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Abstract

This paper presents LECTURE4ALL', a web
application developed to improve the search
experience of educational video platforms.
Lecture2Go provides a vast collection of
recorded lectures, but locating specific content
within videos can be time-consuming. LEC-
TURE4ALL addresses this issue by leveraging
a vector database and a streamlined user inter-
face to enable direct retrieval of precise video
timestamps. By enhancing search accuracy and
efficiency, LECTURE4ALL significantly im-
proves the accessibility and usability of educa-
tional video platforms.

1 Introduction

Educational video platforms and courses are part
of modern education. Finding specific explana-
tions in university lecture recordings can be time-
consuming. Lecture2Go (Kriszat et al., 2010) is an
open-source video platform hosting recorded lec-
tures and seminars held at the University of Ham-
burg. It provides round-the-clock access to aca-
demic content. The platform has gained popularity
in recent years, particularly during the Covid-19
pandemic, when online education became a neces-
sity (Zawacki-Richter, 2021).

Despite its benefits, Lecture2Go’s current search
functionality is limited to lecture titles and descrip-
tions, making it difficult to locate specific informa-
tion within videos. Students must manually nav-
igate through lengthy recordings to find relevant
content, which can be time-consuming and inef-
ficient. Without knowledge of the video title or
author, searching for video content is not possible.
In addition, this process poses accessibility chal-
lenges for users with visual impairments, as they

'Demo: https://lecture4all.demo.hcds.
uni-hamburg.de
Source Code: https://github.com/uhh-hcds/
lecture4all

must rely on screen readers or external transcrip-
tion tools to search within videos.

LECTURE4ALL was developed as an open-
source, ready to use software solution to address
these limitations by providing a more efficient and
accessible way to retrieve information from lecture
recordings. It is both lightweight and does not re-
quire additional storage of video content, instead
making use of existing infrastructure. The system
introduces several key innovations:

* Voice-controlled search: Users can perform
searches using voice input, enhancing accessi-
bility and ease of use.

* Semantic search with vector databases: In-
stead of relying on keyword matches in ti-
tles or descriptions, LECTURE4ALL uses a
vector-based retrieval system to find precise
timestamps where a query is addressed in the
transcript. Searching for concepts contained
in the video content is possible without knowl-
edge of title or author.

* User-friendly interface: The system supports
both voice and text-based input, improving
usability across different devices, including
mobile platforms. Moreover, searching is mul-
tilingual and knowledge of the video language
is not necessary to find relevant timestamps.

* Shorts feature: Aligns with current trends
and allows users to swiftly browse 10-second
snippets of the most relevant query results.
It provides immediate access to the results
with the option to view the full video. Shorts
are automatically extracted from the external
video source.

LECTURE4ALL integrates state-of-the-art Al
models, such as OpenAl’s Whisper (Radford et al.,
2023), with modern web technologies. Its mod-
ular architecture separates the backend, API, and
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Figure 1: System pipeline. User input (bottom left) creates a query which is sent between Docker containers via
Flask. ChromaDB outputs relevant data, which is then sent back to the frontend and displayed according to user’s
preferences. Top left shows processing pipeline of video data which is executed beforehand.

frontend components, allowing easy adaptation for
other video platforms, beyond Lecture2Go. Ad-
ditionally, the system enhances search accuracy,
reduces the time spent locating relevant lecture seg-
ments, and promotes inclusivity in digital learning.
As an open-source project, it encourages further re-
search and development in educational technology.

To assess its effectiveness, LECTURE4ALL was
evaluated through a user study, measuring usability
as well as search efficiency improvements. The
results provide insights into how Al-driven search
tools can enhance the user experience of lecture
platforms like Lecture2Go.

2 System Architecture

LECTURE4ALL essentially consists of three main
parts: Preprocessing pipeline, backend, and fron-
tend. Each part is briefly described below.
LECTURE4ALL is highly modularized and all
components can easily be modified or swapped
out for alternatives. A detailed overview can be
found in Figure 1.

2.1 Backend

The backend of this system consists of a back-
end Flask server that is constantly running to pro-

cess search queries made by the user and retrieve
data from the database, and a video transcription
pipeline to fill the database. The transcription
pipeline consists of multiple steps and generates
all necessary files to fill the database using Ope-
nAD’s Whisper for transcription of videos while
translation of videos to obtain subtitles is done us-
ing the MarianMT model (Tiedemann et al., 2023),
both of these will run much faster on GPU, so it
is recommended to have multiple GPUs available.
The database is a ChromaDB? vector database that
runs on another separate docker container. A vec-
tor database allows for context dependent search
and does not rely on just metadata and keywords
(Taipalus, 2024). The vector database embeddings
are generated using the USE (Universal Sentence
Encoder) multilingual model (Cer et al., 2018).

While Lecture2Go architecure is utilized to sup-
ply the videos, our solution enhances them through
the database and new frontend, keeping the system
lightweight and making use of existing infrastruc-
ture.

2https://github.com/chroma-core/chroma
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Communication between the frontend and backend
is facilitated through Flask. The frontend inter-
acts with the backend by requesting a JSON re-
sponse that includes relevant text segments, video
URLs, and associated metadata. The decision to
implement a RESTful interface was made to en-
sure ease of maintenance and scalability, allowing
for seamless integration and expansion of the sys-
tem during future development. Communication
between database and backend is simply done via
ChromaDB’s built-in HTTP API.

2.3 Frontend

The user interface of LECTURE4ALL consists of
four main views:

* Landing Page: As can be seen in Figure 2, it
is a minimalist interface featuring a search bar
with voice recognition and a navigation bar,
including a ’Shorts’ toggle. Users can type or
enter queries via voice input provided by the
browser to retrieve results.

* Shorts View: If enabled through the shorts
toggle which can be seen in 3 (1), this view
displays a large video preview panel that plays
short, auto-extracted clips matching the input
query, allowing users to quickly scan and iden-
tify relevant content (Violot et al., 2024). A
button allows the user to navigate to the corre-
sponding full-length lecture, as can be seen in
Figure 3.

¢ Search Results View: If Shorts is disabled,
users see a list of relevant lecture videos
ranked by relevance. Each result includes
metadata such as lecture title, duration, and
key timestamps.

* Video View: Selecting a lecture opens a de-
tailed video player with highlighted times-
tamps and an interactive sideboard for rapid
navigation. The videos are delivered by the
existing backend for a fast response even with
higher load.

The Shorts Toggle was implemented to allow users
unfamiliar with this format to rely on a more tra-
ditional video browsing layout. The front-end is
implemented using Bootstrap (CSS framework),
HTMLS and JavaScript, ensuring a responsive de-
sign for both desktop and especially mobile users.

Flask handles routing between pages. A persistent
navigation bar provides quick access to the Help
and About pages for user guidance.

3 Integration and Containerization

The running system is based on three docker con-
tainers, which are connected via a docker network
and also have ports for access outside of the net.
For the vector database container the chromaDB
docker image from the docker hub is used. The
other two containers are built by self-created docker
images. The database container hosts the database
environment, called db-env, which handles search
requests passed by the frontend. The app container,
called 14a-app, is part of the frontend, forwarding
the input and visualizing the output. All three con-
tainers can be started via the docker compose file.

We chose containerization to facilitate deployment
of the running system. Aside from running the
docker compose commands, the only required con-
figuration is entering a database path in the envi-
ronment file.

4 Data Processing Pipeline and Vector
Database

The following sections outline how we transcribe
video content and prepare it for semantic search.
We first describe the transcription pipeline based
on Whisper, followed by an explanation of how the
processed data is embedded and stored in a vector
database for efficient retrieval.

4.1 Transcription

In this project, we developed a comprehensive
suite of Python scripts designed to facilitate the
transcription of video content using OpenAl’s
Whisper model. Each script takes in a specific
ID range (the identifier Lecture2Go uses for their
videos) and performs its designated task on all
videos within that range. The workflow begins
with the download script by iterating through its
specified range of video IDs and utilizing the
yt-dlp (GitHub Contributors, 2025) package to
download m3u8-playlists that are then assembled
to mp4 files. The M3U files are encoded with
UTF-8, which allows for better handling of special
characters. Once the videos are stored, Whisper
timestamped (Louradour, 2023; Giorgino, 2009;
Radford et al., 2023) is employed to obtain JSON
transcripts with timestamps for each single word,
so that we can do our own chunking, for ideal



© whispersan

Was méchtest du erklirt haben?

~

Stromorientierten Programmierung

Bel der stromorientierten Programmierung liegt der

Akzent auf dem FluB der Daten: Wir modellieren die

Programme als ein System von

Generatoren, die Sirdme von Werten produzieren, und

Transformatoren, die die Werte des Eingabestroms
elementwaise transformieren und einen
neuen Strom von Ausgaben erzeugen (Filter,
Abbildungsfunktionen).

Kombinatoren, die mehrere Strdme zu einem
kombinieren.

Selektoren und Konstruktoren

Formale Grundlagen der Informatik 1
Kapitel 5
Abschiusseigenschaften

Figure 3: Shorts and regular Video View

chunk size with regards to the vector database and
user experience. For this step explicitly it is highly
recommended to use GPU support. To obtain
the best results We recommend using the largest
recent Whisper model Whisper Large v3 which

requires around 7.5 GB VRAM to run properly.

The metadata of the videos is then retrieved from
Lecture2Go and assembled into a specifically
structured JSON file per video. Utilizing the word
timestamps, another processing script brings the
raw Whisper output and metadata JSON files into
the JSON structure we later use to feed into the
database. Our custom chunks have a length of at
least 12 seconds to make sure enough context is
captured for proper search results in the database
and also such that the video chunks are a good
length for the shorts feature. In the future dynamic
chunking based on semantic boundary detection
or pause detection could help capture context in
chunks and lead to better search results. Though
determining the ideal chunk size with regards to
user experience will require further testing and
user feedback. The outputs are then organized into
a dedicated directory for streamlined access and
integration into the database. Finally, at the end of
the data processing pipeline, a script for subtitle
generation is run. Using the MarianMT model, it
goes through the transcripts output by Whisper and
generates .srt files in English for all German and
English videos.

4.2 Vector Database

We use a vector database to perform a semantic
search on the transcribed videos with the help of
embeddings. ChromaDB is easy to use and has
already implemented many functions. It also offers
the possibility to easily exchange the embedding
model for the vectors, which gave us the opportu-
nity to try different models and makes it easy to
customize the system in the future. After an evalu-
ation of different embedding models, we decided
to use USE (Universal Sentence Encoder) multilin-
gual version 3 (Cer et al., 2018). The big advantage
of this model is that, unlike many other models that
were either trained mostly to find words or sen-
tences of similar context, this model is suited for
both sentence-type queries and word-type queries.
This allows for consistently good results, allow-
ing for flexible querying. The multilingual ver-
sion additionally offers support for multiple lan-
guages, allowing for search queries in English to
find suitable German videos and vice versa. Fur-
ther testing is required to determine the quality of
search results for highly specific topics, which in
the context of university lectures might very well
be relevant. Knowing how to query the database
and future features allowing for keyword search or
other methods of filtering could also help in find-
ing suitable videos. This helps break the language



barrier and makes lectures videos in different lan-
guages searchable by everyone. The choice of this
model is crucial for the user experience, because
it determines the quality of the search results. The
processed transcripts are loaded into the database
via a Python script, which runs through the direc-
tory with these transcripts. For each chunk in a
video file, a new database entry with metadata is
created. The chunks are stored independently of
the video, so it is important that the metadata in-
clude the video ID and timestamps to provide a
reference to the origin of the chunk. Every chunk
entry contains the references to the video, the chunk
text and its embedding and remaining important
information for the frontend presentation, like the
video link or the title of the video. End-to-end
latency measured in a browser, querying a 1.7 gi-
gabyte database (corresponding to roughly 2000
videos) ranges from 300 to 400 milliseconds and
code-measured time for querying the database re-
sulted in around 52 milliseconds.

5 Evaluation

The evaluation was conducted using a survey that
included the NASA-TLX and the System Usability
Scale (SUS), both standardized assessment tools
for workload and usability, respectively. A total of
43 participants were divided into three conditions
and assigned one of two possible tasks from differ-
ent domains of education. The conditions were: (1)
LECTURE4ALL with regular search results only,
(2) LECTURE4ALL with ‘Shorts’ enabled, and (3)
Lecture2Go (control group). The participants con-
sisted of students from the University of Hamburg
between the ages of 18 and 44 with a majority iden-
tifying as male (59%) or female (38%), and one
non-binary respondent.

The survey results demonstrate that
LECTURE4ALL outperformed the traditional
Lecture2Go system in key usability and efficiency
metrics. The comparative analysis revealed a
clear performance gap between the systems.
While LECTURE4ALL enabled 60% of users to
successfully complete their tasks, Lecture2Go
users showed significantly higher failure rates,
with only 40% finding satisfactory answers. This
20-percentage-point performance difference was
further exacerbated by qualitative findings - even
successful Lecture2Go responses often required
substantially more effort (typically 4+ searches
vs. LECTURE4ALL’s 1-2 searches) and longer

completion times. Successful LECTURE4ALL
users typically located answers within 1-2
searches, whereas Lecture2Go often required 4 or
more attempts, reflecting its less intuitive search
functionality.

Condition Mean SUS SD
LA4A (regular results only) 67.9 16.0
L4A (shorts) 81.2 9.88
Lecture2Go 494 15.6

Table 1: SUS scores and standard deviation

A descriptive evaluation of the SUS-scores also
showed clear differences between the three condi-
tions. Condition 2 reached the highest mean SUS-
score (Mean = 81.2, Standard Deviation = 9.88),
followed by condition 1 (M = 67.9, SD = 16.0).
Condition 3 achieved the lowest SUS-score (M =
49.4, SD = 15.6). A one-way ANOVA confirmed
significant group differences (F(2, 40) = 16.14, p
< .001, n? = 0.45 [large effect]). Post-hoc tests
(Tukey HSD) revealed the following: Condition 2
performed significantly better than condition 1 (p
=.043, d = 0.99). Condition 3 scored significantly
lower than Condition 1 (p =.003, d = 1.25). The
difference between condition 3 and condition 2 was
most pronounced (p < .001, d =2.31). The residu-
als were normally distributed (Shapiro-Wilk-Test:
W =0.99, p=.963).

Mean SUS-Scores with 95% confidence interval
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Mean SUS-Score
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L4A, regular resultsonly  L4A, shorts only 126

Figure 4: Distribution of SUS-scores (0-100) by experi-
mental condition.

NASA-TLX scores were rated on a 5-point lik-
ert scale to improve design and user-friendliness
of the study. The raw data was then linearly trans-
formed to a 0-100 scale, higher values indicating
higher workload. An analysis of the scores showed
distinct differences between the three conditions.



Condition 1 induced a moderate to small workload
(M =34.6, SD = 18.9), with condition 2 showing
the smallest workload (M = 18.3, SD = 16.6) and
condition 3 showing the highest workload (M =
47.4,SD =19.7). A one way ANOVA confirmed
group differences (F(2, 40) = 8.13, p = .001, n?
= 0.29). Post-hoc-tests (Tukey HSD) revealed a
significant difference between condition 3 and con-
dition 2 (p = .001).

Higher scores = higher workload (Range: 0...100)
Black diamonds: Means, error bars: +1 SD
100

75

50

25

NASA-TLX Score (0...100)
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L4A, regular results only LA4A, shorts only L2G

Figure 5: Distribution of NASA-TLX scores (0 - 100)
by experimental condition

User feedback further underscored
LECTURE4ALL’s advantages. Participants
praised its speed and ease of use, particularly
when answers were readily accessible. In con-
trast, Lecture2Go was frequently criticized for
unclear video titles, inefficient navigation, and
the difficulty of pinpointing relevant content
in lengthy lectures. These observations were
supported by NASA-TLX workload scores, which
indicated higher mental demand and frustration
with Lecture2Go. System Usability Scale (SUS)
ratings also favored LECTURE4ALL, with users
rating it as more intuitive and less cumbersome.

Findings suggest that LECTURE4ALL offers a
more effective solution for retrieving lecture-based
information. Its streamlined interface and faster
response times align better with user expectations,
positioning it as a superior alternative to traditional
lecture platforms.

6 Related Work

Video search functionality has been explored in
previous works, with YouTube being a widely used

but closed-source platform that lacks precise times-
tamp detection. The user is provided with auto-
generated chapters and data for popular sections,
but no precise content-focussed timestamps are pro-
vided. Its search accuracy is further constrained by
reliance on automatically generated captions. Other
tools, such as TalkMiner (Adcock et al., 2010),
have been discontinued. TalkMiner focusses on
slide content only, thereby omitting any spoken
information in lectures.

CONQUER (Hou et al., 2021) is another sys-
tem designed to retrieve and rank audio content
from videos. Compared to LECTURE4ALL it
does not include a frontend and was not designed
with educational content in mind. In contrast,
LECTURE4ALL is fully open-source and provides
precise timestamp retrieval. The role and impact of
artificial intelligence in education have been high-
lighted Holmes et al. (2019).

Conclusion

LECTURE4ALL presented lightweight solution
with modern machine learning models to improve
the user experience within Lecture2Go, offering
enhanced accessibility and precision in video re-
trieval. The approach described in this paper is not
only applicable to Lecture2Go but can also be ex-
tended to other video platforms, facilitating easier
access to educational content through voice input
and cross-language capabilities without costs for
licensing.

Looking ahead, we aim to integrate metadata
into the search process and incorporate image
recognition to enable searches for slide content
displayed within the videos, similar to TalkMiner.
The modular architecture of LECTURE4ALL al-
lows for usage in non-education settings, too. Ex-
isting video databases which feature long-form
videos based around spoken language might bene-
fit from incorporating a timestamp search feature.
While the current implementation demonstrates a
strong user experience, a more comprehensive eval-
uation of the search results would enable further
refinement and optimization of the database model
for better performance. The University of Ham-
burg has shown interest in officially integrating
LECTURE4ALL into Lecture2Go.
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7 Limitations

Due to a small sample size ranging from 13 to
17 participants per condition, generalizability of
our findings might be limited. Additionally, the
reliance on subjective self-report measures (NASA-
TLX, SUS) might introduce potential biases. We
were able to demonstrate longer survey comple-
tion times for Lecture2Go users but this included
the survey itself. Incorporating quantifiable be-
havioral data - such as completion time of the
task itself, could provide a more comprehensive
assessment of LECTURE4ALL’s efficiency. While
the user study showed improvements in subjective
workload (NASA-TLX) and usability (SUS), these
metrics do not directly measure retrieval effective-
ness. To better assess retrieval precision, we plan
to incorporate standard IR metrics for timestamped
video segments. This will help isolate the contribu-
tion of the underlying vector-based retrieval from
Ul-related improvements. Furthermore, speech
recognition is only supported by Chromium-based
browsers. Lastly, the measured system latency
and querying time demonstrate the success of our
lightweight approach with regards to performance.
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