it:

• Resistance for Pre-Trained Models. Models
tend to maintain the original distribution and
resist alignment;

• Rebound for Post-Trained Models. Fine-
tuning in the opposite direction of post-
training (e.g., safe vs. unsafe) causes post-
trained models to return quickly to the pre-
training distribution.

5.1 Existence of Language Models’ Resistance

Figure 2: Experiment pipeline for validating resis-
tance. We conceptualize resistance as: inverse align-
ment is easier than forward alignment.

Experiment Design. We verify the existence of
resistance by arguing that forward alignment is
harder than inverse alignment for pre-trained mod-
els. Specifically, we first perform one epoch of SFT
on a pre-trained LLM with parameters θ0, saving
the slices {θ1,θ2, . . . ,θn}. Subsequently, without
loss of generality, we collect the responses of slices
θk and θl (where k < l) on hold-out prompts, form-
ing datasets Dk and Dl. As shown in Figure 2, we
define forward alignment (Path A) as the process
of training θk on Dl, and inverse alignment (Path
B) as the process of training θl on Dk.

Experiment Setup. We select different SFT
datasets including Alpaca (Taori et al., 2023),
TruthfulQA (Lin et al., 2022), and Beavertails (Ji
et al., 2024c,b), which correspond respectively to
the model’s 3H principle (Askell et al., 2021). We
divide them into three equal parts to obtain three
corresponding slices {θ1,θ2,θ3}. We consider
Llama2-7B, Llama2-13B, and Llama3-8B (Tou-
vron et al., 2023) as the base model θ0.

Experiment Results. As shown in Table 1, the
experimental results indicate that the training loss
of inverse alignment consistently remains lower
than that of forward alignment, irrespective of
the slice pair selection. This observation holds
across all models and datasets in the experiments.
All experimental results demonstrate that inverse
alignment is easier than forward alignment across
diverse models and datasets and validate the exis-
tence of resistance. To further verify the resistance
in language models, we provide additional experi-
mental details and results in the Appendix B.1.

5.2 Existence of Rebound

𝜽𝟏 𝜽𝟐

𝐷#$%&'(&

Training Process
𝐷

Datasets Performance

𝜽𝒌

Model

PositiveNegative

𝜽𝟏*𝜽𝟐*

Figure 3: Experiment pipeline for validating rebound.
We conceptualize rebound as: the more positive the
post-trained models’ performance, the more negative it
becomes after inverse finetuning.

Experiment Design. We verify the existence of
rebound by arguing that for post-trained models,
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Datasets Base Models θ2 → θ1 vs. θ1 → θ2 θ3 → θ2 vs. θ2 → θ3 θ3 → θ1 vs. θ1 → θ3

Alpaca
Llama2-7B 0.1589 ↓ 0.2018 ↑ 0.1953 ↓ 0.2143 ↑ 0.1666 ↓ 0.2346 ↑
Llama2-13B 0.1772 ↓ 0.1958 ↑ 0.2149 ↓ 0.2408 ↑ 0.1835 ↓ 0.2345 ↑
Llama3-8B 0.2540 ↓ 0.2573 ↑ 0.2268 ↓ 0.3229 ↑ 0.2341 ↓ 0.2589 ↑

Truthful
Llama2-7B 0.1909 ↓ 0.2069 ↑ 0.1719 ↓ 0.1721 ↑ 0.2011 ↓ 0.2542 ↑
Llama2-13B 0.1704 ↓ 0.1830 ↑ 0.1544 ↓ 0.1640 ↑ 0.1825 ↓ 0.2429 ↑
Llama3-8B 0.2118 ↓ 0.2256 ↑ 0.2100 ↓ 0.2173 ↑ 0.2393 ↓ 0.2898 ↑

Safe
Llama2-7B 0.2730 ↓ 0.2809 ↑ 0.2654 ↓ 0.2691 ↑ 0.2845 ↓ 0.2883 ↑
Llama2-13B 0.2419 ↓ 0.2439 ↑ 0.2320 ↓ 0.2327 ↑ 0.2464 ↓ 0.2606 ↑
Llama3-8B 0.2097 ↓ 0.2156 ↑ 0.2008 ↓ 0.2427 ↑ 0.2277 ↓ 0.2709 ↑

Table 1: Comparsion between inverse alignment and forward alignment training loss. Under different model,
task, and stage slicing settings, forward alignment is more challenging than inverse alignment, i.e., the loss is
higher. This indicates that pre-trained models tend to maintain their original distribution.

Figure 4: Experimental results for validating the existence of rebound (left: IMDb, right: Beavertails). The
left part of each sub-figure is the performance of Gemma-2B while the right is Llama2-7B, respectively. Models
trained with more positive data initially perform better but perform worse after fine-tuning with negative data.

the more positive the post-trained models’ perfor-
mance, the more negative it becomes after inverse
alignment. We validate tasks involving two oppos-
ing characteristics (e.g. safe and unsafe). We first
train slices {θ1,θ2, ...,θn} based on a pre-trained
model θ0 using positive (e.g., safe) data of various
volumes. Then we perform inverse finetuning on
these slices using negative data (i.e., unsafe).

Tasks and Datasets. We select two tasks: posi-
tive generation and single-turn safe conversation.
For the former, we use the data classified as positive
or negative in the IMDb dataset (Maas et al., 2011).
Referring to (Rafailov et al., 2024), we use the first
2-8 tokens of each complete text as a prompt for
LLMs to generate the subsequent content. For the
latter, we use the data classified as safe and un-
safe in Beavertails (Ji et al., 2024c). We organized
the positive sample sizes into {1000, 2000, 5000,
10000}, while the negative sample sizes, were di-
vided into {100, 200, 500, 1000, 2000}.

Evaluation and Metrics. We collect the model’s
responses on the reserved test prompts. Then we
use score models provided by existing research to
complete the performance evaluation. For positive
style generation, we refer to (Rafailov et al., 2024)

and use the Sentiment Roberta model (Hartmann
et al., 2023) to classify the responses, taking the
proportion of all responses classified as positive as
the model score. For single-turn safe dialogue, we
use the cost model (Dai et al., 2024) to score the
safety of each response, using the average score of
all responses as the model score.

Experiment Results. We evaluate the rebound
phenomenon on Llama2-7B (Touvron et al., 2023)
and Gemma-2B (Team et al., 2024). The experi-
mental results in Figure 4 show that, for models
fine-tuned with a larger amount of positive sam-
ple data, their performance drops quicker under
only a small amount of negative sample fine-tuning.
Subsequently, the performance decline slows down
and tends to stabilize. This result also confirms
the previous conclusion: the initial rapid decline
of model’s performance is due to rebound, as the
model is far from the pre-trained distribution; while
the later stabilization of the countermeasure is due
to resistance, as the model is already close to the
pre-trained distribution.

To assess the generalizability of the rebound
phenomenon, we perform additional ablation stud-
ies focusing on alignment algorithms, evaluation
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Figure 5: Experimental results for validating rebound increases with model size (left: IMDb, right: Beavertails).
All single line covers positive data volume settings as Figure 4, with shadow denoting std. As the model size
increases, the performance of the aligned model deteriorates more rapidly after fine-tuning with negative data.

Figure 6: Experimental results for validating rebound increases with pre-training data volume. (left: IMDb,
right: Beavertails). Each line covers positive data settings as Figure 4, with shadow denoting std. As pre-training
data volume increases, aligned model performance deteriorates more rapidly after fine-tuning with negative data.

metrics, and fine-tuning directions. The results
consistently validate the presence of the rebound
phenomenon across language models. Further ex-
perimental details are available in Appendix B.2.

5.3 Internal Factor of Rebound

We conduct an in-depth analysis of the internal
factors affecting the rebound phenomenon since it
is crucial for the robustness of LLMs alignment.
In particular, we investigate how model parameter
scale and the amount of pre-training data influence
rebound. Owing to space constraints, further exper-
imental analyses are included in Appendix B.3.

Rebound Increases with Model Size. To inves-
tigate how the rebound phenomenon varies with
model size, we conducted experiments on Qwen
models (Bai et al., 2023) with parameter scales
of 0.5B, 4B, and 7B. The experimental results in
Figure 5 show that as the model parameter size
increases, the initial performance decline due to
negative data fine-tuning is faster, while the sub-
sequent decline is slower. This indicates that as
the parameter size increases, there is an increase
in rebound in response to both positive and nega-
tive data, further suggesting a positive correlation
between model elasticity and parameter scale.

Rebound Increases with Pre-training Data Vol-
ume. To verify that rebound increases with the
growth of pre-training data, we vary pre-training
slices (2.0T, 2.5T, and 3.0T) released by TinyL-
lama (Zhang et al., 2024a) and conduct the same
experiment. As shown in Figure 6, when the pre-
training data volume increases, the initial perfor-
mance decline due to negative data fine-tuning is
faster, while the subsequent decline is slower. It
demonstrates that larger pre-training data volumes
reinforce the rebound of LLMs, which is consistent
with the inference proposed in Theorem 4.2.

6 Conclusion and Outlook

Our work uncovers a possible mechanism under-
lying the fragility of alignment: the elasticity of
language models. We demonstrate that upon per-
turbation, the normalized compression rate of lan-
guage models changes inversely with dataset size,
making them more inclined to retain pre-training
distributions while forgetting alignment distribu-
tions, thus resisting alignment. Through exten-
sive experiments, we validate the universality of
this elasticity effect, observing that the elasticity
strengthens as model size and pre-training data vol-
ume scale up. Fundamentally, our findings support
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a core assertion: language models exhibit elasticity,
and thereby inherently resist alignment.

6.1 Limitations

Theory-wise, the primary limitation of our work is
our specification of the mass distribution (Assump-
tion A.7), and empirical studies on the exact form
of this distribution shall be valuable. Experiment-
wise, we have not systematically validated elastic-
ity throughout the entire lifecycle of pre-training
and alignment phases due to cost constraints. In
future works, we plan to focus on whether this
phenomenon is universally applicable, such as in
multimodal models (Ji et al., 2024d; Huh et al.,
2024). Additionally, we aim to theoretically un-
cover the relationship between model elasticity and
scaling laws (Kaplan et al., 2020; Xiao et al., 2024),
specifically determining the amount of training data
required for elasticity to manifest and quantitatively
analyzing whether elasticity intensifies as model
parameters and pre-training data volume increase.

6.2 Broader Impacts

Rethinking Fine-tuning and Model Weight from
Resist Alignment. Alignment fine-tuning meth-
ods aim to efficiently adjust the distribution of
LLMs with minimal data to enhance their safety
mechanisms. However, current alignment algo-
rithms for language models may rely on optimiza-
tion shortcuts, leading to local optima, while lack-
ing involvement with the intrinsic mechanisms of
the model (Qi et al., 2024a). From the perspective
of language models’ elasticity, we require more
robust alignment methods to ensure that modifica-
tions to model parameters extend beyond superfi-
cial changes (Qi et al., 2024a; Cohen et al., 2024),
thereby preventing the emergence of more effective
inverse alignment techniques that could give rise to
extreme misalignment risks such as deceptive ad-
versarial alignment (IDAIS-Beijing, 2024; Bengio
et al., 2025; Marks et al., 2025; Baker et al., 2025)
or alignment faking (Greenblatt et al., 2024). Al-
though methods such as data cleansing during the
training phase have proven to be an effective strat-
egy for improving the malleability of a language
model’s final distribution (He et al., 2024; Qi et al.,
2024b), such approaches are not particularly cost-
effective and feasible. In Appendix C.2, we provide
a preliminary discussion of practical steps based
on elasticity to mitigate inverse alignment risks,
and we look forward to future research and prac-
tical developments grounded in elasticity, which

will enable the design of more robust alignment
algorithms (Revel et al., 2024; Zhang et al., 2024b;
Chen et al., 2024; Sheshadri et al., 2024; Liu et al.,
2024; Li et al., 2025), ultimately achieving true and
reliable alignment for LLMs.

Rethinking Open-sourcing from Elasticity of
LLMs. Open-sourcing is a double-edged sword
(Seger et al., 2023; Anwar et al., 2024; Kukreja
et al., 2024). The public release of model weights
enables the technical community to quickly iden-
tify and address potential vulnerabilities and con-
duct large-scale research on broad safety concerns
(Touvron et al., 2023). These efforts collectively
help sustain a balanced offence-defense dynamic
(Jervis, 1978; Garfinkel and Dafoe, 2021) in the
open-source environment and improve model se-
curity (Eiras et al., 2024). However, the risk of
misuse associated with open-sourcing models is in-
evitable (Seger et al., 2023). Malicious fine-tuning
of open-source models (Urbina et al., 2022; Sand-
brink, 2023) and the use of the open-source models
to facilitate system jailbreaks (Zou et al., 2023)
can pose serious threats to public safety (Gold-
stein et al., 2023; Reuel et al., 2024). At present,
the open-sourcing of powerful language models
relies on safety alignment and rigorous security au-
dits (Mökander et al., 2024) to ensure responsible
use. However, if advanced inverse alignment tech-
niques become feasible, even carefully aligned and
audited open-source models could be reverted to
their pre-alignment states at minimal cost, drasti-
cally lowering the barrier for jailbreaking aligned
models and disrupting the offense-defense balance
in the open-source ecosystem (Shapiro and Siegel,
2010). Therefore, it is crucial to develop alignment
algorithms with fine-tuning robustness. We hope
that deeper insights into the elasticity mechanisms
of language models will drive the advancement
of untunable alignment methods, enabling models
to maintain reliable safety throughout their entire
lifecycle (Madiega, 2021).
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A Assumptions and Proofs

Assumption A.1 (Binary Tokens). For simplicity and without loss of generality, we assume that all
datasets share a uniform token table containing only binary tokens (specifically 0/1).

Theorem A.2 (Ideal Code Length). Consider a finite parameter model pθ (·) training on dataset D, the
ideal code length Lpθ (x) of a random response x compressed by pθ can be expressed as follows:

E [Lpθ (x)] =

⌈∣∣x
∣∣

d

⌉

−

d∑

l=1

2l−1∑

j=1

plj log plj



,

where d represents the depth of the TD after pruning under Definition 3.3 protocol, plj represents the
probability values of the EOS nodes for the j-th node at the l-th layer.

Proof. When
∣∣x
∣∣ ≤ d, the compression protocol defined in Definition 3.3 can perfectly compress x.

Hence, the expectation of the ideal code length Lpθ (x) satisfies:

E [Lpθ (x)] =



−

d∑

l=1

2l−1∑

j=1

plj log plj



,

where d represents the depth of the pruned tree T ′
D and plj represents the probability values of the EOS

nodes for the j-th node at the l-th layer.
Now consider sd ≤

∣∣x
∣∣ ≤ (s + 1)d. Let us suppose that x = (x1 · · ·xsxs+1), where |xk| = d, for

k ∈ {1, . . . , s} and |xs+1| ≤ d. In this case, x cannot be perfectly compressed by the model. Hence, the
compression of x needs to be performed in segments, and the length of each segment is not greater than d.

Ex [Lpθ (x)] = Ex1 [Lpθ (x1)] + Ex1E(x2...xs+1)

[
Lpθ ((x2 . . .xs+1))

∣∣x1

]

= Ex1 [Lpθ (x1)] +
∑

x1

p(x1)
∑

(x2...xs+1)

p(x2 . . .xs+1

∣∣x1) · Lpθ ((x2 . . .xs+1))

= Ex1 [Lpθ (x1)] + E(x2...xs+1) [Lpθ ((x2 . . .xs+1))]

=
s+1∑

k=1

Exk
[Lpθ (xk)]

=

⌈∣∣x
∣∣

d

⌉

−

d∑

l=1

2l−1∑

j=1

plj log plj



,

thus the proof is completed.

Definition A.3 (Mass Distribution in Token Tree). Consider the sample space Ω consisting of all responses
in dataset D. The probability distribution PD of all subtrees at the d-th level nodes of TD is a mapping
from Ω to [0, 1]. Let XD be the random variable representing the probability value taken at each leaf
multiplied by the number of leaves. The mass distribution Pmass represents the probability that XD takes
the corresponding probability value. According to the definition of Pmass, E[XD] = 1 .

Remark A.4 (Mixture of Mass Distribution). For independently and differently distributed datasets
D1, . . . ,DN , D =

⋃N
i=1Di is a mixture of these datasets. For the pruned trees T1, . . . , TN of these

datasets with depth d, the random variables of their leaf nodes satisfy the following relationship:

XD =

∑N
k=1

∣∣Dk

∣∣XDk∑N
k=1

∣∣Dk

∣∣ ,

where XDk
follows the mass distribution Pk

mass. For XDki
and XDkj

from different datasets, XDki
and

XDkj
are independent of each other.
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Lemma A.5 (Entropy of Mass Distribution). Consider the pruned trees T ′
k and T ′ of dataset Dk and

D =
⋃N

i=1Di. Denote that the response distribution and the mass distribution of T ′’s tree nodes are PD

and Pmass. Similarly, we define the response distribution PD
k and the mass distribution Pk

mass. When
the number of the leaf nodes M is sufficiently large, the cross-entropy of the response distribution can be
rewritten as follows.

Ex∼Pk

[
−pDk log pD

]
= EXDk

∼Pk
mass,XD∼Pmass

[−XDk
logXD] + logM,

where pD, pDk stand for the probability of the leaf nodes of T ′,T ′
k while XDk

, XD stand for the random
variables of the probability of the leaf nodes in T ′,T ′

k , respectively.

Proof. Let M be the number of leaf nodes of T ′. According to the definitions of the response distribution
P and mass distribution Pmass, we have MpDj = XDj , ∀j ∈ {1, . . . , N}. Therefore,

Ex∼Pk

[
−pDk log pD

]
=

M∑

i=1

−pDk
i log pDi

=

M∑

i=1

− 1

M
Xi,Dk

logXi,D + logM

= EXDk
∼Pk

mass,XD∼Pmass
[−XDk

logXD] + logM.

Remark A.6. In Lemma A.5, XDk
are assumed to be independent. However due to

∑M
i=1 p

Dk
i = 1, the

XDk
are not actually independent. Considering that M is sufficiently large in our subsequent analysis, we

can regard the independence of XDk
as a good approximation.

We assume that the mass distribution of the segment follows a heavy-tailed Pareto distribution, with
supporting evidence from Mingard et al. (2021); Zipf (1946).

Assumption A.7 (The Pareto Distribution). We assume that the mass distribution of pruned token trees T
of depth d, across different datasets, follows a Pareto distribution with identical parameters:

pX(x) =

{
αcα

xα+1 x ≥ c,

0 x < c,

where α, c are parameters of the Pareto distribution.

Theorem A.8 (Elasticity of Language Models). Consider the pre-training dataset Dp =
⋃3

i=1Di, the
alignment dataset Da, and the perturbation dataset Dt, with the model pθ(·) trained on D = Dp∪Da∪Dt.

Assume that Da
d∼ D2, Dt

d∼ D3, and D1,D2,D3 are each distributed according to a Pareto mass
distribution (Newman, 2005). As the perturbation data volume |Dt| varies, γDp/D

pθ and γ
Da/D
pθ satisfy:

dγ
Da/D
pθ

d l
= Θ

(
−k

dγ
Dp/D
pθ

d l

)
,

dγ
Dp/D
pθ

d l
< 0,

dγ
Da/D
pθ

d l
> 0,

(4)

where l = |Dt|
|Da| ≪ 1, k =

|Dp|
|Da| ≫ 1, and {Di}3i=1 are datasets of equal cardinality.
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Proof. For the sake of convenience in calculations, we first use Lemma A.5 to replace the Shannon
entropy of response distribution.

dγ
Dj/D
pθ

d l
=

d
(
Ex∼Pj

[
−pDj log pD

]
− logM

)

d l

=

d

(
E
XDj

∼Pj
mass,XD∼Pmass

[
−XDj logXD

])

d l
.

According to Assumption A.7, XDj follows a Pareto distribution with the parameters α and c. Hence,

EXDp∼Pp
mass,XD∼Pmass

[
−XDp logXD

]

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α∏3
i=1 x

α+1
i

· x1 + x2 + x3
3

· log
∑

i∈{p,a,t}
∣∣Di

∣∣xi∑
i∈{p,a,t}

∣∣Di

∣∣ dx1dx2dx3

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α(x1 + x2 + x3)

3
∏3

i=1 x
α+1
i

log
k
3 (x1 + x2 + x3) + x2 + lx3

k + l + 1
dx1dx2dx3

EXDa∼Pa
mass,XD∼Pmass [−XDa logXD]

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3αx2∏3
i=1 x

α+1
i

log
k
3 (x1 + x2 + x3) + x2 + lx3

k + l + 1
dx1dx2dx3

where j = 1, 2, 3. Therefore,
dγ

Dp/D
pθ
d l and

dγ
Da/D
pθ
d l can be written as:

dγ
Dp/D
pθ

d l
= −dS1

d l
,

dγ
Da/D
pθ

d l
= −dS2

d l
(5)

where

S1 =

∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α(x1 + x2 + x3)

3xα+1
1 xα+1

2 xα+1
3

log
k
3 (x1 + x2 + x3) + x2 + lx3

k + l + 1
dx1dx2dx3

S2 =

∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α

xα+1
1 xα2x

α+1
3

log
k
3 (x1 + x2 + x3) + x2 + lx3

k + l + 1
dx1dx2dx3.

Proving that
dγ

Da/D
pθ
d l = Θ

(
−k

dγ
Dp/D
pθ
d l

)
is equivalent to proving:

lim
k→+∞, l→0

k · dγ
Dp/D
pθ
d l +

dγ
Da/D
pθ
d l

k · dγ
Dp/D
pθ
d l

= 0, (6)

By substituting (5) into (6), we have

lim
k→+∞, l→0

k · dγ
Dp/D
pθ
d l +

dγ
Da/D
pθ
d l

k · dγ
Dp/D
pθ
d l

=
limk→+∞, l→0

(
k·dS1+dS2

d l

)

limk→+∞, l→0
k·dS1
d l

. (7)
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Now calculate the values of dS1
d l for the case when l → 0 and k is sufficiently large.

lim
l→0

dS1

d l

=α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

(x1 + x2 + x3)

3xα+1
1 xα+1

2 xα+1
3

· (k + 1 + l)x3 − (k3 (x1 + x2 + x3) + x2 + lx3)

(k + 1 + l)(k3 (x1 + x2 + x3) + x2 + lx3)
dx1dx2dx3

=α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

(x1 + x2 + x3)x3

3xα+1
1 xα+1

2 xα+1
3 (k3 (x1 + x2 + x3) + x2 + lx3)

dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

(x1 + x2 + x3)

3xα+1
1 xα+1

2 xα+1
3 (k + 1 + l)

dx1dx2dx3

=α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c
lim
l→0

(x1 + x2 + x3)x3

3xα+1
1 xα+1

2 xα+1
3 (k3 (x1 + x2 + x3) + x2 + lx3)

dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3 (k + 1 + l)

dx1dx2dx3

=α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c

x1 + x2 + x3

3xα+1
1 xα+1

2 xα+1
3

· lim
l→0

[
x3

k
3 (x1 + x2 + x3) + x2

− x23
[k3 (x1 + x2 + x3) + x2]2

l

]
dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3 (k + 1 + l)

dx1dx2dx3 (8)

=α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c

x1 + x2 + x3

3xα+1
1 xα+1

2 xα+1
3

x3
k
3 (x1 + x2 + x3) + x2

dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3 (k + 1 + l)

dx1dx2dx3

=α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c

x1 + x2 + x3

3xα+1
1 xα+1

2 xα+1
3

[
x3

(x1 + x2 + x3)

3

k
− x2x3

(x1 + x2 + x3)2
9

k2

]
dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3 (k + 1 + l)

dx1dx2dx3 (9)

=α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3

1

k(k + 1)
dx1dx2dx3

− α3c3α
∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα+1
1 xα+1

2 xα+1
3

3x2x3
k2(x1 + x2 + x3)

dx1dx2dx3 (10)

Here, we apply a Taylor expansion to Equation (8) and Equation (9) with respect to l and 1
k , respectively.

Similarly, we can calculate the value of dS2
d l .

lim
l→0

dS2

d l

=α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x2

xα+1
1 xα+1

2 xα+1
3

· (k + 1 + l)x3 − (k3 (x1 + x2 + x3) + x2 + lx3)

(k + 1 + l)(k3 (x1 + x2 + x3) + x2 + lx3)
dx1dx2dx3

= lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α

xα+1
1 xα+1

2 xα+1
3

·
(

3x2x3
k(x1 + x2 + x3)

− 1

k + 1 + l

)
dx1dx2dx3 (11)
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As a result, Equation (7) can be written as:

lim
k→+∞, l→0

k · dγ
Dp/D
pθ
d l +

dγ
Da/D
pθ
d l

k · dγ
Dp/D
pθ
d l

=
limk→+∞, l→0

(
k·dS1+dS2

d l

)

limk→+∞, l→0
k·dS1
d l

=

lim
k→+∞, l→0

(
k ·
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α∏3
i=1 x

α+1
i

[
x1

k(k + 1)
− 3x2x3

k2(
∑3

i=1 xi)

]
dx1dx2dx3

+

∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α∏3
i=1 x

α+1
i

·
(

3x2x3

k(
∑3

i=1 xi)
− 1

k + 1 + l

)
dx1dx2dx3

)

limk→+∞, l→0 k ·
∫ +∞
c

∫ +∞
c

∫ +∞
c

1∏3
i=1 x

α+1
i

[
x1

k(k+1) − 3x2x3

k2(
∑3

i=1 xi)

]
dx1dx2dx3

=
limk→+∞, l→0

∫ +∞
c

∫ +∞
c

∫ +∞
c

α3c3α∏3
i=1 x

α+1
i

· l
(k+1)(k+1+l)

limk→+∞, l→0 k ·
∫ +∞
c

∫ +∞
c

∫ +∞
c

1∏3
i=1 x

α+1
i

[
x1

k(k+1) − 3x2x3

k2(
∑3

i=1 xi)

]
dx1dx2dx3

=0. (12)

Next, we prove that
dγ

D1/D
pθ
d l < 0. For sufficiently large k, since

lim
l→0

dS1

d l

=α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

x1

xα+1
1 xα+1

2 xα+1
3

1

k(k + 1)
dx1dx2dx3

− α3c3α lim
l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα+1
1 xα+1

2 xα+1
3

3x2x3
k2(x1 + x2 + x3)

dx1dx2dx3

=

∫ +∞

c

∫ +∞

c

∫ +∞

c

k
k+1x1(x1 + x2 + x3)− 3x1x3

k(x1 + x2 + x3)x
α+1
1 xα+1

2 xα+1
3

dx1dx2dx3

:=
1

k

∫ +∞

c

∫ +∞

c

∫ +∞

c

f(x1, x2, x3)

g(x1, x2, x3)
dx1dx2dx3. (13)

For c < u < v < w, let

f̂ = x1(x1 + x2 + x3)−3x1x3 = x1(x1 + x2 − 2x3),

h(u, v, w) =
∑

π∈S3

f(π(u, v, w)),

ĥ(u, v, w) =
∑

π∈S3

f̂(π(u, v, w)).

(14)

Here, S3 denotes the symmetric group of degree 3 and π ∈ S3 denotes a permutation in S3. Observe that

lim
k→+∞

h(u, v, w) =ĥ(u, v, w)
−
,

ĥ(u, v, w) =
∑

π∈S3

f̂(π(u, v, w))

=
∑

π∈S3
(u0,v0,w0)=π(u,v,w)

u0(u0 + v0 − 2w0)

=
∑

π∈S3
(u0,v0,w0)=π(u,v,w)

1

2
(u0 − v0)

2 > 0.

(15)
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Hence, we have

lim
k→+∞

h(u, v, w) > 0. (16)

Therefore,

lim
k→+∞

h(u, v, w)

g(u, v, w)
= lim

k→+∞
Θ(1)

Θ(k)
= 0+. (17)

Therefore,

lim
k→+∞, l→0

dS1

d l
= lim

k→+∞

∫∫∫

(u,v,w)∈(c,+∞)3:u<v<w

h(u, v, w)

g(u, v, w)
dudvdw

=

∫∫∫

(u,v,w)∈(c,+∞)3:u<v<w
lim

k→+∞, l→0

h(u, v, w)

g(u, v, w)
dudvdw

=

∫∫∫

(u,v,w)∈(c,+∞)3:u<v<w
lim

k→+∞, l→0
0+dudvdw

=0+. (18)

Hence, for sufficiently large k, we have

lim
l→0

dγ
D1/D
pθ

d l
= lim

l→0
−dS1

d l
< 0. (19)

Thus, the proof is completed.

B Additional Experiment Results

B.1 Additional Experiment of Language Models’ Resistance
To broadly validate the phenomenon of Resistance in language models, we extend the experimental setup
described in Section 5.1. Specifically, we use Llama2-7B (Touvron et al., 2023) as the base model and
perform a finer-grained snapshot division within forward alignment, covering a wider range of k and
l. As the evaluation metric, we measure the change in relative KL divergence between the distributions
of model θl and θk, obtained by applying forward alignment and inverse alignment to slices θk and θl,
respectively, relative to the original distributions of θl and θk. The experimental results, which is shown
in the Table 2, demonstrate that the KL divergence under inverse alignment is substantially smaller than
that under forward alignment, consistent with the conclusions presented in the main text.

Training Steps θ1 vs. θ2 θ1 vs. θ3 θ1 vs. θ4 θ1 vs. θ5 θ1 vs. θ6 θ2 vs. θ3 θ2 vs. θ4

Forward Alignment 0.4568 ↑ 0.4932 ↑ 0.5929 ↑ 0.4439 ↑ 0.4109 ↑ 0.3778 ↑ 0.5580 ↑
Inverse Alignment 0.2796 ↓ 0.2863 ↓ 0.3960 ↓ 0.3995 ↓ 0.3412 ↓ 0.2752 ↓ 0.3742 ↓

Table 2: KL Divergence between different snapshots. The results show that forward alignment exhibits higher
values compared to inverse alignment, providing evidence for the existence of Resistance.

B.2 Additional Experiment of Language Models’ Rebound
Ablations on the Different Alignment Algorithms. To verify that the consistent rebound phenomenon
occurs in different alignment algorithms in language models, we conduct language models’ rebound exper-
iments on reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022), direct preference
optimization (DPO) (Rafailov et al., 2024), Kahneman-Tversky optimization (KTO) (Ethayarajh et al.,
2024), and simple preference optimization (SimPO) (Meng et al., 2024), using an experimental setup
similar to the SFT validation described in Section 5.2. Considering that reinforcement learning algorithms
cannot be directly applied to pretrained models, our experimental procedure consists of the following two
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steps: (a) SFT of the pretrained model using positive sample data of varying scales as forward lignment;
(b) inverse alignment by applying the corresponding reinforcement learning algorithms on the aligned
models, using negative sample data of varying scales, where negative samples serve as selected responses
and positive samples serve as rejected responses.

We conduct experiments using the Llama2-7B model on the IMDb task (Maas et al., 2011) with four
different RL alignment algorithms. The results, shown in Figure 7, indicate that regardless of the alignment
algorithm employed, the model exhibits a decline in performance consistent with that observed in SFT as
the amount of positive data increases. Moreover, the rate of this performance degradation accelerates with
the increasing volume of positive data. The results further confirm that the broad applicability of language
models rebound across different alignment algorithms.

Figure 7: Experimental results for validating rebound across different alignment algorithms. The heatmaps
from left to right represent the performance of the PPO, DPO, KTO, and SimPO algorithms after fine-tuning with
varying amounts of positive and negative data. Darker colors indicate better model performance in the heatmaps,.
Models trained with more positive data perform better initially tend to exhibit worse performance after fine-tuneing
with negative data. The conclusion holds regardless of the alignment algorithm used.

Ablations on the Different Evaluation Metrics. In the main experiments discussed in Section 5.2, we
primarily adopt specific evaluation scores to evaluate the rebound phenomenon. Using the score models
corresponding to alignment targets as the evaluation metrics is the most direct and important method for
the task evaluation. However, to further reinforce the robustness of our findings and address the generality
of the rebound phenomenon, we acknowledge the value of incorporating broader distribution-level metrics
beyond task-specific scoring models. In particular, we consider the Kullback-Leibler divergence between
aligned models and base models as an additional evaluation metric.

Specifically, we conducted the evaluation through the following procedure: a) We first measure the KL
divergence between the aligned model and the base model before and after fine-tuning the base model
with safety data. b) We then apply fine-tuning with unsafe data until the KL divergence between the
models decreased to a sufficiently small value ϵ (where ϵ = 1× 10−2), and record the amount of unsafe
data required as an indicator of the difficulty for the model reverting to its pre-trained distribution. The
experimental results are reported in Table 3. Under different models and data scales, we observe that only
a small amount of unsafe data is needed for a positively fine-tuned model to revert to the pre-training
distribution in terms of KL divergence. Furthermore, the larger the amount of safe fine-tuning, the less
unsafe data are required. This observation is consistent with the conclusions drawn in Figure 4.

Ablations on the Reverse Finetuning Settings. To rule out the influence of positive data on the rebound
phenomenon in language models, we conducted a reverse experimental setup: negative data are used
during the SFT stage, while positive data are applied during the inverse alignment stage. The experimental
results, presented in Figure 8, demonstrate that elasticity in language models persists under this reverse
setting, exhibiting a consistent trend where larger model sizes correspond to greater elasticity. The
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Base Models Positive Data Amount

1000 2000 5000 10000

Llama2-7B 0.21 0.22 0.26 0.27
Gemma-2B 0.18 0.21 0.24 0.25

(a) KL divergence between models fine-tuned with varying
amounts of safety data and the initial models.

Base Models Positive Data Amount

1000 2000 5000 10000

Llama2-7B 961 844 801 729
Gemma-2B 923 853 709 598

(b) Unsafe data amount needed for KL divergence between
fine-tuned model and pre-trained model to drop below ϵ.

Table 3: Experimental results for validating rebound on the KL divergence metrics. The results show that,
under different models, the larger the amount of safe fine-tuning, the less unsafe data is required to revert to the
pre-training distribution in terms of KL divergence, providing evidence for the existence of Rebound.

observation aligns with and further supports the results reported in Figure 5, highlighting the robustness
of rebound phenomenon across different experimental configurations.
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Figure 8: Reverse Fine-tuning Results on IMDb. Each subfigure from left to right shows the changes in LLMs
with parameter sizes of 0.5B, 4B, and 7B, respectively. Models trained with more negative data initially perform
worse, but perform better after fine-tuning with positive data. As the model size increases, the performance of the
aligned model deteriorates more rapidly after fine-tuning with positive data.

B.3 Additional Experiment of Internal Factor of Language Models’ Rebound

Analysis of the Model Size Scale under Different Alignment Algorithms. To verify whether the
rebound phenomenon in language models becomes more pronounced as model size increases persists
across different alignment algorithms, we conduct experiments using the DPO algorithm. Specifically, we
employ the Qwen1.5 model series as the base models and follow an experimental setup similar to that
described in Section B.2. We carried out experiments on models with parameters 0.5B, 4B, and 7B. The
experimental results, presented in Figure 9, demonstrate that rebound remains evident under the DPO
algorithm, with its strength increasing as model size grows. This finding is consistent with the results
reported in Figure 5 and further highlights the generality of elasticity in language models.
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Figure 9: Experimental results for validating rebound increases with model size under DPO fine-tuning. Each
subfigure from left to right shows the changes in LLMs with parameter sizes of 0.5B, 4B, and 7B. As the model size
increases, the performance of the aligned model deteriorates more rapidly after fine-tuning with negative data.

Analysis of the Pre-training Data Volume. We present the experimental results for a broader range of
pre-training data volumes in Figure 10. When the pre-training data volume is 0.1T, 0.5T, and 1.0T, the
model still demonstrates the phenomenon that rebound increases with the volume of pre-training data,
which is consistent with the results reported in Figure 6, where the pre-training data volumes range from
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2.0T to 3.0T. Moreover, when comparing the experimental results in Figure 6 and Figure 10, we observe a
consistent conclusion: as the pre-training data volume increases (from 0.5T to 3.0T), the rebound becomes
more pronounced. Specifically, when the pre-training data volume increases, the initial performance
decline caused by negative data fine-tuning occurs more rapidly, while the subsequent decline slows down.
This indicates that larger pre-training data volumes amplify the rebound effect in language models.
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Figure 10: Experimental results for validating rebound increases with model pre-training data volume. Each
subfigure from left to right shows the changes in pre-training data volumes of 0.1T, 0.5T, and 1.0T. As pre-training
data volume increases, aligned model performance deteriorates more rapidly after fine-tuning with negative data.

C Further Discussions of Language Models’ Elasticity

C.1 Transfer Learning and Language Models’ Elasticity

Transfer Learning is formally defined as follows: consider a domain D = {X , P (X)}, which consists of a
feature space X and a marginal probability distribution P (X), where X = {x1, · · · , xn} ∈ X . A task T
within the domain D is defined by a label space Y and a predictive function f(·). Given a source domain
DS and its corresponding task TS , as well as a target domain DR and its task TR, transfer learning aims
to improve the target predictive function fR(·) by leveraging knowledge from DS and TS , where either
DS ̸= DR or TS ̸= TR (Zhuang et al., 2020; Weiss et al., 2016). From the perspective of transfer learning,
the pre-training and fine-tuning process of language models can be described as follows: Given labeled
training data from a source distribution Ds = {(xn, yn) ∼ p}Ns

n=1 and data from a target distribution
Dt = {(xn, yn) ∼ q}Nt

n=1, we first minimize the empirical risk on the source distribution to fit a model:
fs = argminf R̂(f,Ds), where R̂(f,Ds) = E(x,y)∼p[l(y, f(x))] represents the empirical risk of model f
on the source distribution p. Subsequently, the model is adapted to the target distribution by minimizing,
f t = argminf R̂(f,Dt)+λ||f−fs||, where ||f−fs|| measures some distance between the two functions,
and λ ≥ 0 is a regularization parameter (Murphy, 2023).

Specifically in the context of language models, transfer learning can almost encompass all models
trained under the pre-training-finetuning paradigm. However, transfer learning does not capture the
specific details of the model training process, nor does it explicitly incorporate the established theories
that explain the varying degrees of difficulty in task transfer for LLMs. Therefore, while transfer learning
provides a perspective to analyze various phenomena in LLMs from the standpoint of traditional machine
learning, it does not offer concrete tools to explain these elasticity phenomena.

Furthermore, in traditional transfer learning settings, positive and negative samples can only be
considered as different partitions of the same dataset in classification tasks. However, in our case, these
samples are used for autoregressive generation training, where the generation on positive samples and
negative samples follows mutually conflicting input-output distributions. This is fundamentally different
from classification tasks. Specifically for safe-unsafe generation, steering a language model’s generation
from an unsafe input-output distribution to the opposite safe input-output distribution is a major challenge
in generative language model research. This cannot be adequately explained by merely considering
different partitions of the same data distribution.

These considerations lead us to conclude that the observed phenomenon in our work represents a
novel behavior that cannot be fully accounted for by existing transfer learning theories. It warrants finer-
grained theoretical and experimental investigation. Consequently, we propose the concept of elasticity to
formally name this new phenomenon observed in language models and introduce corresponding theoretical
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frameworks and empirical methodologies to examine it. This perspective is empirically supported by the
experimental results shown in Table 1. Taking the Alpaca task as an example, we examine the process in
which θ1 and θ2 are aligned with θ3. Since θ2 has acquired more knowledge about the SFT distribution
compared to θ1, it should, from the perspective of transfer learning, find it easier to learn the distribution
of θ3 than θ1. However, as shown in the experimental results above, this is not supported, suggesting that
transfer learning alone cannot fully account for the observed resistance phenomenon. 2

C.2 Discussions of Practical Steps to Mitigate Inverse Alignment Risks
The emphasis on elasticity phenomenon in language model alignment highlights a crucial challenge for
ensuring the safety and robustness of open-source models throughout their entire lifecycle. As our study
demonstrates, the resistance of language models to alignment adjustments is fundamentally rooted in the
substantial disparity in data volumes across different training phases. This insight suggests a practical
mitigation strategy: customizing the scale of synthetic data through the elasticity mechanism offers a
feasible pathway for the development of more robust alignment algorithms in the future.

• We discover that the resistance of language models to alignment is essentially due to the significant
differences in data volume across various training processes. Therefore, a straightforward idea is to
ensure that the training data volumes corresponding to different alignment targets are as similar as
possible during the alignment process. This approach helps avoid resistance effects on alignment
targets with smaller training data volumes due to subsequent perturbations.

• The elasticity theorem provides a feasible method for customizing data ratios, thereby quantitatively
measuring the amount of various types of data needed for a model to meet expected goals. Specifically,
for an aligned language model, during subsequent alignment processes, the elasticity theorem
indicates that there is an inherent loss of elasticity dependent on data volume ratios when learning
unrelated distributions. Therefore, to ensure that previously aligned targets remain satisfied during
subsequent alignment, the training objective can be transformed into a constrained optimization
problem to quantitatively calculate the data volume required for new target alignment.

• The current challenge in implementing algorithms based on the elasticity theory, mainly lies in the
lack of a sufficient theoretical foundation to characterize the specific features of current datasets.
This makes it difficult to distinguish the independent and differently distributed premises of different
datasets in the elasticity theory. Since real-world datasets often contain fused features, a possible
future research direction is to finely characterize the features of datasets with fused characteristics.

C.3 Discussions of Quantitatively Characterize the Impact of Dataset Size on Elasticity
Considering that, as indicated in Theorem 4.2, the difference in dataset size is a key factor contributing to
the elasticity phenomenon, quantitatively characterizing the impact of dataset size on elasticity is indeed
crucial for both theoretical understanding and practical alignment design. In this section, we present
preliminary explorations, based on experimental observations, on quantifying the influence of dataset size
on elasticity, as well as the current limitations in achieving this goal.

By synthesizing observations from Figure 6 in the main text and Figure 10 in the appendix, we find
that for the tinyllama series models, when the pre-training data volume is merely 0.1T, there is almost
no significant resistance phenomenon observed; the positive level of the model’s output does not change
significantly with an increase in negative data. However, when the pre-training data volume reaches
0.5T, the resistance phenomenon of the language model becomes notably observable. Considering the
continuity between pre-training data and model resistance, this suggests that the significant change point
of the resistance phenomenon should lie between 0.1T and 0.5T.

Regrettably, there are still challenges in training a series of models with continuously varying pre-
training data volumes, and we currently lack sufficiently fine-grained training data samples to conduct
such precise series model training. This limitation prevents us from accurately determining the critical

2As Reviewer qznt’s suggestion, we further discuss the relationship between transfer learning and LLMs’ elasticity in this
section.
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point where the resistance phenomenon becomes significant. Therefore, although we can suggest a
possible range, accurately quantifying this threshold in practice remains a considerable challenge. We
hope that future research will further address this issue by developing more controllable model series and
fine-grained pre-training datasets to enable a clearer, quantitative characterization of elasticity.
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