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Abstract

Time cognition is crucial for both humans and
machines, as understanding temporal informa-
tion enables event interpretation and dynamic
reasoning. This capability is essential for tasks
such as temporal question answering, legal re-
trieval, and video captioning. To advance re-
search in this area, Chu et al. (2023) introduced
TimeBench, a benchmark covering nine tem-
poral QA categories and evaluated with models
such as GPT-4, Llama 2, and Mistral. However,
Vietnamese temporal reasoning remains under-
explored. In this study, we evaluate Qwen3 on
the TimeBench Duration task in the VLSP 2025
Challenge on Temporal QA, using GPT-based
generation to preserve original semantics. Our
model achieved an F-score of 0.81 on the public
test and 0.80 on the private test, ranking among
the top solutions.

1 Introduction

Temporal question answering (Jia et al., 2018) is
a fundamental task for large language models, en-
abling them to comprehend information within its
temporal context and accurately extract time-based
details to provide appropriate responses. Lever-
aging language models for temporal question an-
swering can benefit related applications, such as
document retrieval, by allowing systems to filter
outdated laws or identify versions of legal docu-
ments that are not suitable for a given query, which
semantic search alone may not effectively address.
In the context of video captioning, temporal rea-
soning allows models to interpret continuous events
and respond to user queries with greater efficiency
and accuracy.

In the previous study, large language models
(LLMs) were evaluated on the TimeBench dataset
(Chu et al., 2023). The results indicated that LLMs
were generally unable to handle most temporal
questions efficiently, with scores ranging from 0.50
to 0.98. Notably, the DurationQA question type

Listing 1 Each training sample is represented as a
dictionary with four keys: "ctx" (context), "opts"
(duration options), "q" (question), and "label"
(correct answers). In the test set, the "label" field
is omitted.
1 sample = {
2 "ctx": (
3 "Trong một lớp học, "
4 "các học sinh đang học "
5 "về các chủ đề khác nhau. "
6 "Một số em rất chăm chỉ "
7 "và thường xuyên hoàn thành . . . "
8 ),
9 "opts": [

10 "1 tuần", "5 năm", "10 ngày", "10 giây"
11 ],
12 "q": (
13 "Mất bao lâu để hoàn thành "
14 "tất cả bài tập về nhà của lớp học?"
15 ),
16 "label": [
17 "yes", "no", "yes", "no"
18 ] # excluded in test set
19 }

showed one of the lowest performance scores at
0.62, highlighting a significant gap between the
capabilities of large language models and human
performance.

Research in this domain remains limited, par-
ticularly for the Vietnamese language, where prior
studies and available data are scarce. This study
aims to address this gap by evaluating language
model performance on DurationQA questions
specifically in Vietnamese.

The Duration Question Answering (Dura-
tionQA) task is designed to evaluate a system’s
ability to answer questions related to the duration
of an event or action based on a given context.
Specifically, the system must extract explicit tem-
poral information from the text or infer implicit
durations by leveraging commonsense knowledge,
thereby determining the plausibility of each answer
option. The input consists of a context containing
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temporal information, a duration-related question,
and a set of candidate answers, and the output is
a list of “yes” or “no” labels for each option, indi-
cating whether it correctly represents the duration
of the event or action. Formally, let the input be
defined as

x = {c, q, O},

where c is the context, q is the duration-related
question, and O = {o1, o2, . . . , om} is the set of
answer options. The system learns a labeling func-
tion

f : (c, q, O) → Y,

where Y = {y1, y2, . . . , ym}, and each yi ∈
{“yes” , “no”}.

2 Related Work

TimeBench (Chu et al., 2023) is a comprehensive,
hierarchical benchmark introduced to evaluate large
language models’ temporal reasoning across a wide
spectrum of phenomena. The authors organize tem-
poral reasoning into three levels: symbolic tempo-
ral reasoning, temporal commonsense, and event
temporal reasoning. They assemble 10 datasets
with 16 subtasks spanning four task formats (read-
ing comprehension, NLI, constrained generation,
and multi-select) to evaluate different temporal
capabilities. The paper reports extensive zero-
shot and few-shot experiments, including chain-of-
thought prompting, on many contemporary models
such as GPT-4 (Achiam et al., 2023), LLaMA3
(Dubey et al., 2024), and Mistral (Chaplot, 2023).
The results show that while GPT-4 achieves the
strongest performance, a substantial gap remains
between state-of-the-art models and humans, and
chain-of-thought prompting does not consistently
improve temporal performance. TimeBench specif-
ically includes symbolic tasks such as date arith-
metic and TimeX inference; commonsense tasks
covering duration, frequency, and typical time (e.g.,
MC-TACO, DurationQA, TimeDial); and event-
level tasks requiring event–time and event–event
reasoning (e.g., TimeQA, MenatQA, TempRea-
son). Together, these tasks reveal model weak-
nesses in abstract time understanding, temporal
relation modeling, and implicit temporal inference.

Tan et al. (2023) introduce TempReason, a
benchmark designed to rigorously evaluate the
temporal reasoning capabilities of large language
models (LLMs). This benchmark assesses perfor-
mance across three hierarchical levels: time–time,
time–event, and event–event relations. It utilizes

both synthetically generated and Wikidata-derived
questions spanning a wide range of temporal inter-
vals, from centuries to months. In contrast to pre-
vious datasets with limited temporal scope or rea-
soning complexity, TempReason includes closed-
book, open-book, and reasoning-based question-
answering settings. This design enables the evalu-
ation of both memorization and inferential capabil-
ities. Additionally, the authors present TempT5, a
model trained with temporal span extraction pre-
training and time-sensitive reinforcement learning.
TempT5 demonstrates consistent improvements
over strong baselines, particularly in reasoning-
based question-answering scenarios, and reduces
temporal bias toward recent time periods.

Virgo et al. (2022b) propose an effective method
to enhance event duration question answering by
explicitly bridging the gap between duration clas-
sification and question answering tasks. They
automatically recast the event-duration annota-
tions from UDS-T (Virgo et al., 2022a) into a
question answering format similar to McTACO
(Zhou et al., 2019), resulting in the creation
of the UDST-DurationQA dataset. To effec-
tively leverage this dataset, a two-stage fine-tuning
strategy is employed: the model is first fine-
tuned on UDST-DurationQA and subsequently
on McTACO-duration, which (Zhou et al., 2019)
demonstrates provides a substantial improvement
of approximately 13% in Exact Match and 5% in
F1-score compared to a RoBERTa baseline. Their
results underscore the importance of addressing
task-format discrepancies between intermediary
and target tasks when transferring duration knowl-
edge, a key factor in improving duration reasoning
across QA datasets.

The introduction of Qwen3 (Yang et al., 2025)
represents a significant advancement in the de-
velopment of large language models. This fam-
ily of open-weight models encompasses a broad
range of parameter sizes, from 0.6B to 235B, and
incorporates both dense and Mixture-of-Experts
(MoE) (Zhou et al., 2022) architectural designs.
Notably, the flagship MoE variant activates only a
subset of its total parameters during inference, ef-
fectively balancing computational efficiency with
model performance. Qwen3 (Yang et al., 2025)
models have demonstrated state-of-the-art results
across multiple domains, highlighting the potential
of scalable and efficient architectures for a wide
array of downstream tasks.
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Figure 1: Overview of the training pipeline. Each sample (see Listing 1) is formatted into an experimentally designed
prompt and used for supervised fine-tuning of the model.

3 Method

Overview, the training pipeline converts each sam-
ple into a prompt-label pair and fine-tunes a pre-
trained Qwen3 model via LoRA, updating only the
adapter weights (Figure 1).

3.1 Prompt Design

To adapt large language models for the Duration
Question Answering task, we designed a special-
ized prompt that explicitly guides the model to
perform temporal and duration-related reasoning.
The prompt frames the model as a temporal expert,
instructing it to carefully read the context and ques-
tion, analyze the candidate answers, and classify
each option as correct or incorrect. The function is
shown in Listing 2.

Listing 2 The function build_prompt constructs
a duration reasoning prompt by combining four
parts: a system instruction and three inputs ctx
(context), opts (duration options), and q (question).
These inputs correspond to the data sample shown
in Listing 1.
1 def build_prompt(ctx, opts, q):
2 """
3 Build a duration QA prompt.
4 """
5 prompt = (
6 f"Bạn là một chuyên gia về thời gian "
7 f"và thời lượng. Nhiệm vụ của bạn "
8 f"là đọc kỹ ngữ cảnh và câu hỏi, "
9 f"sau đó phân tích để xác định "

10 f"câu trả lời phù hợp "
11 f"trong các lựa chọn được đưa ra. "
12 f"Mỗi lựa chọn có thể đúng hoặc sai, "
13 f"hãy đánh giá chính xác.\n\n"
14 f"{ctx}\n\n"
15 f"{opts}\n\n"
16 f"{q}"
17 )
18 return prompt

This prompt is concatenated with the context,
the duration-related question, and the candidate an-
swer options to form the final input to the model.

By explicitly framing the task in this way, we en-
courage the model to perform structured temporal
reasoning rather than relying solely on superficial
text matching.

3.2 Supervised Fine-tuning

The initial phase of training involves supervised
fine-tuning to adapt the foundational language
model Qwen to the specific requirements of the
Vietnamese DurationQA dataset. At this stage, the
model has no prior knowledge of the DurationQA
task or its output format. Through supervised fine-
tuning, it learns to accurately interpret prompts,
process long-form documents and tabular data, and
generate precise responses. Due to the substan-
tial computational resources and time required for
full-parameter fine-tuning, we employ LoRA-based
fine-tuning (Hu et al., 2022) with hyperparameters
set to rank R = 64 and LoRA alpha = 64. Fur-
thermore, we use a quantized version of the Qwen3
model, reducing the parameter count from 32 bil-
lion to 24 billion to improve efficiency without
sacrificing performance.

4 Experiment

4.1 Data Statistics

The dataset1 comprises 1,490 samples, each linked
to a document providing temporal context. Context
lengths range from 7 to 82 tokens, with an average
of 28 tokens and a median of 25 tokens. Fourteen
distinct temporal units appear in the answer op-
tions, and their frequencies are summarized in Ta-
ble 1. Shorter and more frequent units (hours, min-
utes, months, weeks) dominate the dataset, while
broader time spans (decade, million, millennium)
occur rarely. This indicates that the dataset pri-
marily evaluates fine-grained temporal reasoning
while still including occasional instances involving
broader time spans.

1VLSP 2025 Challenge on Temporal QA: https://vlsp.
org.vn/vlsp2025/eval/tempqa

https://vlsp.org.vn/vlsp2025/eval/tempqa
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Temporal Unit Frequency
Week 684
Year 515
Day 602
Month 782
Hour 970
Minute 873
Second 265
Decade 1
Thập kỷ 108
Century 28
Million 2
Symbol “.” 2
Million years 3
Millennium 1

Table 1: Distribution of temporal units within the
dataset.

We randomly split the dataset into training
(80%), development (10%), and test (10%) sets, re-
sulting in 1,192 training samples, 149 development
samples, and 149 test samples. The distribution of
temporal units is consistent across all three splits,
ensuring that data imbalance does not affect model
training or evaluation.

4.2 Experimental Setup

We leverage the TRL2 library to perform super-
vised fine-tuning (SFT) on the Qwen3-32B 4-bit
model quantized using BNB3. We use SFTTrainer
with a per-device batch size of 16 and gradient ac-
cumulation over 4 steps (for an effective batch size
of 64), training over 10 epochs. The learning rate
is set to 2× 10−4 with a linear decay schedule and
5 warmup steps. We optimize using adamw_8bit
(to reduce memory usage) with a weight decay of
0.01. A fixed random seed (3407) ensures repro-
ducibility. Logging occurs each step, evaluation
and checkpointing each epoch, with the best model
chosen by development loss.

Fine-tuning was conducted on a single NVIDIA
RTX 4090 GPU with 24 GB of VRAM, requiring
approximately 1–2 hours to complete all 10 training
epochs. For inference and leaderboard submission,
a single NVIDIA A100-SMX4 GPU with 40 GB
of VRAM was used, enabling efficient batch pro-
cessing and stable evaluation throughput.

2Train Transformer Language Models with Reinforcement
Learning: https://github.com/huggingface/trl

3Qwen3-32B 4-bit model, quantized using BNB: https:
//huggingface.co/unsloth/Qwen3-32B-bnb-4bit

4.3 Evaluation Metric
System performance is evaluated using standard
metrics, including Exact Match, Precision, Recall,
and F1-score (Yacouby and Axman, 2020). Exact
Match is applied specifically to Sub-Task 2 and
measures whether the predicted label sequence ex-
actly matches the ground-truth sequence, defined
as

EM =
1

N

N∑
i=1

1
(
Ŷ (i) = Y (i)

)
.

Precision is computed as the ratio of correctly pre-
dicted “yes” answers to the total number of “yes”
predictions made by the system:

P =
TP

TP + FP
,

while Recall is defined as the ratio of correctly pre-
dicted “yes” answers to the total number of actual
“yes” answers in the ground truth:

R =
TP

TP + FN
.

The F1-score, calculated as the harmonic mean of
Precision and Recall, is given by

F1 =
2 · P · R
P + R

.

Evaluation is conducted separately for each sub-
task, and the final report provides both individual
results and aggregate performance across all tasks,
considering both “yes” and “no” labels.

4.4 Main Result

Test Set EM Precision Recall F1
Public Test 0.48 0.75 0.88 0.81
Private Test 0.43 0.73 0.89 0.80

Table 2: Performance of our model on the public and
private test sets of DurationQA.

Table 2 summarizes the model performance on
both the public and private test sets of DurationQA.
On the public test set, our model achieved strong
overall performance with an F1-score of 0.81, a
precision of 0.75, and a recall of 0.88. However,
the Exact Match (EM) score was lower at 0.48,
indicating a gap between token-level classification
and strict answer matching. On the private test
set, we observed slightly lower but still competitive
results, with an F1-score of 0.80 and an EM of 0.43.

https://github.com/huggingface/trl
https://huggingface.co/unsloth/Qwen3-32B-bnb-4bit
https://huggingface.co/unsloth/Qwen3-32B-bnb-4bit


4.5 Error Analysis
To identify the limitations of our system, we man-
ually analyzed 50 mispredicted samples. Of these,
31 involved the model incorrectly predicting “yes”
for durations exceeding the maximum possible time
indicated in the context, demonstrating a tendency
to overestimate and accept implausibly long dura-
tions. In contrast, 29 samples involved predictions
of “yes” for durations shorter than the minimum re-
quired to complete an event, revealing a weakness
in reasoning about necessary temporal constraints
and real-world feasibility. These results indicate
a systematic challenge in grounding temporal rea-
soning within realistic boundaries. Although the
model can extract explicit temporal expressions, it
often fails to align them with contextual constraints,
resulting in both overestimation and underestima-
tion errors. Addressing this limitation may require
integrating external temporal knowledge bases or
augmenting the training data with counterfactual
duration reasoning examples.

5 Discussion

Our pipeline reveals that a considerable perfor-
mance gap persists in this task, suggesting signifi-
cant opportunities for further enhancement. How-
ever, the current reward mechanism remains sub-
optimal, as it does not address all scenarios present
in the dataset, particularly cases involving unit mis-
matches, which consequently constrain model per-
formance. Moreover, implementing a robust mech-
anism to filter irrelevant factual information from
the input is essential. Greater investment of time
and computational resources is warranted for train-
ing the model with the GRPO approach, given its
lengthy convergence period. It is also advisable to
explore a range of augmentation techniques, such
as introducing greater variability in numerical pro-
gram transformations. Error analysis indicates that
some calculation functions are missing from the
training data, which may further impede model ac-
curacy. Finally, alternative evaluation strategies
should be pursued, as many mathematically valid
reasoning programs may employ different calcula-
tion functions yet produce correct results, a nuance
not fully captured by the current evaluation system.

6 Conclusion

In conclusion, our study highlights both the
progress and the remaining challenges in temporal
question answering for Vietnamese, particularly

on the DurationQA task within the TimeBench
benchmark. By tailoring prompts and applying
supervised fine-tuning to the Qwen3 model, we
achieved an F1-score of 0.81 on the public test
set and 0.80 on the private test set, demonstrat-
ing competitive performance against existing large
language models. However, our analysis reveals
persistent difficulties in aligning model predictions
with contextual temporal constraints, leading to
systematic overestimation and underestimation er-
rors. These findings underscore the need for further
research, including the integration of external tem-
poral knowledge, the development of more sophis-
ticated reward and evaluation mechanisms, and the
adoption of advanced data augmentation strategies.
Despite notable advancements, a significant gap
remains between current model capabilities and
the nuanced temporal reasoning required for real-
world applications, indicating ample opportunity
for future work in this domain.
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