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Introduction

Human languages are inherently ambiguous and understanding language input is subject to interpretation
and complex contextual dependencies. Nevertheless, the main body of research in NLP is still based on
the assumption that ambiguities and other types of underspecification can and have to be resolved. This
second edition of the Uncertainty-Aware NLP workshop (UncertaiNLP 2025) provides a platform for
research that embraces variability in human language and aims to represent and evaluate the uncertainty
that arises both from language itself and from the modeling tools we use to process it.

Uncertainty arises when multiple outcomes are possible and variability cannot be fully explained by
context. In NLP, it reflects both epistemic and aleatoric factors, stemming from linguistic ambiguity,
individual variation, domain shifts, and modeling choices. These challenges are especially acute in low-
resource settings, where over- and under-fitting risks increase. Consequently, uncertainty-aware NLP
research spans model design, data collection, inference, and evaluation, with growing importance in
mission-critical applications requiring reliable confidence estimation. The success of the UncertaiNLP
workshop’s inaugural edition at EACL 2024 and the expanding community around related themes, under-
scores the growing research interest in this area and the need for continued exchange and collaboration.
Building on that momentum, the second edition of UncertaiNLP nearly doubled in size, reflecting the
field’s rapid growth and the community’s increasing recognition of the importance of uncertainty-aware
methods in NLP.

This volume contains the proceedings of the second edition of the UncertaiNLP workshop hosted on
November 9th, 2025, co-located with the 2025 Conference on Empirical Methods in Natural Language
Processing in the Suzhou International Expo Centre in Suzhou, Jiangsu Province, China. We invited
paper submissions on a wide variety of topics, including representing, documenting or modeling uncer-
tainty, parameter estimation, probabilistic inference, decision making, evaluation and calibration, and
hallucinations and uncertainty-driven mitigation. We received a total of 50 submissions, of which we
accepted 17 long and 10 short papers, amounting to an acceptance rate of 54%

We are grateful to our invited keynote speakers: Gal Yona (Google Research, IL), Maxim Panov (MB-
ZUAI, UAE), Parisa Kordjamshidi (Michigan State University, USA), Eyke Hiillermeier (LMU Miinich,
DE). We would also like to thank the EU’s Horizon Europe research and innovation program for support
through the Unified Transcription and Translation (UTTER, agreement No. 101070631) and the Foun-
dation for Empirical Multimodality Research (FOUNDATIONS, agreement No. 101122047) projects.
This workshop is also partially supported by an unrestricted gift from Google (Google research scholar
award).

The UncertaiNLP organizers, Wilker Aziz, Jonathan Berant, Bryan Eikema, Marie-Catherine de Marnef-
fe, Barbara Plank, Artem Shelmanov, Swabha Swayamdipta, Jorg Tiedemann, Rail Vazquez, Chrysoula
Zerva.
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Keynote Talk
TBA

Maxim Panov
MBZUAI UAE
2025-09-11 09:10 — Room: Room A207

Abstract: TBA

Bio: Maxim Panov is an Assistant Professor at MBZUAI, UAE. Before joining MBZUAI, Panov worked
as a research scientist at DATADVANCE Company, where he participated in developing a library of data
analysis methods for engineering applications. This library, pSeven, is now used by many companies
worldwide, including Airbus, Porsche, Mitsubishi, Toyota, and Limagrain. From 2018, Panov has been
an assistant professor at Skolkovo Institute of Science and Technology, Moscow, where he led a statistical
machine learning group. Since 2022, he has led an Al theory and algorithms group at the Technology
Innovation Institute, Abu Dhabi, UAE. His research interests lie in uncertainty quantification for machine
learning model predictions and Bayesian approaches in machine learning. Maxim is leading a research
team dedicated to exploring the theoretical foundations of uncertainty quantification and its practical
applications. Maxim is also co-leading the development of the LM-Polygraph framework for uncertainty
quantification for LLMs. Maxim was a local chair for the ICDM 2024 conference and a recipient of the
Best Paper Runner-up Award at the Uncertainty in Artificial Intelligence 2023 conference.
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Keynote Talk
Reasoning under Uncertainty with Large Multimodal
Language Models

Parisa Kordjamshidi
Michigan State University, USA
2025-09-11 13:15 — Room: Room A207

Abstract: Uncertainty in intelligent models has multiple facets. One aspect concerns a model’s own
uncertainty or confidence in its generated outputs. Another pertains to factual knowledge about un-
certainty within specific concepts. For example, statements such as “10-20% of lifelong smokers will
develop lung cancer” express factual uncertainty derived from statistical data analyses and represented
in text. A key research question is whether language models can form and convey such factual uncer-
tainties—integrating information, drawing on their internal knowledge, and aligning this with their con-
fidence when expressing opinions. While addressing this question is highly challenging, I will present
our research that explores related directions and the following research question: 1) How do language
models understand uncertainty expressions in natural language and perform probabilistic inference over
them? 2) How can models be trained to follow the principles of probabilistic reasoning when handling
uncertainty in text? 3) How can today’s large models reason over uncertain text? specifically focusing
on mapping language into formal probabilistic logic programs?, and finally, in the context of grounding
natural language in the visual modality, 4) How can uncertainty in perception be explicitly represented
in reasoning? specifically focusing on mappings to differentiable probabilistic programs.

Bio: Parisa Kordjamshidi is an Associate Professor of Computer Science and Engineering at Michigan
State University. Her research focuses on Natural Language Processing, multimodal reasoning across
vision and language, and neuro-symbolic learning. She received her Ph.D. from KU Leuven and con-
ducted postdoctoral research at the University of Illinois Urbana-Champaign. She is a recipient of the
NSF CAREER, Amazon Faculty Research, and Fulbright Scholar Awards, and her research team recei-
ved the NAACL 2025 Outstanding Research Paper Award. Dr. Kordjamshidi serves as Associate Editor
of JAIR, Co-editor in chief of ARR (2026), Action Editor for TACL and has held roles in organization
committee of major conferences including ACL, NAACL, EACL, EMNLP, ECML-PKDD, and AAAIL
Currently, she is a visiting Associate Professor at UCLA spending a part of her sabbatical.
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Keynote Talk
Beyond Factuality: Improving Trust and Reliablility of Large
Language Models

Gal Yona
Google Research, USA
2025-09-11 14:45 — Room: Room A207

Abstract: Factuality is a cornerstone for trustworthy LLMs, yet despite impressive progress, frontier
LLMs still make many confident errors when faced with questions beyond their knowledge boundaries.
In this talk I'll present Faithful Response Uncertainty, a different desiderata that shifts the focus away
from measuring the number of incorrect statements and towards measuring the alignment between the
model’s expressed certainty (decisiveness") and intrinsic certainty (confidence"). I’'ll conclude with a
discussion of open problems and possible next steps at the intersection of factuality and uncertainty in
frontier LLMs.

Bio: Gal Yona is a Research Scientist at Google Research, Tel Aviv, where she is working on improving
factuality in large language models, with an emphasis on robustness and uncertainty. Before joining
Google, Gal completed her PhD in Computer Science at the Weizmann Institute of Science, develo-
ping definitions and algorithms for preventing discrimination in machine learning models. Gal received
numerous award during her PhD, including the Google PhD Fellowship in Machine Learning (2021).
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Keynote Talk

Challenges in Uncertainty Quantification for Large Language
Models

Eyke Hiillermeier
LMU Miinich, Germany
2025-09-11 16:00 — Room: Room A207

Abstract: Uncertainty quantification is important in the context of large language models (LLMs) be-
cause the outputs produced by these models are often incorrect. However, due to the complexity of
language and the numerous sources of uncertainty in textual data, quantifying uncertainty in LLMs is
challenging. Indeed, simply transferring existing approaches to uncertainty quantification developed for
standard machine learning problems, such as classification and regression, is neither straightforward nor
appropriate. This is particularly pertinent to the definition of aleatoric and epistemic uncertainty, and
how they are distinguished based on the notion of reducibility. This talk will discuss the challenges of
uncertainty quantification for LLMs, propose potential solutions and highlight promising avenues for
future research in this emerging field.

Bio: Eyke Hiillermeier is a full professor at the Institute of Informatics at LMU Munich, Germany,
where he holds the Chair of Artificial Intelligence and Machine Learning. He studied mathematics and
business computing, received his PhD in Computer Science from Paderborn University in 1997, and
a Habilitation degree in 2002. Before joining LMU, he held professorships at several other German
universities (Dortmund, Magdeburg, Marburg, Paderborn) and spent two years as a Marie Curie fellow
at the IRIT in Toulouse (France). His research interests are centered around methods and theoretical
foundations of artificial intelligence, with a particular focus on machine learning, preference modeling,
and reasoning under uncertainty. He has published more than 400 articles on related topics in top-tier
journals and major international conferences, and several of his contributions have been recognized with
scientific awards. Professor Hiillermeier is Editor-in-Chief of Data Mining and Knowledge Discovery,
Associate Editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), and
serves on the editorial boards of several other Al and machine learning journals. He is currently also the
president of EuADS, the European Association for Data Science.
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Uncertainty-Driven Partial Diacritization for Arabic Text

Humaid Alblooshi, Artem Shelmanov, Hanan Aldarmaki
Department of Natural Language Processing
Mohamed Bin Zayed University of Artificial Intelligence, UAE
{Humaid.alblooshi, Artem.Shelmanov, Hanan.Aldarmaki}@mbzuai.ac.ae

Abstract

We propose an uncertainty-based approach to
Partial Diacritization (PD) for Arabic text. We
evaluate three uncertainty metrics for this task:
Softmax Response, BALD via MC-dropout,
and Mahalanobis Distance. We further intro-
duce a lightweight Confident Error Regularizer
to improve model calibration. Our preliminary
exploration illustrates possible ways to use un-
certainty estimation for selectively retaining
or discarding diacritics in Arabic text with an
analysis of performance in terms of correla-
tion with diacritic error rates. For instance, the
model can be used to detect words with high
diacritic error rates which tend to have higher
uncertainty scores at inference time. On the
Tashkeela dataset, the method maintains low
diacritic error rates while reducing the amount
of visible diacritics on the text by up to 50%
with thresholding-based retention.

1 Introduction

Arabic script relies on diacritics, commonly re-
ferred to in Arabic as Tashkeel (J.(..u) to mark
short vowels, gemination, and other phonemic dis-
tinctions that may not be represented by the base
letters. Fully-diacritized text eliminates ambiguity
and supports precise pronunciation, which is help-
ful for applications such as text-to-speech (TTS)
synthesis, machine translation, and language learn-
ing (Mubarak et al., 2019; Lameris, 2021). How-
ever, when every letter carries its diacritic, the re-
sulting text becomes visually dense and can slow
down readers (EINokrashy and AlKhamissi, 2024;
Roman and Pavard, 1987). Partial diacritization
can be employed to balance disambiguation and
readability and to optimize performance in down-
stream NLP applications.

State-of-the-art transformer-based diacritization
models can achieve diacritic error rates (DER) be-
low 2% on standard benchmarks (Assad et al.,
2024), but their performance may degrade in out-of-

1

domain data (Toyin et al., 2025a). These models of-
ten operate as “black boxes,” where model outputs
are accepted regardless of confidence scores. Their
outputs are often fully diacritized, which increases
visual complexity and can slow down reading speed
and reduce clarity. Furthermore, many diacritics
are redundant, particularly in common words where
pronunciation is intuitive or easily inferred. These
factors make Fully Diacritized (FD) text less prac-
tical for general application, motivating the need
for Partially Diacritized (PD) text in such settings.
Prior studies proposed computational approaches
that rely on heuristics and morphological analysis
to perform partial diacritization (Diab et al., 2007,
Algahtani et al., 2019). Others have proposed neu-
ral networks (Fadel et al., 2019) with some success.
However, research on partial diacritization remains
limited, largely due to the difficulty of evaluating
performance; optimal partial diacritization is an
illusive concept with no standard evaluation frame-
work or metrics.

In this paper, we explore an uncertainty-driven
framework for PD and provide a preliminary in-
trinsic evaluation of this framework through error
analysis. We evaluate three uncertainty metrics:
Softmax Response, Bayesian Active Learning by
Disagreement (BALD) via Monte Carlo dropout,
and Mahalanobis distance in latent feature space.
At inference time, the predicted diacritic of each
character is compared with a chosen threshold 6.
We may keep the diacritic if the uncertainty score is
above or below said threshold, allowing for flexibil-
ity in application. To mitigate the well-known over-
confidence of deep networks on rare or ambiguous
inputs, we experiment with a lightweight, simpli-
fied Confident Error Regularizer (CER) that penal-
izes high-confidence mistakes during fine-tuning.
We summarize our contributions as follows:

* We propose and formalize the application of
per-character uncertainty metrics for PD and

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 1-10
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illustrate an intrinsic performance evaluation
of this framework using a recent state-of-the-
art neural diacritic restoration model.

* We propose an efficient calibration method
and apply it on our base diacritic restoration
model. We show that the approach improves
uncertainty estimation at the cost of lower ac-
curacy, while being computationally efficient.

* We discuss the potential downstream appli-
cations of such partial diacritization schemes
and highlight areas that need further analysis
and improvement.

2 Related Work

Early approaches to Arabic diacritization employed
hidden Markov models and morphological analyz-
ers such as MADA and MADAMIRA (Habash
et al., 2005), Habash and Rambow (2005), Habash
and Rambow (2007), achieving good accuracy by
leveraging lexical features and large amounts of
data. With the advent of neural networks, recur-
rent architectures and encoder—decoder transform-
ers improved DER to below 5%. The Character-
based Arabic Tashkeel Transformer (CATT) (?)
is one such innovation, achieving very good re-
sults on both its variants, encoder only (EO) and
encoder-decoder (ED).

Partial diacritization has been studied from lin-
guistic and machine learning perspectives with the
aim of improving both NLP systems as well as
improving text readability. Rule-based schemes
target case endings or homograph disambiguation,
while supervised methods train classifiers to decide
which positions to diacritize. Diab et al. (2007)
investigated the impact of various diacritization
schemes on Statistical Machine Translation (SMT)
from Arabic to English. The authors explored
different levels of partial diacritization and found
that partial diacritization could improve translation
quality by reducing ambiguity without significantly
increasing vocabulary size or out-of-vocabulary
rates. Algahtani et al. (2016) demonstrated im-
provements in machine translation by employing
partial diacritization strategies targeting syntactic
clarity. Building on these findings, the authors
also employed selective diacritic restoration specif-
ically for homograph disambiguation (Algahtani
et al., 2019). Fadel et al. (2019) further advanced
PD research by achieving state-of-the-art results
and seamless integration into machine translation

workflows. Qin et al. (2021) introduced regular-
ized decoding and adversarial training to improve
diacritization robustness and accuracy. Recently,
Elgamal et al. (2024) analyzed naturally occurring
instances of partial diacritics across diverse text
genres, creating practical datasets for enhanced
real-world applications.

Our contribution in relation to related work
Existing PD methods depend on heuristics or lin-
guistic context to identify words or characters for
partial diacritization. None of the existing ap-
proaches leverage model uncertainty estimation
techniques, which have been shown to be instru-
mental in other areas of application, such as com-
puter vision (Kendall and Gal, 2017), (Lee et al.,
2018), and machine translation (Pereyra et al.,
2017). In this paper, we introduce the application
of uncertainty estimation methods for Arabic dia-
critization and contribute a preliminary exploration
of uncertainty metrics and performance in terms
of diacritic error rates. Through this exploratory
analysis, we present a case for the potential of un-
certainty estimation as a viable computational ap-
proach towards partial diacritization.

3 Methodology

Our methodology for partial diacritization is to use
model uncertainty to guide the removal or retention
of diacritics based on target criteria. For example,
if we have a fully diacritized text and wish to mini-
mize the diacritics for improved readability, uncer-
tainty scores may be helpful in identifying which
diacritics to retain by keeping the ground truth di-
acritics in places with high model uncertainty. In
applications where a diacritic restoration model is
used directly to annotate undiacritized text, we may
wish to remove predicted diacritics with high uncer-
tainty and maintain low diacritic error rates in the
resulting text. Our methodology and preliminary
analysis enable both types of application by explor-
ing the relationship between uncertainty scores and
diacritic error rates. In the following sections, we
describe the base model, uncertainty metrics, and
the calibration scheme used to improve uncertainty
estimation for diacritic restoration.

3.1 Task Formulation and Diacritic
Restoration Models

Arabic diacritic restoration can be cast as a
sequence-labeling problem. Given an undiacritized
character sequence x = (z1,...,%,), We pre-



dict a diacritic sequence y = (y1, .. ., Yn), Where
Yi € Vdiac (including a “no-diacritic” symbol) is a
label for x;.

We use a recent character-based transformer
model for diacritic restoration, CATT (?), which
supports both encoder-only and encoder-decoder
configurations. We primarily use the encoder-
decoder model in experiments, as it’s shown to per-
form better in ?. Both architectures are described
below.

Encoder-Only (EO) is a transformer encoder
Oenc With a linear classification head for sequence
labeling with parameters W5 and a bias term byys.
Each position is classified independently condi-
tioned on the entire input:

h = Encoder(X; fenc) (1)
P(yz‘|X) = SOftmaX(Wclshi + bcls) (2)

Encoder-Decoder (ED) is a full transformer ar-
chitecture with autoregressive decoding. We denote
the parameters of the decoder as f4... We view the
task as monotonic character-to-diacritic translation
with the standard autoregressive factorization:

hepe = Encoder(x; fenc) 3)
hdec = DeCOder(y<i; henc; edec) “4)
p(yi|xa Y<i) = SOftmaX(Wclshdec,i + bcls) (5)

P(y’X) :Hp(yl ’X7 ylvayl—l) (6)
i=1

3.2 Uncertainty Scores

We denote the model’s categorical probability out-
put at a given character position by p(y | x) and
all parameters of the model as . The Softmax
Response (SR) uncertainty is defined as:

Usr(z) = 1 — max P(y|z,0). (7)
Y

Softmax Response, (Hendrycks and Gimpel,
2017) measures model confidence explicitly, and is
usually a simple baseline for alaetoric uncertainty:
the inherent ambiguity of a task due to noise or
multiple valid answers.

To capture epistemic uncertainty, we apply
Monte Carlo dropout at inference time over T'
stochastic forward passes, obtaining distributions
pi(y | ©) t = 1...T. This score is the difference
between predictive entropy and expected entropy,
termed BALD (Bayesian Active Learning by Dis-
agreement) (Houlsby et al., 2011):

UsaLp(w) = H[P(y|z,0)] — Eq@e) H[P(y|z,0)]
3)

where:

e H[P(y|x,0)] is the total uncertainty (entropy
of the predictive distribution),

* Eq@)H[P(y|z,0)] is the expected entropy
over the posterior distribution of the model pa-
rameters, capturing the irreducible (aleatoric)
uncertainty.

A higher BALD score indicates greater disagree-
ment among stochastic forward passes, meaning
the model lacks knowledge and would benefit from
additional training on similar samples.

Finally, Mahalanobis Distance (MD) (Lee
et al., 2018) is computed on the penultimate layer
features f(x) € R?, with a precomputed centroid
for the whole training set ;2 and a covariance matrix
PIN

Uvin(z) = \/(F(2) = ) TE-1(f(2) — ). ©)

Higher MD values indicate that a sample may be
out-of-distribution, suggesting that the model has
not encountered similar instances during training.
For example, a rarely-used Arabic word or a for-
eign loanword transcribed in Arabic script could
have a high MD score. MD is a strong epistemic
uncertainty metric, since uncertainty in these in-
stances is due to complete lack of representation
rather than ambiguity.

3.3 Selective Diacritization

We propose uncertainty-based partial diacritization
as follows. At inference time, we compare the un-
certainty for each character position, U (z), against
a pre-defined threshold, 7. Depending on our ob-
jective, we can:

* Retain high confidence diacritics, where
U(z) < 7. This can be applied in settings
where automatic diacritic restoration is used
to annotate undiacritized text, and highly ac-
curate partial diacritization is preferred over
full diacritization.

e Retain low confidence diacritics, where
U(x) > 7. This can be used for applications
where ground truth diacritics are available,
and partial diacritics are sought to identify
ambiguous words; for instance, in reading ap-
plications to help casual readers disambiguate
difficult, ambiguous cases while maintaining
minimal diacritics overall to reduce cognitive
load. This approach could also be used to
identify which subset of diacritics to manually
annotate in an active learning framework.



By sweeping 7 over [0,1], we can trace a
DER-—coverage curve that illustrates the trade-off
between error rate and annotation effort.

3.4 Calibration via Confident Error
Regularizer

Deep models often assign high confidence to in-
correct predictions, which could compromise the
application of uncertainty in PD as described
above. To address this, we augment the standard
cross-entropy loss Lcg with a penalty on high-
confidence errors.

Xin et al. (2021) proposed the Confident Error
Regularizer (CER) to add a penalty for an instance
with a bigger loss than other instances and, at the
same time, bigger confidence:

k
Lcer = Z A jle; > e

ij=1

(10)

1D

where k is the number of instances in a batch and
e; 1s an error of the ¢-th instance: e; is 1 if the
prediction of the classifier matches the true label,
and is O otherwise. p; and p; are the probabilities
of these specific datapoints. The authors evaluate
this type of regularization only in conjunction with
the SR baseline to good results. CER is based on
the principle that a well-calibrated model should
assign lower confidence to incorrect predictions
than to correct ones, and vice versa.

In our implementation, we adopt a simplified
version of the CER that maintains the core con-
cept while reducing computational complexity. In-
stead of using pairwise comparisons between all
instances in a batch as in the original formulation,
our approach directly penalizes high confidence on
incorrect predictions with high confidence only:
i1 max(p;) - Lyi # §i] - my

doicy Uyi # 93] -mi + e
where n is the total number of tokens, max(p;) is
the maximum probability (confidence) for token
i, I[y; # ¥;] is an indicator function that equals 1
when the prediction is incorrect and O otherwise,
m; 1s a mask to ignore padding tokens, and € is a
small constant to avoid division by zero.

This regularization loss is then added to the task-
focused cross-entropy loss Lcg. The additive total
loss function is then:

Liotal = LcE + ALCER- (13)

with \ as a regularization strength hyperparameter.

A= (maX{O, max pf — maxp?})2

(12)

LcEr =

4 Experiments

This section presents exploratory and experimental
analysis of our approach. We analyze the perfor-
mance of different uncertainty estimation methods,
with a particular focus on SR as our primary score,
a choice we justify below. We also evaluate the im-
pact of confidence calibration through CER, not to
be confused with Character Error Rate, with differ-
ent regularization strengths. The analysis addresses
several key aspects: the relationship between uncer-
tainty thresholds and diacritization coverage, error
rates at different thresholds of uncertainty, the ef-
fectiveness of uncertainty in identifying difficult
words, and the calibration quality of the model with
and without CER.

4.1 Datasets

The Tashkeela Corpus (Zerrouki and Balla,
2017) is the primary dataset usedfor training the
base CATT model. We use it for fine-tuning and
in-domain evaluation. The dataset contains over 75
million words of fully diacritized text, derived from
classical Arabic books, religious texts, and modern
Arabic educational material. We apply filtering to
remove lines with less than a 60% diacritization ra-
tio for finetuning. Since Tashkeela is a large dataset,
we only fine-tuned on 10% of the data, split into an
80/20 for fine-tuning and validation.

ArVoice (Toyin et al., 2025b) is a multi-speaker
Modern Standard Arabic (MSA) speech corpus
with fully diacritized text transcriptions, intended
for multi-speaker speech synthesis. The complete
corpus consists of a total of 83.52 hours of speech
across 11 voices. Since most of the ArVoice text
is derived from Tashkeela, we use only the ASC
subset, which is derived from the Arabic Speech
Corpus (Halabi, 2016). This serves as a challenging
out-of-domain test set.

4.2 Base Model without Regularization

To start the analysis, we will go over some stud-
ies on the base model itself to establish a few key
points and trends, then move on to the calibration
effect on key metrics, and what insights can be
pulled from those differences.

4.2.1 Relationship Between Uncertainty
Threshold and Diacritic Coverage

As we increase the threshold 7 used to retain dia-
critics in the base model, we keep more diacritics,
in the case that we choose to keep the ones below
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Figure 1: Percentage of diacritics kept vs. uncertainty threshold for SR and BALD (left) and MD (right) using the
base model. Results are based on the Tashkeela test set. We plot MD separately due to the large difference in scale
compared to SR and BALD. Note:The percentage is calculated with the total ground truth diacritics as denominator.
The base model generates more than 100% of the diacritics due to insertion errors.

7. We illustrate the relationship between uncer-
tainty thresholds and the percentage of diacritics
retained in Figure 1. Naturally, the figures follow a
cumulative pattern where all diacritics are kept at
the maximum uncertainty threshold.! The figures
help identify the threshold values needed to retain
a specific percentage of diacritics.

4.2.2 Relationship Between Error Rate and
Diacritics Kept

While the previous section demonstrates how to se-
lect a threshold based on the percentage of desired
diacritics, a more practical approach is to select a
threshold based on optimal diacritic coverage and
error rates. Figure 2 shows the relationship be-
tween the percentage of diacritics retained using
the base model, and the resulting Diacritic Error
Rate (DER) for our three uncertainty estimation
metrics: SR, BALD, and MD. Fewer diacritics are
favorable in a practical reading setting, since there
is less visual noise to go through and less disam-
biguation needed. As such, keeping the smallest
number of diacritics possible while retaining the
lowest Diacritic Error Rate “DER” is desirable in
this context. We calculate DER relative to the num-
ber of total diacritics kept.

As the illustration does not rely on absolute
threshold value, we gain the advantage of visu-

'"The model predicts more diacritics than the reference
ground truth, making the results go above 100% at the ex-
tremes due to insertions it makes.

alizing the three metrics in the same scale. In the
same figure, one can see that SR and BALD exhibit
similar trends, with a gradual increase in error rate
as more diacritics are kept. At 80% diacritization
coverage, both methods maintain a relatively low
error rate (approximately 2.5%, or 50% absolute
reduction in error rates) after removing 20% of dia-
critics that have high uncertainty in the base model.
In contrast, MD shows a sharper increase in error
rate, suggesting that it may be unsuitable for this
task. This indicates that the model’s confidence
(as measured by SR and BALD) is well correlated
with its accuracy, making it an effective guide for
partial diacritization. SR seems less prone to er-
rors than BALD, though not significantly. SR is
also much faster to compute than BALD in our
encoder-decoder diacritic restoration model since
MC dropout passes need to be computed for every
token the decoder generates, leading to huge com-
putational overhead. As such, SR will be chosen
as the main metric of focus in the remaining anal-
ysis due to its computational efficiency and good
correlation with error rates.

4.3 Confident Error Regularization

While the base model is shown to be effective at
identifying many errors through uncertainty scores,
effectively reducing error rates by 50% while main-
taining 80% of diacritics, we still have many in-
stances where the model uncertainty scores do
not track performance, especially in the out-of-
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Figure 2: Diacritic Error Rate vs. Percentage of Diacritics Kept on the Tashkeela test set for SR, BALD, and MD
metrics using the base model, keeping diacritics below threshold. Note: The percentage is calculated with the total
ground truth diacritics as denominator. The base model generates more than 100% of the diacritics due to insertion
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domain test set. To address this calibration is-
sue, we applied CER with different regularization
strengths A\. We experimented with several val-
ues, selected through hyperparameter optimization
for confidence gaps and validation diacritic error
rate. The results below are shown using the out-of-
domain test set derived from ArVoice, where the
base error rate is above 10%.

4.3.1 Impact on DER

Diacritic error rate tends to increase with higher
regularization, as shown in Figure 3.

This increase is more significant for Ay 77, and
scales mostly linearly as A values increase. \g.g44
shows moderate increase in DER, while improv-
ing model precision in detecting error-prone, high-
DER words, as discussed in the next section.

4.3.2 High-DER Words Precision/Recall

To quantify the model’s ability to identify ambigu-
ous words, we perform word-level analysis. We de-
fine a high-DER word as one with > 50% DER. We
then measure how well we can identify these high-
DER words using the model’s uncertainty scores.
We calculate the uncertainty score for a word as
the mean uncertainty of its characters. We then
sort the words in the test set from lowest to highest
uncertainty to define the uncertainty percentiles.
For instance, the 70" percentile is the word-level
uncertainty score where 70% of the words fall be-
low, and 30% of words are higher. The 30% high-

uncertainty words are the ones ‘detected’ by the
model. The exact calculations are shown in Ap-
pendix, section A.1.2.

Based on these definitions, we measure the preci-
sion and recall at different regularization strengths
A and uncertainty percentiles®. Figure 4 presents
these metrics for several values of the regular-
ization parameter A, along with the base model
(A = 0). Overall, there is a clear trade-off be-
tween recall and precision. The base model tends
to achieve higher recall but suffers from very low
precision, indicating that it flags words with low
error rates as uncertain, and vice versa. In contrast,
the regularized models typically flag fewer words
overall, which results in smaller recall but precision
is higher than the baseline.

Notably, at very high thresholds (e.g., the 99th
or 100th percentile), both recall and precision drop,
likely because only a tiny fraction of words ex-
ceed these stringent uncertainty levels. A threshold
near the 90-95% range appears to offer a good bal-
ance between detecting enough erroneous words
while minimizing false positives. The exact choice
depends on whether higher precision or higher cov-
erage of erroneous words is the primary goal.

*Note that due to the distribution of the scores and the
skewed uncertainty values, the percentiles do not reflect ex-
actly the same number of detected words across models. For
instance, at the 70" percentile, the number of words below
the threshold may be less than 70%.
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Figure 4: Detection rate or recall (top) and precision
(bottom) of high-DER words at different uncertainty
percentiles using different regularizing strength values.
The results are based on the ArVoice test set.

5 Discussion and Conclusions

We explored the application of uncertainty estima-
tion for partial diacritization of Arabic text. We
experimented with various uncertainty estimation
methods, and established the suitability of Soft-
max Response for this task. The other two met-
rics we explored had some drawbacks that made
them less suitable for our task. While the Maha-
lanobis distance exhibited some correlation with
diacritic error rates, the effect is weaker than the
other two methods, resulting in higher error rates
at the same coverage points. BALD achieved sim-

ilar correlation to SR, but it is less suitable for
practical diacritc restoration models that involve
sequence labeling due to its higher computational
cost. Among the three metrics, SR provides opti-
mal performance and efficiency, making it suitable
for additional calibration and practical deployment.
However, our experiments show that better cali-
bration results in higher DER, so additional work
is needed to develop calibrated models that retain
base accuracy. Nevertheless, the calibrated model
shows potential for identifying ambiguous words,
which we define as words with high DER, in terms
of precision. This indicates that calibration may
still be useful for some target application, where
identifying ambiguous words with high precision
(albeit with low recall) is desired. This preliminary
analysis illustrates that additional work is needed
to identify suitable calibration methods that opti-
mize uncertainty estimation while maintaining the
performance of the base diacritic restoration model.

In terms of application, the SR-based approach is
straightforward to integrate into any neural-based
diacritic restoration model, and our experiments
show that we can reduce the relative DER in par-
tial diacritization with various coverage thresholds.
Such approach can be used in user-facing appli-
cations where automatic diacritization is used to
annotate undiacritized text, leading to a partially
diacritized text that is more accurate than the base-
line. However, such methods do not address the
issue of ambiguous words, which are likely to re-
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main undiacritized under such schemes. For im-
proving readability, the same technique could be
used to reduce the total number of diacritics in
fully-diacritized text with ground-truth diacritics.
The words that are identified as high-uncertainty
could retain their diacritics, while diacritics on low-
uncertainty words can be dropped. Examples of
sentences and their partial diacritics using each of
these proposed schemes are shown in Table 1.

Our exploratory analysis provides a starting
point for such applications; further evaluation and
analysis are needed to verify the effectiveness of
such approaches in practical applications like read-
ability enhancement, machine translation, and text-
to-speech synthesis.

Limitations

We limited our analysis to one base diacritic restora-
tion model, CATT, which serves as a strong base-
line. Our analysis may be applicable to other mod-
els, but the experiments need to be replicated to
verify that. The work presented in this paper serves
as a preliminary exploration of uncertainty estima-
tion as applied to the task of diacritic restoration,
but it does not include sufficient analysis of the im-
pact of such methods on downstream applications.
Additional experiments are needed to explore the
applicability of the proposed technique in applica-
tions such as machine translation, text-to-speech
synthesis, or readability assessment. The choice of
uncertainty metrics was motivated mostly by sim-
plicity and convenience, and other metrics could
have been included in the analysis. The analysis
provided in this paper should be taken as a partial
exploration rather than the final word on the suit-
ability of uncertainty estimation metrics for partial
diacritization. Finally, the experiments show that
error calibration hurts model performance. We do
not provide a solution for this and leave any im-

provement on the proposed calibration method for
future work.
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A.1.1 Diacritic-level Metrics
1. Diacritic Error Rate (DER): The percent-

age of incorrectly predicted diacritics over the
total:

{d e D|d # d}}|

|
DER =
D]

x 100%

(14)

Where:

* dis a given diacritic
* D is the set of all possible diacritics
« d is a true label diacritic

This metric is computed using edit distance
calculations adapted for Arabic diacritics.
Any missing or deleted diacritics are not con-
sidered errors, since the goal is to remove as
many diacritics as possible while retaining
accurate predictions by the model.

. Diacritization Coverage: Percentage of char-
acters or words that retain diacritics after par-
tial diacritization:

|{c € C|HasDiac(c) = True}|
€|

Coverage =

(15)
Where:

* cis a given character

« C is the set of all characters that can be
diacritized

e *HasDiac’ is a function that returns True
when character c retains its diacritic after
thresholding, and False otherwise

Controlled by uncertainty threshold, Lower
coverage means more sparsely populated text
(fewer diacritics).

A.1.2 Word-level Metrics
1. High/Low DER Words: A heuristic defini-

tion of high-and low-DER words. Words with
Diacritic Error Rate (DER) exceeding 50% are
defined here to be able to see the model’s con-
sistency in capturing such error-prone words.
We define the set of high DER words as:

# = {w € W|DER(w) > 0.5}  (16)

And the set of low DER words as:

£ =W\H ={we WDER(w) < 0.5}
(17)

x100%
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The uncertainty of a word is calculated as the
mean uncertainty across all characters in the

word:
|w]

Ulw) = ‘;'ZU(CJ-) (18)
j=1

Where:

* w represents any given word

* ¢; represents the j-th character in word
w

* U is the uncertainty of word w or char-
acter ¢;

* W is the set of words in total in the
dataset

. Recall and precision:

Recall is the percentage of detected high-DER
words over their total amount, detected or not:

|{w € H|Detected(w) = True}|

Recall =
M|

(19)
Precision is the amount of the detected high-
DER words, over the total detected words by
the model:

. € H|Detected(w) = T
Precision = [{w | Detected(w) rue}|

[{w € W|Detected(w) = True}|

(20)

Effectively, recall shows us how good a model

is at catching problems in general, how much

it can actually cover of them in total, and pre-

cision shows us how accurately it can catch ac-

tual, legitimate ambiguous cases, rather than

flagging any given word overall as uncertain
with inflated scores
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Abstract

Autoregressive language models achieve strong
performance across a wide range of natural lan-
guage processing (NLP) tasks, yet their uncer-
tainty estimates remain poorly understood, par-
ticularly during training. Prior work has primar-
ily evaluated calibration and out-of-distribution
(OOD) robustness at the final checkpoint, over-
looking the dynamics that unfold earlier. We in-
troduce a phase-based framework for tracking
uncertainty metrics—including expected cali-
bration error (ECE) and Kullback-Leibler (KL)
divergence—across distinct stages of training.
Using GPT-2 models trained across multiple
random seeds, we find that uncertainty dynam-
ics follow a consistent set of phases: models be-
gin conservative and relatively well calibrated,
but later phases introduce a paradoxical decou-
pling where confidence increases even as cali-
bration worsens, especially under distribution
shift. This paradox implies that the final check-
point is not always the most reliable for deploy-
ment and motivates phase-aware strategies such
as dynamic checkpoint selection or targeted cal-
ibration. Our findings highlight that uncertainty
should be understood as a training-dependent
property rather than a static one, opening new
directions for scaling this framework to larger
models, tasks, and distribution shift scenarios.

1 Introduction

Autoregressive language models have become cen-
tral to a large portion of modern NLP, driving
progress in tasks as varied as document summariza-
tion, dialogue, and code generation (Brown et al.,
2020). Yet, the impressive in-distribution perfor-
mance of these models hides a recurring issue: their
behavior is far less predictable when the input de-
parts from the training distribution (Hendrycks and
Gimpel, 2017). In production settings, such out-
of-distribution (OOD) cases are inevitable such as
topic drift in conversational systems, domain mis-
match in translation, or simply user queries that
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exploit corner cases in the model’s learned repre-
sentation.

Uncertainty estimation has become a way to ad-
dress this problem. Approaches such as Bayesian
approximations via dropout (Gal and Ghahramani,
2016) or calibration-based adjustments (Guo et al.,
2017) offer ways to associate model predictions
with confidence scores. However, most of this work
evaluates a final trained output. What is less well
understood, especially in language modeling, is
how uncertainty evolves during training itself. Lan-
guage models acquire the syntax, semantic, and
task-specific reasoning in a staged manner, and
their calibration profile is unlikely to be uniform
across these stages (Desai and Durrett, 2020; Jiang
et al., 2021).

Our key finding is that calibration does not im-
prove monotonically with training: a mid-training
phase emerges in which models grow more confi-
dent while becoming less calibrated.

In this work, we introduce a phase-based frame-
work for tracking and analyzing the joint dynam-
ics of calibration error and KL divergence be-
tween successive stages of training. By segmenting
model training into distinct phases and evaluating
these metrics both in-distribution and OOD, our
approach offers a structured view of how and when
models become more or less calibrated, and how
their predictive distributions shift over time.

2 Related Work

2.1 Uncertainty Estimation in NLP

Quantifying predictive uncertainty has been a
needed measure in modeling and modern neural
networks. For classification tasks, baseline confi-
dence scores such as the maximum softmax proba-
bility and predictive entropy are widely used to flag
low-confidence predictions (Hendrycks and Gim-
pel, 2017). Bayesian-inspired techniques, includ-
ing Monte Carlo dropout (Gal and Ghahramani,
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2016) and deep ensembles (Lakshminarayanan
et al., 2017), have adapted to NLP models to bet-
ter capture the epistemic and aleatoric uncertainty.
Recent work has explored these methods for both
and structured prediction tasks like semantic pars-
ing (Dong et al., 2017). However, most existing
approaches report uncertainty only for the final
converged models, and that overlooks how these
measures are evolving during training.

2.2 Calibration of Language Models

Calibration measures the degree to which predicted
probabilities align with empirical correctness (Guo
etal.,2017). While overconfidence is a well-known
issue in fields like computer vision, language mod-
els exhibit domain-specific calibration challenges
(Desai and Durrett, 2020). Post-hoc techniques
such as temperature scaling and histogram binning
have been applied to NLP (Guo et al., 2017), but
once again, their effectiveness is often evaluated
only after full training.

Some other work has explored calibration in gen-
erative settings, (Kumar et al., 2019), yet there re-
mains little understanding of how calibration qual-
ity changes mid-training, especially for large-scale
autoregressive models.

2.3 OOD Robustness and Distribution Shifts

OOD detection aims to identify inputs that dif-
fer substantially from the training distribution.
Density-based methods (Lee et al., 2018), and
uncertainty-based rejection strategies (Hendrycks
and Gimpel, 2017) have been explored in NLP, of-
ten under domain shift scenarios (Varshney et al.,
2022). Despite this, the majority of studies evaluate
robustness at convergence, providing little insight
into the temporal dynamics of OOD behavior. The
opportunity of the interplay between the training-
phase uncertainty trends, calibration shifts, and
OOD performance remains largely unexplored.

We address this gap by systematically tracking
the uncertainty metrics, calibration scores, and KL
divergence between training phases for autoregres-
sive language models. By linking these evolving
quantities to in-distribution and OOD generaliza-
tion, we provide a temporal perspective on uncer-
tainty and robustness, which offers a richer un-
derstanding than simple post-training evaluation
alone.
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3 Methodology

3.1 A Phase-Based View of Training
Dynamics

Calibration in neural networks is typically assessed
only at convergence, which obscures transient
regimes where confidence and reliability can drift
in opposite directions (Guo et al., 2017; Ovadia
et al., 2019; Minderer et al., 2021). Leveraging this
observation, we take a temporal perspective and
segment training into phases defined by persistent
shifts in uncertainty and calibration traces.

3.2 Metrics

We track two uncertainty-related metrics at regular
checkpoints.

KL Divergence to Uniform (Confidence Proxy).
Let p € AV ! be the next-token predictive distri-
bution over a vocabulary of size V, and let « denote
the uniform distribution (u; = 1/V). Confidence
is measured as

Z Di IOg

Higher values indicate sharper, more confident dis-
tributions; lower values indicate more diffuse pre-
dictions. This quantity is 0 when predictions are
maximally uncertain (uniform) and increases as
the distribution sharpens, making it a natural con-
fidence proxy. It is closely related to predictive
entropy, since Dkr,(p || u) = log V' — H(p). While
other reference distributions could be considered,
we adopt the uniform baseline because it provides a
simple and interpretable notion of random guessing,
against which sharper, more confident predictions
can be measured.

Dxui(p || w) )]

Expected Calibration Error (ECE). Follow-
ing Guo et al. (2017), tokens are binned by
predicted confidence into M equal-width bins
{Bn}M_,. Let acc(By,) be the empirical accu-
racy and conf(B,,) the mean confidence in bin m.
The ECE is

ECE = Z

Lower values indicate better calibration.

|lacc(By,) — conf(

Bn)|-
2

Z\B!

3.3 Phase Detection

At each checkpoint we record KL-to-uniform and
ECE over the ID validation set and an OOD corpus;



we smooth each per-seed KL trajectory with an
exponentially weighted moving average and detect
changepoints on KL. Let ¢ index checkpoints.

We then identify three regimes per seed:

1. Phase I (Early Learning): ends at the early
local maximum of KL (searched in the first
half of training) or a default tertile boundary
if no clear maximum exists.

Phase II (Confidence Surge): begins after
Phase I and ends at the subsequent local maxi-
mum of KL (or a default second-tertile bound-
ary), enforcing a minimum phase length.

. Phase III (Stabilization):
steps to the final checkpoint.

the remaining

Boundaries are constrained to respect minimum
durations and ordered consistency (therefore I < II
< II). We compute all metrics per phase and then
report both per-seed summaries and seed-averaged
statistics. This procedure captures non-monotonic
behavior that endpoint-only evaluation can miss,
such as periods where confidence rises while cal-
ibration degrades (Ovadia et al., 2019; Minderer
et al., 2021).

4 Experiments and Results

4.1 Experimental Setup

We trained GPT-2 models for 3,000 optimization
steps across five seeds. Training was conducted
on the WikiText-2 (Merity et al., 2016) corpus
for in-distribution (ID) evaluation, while out-of-
distribution (OOD) generalization was assessed on
the AG News (Zhang et al., 2016) dataset. At regu-
lar intervals, we computed both standard training
metrics (loss) and uncertainty metrics for both ID
and OOD test sets. This setup provides a compre-
hensive view of the interaction between confidence
and calibration throughout training. Unless stated
otherwise, significance is assessed with a two-sided
paired t-test over checkpoints, aggregated across
seeds.

4.2 Phase Detection Procedure

To identify interpretable regimes of uncertainty dy-
namics, we employed an automatic phase segmen-
tation method based on changepoints in the KL tra-
jectory. Consistently across all seeds, three phases
emerged as shown in Table 1.

Phase characteristics across seeds are summa-
rized in Table 2. Figure 1 shows the dynamics for
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Table 1: Training phase boundaries identified across all
seeds.

Phase Step Range
I (Early Transient) 50-1500

II (Confidence—Calibration Drift)  1550-2900
IIT (Convergence Plateau) 2950-3000

the average of the seeds. Phase I balances confi-
dence and calibration, Phase II marks systematic di-
vergence between them (the confidence—calibration
paradox), and Phase III represents a plateau at de-
graded calibration levels.

4.3 In-Distribution Dynamics

During Phase I, models maintained relatively low
calibration error (mean ECE =~ 0.005). As train-
ing progressed into Phase II, a paradoxical trend
emerged: calibration degraded even as confidence
increased. Specifically, mean ECE rose by ~23.4%
(from 0.0049 to 0.0058, p = 2.05 x 107°), while
KL divergence to uniform predictions increased
by 0.5% (9.471 — 9.523). This indicates that the
models became more confident but less calibrated.
In Phase III, metrics stabilized (KL =~ 9.529 and
ECE = 0.0057), but calibration did not return to
the initial level.

Across all five experiments, this paradox held
consistently: in every run, confidence increased
while calibration worsened. Prior speculation that
calibration might improve in later stages (e.g., Guo
et al., 2017; Desai and Durrett, 2020) was not sup-
ported in our setting.

4.4 Out-of-Distribution Behavior

When evaluated on AG News, models exhibited the
same paradox but with larger miscalibration. OOD
ECE rose from ~0.033 in Phase I to ~0.040 in
Phase II (p = 2.31 x 10~®), representing a ~21%
relative increase, alongside a concurrent increase
in KL-to-uniform. As with ID, metrics stabilized
in Phase III without recovery.

Notably, the paradox was amplified OOD: the
models simultaneously became more confident and
less calibrated under distribution shift, producing
error rates far larger in magnitude than ID. This
indicates that the confidence—calibration paradox
is not only a training artifact but also a deployment
concern for real-world distribution shifts.
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Figure 1: Phase dynamics of calibration and confidence. Confidence (KL, blue) rises steadily, while calibration error
(ECE, red/purple) degrades. Phase II (yellow) highlights the paradoxical “danger zone” where all 5 seeds showed
confident but unreliable predictions. Note the divergence between rising confidence and worsening calibration

around step 1500.

Table 2: Phase characteristics averaged across seeds. ECE reported for in-distribution (ID) and out-of-distribution
(OOD). KL-to-uniform is our primary confidence metric; entropy (H) is reported for reference only.

Phase KL H ECEID ECEOOD

I 9.471+0.004 1.354+0.004 0.005 0.033 £0.001
IT 9.523 £0.003 1.302+£0.003 0.006 0.040 + 0.001
I 9.529 £0.002 1.296 +£0.002 0.006 0.040 £ 0.001

5 Discussion and Future Work

We show three consistent training phases, docu-
ment a mid-training confidence-calibration gap,
and outline how to use these signals for safer check-
point selection and calibration. Our results suggest
that current practice may systematically deploy
models from their least reliable phase. Monitoring
only validation loss obscures the fact that Phase 11
coincides with worsening calibration. This paradox
has several practical consequences: (1) calibration
should be tracked jointly with loss during training,
(2) deployments should avoid Phase II checkpoints
(high confidence, poor calibration), and (3) inter-
ventions such as temperature scaling or selective
regularization may be most beneficial when tar-
geted specifically to this unstable phase. Without
such precautions, models risk being deployed pre-
cisely when they are most deceptively unreliable.

Beyond these immediate implications, our phase-
based framework highlights opportunities for fu-
ture work. Scaling to larger architectures and
reasoning-capable models will test the generality
of the paradox. Expanding to broader OOD scenar-
ios (e.g., multilingual or reasoning tasks) will help
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determine whether the observed dynamics extend
beyond WikiText and AG News. Finally, phase-
aware interventions could be designed to adaptively
correct calibration drift in real time, reducing de-
ployment risks for large-scale language models.

6 Conclusion

We introduced a phase-based framework for analyz-
ing uncertainty and calibration dynamics through-
out language model training. Across multiple seeds,
we consistently observed a confidence—calibration
paradox: models became less reliable precisely as
their predictions grew more confident. This para-
dox was amplified under distribution shift, under-
scoring its practical importance for deployment
safety.

By framing uncertainty as a training-dependent
property rather than a static one, we provide a foun-
dation for phase-aware monitoring, checkpointing,
and intervention strategies. In practice, our results
motivate monitoring calibration (ECE) jointly with
validation loss, avoiding Phase II checkpoints when
selecting release models, and applying simple post-
hoc calibration such as temperature scaling at de-
ployment.



Limitations

First, we trained GPT-2 scale models for 3,000 it-
erations across five seeds, a modest but controlled
scope. Second, our OOD evaluation was limited
to a single dataset (AG News) and a restricted set
of uncertainty metrics (ECE and KL). Third, our
phase detection relies on inflection points in these
metrics; whether analogous phase boundaries gen-
eralize to larger architectures or alternative metrics
remains open.

Despite these constraints, the reproducibility of
phase dynamics across seeds suggests that the phe-
nomena are not small-scale artifacts but emergent
properties of autoregressive training. Extending
this analysis to larger models, broader OOD sce-
narios, and alternative calibration interventions rep-
resents a natural next step.
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Beyond Human Judgment: A Bayesian Evaluation of LLLMs’ Moral Values
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Abstract

How do Large Language Models understand
moral dimensions compared to humans?

This first comprehensive large-scale Bayesian
evaluation of leading language models provides
the answer. In contrast to prior approaches
based on deterministic ground truth (obtained
via majority or inclusion consensus), we ob-
tain the labels by modelling annotators’ dis-
agreement to capture both aleatoric uncertainty
(inherent human disagreement) and epistemic
uncertainty (model domain sensitivity).

We evaluated Claude Sonnet 4, DeepSeek-V3,
and Llama 4 Maverick across 250K+ annota-
tions from nearly 700 annotators in 100K+ texts
spanning social networks, news, and discussion
forums. Our GPU-optimized Bayesian frame-
work processed 1M+ model queries, revealing
that Al models generally rank among the top
25% of annotators in terms of balanced accu-
racy, substantially better than average humans.

Importantly, we find that Al produces far fewer
false negatives than humans, highlighting their
sensitive moral detection capabilities.

Keywords: Computational Ethics, Large Lan-
guage Models, Moral Foundation Theory,
Bayesian modeling, soft labels

Extended version: arXiv:2508.13804
Supplementary materials: osf.io/tpzau

1 Introduction

1.1 Background

Moral Foundations Theory (MFT) provides a com-
prehensive framework for understanding human
moral reasoning across cultures, identifying core
dimensions typically expressed as virtue/vice pairs:
Care vs. Harm, Fairness vs. Cheating, Loyalty vs.
Betrayal, Authority vs. Subversion, and Sanctity
vs. Degradation (Graham et al., 2013; Haidt, 2012).
These foundations shape individual and collective

Alina Landowska
SWPS University
alandowska@swps.edu.pl

decision-making, from political preferences to so-
cial behavior (Feinberg and Willer, 2013; Graham
et al., 2009; Nguyen et al., 2022; Roy and Gold-
wasser, 2021), making their computational detec-
tion crucial for understanding discourse dynamics
and developing ethically-aligned Al systems.

Text Foundation
"My heart breaks seeing children sepa- Care

rated from families at the border"

"Everyone deserves equal access to Fairness
healthcare regardless of income"

"Respect your elders and follow tradi- Authority
tional values that built this nation"

"Stand with our troops - they sacrifice Loyalty

everything for our freedom"
"Marriage is sacred and should be pro-
tected from secular corruption”

Table 1: Posts and Associated Moral Foundation

The computational linguistics community has
successfully fine-tuned pre-trained language mod-
els to predict moral values (Nguyen et al., 2024;
Preniqi et al., 2024; Zangari et al., 2025a), achiev-
ing good alignment with human judgment when
domain similarity and sufficient training data are
available. However, systematic evaluation of large
language models (LLMs) remains limited despite
their rapid advances and potential as a compelling
alternative that should suffer less from poor gener-
alization and distribution shift.

This paper addresses these limitations through
rigorous large-scale evaluation of state-of-the-art
language models across established moral reason-
ing corpora, employing Bayesian methods to re-
solve disagreeing annotations.

1.2 Contribution

Bayesian uncertainty modelling of moral anno-
tations. We introduce Bayesian modelling of an-
notator disagreements for moral foundation evalua-

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 17-26
November 9, 2025 ©2025 Association for Computational Linguistics
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tion, moving beyond simple deterministic ground-
truth assumptions. This captures both aleatoric
uncertainty (inherent human disagreement) and
epistemic uncertainty (model sensitivity across do-
mains and foundations).

Large-scale evaluation. We analyse market-
leading large language models with 1M+ queries
across 100K+ texts and 250K+ annotations from
diverse sources, providing the most comprehensive
moral reasoning evaluation to date.

Statistical analysis of Type I/II errors. We
demonstrate that Al performs comparably to top
annotators in balanced accuracy, considerably im-
proving false negatives at the price of slightly in-
creased false positive rates - contrary to fears that
Al may underpredict moral values.

Novel GPU-optimized implementation of
Bayesian labels. We developed a TensorFlow
framework using sparse operations for scalable
Bayesian inference on soft labels, of interest to
the computational linguistics community.

1.3 Related Work

Dictionary methods for predicting moral values
were initially developed (Hopp et al., 2021) and
remain widely used in applied studies, but demon-
strate poor precision compared to pre-trained lan-
guage models (Nguyen et al., 2024).

Pretrained language models show strong align-
ment with human moral judgments given sufficient
training data (Nguyen et al., 2024; Preniqi et al.,
2024; Zangari et al., 2025a), though they suffer
from distribution shift and poor cross-domain gen-
eralization. This makes large language models a
compelling alternative.

Large language models were recently com-
pared to human performance (Bulla et al., 2025),
concluding LLMs superiority. However, their strict
majority voting for ground truth excluded nuanced
moral content, retaining only less ambiguous cases
and departing from the inclusive consensus prac-
tices (marked when flagged by at least one anno-
tator) (Nguyen et al., 2024; Preniqi et al., 2024;
Zangari et al., 2025a). Additionally, leave-one-
out estimation of annotator ranking lacked statisti-
cal robustness. Another recent work (Skorski and
Landowska, 2025) found LLMs showing imbal-
ance - lower than anticipated recall - under inclu-
sive annotator consensus.

Our Bayesian method resolves these problems
by modeling annotator disagreement, striking the
balance between inclusive and overly exclusive
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consensus rules, while our large-scale evaluation
across multiple datasets and modern models en-
sures robustness of findings.

More on moral foundation theory. For compre-
hensive coverage of (computational) moral founda-
tion theory challenges, see (Zangari et al., 2025b).

2 Data and Methods

2.1 Datasets

Our robust evaluation utilizes three established
and diverse corpora totaling 250K+ annotations
of moral values from hundreds of annotators with
diverse expertise (from experts to crowd-workers)
across 100K+ texts spanning social media, news,
and forum discussions.

Moral Foundations Twitter Corpus (MFTC)
(Hoover et al., 2020): 128,454 annotations from 23
trained annotators across 33,686 tweets from seven
discourse domains.

Extended Moral Foundations Dictionary
(eMFD) (Hopp et al., 2021): 73,001 crowd-sourced
annotations from 654 contributors on 54,867 text
segments extracted from approximately 8,000 news
documents by major outlets, including The Wash-
ington Post, CNN, Fox News selected via GDELT.

Moral Foundations Reddit Corpus (MFRC)
(Trager et al., 2022): 61,226 annotations from
6 trained coders across 17,885 Reddit comments
from 12 subreddits covering politics and everyday
moral discourse.

2.2 Bayesian Annotation Competence Model

As in the related work, we frame the problem as
binary prediction tasks for individual moral founda-
tions (abbreviated to care, fairness, authority, loy-
alty, sanctity). Optionally, we consider the aggre-
gated "any moral content”" category derived from
positive labels across foundations. We note that this
aggregated category is inherently unreliable when
only positive labels are provided (as in eMFD),
since true negatives cannot be distinguished from
unlabeled moral content, creating systematic clas-
sification ambiguity.

Given substantial inter-annotator disagreement
demonsrated by PABAK scores in Table 2, we re-
sort to probabilistic (Bayesian) methods of obtain-
ing ground-truth labels (Paun and Simpson, 2021).

We model annotator disagreements using a vari-
ant of Dawid-Skene’s model (Dawid and Skene,
1979) with weak Dirichlet priors to estimate
ground-truth labels and annotator reliability:



Foundation MFTC MFRC eMFD
Care 0.71 0.67 0.33
Fairness 0.63 0.64 0.36
Loyalty 0.62 0.82 0.38
Authority 0.52 0.78 0.41
Sanctity 0.58 0.83 0.44
Any 0.34 0.38 1.00

Table 2: Prevalence-Adjusted Bias-Adjusted Kappa
(PABAK) scores measuring inter-annotator agreement
across datasets and moral foundations

Model Specification. We assume N texts, .J
annotators, and K categories. True category preva-
lences follow 7 ~ Dir(a) where a = (1,1, ..., 1)
provides uniform priors. Each annotator j has a
confusion matrix ®; with rows 6, ~ Dir(3;,),
where 3, is a K-dimensional vector with [z = 2
(diagonal) and f3; = 0.5 for | # k, encoding weak
belief that annotators correctly identify majority
of categories. For text ¢ with true category z; and
annotations y; = (y;1, ..., ¥;7) wWe have:

J
Pr{zi=Fk|yim O} x m H ki
j=1
This posterior accounts for varying annotator reli-
ability while estimating both confusion matrices
and ground-truth labels. For computational stabil-
ity and reliable convergence, all calculations are
performed in the log-domain using logits.

Zi

Yij

Figure 1: Graphical model representation of the model
for multi-annotator classification. Light gray circles
represent latent variables, dark gray rectangles represent
observed variables, white circles represent parameters,
and blue rectangles represent hyperparameters. Plates
indicate replication over items (V) and annotators (J).

Implementation.  We developed a GPU-
optimized implementation in TensorFlow (Abadi
et al., 2015) using custom graphs and sparse ten-
sor operations for computational efficiency. The
framework supports MAP estimation and Monte
Carlo sampling with optional fixed effects model-
ing (Appendix B). Testing on A100 GPUs achieved
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1,000 optimization steps per second for 100k an-
notations, enabling rapid convergence across large-
scale datasets.

2.3 Large Language Models

Three recent advanced large language models
were analysed for moral foundations classification:
(1) Claude Sonnet 4 (Anthropic, 2025) with a
200,000 token context window; (2) DeepSeek-V3
(DeepSeek, 2024) with 671 billion total parameters,
37 billion active parameters, and a 128,000 token
context window; and (3) Llama 4 Maverick (Meta,
2025) with 402 billion total and 17 billion active
parameters, and a 256,000 token context window.
All models were queried using the temperature
setting of 0.30 to balance deterministic responses
with modest variability. Each text was analysed in-
dividually (no batching of inputs) to ensure focused
classification results. The prompt used was:

Moral Foundations Theory Classification

You are an expert in moral psychology, classifying text
according to Haidt’s theory.

For each moral foundation, mark true if moral values
from that foundation are expressed in the text, false if not
expressed.

Answer only with a valid JSON in this format:
{

"care/harm”: [true / false],
"fairness/cheating”: [true / false],
"loyalty/betrayal”: [true / falsel,
"authority/subversion”: [true / falsel,
"sanctity/degradation”: [true / false]

W

Experiments were tracked using W&B! and re-
peated to ensure stability and reproducibility.

Appendix A provides details and rationale about
the prompt selection.

2.4 Metrics

We apply standard classification metrics to
Bayesian-estimated confusion matrices: Bal-

anced Accuracy (= PIET N+ 7 NT frVF 7). Preci-

: TP TP ...
SioN 757 75> Recall TPIFN False Positive Rate
FP . FN
FTP¥TN® and False Negathe Rate FN¥TP"

2.5 Supplementary Materials

Code, data preprocessing scripts, experimental re-
sults, and additional evaluation results are available
from the project repository (Skorski, 2025).

"https://wandb.ai/


https://wandb.ai/

3 Results

Bayesian models were fitted for each language
model and dataset, the model considered a one
additional annotator each time, and confusion ma-
trices obtained through MAP were used to calculate
classification metrics and percentile ranks.

3.1 Accuracy Analysis

Balanced accuracy results appear in Table 3 and
Figures 2 to 4.

Moral Foundations

Model Metric Any Authority Care Fairness Loyalty Sanctity
MFTC Dataset

75 80

Acc% 78 82 81 90

Claude Sonnet 4

Pet 50 83 75 71 79 100

Acc% 77 82 78 81 80 85

DeepSeek-v3 Pet 54 88 71 71 79 92

L Acc% 68 79 76 83 80 87

Llama 4 Maverick 42 79 63 71 75 9%

Human Avg% 72 67 71 75 72 67
eMFD Dataset

Acc% 85 74 88 83 72 80

Claude Sonnet 4 p ¢ 95 7597 91 78 84

Acc% 93 81 88 82 85 75

DeepSeek-V3 Pet 100 89 98 85 93 77

L Acc% 95 83 89 84 83 82

Llama 4 Maverick 1, 100 92 98 88 91 86

. Acc% 82 64 78 77 62 66

GPT-S mini Pot 92 46 81 76 45 49

Human Avg Acc% 63 64 62 64 62 63

MFRC Dataset
74 83
57 100

68 83
14 86

62 83
14 100

75 69

91
100

82
100

87
100

70

Acc%
Pct

Acc%
Pet

9

Llama 4 Maverick Acc
Pet

Avg%

90
100

90
100

89
100

76

Claude Sonnet 4

DeepSeek-V3

Human

Table 3: Model performance on moral foundation classi-
fication across datasets. Acc% shows balanced accuracy
and Pct shows the corresponding percentile.

The key insights are:

Al Superiority over Humans. Al models con-
sistently outperformed humans across datasets, typ-
ically ranking in the top 25% of annotators. Human
performance averaged 67-76%, while Al achieved
62-95% depending on dataset.

Similar Dataset Difficulty. Average Al perfor-
mance was similar across datasets: MFRC (83.7%),
eMFD (81.9%), and MFTC (81.5%), with negli-
gible difference between the highest and lowest
performing datasets.

Model Strengths. While all models outper-
formed human annotators, there is no strong winner
among them. Claude appears to be a slight over-
all leader, scoring high consistently and achieving
first or second-best results most of the time, with
particular excellence in nuanced Care and Sanc-
tity foundations. DeepSeek and Llama 4 perform
similarly most of the time, but show a visible gap
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of 8-9% behind Claude on MFRC in Sanctity and
Fairness.

Consistent Accuracy across Foundations. All
moral foundations achieved strong performance
across datasets, with overall average accuracy ex-
ceeding 80%: Care (85.1%), Sanctity (84.3%),
Loyalty (81.6%), Authority (80.9%), and Fairness
(80.0%). Particularly high results for "Sanctity" are
notable given its known difficulty to classify due to
cultural contexts.
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Figure 2: DeepSeek-V3 vs human accuracy (MFTC).

3.2 False Positive vs. False Negative Analysis

Figure 5 and Table 4 compare false positive and
false negative rates across models and foundations.
The key findings are:

Al-Human Error Trade-offs. Across all foun-
dations and datasets, Al models achieve 2 — 4x
lower false negative rates compared to humans
(19.4% vs 52.7% on average), at the expense of
slightly higher average false positive rates (16.1%
vs 10.1%), overall remaining more balanced (as vi-
sually revealed in Figure 5). This reveals opposing
strategies: Al provides balanced detection, while
humans classify more conservatively, systemati-
cally underdetect genuine moral signals.

Foundation-Specific Patterns. On average, the
largest improvement in FNR appears in Care (40.8
point FNR versus humans), followed by Authority



Human vs AI Performance -- MeaiAccuracy, -- M AI System more balanced (average FNR_FPR AI gap Of 14pp
100th and 1.6pp, respectively) than in eMFD (gap of

86th

8.7pp) crowd-annotated. This can be explained
by the Bayesian method that estimates Al perfor-
mance by seeking a consensus with a much higher
number of conservative / biased annotators.

50%

w
3
B

Accuracy
Accuracy

Annotator Annotator
- ! Moral Dimensions
100th Authority Care Fairness Loyalty Sanctity
Model FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
> > MFRC Dataset
£ £ Claude Sonnet 4 165 172 53 152 123 272 87 195 79 95
"‘-3 E DeepSeek-V3 187 144 73 137 364 180 9.6 214 313 45

Llama 4 Maverick 146 20.0 10.8 11.4 281 288 9.7 248 152 105
Human Baseline 565 53 424 53 409 94 524 54 554 37

MFTC Dataset
Annotator Annotator Claude Sonnet4 147 253 72 358 93 258 201 187 78 122
- DeepSeek-V3 246 111 152 285 286 87 229 167 267 38
Llama4 Maverick 239 180 199 282 228 115 133 277 161 92
v Human Baseline  53.1 134 503 69 435 62 469 86 591 73

76% 7

0% eMFD Dataset
3 2 o Claude Sonnet4  33.6 184 9.1 152 193 150 449 106 361 4.1
5 sow 5 DeepSeek-V3 182 190 7.5 160 250 115 168 130 478 24
& & Llama4 Maverick 126 207 7.9 141 182 134 199 148 322 38

Human Baseline 565 160 598 152 549 162 594 164 612 135

Annotator Annotator Table 4: False positive and negative rates (%) by model
Moral Dimension across moral foundations and datasets. Human baseline
@ authority @ care @ fairness @ loyalty @ sanctity @ any
represents average performance across all annotators.

Figure 3: Claude Sonnet 4 vs human accuracy (MFRC).
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4 Case Study

Human annotation, while considered the gold stan-
dard for supervised learning, may systematically
underestimate moral content prevalence in text. As
noted in annotator training guidelines, "Ambigu-
ities present considerable challenges for human
annotators who must strike an acceptable balance
between exploiting often weak signals of moral
sentiment while also avoiding unfounded specu-
lation about authorial intent." Our results suggest
Al models navigate this balance more effectively,
achieving both higher recall rates and superior bal-
anced accuracy compared to human annotators.

To verify this finding, we evaluated a selection of
posts where Al predicted substantially more moral
content than human annotators. An independent
domain expert confirmed that Al was correct in
the majority of cases, suggesting that human an-
notators systematically miss moral content that Al
systems correctly identify. Full details of this val-
idation study are provided in the supplementary
material and code repository. The examples below
represent cases where no human annotator detected
moral language, false negatives in human annota-
tion that Al correctly identified, demonstrating Al’s
superior sensitivity to subtle moral cues in text.

Example: Claude Sonnet 4 Classification

User: You are an expert in moral psychology, classifying
text according to Haidt’s theory (...)

Text: “Anyone think Macron should dispose of the
Algerian dictator? France did little to support the
uprisings of 2010-2012.”

Assistant:

{

"care/harm”: true,
"fairness/cheating”: true,
"loyalty/betrayal”: false,
"authority/subversion”: true,
"sanctity/degradation”: false

}

Reasoning:

¢ Care/harm: Concern for harm under “dictator,” sug-
gests intervention to protect people

» Fairness: Implies Algerians deserve better; criti-
cizes France’s abandonment

¢ Authority: Direct challenge to political authority
through regime change
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Example: Claude Sonnet 4 Classification

User: You are an expert in moral psychology, classifying
text according to Haidt’s theory (...)

Text: “Victim blaming are we? Even if the therapist is her
friend, she should’ve known not to tell her anything. It’s
immoral and extremely disrespectful, and being friends
with his wife is no excuse.”

Assistant:

{

"care/harm”: true,
"fairness/cheating”: true,
"loyalty/betrayal”: true,
"authority/subversion”: true,
"sanctity/degradation”: true

}

Reasoning:

* Care/harm: Concern for victim’s wellbeing and
harm from breach of confidentiality

* Fairness: Views therapist’s actions as unfair be-
trayal of professional ethics

* Loyalty: Frames situation as betrayal of profes-
sional duties and patient trust

 Authority: Challenges therapist’s abuse of profes-
sional authority

» Sanctity: Treats therapeutic confidentiality as sa-
cred/inviolable

Example: Claude Sonnet 4 Classification

User: You are an expert in moral psychology, classifying
text according to Haidt’s theory (...)

Text: “If you care about this cat so much and it has been
a WEEK since you have seen her, WHY HAVE YOU
NOT CALLED THE POLICE AND REPORTED THE
THEFT??? Once you do all that, you need to cut contact
with your "boyfriend". I would’ve had my cat back day of
or would’ve filed the theft immediately. This is pushing
ESH because of how long you’ve waited for YOUR CAT.”

Assistant:

{

"care/harm”: true,
"fairness/cheating”: true,
"loyalty/betrayal”: false,
"authority/subversion”: true,
"sanctity/degradation”: false

}

Reasoning:

* Care/harm: Strong concern for cat’s welfare and
emotional distress from separation

* Fairness: Views theft as clear injustice requiring
legal consequences

 Authority: Appeals to police authority to enforce

justice and restore order




Conclusion

This work presents the most comprehensive eval-
uation to date of moral foundation detection ca-
pabilities in state-of-the-art large language mod-
els, analyzing 1M+ queries across 250K+ annota-
tions from three established corpora. By employing
Bayesian annotation modeling, we moved beyond
deterministic ground-truth assumptions to explic-
itly account for annotator disagreement in moral
foundation classification.

Our key findings demonstrate that Al models
consistently outperform human annotators in moral
foundation detection, typically ranking in the top
25% across all datasets. Critically, AI models
achieve 2 — 4x lower false negative rates, while
accepting slightly higher false positive rates, re-
vealing fundamentally different error strategies. Al-
though humans often miss genuine moral founda-
tions due to biases, Al models provide more bal-
anced detection of moral content.

These findings have important implications for
deploying LL.Ms in moral foundation analysis. The
superior recall capabilities make Al models valu-
able for detecting moral foundations that humans
might overlook, though slightly higher false posi-
tive rates require careful calibration for specific
applications. Our uncertainty-aware evaluation
framework provides a foundation for more nuanced
assessment of Al moral foundation detection that
accounts for inherent subjectivity rather than treat-
ing classification as deterministic.

Future work should focus on improving model
calibration for moral foundation detection and ex-
tending evaluation to other moral frameworks, as
well as exploring connections to other datasets such
as anticipatory discourses (Landowska et al., 2023;
Skorski et al., 2025).

Acknowledgements

The authors thank the people and institutions who
supported this research: Murmuras GmbH? for
providing access to state-of-the-art large language
models’ APIs, the University of Luxembourg for
financial support and computing infrastructure,
Pierre Pailler from Virgule for the opportunity to
present this research to the general public (Pailler,
2025), and the anonymous reviewers of the Uncer-
tainNLP workshop for their valuable feedback.

https://murmuras. com/

23

Limitations

Fixed Effects Modeling Limitations. While our
Bayesian framework supports demographic fixed
effects to account for systematic annotator differ-
ences, we did not employ these due to limited
demographic metadata (only the crowd-sourced
eMFD corpus contains sufficient demographic
data). This somewhat constraints our ability to
model known sources of variation in moral founda-
tion detection across annotator groups.

Content Moderation Limitations. Content mod-
eration systems may introduce systematic bias by
refusing to process morally relevant content. Azure
OpenAl rejected 10% of Twitter data citing im-
proper content, while Anthropic’s model ques-
tioned the factual accuracy of referring to an "Al-
gerian dictator” in our Macron example. After ex-
cluding OpenAl, content moderation affected less
than 0.5% of our final evaluation dataset.

Data Availability Constraints. The three cor-
pora span different periods (2016-2022) and textual
domains, reflecting constraints of available anno-
tated datasets rather than ideal experimental design.
These temporal and domain variations may some-
what limit the generalizability of the findings.

Annotation Protocol Heterogeneity. The three
corpora employed different annotation proto-
cols—varying in annotator training, guidelines, and
expertise levels—which may introduce inconsis-
tencies in the ground truth labels. The MFTC
used trained experts while eMFD relied on crowd
workers, potentially creating systematic differences
in annotation quality and interpretation that our
Bayesian model may not fully reconcile.

Prompt Sensitivity Limitations. While we de-
liberately avoided extensive prompt engineering
to reflect typical usage conditions, LLM perfor-
mance on moral classification tasks is known
to be sensitive to prompt phrasing and structure
(see (Skorski and Landowska, 2025)). Our single-
prompt approach yields balanced results suitable
for general-purpose evaluation, though alternative
prompt strategies (e.g., chain-of-thought, few-shot
examples, explicit instructions emphasizing sensi-
tivity or specificity) could shift the precision-recall
tradeoff. Such variations might improve perfor-
mance on specific moral concepts or optimize for
particular error patterns, but would deviate from
typical deployment conditions we aimed to assess.
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Low-Resource Language and Cultural Bias Lim-
itations. Our evaluation is limited to English-
language datasets, as annotated moral reasoning
datasets in low-resource languages are not yet avail-
able. This gap somewhat limits cross-cultural val-
idation of our findings, though annotator diver-
sity—from trained experts to crowdsourced con-
tributors—helps mitigate individual cultural biases
within English contexts. As the field develops mul-
tilingual moral foundation datasets, our framework
can readily extend to cross-linguistic evaluation.

Theoretical Scope Limitations. Our exclusive
focus on Moral Foundation Theory, while practical
and widely-used for large-scale analysis, represents
a significant theoretical limitation. Alternative
moral and ethical theories (e.g., virtue ethics (Cul-
ham et al., 2024), deontological ethics (Gawron-
ski and Beer, 2016) or care ethics (Deak and
Saroglou, 2016)) offer different perspectives on
morals that may capture dimensions not encom-
passed by MFT’s five foundations. Furthermore,
the binary classification framework fails to cap-
ture the intensity, valence, or contextual nuance
of moral expressions. However, MFT remains
best suited for large-scale computational analysis
given its established usage, data availability, and
continued popularity in computational linguistics
research. Future work should explore hybrid ap-
proaches that combine MFT with complementary
frameworks like virtue ethics or care ethics to pro-
vide more comprehensive moral analysis.
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A Al Prompt

For estimating moral competence under typical us-
age conditions, we deliberately avoided prompt en-
gineering techniques that might bias models toward
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higher recall or precision (the work of (Skorski
and Landowska, 2025) demonstrated that LLMs
are somewhat sensitive in that regard). We tested
prompt variants that explicitly request step-by-step
reasoning, without noticing significant differences.

Moral Foundations Theory Classification

You are an expert in moral psychology, classifying
text according to Haidt’s theory.

For each moral foundation, mark true if moral values
from that foundation are expressed in the text, false
if not expressed.

Answer only with a valid JSON in this format:
{

"care/harm”: [true / false],
"fairness/cheating”: [true / falsel,
"loyalty/betrayal”: [true / false],
"authority/subversion”: [true / false],
"sanctity/degradation”: [true / false],
"reasoning”: [summary of reasoning],

}

Provide step-by-step reasoning.

\

B TensorFlow Model Implementation

.Our Bayesian aggregation uses sparse tensor oper-
ations for efficient likelihood computation across
annotator-item pairs. The implementation lever-
ages TensorFlow’s sparse lookup operations to
handle high-dimensional confusion matrices, en-
abling scalable inference on GPU hardware. The
core algorithm computes marginal likelihoods over
latent true labels by efficiently aggregating log-
probabilities from annotator-specific confusion ma-
trices, exploiting sparsity in the annotation pat-
tern (most annotators do not label all items).
The optimization uses gradient ascent on the log-
posterior, jointly estimating class prevalences and
per-annotator competence parameters. Details are
available in our code repository (Skorski, 2025).

Listing 1: TensorFlow implementation

def log_p(pi_logits,
annot_ids):

wen

theta_logits ,

Implements the log-likelihood
computation for a Dawid—Skene
competence model,

estimating both class prevalences and
annotator confusion matrices.

Parameters:
pi_logits tf.Variable , shape [K]
Logits for class prevalence
distribution pi (before
softmax normalization )
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theta_logits shape [J,

K, K]

Logits for annotator confusion
matrices theta (before
softmax normalization)

thetal[j,i,k] = P(annotator j

tf.Variable ,

labels class k | true class i
)
annot_ids tf.SparseTensor, shape [N
, J#K]

Sparse tensor encoding annotation
observations where:

— indices: (item, annotator)
pairs
— values: observed classes

encoded for efficient
embedding lookup

Returns
tf.Tensor scalar
Log—likelihood = log P(
annotations | pi, theta) +

log P(pi) + log P(theta)

Combines data likelihood with
Dirichlet priors on pi and
theta

Mathematical formulation:

log P(annotations) = sum_i log sum_k
pi_k prod_j theta_jk,y_ij + log P
(pi) + sum_j log P(theta_j)

where y_ij is the annotation by
annotator j on item i

"

log_pi = tf.nn.log_softmax(pi_logits
)
log_theta = tf.nn.log_softmax (

theta_logits , axis=-1) # [
annotator x true class x pred

class ]

pi = tf.math.exp(log_pi) # [true
class ]

theta = tf.math.exp(log_theta)

log_theta = tf.transpose(log_theta
,[0,2,1])

log_theta = tf.reshape(log_theta, (J
+K,K)) # [annotator % true class
, x pred class]

log_p = tf.nn.
embedding_lookup_sparse (
log_theta, annot_ids, sp_weights
=None, combiner="sum’) # [items

x true class]

log_p += log_pi[None, :]

log_p = tf.reduce_logsumexp (log_p.,
axis=1) # [items]

log_p = tf.reduce_sum(log_p)

log_p += class_prior.log_prob(pi)
log_p += tf.reduce_sum(

confusion_prior.log_prob(theta))
return log_p

tf .optimizers .Adam(le-2, )
2000

optimizer =
max_iter =

@tf. function ()
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def train_step (pi_logits , theta_logits ,

annot_ids):

with tf.GradientTape () as tape:
loss = —log_p(pi_logits ,

theta_logits , annot_ids)

gradients = tape.gradient(loss, [
pi_logits , theta_logits])

optimizer.apply_gradients (zip (
gradients , [pi_logits ,
theta_logits]))

return loss

@tf.
def

function ()
train(pi_logits , theta_logits ,
annot_ids , max_iter=tf.constant(1)):
print("tracing")
for i in tf.range(max_iter):
loss = train_step (pi_logits ,
theta_logits , annot_ids )

# get competences from logits

theta = tf.nn.softmax(theta_logits ,
=-1)

competences = tf.reduce_sum(tf.ones(K)
+1.0/K = tf.linalg.diag_part(theta),
axis=1).numpy ()

axis

C Content Moderation Examples

Social media is full of expressive posts that occa-
sionally may not be evaluated by Al providers who
implement strict internal safety mechanisms, lim-
iting research capabilities on real-world content.
For this reason, we did not include the results of
OpenAl. One rejected example is shown below.

Example: Azure OpenAl Content Filtering

Input: “Stop racist black thugs & their Marxist masters
terror campaign. #LockThemUp #NoBail #alllivesmat-
ter #PoliceLivesMatter”

Response: Error 400 - Content management policy
violation

Filter Results:

» Hate: Filtered (High severity)
* Violence: Filtered (Medium severity)

¢ Sexual/Self-harm: Safe

| J

D Moral Foundations Color Palette

We use the colorblind palette from (Skorski and
Landowska, 2025), transitioning from individualis-
tic (cooler) to collectivistic (warmer) foundations

Care Fairness Loyalty Authority Sanctity

Individualism Collectivism

Figure 6: Moral colors: individualism to collectivism
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Abstract

Uncertainty awareness is essential for large lan-
guage models (LLMs), particularly in safety-
critical domains such as medicine where erro-
neous or hallucinatory outputs can cause harm.
Yet most evaluations remain centered on accu-
racy, offering limited insight into model con-
fidence and its relation to abstention. In this
work, we present preliminary experiments that
combine conformal prediction with abstention-
augmented and perturbed variants of medical
QA datasets. Our early results suggest a pos-
itive link between uncertainty estimates and
abstention decisions, with this effect amplified
under higher difficulty and adversarial pertur-
bations. These findings highlight abstention as
a practical handle for probing model reliability
in medical QA. Our codes will be released.

1 Introduction

Uncertainty is a defining feature of human lan-
guage: ambiguity, underspecification, and incom-
plete information are the rule rather than the ex-
ception. Nevertheless, most NLP evaluation con-
tinues to assume that such ambiguities must be
resolved, with accuracy as the dominant metric.
This assumption becomes especially problematic
in high-stakes domains such as medicine, law, and
finance (Thirunavukarasu et al., 2023; Guha et al.,
2023; Wu et al., 2023; Achiam et al., 2023; Chang
et al., 2024), where overconfident but incorrect an-
swers can cause harm.

Recent advances show that large language mod-
els (LLMs) can achieve near-expert performance
on many tasks (Achiam et al., 2023), but their
reliability hinges not only on being right when
confident, but also on knowing when not to an-
In medical QA, for instance, users fre-
quently pose ambiguous or even unanswerable

SWET.
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queries (Thirunavukarasu et al., 2023), where cali-
brated abstention could prevent hallucinations and
unsafe recommendations (Kirichenko et al., 2025).
Existing benchmarks such as MedQA, MedQA-CS,
and MedMCQA (Jin et al., 2021; Yao et al., 2024,
Pal et al., 2022) mainly measure accuracy, leaving
open the question of whether models can represent
and act on their own uncertainty.

At the same time, broader efforts in uncer-
tainty quantification (UQ) for LLMs, such as LM-
Polygraph (Fadeeva et al., 2023; Vashurin et al.,
2025), have begun to systematize estimation meth-
ods and provide unified implementations, while
work in medical text analysis (Vazhentsev et al.,
2025) highlights selective prediction as a practical
approach to safety in diagnosis. These directions
reinforce the importance of studying abstention-
aware evaluation in medical QA, where ambiguity
and incomplete context are unavoidable. We use
medical multiple-choice QA as a controlled proxy
for clinical decision making: its finite option space
yields precise uncertainty sets and abstention rules,
and the resulting signals about when to answer or
defer carry over to broader medical NLP tasks.

In this work, we present ongoing work on absten-
tion and uncertainty in medical multiple-choice QA.
We combine conformal prediction (Angelopoulos
et al., 2020) with adversarial perturbations and
abstention-augmented questions to probe how mod-
els behave under ambiguity. Our preliminary find-
ings suggest a consistent positive association be-
tween uncertainty and abstention: when given the
explicit option to abstain, models tend to signal
higher uncertainty, with effects amplified on more
difficult and perturbed questions. We take these re-
sults as tentative evidence that abstention can serve
as a conservative and responsible mechanism for
handling uncertainty in medical QA with LLMs.

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 27-35
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2 Related Work

Uncertainty Quantification and Conformal Pre-
diction Estimating uncertainty is critical for trust-
worthy Al, yet common tools such as entropy, cal-
ibration, Bayesian inference, and ensembling of-
ten miscalibrate or are impractical for black-box
LLMs (Fomicheva et al., 2020; Gawlikowski et al.,
2023; Abdar et al., 2021; Hu et al., 2023; Wimmer
et al., 2023; Kwon et al., 2020; Rahaman et al.,
2021). Conformal prediction (CP) offers model-
agnostic, statistically grounded guarantees and has
shown strong results in NLP and MCQA (An-
gelopoulos and Bates, 2021; Kumar et al., 2023;
Kapoor et al., 2024; Deutschmann et al., 2024;
Ye et al., 2024). We extend CP-based evaluation
to both open and closed models, linking uncer-
tainty to abstention in real-world MCQA, and situ-
ating verbalized confidence and aggregation base-
lines for black-box LLMs (Tian et al., 2023; Xiong
et al., 2023). Beyond CP, frameworks such as LM-
Polygraph (Fadeeva et al., 2023; Vashurin et al.,
2025) systematize estimation methods and provide
extensible evaluation environments, underscoring
the growing demand for unified UQ infrastructure.

Abstention, Refusal, and Calibration in LLMs
Abstention, understood as deferring under uncer-
tainty, spans from classic classification to mod-
ern LLMs (Yin et al., 2023; Wimmer et al., 2023;
Amayuelas et al., 2023). Although some bench-
marks add explicit abstain or “cannot answer” op-
tions, standardized MCQA evaluation, especially
for proprietary models, remains scarce (Brahman
et al., 2024; Madhusudhan et al., 2024). Existing
approaches such as verbalized uncertainty, prompt-
ing, finetuning, and post-hoc rejection often show
limited calibration or generalization (Lin et al.,
2022; Xiong et al., 2023; Chen et al., 2024; Varsh-
ney and Baral, 2023; Vashurin et al., 2025). In
medicine, selective prediction has been studied as
a practical strategy for low-confidence cases, with
recent work introducing HUQ-2, a hybrid method
that combines aleatoric and epistemic uncertainty
across tasks like mortality prediction, ICD cod-
ing, and mental health detection (Vazhentsev et al.,
2025; Ashfaq et al., 2023; Peluso et al., 2024).
These studies show abstention reduces overconfi-
dent errors and even supports label-level abstention
in multi-label settings. Yet applications to medical
QA remain limited, motivating our study. Our QA
focus complements classification-centric selective
prediction by converting uncertainty into explicit
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answer-or-abstain decisions that generalize to defer
or retrieve policies in clinical NLP.

Reasoning, Prompting, and Hallucination in
LLMs Reasoning-tuned models and chain-of-
thought (CoT) prompting improve accuracy in
math, science, and clinical QA (Zelikman et al.,
2022; Luo et al., 2023; Muennighoff et al., 2025;
Guo et al., 2025; Cobbe et al., 2021). Yet accuracy-
centric evaluation neglects overconfidence and
answer-at-all-costs behavior, compounding hallu-
cination risks (Kadavath et al., 2022; Yin et al.,
2024; Wen et al., 2025; Huang et al., 2025). Cur-
rent benchmarks such as AbstentionBench, CO-
CONOT, and Abstain-QA mainly emphasize open-
domain settings, seldom probing abstention un-
der adversarial or perturbed MCQA or scaling ef-
fects (Kirichenko et al., 2025; Brahman et al., 2024;
Madhusudhan et al., 2024; Ma et al., 2024; Rah-
man et al., 2024; Shi et al., 2023). We analyze
how prompting and scale interact with abstention
reliability in clinical MCQA.

3 Methodology

Our approach focuses on medical multiple-choice
question answering (MCQA) tasks, consistent with
the evaluation structure of the Open Medical-LLM
Leaderboard.! The MCQ format is especially suit-
able for uncertainty analysis via conformal predic-
tion, which requires a well-defined output label
space Y (for more details, see Appendix A).

3.1 Datasets

We select the following medical MCQA datasets
for evaluation: MedQA (USMLE) (Jin et al.,
2021): The MedQA dataset is a large-scale,
multiple-choice QA benchmark derived from pro-
fessional medical licensing exams, typically 4-5
answer options per question. AMBOSS (Gilson
et al., 2023) 2: The AMBOSS dataset consists
of clinical reasoning items for assessing medical
decision-making and—through stratified difficulty
annotations—supports systematic study of absten-
tion strategies across difficulty levels; the dataset is
private and used for research on medical QA and
reasoning.

Dataset variants To evaluate the model’s confi-
dence, abstention behavior, and the correlation be-
tween the two, we construct multiple dataset vari-

1https: //huggingface.co/blog/
leaderboard-medicalllm
2https://www.amboss. com/us
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ants. These variants are designed to probe how dif-
ferent conditions—such as missing information or
the presence of an abstention option—affect model
predictions, combined with the difficulty stratifica-
tion of the questions.

Abstention This variant, also henceforth referred
to as A (Abstention Variant), introduces an explicit
abstention option to each question, allowing the
model to refrain from answering when uncertain.
Perturbing This variant, also henceforth referred
to as NAP (No-Abstention + Perturbed Variant),
aims to assess the model’s confidence when essen-
tial information is missing.

Abstention + Perturbing This variant, also hence-
forth referred to as AP, combines both abstention
and perturbation. The model is presented with ques-
tions where some necessary information has been
removed, along with the option to abstain from
answering.

3.2 Evaluation Metrics

The models are evaluated on the following metrics
for each of the datasets and their variants. More
details in Appendix A. Accuracy: Accuracy mea-
sures how often the model’s top prediction matches
the correct label. Conformal Prediction: We com-
pute conformal scores using both the Least Am-
biguous Classifier (LAC) and Adaptive Prediction
Set (APS) scoring functions. Abstention Rate:
Abstention rate is the percentage of test instances
where the model outputs the abstention option. We
report this value for the Abstention and Perturbed
Abstention dataset variants.

4 Experiments

We evaluate a broad set of both open-source and
closed-source LL.Ms, spanning multiple architec-
tural families and model scales. This diverse selec-
tion allows us to assess the generality of abstention
and uncertainty behaviors across different LLM
paradigms. Section B provides a comprehensive
list of the models used for the study.

Under each experimental condition, models are
prompted to output a single answer token (the se-
lected option), and accuracy is computed by com-
paring this token with the gold label. The logit cor-
responding to the emitted token, together with the
logits for the remaining candidate choices, is then
extracted to compute conformal-prediction scores.
For closed-source GPT-family models, these scores
are derived from the API-exposed top-logprobs.
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5 Results and Discussion

Comparison of APS and LAC Distributions As
shown in Fig.2(a), APS produces tighter, lower-
variance set-size distributions than LAC across
both datasets, suggesting more stable threshold-
ing. Under AP conditions, APS distributions also
crowd near the upper limit, indicating that predic-
tion sets frequently expand to include most options.
This compactness carries over when conditioning
on correctness (Fig.2(b)), where APS remains less
variable, though still skewed toward larger sets for
incorrect answers. Together, these patterns suggest
that APS offers more consistency in how uncer-
tainty maps to abstention. By contrast, LAC pro-
duces broader set-size distributions (Fig.2(a)), with
a wider gap between correct and incorrect cases
and heavier right tails (Fig.2(b)). This separation is
particularly visible in MedQA, where LAC more
distinctly highlights error-prone instances. While
less stable for thresholding, LAC may therefore
be more useful in contexts where surfacing likely
mistakes — for example, for human review or triage.

Effect of difficulty across different settings
Across settings (Fig. 1), APS behaves like an un-
certainty signal: APS-abstention is consistently
positive and APS—accuracy consistently negative.
Across difficulty levels, the trend is modestly up-
ward but non-uniform, see appendix: C. With diffi-
culty, APS—abstention strengthens in NoCoT, weak-
ens under CoT, is roughly flat in few-shot, and ticks
up under perturbations (and mildly in zero-shot/not-
perturbed). APS—accuracy grows more negative
with difficulty for NoCoT/zero-shot/perturbed runs,
but becomes less negative under CoT and is flatter
when not perturbed.

LAC exhibits a nuanced profile: LAC-accuracy
is consistently negative, whereas LAC—abstention
is prompt-dependent—positive under NoCoT but
declining with difficulty; under CoT it is slightly
negative at d1-d2, 0 at d3, and only mildly pos-
itive by d4-d5. Few-shot mainly increases error
risk (more negative APS—/LAC-accuracy) and has
small, non-monotonic effects on APS—abstention;
for LAC—abstention it remains positive in No-
CoT but O/negative on easy CoT. Overall, CoT
weakens the set-size—abstention link, though both
metrics still flag accuracy risk. Perturbations
heighten uncertainty:they raise APS—abstention,
make APS-accuracy more negative, and shift LAC
similarly.
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6 Conclusion

In this study, we asked how item difficulty shapes
model uncertainty and abstention, and how two
set-size signals: LAC and APS, serving as uncer-
tainty proxies across prompting style (CoT vs. No-
CoT), demonstration count (zero- vs. few-shot),
and input perturbations. We find a strong, positive
uncertainty—abstention relationship and a consis-
tently negative association between both APS/LAC
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and accuracy. Averaged over datasets, increasing
difficulty does not materially change aggregate un-
certainty or abstention. Practically, APS is a reli-
able gate for abstention across conditions, while
LAC is a robust indicator of accuracy risk whose
coupling to abstention weakens with CoT: espe-
cially on easier items. APS produces tighter, more
stable distributions, whereas LAC yields clearer
separation between correct and incorrect answers,
suggesting complementary strengths in threshold-
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ing versus error triage.

7 Limitations

First, the study is confined to English-language
datasets, limiting its applicability to multilingual
or non-English medical contexts. Expanding the
benchmark to additional languages and healthcare
systems is essential for broader relevance.

Second, while both open- and closed-source
LLMs across diverse architectures and scales are in-
cluded, the coverage is inherently finite. Given the
rapid evolution of model capabilities and training
paradigms, the reported findings may not general-
ize to future or unreleased models.

Finally, the evaluation centers on multiple-
choice QA, whose structured label space facili-
tates conformal prediction and abstention analy-
sis. However, this focus overlooks the complexity
of real-world clinical reasoning and open-ended
tasks, where uncertainty manifests differently. Ex-
tending abstention-aware evaluation to generative,
free-form, and multi-modal settings remains a key
direction for future work.

8 Ethics Statement

In this study, we examine large language models
for medical question answering with a particular
focus on abstention and uncertainty. Evaluation is
carried out on two datasets: the publicly available
MedQA benchmark and a proprietary clinical QA
set provided by AMBOSS. MedQA is openly dis-
tributed for research, whereas access to AMBOSS
is restricted by license and the dataset is used ex-
clusively for internal evaluation under the terms of
a research agreement.

The experiments rely solely on de-identified
or synthetic exam-style material; no patient-
identifiable data are involved. All procedures fol-
low established ethical standards for research using
such resources. Our goal is to advance the safe
and reliable use of LLMs in high-stakes medical
contexts, emphasizing mechanisms to counter over-
confidence and hallucination. The datasets, bench-
mark variants, and analyses are intended strictly for
research purposes and are not designed for direct
integration into clinical workflows.

Although abstention mechanisms can reduce the
risk of severe errors, they do not eliminate bias or
inaccuracy, as models may still reproduce artifacts
from their training data or benchmarks. Accord-
ingly, abstention should be seen as a supplement
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to—not a replacement for—clinical validation and
human oversight.

All models and APIs are employed in their orig-
inal, unmodified form, and any subsequent use
of the benchmark must respect the corresponding
licenses and terms of service. To support trans-
parency and reproducibility, we release the bench-
mark and code under a CC-BY-NC 4.0 license. The
AMBOSS dataset itself is not part of this release.
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A Evaluation Metrics

Conformal Prediction Conformal Prediction
(CP) provides a statistically rigorous way to quan-
tify uncertainty (Angelopoulos and Bates, 2021).
Given a model f and a test instance x;, we compute
a prediction set C(x;) C ) of plausible answers
such that:

Plyye C(xy)) > 1—«

where « is a user-set error rate. The size of the
prediction set, or Set Size (SS), reflects the model’s
confidence: |C(z;)| = 1 implies highest confi-
dence, and larger sets reflect higher uncertainty.

We compute conformal scores using both the
Least Ambiguous Classifier (LAC) and Adaptive
Prediction Set (APS) scoring functions:
1) Adaptive Prediction Set (APS)

D

Y f (@) 2 f(2)y

APS: s(z,y) = f(@)y

2) Least Ambiguous Classifier (LAC)
LAC: s(z,y) = 1 - f(x),

where f(x), is the probability assigned to label
y. Using a calibration set, we compute a quantile
threshold §,, and define the conformal prediction
set for each test instance z as:

(j($):: {y € J’\s(x,y) SQQQ}

where G, is the (1 — «) quantile of calibration
scores.

B Experiment Models

To evaluate performance across varying model
scales and architectural families, we benchmark
a diverse set of both open-source and closed-source
models, listed below:

Open-source Models:

» LLaMA Family: 3 # Llama3.2-1B-Instruct,
Llama3.2-3B-Instruct, Llama3.1-8B-Instruct

* Phi Family: Phi-4-mini®, phi-4%

3https://huggingface.co/collections/
meta-1llama/llama-32-66f448ffc8c32f949b04c8cf

4https://huggingface.co/meta—llama/Llama—3.
1-8B

Shttps://huggingface.co/microsoft/
Phi-4-mini-instruct

https://huggingface.co/microsoft/phi-4
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* Qwen Family: Qwen2.5-0.5B-
Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-
3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-
14B-Instruct, Qwen2.5-32B-Instruct, Qwen3-
0.6B, Qwen3-1.7B, Qwen3-4B, Qwen3-8B,
Qwen3-14B, Qwen3-32B

« Gemma Family: gemma-3-4b°, medgemma-
4b-it!”

Closed-source Models:

* GPT Family: gpt-4.1-nano-2025-04-14, gpt-
4.1-mini-2025-04-14, gpt-40-mini-2024-07-
18, gpt-40-2024-08-06, gpt-4.1-2025-04-14

C Additional Results Discussion

Across all comparisons, abstention has a slight up-
trend with difficulty but not a consistent increase,
and variance grows under perturbation and at the
highest difficulty levels, consistent with greater het-
erogeneity or fewer items per stratum. Effects dif-
fer in magnitude across conditions: CoT exerts
limited influence on abstention relative to pertur-
bation (1 abstention) and few-shot prompting (]
abstention), but it meaningfully alters how set size
relates to the decision to abstain—especially on
easier items. For completeness, it is useful to pair
these correlation patterns with risk—coverage or
selective-accuracy summaries by stratum, to ver-
ify that improved error signaling from APS/LAC
translates into better risk control at comparable
coverage.

C.0.1 Zero-shot vs Few-shot

As can be seen from 3, Providing demonstrations
amplifies error signaling more than abstention sig-
naling. Few-shot runs systematically make both
APS-accuracy and LAC-accuracy more negative
across difficulty strata, indicating that larger pre-
diction sets track error risk more faithfully when
demonstrations are present. By contrast, the ef-
fect on APS-abstention is small and irregular
with difficulty, suggesting that demonstrations pri-
marily reshape confidence within the commit re-
gion rather than pushing the model to defer. For
LAC-abstention, the NoCoT condition preserves
a positive association across strata, whereas under
7https://huggingface.co/collections/Qwen/

qwen25-66e81a666513e518adb90d9e
8https://huggingface.co/collections/Qwen/

qwen3-67dd247413f0e2e4f653967f
ghttps://huggingface.co/google/gemma-3—4b—it
Ohttps://huggingface.co/google/medgemma-4b-1it


https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/microsoft/phi-4
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Figure 3: Amboss zero v few shot performance across
difficulty settings d1-d5

CoT the easy-difficulty caveat persists (near-zero or
slightly negative at d1-d2) before turning weakly
positive by d4-d5. Together, these patterns im-
ply that demonstrations improve the calibration of
which answers are risky without uniformly increas-
ing the tendency to abstain.

C.0.2 Cot vs No Cot
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Figure 4: Amboss cot v nocot performance across diffi-
culty settings d1-d5

Fig 4 demonstrates reasoning changes how
prediction-set size maps to the abstain decision.
APS remains positively associated with abstention
with or without CoT, but its strength diminishes
with difficulty under CoT while increasing in No-
CoT. This indicates that generating rationales en-
courages commitment on harder items even when
the prediction set is larger, possibly because inter-
mediate reasoning consolidates probability mass
on a preferred candidate. For LAC, CoT partially
decouples set size from abstention at easy levels:
the model may explore more candidates yet still
commit, so larger LAC does not reliably imply
greater deferral at d1-d2; only by d4—d5 does the
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LAC-abstention link re-emerge as mildly positive.
Importantly, APS—accuracy and LAC—-accuracy re-
main negative in all cases, so both set sizes continue
to flag accuracy risk even when CoT reduces their
influence on abstention behavior.

C.0.3 Perturbed vs Not Perturbed

amboss_alldiff_train: abstention_rate vs difficulty (perturb)

—— not_perturbed
perturbed
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Figure 5: Amboss pert v nopert performance across
difficulty settings d1-d5

Noise generally sharpens uncertainty signals
and increases deferral as observed in 5. Pertur-
bations raise APS—abstention at every difficulty
level and make APS—accuracy more negative, with
the largest shifts at higher difficulties. For LAC,
perturbations push correlations in the same direc-
tions—more positive with abstention (especially
in NoCoT) and more negative with accuracy over-
all—consistent with broader or less concentrated
prediction sets under input shift. The CoT inter-
action holds: under CoT, LAC remains a weak
abstention trigger at easier difficulties even as its
negative relation to accuracy persists, indicating
that reasoning can sustain commitment under mild
noise while still reflecting error risk in set size.
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Abstract

Understanding uncertainty in large language
models remains a fundamental challenge, par-
ticularly in creative tasks where multiple valid
outputs exist. We present a geometric frame-
work using credal sets—convex hulls of prob-
ability distributions—to quantify and decom-
pose uncertainty in neural text generation, cali-
brated against human creative variation. Ana-
lyzing 500 creative writing prompts from the
WRITINGPROMPTS dataset with 10 unique
human continuations each, we evaluate four
language models across five decoding strate-
gies, generating 100,000 stories. Our credal
set analysis reveals substantial gaps in cap-
turing human creative variation, with the best
model-human calibration reaching only 0.434
(Gemma-2B with temperature 0.7). We de-
compose total uncertainty into epistemic and
aleatoric components, finding that the choice
of decoding strategy contributes 39.4% to
72.0% of total epistemic uncertainty. Model
scale shows weak correlation with calibration
quality and no significant difference exists
between base and instruction-tuned models
in calibration quality. Our geometric frame-
work provides actionable insights for improv-
ing generation systems for human-Al creative
alignment. We release our complete experi-
mental framework at https://github.com/
EstebanGarces/uncertainHuman.

1 Introduction

The deployment of large language models in cre-
ative and open-ended applications demands not
merely generating plausible text, but understanding
and calibrating the uncertainty inherent in these
generations. While uncertainty quantification has
been extensively studied in discriminative tasks
(Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017; Ovadia et al., 2019), the challenge be-
comes substantially more complex in generative
settings where no single ground truth exists and
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Prompt: “The last person on Earth sits alone. There is
a knock on the door”

Human continuations:

e “My heart stopped. After three years of silence...”
e “I laughed. The universe’s final joke...”

e “Pizza delivery,” a voice called out...”

Model continuations (Instruct):
“The survivor cautiously approached the door...”
“They slowly walked to the door, heart pounding...
“With trembling hands, the survivor reached...”

)
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Figure 1: Examples of human versus model creative
variation. Top: Continuations show diverse human
interpretations versus convergent model responses. Bot-
tom: Credal sets (dashed ellipses) represent convex
hulls of diversity distributions in semantic, lexical, and
syntactic space.

quality itself becomes a multidimensional construct
(Garces Arias et al., 2025b,¢). This complexity is
particularly acute in creative writing, where the
same prompt can inspire substantially different nar-
ratives, styles, and interpretations (cf. Figure 1).

Current approaches to uncertainty quantification
in language models predominantly focus on token-
level probabilities or computationally expensive
ensemble methods (Ling et al., 2024; Zhang et al.,
2025). These methods, while valuable, fail to cap-
ture the semantic, lexical, and syntactic-level uncer-
tainty that determines whether a model appropri-
ately captures the breadth of human creative expres-
sion. More fundamentally, existing frameworks
lack principled methods for distinguishing between
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aleatoric uncertainty—the irreducible variation in-
herent in creative tasks—and epistemic uncertainty
arising from model limitations. This distinction
proves crucial for both improving model design
and establishing appropriate deployment bound-
aries. In this work, we address these limitations
through a novel framework that leverages human
variation as a natural calibration target for model
uncertainty. Our key insight is that multiple human
responses to the same creative prompt provide a
direct empirical measure of aleatoric uncertainty.
By representing both human and model variation
as credal sets—convex hulls of probability distribu-
tions over textual characteristics—we can geomet-
rically analyze whether models exhibit appropriate
uncertainty: high variation when humans disagree,
and convergent outputs when humans reach consen-
sus. This credal set approach offers several theoret-
ical and practical advantages over existing methods.
Theoretically, it provides a rigorous framework
for uncertainty decomposition that respects the in-
herently distributional nature of creative variation.
Each prompt induces its own distribution over pos-
sible continuations, and the collection of these dis-
tributions across many prompts forms a credal set
that fully characterizes the uncertainty landscape.
Practically, this framework enables direct compar-
ison between human and the model’s uncertainty
through geometric measures such as overlap co-
efficients, Hausdorff distance (Huttenlocher et al.,
1993), and volume ratios. Our empirical investiga-
tion analyzes 500 carefully selected prompts from
the WRITINGPROMPTS dataset, each accompanied
by 10 verified unique human continuations totaling
5,000 human-written stories. We evaluate four lan-
guage models—GPT2-XL (Radford et al., 2019),
Gemma-2B (Gemma-Team et al., 2024), Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), and Llama-
3.1-8B-Instruct (Dubey et al., 2024)—generating
10 samples per configuration across five decoding
strategies, yielding 100,000 model-generated sto-
ries. Through comprehensive analysis of semantic,
lexical, and syntactic diversity, we construct and
compare credal sets that reveal systematic patterns
in how models capture or fail to capture human-like
variation.

Contributions

* We introduce credal sets—convex hulls of di-
versity distributions—as a geometric frame-
work for quantifying uncertainty in open-
ended text generation.
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* We analyze 100,000 generated stories, finding
that the best model-human calibration reaches
only 0.434 (Gemma-2B with temperature 0.7),
revealing substantial gaps in creative varia-
tion.

* We show weak correlation between model
scale and calibration (Spearman’s p = 0.400,
P 0.600) and no significant difference
between base and instruction-tuned models
(t = —-0.712, p = 0.486).

* We decompose uncertainty to reveal that de-
coding strategy choice contributes 39.4-72.0%
of total epistemic uncertainty, with base mod-
els showing higher sensitivity.

* We release our complete experimental frame-
work and datasets for reproducible research.!

2 Related Work

Uncertainty quantification in language models has
emerged as a critical research area, particularly as
these models are deployed in high-stakes applica-
tions. We organize our discussion around three
main themes: theoretical frameworks for uncer-
tainty decomposition, practical estimation methods,
and uncertainty-aware generation strategies.

2.1 Theoretical Frameworks for Uncertainty
Decomposition

The foundational challenge lies in decomposing
total predictive uncertainty into meaningful compo-
nents. Ling et al. (2024) address this for in-context
learning scenarios: They derive total predictive un-
certainty through the classical additive information-
theoretic decomposition, where the first term cap-
tures aleatoric uncertainty (inherent randomness in
the task) and the second represents epistemic uncer-
tainty (model uncertainty). They propose entropy
estimators based on variational bounds on mutual
information for practical approximation. However,
Wimmer et al. (2023) note that this distinction can
become ambiguous in pre-trained models where
the training distribution itself is uncertain.

The use of credal sets for uncertainty representa-
tion has been common in classification tasks (Zaf-
falon and Fagiuoli, 2003), but, to the best of our
knowledge, our work is the first to apply this frame-
work to open-ended generation. Credal sets provide

1https: //github.com/EstebanGarces/
uncertainHuman
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a natural representation for situations where a sin-
gle probability distribution is insufficient to capture
uncertainty, instead maintaining a set of plausible
distributions (Levi, 1980).

2.2 Practical Methods for Uncertainty
Estimation

Various practical approaches for uncertainty estima-
tion have been recently proposed: Lin et al. (2022);
Xiong et al. (2024) explore methods to verbalize un-
certainty, Kadavath et al. (2022); Liu et al. (2024);
Ulmer et al. (2024) focus on probes for LLM cali-
bration, while Pitis et al. (2023); Hou et al. (2024)
have focused on self-consistency approaches.

Recent work has developed various approaches to
estimate uncertainty without expensive ensemble
methods. Zhang et al. (2025) introduce a training-
free method injecting low-rank random weight per-
turbations during decoding to estimate token-level
uncertainties. These are aggregated into sequence-
level measures that correlate strongly with correct-
ness on mathematical reasoning benchmarks, with
epistemic uncertainty effectively identifying incor-
rect reasoning paths. While this perturbation ap-
proach elegantly estimates model uncertainty, it
focuses on uncertainty from a single fixed model.
Our work examines uncertainty arising from dif-
ferent decoding strategies and model architectures,
providing a complementary perspective on varia-
tion sources in language model outputs. Yadkori
et al. (2024) propose an information-theoretic met-
ric based on mutual information over iteratively
prompted responses, interpreting heavy dependen-
cies between subsequent responses as indicators of
high epistemic uncertainty and potential hallucina-
tion, though requiring computationally expensive
multiple inference passes. Aichberger et al. (2024)
pursue efficiency with a single-pass approximation
using negative log-likelihood of greedy outputs,
proving that high NLL correlates with high epis-
temic uncertainty under certain assumptions.

2.3 Uncertainty-Aware Generation and
Human Baselines

Garces Arias et al. (2024); Ding et al. (2025) pro-
pose uncertainty-aware decoding that dynamically
adjusts generation parameters based on local uncer-
tainty. They compute entropy H (p;) of the token
probability distribution p; at each generation step
t and adjust the truncation threshold dynamically,
demonstrating that uncertainty signals can improve
generation quality in real-time. Most directly re-
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lated to our work, Giulianelli et al. (2023) evaluate
uncertainty in neural text generators against human
production variability, arguing that well-calibrated
models should exhibit similar variation to humans.
They analyze GPT-2 on story generation with lim-
ited prompts, finding that it under-produces diver-
sity relative to human baselines. Our work sub-
stantially extends this research by: (1) scaling to
500 prompts with 10 unique continuations each, (2)
including contemporary instruction-tuned models,
(3) evaluating five decoding strategies systemati-
cally, (4) explicitly decomposing uncertainty into
aleatoric and epistemic components, and (5) provid-
ing quantitative calibration metrics based on credal
set overlap coefficients.

3 Methodology

3.1 Dataset Construction and Human
Baselines

The WRITINGPROMPTS dataset (Fan et al., 2018)
provides naturalistic creative writing data from
Reddit’s r/WritingPrompts community. We im-
plement rigorous selection criteria to ensure data
quality:

1. Uniqueness verification: We compute MD5
hashes for all stories and select only prompts
with exactly 10 unique continuations, elimi-
nating duplicates that could bias diversity mea-
surements.

Length filtering: We retain prompts between
20-500 characters and stories between 52-987
tokens (mean: 312.4, std: 148.2), ensuring suf-
ficient content for meaningful analysis while
avoiding outliers.

. Quality scoring: We prioritize prompts by the
diversity of story lengths they elicit (measured
by standard deviation), selecting those that
inspire varied responses rather than formulaic
continuations.

This process yields 500 high-quality prompts with
5,000 unique human stories, providing a robust
baseline for calibration analysis.

3.2 Model Selection and Configuration

Our model selection explores the calibration land-
scape across different architectures and training
paradigms:



Base models: GPT2-XL (1.5B) (Radford et al.,
2019) serves as a canonical autoregressive base-
line, while Gemma-2B (Gemma-Team et al., 2024)
represents modern architectural improvements at
comparable scale. These models, trained on diverse
internet text without explicit instruction following,
potentially preserve more natural variation patterns.

Instruction-tuned models: Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and Llama-3.1-8B-Instruct
(Dubey et al., 2024) represent strong open-source
models with instruction tuning and alignment.
While offering improved controllability, we investi-
gate whether alignment training constrains creative

exploration”.

3.3 Decoding Strategy Design

We systematically evaluate five decoding strate-
gies that control output diversity through different
mechanisms:

» Temperature scaling (r € {0.7,1.2}): Di-
rectly modulates the entropy of the output dis-
tribution (Ackley et al., 1985)

Nucleus sampling (p = 0.9): Dynamically
adjusts the token consideration set based on
cumulative probability (Holtzman et al., 2020)

* Top-k sampling (k = 40): Maintains a fixed-
size token pool (Fan et al., 2018)

* Typical sampling (p = 0.95): Selects tokens
based on expected information content (Meis-
ter et al., 2023)

Each configuration generates 10 independent sam-
ples with different random seeds, totaling 100,000
model-generated stories for analysis.

3.4 Diversity Metrics

Our metric suite captures multiple dimensions of
textual variation through pairwise distance-based
measures following Giulianelli et al. (2023):

3.4.1 Semantic Diversity

We compute semantic diversity as the mean pair-
wise cosine distance between Sentence-BERT em-
beddings (Reimers and Gurevych, 2019):

2
Dem(S) = IS ;(1 — cos(e;, €5)),

2All models use appropriate prompt formatting with care-
ful post-processing to remove prompt artifacts from genera-
tions, ensuring fair comparison across architectures.
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where e; represents the embedding of story ¢ using
the all-MiniLM-L6-v2 model (Wang et al., 2020).
This captures high-level narrative and thematic vari-
ation.

3.4.2 Lexical Diversity

We measure lexical diversity using Jaccard distance
between word unigrams:
<1 ) ’

where V; represents the vocabulary set of story .
This captures variation in word choice and vocabu-
lary richness.
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3.4.3 Syntactic Diversity

We measure syntactic variation through Jaccard
distance of part-of-speech (POS) bigrams:

where P; represents the set of POS bigrams ex-
tracted using spaCy’s en_core_web_sm model
(Honnibal and Montani, 2017). This captures stylis-
tic and structural variation in the generated text.
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3.5 Theoretical Framework: Credal Sets

Our methodology rests on the principle that uncer-
tainty in creative text generation should be under-
stood relative to the natural variation exhibited by
humans facing the same creative task. We formal-
ize this through a credal set framework that cap-
tures uncertainty as a set of plausible probability
distributions rather than a single distribution.

For a given prompt p, let #,, = {h1, ..., h1o} de-
note the set of human continuations and M, ,,, ¢ =
{s1, ..., 810} denote the set of model continuations
for model m using decoding strategy d. For any set
of continuations S, we compute a diversity vector
Vp = [Dsem(s), DICX(S)7 Dsyn(S)]-

The human credal set for a collection of prompts
P is then defined as:

Cr = ConvexHull ({V{,—I :p € P}),

where each vf is the diversity vector computed
from human continuations for prompt p.
Similarly, the model credal set for a specific con-
figuration (m, d) is:

Cwm,a = ConvexHull ({véw’d :p € P}) )



The convex hull is computed using the Quickhull al-
gorithm (Barber et al., 1996) after standardizing the
diversity vectors. This representation enables geo-
metric analysis of uncertainty relationships through
set operations and distance metrics.

3.6 Calibration Analysis

Calibration quality is assessed through the overlap
coefficient of credal sets:

Calibration(M, d) = Overlap(Crx,Car.d),

where overlap is computed using nearest-neighbor
distances between credal set vertices. The overlap
coefficient is calculated as:

1 .
Overlap = 2(’{1} € Vu \Elf(vivm < 0}
M
[{v € Vig : d(v, Vi) < 9}|>
V| '

where V;; and V are the vertex sets of the model
and human credal sets respectively, d(v, V) is the
minimum distance from point v to set V', and 6
is an adaptive threshold set to half the mean vari-
ance scale. Values range from O (disjoint sets) to 1
(perfect overlap).

3.7 Uncertainty Decomposition

To decompose uncertainty, we leverage variation
across decoding strategies. For a given model
M, we collect all diversity vectors across differ-
ent strategies and compute:

Strategy centroids
cqg = mean({vi)w’d : p € P}) for each strategy d

Between-strategy variance
2 = Var({cy : d € D})

Obetween

Within-strategy variance

M.,d
O inin = meang[Var({v,"" : p € P})]

The epistemic ratio is then:

2
Obetween

+ o2 '

within

Epistemic), = —
Obetween

This quantifies the proportion of uncertainty arising
from configuration choices rather than inherent task
ambiguity.

4 Results

4.1 Human Variation as Calibration Baseline

Analysis of 5,000 human-written stories reveals
structured patterns of creative variation that estab-
lish our calibration baseline (Table 1).
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Diversity Type Mean Std Dev
Semantic 0.645 0.066
Lexical 0.328 0.035
Syntactic 0.315 0.044

Table 1: Human diversity baselines across 500 prompts
with 10 unique continuations each, computed using pair-
wise distance metrics.

The distribution of semantic diversity across
prompts shows moderate variation with most
prompts (62%) eliciting medium diversity (0.6-
0.7), while 19% show high diversity (>0.7) and
19% show low diversity (<0.6). This suggests fun-
damental differences in prompt interpretability that
models must capture.

4.2 Credal Set Geometry and Calibration

The human credal set Cz; occupies a volume of
2.25 in the PCA-transformed diversity space, serv-
ing as the baseline for model comparison. Analy-
sis reveals a clear distinction between model types:
base models (GPT2-XL, Gemma-2B) produce com-
pact credal sets with mean volume 1.10 £ 0.56,
representing 48.9% of the human volume. In
contrast, instruction-tuned models (Mistral-7B-
Instruct, Llama-3.1-8B-Instruct) generate signif-
icantly larger credal sets with mean volume 3.87 &
1.78, corresponding to 172.1% of the human base-
line. The difference in credal set volumes between
base and instruction-tuned models is statistically
significant (Mann-Whitney U = 2.00, p < 0.001).

Principal component analysis of the diversity vec-
tors reveals strong coupling between diversity di-
mensions. PC1 explains 85.8% of variance with
nearly equal positive loadings across semantic
(0.569), lexical (0.565), and syntactic (0.597) di-
mensions, indicating that these diversity types co-
vary systematically. The dominance of PC1 sug-
gests that models exhibiting high diversity in one
dimension tend to show proportionally high diver-
sity in all dimensions, as illustrated in Figure 3.

The expanded credal sets of instruction-tuned mod-
els indicate broader exploration of the diversity
space compared to base models. However, larger
volume does not directly correspond to better cal-
ibration, as shown in Table 2 and Figure 6, in the
Appendix. This suggests that alignment with hu-
man diversity patterns depends more on the loca-
tion and shape of the credal set than its absolute
size.



Best vs Worst Calibrated Configurations in PC1-PC2 Space
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Figure 2: Credal sets visualization in principal component space. Human creative variation (blue) and model-
generated variation exhibit different geometric patterns and a high sensitivity with respect to the decoding configura-
tion. Points represent diversity vectors from individual prompts; convex hulls indicate credal set boundaries. PC1
explains 85.8% of the variance, suggesting a strong correlation between diversity dimensions. Best (left) and worst
aligned configurations (right), measured by the overlap of the credal sets, are presented.
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Figure 3: Overview of PCA loadings, displaying a bal-
anced contribution of semantic, lexical, and syntactic
patterns on the first principal component, which explains
a large proportion of the total variance.

4.3 Distributional Analysis via Wasserstein
Distance

Complementary analysis using Wasserstein dis-
tance at the prompt level corroborates the credal
set findings. The Wasserstein distance measures
the average distributional difference between hu-
man and model-generated diversity patterns across
all prompts. The best configuration by Wasser-
stein distance (Gemma-2B with temperature=0.7,
distance=0.065) coincides with the best-calibrated
credal set, providing independent validation of the
geometric approach. The moderate negative cor-
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relation between Wasserstein distance and calibra-
tion score (p = —0.411, p = 0.072) indicates
that while both methods capture aspects of human-
model alignment, they emphasize different charac-
teristics: Wasserstein distance weights all prompts
equally in measuring average distributional differ-
ences, while credal sets capture the geometric en-
velope of diversity behaviors. A visualization of
this comparison is presented in Figure 7.

4.4 Model Calibration Patterns

Calibration analysis reveals that no model effec-
tively reproduces human variation patterns, with
best overlap coefficients reaching only 0.434 (Table
2). Figure 5 illustrates these key findings:

Model architecture effects: Gemma-2B
achieves the best single configuration calibration
(0.434 with temperature 0.7), though Mistral-7B-
Instruct shows the highest average calibration
across all strategies (0.371). Statistical analysis
reveals weak positive correlation between model
size and calibration (Spearman’s p 0.400,
p = 0.600), suggesting model scale has limited
influence on calibration quality. Further, base
models (mean calibration: 0.274 + 0.095) show
no significant difference from instruction-tuned
models (mean: 0.305 + 0.093) in calibration quality
(t = —0.712, p = 0.486, Cohen’s d = —0.336).
Despite similar calibration scores, base and



Model Performance Summary with Decoding Strategies
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Figure 4: Overview of model performance across varying decoding strategies. Here, performance is to be understood
in terms of calibration scores with respect to human credal sets. Top-k sampling provides the highest mean
calibration, while Gemma-2B with temperature set to 0.7 achieves the best overall calibration.

Model Strategy Value Overall Cal. Overlap Centroid Dist. Volume Ratio
Gemma-2B temperature 0.7 0.434 0.033 1.096 0.924
Llama-3.1-8B-Instruct temperature 1.2 0.409 0.032 1.488 0.918
Mistral-7B-Instruct top_k 40 0.403 0.000 1.502 1.060
Mistral-7B-Instruct temperature 1.2 0.399 0.000 0.956 0.820
Mistral-7B-Instruct top_p 0.9 0.391 0.000 1.721 1.070
Gemma-2B top_k 40 0.386 0.033 1.189 0.785
Mistral-7B-Instruct typical 0.95 0.354 0.000 1.604 1.258
GPT2-XL temperature 0.7 0.333 0.000 1.386 0.692
Mistral-7B-Instruct temperature 0.7 0.309 0.000 1.945 1.450
GPT2-XL top_k 40 0.300 0.033 1.244 0.509

Table 2: Calibration metrics for top configurations. Higher values indicate better alignment with human variation.
Gemma-2B with temperature 0.7 achieves best overall calibration (0.434).

instruction-tuned models differ significantly in
their exploration of the diversity space, with
instruction-tuned models producing credal sets
3.5x larger on average (p < 0.001).

Strategy effectiveness: Top-k sampling achieves
the highest mean performance (0.323 + 0.092),
followed by temperature scaling (0.289 + 0.129).
Analysis of variance across all 20 model-strategy
combinations reveals no significant main effect of
strategy type (F'(3,16) = 0.200, p = 0.895), sug-
gesting that strategy effectiveness depends on the
specific model architecture.

4.5 Uncertainty Decomposition

Decomposition analysis reveals the relative con-
tributions of epistemic and aleatoric uncertainty
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(Table 3). Base models (GPT2-XL, Gemma-2B)
exhibit higher epistemic ratios (64.9-72.0%), in-
dicating that decoding strategy choice contributes
more than half of their total uncertainty. Instruction-
tuned models show lower epistemic ratios (39.4-
50.5%), suggesting more stable behavior across
decoding strategies but potentially at the cost of
reduced overall variation.

The within-strategy variance (aleatoric compo-
nent) remains substantial across all models (0.091-
0.224), confirming that models can generate di-
verse outputs for individual prompts. However, the
between-strategy variance (epistemic component)
highlights that generation configuration remains a
critical factor in uncertainty quantification, particu-
larly for base models.



Model-Level Uncertainty Analysis

Uncertainty Decomposition

0 Aleatoric

3 Epistemic
0.4 ‘

03

Uncertainty

01

0.0 ™y
e\&

&

<

Model
Aleatoric Uncertainty vs Human Baseline

=== Human baseline

Aleatoric Ratio to Human

Model

Epistemic Ratio (%)

3

2

g

5

8

5]

Proportion of Epistemic Uncertainty

50% threshold
72.0%

>
e_\@

N

v &\4\?’
F
Model

Total Uncertainty & Strategy Coverage
0453

[ Total Uncertainty
—8— # Strategies 5 5
) 5.2
0324 513
=
@
g
¢ g 508
0211 0205 =
2
£
‘ ‘ ‘ ‘ -
| ‘ | | )
< <& @\ 6‘0
& &
& & K N

Model

Figure 5: Uncertainty analysis and model performance overview. Top Left: Uncertainty decomposition showing
epistemic and aleatoric components. Top Right: Epistemic ratio by model. Bottom Left: Aleatoric uncertainty vs.
human baseline. Bottom Right: Estimated total uncertainty per model, measured over five decoding strategies.

Model Epistemic Aleatoric Total Ratio
Gemma-2B 0.233 0.091 0.324  72.0%
GPT2-XL 0.137 0.074 0211 64.9%
Llama-3.1-8B-Instruct 0.229 0.224 0.453  50.5%
Mistral-7B-Instruct 0.081 0.124 0.205 39.4%

Table 3: Uncertainty decomposition showing absolute
values and epistemic ratios. All models show substantial
epistemic uncertainty, indicating sensitivity to decoding
strategies.

5 Discussion

5.1 Theoretical Implications

Our credal set framework advances uncertainty
quantification theory for generative models in sev-
eral ways. By treating uncertainty as inherently
distributional and prompt-dependent, we move be-
yond scalar measures that collapse rich variation
patterns. The geometric interpretation through
credal set operations provides intuitive understand-
ing of miscalibration modes: models can fail
through incorrect positioning (wrong variation
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type), volume (over/under-exploration), or shape
(wrong dimensions).

The finding that best calibration reaches only
0.434 reveals fundamental gaps in how current
models capture human creative variation. The no-
tably low overlap coefficients (maximum 0.033)
indicate that model and human credal sets occupy
largely disjoint regions in diversity space, suggest-
ing that current models operate in fundamentally
different creative regimes than humans. The high
PC1 dominance (85.8% variance) with syntactic
diversity as the primary driver indicates that cur-
rent models treat diversity dimensions as tightly
coupled, potentially missing independent variation
patterns that humans explore.

5.2 Implications for Model Development

The weak positive correlation between model scale
and calibration quality (p = 0.400, p = 0.600)
suggests that while larger models may have slight
advantages, scale alone is not a determining fac-
tor for calibration quality. Our results indicate that



training objectives and data distributions likely mat-
ter more than parameter count for uncertainty cali-
bration. The lack of significant difference between
base and instruction-tuned models (t = —0.712,
p = 0.486, Cohen’s d = —0.336) with a small ef-
fect size indicates that alignment training has mini-
mal impact on creative diversity calibration. Inter-
estingly, instruction-tuned models showed slightly
higher mean calibration (0.305 vs 0.274), though
this difference was not statistically significant. The
substantial epistemic uncertainty across all mod-
els (39.4-72.0%) highlights that decoding strategy
choice remains a dominant source of variation. No-
tably, Gemma-2B shows the highest epistemic ratio
(72.0%), suggesting extreme sensitivity to decod-
ing configuration despite achieving the best single-
configuration performance. This paradox suggests
that optimal calibration may require careful strat-
egy selection rather than robust performance across
strategies.

5.3 Practical Deployment Considerations

For practitioners deploying language models in cre-
ative applications, our findings offer concrete guid-
ance:

* Model selection: Mistral-7B-Instruct offers
the most consistent performance across strate-
gies (mean calibration: 0.371), while Gemma-
2B with temperature 0.7 provides the best sin-
gle configuration (0.434).

Strategy optimization: Top-k sampling pro-
vides the highest mean calibration (0.323),
though all models show substantial epistemic
uncertainty (39-72%), making careful tuning
essential.

Baseline expectations: With maximum cal-
ibration at 0.434 and overlap coefficients of
at most 0.033, expect substantial divergence
from human creative patterns.

Multi-strategy ensemble: Given high epis-
temic ratios, combining outputs from multiple
decoding strategies is crucial for approximat-
ing human creative diversity.

Model-specific tuning: In terms of calibra-
tion, base models (especially Gemma-2B at
72% epistemic) require more careful strategy
selection than instruction-tuned models like
Mistral-7B-Instruct (39.4% epistemic).
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* Calibration vs. quality: Calibration along
semantic, lexical, and syntactic dimensions
does not necessarily indicate qualitative align-
ment between model-generated and human-
produced text. Future work will investi-
gate this relationship comprehensively using
both human evaluations and LLM-as-a-Judge
scores.

Generalizatbility: Our findings are specific
to storytelling—an open-ended task priori-
tizing communicative goals such as creativ-
ity, fluency, and engagement. To extend this
analysis to other Natural Language Genera-
tion (NLG) research areas, we suggest task-
specific calibration analyses, as different tasks
involve distinct communicative objectives and
varying degrees of human production variabil-
ity that serve as calibration benchmarks.

6 Conclusion

This work establishes credal sets as a rigorous
framework for uncertainty quantification in open-
ended text generation, enabling principled geomet-
ric comparison between human and model varia-
tion patterns. Through comprehensive analysis of
100,000 generated stories calibrated against 5,000
human-written stories, we demonstrate substantial
gaps in how current language models capture hu-
man creative variation, with the best calibration
reaching only 0.434 (Gemma-2B with temperature
0.7) and overlap coefficients at most 0.033.

Our decomposition reveals that epistemic uncer-
tainty from decoding strategy choice contributes
39.4-72.0% of total uncertainty across models, with
base models showing higher sensitivity to config-
uration choices. The weak correlation between
model scale and calibration (p 0.400, p
0.600) and lack of significant difference between
base and instruction-tuned models (p = 0.486)
challenge common assumptions about model devel-
opment priorities. The credal set framework pro-
vides actionable insights for deploying language
models in creative contexts and establishes quanti-
tative benchmarks for evaluating progress toward
human-Al creative alignment. As language mod-
els increasingly engage in open-ended generation
tasks, our findings highlight the critical importance
of decoding strategy selection and the need for
architectural or training innovations specifically
targeting uncertainty calibration.



Limitations

Several limitations warrant consideration:

* Our analysis uses convex hulls which may
not capture non-convex uncertainty regions or
multimodal distributions within credal sets.

* The 500-prompt sample from a single domain
may not generalize to other creative writing
contexts or languages.

Decoding strategies evaluated prioritize high-
probability tokens, whereas humans often se-
lect surprising, low-probability tokens for cre-
ative effect—a mismatch that may constrain
achievable calibration.

Human baselines include natural skill varia-
tion beyond pure creativity, potentially inflat-
ing aleatoric uncertainty estimates.

Computational constraints limited us to 10
samples per configuration; larger samples
might reveal finer-grained patterns.

Statistical variance alone cannot distin-
guish creative quality from random varia-
tion—validating the relationship between our
metrics and perceived creative quality is es-
sential future work.
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A Extended Results
A.1 Credal Volume Analysis

Credal Set Volume Analysis
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Figure 6: Analysis of credal set volumes for human and language models. Left: Mean credal set volumes by model
(in PCA space). Right: Relationship between calibration score and credal set volume. A positive trend for base
models (GPT2-XL and Gemma) is observed, while a negative trend is observed for instruct models (Mistral and
Llama).

A.2 Wasserstein Distance Analysis

Wasserstein Distance Analysis: Distributional Differences from Human
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Figure 7: Distributional differences between model and human productions measured by Wasserstein distances.
Left: Mean Wasserstein distances across semantic, lexical, and syntactic dimensions. Semantic features show the
largest divergence from human distributions, followed by syntactic and lexical features. Middle: Model-specific
distributional similarity. Gemma-2B achieves the lowest Wasserstein distances (closest to human distributions),
while Llama models exhibit the highest distances. Right: Inverse relationship between calibration scores and
Wasserstein distances (moderate negative correlation). Gemma-2B and Mistral appear in the upper-left section (high
calibration, low distance), while Llama appears in the lower-right quadrant (low calibration, high distance).
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A.3 Complete Calibration Results

Table 4 presents calibration coefficients for all 20 model-strategy combinations evaluated in our experi-
ments.

Model Strategy Calibration
Gemma-2B temperature_0.7 0.434
Llama-3.1-8B-Instruct  temperature_1.2 0.409
Mistral-7B-Instruct top_k_40 0.403
Mistral-7B-Instruct temperature_1.2 0.399
Mistral-7B-Instruct top_p_0.9 0.391
Gemma-2B top_k_40 0.386
Mistral-7B-Instruct typical_0.95 0.354
GPT2-XL temperature_0.7 0.333
Mistral-7B-Instruct temperature_0.7 0.309
GPT2-XL top_k_40 0.300
Gemma-2B top_p_0.9 0.286
Gemma-2B typical_0.95 0.279
GPT2-XL top_p_0.9 0.240
GPT2-XL typical_0.95 0.231
Llama-3.1-8B-Instruct  typical_0.95 0.215
Gemma-2B temperature_1.2 0.212
Llama-3.1-8B-Instruct  top_k_40 0.199
Llama-3.1-8B-Instruct  temperature_0.7 0.196
GPT2-XL temperature_1.2 0.188
Llama-3.1-8B-Instruct  top_p_0.9 0.175

Table 4: Complete calibration results for all model-strategy combinations, sorted by calibration coefficient.

A.4 Statistical Tests

We conducted comprehensive statistical analyses to validate our findings:

* Model size vs calibration: Spearman’s p = 0.400 (p = 0.600), indicating weak positive correlation
without statistical significance.

* Base vs instruction-tuned: Two-sample t-test: ¢ = —0.712 (p = 0.486), no significant difference.
Cohen’s d = —0.336 (small effect size).

* Strategy comparison: ANOVA across strategies: F'(3,16) = 0.200 (p = 0.895), no significant
differences between strategies.

* Best performing model: Mistral-7B-Instruct showed highest mean calibration (0.371) across all
strategies.

* Best performing strategy: Top-k sampling achieved highest mean calibration (0.323 + 0.092) across
all models.

B Implementation Details

B.1 Computational Resources

All experiments were conducted on Google Colab with the following specifications:
* GPU: NVIDIA A100 (40GB) or V100 (16GB)
* RAM: 25-50GB depending on instance
 Storage: Google Drive for persistent storage

* Total compute time: Approximately 8 hours for generation, 1 hour for analysis
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B.2 Model Configurations

Models were loaded with the following optimizations:
* 4-bit quantization for models >3B parameters using BitsAndBytes
* Flash Attention 2 where supported
* Batch sizes optimized per model (8-25 samples)
* Automatic mixed precision (AMP) with fp16

B.3 Diversity Metric Computation

Semantic embeddings were computed using Sentence-BERT (all-MiniLM-L6-v2) with the following
parameters:

* Maximum sequence length: 512 tokens
* Batch size: 64 for encoding
* Pooling: Mean pooling over token embeddings

POS tagging was performed using spaCy’s en_core_web_sm model with a maximum text length of
5000 characters for efficiency.
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Abstract

Reliable uncertainty quantification (UQ) is es-
sential for ensuring trustworthy downstream
use of large language models, especially when
they are deployed in decision-support and other
knowledge-intensive applications. Model cer-
tainty can be estimated from token logits, with
derived probability and entropy values offering
insight into performance on the prompt task.
However, this approach may be inadequate
for probabilistic scenarios, where the proba-
bilities of token outputs are expected to align
with the theoretical probabilities of the possible
outcomes. We investigate the relationship be-
tween token certainty and alignment with theo-
retical probability distributions in well-defined
probabilistic scenarios. Using GPT-4.1 and
DeepSeek-Chat, we evaluate model responses
to ten prompts involving probability (e.g., roll
a six-sided die), both with and without explicit
probability cues in the prompt (e.g., roll a fair
six-sided die). We measure two dimensions:
(1) response validity with respect to scenario
constraints, and (2) alignment between token-
level output probabilities and theoretical prob-
abilities. Our results indicate that, while both
models achieve perfect in-domain response ac-
curacy across all prompt scenarios, their token-
level probability and entropy values consis-
tently diverge from the corresponding theoreti-
cal distributions.

1 Introduction

As large language models (LLMs) are increasingly
integrated into decision-support and knowledge-
intensive applications, uncertainty quantification
(UQ) is essential to ensure reliable downstream use
(Xiong et al., 2024; Vashurin et al., 2025). Prior
work has focused on leveraging the token logits—
numerical representations encoding the model’s
output probabilities—for UQ methods applied to
natural language generation tasks (Malinin and
Gales, 2021; Kuhn et al., 2023; Gupta et al., 2024;
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Lin et al., 2024; Duan et al., 2024; Fadeeva et al.,
2024; Lovering et al., 2025). Token logits can be
transformed into probabilities using activation func-
tions (e.g., softmax or sigmoid), enabling entropy
computation over the token distribution. These
probability and entropy values are often used to
quantify model certainty, providing token-level or
response-level confidence scores to users.

For prompts involving randomness, risk, or
chance, traditional UQ alone may be insufficient to
capture the true confidence a user should have in
implementing a model.

Key insight: Specifically, for prompts involving
probabilistic scenarios with inherent aleatoric un-
certainty (e.g., “flip a fair coin”), a model’s be-
havior is trustworthy only when its distribution
over possible outputs matches the intended theo-
retical distribution (which may be only implicitly
specified).

Hence, in these probabilistic scenarios, we argue
there are two considerations for uncertainty quan-
tification that are particularly important:

1. Whether a response is a valid output under
the specified scenario constraints (e.g., if the
prompt is “roll a six-sided dice”, the output
response should not be “7”).

2. Whether the response probability aligns with
the underlying theoretical distribution.

These considerations are somewhat in contrast to
traditional UQ settings, where model accuracy typi-
cally corresponds to low uncertainty when a model
is well-calibrated.

In this work, we explore the relationship between
token certainty and theoretical probability in well-
defined probabilistic scenarios. We prompt GPT-
4.1 and DeepSeek with 10 well-known scenarios
(e.g., roll a six-sided die or pick a card from a deck

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 51-60
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Probabilistic scenario prompt

“Roll a six-sided dice. — LLM output
Tell me what you get” ua
considerations
Valid possible outcomes (1) Is the
Response response
[1,2,3,4,5,6] “qr in-domain?
(Token logprob: — 0.079)
Probabilities of outcomes
Token probability
[ o o o fo 85 0.92 (2) Do the
6°6°6'6'6’6 o token
probabilities
Outcome distribution entropy Token cor(eSPDHd
distribution hW’fh the l
entropy theoretica
2159 0.8 distribution?

Figure 1: Probabilistic scenario prompting and response
evaluation design.

of 52 cards). Our selected scenarios allow us to
measure the models’ response certainty (was the
response valid?) and to compare the token output
probability and entropy of possible output tokens
to theoretical distributions (does the response prob-
ability align to real-world distributions?). We pro-
vide an example of our experimental design frame-
work in Figure 1. We experiment with a second
series of prompting, in which we include language
that reflects the distribution the model should use
(e.g., roll a fair six-sided die, pick a card from a
deck of 52 cards uniformly at random).

Our findings suggest that although GPT-4.1 and
DeepSeek exhibit appropriate contextual under-
standing and high response certainty, their token-
level output probabilities do not reliably represent
true probabilities in scenarios that require statisti-
cal reasoning or random sampling. Specifically, we
find that they respond with valid outputs with 100%
accuracy (i.e., they understand the constraints of
the prompted scenario) but their probability and en-
tropy values never align with the corresponding the-
oretical values. Based on our findings, we explore
three research questions for further discussion:

RQ1 Can LLMs accurately reason about the theo-
retical probabilities of our prompt scenarios?

RQ2 Are LLMs appropriate and reliable tools for
probability-oriented tasks where usability de-
pends on alignment with theoretical distribu-
tions?

RQ3 How can uncertainty quantification methods
be adapted to jointly evaluate response validity
and distribution alignment for probability-driven
tasks?
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2 Background and Related Work

2.1 Uncertainty Quantification for LLMs

Uncertainty quantification (UQ) measures the con-
fidence associated with model output, providing
information to guide user decisions on model de-
ployment, refinement, or rejection. UQ for LLMs
spans a wide range of methodologies for varying
granularity levels and certainty dimensions (Liu
et al., 2025; Shorinwa et al., 2025). Depending on
the task, UQ can be computed at the token level (a
single word), the span level (a contiguous sequence
of tokens representing the response segment of in-
terest), or the response level (the entire generated
output). To organize the wide range of UQ meth-
ods, Liu et al. (2025) and Shorinwa et al. (2025)
present surveys that synthesize the related literature
and characterize the state of the field.

Liu et al. (2025) proposed a taxonomy to or-
ganize sources of uncertainty beyond the general
aleatoric (uncertainty stemming from the random-
ness or variability in the data) and epistemic (un-
certainty stemming from lack of knowledge) cate-
gorization. The authors provide four dimensions
of uncertainty for finer-grained analysis: (1) input
uncertainty, (2) reasoning uncertainty, (3) parame-
ter uncertainty, and (4) prediction uncertainty. This
taxonomy supports their survey design, which fo-
cuses on the relationships between model scale,
open-ended generation, and uncertainty dynamics.
The authors further outline research directions, em-
phasizing the need for enhanced UQ methods for
natural language generation (NLG) tasks that ex-
tend beyond traditional binary formulations.

Shorinwa et al. (2025) provide an in-depth
overview on UQ, starting with the application in
machine learning tasks before focusing on appli-
cations in LLMs. The authors frame their survey
around the characteristics of the transformer ar-
chitecture and the auto-regressive, token-by-token
generation process underlying NLG. The survey is
organized by UQ methods: (1) token-level, (2) self-
verbalized, (3) semantic-similarity, and (4) mecha-
nistic interpretability. In conclusion, Shorinwa et al.
provide 5 directions for future work that recognize
the common mistakes and unique characteristics of
UQ for LLM-generated output (e.g., distinguishing
consistency from factuality and recognizing that
entropy does not equate to factuality).



2.2 Task-Dependent UQ

The choice of UQ granularity and methodology
is task-dependent—relevant certainty dimensions
should be determined by the user’s objectives and
appropriately inform reasoning about model out-
puts. Prior work has investigated methods to
measure certainty based on semantic similarity
(Kuhn et al., 2023), fact-checking information
claims (Fadeeva et al., 2024), and the calibration
of probability distributions (Lovering et al., 2025).
These certainty dimensions provide user insight
into model performance on common aspects of
generated output; for example, whether multiple
valid phrasings exist for an idea, whether model
confidence reflects factual accuracy, or whether
responses to probabilistic scenarios align with for-
mally defined theoretical distributions.

Kuhn et al. (2023) defined semantic entropy, a
UQ measurement that captures semantic meaning,
to improve predictive model accuracy on question
and answering (QA) tasks. Using the GPT-like
OPT models (Zhang et al., 2022), the authors ex-
periment with the TriviaQA (Joshi et al., 2017) and
CoQA (Reddy et al., 2019) datasets. The seman-
tic entropy measurements outperformed baseline
measurements by calculating the entropy of the dis-
tribution over meanings rather than token sequence.

Fadeeva et al. (2024) proposed a claim-specific
certainty method, Claim Conditioned Probability,
to identify the factual accuracy of the generated
claim and compare it to the model’s response con-
fidence. This technique allows for efficient hallu-
cination detection and provides the end user with
a measurement of model certainty about the spe-
cific information claim, as opposed to the overall
response certainty. Experimenting with English
(Vicuna 13B, Mistral 7B, Jais 13B, and GPT-3.5-
turbo), Chinese (Y1 6B), Arabic (Jais 13B and GPT-
4), and Russian (Vikhr-instruct-0.2 7B), the authors
evaluated their method using human annotation
and found that their results are comparable to fact-
checking efforts using external knowledge sources.

Lovering et al. (2025) investigated if LLM gen-
erated output probabilities are calibrated to the
underlying defined probabilities within their tex-
tual contexts. Using a set of word problems that
define the probabilistic scenario (e.g., “From 17
red marbles and 99 blue marbles, Billy reached
blindly into the bag and grabbed a marble with the
color [red/blue].”), the authors prompted Mistral,
Yi, Gemma, and GPT-4 model families to generate
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outputs and associated token probabilities. Lover-
ing et al. found that these GPT LLMs are sensitive
to the input prompt and do not produce outputs that
are calibrated to the presented distributions.

We build on the research presented by Lovering
et al. (2025) and incorporate the veracity dimension
from Fadeeva et al. (2024) by prompting GPT mod-
els with well-known probabilistic scenarios. Our
experimental design mitigates the prompt-induced
bias (found in Lovering et al.’s study) by omitting
explicit specification of the probabilistic scenario.
Thus, we include a response validation to ensure
that the generated outputs are valid within the sce-
nario’s constraints.

3 Methodology
3.1 Definitions

This work is primarily focused on two measure-
ments of LLM outputs:

Token probability Each token ¢ € 7 has a proba-
bility of being selected by the model as output,
0 < Pr(t) < 1. The probabilities of all possible
tokens sums to one: » ., Pr(f) = 1. Lan-
guage model token probabilities are conditioned
on previous tokens. In other words, the proba-
bility of the nth token output by the model is
Pr(t, | th—1tn—2 . ..tx), where previous tokens
may come from user dialogue or previous model
outputs.

Entropy The entropy of a discrete random variable
T is defined as

H(T) = — 3 logy(Pr(t)) - Pr(1)

teT

where T takes on values in the set 7. Entropy
quantifies how much uncertainty is associated
with the variable; if a variable has low entropy,
then its outcome is easily predicted.

3.2 Computation

Token probability Certain LLM vendors, such
as OpenAl and DeepSeek via the Chat Completions
API, allow token “logprobs” to be programmati-
cally accessed by a user. For a token ¢, its logprob
is [(t) = log (Pr (t)); hence, token probability can
be easily derived, ¢!} = Pr (t).

Entropy Given a set of token (log-)probabilities
from the model, entropy can be computed as de-
scribed above. Note that there are two limitations



that affect this procedure. First, vendors expose
only a limited number of token logprobs (at the
time of this writing, OpenAl and DeepSeek ex-
pose the top 20 most probable tokens and their
logprobs). To obtain a proper probability distribu-
tion, we add an other token to the collection with
a determined probability value so that the proba-
bility values sum to 1. Second, some LLM output
values are the concatenation of multiple tokens. To-
ken logprobs, however, are provided for only the
selected sequence of tokens and not for all possible
sequences. For entropy to be computed correctly,
the distribution should be taken over all possible
output sequences. For both of these reasons, com-
puted entropy values are likely a slight underesti-
mate of the model’s true entropy over the token
distribution.

3.3 Prompt Design and LLLM Configuration

We select 10 prompts that contain well-defined
probabilistic scenarios; five scenarios are various
actions of chance, and five scenarios are random
choices from a set of items. For further evaluation,
we include a second prompt set that explicitly in-
structs how we want the model to select an output
(e.g., flip a fair coin, pick a Shakespeare play uni-
formly at random). We list the scenarios and note
the terminology included in their specified versions
in Table 1 with their corresponding outcome proba-
bility and entropy values. Additionally, we include
the statement “Respond only with the result” to the
end of all prompts, as the generated output affects
the token probabilities. We want only the exact
response to be generated for our evaluations.

We experiment with two state-of-the-art LLMs:
OpenAl's GPT-4.1 (gpt-4.1-2025-04-14) and
DeepSeek-Chat (DeepSeek-R1-0528). Both mod-
els are closed-source implementations accessible
via API endpoints. We selected these models on
three criteria: (1) competitive benchmark perfor-
mance across a range of natural language genera-
tion tasks, (2) architectural features representative
of current frontier LLM designs, and (3) explicit
support for token-level logprob outputs, which are
required for our experimental analysis.

We prompt GPT-4.1 and DeepSeek-Chat via the
OpenAlI python package using chat.completions
and set logprobs = true to output the maximum
(20) top tokens and their corresponding logprob
values. Our prompts are passed through the user
role and we do not assign a system role. We use
the default values for the remaining parameters.
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Our code is available at https://github.com/
autumntoney/chatbot-certainty.

4 Experimental Results

For both the unspecified and specified prompt sets,
we generate five independent samples from each
model. We compute the mean token-level proba-
bility and entropy values across these samples and
compare the aggregated statistics to the theoreti-
cal values defined by the corresponding probabilis-
tic scenario (listed in Table 1). Table 2 displays
the most frequent responses for each experiment
configuration in which at least one response was
repeated across samples. Configurations in which
all responses were unique are not listed. The fre-
quency column denotes the total count of response
occurrences across both sets (e.g., if the model
generates the same response three times in the un-
specified prompt and four times in the specified
prompt, then the frequency value is seven).

We find that the majority of samples have more
than one response in common except for GPT-
4.1’s Bingo (unspecified and specified) and month
and day (specified) samples. For the coin-flip
and dice-roll scenarios, both DeepSeek-Chat and
GPT-4.1 produce the same outcome across all sam-
ples (“heads” and “4”, respectively), and in the
rock—paper—scissors scenario, both models pre-
dominantly select “scissors.” The most frequent re-
sponses differ depending on the model and prompt
for all other scenarios.

All responses from both models are within the
probabilistic scenario constraints, with the excep-
tion of DeepSeek-Chat providing partial responses
for Bingo and Roulette. For example, GPT-4.1
specifies the roulette pocket with both color and
number (e.g., 27 Black), whereas DeepSeek-Chat
provides only the number (e.g., 14). Similarly, in
the Bingo scenario, GPT-4.1 provides the letter and
number (e.g., G-52) but DeepSeek only provides
a number (e.g., 17). We consider these partial re-
sponses to be accurate within the scenario as the
numeric values are valid options.

4.1 Prompt-level Comparisons

To compare the generated outputs between the un-
specified and specified prompts, we compute the
differences between their mean probability and
entropy values across the five samples for each
prompt set. Table 3 displays the complete set of
probability and entropy values, with the differences


https://github.com/autumntoney/chatbot-certainty
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Scenario Prompt Pr(x) H(X)
Bible® Pick a book of the Bible. 0.0152 6.04
Bingo' Pick a bingo ball. Tell me what you get. 0.0133 6.23
Coin flip® Flip a coin. 0.5 1
Dart on Map’ Throw a dart at a map. Tell me what country it lands on. 0.00403 7.96
Die roll® Roll a six-sided die. Tell me what you get. 0.167 2.58
Month & Day?  Pick a month and day. 0.0027 8.51
Playing Cards™ Pick a card from a deck of playing cards. Tell me your card. 0.0192 5.7
R-P-St You are playing rock, paper, scissors. Make your throw. 0.33 1.59
Roulette’ Spin an American roulette wheel. Tell me which pocket it lands in.  0.0263 5.25
Shakespeare’  Pick a Shakespeare play. 0.0256 5.29

Table 1: Probabilistic scenarios used for prompt experiments with their corresponding outcome probability and

entropy values under a uniform distribution. ™ denotes the specified scenarios that add “uniformly at random

3y K
s

denotes the specified scenarios that add “randomly”, and ¢ denotes the specified scenarios that add “fair”.

Scenario Dist Response Frequency
DeepSeek GPT-4.1 DeepSeek GPT-4.1

Coin flip U/S Heads Heads 10 10
Die roll us 4 4 10 10
Rock-paper-scissors U/S  Scissors Scissors 9 6
Roulette U 14 27 Black 2 2
— S 14 & 17 32 Red 4 2
Dart on Map U Botswana Uzbekistan 4 4
— S Mongolia Brazil 4 2
Playing Cards U/S 7 of Hearts Queen of Hearts 8 6
Shakespeare u Hamlet Macbeth 5 4
— S King Lear Twelfth Night 2 3
Month & Day U July 12& 15 N/A 4 N/A
— S June 14 N/A 3 N/A
Bingo u 17 N/A 5 N/A
— S 42 N/A 4 N/A
Bible u Genesis Ruth 3 3
— S Jonah Habakkuk 3 2

Table 2: Most frequent responses by prompt scenario and model. Each row reports results where the distribution
was explicitly specified (S) or unspecified(U); U/S indicates that the results were the same for both the specified and
unspecified cases. If a model never generated a token more than once, the columns are marked N/A.

between results obtained from unspecified versus
specified prompts. For all unspecified prompt re-
sults, both DeepSeek-Chat and GPT-4.1 produce
probability values that are higher and entropy val-
ues that are lower than their corresponding theoret-
ical values. Thus, we expect that the results gener-
ated from the specified prompts will decrease the
probability values and increase the entropy values.
We find that while the probability and entropy are
slightly corrected with explicitly-specified prompts,
the rate of correction is inconsistent and the speci-
fied values remain far from the correct theoretical
values.

GPT-4.1 generally generates responses with
lower probability and higher entropy values when
prompted with the probabilistic specification (fair
or uniformly at random) compared to the unspec-
ified prompt. The roulette scenario changes the
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probability from 0.13 to 0.16 and the entropy from
3.39 to 3.34 when the specification is included. Ad-
ditionally, the specified results have lower entropy
than the unspecified for the dart-on-map (3.47 to
3.00) and rock-paper-scissors (1.29 to 0.66) scenar-
i0s.

DeepSeek-Chat generated responses have in-
creased probability values for 4 of the 10 scenarios
when the prompt includes the probabilistic speci-
fication: die roll (0.3 to 0.593), playing cards(0.6
to 0.994), rock-paper-scissors (0.7 to 0.978), and
roulette (0.08 to 0.2). Of these 4 scenarios, 3 pro-
duced lower entropy values when the prompt in-
cluded the probabilistic specification: die roll (1.24
to 1.160), playing cards (0.289 to 0.061), and rock-
paper-scissors (0.5 to 0.15).

For both probability and entropy, DeepSeek-
Chat and GPT-4.1 show the greatest response shift



Model Experiment Pr(t) H()
Unspecified Specified |A| Unspecified Specified |A|
DeepSeek g - 0.4 0.4 0 0.849 1.8 0.9
GPT-4 0.4 02 0.2 219 322 1.03
DeepSeek Bingo 0.872 0.7 0.2 0.715 0.8 0.1
GPT-4 9 0.09 004 005 29 3.0 02
DeepSeek oo ¢ 1.0 0998  0.002 000011 002 0.2
GPT-4 P 1.0 0999 0.00068  0.0002 0.0083 0.008
DeepSeek 0.783 06 0.2 0.987 1.0 0
GPT-4 Dart at map 0.227 019 003 3.47 3.0 0.46
DeepSeek . 03 0593 03 1.24 116  0.081
GPT-4 0.96 0924 00355  0.279 0447  0.167
DeepSeek 0.6 0.6 0.1 0.87 1.04 0.17
GPT-4 Month and day 0.36 0028 034 2.85 38 0.9
DeepSeek . 06 0994 0.3 0.289 0061  0.229
GPT-4 Playing cards 0.4 013  0.26 2.44 3.49 1.05
DeepSeek . 0.7 0.978 0.3 0.5 0.15 0.4
GPT-4 Rock-paper-scissors (', 05 0 1.29 066 063
DeepSeek 0.08 0.2 0.2 2.04 2.1 0
GPT-4 Roulette 0.13 016 002 3.39 334 0.6
DeepSeek 0.979 0.4 06 0.144 1.1 1.0
GPT-4 Shakespeare 0.66 02 047 0.89 208 209

Table 3: Token probabilities and entropy over token probability distributions. The A columns show the difference
between the unspecified and specified values. Values are reported up to 3 significant figures.

in the Shakespeare scenario. The explicit sam-
pling strategy (uniformly at random) in the prompt
decreases the response probability from 0.979 to
0.4 for DeepSeek-Chat and from 0.66 to 0.20 for
GPT-4.1. Entropy increases from 0.144 to 1.1 for
DeepSeek-Chat and from 0.89 to 2.98 for GPT-4.1.

4.2 Generated to Theoretical Comparisons

Because the specified prompts produced results
more closely aligned with the theoretical values, we
use them as a basis for comparison. We compute
the differences between the theoretical probability
and entropy values and the corresponding mean
values generated by the models. We display these
comparisons in Figures 2a and 2b.

When explicitly prompted, GPT-4.1 produces
probability and entropy values that are more closely
aligned with the corresponding theoretical values
than those generated by DeepSeek-Chat. For seven
of the ten scenarios, GPT-4.1’s average probability
differences are greater than -0.2, whereas all of
DeepSeek-Chat’s probability differences fall below
this threshold.

Both LLMs exhibit varying degrees of alignment
with the theoretical values. GPT-4.1 achieves near-
perfect probability alignment (for the selected to-
ken) in the Bingo (-0.03) and Month-and-Day (-
0.02) scenarios, whereas DeepSeek-Chat’s closest
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alignment occurs in the Roulette scenario (-0.22).
GPT-4.1 shows its poorest probability alignment in
the die roll (-0.75) and coin flip (-0.50) scenarios,
which are two of the most elementary probability
tasks in our scenario set. DeepSeek-Chat’s least
aligned output occurs in the playing cards scenario
(-0.97), always responding with 7 of hearts when
given the specified prompt. Both models poorly
capture entropy; for instance, the entropy associ-
ated with a coin flip deviates by nearly 100%. GPT-
4.1 exhibits lower percent error for most scenarios,
but both models have higher than 30% error mod-
eling entropy in all scenarios.

5 Discussion

Because LLMs are considered effective tools for
individual tasks or as components within larger
processing pipelines, UQ is particularly important,
not only to obtain confidence estimates, but also
to understand precisely what those estimates rep-
resent. In some use cases, it may be necessary
to expand UQ methods to capture task-specific re-
quirements more comprehensively. In this work,
we examine UQ in the context of prompts involving
probabilistic scenarios, where an optimal model
output would align with the corresponding theo-
retical probability distributions. Our experiments
show that both DeepSeek-Chat and GPT-4.1 fail to
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(a) Difference between the selected token’s probability and its theoretical value. The error bars show 1 SEM.
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(b) Percent error of each LLM’s distribution over outputs with respect to the theoretical distribution. The error bars show 1 SEM.

Figure 2: Comparisons of LLM token distributions to the theoretical distributions.

achieve this alignment, specifically in straightfor-
ward cases such as a coin toss or die roll.

probabilistic scenario, but rather experimented with
well-known scenarios. Additionally, our prompts
elicited responses consisting solely of the final
answer, ensuring that the observed biases are at-
tributable exclusively to token-level probabilities.
In typical UQ settings, certainty measurements
must account for the auto-regressive generation
process of LLMs; however, by removing this factor
in our experiments, we demonstrate that system-
atic biases persist even in the absence of sequential
generation effects.

Despite their failure to achieve probabilistic cali-
bration, both DeepSeek-Chat and GPT-4.1 attained
100% accuracy in response validity across all sam-
ples, demonstrating consistent in-domain knowl-
edge of the probability-oriented tasks. However,
their response certainty levels varied by scenario.
For example, in the unspecified prompts, both
DeepSeek-Chat and GPT-4.1 exhibited the high-
est certainty on the coin flip task (Pr(t) = 1.0 and
H(T') < 0.0002 for the token “heads”). DeepSeek-
Chat additionally produced a highly confident re-
sponse in the Shakespeare scenario (Pr(t) = 0.979
and H(T) = 0.144 for the token “Hamlet”). In
contrast, the greatest response uncertainty was ob-
served in the bingo (Pr(¢) = 0.09 and H(T") = 2.9),
dart on map (Pr(¢) = 0.227 and H(T") = 3.47), and
roulette (Pr(t) = 0.13 and H(T") = 3.39) scenar-
ios for GPT-4.1, and in the die roll (Pr(¢) = 0.3;
H(T') = 1.24) and roulette (Pr(¢) = 0.08 and H(T")
= 2.04) scenarios for DeepSeek-Chat.

Motivated by our findings, we explore three ad-
ditional questions for deeper examination and dis-
cussion:

(1) Can LLMs accurately reason about the
theoretical probabilities of our prompt scenar-
ios? In our initial experimentation we found that
DeepSeek-Chat provided its response along with
its reasoning, as shown in the examples in Figure
3. We conducted follow-up interactive chat ses-
sions with GPT-4.1 to probe the model’s reasoning
processes and assess its understanding of the sam-
pling techniques required by the statistical scenario
prompts (examples shown in Figure 4).

Our findings are consistent with Lovering et al.
(2025), even with our difference in prompt style;

we did not explicitly specify the constraints of the Both models demonstrate the ability to artic-
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Scenario: Coin

Flip a coin.

Sure! Let's flip a virtual coin:
Result: Heads

(It's @ 50/50 chance—refresh if you'd like to flip again!)

Scenario: Roulette

Spin an American roulette wheel.
Tell me which pocket it lands in.

Certainly! An American roulette wheel has 38 pockets:
numbers 1 through 36, plus a single zero (0) and a double zero
(00).

Here's your spin result:
The ball lands in pocket: 17 (Red)

(Note: This is a randomly generated result for simulation
purposes. In a real game, the outcome is entirely random.)

Would you like to spin again? &

Figure 3: DeepSeek-Chat example dialogue for proba-
bilistic reasoning about prompt scenarios.

ulate the correct probability distributions for the
prompted scenarios, reflecting accurate reasoning
and in-domain knowledge. Despite their dialogue
responses, DeepSeek-Chat and GPT-4.1 generated
response tokens with probability and entropy val-
ues that did not align with the corresponding the-
oretical distributions. This discrepancy between
verbalized reasoning and token-level sampling sur-
faces a critical gap between model reasoning expla-
nations and probabilistic calibration.

(2) Are LLLMs appropriate and reliable tools
for probability-oriented tasks where usability
depends on alignment with theoretical distribu-
tions? Our experimental results suggest that, while
LLMs can produce valid outputs for probability-
oriented tasks, they are not reliably aligned with
the underlying theoretical distributions required for
the desired performance. In applications where
usability depends on accurate probabilistic calibra-
tion (e.g., simulations, randomized trial designs,
decision-support systems involving chance) this
misalignment could lead to systematic bias or mis-
leading outcomes. The observed divergence be-
tween output certainty and theoretical probabil-
ity indicates that LLMs, in their current form,
may not be suitable as stand-alone tools for such
tasks without additional calibration, fine-tuning, or
post-processing to enforce distributional alignment.
While our follow-up chatbot interactions suggest
that LLLMs possess the underlying knowledge to
reason correctly about probabilities—giving the
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Scenario: Die roll
Roll a six-sided die . Tell me what you get.

€ Yourolled a 4.

What was the probability that you rolled a four?
On a fair six-sided die, each face has an equal chance of landing face up.

That means the probability of rolling a 4 is:
1
P(4) =% =16.67%

So While the result | gave you was a 4, the probability of that specific
outcome happening was 1in 6.

Scenario: Shakespeare (specified).

Pick a Shakespeare play uniformly at
random. Respond only with the result.

Timon of Athens

What is the probability that you chose that outcome?
The probability is:
1/n

where n is the total number of Shakespeare plays considered. If we
assume the full traditional canon of 39 plays (including the
collaborations and The Two Noble Kinsmen), then the probability is:

1/39 = 0.0256 or 2.56%

if a different total was used (e.g., only the 37 traditionally attributed
plays), then it would be 1/37 % 2.70%

Figure 4: GPT-4.1 example dialogue for probabilistic
reasoning about prompt scenarios.

appearance that they are suitable for probability-
oriented tasks—they are not inherently designed to
generate outputs aligned with theoretical distribu-
tions. Instead, their outputs reflect the statistical
patterns present in their training data. Thus, inte-
grating these models into workflows that involves
probabilistic behavior should require evaluation be-
yond traditional UQ prior to deployment.

(3) How can uncertainty quantification meth-
ods be adapted to jointly evaluate response va-
lidity and distribution alignment for probability-
driven tasks? UQ is intended to provide a mean-
ingful measure of a model’s response certainty, di-
rectly influencing user trust and perceived usability
in a given task. While traditional UQ metrics can
capture response validity (e.g., is the output valid
for the prompted scenario constraints?), they do
not account for distributional alignment (e.g., is the
output sampled from the corresponding theoretical
distribution required for an “accurate” response?).
For probabilistic scenarios, we recommend that UQ
be extended to either: (1) provide separate metrics:
one for validity (compliance with task constraints)
and one for probability alignment (closeness to the
target distribution), or (2) define a composite met-



ric: integrating both dimensions into a single score
that reflects overall task suitability. In this way, UQ
for probabilistic scenarios should provide insight
into the “certainty” of distribution alignment.

6 Conclusion

The divergence between certainty and probability
has important implications for deploying LLMs
in high-stakes decision-support contexts, where
probabilistic calibration is critical for trustworthy
system behavior. In this study, we examined the
relationship between token-level certainty and the-
oretical probability alignment in LLMs, focusing
on probabilistic scenarios with well-defined distri-
butions. Across ten probability-oriented prompts,
GPT-4.1 and DeepSeek-Chat consistently gener-
ated valid responses within scenario constraints;
however, their token-level probability and entropy
values differed from the corresponding theoretical
distributions. These results highlight an important
distinction in uncertainty quantification between re-
sponse certainty and probabilistic calibration. Ad-
ditional evaluation is required when alignment with
a theoretical probability distribution is a critical
aspect of the task. Without such assessment, a
model’s apparent accuracy may mask deficiencies
in its probabilistic calibration.
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Abstract

Model-internal uncertainty metrics like perplex-
ity potentially offer low-cost signals for Ma-
chine Translation Quality Estimation (TQE).
This paper analyses perplexity in the “No
Language Left Behind” (NLLB) multilingual
model. We quantify a significant model-human
perplexity gap, where the model is consis-
tently more confident in its own, often lit-
eral, machine-generated translation than in di-
verse, high-quality human versions. We then
demonstrate that the utility of perplexity as a
TQE signal is highly context-dependent, be-
ing strongest for low-resource pairs. Finally,
we present an illustrative case study where a
flawed translation is refined by providing poten-
tially useful information in a targeted prompt,
simulating a knowledge-based repair. We show
that as the translation’s quality and naturalness
improve (a +0.15 COMET score increase), its
perplexity also increases, challenging the sim-
ple assumption that lower perplexity indicates
higher quality and motivating a more nuanced
view of uncertainty as signalling a text’s depar-
ture from rigid translationese.

1 Introduction

Translation Quality Estimation (TQE) is critical
for machine translation (MT) system deployment,
and is particularly challenging for low-resource
languages. Whereas reference-based evaluation
metrics directly compare gold-standard human-
generated translations and model-generated trans-
lations, TQE aims to assess the quality of trans-
lations without such references. This paper em-
ploys a glass-box approach to investigate a two-
stage goal: first, whether a model’s internal uncer-
tainty, measured by perplexity (PPL), can serve
as a lightweight signal to detect likely errors, and
second, whether those errors can then be repaired
using knowledge-guided prompting.

One challenge to using perplexity for TQE is
that autoregressive models prefer their own output

distributions. Our first contribution is to provide
an empirical quantification of this phenomenon
in a massively multilingual setting. We measure
this model-human perplexity gap within the NLLB-
200-3.3B model (Costa-Jussa et al., 2022), confirm-
ing that the model is systematically less perplexed
by its own text than by professional human trans-
lations. Our findings show that perplexity often
measures conformity to translationese rather than
actual translation quality. This finding motivates
a more nuanced question that we explore: beyond
simple quality, can perplexity serve as a signal for
a translation’s naturalness? This paper investigates
the possibility that as a translation moves from lit-
eral translationese towards more fluid, human-like
language, its perplexity, as judged by the original
model, might paradoxically increase.

Finally, we conclude with a case study demon-
strating the detect-and-repair workflow that mo-
tivates our research. We show how a lexical
error, once identified, can be repaired using an
instruction-tuned model guided by external knowl-
edge, providing initial evidence for our naturalness
hypothesis.

2 Related Work

Our work builds on research into model uncer-
tainty for TQE, model artifacts like translationese,
and LLM-based refinement. Using model-internal
probabilities for reference-free TQE is a well-
established approach (Fomicheva et al., 2020).
However, optimizing solely for low perplexity can
make models less human-like, as their surprisal pat-
terns diverge from human reading patterns on key
syntactic structures (Kuribayashi et al., 2021). Our
work quantifies how this sensitivity is modulated by
language resource levels. We also connect this to
the challenge of translationese—the distinct statisti-
cal characteristics of translated text, a known issue
in MT evaluation (Zhang and Toral, 2019), and
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contribute by measuring the model’s preference for
this form of language across a multilingual setting.

3 Method

Our primary analysis centres on the NLLB-200-
3.3B model. For our refinement case study, we
use the Llama 3 7B Instruct model (Dubey et al.,
2024), since the NLLB models are not instruction-
tuned and are therefore unsuited for the open-ended
editing task required by our prompt. All translation
data is from the ‘devtest’ split of the FLORES-
200 dataset (Costa-Jussa et al., 2022). We analyse
three language pairs with English: Spanish (high-
resource), Japanese (medium-resource), and te reo
Maori (low-resource). Our metrics include PPL,
SacreBLEU (Post, 2018), and COMET (Rei et al.,
2020). For Japanese evaluation, we use the default
‘ja-mecab’ tokenizer, which relies on the MeCab
morphological analyser (Kudo, 2005). The specific
COMET model is ‘Unbabel/wmt22-comet-da’ (Rei
et al., 2022), the top-performing model from the
WMT?22 shared task (Freitag et al., 2022).

Defining Naturalness We define naturalness as
a translation’s fluency and resemblance to human
writing. In our case study, we operationalize this
by assessing two of its key components: an in-
crease in overall translation quality, measured by
the COMET score, and the correction of a clear
lexical error.

4 Analysing the Model-Human Perplexity
Gap

Our first analysis involved generating translations
for all language pairs and scoring the perplexity
of both the MT and human reference for the same
source sentence.

4.1 Quantifying the Gap

As is often observed in models trained with maxi-
mum likelihood estimation, the model consistently
assigns lower perplexity to its own outputs than
to diverse human references. Table 1 provides a
precise quantification of this effect. In every case,
the median perplexity of the model’s own output
is substantially lower than that of the human refer-
ence.

This gap is visualized in Figure 1. For
ENG—MRI, the model is over 3.3 times more per-
plexed by the human translation than its own.
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Table 1: Median perplexity of machine-generated text vs.
human reference text using the NLLB-3.3B model. The ‘Gap’
column shows the calculated difference.

Direction PPL (Machine) PPL (Human) Gap
SPA — ENG 1.44 2.67 1.23
JPN — ENG 1.73 3.17 1.44
MRI — ENG 1.60 3.63 2.03
ENG — SPA 1.45 3.29 1.84
ENG — JPN 2.77 10.67 7.90
ENG — MRI 2.15 7.18 5.03

Perplexity Paradox (3.3B): Machine vs. Human Text
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Figure 1: This chart visualizes the data from Table 1, showing
the consistent gap between the median perplexity for machine-
generated text and human-written text.

4.2 The Conditional Utility of Perplexity

Next, we investigated if perplexity, despite this gap,
correlates with quality. Table 2 shows a clear trend:
the strength of the negative correlation increases as
the source language becomes lower-resourced. For
te reo Maori, PPL becomes a stronger signal, with
a correlation of -0.639 with COMET.

Table 2: Correlation between perplexity and quality metrics
for the 3.3B model.

Direction r (PPL vs. BLEU) r (PPL vs. COMET)
SPA — ENG —0.210 —0.299
JPN — ENG —0.434 —0.446
MRI — ENG —0.565 —0.639

This relationship is visualized in Figure 2. Trans-
lation quality drops as perplexity increases, provid-
ing support for using an adaptive perplexity filter
to identify likely errors in lower-resource settings.

4.3 Dissecting the Uncertainty Signal

To better understand what drives sentence-level per-
plexity, we analysed features of tokens with high
levels of surprisal (the model’s predicted probabil-
ity of a token given the preceding context). Ta-
ble 3 shows that for the low-resource MRI—-ENG
direction, not only does perplexity have a strong
negative correlation with quality, but the variance
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Figure 2: Average COMET score for MRI—ENG sentences
binned by perplexity decile. The visible trend indicates a
negative correlation between perplexity and translation quality.

of the token surprisals does as well. This suggests
that translations with spiky or uneven uncertainty
are also more likely to be of lower quality.

Table 3: Correlation of key surprisal features with COMET
score for MRI—-ENG (3.3B Model).

Feature Pearson’sr  p-value
perplexity_mt -0.639 < .0001
variance_of_surprisal_mt -0.173 < .0001

A deeper look at the most surprising tokens in
the generated te reo Maori translations provides a
direct explanation for this spikiness and the overall
brittleness of perplexity as a metric. Table 4 shows
that for ENG—MRI, the model’s uncertainty is of-
ten caused by subword fragments from its tokeniza-
tion of the target sentence, not complex semantic
concepts. This suggests that high perplexity scores
can be an artifact of statistically rare tokenization,
where a single awkward subword inflates the un-
certainty for an otherwise acceptable sentence.

Table 4: Top 5 most surprising tokens for ENG—MRI ma-
chine translations. The underscore (_) indicates a subword
fragment.

Token Mean Surprisal (bits)
_ume 24.81
_oke 24.38
_nu 24.29
_ony 23.74
_ik 23.71

4.4 Consistency Across Model Scales

To confirm that our findings are a general trait
of the NLLB architecture and not specific to one
model size, we also performed our core analyses
on the smaller, distilled NLLB-600M model. Ta-
ble 5 shows that our main conclusions are robust
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and consistent across both the primary and distilled
models.

Table 5: Comparison of key metrics across model sizes. The
‘(r)’ columns show the Pearson correlation between perplexity
and COMET score for the given direction. The ‘Gap’ column
shows the difference between the median perplexity of human
vs. machine text for ENG—MRI.

Model MRI—-ENG SPA—ENG (r) ENG—MRI
(r) (r) GAP

600M -0.625 -0.448 7.73

3.3B -0.639 -0.299 5.03

The table highlights two consistent behaviours.
First, both models showed a much stronger neg-
ative correlation between perplexity and quality
for the low-resource pair (MRI—ENG) than for
the high-resource pair (SPA—ENG). Second, both
models exhibit a large Model-Human Perplexity
Gap for the low-resource ENG—MRI direction.
This confirms that the conditional utility of per-
plexity and the preference for translationese are
fundamental traits of the NLLB architecture, not
just a quirk of a single model.

5 Case Study: Refining for Naturalness

Our broader motivation for studying uncertainty is
a two-step process: first, using a signal like perplex-
ity to detect potential errors, and second, using that
signal to trigger a knowledge-based repair. This
case study serves as a proof-of-concept for the sec-
ond step. To explore our naturalness hypothesis,
we selected a representative expected failure from
the NLLB-3.3B model. We define expected fail-
ures as sentences in the top decile of perplexity
(low model confidence) and the bottom decile of
COMET score (low quality). The chosen transla-
tion contained a clear lexical error, mistranslating
“spirits” as the Spanish word for ghosts instead of
alcohol. We then constructed a prompt for Llama 3
containing the source, the flawed translation, and
hand-selected contextual information to attempt a
repair.

The results, shown in Table 6, demonstrate a
clear success. The simulated Retrieval Augmented
Generation (RAG)-based edit corrected the primary
semantic error, leading to a significant improve-
ment in quality.

The refinement process not only improved the
translation’s quality (a +0.15 jump in COMET
score) but also moved its perplexity score (1.43)
closer to the median perplexity of human text for



Table 6: A single expected failure sentence (‘Illegal spirits can contain various dangerous impurities...”) before and after
RAG-based refinement. The original NLLB translation contains a lexical error, mistranslating ‘spirits’ as the Spanish word for
ghosts (espiritus). The refined output is significantly higher quality and also has a slightly higher perplexity.

Version Translation Text

PPL BLEU COMET

NLLB-3.3B (Original)
Llama 3 (RAG)
peligrosas...

Los espiritus ilegales pueden contener varias impurezas peligrosas...
Las bebidas alcohdlicas ilegales pueden contener varias impurezas

1.30 7.51 0.7627
143  10.32 0.9156

this direction (3.29). We note that the refined text
was generated by Llama 3, and the perplexity was
measured by NLLB. While this model mismatch
is a confounding variable, the result illustrates that
a higher-quality translation is not always one with
the lowest possible perplexity according to the orig-
inal model, and points to a potential for RAG-based
or other knowledge-based MT refinement in lower-
resource settings.

6 Discussion

Our experiments expose two key findings: a signif-
icant and consistent model-human perplexity gap
exists, and the utility of perplexity as a quality sig-
nal is conditional on accounting for the resource
level of the language pair.

The quantification of the perplexity gap is a cen-
tral finding. The NLLB-3.3B model is systemati-
cally more confident in its own, often literal, out-
puts than the arguably more nuanced professional
human translations. This indicates, not entirely
surprisingly, that the model’s internal sense of sur-
prise is calibrated to its own output distribution—to
its version of translationese—rather than to natu-
ral human language. We also observe an interac-
tion between model scale and resource level. For
the high-resource SPA—ENG pair, the correlation
between perplexity and quality weakens with the
larger model (from r=-0.448 to r=-0.299), hinting
that once fluency reaches a ceiling, uncertainty be-
comes a less informative signal.

Token-level surprisal analysis further explains
why perplexity can be a brittle quality indicator.
In our study, high perplexity often stemmed from
tokenization artifacts, such as rare subword frag-
ments, rather than genuine semantic or syntactic
difficulty. This suggests that raw perplexity scores
may reflect superficial statistical anomalies more
than deep meaning errors. Accounting for this may
improve use of PPL for translation quality improve-
ment.

Finally, our case study illustrates that perplexity
might signal naturalness rather than correctness.
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This reframes its potential role: instead of simply
minimizing perplexity, future work might aim to
align a translation’s perplexity profile with that of
high-quality human-generated text, or with text
whose correctness has been improved or certified
by other means.

7 Limitations and Future Work

Our analysis focussed on the NLLB 3.3B model.
Results may differ for the largest NLLB variants,
which could exhibit different perplexity distribu-
tions. Additionally, our evaluation relies exclu-
sively on FLORES-200, which consists of multidi-
rectional translations of encyclopedic text. Testing
across other domains will be essential to assess
generalisability.

Our simulated RAG refinement was a proof of
concept with a hand-selected context. A next step
would be to develop and evaluate a full RAG sys-
tem with automated retrieval strategies to deter-
mine if the observed improvements hold. More
broadly, our results suggest that perplexity may
serve as a signal for naturalness; scaling up the
case study to correlate perplexity with human flu-
ency judgements across diverse language pairs and
domains could validate this.

8 Conclusion

We quantified the model-human perplexity gap in
a large multilingual model, showing that perplexity
often measures conformity to translationese rather
than semantic quality. We found that its utility as a
quality signal is strongest in low-resource settings.

Our case study demonstrates that targeted re-
finements can improve a translation while increas-
ing perplexity, challenging the view of perplexity
solely as a metric to minimize. A richer interpreta-
tion treating it as a useable signal for naturalness
could open new directions for improving transla-
tion quality.



9 Ethical Considerations

Our ethical position is that everyone should have
equitable access to language technology in their
own language. In the context of low-resource lan-
guages, access to quality MT models is greatly
lacking.

Our research primarily utilizes the publicly avail-
able FLORES-200 dataset, which was created in
collaboration with native speakers for the express
purpose of advancing multilingual NLP research
and is considered a standard benchmark in the field.

The large language models used in this study,
NLLB and Llama 3, are known to contain biases
from their training data. While our work focuses on
improving translation for low-resource languages
like te reo Maori—a step towards more equitable
technology—the underlying models may still gen-
erate outputs that reflect societal biases or perform
inequitably across different demographic groups.

Furthermore, TQE has a dual-use potential.
While our goal is to use uncertainty signals to
improve translation quality and naturalness, auto-
mated TQE systems could also be used to justify
the deployment of imperfect MT systems in sen-
sitive contexts (e.g., medical, legal) without ade-
quate human oversight. We advocate for the use
of TQE as a tool to assist human translators, not to
replace them, especially in high-stakes applications
for low-resource communities.

Future work in this sensitive domain has to
go beyond the inadequate consent-compensate-
cooperate model of ethical behaviour. Develop-
ment of language technology need not only be built
with the consent of the target language commu-
nities, but should be shared with these language
users at its inception to ensure alignment with their
cultural values and use cases.
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Abstract

Large language models increasingly rely on
explicit reasoning chains and can produce mul-
tiple plausible responses for a given context.
We study the candidate sampler that produces
the set of plausible responses contrasting the
ancestral (parallel) sampling against two alter-
natives: enumeration, which asks the model to
produce n candidates in one pass, and iterative
sampling, which proposes candidates sequen-
tially while conditioning on the currently gener-
ated response set. Under matched budgets, we
compare these samplers on quality, lexical and
computation flow diversity, and efficiency. Our
empirical results demonstrate that enumeration
and iterative strategies result in higher diversity
at comparable quality. Our findings highlight
the potential of simple non-independent sam-
pling strategies to improve response diversity
without sacrificing generation quality.

1 Introduction

Large language models (LLMs) have shown strong
performance across a wide range of applications
(OpenAl et al., 2024; DeepSeek-Al et al., 2025). In
particular, the ability to generate explicit reasoning
chains that guide planning and decision-making has
become a cornerstone of recent progress (Wei et al.,
2022; Yao et al., 2023; Zhu et al., 2025; Zhang
et al., 2024). Many of these applications benefit
from access to multiple plausible responses for a
given context, including test-time control (Mudgal
et al., 2024; Deng and Raffel, 2023; Troshin et al.,
2025), majority voting or best-of-n (Stiennon et al.,
2020; Nakano et al., 2022), conformal generative
modeling (Kladny et al., 2025), reasoning with
diverse decoding paths (Wang et al., 2024) and
ambiguity resolution (Kobalczyk et al., 2025; Chen
et al., 2025; Saparina and Lapata, 2025).

A necessary component of these pipelines is
a candidate sampler that returns a set of n re-
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sponses in context. The candidates are commonly
obtained by ancestral sampling from the model
distribution, or from variations such as temper-
ature, top-p, top-k (Holtzman et al., 2020; Basu
et al., 2021; Hewitt et al., 2022; Minh et al., 2025;
Vilnis et al., 2023). Beyond being in some sense
the natural approach, ancestral sampling also ben-
efits from being simple to implement and readily
parallelizable across devices, as each response is
sampled independently of the others. Neverthe-
less, ancestral sampling suffers from repetitions
of high-probability sequences, which motivated re-
searchers to propose non-independent algorithms,
including arithmetic sampling (Vilnis et al., 2023),
diverse, stochastic, and determinantal beam search
modifications (Vijayakumar et al., 2018; Kool et al.,
2019; Meister et al., 2021). These approaches, well-
studied in the literature, are based on search-style
algorithms on top of a language model’s output
probability, which still scores each sample sepa-
rately, possibly with the help of a separate dissimi-
larity function. In this work, we take a substantially
different approach and ask whether we can use the
standard LLLM generation pipelines to enable ef-
ficient non-independent sampling, by processing
multiple candidates at the same time.

In particular, we are interested in a candidate
sampler that:

(i) produces high-quality samples;
(i) promotes response diversity;

(iii) scales efficiently as the number of responses
increases;

(iv) is simple to use and relies on standard LLM
decoding primitives.

We compare the commonly used parallel sampling
strategy (ancestral sampling) with two alternative
sampling strategies, which we define as enumera-
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tion and iterative approaches, and study them from
the perspective of quality, diversity, and efficiency.
Our main finding is that the enumeration and
iterative strategies are simple and promising alter-
natives to the standard parallel approach. We find
that our non-independent iterative and enumeration
strategies result in higher lexical and computational
flow diversity. Such approaches can be seen in
a way as upper-bound oracles to diverse genera-
tion, in the sense that they fully model the joint
distribution over samples and are only limited by
the instruction-following performance of the LLM.
Our implementation is released as open-source.!

2 Methodology

We consider tasks for which there are multiple valid
responses. In the context of this work, we consider
a valid response to contain both a derivation and a
final answer, so different derivations leading to the
same answer are valid responses. Given a model
pp and a prompt ¢, our goal is to produce a set
S = {yM,...,y™} of n responses. We keep all
decoding hyperparameters fixed across methods
and vary only the sampling protocol.

2.1 Sampling Strategies

Parallel sampling. We sample n times indepen-
dently with different random seeds; samples do not
condition on one another:

y D ~pe(-|e;) fori=1.n (1)
Enumeration sampling. We prompt the model
to generate multiple different outputs in one pass;

later outputs condition on earlier ones:

k
y® ~ T pe (y(i) e, y(“’”) )
=1

The number of desired samples is not specified in
the prompt, but rather implicitly predicted. To the
best of our knowledge, the enumeration approach
has not been studied in the literature. However, due
to its simplicity, we speculate it it is used in prac-
tice, for example, Ilia and Aziz (2024) prompt Chat-
GPT (OpenAl, 2022) to enumerate 40 responses
in context as a complementary strategy to ances-
tral sampling; Saparina and Lapata (2024) prompt
models to enumerate all possible interpretations of
ambiguous questions.

"https://github.com/serjtroshin/ask4diversity
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Iterative sampling. We generate one candidate
at a time, and we re-prompt the model to extend
an already generated list of responses with a new
response. Namely, for k£ = 1, we generate as:

y U~ pa(- | ), 3)

and for £ > 1, we pass the generated solutions:

7y(k’1))) :

In practice, the conditioning is achieved with a
templated prompt; refer to Appendix A for the
specific prompts used for all strategies.

y®) ~ py ( | e(y ™, - (4)

3 Experimental Setup

We evaluate on GSM8K (Cobbe et al., 2021), a
grade school math problem-solving benchmark.
Each problem has a single gold answer, but mul-
tiple valid solutions may lead to it. Therefore, a
candidate is y* = (r( o), with r(®) the solu-
tion (reasoning) and a(® the final extracted answer.

3.1 Models

In our work, we rely on the Qwen3 family of mod-
els (Yang et al., 2025), chosen for their high rea-
soning performance, diverse range of model sizes.
In our preliminary investigation, we observe that
Qwen3 models are able to follow our zero-shot
instructions, and they show high accuracy in fol-
lowing the required output format. For our ex-
periments, we use Qwen3-{4B, 8B, 14B} models
with thinking generation mode on; and we use
Qwen3-4B-{Instruct/Thinking}-2507 released
solely for non-thinking/thinking use-cases.

We use the hyperparameters suggested by the
model developers: temperature = 0.6, top-k =
20, top-p = 0.95, repetition_penalty = 1.0.

3.2 Metrics

Quality. We define the quality metrics as the av-
erage accuracy over response sets given a golden
answer for a problem. We calculate the accuracy of
a response set by taking the minimum, mean, and
maximum statistics over the answers within the set
and averaging these statistics over the dataset.

Lexical diversity. We follow Li et al. (2016) and
report averaged distinct N-gram diversity metric
as the proportion of distinct /N-grams in the set of
responses relative to the total number of N-grams.
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60% of the boxes are full of books and 40% are empty. If there are 240 empty boxes, how many boxes are full?

Solution 1 Solution 2

Let x = total boxes Let the total number of boxes be x.
x =240/0.4 = 600

Full boxes = 60% of 600 = 0.6 x600 = 360 0.4 =600

The remaining 60% are full, giving 0.6 x 600 =

Computational Flow 1 Computational Flow 2

240 / 0.4 = 600 240 / 0.4 = 600
+ '

0.6 x 600 = 360 0.6 x 600 = 360

240 empty boxes represent 40% of x, so x =240 /

360

R Letx x= totalboxes  boxesx
Solution 3
Unique 2-grams: 66

Let’s express 40% as the fraction 2/5. Total 2-grams: 84

Then x = 240/(2/5) = 600.
Full boxes are 60%, of the total: (3/5) x
600 = 280

66/84 = 0.79

240 / 0.4 = 600 ...

Computational Flow 3 Unique steps: 4

Total steps: 6 4/6 = 0.67

240 / (2/5) = 600
‘

(3/5) x 600 = 280

360 360 280
n distinct answers: 2;

Figure 1: Example of a math problem with three responses, their computation flows, and the resulting metrics:

lexical, computational flow and answer diversity.

Computation flow diversity. To complement
the lexical diversity metric, we extract a compu-
tation flow of each solution by mapping it to se-
quences of normalized arithmetic steps (e. g., “Janet
sells 9 eggs at $2 each, which gives 18 maps to
9 x 2 = 18). We obtain flows with a one-shot
prompt to Qwen-3-32B (see Appendix C). We re-
port the proportion of unique steps relative to the
total number of steps in the set. To compute this
metric, we estimate the distinct 1-grams over the
simple arithmetical steps, namely 9 x 2 = 18 is
considered to be a single 1-gram. This approach
can collapse steps that are arithmetically identical
but occur in different parts of a solution; however,
we found this to be rare in our experiments. If
needed, repeated occurrences can be distinguished
by indexing them within a flow (e.g., (1) 9x2 = 18,
(2)9 x 2=18).

Final answer variability. For some applications,
it might be useful to have samples with different
answers (e.g. to have both positive and negative
demonstrations), and we measure the answer vari-
ability as the number of unique answers among the
response set. For GSMS8K, high answer variability
means that some answers are parsed as incorrect.
Figure 1 illustrates an input math problem, three
different responses, the corresponding computation
flows, and the resulting metrics. The first and sec-
ond responses differ in phrasing, but follow the
same computation; the third differs in wording and
computation but yields an incorrect result.

4 Results
4.1 Quality and Diversity

In Table 1, we report the evaluation results on the
GSMBSK dataset.

Parsing the solutions. We parse the re-
sponses from the generated outputs by
searching for the required solution tags, i.e.,
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<Solution>...</Solution>. For the parallel
and iteration strategies, we obtain more than 4
successfully parsed responses on average (out of
5 required). For the enumeration strategy, we
do not specify the required number of responses
and obtain between 2 and 4 parsed responses on
average. Overall, Qwen3 models demonstrate a
satisfactory ability to follow our instructions for
output formatting.

Diversity of the responses. We observe that in
all cases the diversity of samples from the parallel
strategy is lower compared to the diversity of the
two non-independent strategies, both for the lexical
and computational flow diversity. We observe that
often higher lexical diversity does not imply higher
compute diversity, and we think these metrics can
provide complementary signals to the developers.

Quality of the answers. In most cases, our mod-
els demonstrate good zero-shot task performance
with an accuracy of around 90%. Parallel sampling
shows the most stable high quality (lowest quality
variation), probably because it is the most standard
approach, and it is easier for a language model to
adapt to the corresponding prompt requirements.

Variability of the answers. Additionally, we re-
port the answer variability and the average mini-
mum and maximum accuracy over the responses.
We observe that overall models exhibit low answer
variability with less than 1.3 distinct answers on av-
erage. Enumeration strategy results in the highest
quality difference (i.e., the gap between maximum
and minimum accuracy), while the parallel and iter-
ation are on par with each other. We note that under
diversity requirements, we do not expect a model
to always produce a parsable or even correct an-
swer, and part of the quality loss can be attributed
to answer parser failures.



# Parsed Min Mean Max Lexical  Compute # Distinct

Model Strategy Solutions  Quality  Quality Quality  Diversity Diversity =~ Answers
Qwen3-4B parallel 4.77 0.86 0.91 0.95 42.8 33.1 1.13
enumeration 3.90 0.88 0.90 0.91 68.1 56.1 1.04
iteration 4.75 0.83 0.87 0.90 61.8 60.0 1.07
Qwen3-8B parallel 4.23 0.89 0.91 0.93 44.5 34.7 1.06
enumeration 2.81 0.89 0.90 0.91 73.1 64.1 1.03
iteration 4.87 0.89 0.91 0.92 63.4 79.8 1.03
Qwen3-14B parallel 4.90 0.92 0.94 0.96 384 31.5 1.05
enumeration 3.58 0.90 0.92 0.94 70.2 57.1 1.05
iteration 4.96 0.60 0.73 0.83 70.1 59.3 1.25
Qwen3-4B-Instruct parallel 4.98 0.88 0.92 0.94 33.1 47.7 1.10
enumeration 3.09 0.88 0.90 0.91 72.8 61.2 1.04
iteration 5.00 0.86 0.89 0.90 60.3 55.6 1.08
Qwen3-4B-Thinking  parallel 4.67 0.81 0.89 0.94 47.9 30.7 1.24
enumeration 227 0.64 0.73 0.79 66.2 64.5 1.19
iteration 4.17 0.78 0.87 0.92 68.0 62.0 1.16

Table 1: Main results for parallel, enumeration, and iteration sampling strategies. For enumeration, we let the
model decide the number of solutions, for parallel and iteration, we expect 5 solutions, and report the average
number of parsed solutions. Min and max quality denote the average minimum and maximum accuracy over the
response sets. # distinct answers denote the average number of distinct answers among the set of parsed responses.

4.2 Compute Efficiency

An important question when developing the sam-
pling strategies is to understand how efficient it is
to generate the set of n responses. We distinguish
the total number of generation calls that we need to
do in order to generate n responses, and the support
for parallelization. We compare the three strategies
w.r.t. the compute they require.

From the perspective of parallel-time computa-
tion, the parallel approach is most time-efficient
by design, and this sort of parallelization is well
optimized and supported in LLM codebases, but
its time efficiency is tied to the access to parallel
computation (e. g., a multi-GPU setup). As we ob-
serve from the diversity results, the independence
assumption results in lower diversity (a higher de-
gree of repetitions).

Both enumeration and iteration are most suited
for single-GPU generation. For enumeration, we
need a single call to the model to enumerate the
generations in the response; in thinking mode, the
model shares the computation to produce n re-
sponses: it generates a single thinking chain first,
and then it enumerates the responses. A limitation
of this strategy is that this approach requires a larger
context length to produce multiple responses in one
go, which in turn slows down the decoding for the
standard quadratic-time attention implementation.

For iteration, we need n full sequential calls:
the generated responses are reused, but not any
other internals. Iteration is less time-efficient than
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enumeration, since the former requires multiple
sequential generation calls; on the other hand, iter-
ation sampling allows for easy and more explicit
control of the number of responses, and may be
more compatible with other probabilistic modeling
strategies for subset selection without sacrificing
the expressiveness of enumeration sampling.

The main difference between parallel and the
two serial approaches (enumeration and iteration)
is the degree to which information is shared and
efficiently reused across the set when generating
responses. We see promise in further study of in-
formation conditioning and compression, specif-
ically, quantifying the extent of this sharing and
reuse. In particular, the enumeration strategy can
potentially approach the efficiency of a single par-
allel call while processing the responses quasi-
independently, which in turn affects the diversity
of the responses.

5 Conclusion

We study the problem of generating a diverse set
of responses. We propose two non-independent ap-
proaches for sampling responses from a language
model, namely enumeration and iteration strate-
gies, and compare them against parallel algorithms
based on ancestral sampling. On GSMS8k, we find
that our non-independent approaches can provide
higher diversity of the samples, while maintaining
simplicity and overall quality of the generations.
Compute efficiency analysis shows that enumera-



tion and iteration are well-suited to a single GPU
and can reduce redundancy without specialized
search machinery. We hope our work will motivate
further investigation of simple non-independent
strategies for diverse candidate sampling.

6 Limitations

One of the main limitations of our work is a narrow
evaluation scope. We focus on a single dataset with
verifiable rewards and a room for diversity of an-
swers and reasoning chains. Future work can eval-
uate these methods on tasks that inherently benefit
from diverse generations, such as creative writing,
code generation, or ambiguous question answer-
ing. We do not compare the results to established
diverse decoding methods such as beam search vari-
ants, as we limit our scope to sampling from the
model output distribution rather than modifying it
through specialized decoding algorithms. Ippolito
et al. (2019) provide an extensive survey and evalu-
ation methodology for the established methods.
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A Prompts

Prompt for enumeration sampling.

Given the following problem, reason through
it and provide multiple different solutions:

Problem: {question}
Use exactly this format (no extra text):

<Solution 1> [Your reasoning should go here]
The answer is [Answer 1]. </Solution 1>
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<Solution N> [Your reasoning should go here]
The answer is [Answer N]. </Solution N>

- One step per line, in the order implied by
the solution.
- Convert verbal quantities to numbers.

Replace references like "the remainder” with
the actual numeric value.

- Keep only the steps that lead to the final
answer.

- If no computable arithmetic appears,
output an empty line.

Prompt for parallel sampling.

Given the following problem, reason through
it and provide a solution:

Example:
Problem: {question}
Question: Janet lays 16 eggs a day. She eats
3, uses 4 for baking, and sells the rest for
$2 each. How much money does she make?
Solution: Janet lays 16 eggs per day. She
eats 3 and uses 4 for baking, so 16 - 7 =9
eggs left. She sells them at $2 each =+ 9 * 2

You must wrap your reasoning and answer into
<Solution> ...reasoning here... 'The answer
is [numerical value].'</Solution> format.

Prompt for iterative sampling. = $18.
Output:
3+4=17

Given a problem and a set of solutions, 16 -7 =9

reason through it and provide a new solution. 9 %x 2 =18

The new solution may result in the same
answer, but it must be different from the
ones already provided.

Now, extract the arithmetic steps from the
following:

Problem: {question} Question: {question}
Solution: {solution}
Existing solutions: Output:

{solutions}

Use exactly this format (no extra text):
<New Solution> [Your reasoning should go
here]. The answer is [answer]. </New
Solution>

B Averaged Distinct N-gram Diversity

Given a set of responses S = {y)}7_, for N €
{1,...,5}, we calculate the averaged distinct N-
gram diversity for each set as:

et(N-gram(Ro))|
[N-gram(Rc)|

5
avg. dist. N-gram (S5) = Z s
N=1

The diversity metric is calculated as the mean avg.
distinct N-gram diversity over the sets of responses.

C Prompt for Computation Flow Parsing

You will receive a math question and a
free-form solution. Extract the sequence of
arithmetic steps from the solution and
output them one by one.

Rules:

- Qutput ONLY lines made of digits 0-9,
parentheses (), the operators + - x / *, and
optionally "=" to show each step's result.

- No words, units, currency symbols, or
extra text.
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Abstract

Natural language generation (NLG) tasks are
often subject to inherent variability; e.g. pre-
dicting the next word given a context has multi-
ple valid responses, evident when asking multi-
ple humans to complete the task. While having
language models (LMs) that are aligned plu-
ralistically, so that they are able to reproduce
well the inherent diversity in perspectives of
an entire population of interest is clearly bene-
ficial, Ilia and Aziz (2024) show that LMs do
not reproduce this type of linguistic variability
well. They speculate this inability might stem
from the lack of consistent training of LMs with
data reflecting this type of inherent variability.
As such, we investigate whether training LMs
on multiple plausible word continuations per
context can improve their ability to reproduce
human linguistic variability for next-word pre-
diction. We employ fine-tuning techniques for
pre-trained and instruction-tuned models; and
demonstrate their potential when fine-tuning
GPT-2 and Mistral-7B-IT, using Provo Cor-
pus. Our evaluation, which measures diver-
gence among empirically estimated human and
model next-word distributions across contexts
before and after fine-tuning, shows that our
multi-label fine-tuning improves the LMs’ abil-
ity to reproduce linguistic variability; both for
contexts that admit higher and lower variability.

1 Introduction

Inherent variability in natural language generation
(NLG) tasks might arise from ambiguity or vary-
ing perspectives (Plank, 2022; Baan et al., 2023).
For example, when predicting the next word given
a context, multiple plausible and valid continua-
tions exist; a task whose linguistic variability we
can appreciate by asking a human population to
complete it (Luke and Christianson, 2018). We
can also appreciate this type of linguistic variabil-
ity for autoregressive language models (LMs) that
generate text by sampling from next-token (i.e. sub-
word unit) distributions conditioned on preceding

Salo Lacunes
University of Amsterdam

salo.lacunes@student.uva.nl

73

Evgenia Ilia
University of Amsterdam

e.ilia@uva.nl

tokens (Vaswani et al., 2017). We achieve that by
viewing such distributions as a representation of
the model’s uncertainty over continuations given a
prefix (Ilia and Aziz, 2024; Guo et al., 2024; Tevet
and Berant, 2020). It is often valuable for models
to reproduce such variability, particularly in open-
ended NLG tasks, where multiple responses can
be plausible. Whereas this variability contributes
to making LMs more robust (Sheng et al., 2008;
Peterson et al., 2019; Uma et al., 2021; Kurniawan
et al., 2025) and more representative of the lin-
guistic diversity of human populations of interest
(Sorensen et al., 2024; Muscato et al., 2025b), it
has been shown that the variability LMs exhibit
does not always align with the one humans exhibit
(Pavlick and Kwiatkowski, 2019; Ma et al., 2025;
Shaib et al., 2024). For next word prediction, Ilia
and Aziz (2024) identify this misalignment and
speculate it might stem from inconsistent exposure
of LMs to training data reflecting such variability.

As such, we investigate whether training LMs
with multiple observations of the next word per
context will improve their ability to reproduce hu-
man variability. While previous fine-tuning work
utilising multiple references per instance focused
on classification tasks (Peterson et al., 2019; Uma
et al., 2021; Rajeswar et al., 2022), our work fo-
cuses on next-word prediction, a generative task.
Similar to Eisape et al. (2020), who employ a form
of multi-label distillation in next word prediction,
we also employ a technique to fine-tune pre-trained
LMs and extend to instruction-tuned LMs. For the
former, we alter the training signal, and for the lat-
ter we exploit a training data augmentation method
to ensure that variability is observed.

We employ these fine-tuning techniques for GPT-
2 (Radford et al., 2019), a pre-trained model, and
Mistral-7B-IT (Jiang et al., 2023), an instruction-
tuned model. When evaluating, by measuring di-
vergence among empirically estimated human and
model next-word distributions across contexts, be-
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fore and after fine-tuning, we find that fine-tuning
with multiple labels per instance improves those
LMs’ ability to reproduce linguistic variability,
across contexts of varying open-endedness. Ad-
ditional ablations measure performance when vary-
ing the number of training labels per instance; and
with a preliminary analysis we measure the trade-
off in performance in tasks that admit no plausible
variability. For that, we handcraft a small eval-
uation dataset using a knowledge-based question
answering dataset (Berant et al., 2013).!

2 Related Work

Human label variation in natural language process-
ing (NLP) tasks is often dismissed as noise (Paun
et al., 2022; Ferracane et al., 2021). However, mul-
tiple responses can be plausible, especially rele-
vant to ambiguous or open-ended tasks or prompts
(Plank, 2022; Baan et al., 2023; Weber-Genzel
et al., 2024; Nie et al., 2020; Aroyo and Welty,
2015). Embracing this plausible variation as part
of NLP systems, which could make them more
fair (Deng et al., 2023; Muscato et al., 2025b) and
robust (Peterson et al., 2019; Sheng et al., 2008),
involves altering all stages of our systems’ devel-
opment pipelines: from dataset creation, collecting
multiple labels per prompt (Luke and Christianson,
2018; Nie et al., 2020, i.a.), to training, utilising
these labels during the learning phase (Rodriguez-
Barroso et al., 2024; Aroyo and Welty, 2012; Pad-
makumar et al., 2024, i.a.), and evaluation, com-
paring models’ responses to multiple human refer-
ences (Baan et al., 2022; Ilia and Aziz, 2024, i.a.).

Our approach aims to embrace plausible variabil-
ity during training. Rather than collapsing annota-
tions into a single ground truth (Paun et al., 2022),
we incorporate multiple plausible references. The
idea of multi-label fine-tuning has been adopted in
image-classification (Peterson et al., 2019; Aurpa
et al., 2024; Rajeswar et al., 2022), as well as in
NLP, primarily for classification (Uma et al., 2021;
Jung et al., 2023; He and Xia, 2018; Betianu et al.,
2024; Li et al., 2024; Zhang et al., 2024a; Li et al.,
2025; Muscato et al., 2025a). Additionally, re-
cent efforts have applied instruction fine-tuning for
multi-label text classification tasks (Siddiqui et al.,
2024; Yin et al., 2024) and tasks with restricted
outcome spaces, such as sampling from discrete
distributions (Zhang et al., 2024b). Our work fo-
cuses on a generative task, (i.e., that of predicting

!Code available at: GitHub repository
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complete wordforms by stringing together tokens),
with a countably infinite outcome space (i.e., all
possible wordforms from a finite set of tokens).
Eisape et al. (2020) explores a form of multi-label
distillation in next-word prediction for an LSTM
model. We also explore a form of multi-label dis-
tillation for transformer-based models, extending
our investigation to instruction tuned LMs.

3 Methodology

We exploit simple yet intuitive fine-tuning tech-
niques, depending on the LMs’ previous training.
These require a set of contexts C' = {cy, ...,cn },
where for each context ¢;, we have a set of human
next-word references W; = {w1, ..., wips }2:

Fine-tuning pre-trained LMs Autoregressive
LMs are trained using cross-entropy between a
target and the model’s next-token distribution given
context ¢ (p(+|c) and ¢(-|c) resp.). This corresponds
to searching for the maximum likelihood estimate
(MLE). When training on a corpus with a single
continuation (i.e. the next corpus token w*), pis a
deterministic distribution centered on w*, leading
to the following loss:

ey

When multiple word continuations are avail-
able, we replace this deterministic distribution with
the empirically estimated distribution (using W;),
where the probability of a word given ¢;, p(w|c¢;),
equals its relative frequency in W;. This results in
the following loss, which comprises generalized
cross entropy (Jurafsky and Martin, 2025):

Lvae ==Y p(w|c)logg(w | c),
wey

LLabel = - IOg Q(w* ‘ C)'

(@)

where V is the vocabulary.® Since words may con-
sist of multiple tokens, to obtain g(w | ¢;) we re-
express the model’s token-level probabilities over
complete words.* For a word w with tokenization
7(w) = (t1,...,t,), we compute:

q(w | ) = HQ(tj |cistrs. ooy tj—1),  (3)
j=1

where ¢(t; | -) is the probability of token ¢; under
the model, given the context and preceding tokens.

M might vary accross contexts.

3Words that actually contribute to the loss, i.e. non-zero
terms, are words in the set of human samples, W; for c;.

*Humans predicted word continuations, not tokens; so the
outcome space of p(w | ¢;) is over complete words, and we
must ensure that g(w | ¢;) is expressed over the same space.


https://github.com/tgroot56/Learning-to-vary-Teaching-LMs-to-reproduce-human-linguistic-variability-in-next-word-prediction

Fine-tuning instruction-tuned LMs Instruction-
tuned models underwent additional training to cater
a rather conversational format and adhere to task in-
structions. We sample responses from the model’s
conditional predictive distribution (CPD) given a
prompt, i.e. an instruction and an example. For
our task, we sample response r containing a pre-
dicted word from ¢(r|(Z, ¢;)), where the prompt
includes instruction I requesting a word continua-
tion given a prefix, and the example context c;. So
as to utilise multiple labels, we employ the follow-
ing training data augmentation technique: for each
context ¢; in C, we construct the prompt (1, ¢;)
and for each word w; in W;, we create a training
datapoint where wj is a response to (I, ¢;). This
entails that ¢; will appear multiple times with differ-
ent continuations as per their frequency in W;. We
train using Lqp¢;.> See Appendx A for prompts.

4 [Experiments

Models & Datasets. We fine-tune pre-trained
GPT-2 (124M; Radford et al. (2019)) and
instruction-tuned Mistral-7B-Instruct-v0.3 (7.25B;
Jiang et al. (2023)), which we refer to as Mistral-
7B-IT. Both models are fine-tuned using Provo Cor-
pus (Luke and Christianson, 2018), which contains
55 text passages (2687 total contexts). Each prefix
is annotated with an average of 40 human annota-
tions predicting the word following it. We split the
dataset randomly at the paragraph level (to avoid
partial passage leaks between train and test sets).
80% is for training, of which 10% is reserved for
validation; and the remaining for testing.

Training Configuration. Both models were fine-
tuned using the Adam optimizer (Kingma, 2014).
For GPT-2: we train for 3 epochs, using a learning
rate of 1e~® and a batch size of 16. For Mistral-7b-
IT: we train for 4 epochs using Low-Rank Adapta-
tion (Dettmers et al., 2023, LoRA) with a learning
rate of 1e~* with a batch size of 32. We train on 3
random seeds; training details in Appendix B.

Metrics. Following Ilia and Aziz (2024): for
each context, we measure the divergence between
the human and model CPDs given a context us-
ing total variation distance (TVD) (Rudin, 1987).
TVD quantifies the difference between two proba-
bility distributions by summing the absolute dif-

3Constructing the dataset in this way (one prompt-response
pair for each word annotation for every context) using L z,qpe:
is similar to learning g(r|(I, ¢)) with Ly q..

‘TVD(p,q) = 5 3, [p(wlei) — g(wle:)|
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Mean TVD + SD ({)

Model GPT-2 Mistral-7b-IT
Base 0.607£0.001  0.812+£0.002
1-Shot N/A 0.784+0.002
FT (Orig. corpus) 0.612+0.002  0.805+0.001
FT (Maj. label) 0.556+0.005  0.563£0.002
FT (Mul. labels)  0.550+0.003  0.499+0.006
Oracle 0.443£0.002  0.443£0.002

Table 1: Mean and standard deviation of TVD averages
across test contexts for three seeds.

ferences in the probabilities they assign to the
same event. A higher TVD indicates greater dis-
agreement between human and model CPDs (i.e.,
poorer alignment with human linguistic variabil-
ity), whereas a lower TVD indicates less disagree-
ment (i.e. better alignment with human linguistic
variability). In order to compute TVD, we need
estimates of the human and model CPDs (p(w|c)
and g(w|c) respectively). As done in Ilia and Aziz
(2024): (1) for p(w|c), we estimate it via Monte
Carlo, with p(w|c) equaling the relative frequency
of w in all human samples, and (2) for g(w|c),
we estimate it via Monte Carlo, by sampling 40
sequences from the model long enough to con-
tain a full word, slice it, and compute g(w|c) (or
q(wl|(I,c))) as the relative frequency of w in all
sampled words.

Baselines & Upper Bounds. We compare the
distribution of TVD values across contexts before
and after fine-tuning, where improved performance
would mean a shift towards lower TVD values (i.e.
less disagreement with human CPDs). For the
instruction-tuned model, we add a 1-shot baseline,
where the prompt includes an example of a context
and word references (details in Appendix A). As
another baseline, we fine tune models with Provo’s
original corpus passages (i.e. one continuation per
prefix), imitating models’ usual training. Lastly, to
estimate the best performance we can expect from
our models, which essentially is to mimic human
divergence, we establish a baseline for the expected
level of disagreement from humans for a context.
We split human responses in two disjoint groups
and measure their CPDs’ TVD (‘Oracle’ baseline).

5 Results

Main results As shown in Table 1, both models
fine-tuned with multiple labels (FT (Mul. labels))
achieve a notably lower mean TVD compared to
other baselines (Base, 1-Shot and FT (Orig. Cor-
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Figure 1: Distribution of TVD scores (for 1 seed) across
contexts. For both GPT-2 and Mistral-7B-IT; fine-tuning
shifts the TVD distribution towards the Oracle baseline,
suggesting better linguistic alignment with humans.

pus)). We also observe how FT (Orig. corpus)’s
performance is very similar to the Base model. This
simultaneously indicates that our improved perfor-
mance does not stem from an out-of-distribution
effect between Provo Corpus and the models’ train-
ing data. Figure 1, which shows the histogram
of TVD values for all models and baselines (for
1 seed), confirms that; FT (Mul. labels) models’
TVD distributions shift towards the Oracle distribu-
tions, indicating that models improve at reproduc-
ing human linguistic variability. For other seeds,
we see similar patterns; see Appendix C.

When and how do models improve? To under-
stand the effects of our fine-tuning, we analyze
changes in TVD. We visualise the models’ changes
in performance against context open-endedness (as
measured by the TVD between human oracles;
lower TVD indicating more ‘restrictive’ contexts),
allowing us to grasp if performance gains arise
in contexts that admit higher or lower variability.
In Figure 4 (Appendix D), negative TVD differ-
ences between fine-tuned and base models (indi-
cating gains) occur at all levels of contexts’ open-
endedness. We also assess whether models improve
at predicting words that humans predicted (regard-
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less of frequency). We plot the fraction of unique
human predictions that were also predicted by the
models before and after fine-tuning (Figure 7; Ap-
pendix D). Fine-tuned Mistral-7B-IT’s ability to
predict unique human words (along with its CPDs’
‘diversity’; Figure 6, Appendix D) improves sub-
stantially (details and analyses in Appendix D).

Is the entire response distribution useful?
When gathering datasets with multiple labels, dis-
agreement can be discarded as noise and the most
common response is used as ground truth. Aiming
to assess whether retaining the entire response dis-
tribution is useful, we fine-tune a model on Provo
Corpus using only the majority response (FT (Maj.
Label) in Table 1). We find that, FT (Maj. Label)
surpasses the performance of FT (Orig. Corpus),
which is not entirely surprising: the corpus word
is a single observation, while the majority vote ex-
ploits in a sense multiple labels. This is intuitively
in line with analysis revealing that performance
gains seem to relate with less open-ended contexts
(Figure 8; Appendix E). Nonetheless, FT (Mul. la-
bels) outperforms FT (Maj. label), with moderate
gains for GPT2 and more notable gains for Mistral-
7B-IT; indicating the utility of retaining all labels.

Number of labels ablation. We analyse how the
number of labels used to fine-tune the model affect
the model’s performance. We fine-tune GPT2 us-
ing a varying number of labels each time (1,2,4,16
and 32; randomly sampled from available anno-
tations). Figure 9 of Appendix F shows that 16
samples are sufficient for substantial performance
improvements; for more details, see Appendix F.

Impact on tasks without data uncertainty.
Whereas optimising for a task that admits inher-
ent variability (i.e. next-word prediction) might
improve the model’s ability to reproduce such vari-
ability; the effect of this on tasks that admit no vari-
ability is unclear. To assess that, we test the mod-
els’ performance before and after fine-tuning on
knowledge-based question answering (a task admit-
ting no plausible variability), adapted for next-word
prediction. For that, we handcraft examples from
a subset of WebQuestions (Berant et al., 2013);
details and examples in Appendix G. For each con-
text, we sample 40 responses and measure how
often responses exactly match the reference. As
shown in Table 3 of Appendix G, fine-tuning on
multi-label data moderately improves the low per-
formance of GPT2, but worsens the performance



of Mistral-7B-IT; highlighting a potential trade-off
in performance between tasks that do and do not
admit variability, when optimising for the latter.

6 Conclusion

This study examines whether fine-tuning with mul-
tiple labels per instance has the potential to en-
hance models’ ability to reproduce linguistic vari-
ability in next word prediction. We show im-
proved performance for a smaller pre-trained lan-
guage model (GPT-2) and a larger instruction-tuned
model (Mistral-7b-IT) across contexts that admit
varying levels of plausible variability. Our findings
highlight both the potential and possible limitations
of such fine-tuning, paving the way for further ad-
vancements in modeling linguistic variation.

7 Limitations

We hereby discuss various limitations of our study:
we fine-tune using Provo Corpus, which is a rela-
tively small dataset with a limited number of human
annotations per prefix. The high cost of obtaining
data with multiple references means that such data
is scarce and not available at large scale. How-
ever, we show that even with a limited amount of
contexts and a limited amount of annotations per
context that are well-curated and of high-quality it
is possible to observe performance improvements.
Simultaneously, as the field of synthetic data gen-
erations is becoming increasingly popular; we can
entertain the idea that future work exploits such
synthetic labels, and a model that has been fine-
tuned to embrace variability, such as the ones we
present in this study, could comprise generators
for such synthetic annotations. Additionally, for
our training and evaluation, we assumed all human
annotations to be draws from the same underly-
ing distribution; which is not an assumption that
is easy to verify. We also observed a trade-off be-
tween capturing variability well and performance
on tasks with a single correct answer; with future
work potentially focusing on methods that could
balance-off better such trade-offs. Additionally,
due to resource constraints, we were only able to
include in our study only two (relatively small)
models that were trained for English. Despite fo-
cusing on a generative task, we only focused on
next word prediction. Transferring this to the se-
quence level might be non-trivial and come with its
own challenges. However, we hope that our study
inspires future work in this research direction, aim-
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ing to embrace inherent variability as part of the
training of LMs, and tackle challenges related to
this field.
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A Prompts for Baselines

When constructing the training set and evaluating
our models, we present the relevant prompts:

Base prompt. To assess the performance of the
non fine-tuned models, we prompt them repeat-
edly for the next word prediction task. The prompt
includes an instruction to predict a next-word con-
tinuation and the given context at a time.

Prompt:

Instruction: Return one plausible next
word for the following context.
Context: <CONTEXT>
Continuation:

When creating training prompt-response pairs,
the prompt is identical to before, and the responses
are words from the set of human references.

Response:

<HUMAN_REFERENCE>

1-Shot prompt. As a performance baseline we
have one-shot prompting, which includes the in-
struction, an example from the training set, and the
given context at a time:

Instruction: This is an example of a
context and some plausible next word

continuations. given by a group of 39
people: Context: There are now
rumblings that, Continuations:

[are, are, are, are, are, are, are,
can, can, can, can, can, sound,
sound, sound, sound, shake, shake,
shake, the, the, the, have, have,
our, our, someone, someone,

appear, ca, cause, come, make,
occur, people, say, suggest,

tumble, we]. Following this

example, return only one plausible
next word for the following context.
Context: <context>

Continuation:

B QLoRa

Table 2 shows the configuration used for finetuning
the Mistral-7B-IT model.


https://arxiv.org/abs/2403.01931
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Parameter Value

QLoRA

r 8

LoRA « 16

LoRA dropout 0.05

Task type Causal Language Modeling

Target modules
gate_proj, up_proj, down_proj

a_proj, k_proj, v_proj, o_proj,

Quantization

Load in 4-bit True
4-bit quantization type  nf4
Double quantization True
Compute data type bfloat16

Table 2: LoRA and 4-bit quantization configuration
parameters.

C Main results

We present Figure 1, which comprises the results
on the test set for one of the three random seeds
we trained on. We observe similar trends for the
remaining seeds; which we present in Figure 2.
This is confirmed when plotting the differences
between the TVD of the model and human CPDs
and the TVD among the human oracle CPDs, as
observed in Figure 3.

D Analysis of model performance changes

In order to understand how fine tuning has affected
the model performance. We perform various anal-
yses. We visualise the models’ changes in perfor-
mance against context open-endedness. We approx-
imate that using the TVD between human oracles.
We assume that a lower TVD, reflecting lower dis-
agreement among human populations, indicates
more ‘restrictive’ contexts, while a higher TVD,
indicates contexts that admit a higher level of plau-
sible variability. We plot changes in performance
by computing the differences between the TVD of
the fine tuned model and human CPD and the TVD
of the non fine tuned model and human CPD. Re-
sults are shown in Figure 4 (showing all contexts)
and Figure 5 (showing only contexts for which per-
formance improved, i.e. negative differences in
TVD values). We observe how improvements oc-
cur across contexts of varying open-endedness (i.e.
varying TVD among oracles values).

To gain further insight as to how fine tuning has
affected our models, we plot the entropy values
of the empirically estimated model CPDs across
contexts before and after fine-tuning. Results can
be seen in Figure 6. For GPT2, we observe how
the entorpy of the model’s empirically estimated
CPDs were not impacted very substantially. We
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observe only a slight shift towards lower entropy
values (i.e. peakier distributions); which means
that model predictions might be slightly more con-
fident, while also being better better aligned with
human linguistic variability. On the contrary, the
fine tuned Mistral-7B-IT model’s entropy values
shift substantially towards higher values, demon-
strating that now the model is making more diverse
predictions (which are also better aligned with hu-
man linguistic variability, as evident by our main
findings).

Lastly, we assess whether models improve at pre-
dicting words that humans predicted (regardless of
their frequency), as a means to approximate how
wel their lexical diversity aligns with that of our
assessed human population. We plot the fraction of
unique human predictions that were also predicted
by the models before and after fine-tuning with
multiple labels (Figure 7). Higher values indicat-
ing a more highly aligned lexical diversity. We find
that GPT2’s lexical diversity remained relatively
similar to before fine tuning, but for Mistral-7B-IT
we see a clear rightward shift in the distribution
of unique word coverage for the fine-tuned model.
This indicates that the fine-tuned model predicts a
greater number of relevant unique words per con-
text compared to the non-fine-tuned baseline.

E Analysis of model fine-tuned with
majority label

Similar to Appendix D, we analyse the changes
in performance of the model fine tuned with the
majority label compared to the base model. We
visualise the models’ (FT (Maj.Label)) changes in
performance against context open-endedness. We
approximate that using the TVD between human
oracles. We assume that a lower TVD, reflecting
lower disagreement among human populations, in-
dicates more ‘restrictive’ contexts, while a higher
TVD, indicates contexts that admit a higher level
of plausible variability. We plot changes in perfor-
mance by computing the differences between the
TVD of the fine tuned model (FT Maj. label) and
human CPD and the TVD of the base model and
human CPD. Results are shown in Figure 8. When
comparing with the corresponding plots for FT
(Mul.label) in Figure 4, we observe how improve-
ments occur for contexts that admit lower plausible
variabiltiy (i.e. lower TVD among oracles values;
steeper regression line towards lower Oracle TVD
values for lower negative differences/performance
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For both GPT-2 and Mistral-7B-IT; fine-tuning shifts the TVD distribution toward the Oracle baseline, suggesting
improved alignment with human linguistic variability.

GPT2 Mistral-7B-IT GPT2 Mistral-7B-IT GPT2 Mistral-7B-IT

0.0 0.5 1.0 0.0 0.5 1.0 00.0 0.5 1.0 0.0 0.5 1.0 00.0 0.5 1.0 0.0 0.5 1.0

Density
o
Density
o N
Density
o n

1.0 0.0 0.5 1.

o

00.0 1.0 0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0 00.0

0.5
TVD differences

.5
TVD differences

0.5
TVD differences

= Base m Base = Base
s FT(Orig.corpus) mmm FT(Orig.corpus) mmm FT(Orig.corpus)
e 1-Shot e 1-Shot e 1-Shot
= FT(Mul.labels) 0.0 1.0 = FT(Mul.labels) 0.0 1.0 == FT(Mul.labels) 0.0

Density
Density
Density

1.0

0.5 0.5 0.5
TVD differences TVD differences TVD differences

Figure 3: Distribution of differences of TVD scores between the model and the human CPDs and the oracle
CPDs, for all 3 seeds. For both GPT-2 and Mistral-7B-IT; fine-tuning shifts the TVD distribution towards smaller
differences, confirming previous findings.

gains). bited). We sample 1,2,4,16 and 32 labels given
our available annotations and fine tune GPT2 given

F Varying training labels per instance the subsequent training sets. We then perform the
Study same evaluation as for the rest of our analysis and

present the average TVD of the test set, against the
label set size per instance in Figure 9. Scores for
16 and 32 samples are nearly identical, and very
similar to the score obtained when training on all
available labels (40 on average per prompt). These
results suggest that around 16 labels per instance

We perform an ablation to understand the num-
ber of labels that is necessary to obtain substan-
tial performance gains. We perform this ablation
study only for GPT2, given computational con-
strains (Mistral-7B-IT is a much larger model, and
fine-tuning it repeatedly is computationally proho-
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are sufficient to observe significant performance
gains.
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Figure 6: Entropy of model predictions before an after finetuning.
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0.566

0.564

0.562

0.560

0.558

Mean TVD on Test Set

0.556

0.554

0.552

0.550

12 4 8 16 2
Number of Samples (N) from Human Distribution per Context for Fine-Tuning

Figure 9: Mean TVD by number of samples per context.
Performance improves with more samples, plateauing
after 16.
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G Analysis for QA task without Mean Hit Rate + SD

variability Model GPT-2 Mistral-7B
Base 0.032 £0.002  0.59040.005

Whereas optimising for a task that admits inher- FT (Orig.corpus) 0.030 £+ 0.002  0.22940.005
ent variability (i.e. next-word prediction) might FT (Mul.labels)  0.041 +0.002  0.127+0.005

improve the model’s ability to reproduce such vari-
ability better; the effect of this on tasks that admit
no variability is unclear. We test the models’ per-
formance on knowledge-based question answering
(which is a task that admits no plausible variability),
adapted as a next-word prediction task. We create
a small evaluation dataset based on a knoweldge-
based question answering dataset, WebQuestions
(Berant et al., 2013). We create a subset of 55
handpicked contexts, chosen to include a variety
of topics ranging from science, history and pop
culture, each rephrased into next-word prediction
tasks. We demonstrate 3 randomly chosen exam-
ples below:

Table 3: Mean target hit rate for 40 samples per context
across three seeds with standard deviation, for both GPT-
2 and Mistral-7B.

poland in ww2?
Continuation:

We compare the base model, the model fine
tuned with the original corpus (so as to account
for the impact of training on Provo corpus, a poten-
tially different domain) and the model that was fine
tuned with multiple labels in their ability to gener-
ate the correct answer to the question (phrased as a
next-word prediction task). To evaluate the perfor-

Prompt:

Instruction: Return one plausible next
word for the following context.

mance, for each context, we sample 40 responses
and measure how often responses exactly match
the reference, denoted as hit rate.

Table 3 shows the results of this evaluation. GPT-
2 shows a slight increase in hit rate after finetuning,

Context: The first country to invade
poland in ww2 was

Continuation: although its overall performance remains poor, and
Target: Mistral-7B-IT’s performance also drops, more sub-
stantially. However, we cannot rule out the effect

Germany of other confounders in the data or optimisation
Prompt: process that might have incidentally impacted the

performance changes and are not relevant to the
multiplicity of responses. Hence, we approach
these preliminary results with cautiousness, and
hope to inspire future work that investigates this

Instruction: Return one plausible next
word for the following context.
Context: the organelle responsible
for atp production and storage is the

Continuation: more extensively. Supplementary histograms of
hit-rates across contexts can be seen in Figure 12.
Target:
mitochondrion
Prompt:

Instruction: Return one plausible next
word for the following context.
Context: darth vader's star
destroyer was called
Continuation:

Target:
Devastor

We also evaluate model performance using the
original questions. For Mistral-7B-IT, the instruc-
tion was modified into: QA-Prompt:

Instruction: Answer the following
guestion with one word only
Context: What country first invaded
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Figure 10: Hit rates on gold target label before and after finetuning. Averaged across 3 seeds.
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Figure 11: Hit rates on gold target label when prompted in the original QA format, before and after finetuning.
Averaged across 3 seeds.
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Figure 12: Hit rates on gold target label after finetuning on hard targets (corpus). Averaged across 3 seeds.
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Large Vision-Language Models (LVLMs) have
demonstrated remarkable performance in com-
plex multimodal tasks. However, these models
still suffer from hallucinations, particularly
when required to implicitly recognize or infer
diverse visual entities from images for complex
vision-language tasks. To address this chal-
lenge, we propose HALLUCINOGEN, a novel
visual question answering (VQA) benchmark
that employs contextual reasoning prompts as
hallucination attacks to evaluate the extent of
hallucination in state-of-the-art LVLMs. Our
benchmark provides a comprehensive study of
the implicit reasoning capabilities of these mod-
els by first categorizing visual entities based
on the ease of recognition in an image as either
salient (prominent, visibly recognizable objects
such as a car) or latent entities (such as identify-
ing a disease from a chest X-ray), which are not
readily visible and require domain knowledge
or contextual reasoning for accurate inference.
Next, we design hallucination attacks for
both types of entities to assess hallucinations
in LVLMs while performing various vision-
language tasks, such as locating or reasoning
about specific entities within an image, where
models must perform implicit reasoning by
verifying the existence of the queried entity
within the image before generating responses.
Finally, our extensive evaluations of eleven
LVLMs, including powerful open-source
models (like LLaMA-3.2 and DeepSeek-V2),
commercial models like Gemini, and two hal-
lucination mitigation strategies across multiple
datasets, demonstrate that current LVLMs
remain susceptible to hallucination attacks’.

1 Introduction

In recent years, Large Language Models (LLMs)
have made significant advancements in natural
language understanding and natural language gen-
eration, significantly advancing the field of artificial

!Please find the benchmark here

Question: Is the person present in the
image?

Question: Describe where is the person in
the image.

Ground Truth: No Ground Truth: No

© (X]

In the image, there is a person standing
near the yellow car parked in the parking.

0 o

No. There is no person in the image

Figure 1: Examples of different object hallucination attacks,
where hallucination prompts from HALLUCINOGEN (right)
are able to make the LVLM hallucinate response. (Left) When
explicitly asked to identify a non-existent object, such as
“person,” LVLMs like LLaVA1.5 (Liu et al., 2024b) generate a
correct response. (Right) However, in the case of an implicit
object hallucination attack, where the question requires first
implicitly determining an object’s presence before describing
its position, the LVLMs produce a hallucinated response.

intelligence (Achiam et al., 2023; Dubey et al.,
2024; Zhao et al., 2023). Building on the excep-
tional capabilities of LLMs, researchers have de-
veloped Large Vision-Language Models (LVLMs),
which have demonstrated outstanding performance
on multimodal tasks such as image captioning and
VQA (Zhu et al., 2023; Ye et al., 2023; Wang et al.,
2024; Dubey et al., 2024; Liu et al., 2024b). These
models use LLMs as their foundational architec-
ture, integrating visual features as supplementary
inputs and aligning them with textual features
through visual instruction tuning (Liu et al., 2023,
2024b). Despite these advancements, LVLMs
continue to struggle with the issue of hallucination
— a phenomenon characterized by the misidenti-
fication or misclassification of visual objects in
an image (Li et al., 2023; Lovenia et al., 2023).
This potentially leads to harmful consequences,
especially when users lacking sufficient domain
knowledge place undue reliance on these models.

HALLUCINOGEN vs. Existing Benchmarks.
Prior works have introduced a series of bench-
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marks (Lovenia et al., 2023; Li et al., 2023; Guan
et al., 2023; Yin et al., 2024) and mitigation strate-
gies (Leng et al., 2024; Huang et al., 2024; Zhou
et al., 2023) to evaluate and mitigate hallucina-
tions in LVLMs. However, as illustrated in Fig. 1,
we find that existing benchmarks predominantly
rely on explicit closed-form attacks, which directly
prompt the underlying LVLM to identify a specific
visual entity, such as a “car,” expecting a simple
“Yes” or “No” response. For example, POPE (Li
et al., 2023) utilizes simple visual object detec-
tion prompts like “Is <object> present in the im-
age?”. In contrast, HALLUCINOGEN introduces
implicit open-form hallucination attacks, which
pose a more significant challenge for LVLMs to
defend against. For instance, in a complex vision-
language task that requires the model to identify
the surrounding visual context of a specific object
using a prompt like, “Describe the context and sur-
rounding of the <object> in the image.”, LNLMs
must first implicitly verify whether the object men-
tioned in the prompt is present in the image be-
fore generating a factually accurate response. This
additional layer of reasoning increases the likeli-
hood of LVLMs mistakenly assuming the presence
of a visual entity due to pre-existing biases from
strong LLM priors, such as spurious correlations
between non-existent objects and the overall visual
scene (Liu et al., 2024a, 2025).
Main Contribution. To address these short-
comings, we propose HALLUCINOGEN, a novel
benchmark for evaluating hallucinations in LVLMs.
Unlike existing benchmarks, which primarily rely
on simple, single-object identification prompts,
HALLUCINOGEN introduces a diverse set of
contextual-reasoning prompts, which we call as
hallucination attacks. We categorize these attacks
into two types: explicit and implicit hallucination
attacks. Prior benchmarks have shown to mainly fo-
cus on explicit attacks, where LVLMs are directly
asked to identify non-existent visual entities in
an image, often leading to hallucinated responses.
In contrast, we introduce implicit attacks, which
employ more complex and indirect queries. Rather
than explicitly asking about a specific entity, these
prompts leverage contextual or relational cues in
the visual and textual input, inducing LVLMs to
infer visual entities not present in a target image.
Additionally, based on the visual ease of recog-
nizing entities in an image, we categorize them as
either salient or latent entities. Salient entities refer
to prominent, visibly recognizable objects, like a
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“car,” that can be easily identified without requir-
ing additional context. In contrast, latent entities
are those that are not readily visible and neces-
sitate domain knowledge or contextual reasoning
for accurate inference, e.g., diagnosing a “disease’
from a biomedical image like a chest X-ray. Fur-
thermore, we design implicit hallucination attacks
for both types of entities and utilize these attacks
to identify hallucinated responses when LVLMs
are challenged with complex vision-language tasks
such as locating or reasoning about specific visual
entities in an image. We summarize our main con-
tributions below:

’

* We propose HALLUCINOGEN, a novel bench-
mark for evaluating hallucination in LVLMs.
Unlike prior benchmarks, HALLUCINOGEN
introduces a diverse set of complex contextual
reasoning prompts, referred to as hallucination
attacks, specifically designed to query LVLMs
about visual entities that may not be present
in a target image. Our benchmark consists of
6,000 visual-entity pairs equally divided between
salient and latent entities. Furthermore, for
robust evaluation, each image is associated with
15 diverse implicit hallucination attack prompts.

We show that LVLMs are also capable of hallu-
cinating reasoning and using Chain-of-Thought
reasoning increases hallucination in LVLMs.

Finally, we conduct extensive qualitative and
quantitative evaluations of eleven prior LVLMs
and two hallucination mitigation strategies on our
proposed benchmarks. Our results demonstrate
that, for the majority of hallucination attacks
proposed in HALLUCINOGEN, most LVLMs
show performance close to random guessing.

2 Related works

Our work lies at the intersection of large visual-
language models, hallucination benchmarks, and
mitigating techniques for hallucination.

Large Vision-Language Models (LVLMs).
In recent years, building on the success of
LLMs (Bubeck et al., 2023; Chang et al., 2024),
there has been a significant surge in the develop-
ment of LVLMs. To enhance the capabilities of
these LVLMs, prior works have primarily focused
on designing novel architectures (Ye et al., 2024),
improving cross-modal alignment between visual
and textual prompts (Dubey et al., 2024), and
refining training methods (Liu et al., 2024b). While
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Figure 2: Illustration of various types of hallucination attacks in HALLUCINOGEN. We broadly define two categories of
hallucination attacks: explicit and implicit attacks. An explicit attack involves directly prompting LVLMs to accurately identify
the presence or absence of existing or non-existing visual entity. In contrast, an implicit attack employs more complex queries
that do not explicitly inquire about a specific visual entity but instead require the model to implicitly assess its presence in the
image to generate a factually accurate response. Furthermore, for implicit attacks, we propose a range of visual-language tasks
with varying levels of difficulty, from correctly locating a visual entity to understanding its surrounding context.

these LVLMs excel in complex vision-language
tasks (Zhou et al., 2024; Xu et al., 2024), they
remain prone to generate hallucinated responses
when faced with prompts involving nonexistent
objects, incorrect attributes, or inaccurate relation-
ships (Huang et al., 2023; Lovenia et al., 2023).

Hallucination Benchmarks. In the context of
LVLMs, prior research has defined “hallucination”
as the phenomenon where a model generates re-
sponses referencing objects that are either incon-
sistent with or absent from the target image (Li
et al., 2023; Lovenia et al., 2023). Various bench-
marks have been proposed to evaluate the extent of
hallucination in such models, primarily focusing
on closed-ended tasks using yes-or-no or multiple-
choice questions, with accuracy as the primary eval-
uation metric. For example, POPE (Li et al., 2023)
detects hallucinations through polling-based yes-
or-no questions, while AMBER (Wang et al., 2023)
and HallusionBench (Guan et al., 2024) extend and
refine these methods to assess a broader range of
hallucination types with greater granularity. De-
spite their success, we find that these benchmarks
rely heavily on simple visual object identification
prompts, which fail to adequately challenge current-
generation LVLMs such as Qwen2VL (Yang et al.,
2024) and Llama3.2 (Dubey et al., 2024).
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Mitigating Hallucination in LVL.Ms. Based on
evaluations conducted on existing hallucination
benchmarks, there have been attempts to mitigate
hallucination in LLMs and LVLMSs. In LLMs, tech-
niques like Chain-of-Thought reasoning (Wei et al.,
2022) have proven effective at reducing halluci-
nated or erroneous responses (Luo et al., 2023;
Akbar et al., 2024). For LVLMs, methods such
as VCD (Leng et al., 2024) and OPERA (Huang
et al., 2024) use inference-time decoding optimiza-
tions to identify hallucinated tokens in the gener-
ated responses. Further, preference-aligned train-
ing techniques, like reinforcement learning with
human feedback (RLHF), have also been effec-
tive in addressing hallucination by prioritizing non-
hallucinatory responses while penalizing halluci-
nated content (Sun et al., 2023a). In this work, we
extensively evaluate these mitigation techniques
and show that these approaches fail to defend
against the diverse pool of hallucination attacks
introduced by HALLUCINOGEN.

3 HALLUCINOGEN: A Benchmark for
Evaluating Hallucinations in LVLMs

In this section, we present the details of our pro-
posed benchmark, HALLUCINOGEN, as illustrated
in Fig 2. We first outline the construction of HAL-



LUCINOGEN in Section 3.1. Next, in Section 3.2,
we provide the details on categorising various hal-
lucination attacks introduced in HALLUCINOGEN.

3.1 Developing HALLUCINOGEN Benchmark

As illustrated in Fig. 2, for each image I; and
a target visual entity e; from the associated list
of entities £ = {ej,ea,---,en}, HALLUCINO-
GEN employs a prompt py (i.e., the hallucina-
tion attack) from the set of hand-crafted prompts
P ={p1,p2, -+, pn} to query the LVLMs.

Dataset Structure. We leverage the aforemen-
tioned prompts in HALLUCINOGEN to conduct
a comprehensive evaluation of hallucination in
LVLMs by verifying whether the target entity e;
is accurately referenced in the generated response.
To achieve this, we classify entities within an im-
age based on their visual recognizability into two
categories: salient and latent. Salient entities re-
fer to prominently visible objects, such as a “car,”
that can be easily identified without additional con-
text. In contrast, latent entities are not immediately
apparent and require domain knowledge or con-
textual reasoning for accurate interpretation—for
example, diagnosing a “disease” from a biomedi-
cal image like a chest X-ray. For both categories,
we design hallucination prompts that are further
categorized based on the specific vision-language
tasks they challenge LVLMs to perform. These
tasks include localization, visual context, and coun-
terfactual reasoning (detailed descriptions of each
task are provided in Sec. 3.2). The crafted prompts
implicitly require the model to infer the presence
of the target entity before generating a response
(e.g., by understanding the surrounding context).
Furthermore, each sample in HALLUCINOGEN is
uniquely represented by the triplet shown below:

(L, {{pr(e)), yi 720 i)

where y; is “Yes” or “No” depending on whether
the visual entity e; can be recognized or inferred
from a target image I;. For salient entities, we
sourced 3,000 unique visual-entity pairs from
the MS-COCO (Lin et al., 2014). For latent en-
tities, we obtained 3,000 unique X-ray and dis-
ease pairs from the test set of the NIH Chest X-ray
dataset (Wang et al., 2017) (additional details on
the NIH Chest X-ray dataset and the filtering pro-
cess are provided in Appendix C). Furthermore,
each image is accompanied by 15 diverse implicit
hallucination attack prompts.

(D
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3.2 Categorizing Hallucination Attacks

In contrast to prior benchmarks that primarily fo-
cus on straightforward identification prompts, we
introduce a diverse range of contextual prompts
in HALLUCINOGEN, referred to as hallucination
attacks. These attacks elicit hallucinated responses
by exploiting contextual or relational cues within
the image. Each hallucination attack is designed
to evaluate LVLMs’ ability to accurately infer the
presence of diverse visual entities with varying lev-
els of complexity while performing various visual-
language tasks, including localization, visual con-
textual reasoning, and counterfactual reasoning
(list of prompts used and complexity measure for
each task can be found in Appendix D).

Localization (LOC). Localization involves
identifying the precise location of a visual entity,
requiring both recognition and spatial awareness.
We employ implicit hallucination attacks by
prompting LVLMs to locate entities that are absent.
For example, for a salient entity like a “clock,” the
prompt “Where is the clock in the image?” can
induce hallucinated placements. Similarly, for a
latent entity like “Pneumonia,” the prompt “Locate
the region linked with Pneumonia in this X-ray’
may elicit false indications of disease. These
attacks test the LVLM'’s spatial reasoning and its
susceptibility to context-induced hallucinations.

>

Visual Context (VC). Visual contextual reasoning
requires interpreting entities based on their sur-
rounding context rather than isolated recognition.
Implicit hallucination attacks exploit subtle cues
to induce erroneous inferences. For instance, given
a salient entity like a “car,” the prompt “Identify
surrounding objects near the car in the image?”
may induce hallucinations of a nonexistent car.
Similarly, for a latent entity like “Pneumonia,” the
prompt “Analyze the chest X-ray for radiographic
signs of pneumonia” can elicit hallucinated
diagnoses. These attacks expose LVLMs’ reliance
on context and their tendency to infer fitting but
incorrect entities.

Counterfactual (CF). Counterfactual reasoning
requires the model to infer how a scene changes
with the presence or absence of a visual entity,
demanding higher cognitive reasoning. We employ
implicit hallucination attacks, prompting the model
to imagine an absent object. For instance, given a
salient entity like a “car,” the prompt “What if we
removed the car from the image?” challenges the
model to respond based on a non-existent object.



Similarly, for a latent entity like “Pneumonia,’
the prompt “If we remove signs of Pneumonia
from this X-ray, what other abnormalities appear?”
requires first diagnosing Pneumonia before reason-
ing further. These attacks assess how the model’s
understanding adapts to hypothetical scenarios.

3.3 HALLUCINOGEN vs. Prior Benchmarks

In this section, we compare HALLUCINOGEN with
prior benchmarks.

i) Evaluating Hallucination Beyond Visual-
Grounding Tasks. Prior benchmarks like
POPE (Li et al., 2023) and AMBER (Wang et al.,
2023) focus on visual grounding tasks for hallucina-
tion detection, where models are explicitly queried
about only the presence or absence of a visual en-
tity. In contrast, HALLUCINOGEN extends this
by holistically evaluating hallucination in complex
vision-language tasks such as Localization, Visual
Context, and Counterfactual Reasoning—where
models implicitly must determine the existence of
visual entities before generating a response.

ii) Evaluating Hallucination Beyond Salient En-
tities. Unlike prior benchmarks that focus on easily
recognizable salient entities (Li et al., 2023; Wang
et al., 2023; Guan et al., 2023), HALLUCINOGEN
introduces a first-of-its-kind extension to latent enti-
ties—visual elements requiring domain knowledge
for accurate inference, such as diagnosing diseases
from medical images.

iii) Evaluating Hallucination with Multiple
Prompts. For robust evaluation, HALLUCINOGEN
maps each visual entity with five unique prompts
across each of the three vision-language tasks,
resulting in 15 distinct prompts.

4 Experimental Results

In this section, we demonstrate the utility of
HALLUCINOGEN in studying the hallucination of
LVLMs and evaluating their effectiveness against
mitigation and reasoning techniques. We first de-
scribe our experimental setup and then discuss the
key findings of our benchmarking analysis.

4.1 Experimental setup

Large Visual Language Models. To demonstrate
the effectiveness and generalizability of our
proposed benchmark, we conduct extensive
experiments on eleven state-of-the-art LVLMs.
These models span a range of sizes: i) mid-sized
models such as mPLUG-OWL (Ye et al., 2023),
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mPLUG-OWL2 (Ye et al., 2024), Multi-Modal
GPT (Gong et al., 2023), QwenVL (Bai et al.,
2023), Qwen2VL (Yang et al., 2024), LLAVA-
1.5 (Liu et al., 2023), LLAVA-Med (Li et al., 2024),
DeepSeek-VL2 (Wu et al., 2024), and MiniGPT-
4 (Zhu et al., 2023), ii) larger models with 11B
parameters, such as LLAMA3.2-VL (Dubey et al.,
2024) and iii) commercial vision-language models
such as Gemini (Team et al., 2024).
Hallucination Mitigation Strategies. We include
two widely adopted strategies for mitigating
hallucinations: reinforcement learning with human
feedback (RLHF) (Sun et al., 2023a) and LURE.
In addition, we test our hallucination attacks using
post-prompt and reasoning defenses.

Evaluation. Following prior hallucination bench-
marks (Li et al., 2023), we use accuracy as a metric
to evaluate hallucination in LVLMs. Specifically,
accuracy measures the proportion of correctly an-
swered questions, with lower accuracy indicating
a higher degree of hallucination in the generated
responses. Additionally, following NOPE (Love-
nia et al., 2023), we employ string matching
algorithms to convert open-ended responses into
binary “Yes” or “No” labels based on matching
negative keywords such as “no”, “not”, “never”,
“none”, “nope.” Furthermore, we also conduct an
LLM-as-judge evaluation (Zheng et al., 2023), in
which we use GPT-40 (Achiam et al., 2023) to
assess the responses generated by LVLMs. Specifi-
cally, we prompt GPT-4o0 to classify each response
as either “Yes” or “No,” depending on whether it
can be inferred that the model implicitly assumed
the presence of a visual entity (see Appendix G.2
for additional prompt details and results). We
generally observe a high correlation between the
results obtained from string-matching algorithms
and those from the LLM-as-judge evaluation.

4.2 Large Visual-Language Models fail under
HALLUCINOGEN attacks

We benchmark eleven LVLMEs, including ten open-
sourced and one commercial modal (Gemini), us-
ing HALLUCINOGEN. The results reported are av-
eraged across multiple prompts and five runs.

Main Results. Our results in Figure 3 show
that LVLMs readily fail under different halluci-
nation prompt attacks and generate hallucinated
responses when subjected to diverse visual enti-
ties: salient and latent entities when performing
complex vision-language tasks such as for localiza-
tion, visual-context, and counterfactual reasoning.
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which correlates with a higher degree of object hallucination.

Interestingly, our results corroborate our cate-
gorization difficulties, where LVLMs hallucinate
more as we increase the difficulty of our hallucina-
tion attacks from Localization — Counterfactual.

In particular, for the salient visual entities, we
observe a significant increase in the hallucination
error across all eleven LVLMs as we increase the
level of difficulty in HALLUCINOGEN prompt at-
tacks. Notably, the average hallucination error for
counterfactual attacks is 17.8 % higher than the lo-
calization attack category, highlighting that current
LVLMs lack visual understanding and are not cog-
nizant of their limitations. Furthermore, for latent
entities requiring domain-specific expertise, most
LVLMs fail to defend against HALLUCINOGEN at-
tacks. In particular, all eleven LVLMs, including
medical domain expert models such as LLAVA-
Med, exhibit accuracy close to random guessing
when tested on prompts from our HALLUCINOGEN
benchmark. Our findings highlight the vulnerabil-
ities of LVLMs in high-stakes applications, such
as analyzing chest X-ray scans. Notably, most
LVLMs exhibit implicit hallucinations by incor-
rectly affirming the presence of common thoracic
diseases—such as Pneumonia, Cardiomegaly, Ef-
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fusion, and Atelectasis—underscoring their unreli-
ability when applied to radiological imaging.

4.3 HALLUCINOGEN vs Explicit attacks

In Table 1, we compare the extent of hallucination
in LVLMs when subjected to explicit attacks vs.
the implicit attacks introduced in HALLUCINOGEN.
For salient entities, the prompts for explicit
attacks are sourced from prior benchmarks such
as POPE (Li et al., 2023) and AMBER (Wang
et al., 2023). In contrast, we design explicit
attack prompts for latent entities such as “Given
this X-ray, identify if the person has <disease>"
(see Appendix D for additional details on the
prompts). The results for implicit attacks are
averaged across all introduced vision-language
tasks, including localization, visual context,
and counterfactual reasoning. On average, for
both types of entities, implicit attacks result in
significantly higher hallucination compared to
explicit attacks, with performance differences
ranging from 6.8 %-29.0%, further demonstrating
that LVLMs are more prone to hallucination when
required to perform contextual reasoning.



LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2-VL LLAMA3.2-VL

Attacks | Acc.(%) T Acc.(%) T Acc.(%) T Acc.(%) T
Salient Entities

Explicit 74.514 0,19 88.221 20 8734+ 0.18 84.631 022

Implicit 64.204 .19 59.13.4 021 69.10- 02> 66.42. 25
Latent Entities

EXpliCit 59.1 Zi 0.23 57-211 0.20 60.53i 0.19 56.34i 0.18

Implicit 50.67i 0.22 50-33i 0.19 50-93i 0.21 49-57i 0.23

Table 1: Comparing the degree of hallucination in top per-
forming LVLMSs, when exposed to Explicit and Implicit at-
tacks (HALLUCINOGEN attacks).

LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN  Acc.(%) T Acc.(%) T Acc.(%) T Acc.(%) 1
LOC (w/o PP) 82.204 0.19 65.50 .25 8127+ 02 77.604 031
LOC (w/ PP) 83.124 02 64.32. 027 80.124 .19 77124 030
VC (w/o PP) 59.504 021 57264 015 70434020  64.624 023
VC (w/ PP) 58.524 004 56.45. .05 71101020 6415402
CF (w/o PP) 47314023 51.40+ 030 51.204 021 55.614 027
CF (w/ PP) 46.244 .19 50.104 022 50.800.23 54.324 026

Table 2: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/0) inference-time
post prompting (PP). In general, hallucination attacks used
in HALLUCINOGEN are robust to post-prompting techniques.
See Table 8 for the post-prompting results on latent entities.

4.4 HALLUCINOGEN vs. Defense Techniques

In this section, we evaluate LVLMs on HAL-
LUCINOGEN using diverse hallucination mitiga-
tion techniques, including inference-time defense
methods such as Post-Prompt Defense (Gurari
et al., 2018) and Chain-of-Thought (CoT) (Wei
et al.,, 2022). We also present evaluations of
training-based hallucination mitigation techniques
such as LLAVA-RLHF (Sun et al., 2023b) and
LURE (Zhou et al., 2023).

Post-Prompt Defense. For post-prompt evaluation,
we leverage existing inference-time post-prompting
techniques (Gurari et al., 2018). Specifically, be-
fore evaluating LVLMs on HALLUCINOGEN, we
append our hallucination attack prompts with post-
prompts such as, "When the object <obj> is not
present in the image, respond with 'no’" (Addi-
tional details on the post-prompt used in the experi-
ment can be found in Appendix D). As shown in Ta-
ble 2, across various task difficulties (Localization
— Counterfactual), we find that post-prompting
(PP) has minimal impact on model performance,
with differences ranging in 1.30% — 0.92% com-
pared to evaluations without PP. This suggests
that when subjected to the HALLUCINOGEN at-
tacks, LVLMs continue to generate hallucinated
responses even when explicitly instructed to refrain
from doing so.

Chain-of-Thought Defense. Chain of Thought
(CoT) enables LLMs to reason before generating
responses. LVLMs use LLMs to align visual
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Mitigation — LLAVA-RLHF LURE

HALLUCINOGEN | Acc.(%) T Acc.(%) T
LOC 80.4310.45 69.14 1919
VvC 60.1519.97 60.11+0.29
CF 48.1240.32 55.3140.00

Table 3: Evaluating object hallucination mitigation method
using HALLUCINOGEN across diverse hallucination attacks.

LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN  Acc.(%) T Acc.(%) T Acc.(%) T Acc.(%) T
LOC (w/o CoT)  82.2040.0 65505000 81274045 77601040
LOC (w/ CoT) 79.51 4043 62124037 79044031 7620003
VC (w/o CoT) 59.50+0.33 57.2640.41 70.4310.29 64.62+0.30
VC (w/ CoT) 57124008 5442,007 67584040  63.02:095
CF (w/o CoT) 47.3110.93 51.4040.35 51.2040.12 55.6140.07
CF (w/ CoT) 47144015 50410019 50.80.015 54324001

Table 4: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/0) Chain of Thought
(CoT) reasoning, where CoT reasoning causes LVLMs to
hallucinate more (lower accuracies). See Table 9 for the post-
prompting results on latent entities.

and textual features, enhancing reliability in
visual-question answering. Prior work shows
that adding “Let’s think step by step” to prompts
encourages intermediate reasoning. We inves-
tigate whether such reasoning amplifies object
hallucination. Our results in Table 4 show that
while CoT is ineffective against our hallucination
attacks, it increases hallucination in the four
best-performing LVLMs when performing diverse
vision-language tasks. We hypothesize that since
CoT prompts make LVLMs generate longer,
multi-step responses, it increases the likelihood
of hallucination as errors can accumulate over
extended reasoning (Bang et al., 2023) (For more
qualitative examples, refer to Appendix G.3).
Hallucination Mitigation Methods. We also eval-
uate two popular object hallucination mitigation
techniques: LLAVA-RLHF and LURE. Notably,
both techniques use LLAVA-1.5 as their backbone.
Our findings from Table 3 reveal that as the task dif-
ficulty increases (Localization — Counterfactual),
the average error for the counterfactual task in-
creases by 21.09% for LLAVA-RLHF and 23.12%
for LURE. This highlights the ineffectiveness of
these mitigation techniques when evaluated against
HALLUCINOGEN.

4.5 Investigating the Cause For Hallucination

To investigate the cause of hallucination, we con-
duct two experiments. First, we analyze the extent
to which LVLMs focus on visual input compared
to textual input, such as prompts or previously gen-



LVLM — LLAVA-1.5 mPLUG-OWL2
HALLUCINOGEN | No Acc.(%) 1 No Acc.(%) 1
LOC 69.2310.40 72104018
vC 15.2040.45 16.2140.25
CF 10.1319.27 12.451¢.30

Table 5: Evaluate the tendency of LVLMs to respond with
“No,” using Gaussian noise as visual input. To evaluate how
accurately a model responds with a "No" when presented with
Gaussian noise, we use No Accuracy (No Acc.).

erated text tokens. As shown in Fig.4, we evalu-
ate LLAVA-1.5 on localization and counterfactual
tasks in HALLUCINOGEN and plot the attention
scores for visual, query, and previous predict to-
kens. The attention scores are averaged across all
attention heads. For visual tokens, an additional
averaging is performed across patch lengths. Dur-
ing next-token prediction, the model’s attention
to visual tokens remains near zero, while atten-
tion to query tokens decreases significantly, sug-
gesting that LVLMs prioritize textual tokens over
visual tokens, reflecting the influence of strong lan-
guage prior while generating response (Liu et al.,
2024a). We hypothesize that the lack of atten-
tion to visual tokens is a key factor for object
hallucination in LVLMs as they lack visual un-
derstanding of the given image. Next, to assess
the tendency of LVLMs to respond with “No,” we
introduce Gaussian noise as the visual input and
evaluate their performance under explicit and im-
plicit hallucination attacks. We conduct this evalua-
tion against two powerful LVLMs, LLAVA-1.5 and
mPLUG-OWL2. As shown in Table 5, while these
LVLMs can effectively defend against explicit at-
tacks, such as identifying objects, they perform
poorly when we increase the difficulty from Local-
ization — Counterfactual. Particularly when re-
sponding to visual context or counterfactual tasks,
these models show an average drop of 59% — 60%.
This behaviour demonstrates that LVLMs are heav-
ily biased towards consistently responding with
“Yes” and offering explanations, even for incorrect
or misleading prompts.

4.6 Error Analysis

We conduct an error analysis of the incorrect re-
sponses generated by the best-performing model,
Qwen2VL (Yang et al., 2024). As shown in Fig. 5,
we calculate the Yes vs. No ratio of the incorrect re-
sponses when subjected to the HALLUCINOGEN at-
tack across diverse vision-language tasks. We find
that as we increase the difficulty of our attack (Lo-
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LOC vC CF

HALLUCINOGEN Attacks

Figure 5: Error Analysis on the incorrect responses gener-
ated by Qwen2VL (Yang et al., 2024) when evaluated across
HALLUCINOGEN attack on diverse vision-language tasks.

calization — Counterfactual), there is a steady rise
in the number of “Yes” responses (72.2%-96.2%),
while the number of “No” responses drops sharply
(27.8%-3.8%). This indicates that the model tends
to provide more affirmative responses, ultimately
failing to perform implicit reasoning.

5 Conclusion

In this work, we introduce HALLUCINOGEN, a
novel benchmark for evaluating hallucination in
large vision-language models. It incorporates a
diverse collection of visual entities and complex
contextual reasoning prompts, referred to as hal-
lucination attacks. These attacks are specifically
designed to assess models’ ability to perform im-
plicit reasoning, such as inferring the presence or
absence of a visual entity while executing com-
plex visual-language tasks. Through comprehen-
sive qualitative and quantitative evaluations across
a variety of LVLMs, as well as testing various de-
fense strategies on HALLUCINOGEN, we demon-
strate that most LVLMs perform near the level of
random guessing when subjected to our attacks.



6 Limitation and Future Work

In this section, we highlight a few limitations and
future directions:

e Currently, the hallucination attacks introduced
in HALLUCINOGEN are centered on founda-
tional vision-language tasks such as Visual
Question Answering (VQA). We plan to ex-
tend our benchmark to encompass more com-
plex vision-language tasks in the future.

* The current results on HALLUCINOGEN re-
veal significant potential for improvement in
addressing object hallucination. Moving for-
ward, we aim to develop robust hallucination
mitigation strategies for LVLMs.

Our results show that both generic and med-
ical LVLMs lack visual understanding, high-
lighting the need for developing LVLMs that
are not strongly dependent on the language
model to perform VQA tasks.
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A Benchmarks

Benchmarks for evaluating object hallucina-
tions. Discriminative benchmarks such as
POPE? (Li et al., 2023), NOPE (Lovenia et al.,

https://github.com/RUCAIBox/POPE
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2023), and CIEM (Hu et al., 2023) focus exclu-
sively on object-level hallucinations. Their dataset
sizes are 3,000, 17,983, and 72,941, respectively.
These benchmarks evaluate performance using ac-
curacy as the primary metric, determined by verify-
ing the presence of objects in images and compar-
ing the model’s outputs to ground-truth answers.

B Large Visual Language Models

LVLMs. We perform comprehensive experiments
on eight leading-edge LVLMs. These models
represent a variety of sizes, including mid-sized
models like mPLUG-OWL? (Ye et al., 2023),
mPLUG-OWL2* (Ye et al., 2024), Multi-Modal
GPT’ (Gong et al., 2023), QwenVL® (Bai et al.,
2023), Qwen2VL’ (Yang et al., 2024), LLAVA-
1.58 (Liu et al., 2023), and MiniGPT-4 ° (Zhu et al.,
2023), all with parameter counts ranging from 7B
to 10B. Furthermore, we include a larger-scale
model, LLAMA3.2-VL ' (Dubey et al., 2024),
which contains 11B parameters, in our evaluations.

C Additional Details: NIH Chest X-ray
dataset

Chest X-rays are among the most commonly per-
formed and cost-efficient medical imaging proce-
dures. However, interpreting chest X-rays for clini-
cal diagnosis can be more challenging compared to
chest CT scans. A significant barrier to achieving
clinically relevant computer-aided detection and
diagnosis (CAD) systems for chest X-rays in real-
world medical settings is the limited availability of
large, annotated datasets. Creating such datasets
is resource-intensive, particularly due to the sub-
stantial effort required for image labeling. Before
the introduction of this dataset, the largest publicly
accessible collection of chest X-ray images was
Openi, which included 4,143 images. Following
are the labels used: Atelectasis, Cardiomegaly, Effu-
sion, Infiltration, Mass, Nodule, Pneumonia, Pneu-
mothorax, Consolidation, Edema, Emphysema, Fi-
brosis, Pleural Thickening, Hernia

The NIH Chest X-ray Dataset addresses this lim-
itation by providing 112,120 X-ray images labeled
com/X-PLUG/mPLUG-0wl
com/X-PLUG/mPLUG-0wl
com/open-mmlab/Multimodal-GPT
com/QwenLM/Qwen-VL
com/QwenlLM/Qwen-VL
//github.com/haotian-1liu/LLaVA
*https://github.com/Vision-CAIR/MiniGPT-4

10https: //huggingface.co/collections/
meta-1lama/llama-32-661448ffc8c32f949b0@4c8cf

3https:
4https:
Shttps:
6https:
Thttps:
Shttps:

//github.
//github.
//github.
//github.
//github.
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Task

Prompts

Identification

Given this X-ray, identify if the person has <obj>.

Based on this X-ray, determine whether the person has <obj>.
Analyze this X-ray to identify if <obj> is present in the person.
Examine this X-ray and conclude if the person has <obj>.

Review this X-ray to assess whether the person shows signs of <obj>.

Localization

Examine the X-ray and identify the region associated with detecting <obj>.
Analyze the X-ray and determine which region is linked to <obj>.

Inspect the X-ray and specify the area corresponding to <obj>.

Evaluate the X-ray to locate regions indicative of <obj>.

Review the X-ray and pinpoint the region associated with identifying <obj>.

Visual Context

Assess the chest X-ray for regions showing potential indications of <disease>.

Inspect the chest X-ray and surrounding regions for any signs consistent with <disease>.

Review the chest X-ray along with the surrounding thoracic cavity for evidence of <disease>.

Assess the chest X-ray and nearby anatomical regions for indications of <disease>.

Analyze the chest X-ray and nearby adjacent structures for radiographic features suggestive of <disease>.

Counterfactual Reasoning

If we removed the signs of <diseases> from this X-ray, what other abnormalities would be prominent?

If the indicators of <disease> were removed from this chest X-ray, what other abnormalities would stand out?

Excluding the signs of <disease> in this chest X-ray, which other abnormalities would be most noticeable?

If <disease>-related features were eliminated from this chest X-ray, what other prominent abnormalities would remain?
‘Without considering the presence of <disease> in this chest X-ray, what other radiographic abnormalities can be observed?

Table 6: Prompts for Latent entities

with disease information from 30,805 unique pa-
tients. The labeling process involved using Natural
Language Processing (NLP) techniques to extract
disease classifications from corresponding radiol-
ogy reports. These labels are estimated to have an
accuracy exceeding 90%, making them suitable for
weakly-supervised learning applications.

To control data bias, we apply the following
rigorous filtering process:

* Dataset Split: We use the test set of the
NIH Chest X-ray dataset, which includes ex-
act bounding box coordinates and label confi-
dence scores for each image-disease pair.

* Exclude Unreliable Labels: We filter out X-
rays that have no assigned labels and those
labelled as “no-findings” or “no-responses,
as they lack diagnostic information.

B

e Control for Label Noise in Multi-label
Cases: To minimize incorrect labelling that
tends to occur in heavily multi-labelled sam-
ples, we retain only images with fewer than
three disease labels.

 Binary Classification Setup: Based on the
filtered ground truth labels, we create a binary
classification task for each disease: “Yes”

D Additional Details: Tasks

D.1 Prompt Used in HALLUCINOGEN

We provide the details on the prompt used for each
category in HALLUCINOGEN for salient entities
(see in Table 6) and latent entities (see in Table 10).

Additionally, during post-prompt inference, we re-
port scores averaged across five prompts, as listed
below:

* When the object <obj> is not present in the
image, respond with “no”.

* Respond with “no” when the image does not
contain the object <obj>.

* In the absence of the object <obj> in the im-
age, answer with “no”.

* If <obj> is not found in the image, your re-
sponse should be “no”.

* When the object <obj> is not visible in the
image, indicate “no”.

D.2 Complexity of Visual-Language Tasks

We conducted additional experiments to better un-
derstand the computational requirements associ-
ated with each of the vision-language tasks. Specif-
ically, we use the number of tokens generated dur-
ing inference as a proxy for computational cost.
We report this metric for both the best-performing
models, such as Gemini 1.5 Pro.

Category Salient Entity (Avg) Latent Entity (Avg)
LOC 13 15
vC 19 21
CF 28 29

Table 7: Average number of tokens generated for each
category across salient and latent entities.

In general, we find that the average number of
tokens generated by more challenging hallucina-
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tion attacks, such as Counterfactual (CF), is signif-
icantly higher than that of relatively simpler hallu-
cination attacks, such as Localization, across both
types of entities.

E Additional Details: Hyper-parameters

We use the default hyper-parameters for all our
baselines.

F Additional Details: Auxiliary

Compute Infrastructure: All our experiments
are conducted on one NVIDIA A6000 GPUs. No
training is required, and depending on the down-
stream task, a single inference run on a benchmark
requires anywhere between 1 and 5 minutes.
Potential Risks: We manually create all the
prompts used in our benchmark to avoid any poten-
tial harm or biases.

LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN  Acc.(%) T Acc.(%) T Acc.(%) T Acc.(%) T
LOC (w/o PP) 55.32 54.76 55.12 54.90
LOC (w/ PP) 54.78 54.20 54.65 54.12

VC (w/o PP) 50.76 51.30 50.12 49.80

VC (w/ PP) 50.20 50.65 49.78 49.12

CF (w/o PP) 49.12 48.76 48.54 47.98

CF (w/ PP) 48.54 48.12 48.00 47.45

Table 8: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/0) inference-time
post prompting (PP) on latent entity

LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN  Acc.(%) T Acc.(%) T Acc.(%) 1 Acc.(%) T
LOC (w/o CoT) ~ 54.88+0.35 55124028 54754041  55.3040.29
LOC (w/ CoT) 54304031 54.65+0.25 54124039  54.78-0.27
VC (wlo CoT) 50.9040.29  51.45£0.33  50.78£0.30  49.92:0.28
VC (w/ CoT) 50344027  50.80+0.30  50.1240.28  49.50+0.24
CF (w/o CoT) 492040.21  48.90+0.32  48.56+0.18  47.8040.22
CF (w/ CoT) 48754019  48.50£0.25  48.1240.21  47.3540.19

Table 9: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/0) Chain of Thought
(CoT) reasoning for latent entities

G Additional Results
G.1 Latent Entities

We provide additional results on the latent entities
in Table 9 and Table 8.

G.2 LLM as Judge

Fig 6 provides the details on the prompt used for
converting open-ended responses into “Yes” or
“No” responses. Additionally, we provide the re-
sults with LLLM as Judge evaluation in Fig 8. We
find that the results are highly correlated with the
values reported in Fig 3 using string-matching.

f Given the open-ended response below, determine if the response implies the presence‘
of a visual entity (e.g., character, object, or feature from a digital/virtual world) in an
image. The response may include a location or context related to the visual entity. If
the response suggests or assumes the presence of a visual entity, return "yes". If the
response does not imply such a presence, return "no".

Response: <Response>
Virtual Entity: <object>

Return “Yes” or “No”

J

Figure 6: Prompt used for the GPT-40 to convert open-ended
responses into “Yes” or “No”

Explicit Object Hallucination Attacks
y

]

No, there is no chair in the image

(X)
First, let's identify the objects in the image.
There are four laptops, a backpack, and a
chair.

1. The four laptops are placed on a table,
with one on the left side, one in the middle,
one on the right side, and one in the
background.

2. The backpack is located on the left side
of the table, next to the laptops.

a 3. The chair is positioned on the right side
of the table, near the backpack.

So, the chair is on the right side of the
()| table, next to the backpack

Question: Is the chair present in the
image?

Ground Truth: No

|
i
No. There is no chair in the image |
|
i

Figure 7: Comparison of responses generated by LlaMa-
1.5 (Liu et al., 2023) when subjected to an explicit hallu-
cination attack on a simple identification task. “w/” and
“w/0” denote “with” and “without” CoT, respectively.
We find that CoT induces additional hallucinations, re-
sulting in incorrect responses.

G.J3

Fig 7 shows a comparison of the responses gener-
ated by LlaMa-1.5 (Liu et al., 2023) when exposed
to a direct hallucination attack on a basic identifica-
tion task. Our findings suggest that the use of CoT
leads to more hallucinations, causing the model to
provide incorrect responses.

Qualitative Example for CoT
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Figure 8: We benchmark eleven state-of-the-art LVLMs on the HALLUCINOGEN. Using image-entity pairs categorized as (fop)
salient and (bottom) latent entities, we evaluate these LVLMs across diverse tasks, including Localization (LOC), Visual Context
(VC), and Counterfactual reasoning (CF). We use LLM as judge evaluation to get close-ended responses. Lower accuracy reflects
incorrectness in inferring the presence or absence of an object, which correlates with a higher degree of object hallucination.

Task

Prompts

Counterfactual | How would the scene change if the <obj> were invisible?

What might replace the <obj> if it vanished from the image?

What is the purpose of the <obj> in this scene, and can the image work without it?
If <obj> were moved elsewhere, what would happen to the story of the image?
‘What would happen if we removed the <obj> from the image?

Identification Is the <obj> present in the image?

Determine whether a <obj> is visible in the image.
Assess if a <obj> can be seen in the image.

Find out if a <obj> appears in the photo.

Verify if there is a <obj> in the image.

Localization Describe where is <obj> in the image.

Examine the presence and location of <obj> in the image.
Locate and describe the position of <obj> in the image.
Determine and specify where <obj> is in the photo.
Explain where <obj> is found in the image.

Visual Context | Interpret the object <obj> with respect to its context within the image.
Analyze the neighboring elements of <obj> in the image.

Describe the context and surroundings of <obj> in the picture.
Explain the context in which <obj> is placed within the image.
Outline the context and nearby items around <obj> in the photo.

Table 10: Prompts for Salient entity
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Abstract

Pixel-based language models aim to solve the
vocabulary bottleneck problem in language
modeling, but the challenge of uncertainty
quantification remains open. The novelty of
this work consists of analysing uncertainty
and confidence in pixel-based language mod-
els across 18 languages and 7 scripts, all part
of 3 semantically challenging tasks. This
is achieved through several methods such as
Monte Carlo Dropout, Transformer Attention,
and Ensemble Learning. The results suggest
that pixel-based models underestimate uncer-
tainty when reconstructing patches. The un-
certainty is also influenced by the script, with
Latin languages displaying lower uncertainty.
The findings on ensemble learning show bet-
ter performance when applying hyperparameter
tuning during the named entity recognition and
question-answering tasks across 16 languages.

1 Introduction

After the release of ChatGPT in 2022, the number
of papers published every day on the topic of Large
Language Models (LLMs) has increased more than
20-fold (Zhao et al., 2023). The number of param-
eters in these models jumped from 340 millions
in implementations such as BERT (Devlin et al.,
2018) to billions of parameters in models like GPT-
3 (Brown et al., 2020) or LLaMA (Touvron et al.,
2023). Despite their obvious popularity, one of
the central limitations of LLMs remains their un-
certainty and lack of trustworthiness (Huang et al.,
2024). As these models are being applied more and
more to high-stakes scenarios, such as medicine
(Busch et al., 2025) or security (Gawlikowski et al.,
2023), it is critical that their predictions can be
trusted. Generally, the research on the explain-
ability and interpretability of LLMs is focused on
traditional tokenizer-based methods, that split text
into smaller units. They produce overconfident
responses even when the predictions are likely in-
correct (Xiong et al., 2023).

English Text Reconstruction
(PIXEL)

yinsic lx;‘( ‘:
Multilingual Text Reconstruction with
Uncertainty (ours)
rean o

Figure 1.1: Example of text reconstruction using the
PIXEL model from Rust et al. (2022), and text recon-
struction with uncertainty for different languages.

For semantic NLP tasks such as extractive ques-
tion answering (QA), it is common to use models
that predict the start and end tokens of an answer
span and provide confidence scores based on the
softmax probabilities of these predictions (Devlin
et al., 2018; Lan et al., 2019). However, this ap-
proach offers no measure to quantify the uncer-
tainty of the prediction. Several works have been
proposed in the past years to solve this problem
(Xiao et al., 2022; Lin et al., 2023). Common solu-
tions include incorporating uncertainty directly into
the model using Bayesian Neural Networks (BNN)
(Blundell et al., 2015) or post-hoc methods such as
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Monte Carlo Dropout (Gal and Ghahramani, 2016),
Temperature Scaling (Guo et al., 2017) and En-
semble Learning (Lakshminarayanan et al., 2017).
However, these approaches have not been studied
in the context of more recent pixel-based models
that use visual representations of words, as opposed
to text representations.

The Pixel based Encoder of Language or PIXEL
proposed by (Rust et al., 2022) aims to transform
language modeling into a visual recognition task
with the help of small and square clusters of pix-
els, called patches. PIXEL does not rely on a
predefined vocabulary and it is trained to recon-
struct missing patches of text, by following a Vision
Transformer — Masked Autoencoder (ViT-MAE)
architecture. The Vision Transformer (ViT) uses
linear embeddings of fixed-sized patches of pix-
els which are encoded using a transformer. In the
context of computer vision, masked image encod-
ing works similarly to masked language modeling
(MLM), by masking regions of an image and then
learning to reconstruct the whole image.

PIXEL was pretrained on rendered versions of
the Wikipedia and BookCorpus datasets and it is
evaluated on 32 topologically diverse languages,
across 14 scripts. Supporting multiple languages
requires a larger vocabulary to cover diverse lin-
guistic features and scripts, which is often imprac-
tical within the constraints of a fixed vocabulary
size. Wu and Dredze (2019) noted that multilingual
models struggle with resource allocation across lan-
guages, leading to suboptimal performance in less
represented languages, during tasks like named
entity recognition, part-of-speech tagging, and de-
pendency parsing. Furthermore, imbalanced vo-
cabulary representation can exacerbate biases, re-
sulting in unfair treatment of certain languages
(Wan, 2021). The trade-off in vocabulary alloca-
tion means that models either inadequately repre
sent some languages or become too large in size
and computational requirements.

The main aim is to study uncertainty in pixel-
based language models focusing on semantic tasks.
Given the challenging nature of semantic process-
ing and the fewer studies dedicated to it, this re-
search will center on finetuning models to solve
tasks like named entity recognition, sequence clas-
sification, and question answering. Solving the vo-
cabulary bottleneck of traditional language models
which rely on a close vocabulary can be achieved
by using pixel-based models which do not require
a fixed vocabulary. Finally, to tackle the uncer-

tainty problem, this work will make use of existing
techniques for quantifying uncertainty, and apply
them to pixel-based models, which also represent
the biggest novelty of this study. This includes
uncertainty quantification at the pixel level using
Monte Carlo methods (Figure 1.1), ensemble learn-
ing applied to models finetuned on three semantic
tasks across 19 languages, but also an analysis of
the attention mechanism.

2 State of the Art

The first study to use visual features of text in or-
der to create embeddings was applied to Chinese
and used linearizing bitmaps of characters or words
(Ald6n Minguez et al., 2016). By using shared char-
acter components from Chinese or Korean, it be-
comes easier to generalize to new and less frequent
characters. Different studies (Dai and Cai, 2017;
Sun et al., 2018; Salesky et al., 2021) used ren-
dering techniques to obtain images of text. In this
context, text rendering involves converting charac-
ter codes into glyph indices, which are then used
to generate the corresponding glyph images, while
applying various styles, fonts, sizes, and colors. A
glyph often contains one character only, but it can
also represent accents or multiple characters in lan-
guages where ligatures are common, like Arabic.
Dai and Cai (2017) used text rendering in Chinese,
Japanese, and Korean, and extracted visual features
from a Convolutional Neural Network (CNN) to
perform text classification. Similarly, Sun et al.
(2018) applied convolutions to squared rendered
images to perform sentiment analysis in Chinese
and English.

In the context of machine translation, Salesky
et al. (2021) suggested a very robust approach
based on a variation of the ViT. The training data is
rendered into gray-scale images using the Pygame
backend and a slicing window is applied to create
patches, which act as tokens. Then, a 2D convolu-
tional block followed by linear projection is used
to create embeddings, which serve as input for the
transformer encoder. The translation happens di-
rectly from pixel representations, without any word
preprocessing. After training on seven language
pairs, the approach matches the performance of
traditional language models, with additional advan-
tages. It is more robust to character permutations
or substitutions, and it does not rely on text prepro-
cessing steps, such as tokenization or segmentation.

As of to date, systematic investigations into the

104



uncertainty and calibration of pixel-based language
models remain limited. Rust et al. (2022) showed
that PIXEL is robust when it comes to character-
level perturbations and code-switching. In this anal-
ysis, relevancy heatmaps were used to depict visual
explanations of correct predictions, and there is evi-
dence to suggest that these outputs are interpretable
when identifying contradictions and entailment re-
lationships. However, during semantic tasks like
named entity recognition, sequence classification,
and question answering, PIXEL is struggling to
retain semantic knowledge and transfer it across
scripts. Reasons for this might include a lack of
multilingual pretraining, as well as a limited ability
to capture contextual information due to the use
of unigram patch embeddings. While raw perfor-
mance is desirable, it is crucial to have models that
are reliable and explainable.

3 Methods

3.1 Data

MasakhaNER 1.0 MasakhaNER 1.0 (Adelani
etal., 2021) is a Named Entity Recognition (NER)
benchmark, which includes data from 10 African
Languages obtained from local news sources
(Ambharic, Hausa, Igbo, Kinyarwanda, Luganda,
Luo, Nigerian-Pidgin, Swahili, Wolof and Yorub4),
as well as the ConLL-2003 English dataset. The
task involves classifying named entities into nine
pre-defined categories. The MasakhaNER dataset
contains labeled entities for each language.

GLUE The Sequence Classification (SC) task
relies on the The General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018). It involves nine sentence-level understand-
ing tasks (CoLA, SST-2, MRPC, QQP, STS-B
MNLI-M/MM, QNLI, RTE, WNLI) in English,
across three categories: single-sentence tasks, simi-
larity and paraphrase tasks, and inference tasks.

TyDiQA-GoldP To assess the ability of the
model to perform Question Answering (QA), the
TyDiQA-GoldP dataset was selected (Clark et al.,
2020). It contains nine typologically diverse lan-
guages (English, Arabic, Bengali, Finnish, Indone-
sian, Korean, Russian, Swahili, Telugu). The
dataset contains questions written by native speak-
ers, passages with relevant information, and an-
swers provided as short spans of text within the
passage. Unlike the primary task, the Gold Passage
task focuses more on locating the exact answer
within a given context.

3.2 Model Architecture

PIXEL processes text as images that are rendered
using the PyGame' renderer to accommodate mul-
tiple scripts. Each rendered image is converted
into a sequence of patches, resulting in 529 non-
overlapping patches, with a size of 16+ 16 pixels. A
ViT-based encoder encodes visible patches and the
CLS tokens through patch, positional, and CLS em-
beddings. During pretraining, the system applies
random masking to 25% of the patches and em-
ploys a decoder to reconstruct the masked regions
through a regression-like method. The decoder
is then finetuned on downstream tasks by replac-
ing the reconstruction objective with task-specific
heads.

The English PIXEL which serves as a base for
the experiments described in the next section is pre-
trained on a rendered version of English Wikipedia
and BookCorpus (Zhu et al., 2015). For more de-
tails about the PIXEL pretraining routine, refer to
the implementation2 of Rust et al. (2022).

3.3 Uncertainty Quantification

Monte Carlo Uncertainty The first method used
to quantify epistemic uncertainty at the patch level
is Monte Carlo (MC) Dropout. The input is a ren-
dered image € R16X16X3 with a sequence length
of 256 pixels, and the goal is to obtain an uncer-
tainty map U € R16X16X3 containing the uncer-
tainty for each patch. For this, the model is used in
100 forward passes to compute a series of predic-
tions P, which contain per-pixel logits. Then, the
mean prediction is created by averaging these log-
its, resulting in the reconstructed text. A standard
deviation (SD) image is obtained by computing
the SDs of the predictions for each pixel. Since
each patch has a dimension of 16 x 16 pixels, the
per-patch uncertainty is defined by averaging the
predictions of all SD values inside a patch, and
each pixel inside the patch is assigned that value.
Finally, the uncertainty map U is a collection of
patches representing the overall uncertainty of its
pixels. For visualization purposes, the uncertainty
map is overlaid on top of the original image, as well
as on the reconstructed text. An overview of this
routine is presented in Algorithm 1 of Appendix C.

An overall mean uncertainty value (o) is also
computed to measure uncertainty at the image level
(Equation 3.1), where H and W refer to the height

1ht’cps: //www.pygame.org/
2https://github.com/xplip/pixel
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(a) Original rendered text using the

PyGame renderer. tainty.

(b) Original image with uncer-
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(c) Reconstructed text with uncer-
tainty.

Figure 2.1: Example of uncertainty quantification at the patch level for an image containing text from the introduction

of this paper. Brighter colors indicate more uncertainty.

and width of the image.

H W
0= W Z Z_: (3.1)
Additionally, we compute two loss functions
during the MC inference: the normalized MSE
loss (Equation 3.2) used during pretraining and
the normalized Gaussian Negative Log-Likelihood
(GNLL) loss (Equation 3.3), where eps = 1le — 6
is a clamp value used for stability. Unlike the MSE,
the GNLL loss accounts for epistemic uncertainty,
by incorporating the variance of the predicted dis-
tribution.

MSE = (pred — img)?>  (3.2)

_ 1
HxW

(pred — img)?

max(var, eps)
(3.3)
We study uncertainty across tasks: NER
(MasakhaNER 1.0), SC (GLUE), and QA
(TyDiQA-GoldP), and scripts — as one of the main
challenges in NLP is building reliable models that
can scale up to real-world applications where many
scripts are often encountered. Additionally, we
carry out a calibration analysis to examine the re-
lationship between model performance and uncer-
tainty across tasks. The performance is measured
using Root Mean Square Error (RMSE = +MSE,
Equation 3.2), while uncertainty is quantified using
MC standard deviation. The goal is to evaluate how

GNLL = log(max(var, eps)) +

well the predicted uncertainty values align with ac-
tual performance errors across the different scripts
and languages.

Attention Visualization To visualize attention
in the PIXEL encoder, a square attention grid
A € REXHxNpae® g created for the encoded
patches, where L is the number of attention lay-
ers and H is the number of heads in each layer.
An example is presented in Figure 3.1. This shows
model-level attention across all layers and heads for
a particular input image. Each cell A(, h) in this
grid visualizes the neuron-level attention weights
for a specific head h and layer [. Then, each patch
in the attention cell attends to the other patches in
the sequence according to the dot product between
the query (of the attender patch) and the key (of
the attended patch). The weights are averaged over
100 Monte Carlo forward passes. Considering the
increased dimensionality of the attention cell, only
the first 16 patches are visualized, resulting in an
image with 16 x 16 patches.

Ensemble Learning To solve the Extractive
Question-Answering task, four learner models
are finetuned on each of the 9 languages of the
TyDiQA-GoldP (Section 3.1) dataset, resulting in
36 total models. Each model is trained on the
train split of a language in the dataset and evalu-
ated on the validation split of the same language.
There are four main steps to be followed to com-
pute the final prediction for an input question. In
a regular non-ensemble setting, there is only one
finetuned model that dictates the output answer for
each example. In the ensemble learning framework,
each model M; is applied to the input question q to
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Figure 3.1: Model-level (attention grid) and neuron-
level (layer 2, head 3) views of attention in the PIXEL
model for a short input text from the English Wikipedia.
The attention grid contains 12 attention layers with 12
attention heads each.

INPUT: <
“Alchemy (from Arabic: al-kimiya; from" | 1 {

obtain the candidate answers with corresponding
confidence probability values. To reduce the pool
of candidates, only the predictions that appear in
all models are kept. The average confidence conf,
is computed for each candidate across all models.
Finally, the candidate with the highest confidence
is selected.

In the Named Entity Recognition task, five
learner models are finetuned on each of the 10 lan-
guages of the MasakhaNER 1.0 dataset (Adelani
et al., 2021), resulting in 50 total models. Each
model is trained on the train split of a language
in the dataset and evaluated on the test split of the
same language. The task involves assigning a label
to each token from a list of 9 predefined classes.
Their predicted logits are averaged and combined
into one value for each class. The final label is
computed as shown in Equation 3.4, where L is
the set of labels (classes) and k is the number of
models.

k
1 .
label = arg max <k g 1 logltsi’l> (3.4)
1=

During the ensemble experiment, only the values
of the batch size (BSZ), learning rate (LR), dropout
probability (DP), and the seed are changed. For
more details about the finetuning configuration and
routine, refer to Tables C.3 and C.2.

4 Results
4.1 Monte Carlo Uncertainty

Uncertainty Across Datasets The distribution of
MC uncertainty is presented in Figure 4.1 (left),
suggesting that GLUE achieves the highest overall
uncertainty, which indicates that pixel-level uncer-
tainty increases with text that has more semantic

complexity, as it is the case in sentiment classifi-
cation, semantic similarity or textual entailment
tasks.

In terms of the mask ratio R, the plot indicates
that lower values (0.1 to 0.3) generally correspond
to lower uncertainty across all datasets, hinting that
less masking leads to more certain predictions. In
this case, the largest part of the data is concentrated
between uncertainty values of 0.15 and 0.25. As
the mask ratio increases, the distribution becomes
more spread out.

The results from Figure 4.2 (left) indicate that
the loss increases with the mask ratio. This is
expected as the model was trained to reconstruct
the image patches with a mask ratio of R = 0.25.
There is also a wide performance gap between the
sequence classification task (GLUE) and the rest
of the tasks, which can be attributed to language.
The GLUE dataset contains English text, the lan-
guage the PIXEL model was pretrained on, while
TyDiQA-GoldP and MasakhaNER are multilingual
datasets.

Uncertainty Across Scripts The overall trends
(right) show that Ge’ez, Chinese Characters, Ara-
bic, and Korean scripts exhibit high uncertainty
(Figure 4.1, right) and high mean loss (Figure 4.2,
right), and the increase is more pronounced at mask
ratios above 0.6. The Latin and Cyrillic scripts are
increasing more gradually with a sharper uptick
around 0.8 — 0.9. The main script found in the
pre-training datasets (English Wikipedia and the
BookCorpus) is Latin, and there is a high overlap
between Latin and Cyrillic characters, given that
both scripts share Greek as a common ancestor.
However, the uncertainty in the Cyrillic script is
lower, compared to Latin. The scripts with the high-
est MC uncertainty are Ge’ez and Chinese Charac-
ters, both of which are visually quite distinct from
the Latin script.

Calibration Analysis To further study the re-
lationship between performance and uncertainty,
Figure 4.3 depicts a hexbin plot with marginal dis-
tributions, where the Root Mean Squared Error
(RMSE) loss is plotted against the SD uncertainty
from the MC experiments. The x-axis represents
the aggregated per-image standard deviation (uncer-
tainty) of the model after 100 Monte Carlo samples.
The RMSE measures the average of the actual er-
rors between the true pixel values and the predicted
values. Inside each hexagon, the color intensity
corresponds to the density of data points within
that hexagon. Therefore, darker regions indicate a
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Figure 4.1: The distribution of the MC Uncertainty across the different datasets (left) and scripts (right) for each

mask ratio value R.
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Figure 4.2: The MSE loss across the different datasets (left) and scripts (right) for each mask ratio value R.

higher density of data points. There is a high den-
sity of points in the top left corner, which suggests
that the model underestimates its performance. In
other words, many examples are associated with
high loss but low uncertainty.

The distribution of the points for all three
datasets (MasakhaNER, TyDiQA-GoldP, and
GLUE) is shown in the calibration plot from Figure
4.4. The highest level of overconfidence is associ-
ated with the question-answering task in TyDiQA-
GoldP. However, there seems to be a subgroup of
points for which the uncertainty is high. The points
in the MaskhaNER dataset fall under the category
of high uncertainty and high loss. The GLUE data
is located between 0.15 and 0.3 on the uncertainty
range and contains several examples showing de-
creased loss. While the model can be considered to
be underestimating uncertainty with this group, the
majority of the data still fall over the main diagonal,
indicating an underestimation of uncertainty.

Visualizing Uncertainty in Text Reconstruc-
tion Figure 2.1 shows (a) the original rendered En-
glish text generated with the PyGame text renderer,
(b) the original image overlaied with per-patch un-
certainty and (c) the reconstructed text overlaied
with per-patch uncertainty. Bright yellow patches
suggest larger variations in predictions. This can be
observed in the larger masked segments of patches
from the first 6 lines of the image, as well as in
lines 12 and 15. These segments also translate to
less accurate reconstructions, as seen on the corre-

1.0

0.2

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Uncertainty (SD)

Figure 4.3: Calibration hexbin plot showing the RMSE
loss in terms of the MC uncertainty.

sponding rows of the reconstructed image. On the
other hand, smaller segments of patches (which ap-
pear darker in the image) are associated with lower
uncertainty and are reconstructed more accurately.
These patches often contain shorter sequences of
letters. In terms of the mistakes, the model fails to
reconstruct patches with numerals, such as 20-fold.
Still, it appears to understand that the most suit-
able prediction given the context is a number (the
model predicts 20,000). Moreover, longer and less
frequent words such as implementation and pub-
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Figure 4.4: Calibration kernel density estimate plot
showing the RMSE loss in terms of the MC uncertainty
across the three datasets.

lish, as well as punctuation marks (used in (LLMs))
appear to produce more variation in the prediction,
given the increased uncertainty.

4.2 Attention Visualization

Each cell in the attention grids (Figure 4.5) shows
the attention weights for the first 16 patches of a
specific head h and layer [ in the selected examples.
The first four layers appear to encode the highest
amount of visual information, given the high activa-
tion of the patches. Across all heads and layers of
both examples, the attention weight corresponding
to the CLS patch is high, as it contains the aggre-
gate representation of the input patch sequence.
There is a clear difference in the distribution of at-
tention between the examples. The top 1 performer
(Nigerian Pidgin) exhibits high activation on the
diagonal at the neuron level, meaning that patches
are attending to themselves, possibly to retain posi-
tional and contextual information. The Igbo exam-
ple does not show the same pattern, rather a subset
of dominant patches attend to the remaining ones.

4.3 Ensemble Learning

Extractive Question Answering The results of
the ensemble QA model are presented in Table
4.1, which shows the weighted F1 score across all
languages in the TyDiQA-GoldP dataset. These
findings are compared with the results obtain by
Rust et al. (2022), following the same experimental
setting. Overall, the ensemble learning method im-
proves the performance in the extractive QA task
for 6 out of the 8 languages. The average F1 score
(excluding the F NG data) for the ensemble con-
figuration is higher with 1.7 points than in the case
of the regular PIXEL model. In terms of the indi-
vidual languages, there is a high improvement for

Indonesian (4.3 points), Russian (2.8 points), and
Arabic (2.2 points), suggesting that combining mul-
tiple learners can improve performance regardless
of script.

Figure 4.6 presents the confidence distribution
of the best answers in the ensemble model for all
languages in the dataset. In general, the confidence
is in the range 0.2 — 0.4 across the majority of lan-
guages, with some distributions indicating slightly
higher confidence, as in the case of Finnish, In-
donesian, and Swahili. Lower confidence values
can be seen in Korean and Bengali. These obser-
vations are in line with the previous findings on
performance.

Named Entity Recognition The results of the
ensemble NER model are presented in Table
4.2, showing the weighted F1 score across the
MasakhaNER 1.0 dataset. Due to hardware limi-
tations at runtime, the ENG data is not included.
For comparison, the results are shown against the
values obtained by Rust et al. (2022). In general,
ensemble learning improves the performance sig-
nificantly for all 9 languages, resulting in scores
higher than 90. This is also the case for languages
that were previously associated with a low score,
such as Amharic (AMH). The F1 score gap is 24.3
points in favour of the ensemble method, suggest-
ing that ensemble learning improves the compre-
hension of long-term dependencies in NER tasks.

5 Discussion

This work showed that it is possible to integrate un-
certainty quantification methods and measure cali-
bration in the context of visual text models. These
methods include Monte Carlo Dropout at the patch
level, with the observation that more work should
be directed towards finding more effective ways
of aggregating and visualizing uncertainty across
longer patch sequences. Attention based methods
can also be used to gain insights into how these
models encode information, but there remains the
debate about whether or not attention counts as an
explanation (Bibal et al., 2022). Still, this debate
falls outside the scope of this research. Ensemble
learning with a low number of individual learn-
ers can also be used successfully to improve both
performance and confidence.

The results in the MC Uncertainty experiment
generally indicate high uncertainty for a high mask
ratio. Still, the most optimal value is a mask ratio of
50%, representing a reasonable trade-off between
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Attention for Top 1 Challenge (Language: Igbo)
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Attention for Top 1 Performer (Language: Nigerian Pidgin)
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Figure 4.5: Model-level and neuron-level views of attention for the top 1 challenge (left, highest loss value) and
performer (right, lowest loss value) in terms of the GNLL loss across all datasets.
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57.3

59.5 351

363 583 636 26.1
59.6 673 271

50.5
53.3

65.9
67.1

634 617
634 62.1
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Table 4.1: The results of the QA task. The ensemble learning model finetuned on the TyDiQA-GoldP dataset is
compared with the values reported by (Rust et al., 2022). The metric shown is the F1 score, computed on the
validation split of the data. The AV G score excludes EN G, as required (Clark et al., 2020).

Validation Uncertainty in TyDiQA-GoldP
1.0

11t

Telugu  English  Arabic  Bengali

o ° o
IS Y 3

Confidence

°

Finnish  Indonesian  Swahili Korean  Russian

Language

Figure 4.6: Confidence distribution across all languages
in the TyDiQA-GoldP dataset for the ensemble model.

uncertainty and loss.

Scripts such as Latin are less uncertain, indi-
cating that multilingual pretraining is necessary.
Instead of language, one can focus on introducing
a new script, as evidence suggests that there exists
knowledge transfer between scripts like Latin and
Cyrillic. For example, finetuning on one language
such as Chinese might benefit performance in other
languages like Korean or Amharic. This approach
is more robust than traditional LL.Ms, where the
transfer of learning happens under stricter condi-
tions, for instance when languages share syntactic
structures or when there is a significant overlap
between vocabularies.

Ensemble learning can be applied successfully

to improve performance and calibration in pixel-
based language models. The evaluation shows
higher F1 scores for 17 of the 19 tested languages
across two tasks. The models become more ro-
bust and can overcome individual weaknesses by
aggregating predictions from multiple learners us-
ing hyperparameter tuning. Additionally, ensemble
learning improves calibration through better error
diversification and data representation.

6 Conclusions and Future Work

The findings of this study indicate that pixel-based
language models represent a viable and lightweight
solution to traditional language modeling, even for
tasks that require semantic understanding of text.
Their reliability and explainability can also be im-
proved through uncertainty quantification methods,
as shown during the experiments. Future research
should focus on perfecting the existing techniques
and exploring new ways of understanding the in-
ner workings of models that enccde text as visual
representation.

One point to be explored in future works on text
reconstruction is the idea of pixels-as-tokens in
the context of the Pixel Transformer (PiT) model,
introduced by (Nguyen et al., 2024). Instead of
training the model to perform patch reconstruction,
PiT treats each pixel as a token and the reconstruc-
tion happens at the pixel level. Evidence suggests
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IBO KIN LUG LUO PCM SWA WOL YOR AVG

AMH HAU
PIXEL 477 824 799 642 765
Ensemble 90.2 97.1 96.1 939 955

66.6
93.1

78.7
97.1

79.8
96.1

59.7
95.8

70.7  70.7
952 95

Table 4.2: The results of the NER task. The ensemble learning model finetuned on the MasakhaNER 1.0 dataset is
compared with the values reported by (Rust et al., 2022). The metric shown is the F1 score, computed on the test

split of the data.

that this method completely removes locality as
in inductive bias. This can potentially improve
long-term context comprehension in the proposed
approach, as the current findings indicate that the
reconstruction of characters depends on neighbor-
ing pixels. Additionally, the finetuning pipeline
can be expanded to more complex semantic tasks,
such as summarization, open-ended question an-
swering where the answer is not always explicitly
mentioned in the context, and text generation (Li
et al. (2023) introduced a new method for text gen-
eration using GlyphDiffusion). To improve model
calibration, post-hoc methods like temperature scal-
ing can be used either separately or in combination
with Monte Carlo (Laves et al., 2019). During pre-
training, the Cross-Entropy loss can be replaced
by the Focal Loss, which is effective in calibration
models trained on imbalanced datasets (Wang et al.,
2022).

Ethical Considerations

The aim of this study is to shed light on how pixel-
based models encode uncertainty. We consider that
an explainability analysis should be a prerequisite
for any new language model, as this increases users’
trust that the technology works as intended and it
is not harmful.

In order for this research to exist, we made use
of the pretrained PIXEL model provided by Rust
et al. (2022). One of the datasets that PIXEL has
been pretrained on is the BookCorpus (Zhu et al.,
2015) which is well-known for its problematic con-
tent and copyright violantions (Bandy and Vincent,
2021). BookCorpus contains books self-published
by authors, which did not explicitly consent to
including their books in a LLM training dataset,
and were not compensated in any way. Moreover,
many books contain copyright restrictions which
forbid the redistribution of content. Senstive con-
tent has also been identified in the data, such as
books marked for adult audiences, containing terms
and phrases associated with gender discrimination.
We acknowledge that by using models trained on

problematic data, we risk to further propagate bi-
ases. However, these models and datasets are very
popular and they cannot be ignored. For this rea-
son, we consider that studying how they work and
attempting to explain and interpret them is a goal
worth pursuing.

Our paper has a strong focus on language va-
riety, as we explore uncertainty across 18 lan-
guages. However, the majority of our fine-tuning
data comes from English (as seen in Figure B.1
from Appendix B). This leads to lower performance
and less accurate representation in low-resource
languages. Once again, this issue boils down to
the data available for LLM training, which should
ideally be more balanced and representative across
diverse linguistic contexts.

Code

We provide the complete implementation for run-
ning our experiments on Github, at https://
github.com/stefania-radu/pixel-semantic.
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A Limitations

Some limitations of this method include the hardware and training time required to train multiple models.
Nevertheless, PIXEL has 20% fewer parameters than BERT, so an ensemble of PIXEL models remains
less complex than the BERT variant and significantly more lightweight than models like GPT.

The current study is subject to several limitations. Firstly, the way uncertainty is computed at the
image level during the MC experiments can be more reliable. At the moment, uncertainty is averaged
across all pixels in an image. However, this does not account for the difference in span length, as some
sequences of patches are longer than others. Quantifying uncertainty as an average for each span length
in the image could bring more insights into how the model encodes long-term dependencies. Secondly,
the information in the attention plots should be aggregated so that all patches are visible at once, while
keeping a reasonable image size. Using the current method, visualizing all 256 patches across the 144
attention structures would result in a very large and difficult to interpret image. Regarding the calibration
analysis, it is not completely clear that the two measurements of performance (loss vs. MC uncertainty
during the pretraining stage and F1 score vs. confidence during finetuning) are quantifying the same
underlying metric. For this reason, additional testing should be performed to establish the exact effect
size of ensemble learning on model calibration. Moreover, more insights are necessary to establish the
trade-off between computational cost, environmental impact and performance gains when training an
ensemble of learners compared to a single model.

While it is possible to visualize the attention mechanism in pixel-based language models, there are
some comments to be made about this. Unlike traditional language models like BERT where each token
represents a meaningful unit and the relationship between two tokens can be understood intuitively, the
patches in pixel-based language models cannot be mapped back to text chunks. This makes it more
challenging to interpret how attention is paid to the different patches and what are the implications of these
connections in the context of the entire model. Moreover, given the large number of attention structures
and the image dimensions, visualizing attention for all patches simultaneously becomes very difficult.

B Data Details
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Figure B.1: Distribution of languages used throughout the experiments.

C Experiments Details
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Language ISO 639-3 Language Family Script

Ambharic AMH Afro-Asiatic Ge’ez
Arabic ARA Afro-Asiatic Arabic
Bengali BEN Indo-European Bengali
English ENG Indo-European Latin
Finnish FIN Uralic Latin
Hausa HAU Afro-Asiatic Latin
Igbo IBO Niger-Congo Latin
Indonesian IND Austronesian Latin
Kinyarwanda KIN Niger-Congo Latin
Korean KOR Koreanic Korean
Luganda LUG Niger-Congo Latin
Naija Pidgin PCM English Creole Latin
Russian RUS Indo-European Cyrillic
Swahili SWA Niger-Congo Latin
Telugu TEL Dravidian Telugu
Wolof WOL Niger-Congo Latin
Yoruba YOR Niger-Congo Latin

Table B.1: An overview of languages used during the experiments. The original PIXEL model is pretrained on
English only.

Experiment Data Hyperparameters Metrics
MCU Tasks NER (MasakhaNER 1.0), SC R €  {0.1,0.2,...,0.9}, MSE
(GLUE), QA (TyDiQA-GoldP) S € {1,2,...,6}, W = GNLL
{0,0,...,0,1}, |W| =S| Uncertainty ()
MCU Scripts Latin, Ge’ez, Chinese Charac- R € {0.1,0.2,...,0.9}, MSE
ters, Arabic, Cyrillic, Bengali, S € {1,2,...,6}, W = GNLL
Telugu, Korean {0,0,...,0,1},|W| =S| Uncertainty ()
VU Nigerian Pidgin, Igbo R = 025, S = 6, W = GNLL
{0.2,0.4,0.6,0.8,0.9,1} Uncertainty ()
CA NER (MasakhaNER 1.0), SC R = 025, S = 6, W = RMSE
(GLUE), QA (TyDiQA-GoldP) {0.2,0.4,0.6,0.8,0.9,1} Uncertainty (5)

Table C.1: Overview of the MC Uncertainty experiments. MCU = Monte Carlo Uncertainty; VU = Visualizing
Uncertainty; CA = Calibration Analysis.

Mean GNLL Loss
.\\
11
il
»opg
g2

s
Mean Loss

04 05 056 07 08 09 01 02 03 04 05 05
Mask Ratio Mask Ratio

Figure C.1: Mean MSE Loss (left) and GNLL Loss (right) across the different scripts for each mask ratio value R.
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Algorithm 1 Patch-level Uncertainty with MC Dropout

Require: Rendered image I, model M, # MC samples Nyc = 100, dropout rate p = 0.1, patch size
P =16
Ensure: Uncertainty map U

Activate dropout in M
foric{1,...,N}do
P+ M(I,p) > Compute predictions P with dropout
end for
Initialize 1 and o with the shape of 1
for each pixel (z,y) do
wlw,y) — 5 XLy Pilx,y)

o) &\ & S (Pa.y) - ple,y)?
9: end for

10: Initialize U with the shape of I

11: for each patch (7, j) in o do

AN A R o

o]

12: Opatch < % Z;J;ffl Z;iffl o(x,y) > Compute o per patch
13 for (z,y) € {(4,§),....,i+P—-1,j+P—1)} do

14: U(x,y) < Opatch > Assign opaech to all pixels in the patch
15: end for

16: end for

17: return U

Algorithm 2 Ensemble QA Prediction

Require: & models {Mj, Mo, ..., My}, input question ¢
Ensure: Final answer a for the question ¢

1: C<+ 0

2: for each model M; in { My, M>, ..., My} do

3: A; «+ M;(q) > Get candidate answers and their confidences
4:  for each candidate a; in A; do

5: C+CuU {aj}

6: end for

7: end for

8: C <+ <c] Zle leca, = k} > Keep the candidates that appear in all models
9: for each candidate cin C do
10: conf. + 1 Zle confidencey; (c) > Compute average confidence
11: end for
12: a < arg max.cc conf, > Select candidate with highest confidence
13: return a
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Original
PHHODS, (DMMEF - R 1TCEY 72hhY (Podca
st) A& 712 (DY (Open Source Business
Practice) h&+ A€2C 0DCY (Open Source S
oftware) PPPTRHC PPTRHC PULLH S (Com
puter Engineering) $nPTHC AQC ¥IC¢
9 2)% PANTI AN¢ (Operating system) ¥xT
AnfiY Ae1RC (Applicaton Software) P9PTe:
FC 9°ha (computer graphics) x93 (MP3)'
PnPTHC 004N (Computer Networking) ©C
‘h N7 NPT (Worksation Computer) A
CAC nPTHC (Server Computer) T 1002
(UTP Cable) LAY (VSAT) 99148 998 (Swit
ch) ) (Hub) S¢Y1C (Printer) AHC 2 5¢YH
C(Laser Printer) A7h 2% §¢)1C (Ink Jet Prit
ater) PL.L L9 T4YHC (Wide Format Print
er) NAC AHC ZY T¢7+C (Colour Laser Jet [l

Original

Amsterdam on Alankomaiden paakaupun
ki. Amsterdam on vakiluvultaan Alankoma
iden suurin kaupunki. Vuonna 2022 siella ¢
asui 910 146 asukasta eli noin joka 20. holli
antilainen asuu Amsterdamissa. Yhteensa
Amsterdamissa ja sita ymparoivalla kaupu
nkialueella asuu noin 1 550 000 ihmista eli
vajaa kymmenesosa Alankomaiden asukk:
aista. Vaikka Amsterdam on Alankomaiden
perustuslain mukaan maan paakaupunki,
sijaitsevat niin kuningashuone, hallitus, pa
rlamentti kuin korkein oikeuskin seka ulko
maiden diplomaattiset edustustot Haagiss
ia. Amstel-joen suistoon 1100-luvulta alkae
:n rakennettu ja 1300-luvulta alkaen nope
asti kasvanut Amsterdam tunnetaan vaE

Original
HYA o FHE| FL[0(, 1924 108 12~)=
QIFxg &4 0|=29] H39cH chEH(19774~19
81'A)o|ch. Aol of2] AR X|0] 7HE{= ZEX|0FF
A€ 7+2E| E2|Q1A 0H20]| M EHO{tCh ZXIC
I BoHCHStRE SYsHACt 1 2 2ol S0{7t
Heh-fxe]-F4gte] SPUOR AL 19
5314 0|2 82 92 o steln ojF B3
8t £ 7H B2 2 YLt 10| EHo| g2
55" (Peanut Farmer)2 22{HC} HA 2§
119624 ZEX|OIF A o MAH0|M M8l
1oL}, O M7} 8FMA RS S =lof
SME|D, 1966 ZXI0F FXIAL MY 445t
|2k, 1970' ZX|0f Z=X|AH MHOj| A SH4SHLE
CHEHO| =|7] H ZX|0F Mo S FH ¢S
Yooy, 1971 ULE 1975ENX| ZEX|0f XAk
£ 22UCL EX|0F FXIALZ K|LiEA, 012l

Original
Akiolojia (kutoka Kiyunani apyaiog = zama
ni na Adyog = neno, usemi) ni somo linaloh
usu mabaki ya tamaduni za watu wa nyaka
ti zilizopita. Wanaakiolojia wanatafuta vitu \
rilivyobaki, kwa mfano kwa kuchimba ardh
i na kutafuta mabaki ya majengo, makabur
‘i, silaha, vifaa, vyombo na mifupa ya watu.
Akiolojia na historia Tofauti na somo la His
itoria, akiolojia haichunguzi sana maandish
i hasa ili kupata ufafanuzi wa mambo ya ka
le. Historia inatazama zaidi habari zilizoand
ikwa lakini akiolojia inatazama vitu vilivyobi
aki kutoka zamani. Wanaakiolojia wanawez
a kutumia maandishi na habari za historia v
vakiamua jinsi gani waendelee na utafiti w
10, kwa mfano wachimbe wapi. Lakini hylll

Original
ibadan jé olt-ildi ipinle Oyd ni orile-éde N&
lijiria. T Ibadan niild ti 6 tobi julo ni apé iw
00run Afrika, bée sini 6 jé olti il ljoba flin
ipinlé Oy6. Ibadan jé il awon jagunjagun |
tiwon da silée léyin tiijoba Oy6 Katinga tu
ka nigba ti Awon Fulani se ikolu sfijoba Oyt
3 nigba naa. Ortiko tiwén 1 pe il yi (Ibada
n) ni 6 timo si &bé odan. itan I1é ibadan it
an fidi ré mule wi pé won da ili ibadan sile
ni nhkan bi odtn 1829 latari awon ogun at
irogbodiyan ti 6 i selé niile Yoruba nigha
naa. Asiko yi ni awon ilti tiwon se pataki I1¢
» Yoruba nigba naa bii: Oyd ilé, Tjaye ati Own
1u 1 koju ogun I6tun 1osi, nigba ti awon ild t
untun miran naa i dide. Lara awon ild tiwe
35n i dide ni: Abéokta, Oy Atiba ati ibill
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Original + SD Mean Prediction + SD
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Figure C.2: Examples of uncertainty quantification at the patch-level for various languages.
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Parameter Value
Common Parameters
Dataset name tydiga

Dataset config name
Sequence length

secondary_task
400

Stride 160
Question max length 128
Gradient accumulation steps 1

Max steps 20000
Number of train epochs 10

Early stopping True
Early stopping patience 5
Evaluation metric F1= %
Doc stride 160
Number of best predictions 20
Model 1

Batch size 32
Learning rate 7x 1074
Dropout probability 0.15
Seed 101
Model 2

Batch size 16
Learning rate 7x 1077
Dropout probability 0.15
Seed 102
Model 3

Batch size 8
Learning rate 7 x107°
Dropout probability 0.05
Seed 103
Model 4

Batch size 32
Learning rate 7 x 1076
Dropout probability 0.1

Seed 104

Table C.2: The finetuning configuration of the QA models, including the common parameters and those changed

among the 4 learners.
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Parameter

Value

Common Parameters

Dataset name

masakhane-ner

Sequence length 196
Gradient accumulation steps 1

Max steps 15000
Number of train epochs 10

Early stopping True
Early stopping patience 5
Evaluation metric F1= %
Model 1

Batch size 64
Learning rate 5x107°
Dropout probability 0.1

Seed 100
Model 2

Batch size 64
Learning rate 5x 1076
Dropout probability 0.2

Seed 101
Model 3

Batch size 32
Learning rate 5x107°
Dropout probability 0.1

Seed 102
Model 4

Batch size 32
Learning rate 5x 1076
Dropout probability 0.1

Seed 103
Model 5

Batch size 16
Learning rate 5x107°
Dropout probability 0.2

Seed 104

Table C.3: The finetuning configuration of the NER models, including the common parameters and those changed
among the 5 learners.
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Abstract

This research aims to explore the intersection
of Large Language Models and confidence cal-
ibration in Entity Matching. To this end, we
perform an empirical study to compare baseline
RoBERTa confidences for an Entity Matching
task against confidences that are calibrated us-
ing Temperature Scaling, Monte Carlo Dropout
and Ensembles. We use the Abt-Buy, DBLP-
ACM, iTunes-Amazon and Company datasets.
The findings indicate that the proposed mod-
ified RoBERTa model exhibits a slight over-
confidence, with Expected Calibration Error
scores ranging from 0.0043 to 0.0552 across
datasets. We find that this overconfidence can
be mitigated using Temperature Scaling, reduc-
ing Expected Calibration Error scores by up to
23.83%.

1 Introduction

Entity Resolution (ER) can be defined as the task
of determining which data entries across differ-
ent data sources refer to the same real-world en-
tity. A key sub-task of ER is Entity Matching
(EM), which specifically addresses the binary clas-
sification problem of determining whether pairs
of data entries from different sources refer to the
same entity (Christophides et al., 2020). In today’s
data-driven era, EM plays a critical role in various
domains, including the medical field (Jaro, 1995;
Meéray et al., 2007), where accurate matching can
improve patient care; the reconstruction of histor-
ical populations by linking birth, marriage, and
death records (Bloothooft et al., 2015); and law en-
forcement, where matching data entries is vital for
investigations and crime prevention (Dahlin et al.,
2012).

The state-of-the-art methods for performing EM
utilize Transformer-based architectures (Vaswani
etal., 2017), pre-trained Large Language Models
(LLMs) (Brunner and Stockinger, 2020; Li et al.,
2020; Peeters et al., 2020; Peeters and Bizer, 2021,

t.m.tashu@rug.nl,

m.a.valdenegro.toro@rug.nl

Entry Pair
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RoBERTa

Fully-Connected Layer

Sigmoid Layer

l
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Figure 1: Overview of this research’s model (without
any confidence calibration methods visualised), model
input and model output. In addition to classifying each
entry pair as a ‘match’ or ‘no match,” the model also
generates a score that should reflect the model’s confi-
dence in its prediction.

2022, 2023, 2024), such as RoBERTa (Liu et al.,
2019) and GPT-4 (et al., 2024).

However, while these models are successful,
they have, in other Natural Language Processing
tasks, shown to struggle to accurately express their
confidence in predictions and can exhibit overconfi-
dence (Desai and Durrett, 2020; Jiang et al., 2021).
Ideally, a model provides information about its cer-
tainty alongside its predictions. For example, in a
binary EM task, a model would output a ‘match’ or
‘no match’ prediction label alongside a probability,
or confidence score, that is reliable. Refining mod-
els’ predicted confidence scores to ensure that they
accurately reflect the true likelihood of the predic-
tions is called confidence calibration. While the
topic of confidence calibration on LLMs has been
explored (Desai and Durrett, 2020; Sankararaman
et al., 2022; Chen and Li, 2024), the intersection of
confidence calibration, LLMs, and the application
of EM has not yet been researched. Yet, confidence
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calibration is important as it provides transparency
over models’ results (Ghahramani, 2015). For ex-
ample, the distribution of confidence in a model’s
EM predictions can give the user insights into the
model’s overall reliability in the task. Precise confi-
dence scores can also play a crucial role in guiding
subsequent tasks. Moreover, confidence scores can
be used to help researchers better understand a
model’s inner workings. Finally, they can help in
improving a model: when it is clear in what spe-
cific cases a model is uncertain, it is easier to see a
model’s weak points and with that, possible areas
for improvement.

Contributions. This paper aims to explore the
confidence calibration performance of LLMs in
EM and benchmark confidence calibration meth-
ods to enhance their performance. We focus on pre-
trained RoBERTa (Liu et al., 2019) as the LLM of
interest as it has a competitive performance among
LLM models for EM (Li et al., 2020; Peeters and
Bizer, 2021, 2024). In contrast to other state-of-
the-earth models for EM, RoBERTa is open-source
and lightweight. Our study assesses the confidence
calibration performance in EM using the Expected
Calibration Error (ECE) as the primary metric. We
evaluate fine-tuned RoBERTa model’s ECE scores
both with and without the use of confidence cal-
ibration methods and investigate which methods
yield the greatest improvement. Since confidence
calibration methods may influence the model’s pre-
dictions, we additionally examine their effect on
the F} score to ensure that improved confidence
calibration does not come at the cost of classi-
fication performance. Furthermore, we analyze
confidence histograms, reliability diagrams, the
Maximum Calibration Error (MCE) and the Root
Mean Square Calibration Error (RMSCE). The con-
fidence calibration methods tested are Temperature
Scaling (Guo et al., 2017), Monte Carlo Dropout
(Gal and Ghahramani, 2016), and Ensembles (Lak-
shminarayanan et al., 2017). We use the Abt-Buy,
DBLP-ACM (dirty and structured) (Kopcke et al.,
2010), iTunes-Amazon (dirty and structured), and
Company (Konda et al., 2016) datasets, ensuring
diversity in terms of data content, size and struc-
ture.

Figure 1 presents an overview of the proposed
modified RoBERTa model used in this research.
As shown, the goal is to obtain confidence scores
that accurately reflect the model’s confidence in its
EM predictions. Confidence calibration methods
can help improve these scores.

2 Confidence Calibration

We say that a model is well-calibrated if its pre-
diction’s confidence scores accurately reflect the
probability of those predictions being correct. For
EM, for example, all pairs that are predicted to
match with around 0.5 to 0.6 confidence should
be actual matching pairs 50 to 60% of the time.
This is also referred to as the alignment between
the ‘predicted probability’ (the confidence) and the
‘empirical probability’ (Naeini et al., 2015; Guo
et al., 2017; Kiippers et al., 2022). Generally, for
a binary classification task such as EM, the ‘confi-
dence’ signifies the confidence of a prediction be-
longing to the positive class (in the case of EM: a
‘match’). The predicted probability of the positive
class then needs to align with the empirical proba-
bility of the positive class. ‘High confidences’, in
this context, generally denote predicted probabili-
ties close to either O or 1, while ‘low confidences’
denote predicted probabilities close to 0.5.

The confidence calibration of models has been
evaluated by plotting confidence histograms and re-
liability diagrams, and by measuring the Expected
Calibration Error (ECE) (Naeini et al., 2015) or
similar metrics such as the Maximum Calibration
Error (MCE) (Naeini et al., 2015) and Root Mean
Square Calibration Error (RMSCE) (Kumar et al.,
2019). Intuitively, these scores measure the dif-
ference between the predicted probability and the
empirical probability, and should therefore be mini-
mized to optimize the confidence calibration. Com-
pared to the ECE, the MCE is useful in production
settings where reliable confidence measures are ab-
solutely necessary due to high risks. This is due to
its measure of the worst-case deviation between the
predicted probabilities and the empirical probabili-
ties. When comparing the ECE to the RMSCE, the
latter places a greater emphasis on larger errors.

3 Related Work

3.1 Large Language Models for Entity
Matching

Various pre-trained LLMs have shown state-of-the-
art results for EM tasks. Brunner and Stockinger
(2020), for example, analysed the performance of
four LLMs: BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019)
and DistilBERT (Sanh et al., 2020), and found
an increase in F) scores of up to 35.9% com-
pared to state-of-the-art non-LLM methods. Other
state-of-the-art results were presented by Li et al.
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(2020), who introduced DITTO: an EM system
that combines the use of LLMs such as BERT, Dis-
tilBERT and RoBERTa with various optimisation
techniques; and Peeters et al. (2020); Peeters and
Bizer (2021, 2022), who experimented with BERT
and RoBERTa-SupCon for EM in the product do-
main.

Decoder-only models have more recently caught
the attention in the field. Narayan et al. (2022)
compared GPT-3 against the DITTO system. The
performance of GPT-3 (Brown et al., 2020) using
few-shot learning was better than DITTO’s perfor-
mance for four out of seven datasets. In their pa-
per “Using ChatGPT for Entity Matching”, Peeters
and Bizer (2023) test the performance of ChatGPT
(GPT3.5) on an EM task using product data. They
find that though the results of ChatGPT on this
data is generally worse compared to the results of a
finetuned RoBERTH4, it is beneficial that ChatGPT
does not necessarily require any finetuning, and,
thus, performs well on unseen data. Peeter and
Bizers’ study “Entity Matching using Large Lan-
guage Models” (Peeters and Bizer, 2024) shows
that GPT-4 (et al., 2024) especially performs well
in EM tasks.

3.1.1 Confidence Calibration of Large
Language Models

While in the early 2000s, simple neural networks
typically produced well-calibrated probabilities in
binary classification tasks (Niculescu-Mizil and
Caruana, 2005), recent studies have shown that this
is generally not the case for more modern neural
networks. In their 2017 paper “On the Calibration
of Modern Neural Networks” (Guo et al., 2017),
Guo et al. showed that state-of-the-art neural net-
works of that time (including ResNet (He et al.,
2016)), do not show a good confidence calibration
at all. The researchers also indicate that miscalibra-
tion worsens as the classification error is reduced.
Desai and Durrett (2020), as well as Xiao et al.
(2022) explored the confidence calibration of BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) in natural language inference, paraphrase de-
tection, sentiment analysis and commonsense rea-
soning tasks. While BERT and RoBERTa show less
miscalibration than the models that were evaluated
by Guo and colleagues, the confidence calibration
of the LLMs does show room for improvement. In
a study by Jiang et al. (2021), decoder-only LL.Ms
were also shown to be generally miscalibrated and
often overconfident (Jiang et al., 2021).

One of the reasons that LLMs do not seem to
produce well-calibrated predictions is that they are
not trained to do this as an explicit learning goal.
Instead, during training, these networks are encour-
aged to assign high confidences, in the form of
sigmoid scores, to the correct class, without regard
to nuances that prediction probabilities should ide-
ally have (Hendrycks and Gimpel, 2017).

Howeyver, various methods have been introduced
to improve the confidence calibration of LLMs.
These include Temperature Scaling (Guo et al.,
2017), Monte Carlo Dropout (Gal and Ghahramani,
2016) and Ensembles (Lakshminarayanan et al.,
2017).

4 Methods

4.1 Data

Six datasets are used in this study: Abt-
Buy, DBLP-ACM-Structured, DBLP-ACM-Dirty
(Kopcke et al., 2010), iTunes-Amazon-Structured,
iTunes-Amazon-Dirty, and Company (Konda et al.,
2016). For DBLP-ACM and iTunes-Amazon, the
structured and dirty versions of the datasets contain
the same entries, but for the dirty version, there is
a 50% chance that an attribute value is moved to a
different attribute. Table 1 presents the domains of
the datasets, as well as the number of pairs for each
dataset, for each split. In brackets is the percentage
of positive pairs.

4.2 Model

We use RoBERTa (Liu et al., 2019), pretrained
on English language, as target LLM for EM.
RoBERTa was one of the first LLMs to be used
for EM and performs among the best of all tested
non-decoder LLMs for EM, while not using any
additional optimisation techniques (Brunner and
Stockinger, 2020; Li et al., 2020). We utilise Hug-
gingface’s pre-trained ROBERTa base model'.

We adopt the setup by Li et al. (2020) to make
RoBERTa suitable for EM in the proposed datasets.
That is, a single fully connected layer and sig-
moid output layer are added after the final layer
of the pre-trained RoBERTa base model. These
two added layers, together with the RoBERTa base
model, constitute the EM model. The fully con-
nected layer’s parameters are randomly initialized.
The RoBERTa EM model is fed pairs of entries
and outputs whether or not the pairs of entries are

"https://huggingface.co/Facebook Al/roberta-base
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Dataset name Domain Training pairs  Validation pairs Testing pairs
Abt-Buy Products 5743 (10.72%) 1916 (10.75%) 1916 (10.75%)
DBLP-ACM* Citations 7417 (17.96%) 2473 (17.96%) 2473 (17.96%)
iTunes-Amazon* Songs 321 (24.30%) 109 (27.78%) 109 (27.78%)
Company Companies 67 596 (24.94%) 22 533 (25.30%) 22 503 (25.06%)

Table 1: Overview of the dataset’s domains and data splits, along with the percentage of positive pairs per split
between brackets. *The splits and percentages are the same for both the structured and dirty versions.

predicted as a ‘match’ (label 1) or ‘no match’ (la-
bel 0). We adopt Li et al. (2020) method of data
serialization to convert structured EM data into se-
quences of text that can be fed to the RoBERTa
model. Hyper-parameters are also taken from the
paper of Li et al. (2020).

In order for the model to understand the task and
the data that it is given, fine-tuning is performed on
the RoOBERTa base model along with the fully con-
nected and sigmoid layers using supervised training
with a binary cross-entropy loss

4.3 Confidence Calibration Methods
4.3.1 Temperature Scaling

Temperature Scaling was introduced by Guo et al.
(2017) as a single-parameter version of Platt Scal-
ing (Platt, 1999). The method is easy to realise and
understand, and is time-efficient and lightweight.
It has led to improvements in confidence calibra-
tion for both encoder-only and decoder-only LLMs
for sentiment analysis, natural language inference,
common sense reasoning, paraphrase detection,
and question-answering tasks. For some datasets
and tasks, the technique has resulted in ECEs that
are up to ten times smaller compared to those of
uncalibrated models (Guo et al., 2017; Desai and
Durrett, 2020; Jiang et al., 2021; Xiao et al., 2022).

4.3.2 Monte Carlo Dropout

Monte Carlo Dropout was introduced by Gal and
Ghahramani (2016) and applies dropout with prob-
ability p (Hinton et al., 2012) at inference time. It
has shown to, with its regularizing effect, improve
the confidence calibration of models in tasks such
as sentiment analysis, natural language inference,
commonsense reasoning, named entity recognition
and language modeling (Xiao and Wang, 2019;
Xiao et al., 2022).

In our implementation, dropout is applied to
the fully connected layer of the EM model. We
perform dropout for just this layer to make the
confidence calibration method implementation as
lightweight as possible.

4.3.3 Ensembles

Ensembles can be used for confidence calibration
by separately training multiple instances of a model
and using the mean probability outputs at inference
time (Lakshminarayanan et al., 2017). Through
their regularizing effect, Ensembles have shown
to improve the confidence calibration across vari-
ous tasks including sentiment analysis, natural lan-
guage inference and commonsense reasoning (Xiao
et al., 2022).

We apply Ensembles on the fully connected layer
and the sigmoid activation layer. In this way, we
minimize the number of times that entry pairs need
to pass through the ROBERTa base model.

4.3.4 Experimental Setup

First, the performance of the baseline RoBERTa
EM model is evaluated in terms of F; score and
confidence calibration for all datasets. To this end,
we train and test on five independently randomly
initialized RoBERTa EM models. For each run, the
training data are shuffled. We adopt the number
of epochs specified in the code by Li et al. (2020)
for all datasets. This corresponds to 40 epochs.
The model checkpoint that generates the highest F
score on the validation set is used for testing. The
sigmoid scores that the model produces for the test-
ing set are used as baseline predicted probabilities.

Secondly, Temperature Scaling, Monte Carlo
Dropout, and Ensembles are individually applied
and evaluated. They are compared against each
other and against the baseline.

In applying Temperature Scaling, we adopt the
approach by Mukhoti et al. (2020) to find the best
values for the temperature 7. We use a similar ap-
proach to find the dropout value p for the Monte
Carlo Dropout method. For each dataset and exper-
iment run, 7" and p are determined by minimizing
the ECE on the validation set through a single pa-
rameter grid-search, while avoiding any decrease
in the FY score.

For Temperature Scaling, we take, for each
trained RoBERTa model (i.e. one model per
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run per dataset), the sigmoid scores on the val-
idation set. These are scaled with temperatures
T € {0.1,0.2,0.3,0.4,...,9.9,10.0}. Next, the
ECE is calculated over all of the scaled sigmoid
scores. For each dataset and run, the 7" is recorded
that results in the smallest ECE on the validation
set. Next, these values for 1" are used on the cor-
responding testing set sigmoid scores. The final
results consist of the temperatures and, most impor-
tantly, the ECEs of the test sets. Note that Temper-
ature Scaling does not change the F} scores.

For Monte Carlo Dropout, we take
the best RoBERTa EM models from pre-
vious experiments for each dataset and
run, and apply Monte-Carlo Dropout with
p € {0.05,0.10,0.15,0.20,...,0.90,0.95}. For
each dataset, experiment run and dropout value,
the model predicts over the validation set ten
times. The resulting sigmoid scores from these ten
sub-runs are averaged using the mean.

For all averaged sigmoid scores, the I} score
and ECE are calculated. For each dataset and run,
the p is recorded that results in the smallest ECE on
the validation set, while maintaining an F score
not lower than the original score without dropout.
If all values of p decrease the Fj score, a dropout
value of 0.00 is recorded.

Next, for each dataset and run, these recorded
values for p are used while performing inference
on the corresponding test sets. Inference is per-
formed ten times for each dataset and run using
the recorded dropout probabilities. Afterwards, the
means of the resulting sigmoid scores are calcu-
lated, and the F scores and ECEs are computed
over these means.

For Ensembles, for each dataset and experiment
run, we randomly initialise the fully connected
layer weights five times. For each dataset and
experiment run, we then train, validate and test,
using these five differently initialised models. Af-
ter doing this, we compute the means over the five
ensemble runs’ test sets sigmoid scores. These av-
erage sigmoid scores are then used to derive the
final Fj scores and ECEs.

Evaluation for the baseline RoOBERTa EM model
and the confidence calibration methods occurs in
terms of confidence histograms, reliability dia-
grams, I score, ECE, MCE, and RMSCE met-
rics, using a number of bins = \/W , with D being
the dataset. A paired t-test is used to assess the
significance of differences between the baseline re-
sults for the Temperature Scaling and Monte Carlo

Dropout methods. An unpaired t-test is used to do
the same for the Ensembles method.

5 Results

Table 2 presents the mean F} scores, ECEs, MCE:s,
and RMSCEs of various confidence calibration
methods, over five runs, for all datasets. It also
presents the baseline confidence calibration using
the RoBERTa sigmoid scores without any confi-
dence calibration method applied.

Appendix A presents a more detailed overview
of the performance of the baseline RoOBERTa model
in terms of F7 score, precision, recall and inference
time.

5.1 Baseline

We find that, for all datasets, the RoOBERTa EM
model produces either very low or very high pre-
dicted probabilities, signifying a high overall con-
fidence (Appendix B). High confidence outputs
do not necessarily signify miscalibration. The
high baseline F} scores in Table 2, especially for
the DBLP-ACM datasets, suggest that the model
makes few errors and can justifiably be confident in
its predictions. Still, however, we observe that the
model produces very high confidence levels even
for the datasets where the classification £} scores
are around 90 or lower. Confidence histograms
that separately display the distributions of correct
and incorrect predictions for the datasets also sug-
gest a miscalibration. Two of these confidence his-
tograms are presented as examples in Figure 2. For
a well-calibrated pipeline, there should be minimal
overlap between the distributions of correct and
incorrect predictions in such histograms. Figure 2
shows that this is not the case.

As visible in Table 2, the baseline ECEs are
lowest for the DBLP-ACM datasets. These are
also the datasets for which the baseline RoBERTa
model achieves the highest F scores. The ECEs
are highest for the iTunes-Amazon, and Company
datasets. While the Company datasets’ ECEs may
in part be due to their challenging EM data, this
does not explain the iTunes-Amazon ECEs.

Since the ECE is a measure that is weighted by
the number of data points, it is most influenced
by the extreme prediction probabilities. After all,
these occur most often. The RMSCE is, compared
to the ECE, influenced more by large errors be-
tween the predicted probability and the empirical
probability. The reported values for this RMSCE
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Dataset ECE F1 MCE RMSCE
Baseline
Abt-Buy 0.0193+0.0018 90.81 £0.85 0.9305 +0.0469  0.0558 + 0.0032
DBLP-ACM-S 0.0041 +0.0010  98.78 £0.40  0.7800 +0.2900  0.0303 + 0.0131
DBLP-ACM-D 0.0043 +£0.0011 98.85+0.18  0.6949 +0.1204  0.0287 + 0.0104
iTunes-Amazon-S | 0.0391 +0.0064 90.53+1.64 0.3085+0.2024  0.0506 +0.0113
iTunes-Amazon-D | 0.0410 £0.0121  91.50+1.90  0.3460 + 0.2285  0.0683 + 0.0181
Company 0.0552 £0.0099  82.75+0.92  0.5449 +0.0855  0.0967 +0.0177
Temperature Scaling
Abt-Buy 10.0147 £0.0017 90.81 +£0.85  ¥0.8539 +0.0882 10.0632 + 0.0046
DBLP-ACM-S 10.0036 £ 0.0011 98.78 £0.40  0.7580 £0.2031  0.0306 + 0.0087
DBLP-ACM-D 0.0038 +£0.0011  98.85+0.18 0.7983 +0.2174 | 10.0312 + 0.0085
iTunes-Amazon-S | ¥0.0352 £ 0.0118 90.53 +1.63  0.3394 +0.2089  0.0415 + 0.0226
iTunes-Amazon-D | 0.0377 £0.0102 91.50+1.90  0.4036 +0.3247  0.0649 + 0.0288
Company 10.0424 £ 0.0102 82.75+0.92 0.4551 £0.1137  +0.0823 + 0.0164
Monte Carlo Dropout
Abt-Buy 0.0193 £0.0016 | ¥90.68 £0.92 0.9504 +0.0298  0.0574 + 0.0037
DBLP-ACM-S 0.0038 +£0.0010  98.83+0.32 0.8716+0.1538  0.0333 + 0.0096
DBLP-ACM-D 0.0042 +0.0011  98.90+0.21  0.7207 £0.1148  0.0286 + 0.0096
iTunes-Amazon-S | 0.0381 +0.0084 90.87 + 1.37  0.3008 £ 0.1470  0.0495 + 0.0096
iTunes-Amazon-D | ¥0.0381 £ 0.0124 91.50+1.90 0.4036 +0.3180  0.0718 + 0.0235
Company 0.0543 +0.0085 82.75+0.86 0.5137 +£0.0928  0.0946 + 0.0156
Ensembles

Abt-Buy 10.0173 £0.0005 90.78 +0.34  10.8669 + 0.0316  10.0672 + 0.0031
DBLP-ACM-S 0.0057 +0.0023  98.89+0.20 0.7914 +0.2040  0.0370 + 0.0096
DBLP-ACM-D 0.0052 +0.0007 | 498.51 £0.15 T10.8557 +0.1063 10.0439 + 0.0026
iTunes-Amazon-S | ¥0.0333 £ 0.0022 91.61 +0.95 | 10.6869 + 0.1421 10.0948 + 0.0176
iTunes-Amazon-D | 0.0438 £0.0123  91.34+2.52 | 10.5904 +0.0296 10.0950 + 0.0143

Company

*

*

*k

*

Table 2: The mean ECE, F} score, MCE, and RMSCE results over five runs, for the confidence calibration methods
and for the baseline predictions, on all datasets, along with standard deviations. [} scores are reported to two
decimal places. The other metrics are reported to four decimal places. Green cells signify that a result is better
compared to the result for the uncalibrated pipeline; red cells signify that a result is worse compared to the result
for the uncalibrated pipeline. Saturated colours indicate that the performance difference is significant (o = 0.05),
with arrows showing if the difference is negative or positive. *: Company dataset results were not gathered for the

Ensembles method due to computational constraints.

metric are consistently higher than the reported
ECEs. This is especially the case for the DBLP-
ACM, Company, and Abt-Buy datasets. The reli-
ability diagrams presented in Appendix C present
an explanation for the higher RMSCEs, showing
that there exist large errors between the predicted
probabilities and the empirical probabilities for all
datasets.

The MCE measures the maximum discrepancy
between predicted and empirical probabilities. Fig-
ure 5 in Appendix C shows that this difference is
large for most datasets, resulting in high MCEs.
However, these maximum discrepancies occur for
predicted probabilities with few data points, as the
figures in Appendix B show.

We find no correlation between the ECE, MCE,
or RMSCE metric values and the datasets’ F}
scores, sizes, Or mean entry pair sizes.

5.2 Calibration Methods
5.2.1 Temperature Scaling

As Table 2 shows, for the Temperature Scal-
ing method, the ECE significantly decreases for
the Abt-Buy, DBLP-ACM-Structured, iTunes-
Amazon-Structured, and Company datasets when
compared to the baseline. For the other datasets,
the ECE decreases, but not significantly. The per-
centage decrease in ECE compared to the base-
line results across the public datasets ranges from
8.05% (for iTunes-Amazon-Dirty) to 23.83% (for
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Figure 2: The mean confidence histograms over five runs for the Abt-Buy and Company datasets, using the baseline
RoBERTa model predictions, on a logarithmic scale. The distribution of correct prediction values are in green;
the distribution of incorrect prediction values are in red. The y-axis presents percentages of occurrences rather
than absolute numbers of occurrences. Error bars denote standard deviations. ECE, MCE, and RMSCE values
are reported to four decimal places. The same confidence histograms for the other four datasets are presented in

Appendix B.

Abt-Buy).

For the majority of datasets, however, the
changes in MCE and RMSCE are not significant.
This is likely because the temperature parameter
that is used for Temperature Scaling is optimised
using the ECE, and not the MCE or RMSCE. We
therefore suggest, for practical applications, to con-
sider whether to prioritize reducing the mean error,
larger errors, or the maximum error in calibration.
The temperature parameter can then be optimised
on respectively the ECE, RMSCE, or MCE.

Figure 6 in Appendix D shows that for every
dataset and run, there seems to be a clear optimum
in the temperature parameter value when optimis-
ing on the validation set. As shown in Table 4, the
optimal temperature values are typically greater
than 1.00. This means that the resulting sigmoid
scores are drawn closer to 0.5 compared to when no
temperature scaling is applied. This further demon-
strates that the baseline probability predictions of
the RoOBERTa EM model tend to be overconfident.

5.2.2 Monte Carlo Dropout

For Monte Carlo Dropout, the ECE often decreases
compared to the baseline, though this difference is
almost always not significant. For Abt-Buy, Monte
Carlo Dropout leads to a significant decrease in the
F7 score.

Figure 7 in Appendix E shows that for none
of the trained models and datasets, there seems
to be a very clear optimal dropout probability pa-
rameter value when optimising on the validation

set. Only very high dropout values negatively im-
pact the ECE. The same pattern is observed in
Figure 8 of the Appendix E. This figure also sug-
gests that a considerable dropout probability can
be used on most datasets without weakening the
performance. Table 5 further demonstrates this,
as for most datasets, the optimal dropout proba-
bility lies between 0.5 and 1.0. For two datasets,
the optimal dropout probabilities are even above
0.8. Table 5 moreover shows that the mean opti-
mal dropout probabilities and standard deviations
can vary considerably among datasets, suggesting
a lack of generalisability for the dropout parameter.
On the other hand, again, Figure 7 shows that there
are no clear optima of the dropout probabilities per
dataset on the validation ECEs.

Monte Carlo Dropout causes no significant
changes in MCE or RMSCE. Like for Tempera-
ture Scaling, we suggest to optimise on the ECE,
RMSCE, or MCE depending on the desired confi-
dence calibration behaviour.

5.2.3 Ensembles

For the Ensembles calibration method, the ECE
decreases for the Abt-Buy and iTunes-Amazon-
Structured datasets. For the DBLP-ACM and
iTunes-Amazon-Dirty datasets, the change is not
significant. With regard to the F} score, the results
are also often not significant, although the F} score
for the DBLP-ACM-Dirty dataset does decrease
significantly.

Monte Carlo performs multiple sub-runs with
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dropout during inference. Ensembles train multiple
models using differently initialised weights. For
both methods, the predictions of respectively these
sub-runs and models are averaged and used as final
prediction probabilities. A possible reason for the
limited significant improvements in ECEs for the
Monte Carlo Dropout and Ensemble methods is
the similarity in the predictions of the sub-runs and
models. After all, the only difference in producing
these predictions is, for Monte Carlo Dropout, the
dropout in the final classification layer, or, for En-
sembles, the initialisation of this classification layer.
The inputs to this classification layer come from
the same pre-trained model checkpoint, resulting
in highly correlated sub-run or model predictions.
This strong correlation likely limits the effective-
ness of both Monte Carlo Dropout and Ensembles.
Xiao and colleagues also describe this drawback
for Ensembles (Xiao et al., 2022).

6 Conclusions

We compare the confidence calibration of base-
line RoBERTa probability predictions without any
use of confidence calibration methods, to the
confidence calibration using Temperature Scaling,
Monte Carlo Dropout and Ensembles as confidence
calibration methods for EM.

We find that the ECE performance and overall
confidence calibration performance for ROBERTa’s
performance on EM, without using any confidence
calibration methods, is reasonable, but often over-
confident, with ECE scores ranging from 0.0043 to
0.0552, leaving room for improvement.

We find Temperature Scaling to work best, com-
pared to Monte Carlo Dropout and Ensembles, in
improving a RoBERTa model’s ECEs for EM, re-
ducing ECE scores by up to 23.83%. This is a
simple method that can easily be implemented in
practical settings.

We find that neither Temperature Scaling, Monte
Carlo Dropout, nor Ensembles have consistently
significant effects on the F)} scores of the the
RoBERTa EM model.

Overall, the ECEs reported for the baseline
RoBERTa EM model results are slightly higher
than those reported for RoOBERTa by Desai and Dur-
rett (Desai and Durrett, 2020) and slightly lower
to those reported for ROBERTa by Xiao and col-
leagues (Xiao et al., 2022). Both studies applied the
model to natural language processing tasks other
than EM. It would be interesting for future research

to investigate the cause of these differences in met-
ric values.

Another avenue for future research is to com-
bine confidence calibration methods for EM. For
example, Rahaman and Thiery (2021) found that
using Ensembles, and applying Temperature Scal-
ing to the averaged sigmoid scores can reduce ECE
scores by half compared to just using Ensembles,
on image classification tasks. Temperature Scaling
could be combined with Monte Carlo Dropout in
the same way.

Additionally, future work could leverage the in-
dividual variances in the sigmoid scores produced
by Monte Carlo Dropout and Ensembles. If these
variances are high, the confidence levels can be
lowered accordingly, potentially improving calibra-
tion. By incorporating variance-based adjustments,
it might be possible to create more reliable confi-
dence estimates and further enhance the overall per-
formance of the ROBERTa pipeline. Additionally,
entry pairs with large variances in their sigmoid
scores can be more closely analyzed to gain deeper
insights into the pipeline’s prediction patterns.

Limitations

Recent years have seen massive advances in
LLMs, yet this study focuses on a relatively small-
scale model compared to state-of-the-art architec-
tures. The academic community has extensively
researched derivatives of the BERT model, and
smaller models remain practical for deployment on
limited computational resources facilities. How-
ever, an important next step is to extend these
model calibration experiments to larger models
and evaluate their trustworthiness capabilities un-
der similar conditions.

It is worth noting that the ECE, MCE, and RM-
SCE metrics are not without limitations in accu-
rately capturing confidence calibration. To illus-
trate this, suppose there is an EM dataset with 50%
‘match’ labels and 50% ‘no-match’ labels. If a
model would only output predicted probabilities
of 0.5, the ECE, MCE and RMSCE would all be
zero, suggesting approximately perfect calibration.
Yet, the model’s predicted probabilities would be
entirely uninformative.
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A RoBERTa EM Performance

Table 3 presents the mean F score, precision, re-
call and inference time for the baseline ROBERTa
model.

B RoBERTa Confidence Histograms

The confidence histograms for all datasets, using
the baseline ROBERTa model predicted probabili-
ties and a number of bins = \/W , are presented in
Figure 3.

Figure 4 shows confidence histograms that are
similar to those in Figure 3. Histograms are pre-
sented for all datasets, using the baseline ROBERTa
model predicted probabilities and a number of bins
= /| D|. For Figure 4, correct and incorrect pre-
dictions are plotted individually. Moreover, the
distribution of predicted values is plotted on a log-
arithmic scale, so that smaller effects are easier to
see. Confidence histograms for four out of the six
datasets are shown. The confidence histograms for
the Abt-Buy and Company datasets are presented
in Section 5.

C RoBERTa Reliability Diagrams

Figure 5 presents the mean reliability diagrams for
all datasets, using the baseline ROBERTa model
probability predictions and a number of bins, or
dots, = \/ﬁ . When a dot is missing, this means

that there are no predictions within that predicted
probability bin. A diagonal line representing ap-
proximately perfect calibration is plotted as well.

D Detailed Temperature Scaling Results

Figure 6 presents the single parameter gridsearch
results for the temperature parameter on the valida-
tion sets, for all datasets.

The mean recorded temperature parameter val-
ues per dataset are shown in Table 4.

E Detailed Monte Carlo Dropout Results

Figure 7 and Figure 8 present the single parameter
gridsearch results for the dropout parameter on the
validation sets, for all datasets. Figure 7 specifically
reports the effect of the dropout probability value
on the ECE, while Figure 8 specifically reports the
effect of the dropout probability value on the F}
score.

The mean recorded dropout probability parame-
ter values per dataset are shown in Table 5.
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Figure 3: The mean confidence histograms over five runs for all datasets, using the baseline RoOBERTa model
predicted probabilities. The y-axis presents percentages of occurrences rather than absolute numbers of occurrences.
Error bars denote standard deviations. ECE, MCE, and RMSCE values are reported to four decimal places.
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Figure 4: The mean confidence histograms over five runs for the DBLP-ACM-Structured, DBLP-ACM-Dirty,
iTunes-Amazon-Structured and iTunes-Amazon-Dirty datasets, using the baseline ROBERTa model predictions, on
a logarithmic scale. The distribution of correct prediction values are in green; the distribution of incorrect prediction
values are in red. The y-axis presents percentages of occurrences rather than absolute numbers of occurrences. Error
bars denote standard deviations. ECE, MCE, and RMSCE values are reported to four decimal places.
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Figure 5: The reliability diagrams using data from five runs for all datasets, using the baseline ROBERTA model
predictions. ECE, MCE, and RMSCE values are reported to four decimal digits. Note that for some of the datasets,
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Dataset Fq Precision Recall Inference time (ms)
Abt-Buy 90.81 £0.85 91.86+0.55 89.81+1.82 1.43+0.01
DBLP-ACM-Structured 98.78 £0.40 98.83+0.73 98.74+0.12 2.04 +0.01
DBLP-ACM-Dirty 98.85+0.18 98.88£0.50 98.83+0.25 2.06+0.01
iTunes-Amazon-Structured | 90.53 +1.64 9322+4.80 88.15+1.66 0.32+0.05
iTunes-Amazon-Dirty 9150+1.90 87.81+£2.83 9556+1.66 0.28+0.07
Company 82.75+£092 8220+295 8340%1.53 2.51+0.00

Table 3: The mean F} score, precision, recall, and inference time (in milliseconds) for the RoOBERTa EM model for
all datasets, along with the standard deviations. Metrics are taken over five randomly initialised runs and reported to
two decimal places.

Dataset Temperature
Abt-Buy 224 +£0.47
DBLP-ACM-S 0.88 £0.50
DBLP-ACM-D 1.00 £ 0.67
iTunes-Amazon-S 1.74 £0.55
iTunes-Amazon-D 1.64 £ 0.91
Company 1.72 £0.51

Table 4: The mean temperature parameter value results, taken over five runs, for all datasets, along with the standard
deviations. Values are reported to two decimal digits.

Dataset Dropout probability
Abt-Buy 0.39£0.22
DBLP-ACM-S 0.58 £0.40
DBLP-ACM-D 0.56 £ 0.35
iTunes-Amazon-S 0.85+0.12
iTunes-Amazon-D 0.91 £0.07
Company 0.50 £ 0.35

Table 5: The mean dropout probability parameter value results, taken over five runs, for all datasets, using the
RoBERTa model, along with the standard deviations. Values are reported to two decimal digits.
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Figure 6: The effect of the temperature parameter on the ECE for the validation set, for all datasets. Each line
denotes one run. Note that the y-axis differs per plot.
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Abstract

Large Language Models (LLMs) have demon-
strated strong performance in question answer-
ing (QA) tasks. However, Multi-Answer Ques-
tion Answering (MAQA), where a question
may have several valid answers, remains chal-
lenging. Traditional QA settings often as-
sume consistency across evidences, but MAQA
can involve conflicting answers. Constructing
datasets that reflect such conflicts is costly and
labor-intensive, while existing benchmarks of-
ten rely on synthetic data, restrict the task to
yes/no questions, or apply unverified automated
annotation. To advance research in this area,
we extend the conflict-aware MAQA setting to
require models not only to identify all valid
answers, but also to detect specific conflicting
answer pairs, if any. To support this task, we in-
troduce a novel cost-effective methodology for
leveraging fact-checking datasets to construct
NATCoNFQA, a new benchmark for realistic,
conflict-aware MAQA, enriched with detailed
conflict labels, for all answer pairs. We evaluate
eight high-end LLMs on NATCoNFQA, reveal-
ing their fragility in handling various types of
conflicts and the flawed strategies they employ
to resolve them. !

1 Introduction

Recent advances in Large Language Models (LLM)
(Fischer et al., 2024; OpenAl-Team, 2024a) have
led to substantial performance improvement in var-
ious tasks, including Question Answering (QA)
with one or multiple correct answers (Voorhees,
2004). Although previous work on multi-answer
QA (MAQA) largely assumes that the different
answers are mutually consistent and complemen-
tary (Zhong et al., 2022; Amouyal et al., 2023),
realistically, questions can be controversial and
lack a definitive answer. In such cases, models

INATCONFQA is publicly available at https://github.
com/EN555/ContraQA.

2Google Research

30riginAl
cattana@google.com
dagan@cs.biu.ac.il

Claim: we have until perhaps 50 years from now, or maybe a little

centimetres (1.94 ft) this century.”  ‘refute

E3: ... sea level rise between 30 and 130 cm (1.0-4.3 feet)

by 2100 compared to the year 2000.” refute

E4: “... global warming would be evident ... and that it would
result in temperatures at least as high as during the Eemian.”

\l, Annotation E,‘ \l,
E¥2)NATCONFQA

Q1 (WH): How much will the sea level rise in upcoming decades?

Answers:

(1) Several meters in 50, 100 or 200 years (E1)

(2) 59 centimetres (1.94 ft) this century (E2)

(3) Between 30 and 130 cm (1.0-4.3 feet) in 2100 (E3)

Conflicting Pairs: (1,2), (1,3)

Q2 (Yes/No): Will sea levels rise by several meters in 50, 100, or 200 years?

Answers: (1) Yes (E1) (2) No (E2,E3)
\. 7

Figure 1: Deriving a conflict-aware MAQA instance
from a fact-chcecking instance. The source instance
is composed of a claim with supporting, refuting and

neutral evidence. Annotators then create WH and
Yes/No questions to surface these conflicts and label
conflicting answer pairs.

should not only generate a response that incorpo-
rates several answers, but also detect the conflicts
and communicate them to the reader. For example,
when asked “What is the effect of aspartame?”,
a comprehensive response should aggregate vari-
ous effects reported in the available sources, while
explicitly distinguishing between effects with con-
sensus and those that remain contested or under
debate.

Collecting QA instances with naturally occurring
contradictory answers is challenging, as knowledge
conflicts are not always prevalent in arbitrary texts.
As aresult, only a few datasets handle knowledge
conflicts while exhibiting some limitations, such
as relying on LLMs to inject misinformation into
other reliable texts, or focusing only on Yes/No
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questions (Section 6). Furthermore, although recent
benchmarks aim to evaluate whether the entire
response acknowledges the debatable nature of the
question (Xu et al., 2024; Hou et al., 2024), they do
not assess whether the response accurately reflects
which answers are subject to disagreements (e.g.,
whether aspartame increases cancer risk).

To foster research on this important challenge and
to enable fine-grained evaluation, we create NAT-
ConrQA, the first conflict-aware MAQA dataset
with annotations labeling individual answer pairs
that are in conflict. To collect NATCoNFQA, we first
leverage standard fact-checking datasets to identify
sources with naturally occurring disagreements.
Then, we ask human annotators to write various
QA pairs and to label the relationship between
pairs of conflicting answers. Finally, we verify
the annotations for quality assurance. Figure 1
illustrates our general annotation scheme. NATCon-
FQA is a high-quality dataset that covers Yes/No
and WH- questions, and includes instances, based
on reliable sources, with a mix of conflicting and
non-conflicting answers for the same question.

We evaluate the performance of eight LLMs on
NaTCoNFQA, including open-source and propri-
etary models, measuring both answer quality and
conflict identification. In terms of answer quality,
we show that while models generally achieve high
precision, they fail to output all correct answers.
Furthermore, our fine-grained evaluation of con-
flict identification reveals that models struggle to
distinguish between conflicting and non-conflicting
answer pairs. Further analysis of the model fail-
ures reveal insightful error patterns: models evade
exposing conflicts by selecting a single answer,
erroneously attempting to reconcile contradictory
information, or refraining from answering the ques-
tion altogether. Taken together, our work uncovers
the behavior of strong LLMs when confronted with
conflicting information, while providing suitable
methodologies and data to investigate these chal-
lenges in future research.

2  Conflict-Aware Multi-Answer QA

The Conflict-Aware Multi-Answer QA task is an
extension of the traditional Multi-Answer QA (Min
et al., 2020; Amouyal et al., 2023) task, that consid-
ers potential conflicts between the different answers.
We extend recent work in conflict-aware QA (Xu
et al., 2024), which either focused on binary con-
flicting answers (Hou et al., 2024) or addressed

multiple answers without indicating which pairs
conflict (Jiayang et al., 2024). Our generalized task
formulation supports two or more answers per ques-
tion and, importantly, pinpoints the answer pairs
that are in conflict.

Given a question g and a set of candidate passages
P = {p1,...,pn}, the task is to generate a free-
text response y that satisfies two main requirements.
First, similar to the traditional MAQA task, y should
incorporate all answers that appear in reference
A ={ay,...,an}. Second, the response y should
indicate all conflicts, if any, between the answers
within it. We assume that the response y is in
natural language, as typically generated by large
language models (LLMs), and not necessarily in a
structured format.

For example, consider the question “What cli-
mate degree change is caused by greenhouse
gases?". The different answers 0.45°C and 0.8°C
cannot be simultaneously true, hence an ideal re-
sponse should present both answers through con-
trastive language (e.g., by using the word “however”,
both answers can be communicated, and the con-
flict is established). In contrast, for the question
“Which domestic pets can potentially test positive for
SARS-CoV-2?", the answers dogs, cats, and ferrets
are non-conflicting and an ideal response should
enumerate the different answers cohesively.

Since a question may elicit a mixture of con-
flicting and non-conflicting answers, we want to
determine whether the model response y accu-
rately reflects the conflict or non-conflict rela-
tions between the different answer pairs. For-
mally, for reference answers A and a respective
set C = {{ai,aj} | a; and a; conﬂict}, that lists
the pairs of conflicting answers in A, the objective
of response y is to accurately incorporate A and C.

In accordance with the task definition, we de-
fine two evaluation criteria, adopted from related
tasks (Min et al., 2020; Hou et al., 2024): Answer
Quality, measuring how well the model covers the
set of correct answers; and Conflict Identification,
assessing the model’s ability to correctly identify
conflicting answer pairs. We propose metrics for
the evaluation criteria in §4.3.

3 Creating the NATCoNFQA Dataset

Obtaining annotations for a conflict-aware MAQA
dataset is challenging, because informational con-
flicts are infrequent in arbitrary sources from which
answers can be collected.
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In this work, we approach this challenge by lever-
aging existing fact-checking datasets, a well-studied
field with many datasets, which were annotated with
large manual effort (Thorne et al., 2018; Sarrouti
et al., 2021). Some fact-checking datasets contain
claims for which some pieces of evidence refute
the claim, while others support it, as exemplified
in Figure 1. This structure makes them particu-
larly valuable for our task, as they naturally capture
conflicting evidence.

In this section, we describe our methodology for
converting and annotating existing fact-checking
datasets into a conflict-aware MAQA dataset (§3.1
and §3.2). We then describe the resulting new
NaTConFQA dataset (§3.3) finally, we examine its
quality (§3.4).

3.1 From Fact-Checking to Conflict-Aware
Multi-Answer QA

The typical structure of an instance in a fact-
checking dataset is a triplet (c, e, ), where c is a
claim, e is a piece of evidence associated with that
claim, and ¢ € {refute, support, neutral} indicates
the entailment relation between the evidence e and
the claim ¢ (Aly et al., 2021; Sarrouti et al., 2021).
In the cLiIMATE-FEVER (Diggelmann et al., 2021)
and HEALTHVER (Sarrouti et al., 2021) datasets,
the same claim ¢ may appear in multiple triplets
(c, e;,€;), where it might be supported by some
pieces of evidence, while others refute it. The
co-occurrence of both supporting and refuting ev-
idence for the same claim typically indicates the
presence of an underlying factual conflict among
the pieces of evidence (see App. A for details).
Our goal is to leverage the above fact-checking
datasets in order to create a conflict-aware MAQA
dataset. An instance should contain a question g
and a set of respective answers A = {ay,...,ax}
that includes at least one pair of conflicting an-
swers. In reality, however, not all questions have
conflicting answers. Hence, we would also like to
include instances where A has only non-conflicting
answers. Such a subset is useful as a control set
when assessing models’ performance in the conflict-
aware MAQA task (§5). Beyond accommodating
conflicting and non-conflicting answer sets, it is
also important to support variation in question form,
i.e., WH-questions versus Yes/No questions.
Overall, we gather two sets of instances from
fact-checking datasets: (1) conflicting instances,
that include both supporting and refuting pieces

of evidence, and (2) non-conflicting instances, that
include at least one supporting evidence and no
refuting evidence. We next describe our process for
converting these fact-checking instances into ones
for the conflict-aware MAQA task.

3.2 Dataset Preparation

Initial fact-checking data. We first gathered the
two sets of fact-checking instances on which the an-
notation process is conducted. For the conflicting
set, we automatically iterated over the CLIMATE-
FEVER and HEALTHVER instances (see Appendix A
for pre-processing details), and grouped those with
the same claim, that have conflicting evidence
(at least one triplet with support and at least one
with refute), resulting in 188 groups. For the non-
conflicting set, we collected several hundred groups
of claims with only supporting or neutral evidence.
The fact-checking datasets supply evidence at
the sentence level, sourced from Wikipedia arti-
cles in cLIMATE-FEVER and CORD-19 abstracts in
HeaLtHVER. In a realistic situation, especially
in the QA setting, the source texts on which the
task is performed are typically longer passages.
Therefore, for each evidence sentence used from
the fact-verification datasets, we retrieved the com-
plete passage containing that sentence (details in
Appendix C).” In summary, each instance in the
two fact-checking sets is composed of a claim and
several pieces of evidence within their passages.

Manual annotation process. The two annotators
were first provided each with half of the conflicting
fact-checking instances.® Each instance is com-
posed of a claim and several pieces of evidence
(some conflicting). The annotators then followed
the following procedure (more details in Figure 3).
(1) Contradiction detection: confirm whether the
supporting and refuting evidence indeed conflict
with each other. (2) WH-question formation:
for each instance, write a WH-question based on
the claim and evidence, aiming to elicit the core
information and potential conflict. Then for each
question, write out a list of answers based on the
evidence, and link the evidence to the answer. (3)
Label answer pairs: label each pair of answers as
conflicting or non-conflicting. (4) Yes/no question

2Note that a passage can contain more than one evidence
sentences if they come from the same source passage.

3We observed that even top-performing models often mark
instances as containing conflicts even when none exist, or, in

instances where conflicts were present, they fail to clearly
reflect them in the generated question.

140



formation: for each WH-question and its corre-
sponding answer from the previous steps, if pos-
sible, formulate a yes/no question and link the
supporting evidence for the yes and no responses.

The annotators then repeated the process on the
non-conflicting fact-checking set, skipping steps 1
and 3. Also, step 2 requires questions and answers
with only non-conflicting evidence, and step 4 is
conducted for all answers from step 2 in this round.
See Appendix B for details regarding annotators
and the annotation tool.

3.3 The NaTConrFQA Dataset

Overall, the annotation process yielded 269 con-
flicting instances, of which 89 were WH-questions,
and 408 non-conflicting instances. Each instance in
NatConrFQA is represented as a tuple (g, P, A, C),
where ¢ is the question, P = {p1, ..., pn} is the set
of relevant passages, A = {ajy, ..., a;} is the set of
answers, and C = {{a,-,aj} | a; and a; Conﬂict}
contains all annotated pairs of conflicting answers.*

3.4 Dataset Quality

Data validation. A high-quality dataset should
align with the objectives of our task and the eval-
uation criteria (§2). Namely, each instance in the
dataset should contain accurate answers that are
consistent with their supporting evidence, and con-
flicting answer pairs should be correctly identified.
To that end, we randomly selected 40 instances
from NATCoNFQA and hired a reviewer (a third
worker) to validate the data. The reviewer, an un-
dergraduate student, was trained for the task and
paid a $14 hourly wage (see Figure 10 for the
guidelines). The reviewer was instructed to assess
whether each answer was supported by its linked
evidence, and, independently, whether the pairs
marked as conflicting were indeed conflicting.

In the collection phase, an answer was produced
from a sentence within a passage. This means that,
with respect to a passage, not all potential answers
are necessarily included in the dataset. Therefore,
given a passage, the correctness of an answer should
be verified against the full passage, and not just any
specific sentence within the passage. This matter is
addressed in the evaluation metrics (§4.3), and is
also relevant for the validation phase of the dataset
curation.

Following the guidelines, the reviewer labeled
each answer in the 40 instances as “correct” or

4Each answer is also linked to the passage(s) containing
its respective evidence.

“incorrect” with respect to its linked evidence. Sim-
ilarly, the reviewer labeled each conflicting pair in a
binary fashion, validating whether the two answers
conflict. Over this representing set of instances, we
find a validation rate of 93% for answer-correctness
and 92% for correctness of conflicting pairs. The
meticulous dataset curation process, combined with
the strong validation statistics, strongly suggest the
high quality of NATCoNFQA.

Dataset properties. A high-level view of the
dataset reveals properties that indicate the dataset’s
diversity and the challenges that it poses.

First, as indicated in Table 3, there are an average
of 5.6 passages per question, and each passage has
a length of 252 words, reflecting a realistic RAG
setting with multiple long contexts. Compared to
other datasets for the MAQA task, NATCoNFQA
features a relatively large number and length of
passages per instance with high quality. Addition-
ally, NaeTCoNFQA includes 62 conflicting answer
pairs each containing a mix of both conflicting
and non-conflicting answers. This subset proved
challenging for models, as discussed in §5.1.

Subsequently, we observe that the number of evi-
dence pieces linked to a single answer ranges from
1 to 17 (std = 2.7), with some answers appearing
across multiple passages and others only once. In
contrast, most existing datasets either do not specify
evidence links (Xu et al., 2024) or include far fewer
per answer (Hou et al., 2024; Jiayang et al., 2024).
See Appendix D for additional dataset statistics.

Taken together, the dataset’s quality, diversity,
and level of challenge make NaATCoNFQA a valuable
resource for studying model behavior in realistic
settings.

4 Experimental Setup

In this section, we outline our experimental setup
for evaluating how well models detect and com-
municate conflicts. We describe two prompting
modes for the conflict-aware MAQA task (§4.1)
that will be applied on eight top-performing LLMs
(§4.2). Their performance will be assessed using
two evaluation criteria adapted from prior work

(§4.3).
4.1 LLM Prompting Modes

To assess the performance of state-of-the-art LLMs
in a QA setting in which input passages may con-
tain multiple, potentially conflicting answers, we
conduct experiments using our dataset under two
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prompting modes — defaultive and conflict-aware,
similar to Hou et al. (2024).

In MAQA and RAG settings, a system is expected
to generate natural-language responses that coher-
ently articulate the information requested by an
input instruction. We refer to this as the defaultive
prompting mode, where the prompt simply states
to answer a question based on the given sources.
In the conflict-aware prompting mode, the model
is also explicitly instructed to identify and indicate
any conflicts that arise when answering the question
(full prompts are in Figure 4 in App. E).

4.2 Tested Models

We selected eight top-performing open- and closed-
source LLMs to evaluate in our setting. Specifically,
since conflict-aware MAQA requires for strong rea-
soning abilities, to successfully identify conflicts
across multiple passages, we selected four LLMs
with an explicit reasoning step. We employed
two flagship closed-source LLMs: Gemini 2.5
Pro,’ and OpenAI’s 03,° and to allow reproducibil-
ity, we selected two open-source reasoning lan-
guage models: DeepSeek-R1 (DeepSeek-Al, 2025)
and Qwen3-235B-A22B.7 Finally, we selected four
popular non-reasoning models: gpt-4o (OpenAl-
Team, 2024b), Gemini 2.0 Flash,® Qwen2.5-72B
(Yang et al., 2024), and DeepSeek-V3 (DeepSeek-
Al 2024). The eight models were evaluated on
our NATCoNFQA dataset with the two prompting
modes.

4.3 Evaluation Metrics

To evaluate model performance, we follow the two
quality criteria of the task (§2) — answer quality
and conflict identification. To measure the two
quality criteria, we define precision, recall, and F
measures per a conflict-aware MAQA instance, as
described below. A system’s overall scores are the
average of each of the three instance-level metric
scores.

Preparation step: decomposing the system re-
sponse. Consider an instance of conflict-aware
MAQA (§2), characterized by input question g

5https://blog.google/
technology/google-deepmind/
gemini-model-thinking-updates-march-2025
Shttps://openai.com/index/
03-04-mini-system-card
7https://qwenlm.github.io/blog/qwen3
8https://blog.google/
technology/google-deepmind/
google-gemini-ai-update-december-2024

and passages P, and reference answers A and
conflicting answer pairs C. A system responds
with a free text response y, which coherently ad-
dresses g based on P. An interpreter (we use an
04-mini LLM) decomposes y into a set of distinct
answers A = {ai,...,dy}, and then identifies all
conflicting answer pairs in y as C = {{di,cfj} |
d; and d; conflict within y}. This decomposition
step enables the evaluation, as described next.

Metrics for answer quality. To evaluate the cor-
rectness of an answer from the system’s response,
we adapt the recall and precision metrics from tradi-
tional MAQA tasks to our setting (Min et al., 2020;
Amouyal et al., 2023).

recall,ys 1s the fraction of reference answers A
found in the system response y, while precision,
is the fraction of system-derived answers A found
in the given passages P. Formally:

m
(1) recally,y, = Z Jans (@i, )
m
i=1
k A

(2) precision,,, = k

i=1

where Jans(a;, T) denotes a judge’s binary decision
for whether answer a; is found within the context
T, with m = |A| and k = |A|. Accordingly, we
define the per-instance score F7,, as the harmonic
mean of recally,s and precision,,,. For Jons we
employ an o4-mini® LLM (LLM-as-a-judge Liu
etal.,2023; Zheng et al., 2023), which shows strong
correlations to human judgments (see Appendix G

for details).

Metrics for conflict identification. Prior works
define conflict detection as a classification task:
deciding whether a system-generated answer sig-
nals the presence of conflicting information in the
retrieved passages (Xu et al., 2024; Hou et al.,
2024). We extend their formulation to the general
case where arbitrary pairs of distinct answers may
conflict in the given passages.

recall;o,s measures the fraction of reference con-
flicts C captured by the system-derived answers A,
while precision,,, measures the fraction of system-
derived conflicting answer pairs C that are also

9https://openai.com/index/
03-04-mini-system-card with high reasoning effort.
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conflicting in passages P.!° Formally:

a;,ai,
(3) recallepns = Jeont (aisaj, y)

{ai,a_,-}EC |C|

a;,a;, P

(4) precision s = Z —Jconf(é i P)
{d,—,ﬁj}eé | |

where Jeonf(ai, aj, T) denotes a judge’s binary de-
cision for whether a; and a; are indicated as con-
flicting in the context T. Accordingly, we define
the per-instance score Fi_ . as the harmonic mean
of recallconr and precision,,,;. We use an LLM-as-
a-judge for Jeons as well.

con

5 Results and Analysis

In this section, we first present results on the two sub-
sets of NATCoNFQA under both prompting modes,
and analyze the general trends (§5.1, §5.2). We
then conduct a manual error analysis on a sample of
model responses (§5.3), uncovering the techniques
used by models to wrongly handle conflicts.

5.1 Results on the Conflict Subset

The performance of the eight models (§4.2) on the
Conflict subset of NATCoNFQA (§3.3) is reported
in Table 1. We compare the use of the defaultive
prompt mode against the conflict-aware prompt
mode (§4.1) based on the recall, precision and F
metric scores (§4.3), and finally corroborate the
observed trends with human judge.

Defaultive prompting. Under the default prompt,
i.e., without any conflict-related guidance, the mod-
els exhibit relatively low recallcops (37.8 — 67.8;
9th column in Table 1), indicating that they strug-
gle to identify and convey conflicts without ex-
plicit instruction. Across model families, non-
reasoning models perform competitively with their
reasoning-enabled counterparts, specifically the
open-source ones. For instance, DeepSeek-V3
achieves a recallcopr of 55.5, surpassing the 50.6 of
DeepSeek-R1.

Moreover, models appear to struggle less with
retrieving answers from the passages, as indicated
by the relatively higher recall,,s scores. However
there is still much room for improvement on this
front as well.

In contrast, precision metrics remain uniformly
high: both precision_; and precision,,  exceed

10Since system-derived answers may appear in the source

passages, we evaluate precision for both criteria against these
passages rather than relying on the reference answers.

80 and 92, respectively. This pattern is expected,
since models are more prone to omission errors
(which affect recall) than to producing irrelevant or
spurious content.

Conflict-aware prompting. When explicitly
prompted to identify conflicting answers (conflict-
aware mode), models performance improve signifi-
cantly (ACA columns). Notably, all eight models
exhibit significant improvements in recallconf, rang-
ing from 7.5 to 27.6 points, indicating that explicitly
guiding models to seek conflicts is effective for iden-
tifying them. Moreover, six of the eight models
observed an increase in recall,,s, while precision
on both criteria remains more or less comparable.
Overall, for conflict instances, applying conflict-
aware prompting is highly advantageous, improving
both answer quality and conflict identification for
most models. The subtle, yet meaningful, change
in the prompt goes a long way for helping strong
LLMs sense conflicts in the MAQA setting.

Conflicting subsets analysis. Next, we analyze
model performance across three disjoint subsets
of conflict instances in NATCoNFQA: (1) Yes/No
questions; (2) WH-questions in which all answer
pairs are conflicting (WH-conflict); and (3) WH-
questions that include both conflicting and non-
conflicting answer pairs (WH-mix). Table 2 reports
results averaged over eight models (see Figure 7 in
App. J for per model results). Notably, WH-mix is
the most challenging subset and shows the small-
est gains from conflict-aware prompting compared
with the other two subsets. This suggests that the
presence of both conflicting and non-conflicting
signals within the same instance increases ambigu-
ity, making it harder for models to reliably identify
and reason about the conflicting information.

Human judgment results. To further corrobo-
rate the general trends observed above, we employed
our evaluation protocol with a human judge to the
two top-performing models on 120 NaTCoNFQA
instances (additional details in App. G). In Ta-
ble 8, we report similar trends — LLMs perform
better on recall,,s and recall o, When prompted in
a conflict-aware setting (up by 5.3 and 33.3 points
for the two models). Moreover, we measured a
strong correlation (Pearson’s r > 0.62; Table 7)
between the human and LLM judges for the four
metrics from §4.3, further supporting our findings.
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Model Answer Quality Conflict Identification
precision,, recallpg Flans precision,, recallconf Ficonf
D ACA D ACA D ACA| D ACA D ACA D ACA
& gpt-4o0 924 1722 593 6.7 67.5 6.0 8.4 |22 378 276 672 71125
&2 Gemini 2.0 Flash [ 97.8 [ 1.0 63.8 722 738 7107|825 T1.1 547 7.5 664 173
g % DeepSeek-V3 924 T1.1 652 45 1718 451830 |42 555 154 758 114
£  Qwen-2.5-72B 932 | 0.1 60.6 44 693 71301802 |12 460 247 722 1438
e 03 93.8 |2.1 71.1 7.3 177.0 351848 71719 678 166 812 169
‘s Gemini 2.5 pro 962 | 0.1 677 7136 1756 133|858 |46 61.8 179 772 13.0
% DeepSeek-R1 953 0.7 570 |02 646 707 |84.1 |68 506 13.8 669 7134
£  Qwen-3-235B 943 |03 560 |33 628 |08 853 |15 503 9.0 698 10.8

Table 1: Performance on the Conflict subset of NATCoNFQA for non-reasoning (upper half) and reasoning models
(lower half). Average precision, recall, and F scores are reported for the two quality criteria (§4.3) — answer
quality (left section) and conflict identification (right section). Results are shown for when models apply defaultive
prompting (D), together with the absolute change in scores when applying conflict-aware prompting instead (ACA).
Symbols | / and T/ denote negative/significant-negative and positive/significant-positive changes. See Appendix H
for details on significance-testing. Overall, conflict-aware prompting yields improvements for nearly all models

across both evaluation criteria.

Yes/No WH-All  WH-Mix

545+2.2 53.1+3.6 46.0x5.7
71.3+£2.0 729+32 533+5.6

defaultive
conflict-aware

Table 2: Average conflict-identification recall with 90%
confidence intervals across eight models, reported for
both prompting modes and all three conflict subsets (as
detailed in §5.1).

5.2 Results on the No-conflict Subset

Next, we conducted an experiment which mirrors
the traditional MAQA task, requiring models to
generate responses that incorporate all relevant
answers from the passages, without conflicting
information. Specifically, we test four models’
performance on the No-conflict subset of NaATCon-
FQA, under both prompting modes, as a reference
for the Conflict subset’s experiments above. All
tested models (both reasoning and non-reasoning
LLMs) exhibit high answer quality under defaultive
prompting (Fy,,. > 90; see full results in Table 6
in Appendix F). This suggests that retrieving and
integrating answers from passages is easier for
models when no conflicts are present. However,
when prompted in conflict-aware mode, perfor-
mance slightly degrades (up to 5.5 in Fy,_ ), pos-
sibly because the enforced knowledge of potential
conflicts (even when none exist) somewhat disrupts
the model’s natural inference.

5.3 Error Analysis — Dealing with Conflicts

The large performance gap between the Conflict and
No-conflict subsets of NATConFQA (§5.1, §5.2)
calls for further examination. To that end, we
conducted a manual error analysis on 160 sampled
system responses generated by four models under
defaultive prompting, on the Conflict subset (see
Appendix I for full details). A human annotator
categorized each system response into one of four
main pre-defined error categories,'! if an error was
found (80 of the 160 instances), as follows:

Error Description of response Frequency

Choose contains one reference answer 42%
Generalize unifies answers by generalizing 17%
Resolve hallucinates info to settle conflicts 13%
Refrain does not answer question 5%

See examples in Table 9 in the appendix. The four
models exhibit similar distributions of error types.

When the examined models made mistakes in
their responses, it generally seems as if they tried
to overcome conflicts through manipulative tech-
niques. In 42% of the cases, they simply chose one
answer in order to refrain from dealing with the
conflicts. In 17% of the cases, they generated a
response that unified the conflicting answers into
a general answer that does not disclose the con-
flicts (e.g., by averaging numbers). In about 13%

These categories were identified through a preliminary
analysis for prominent error types, and inspired by Jiayang
et al. (2024).
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Dataset Collection #Instances Conflicting Conflict Avg. Avg. Passage
Method Pairs Type #Passages Length (words)
ConflictingQA (Wan et al., 2024)  Automatic 238 All Factual 9.2 314
WikiContradict (Hou et al., 2024) Manual 253 All Factual 2 43
DebateQA (Xu et al., 2024) Automatic 2,941 N.D. Point-of-View 4.2 4687.6
ECon (Jiayang et al., 2024) Automatic 1,666 All Factual 3 47.3
NaTCoNFQA (Ours) Manual 677 All & Mixed & None Factual 5.6 251.5

Table 3: Representative datasets for conflict-aware QA. “Conflicting Pairs” indicates whether an instance in the
dataset has only conflicting answers (A/l), conflicting and non-conflicting answers (Mixed), no conflicting answers
(None), or whether that distinction is not well defined N.D.. “Avg. # Passages” denotes the average number of

passages per instance.

of the cases, the models fabricated information
in an attempt to reconcile the conflicts. Finally,
another approach was to simply respond with a
general comment related to the question, without
answering it.

These phenomena observed on high-end LLMs
demonstrate the manners with which models at-
tempt to overcome conflicting information. We call
upon the research community to dive deeper into
this matter, not only to solve conflict-related tasks
such as ours, but also to better understand the way in
which LLMs handle inconsistencies in knowledge.
Future research should explore developing systems
that embrace the complexity of conflicts rather than
simply resolving them.

6 Related Work

In multi-answer QA, a question may have multiple
valid answers, each supported by its own evidence
(Voorhees, 2004). Although most datasets for this
task generally assume that the different answers are
consistent and complementary (Kwiatkowski et al.,
2019; Zhu et al., 2020; Li et al., 2022; Zhong et al.,
2022; Amouyal et al., 2023), in real-world scenar-
i0s, a query can expose conflicts or discrepancies
between the different textual sources.

Yet, there are only several QA datasets that ad-
dress conflicting answers, each exhibiting its own
set of limitations. Table 3 shows the differences
between NATCoNFQA and existing benchmarks.
In general, conflicting QA instances in naturally
occurring texts are scarce, hence a popular strategy
of prior works is to automatically introduce syn-
thetic misinformation in texts, generating this way
conflicting evidences for a QA instance (Jiayang
etal., 2024; Liu et al., 2025b; Su et al., 2024; Wang
et al., 2025; Ming et al., 2025). This approach in-
herently introduces artificial biases for the types of
conflicts included in the dataset, as determined by
the synthetic generation method. Another approach

to derive conflicting instances involves utilizing
existing Yes/No questions coupled with documents
retrieved from search results that contain conflicting
information (Wan et al., 2024).

Other recent works focus on various types of
conflicts in RAG settings, where there is a single
correct answer (Liu et al., 2025a), multiple points of
view (Xu et al., 2024), or a mix of different conflict
types, such as temporal, misinformation, or opinion
(Cattan et al., 2025). Most similar to our work,
WikiContradict (Hou et al., 2024) includes human-
annotated QAs that incorporate naturally-occurring
(rather than synthetic) conflicting answers, found in
Wikipedia articles. Yet, the instances in this dataset
are limited to only two relatively short evidence
passages, which always contradict each other.

In contrast to existing resources, NATCoNFQA is
a human-annotated dataset composed of naturally
occurring conflicts between the different answers,
covering both Yes/No and WH- questions. Addition-
ally, each instance includes on average 5.5 passages.
Importantly, our work is the first to collect fine-
grained annotations for each pair of answers, where
some answer pairs are conflicting while others are
not (the “mixed” category in Table 3. This annota-
tion scheme enables more realistic assessment of
models’ ability to identify naturally occurring con-
flicting answers, while distinguishing them from
non-conflicting answers.

7 Conclusion

In this work we enhance the Conflict-Aware Multi-
Answer QA task by explicitly requiring conflict
identification among answers. We create a dataset
for the enhanced task, via a novel cost-effective
methodology that leverages fact-checking datasets.
Our NATConFQA dataset is a realistic, conflict-rich
benchmark that challenges current strong models.
We test several state-of-the-art LLMs on the dataset,
and show that models still struggle with surfac-
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ing conflicting answers consistently, particularly
in instances that contain both conflicting and non-
conflicting answers, even when expressly prompted
to be on the watch for potential conflicts. Finally, an
error analysis of model responses exposes manners
in which LLMs mishandle conflicts.

Limitations

We employed LLMs for many tasks throughout
this paper, including conflict-aware MAQA, evalu-
ation of several criteria, and response decomposi-
tion. While we conducted some reasonable prompt-
engineering for these assignments, it is possible
that even more effective prompts would improve or
change results.

Since pre-trained LLMs’ training datasets are not
fully documented, we can’t rule out overlap with
the underlying data used for creating our dataset,
raising the risk of contamination.
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A Fact-Checking Datasets for
Conflict-aware MAQA

We build upon two established fact-checking bench-
marks, cLIMATE-FEVER and HEaLTHVER, which
provide real-world claims paired with supporting,
refuting, and neutral evidence passages.

CLIMATE-FEVER. The cLIMATE-FEVER dataset
(Diggelmann et al., 2021) includes 808 claims.
Of these, 654 claims have only non-conflicting evi-
dence (all support), while 154 claims are labeled
as disputed, containing conflicting evidences.

HeaLTHVER. The HEALTHVER dataset (Sarrouti
et al., 2021) comprises 1,084 claims. Among them,
607 claims feature only supporting evidence (no
conflict), and 477 claims include both supporting
and refuting evidence, yielding true conflicts.

To ensure a diverse and representative subset
of questions, we address the high redundancy in
HeALTHVER, where many real-world health-related
claims are duplicated. We randomly sampled a
single instance per topic from the 477 conflicting
claims spanning on 55 topic questions. This process
resulted in a final subset of 55 unique instances.

Licensing. Neither CLIMATE-FEVER nor
HeaLtHVER specify an explicit license. Upon
publication, we will release NATCoNFQA under
the CC BY 4.0 license,'? permitting unrestricted
reuse with attribution for research purposes.

B Dataset Annotation Details

Annotator details. Our two annotators were un-
dergraduate or graduate students, and are fluent
English speakers. They underwent two training

l2https ://creativecommons.org/licenses/by/4.0/
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0 of 133 Annotated

Conflict Annotations

CPrevious  Next>

Browse...| annotations_2025-09_04_NEW.csv

Claim and Evidences (Supports & Refutes & Neutral) &4

claim: So that means that probably about half, maybe half of that nine-tenths of the degree [of total
warming] might be caused by greenhouse gases
Supports:

1. In 2018, Michaels asserted on Fox News, "probably about half, maybe half of that nine-tenths
of the degree [of total warming] might be caused by greenhouse gases."
Refutes:

2. Most of the climatic warming over the last 50 years is likely to have been caused by increased
concentrations of greenhouse gases in the atmosphere.

3. Human-caused increases in areenhouse aases are resnonsible for most of the observed alobal

GPT Response &

{

“is_contradiction": "yes",

"explanation”: "The supporting evidence suggests that only about half of the warming is caused by
greenhouse gases, while the refuting evidence claims that most or the dominant portion of the warming is
caused by greenhouse gases.”,

"WH-question": {

"question”: "What is the estimated cause of most of the climatic warming over recent decades?",
"key_answers": {
"answer_1": "About half might be caused by greenhouse gases.”,
"evidence_numbers": [
2,
3
4
i

Instance 2 of 133

Annotation Editor ./

Is Contradiction:

True v

WH-Question
Question Type:

Function Question v
Is Presupposition:

No v
Question:

What climate degree change is caused by greenhouse gases?

Answer 1

Answer: 0
Around 0.45°C
Evidence Numbers:
1
Answer 2
Answer: s
08°C
Evidence Numbers:
3
[ o ]

Figure 2: Screenshot of our annotation interface. On the left, annotators view the fact-checking instance, including the
claim and evidence sentences grouped by their initial labels (support, refute, neutral). At the bottom, LLM-generated
WH and yes/no question—answer suggestions are displayed (see Figure 9 for the prompts). On the right, annotators
write or edit their own questions and corresponding answers.

iterations, each on 10 instances. They were com-
pensated at approximately $14 per hour. The an-
notators worked a combined total of 52 hours to
prepare the NATCoNFQA dataset. The annotators
were informed that their annotations are for re-
search purposes, and that they can terminate their
participation in the process whenever they want.

Anneotation tool. To facilitate the annotation pro-
cess, we developed a dedicated annotation tool
that supports question-writing, linking respective
evidence, and labeling conflicting answer pairs.

We present screenshots of the annotation in-
terface and guidelines for both WH and Yes/No
questions in Figures 2 and 3, respectively. The
provided instructions guided annotators in accu-
rately identifying conflicts and extracting relevant
answers based on the given evidence. Additionally,
annotators were instructed to record the evidence
IDs that support each annotated answer. Our cus-
tom annotation tool further allows annotators to
add as many answers as necessary and seamlessly
author both WH-type and binary (Yes/No) ques-
tions for each claim. While the guidelines place a
strong emphasis on handling conflict instances, an-
notators were allowed to skip the conflict-oriented
instructions when working on the support instances.

C Passage Extraction for Evidence
Sentences

To simulate a realistic QA setting, we reverse the typ-
ical sentence-level focus of fact-checking datasets
by retrieving entire passages surrounding each evi-
dence span.

For HEALTHVER, which is derived from scientific
abstracts in the CORD-19 corpus'?, we locate the
original abstract corresponding to each evidence
sentence. We perform an exact string match of
the sentence within the CORD-19 collection and
extract the full abstract to serve as the passage
context.

For cLIMATE-FEVER, which uses evidence drawn
from Wikipedia, we scraped the English Wikipedia
pages as of February 1, 2020 and converted them
to plain text. We then employ the RapidFuzz
fuzzy-matching library'# to identify each evidence
sentence within its article. Finally, we heuristically
expand to the surrounding paragraph—defined by
nearest blank lines or section headers—to create a
coherent passage that preserves the original narra-
tive flow.

This passage-level extraction ensures that each
QA instance reflects the broader context in which
evidence appears, aligning our setup with realistic

Bhttps://www. semanticscholar.org/cord19
14https ://github.com/maxbachmann/RapidFuzz
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Statistic No-conflict Conflict
# Instances 408 269
Avg. # Passages 6.7 5.6
Avg. # Answers (WH) [min—-max] 3.8 [2-13] 2.6 [2-10]
Avg. # Conflict Pairs - 1.3

Table 4: Statistics for our NATCoNFQA dataset. The
three average stats are per instance. Avg. # Passages
is the mean number of passages per instance; Avg. #
Answers (WH) [min—max] reports the average number of
answers per WH question and the corresponding range;
Avg. # Conflict Pairs is the average number of conflicting
answer pairs per instance (e.g., always 1 for Yes/No).

Model Name Model Tag Reasoning
GPT-40 gpt-40-2024-08-06 X
Gemini 2.0 Flash gemini-2.0-flash-001 X
DeepSeek-V3 deepseek-ai/DeepSeek-V3 X
Qwen-2.5-72B Qwen/Qwen2.5-72B-Instruct-Turbo X
o3 03-2025-04-16 v
Gemini 2.5 Pro gemini-2.5-pro-preview-03-25 v
DeepSeek-R1 deepseek-ai/DeepSeek-R1 v
Qwen-3-235B Qwen/Qwen3-235B-A22B-fp8 v
o4-mini 04-mini-2025-04-16 v

Table 5: Exact model version tags for the models used
in this work.

Retrieval-Augmented Generation workflows.

D NarConrQAStatistics

Table 4 presents statistics for NATCoNFQA, !> in-
cluding number of questions, and number of pas-
sages, answers and conflicts per question. The
dataset comprises two subsets, one with only sup-
porting answers (titled No-conflict in the table) and
another with conflicting answers (titled Conflict).
For both types, there are WH-questions as well as
Yes/No questions.

E Details for the Experimental Setup

In this section, we provide technical details of the
experimental setup defined in Section 4.2. All
experiments were conducted between May 1 and
May 19, 2025, using the OpenAl'® Google,'!” and
Together.ai'® APIs. The exact version tags for all
models utilized in this work are listed in Table 5.
For reproducibility, we set the temperature to
0 for all models with a maximum number of
generated tokens (max_tokens) at 512. For the

I5For randomly sampled instances from the dataset, see
Table 10.

16ht’cps ://platform.openai.com
Thttps://aistudio. google.com
18ht’cps ://together.ai

Model Answer Quality

DeepSeek—R1‘97.6 113 897 |42 907 5.5

precision, recallyng Flans

| D ACA D ACA D ACA
& GPT4o | 986 |14 956 107 959 |0.I
=g
22 DeepSeek-V3 [ 969 | 1.1 955 101 956 |10
=
g o3 | 983 |15 972 00 975 1.2
=
=3
g

Table 6: Average precision, recall, and F| percentages
for the answer-quality criterion (§4.3) on the No-conflict
subset of NATCoNFQA, reported for four LLMs. All
models exhibit high scores (> 89) on all measures. See
the caption of Table 1 for further details on notations.

OpenAl models (03 and o4-mini), we config-
ure reasoning_effort to high. For the Gem-
ini models, we set thinking_budget to 1024 for
Gemini 2.5 Proand to O for Gemini 2.0 Flash.
The total cost of the experiments using the three
LLM APIs was approximately $500.

The prompts used for model evaluation are shown
in Figure 4, while those for the LLM-as-a-judge are
presented in Figure 5. There are five prompts in total
for the LLLM-as-a-judge: one for answer decompo-
sition (Prompt 1) and four for the binary decision
functions defined in Section 4.3 (Prompts 2-5),
namely, Jans (@i y), Jans(dis P)y Teonf(ai, aj, y),
and g%onf(dia aAja P)

F NATConrQA No-conflict Subset Results

In Table 6, we present results on the No-conflict
subset of NATCoNFQA, using the same metrics and
notation conventions as in Table 1.

G Effectiveness of LLLM-as-a-Judge

Manually annotating answer quality and conflict
identification is expensive, so we rely on a fast
automatic judge — o4-mini'® — and validate its
agreement with humans. we randomly sampled 120
system responses from two models (03-high and
Gemini 2.5 Pro) under both prompting modes
(§4.1). A human judge then applied the judgment
protocol explained in Section 4.3, with guidelines
similar to the instructions in the prompts in Fig-
ure 5, decomposing answers and making the binary
decisions that constitute both metrics.

To assess the reliability of the automatic judge,
we compute Pearson correlations between its la-

19https://openai.com/index/
03-04-mini-system-card
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Evaluation Metric Recall Precision
Answer quality 0.6645 0.6221
Conflict identification 0.6744  0.6371

Table 7: Pearson’s r correlation coefficients for recall
and precision, computed between human and LLM-as-
judge over 120 samples (p < 0.00003). The results
show strong correlations for all metrics between human
and LLM judgments.

bels and the human annotations (Table 7). Both
metrics show a strong positive correlation, with all
correlation values exceeding 0.6.

Furthermore, the human evaluation results (Ta-
ble 8) show performance trends similar to those
from the automatic evaluation (Table 1). In both
cases, conflict-aware prompting leads to higher
recall — particularly for conflict identification.

H Significance Testing on Results

To compute significance in Table 1, we conducted
Wilcoxon signed-rank tests comparing the default-
ive and conflict-aware modes (Wilcoxon, 1945). We
applied Pratt’s conservative zero-difference method
(Pratt, 1959) and report significance at p < 0.01.

I Error Analysis Details

In order to assess model errors, we sampled 160
outputs, using the default prompt described in §5.1,
from four models (03, DeepSeek-R1, GPT-40, and
DeepSeek-V3). Annotation was performed by a
graduate student at an hourly rate of $14. We
sampled 40 instances for each model where 20 were
Yes/No questions and 20 were WH-question.

J Conflict Subsets Analysis

Figure 7 compares conflict-identification recall
across three subsets—Yes/No, WH-AII (all answer
pairs conflict), and WH-Mix (mixture of conflicting
and non-conflicting pairs)-for each model under two
prompting types: Defaultive and Contradict-Aware.
Bars show mean recall per model. Two consistent
trends emerge. First, Contradict-Aware prompt-
ing substantially improves performance for most
models, especially on Yes/No and WH-AII, while
gains on WH-Mix are smaller. Second, WH-Mix
is the hardest subset: it has the lowest base recall
under Defaultive prompting and remains lowest
even after Contradict-Aware prompting. This sug-
gests that instances containing both conflicting and

non-conflicting evidence introduce challenge that
current models struggle to resolve.

K AI Assistance

Throughout this project, we were assisted by Al
tools to accelerate both code implementation (some
code snippets) and manuscript preparation (local
rephrasing). We carefully reviewed and refined all
Al-generated content to ensure technical accuracy
and stylistic consistency.
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Model

Answer Quality
precision,
D ACA D ACA D

recall, g Flans precision,

Conflict Identification
conf recalleonf Ficont
ACA D ACA D ACA D ACA

03

gemini-2.5-pro

855 |0.8 848 53 851
799 |06 834 753 81.6

SENVS]

O

12711000 |67 467 267 857 143
719] 81.8 1115 467 333 571 71429

Table 8: Human evaluation of performance on the Conflict subset of NATCoNFQA for the two top performing models
from Table 1, based on 120 instances. Average precision, recall, and F; scores are reported (percent) for the two
evaluation criteria (§4.3): answer quality (left) and conflict identification (right). Columns show results for default
prompting (D) and the absolute change when using conflict-aware prompting (ACA). Symbols |/ and 1/ denote
negative/significant negative and positive/significant positive changes, respectively (using p < 0.05, see Appendix H
for significance testing methodology).

Error Type

Description

Example (Question / Reference answers / Model an-
swer)

Choose Answer

Answer General-
ization

Conflict Resolu-
tion

Refrain from an-
swering

The model outputs only one of the an-
swers, omitting the others.

The model summarizes conflicting val-
ues vaguely (e.g., as an average or range)
instead of presenting them distinctly.

The model mentions all answers but
presents them as if there is no conflict,
possibly with hallucinatory information.

The model does not provide an answer
to the question or provides an irrelevant
response.

Q: What is the rate of ice mass loss in Antarctica?
Reference: “+82 Gt/yr” and “-220 Gt/yr”
Model: “Antarctica is gaining 82 Gt of ice per year.”

Q: How much has global temperature risen?
Reference: “0.45 °C” and “0.8 °C”

Model: “Temperatures have increased between 0.45 to
0.8.”

Q: What is the estimated global temperature rise since
19007

Reference: “0.45 °C” and “0.8 °C”

Model: “Until 1945, the rise was 0.45 °C, and then 0.8
OC.’,

Q: What is the estimated rate of ice loss from Greenland
per year?

Reference: “Between 200 and 300 Gt/yr” and
“Approximately 220 Gt/yr”

Model: “Greenland is a large landmass covered in ice.”

Table 9: Error types for the error analysis. Each instance is labeled with a single error type based on the model’s
ability to reflect, miss, or misrepresent the underlying conflict.
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NATCoNFQA Manual Annotation Guidelines
1. Task Overview

* Our goal is to reveal conflicts in data through questions and answers.

* You will be provided with a claim along with supporting, refuting, and neutral evidence.

* Your task involves two main objectives:

(1) Conflict detection: Assess whether there is a conflict between the supporting and
refuting evidence.
Yes No Uncertain

(2) Q-A Generation: Formulate questions that capture the conflict based on the given
claim and evidence. For each question, provide the differing answers along with the
evidence IDs supporting each answer.

-~

2. Rules for Effective Question Formulation

You should follow the following rules when writing the questions:
1. Conflict-inducing — The question should prompt a conflicting response.

2. Specificity — Ensure the question targets detailed aspects of the text rather than general
topics.

3. Assumption-free — The question should be free from specific assumptions (from the
text).

3. Rules for Effective Answer Formulation

You should follow the following rules when writing the answers:

1. Completeness — Ensure that the answers address all the evidence provided.

2. Conciseness — Keep the answers brief and to the point while maintaining clarity.
3. Relevance — Ensure that the answers directly address the question asked.

4. Atomicity — Each answer should contain only a single response. If multiple answers exist,
they should be separated into distinct answers rather than combined.

Figure 3: Summary of the annotation guidelines for creating our NATCoNFQA dataset. The full guidelines will be
provided along with the complete resources.
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Source Data Q-Type A-Type Question Answers
CLIMATE-FEVER YN No-conflict Do changes in land use, such as agri- 1. Yes
culture and deforestation, contribute to
Earth’s climate changes?
CLIMATE-FEVER YN Conflict Do greenhouse gases increase Earth’s 1. Yes
temperature?
2. No
CLIMATE-FEVER ~ Wh No-conflict What are the ranges of water vapor’s 1. Between 36% and 66% under clear sky conditions
contribution to the greenhouse effect?
2. Between 66% and 85% when including clouds
CLIMATE-FEVER ~ Wh Conflict What is the perceived level of scientific 1. There is a scientific consensus on human-caused climate change
agreement on climate change?
2. Scientific opinion is evenly divided or completely unsettled
HEALTHVER YN No-conflict Does favipiravir decrease viral replica- 1. Yes
tion in COVID-19 patients?
HEALTHVER YN Conflict Do natural remedies help prevent you 1. Yes
from getting infected with COVID-19?
2. No
HEALTHVER wh No-conflict What are the clinical symptoms ob- 1. Fever
served in patients with COVID-19?
2. Dry cough
3. Sore throat
4. Dyspnea
5. Fatigue
6. Myalgia
7. Headache
8. Loss of smell and taste
HEALTHVER wh Conflict What is possible in regards to cat to 1. Cats can transmit the virus to humans

human coronavirus transmission?

2. Cats cannot transmit the virus to humans

Table 10: Eight randomly sampled instances from NaTCoNFQA. Q-Type: questoin type YN = yes/no; wh =
WH-questions. A-Type: answer type. When the dataset is published, it will also include the associated passages
supporting each answer. For simplicity, and since conflict instances in this sample contain only two answers, we do
not include which specific answer pairs are in conflict.
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NaTConrQA Dataset Prompt Template

Provide a concise, single-sentence answer
that includes every distinct answer to
the following question, based on the
given passages from multiple sources.
If any answers conflict, clearly indicate
which ones are in conflict while remaining
objective and neutral.

Question: {question}
Passages: Passage #1:
{Passage 1 text}

Passage #2:
{Passage 2 text}

Figure 4: The prompt template used to prepare inputs
for the LLMs when testing on NATCoNFQA. This is the
template for both modes (defaultive prompting mode

and conflict-aware prompting mode) as defined in §4.1.

The underlined sentence is omitted in the defaultive
mode and included in the conflict-aware mode.
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LLM-as-a-Judge Prompt Templates

1. System Response Decomposition into Distinct Answers A

Given the following question and long-form system answer, extract all distinct short answers
that directly address the question. Ensure to extract all such sub-answers. The output must
be a JSON object with a "sub_answers" key whose value is an array of sub-answer strings.

Question: "{question}"
System answer: "{model_answer}"

2. Answer a; Exist in System Response y

Determine if the reference short answer appears anywhere in the longer system answer —
even if it’s noted as incorrect, anecdotal or implicitly mentioned. Return a JSON object with
a single key, "answer"”, whose value is either "true” or "false":

e "true" if the reference short answer is present in any form (explicit or implicit).

e "false” otherwise.

Question: "{question}"
Reference short answer: "{reference_answer}"
System answer: "{model_answer}"

3. Answer d; Exists in the passages P

Determine if the given short answer appears anywhere in the following passages — even
if it’s noted as anecdotal or implicitly mentioned. Return a JSON object with a single key,
"answer"”, whose value is either "true” or "false":

e "true" if the given short answer is present in any form (explicit or implicit).

e "false"” otherwise.

Question: "{question}"
Short answer: "{model_answer}"
Passages: {passages}

4. Answers a; and a; Conflict Within System Response y

Your task is to assess whether a pair of short answers to a question are clearly indicated as
conflicting answers in a longer answer written by a question answering system. You should
return a JSON object with an "answer” key "true” if the pair of short answers clearly
indicated as conflicting in the longer system’s answer or "false"” otherwise.

Question: "{question}”

Short answer #1: "{short_answer1}”
Short answer #2: "{short_answer2}”
System answer: "{model_answer}"

5. Answers d; and d; Conflict Within Passages P

Your task is to assess whether the two short answers, which are located in the following
passages, are clearly indicated as conflicting to the same question. You should return a
JSON object with an "answer” key "true"” if the pair of short answers clearly indicated as
conflicting or "false" otherwise.

Question: "{question}"

Short answer #1: "{short_answer1}"
Short answer #2: "{short_answer2}"
Passages: {passages}

- J

Figure 5: Prompt templates used in our experiments for LLM-as-a-judge as detailed in Section 4.3.
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Manual Annotation Guidelines for Correlation Assessment

Task Overview: You are given a question, human-annotated reference answers (referred
to as reference_answers), human-annotated conflicting answer pairs (referred to as refer-
ence_conflicting_answer_pairs), associated passages, and a model-generated answer; please
follow the steps below.

1. Decompose the Model Answer into Atomic Answers

Read the model_answer and split it into independent facts or claims (“atomic answers”).

Number them O, 1, 2, ... in the order they appear.

Enter them in the format:

— 0: First atomic answer. . .
— 1: Second atomic answer. . .
— 2: Third atomic answer. . .

— Fill in Model Answers Decomposed.

. Match Decomposed Answers to Reference Answers
For each atomic answer (by index), check if it appears in the reference_answers.
List the indices of those that match, e.g., [0, 2].

— Fill in Matched Answers in Reference Answers.

. Identify Conflicting Reference-Answer Pairs

Review the reference_conflicting_answer_pairs and identify each pair that directly
contradicts the other.

* In the model’s response, look for contrastive cues like “however,” “but,” or “on the other
hand.”

» Record each conflicting pair by their indices, e.g., [(0,1), (1,2)].

¢ — Fill in Conflicting Reference Answer Pairs Found.

4. Match Model Answers to Passages or References

For each atomic answer, check if it is supported by either a reference_answer or a
paragraph.

List the indices of atomic answers that are supported, e.g., [0, 1].

* — Fill in Found Model Answers in Reference Answers/Passages.

5. Identify Conflicts among Model’s Answers

* For each pair of atomic answers flagged by the model as conflicting, record:

— (i, j): 1 ifthe conflict is correct.
— (i, j): oif the conflict is incorrect.

* Example: (0, 2): 1, (0, 1): @

e — Fill in Found Conflicting Model’s Answers.

Figure 6: Annotation guidelines used by human annotators to assess the correlation between automatic LLM-based
judgments and human evaluation. The process includes both conflict identification and answer quality metrics,
supporting the measurement of recall and precision for each.
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Figure 7: Conflict Identification Recall across models on three instance subsets (WH-Mix, WH-AIL, Yes/No),
split by prompt type (defaultive vs. contradict-aware). Bars show mean conflict identification recall with 90%
confidence intervals. Overall, contradict-aware consistently improves recall relative to defaultive (Table 1); however,
performance on WH-Mix is notably lower than on WH-ALII and Yes/No for nearly all models, and the gains from
contradict-aware are smaller on this subset, highlighting the challenge when conflicting and non-conflicting signals
co-occur within the same instance.

Manual Annotation Guidelines for Error Analysis

Task Overview: You are provided with a question, the model’s answer for that question, and a set of annotated reference
answers. First, review the list of error categories in Table 9. Then, for each model output, classify it into the single most
appropriate category, based on the explanation that best matches the model’s output.

Steps:

¢ Read the question, reference answers, and the model’s answer.
* If the model presents both sides with clear contrast (e.g., “but,” “however”), label it -2.
¢ Otherwise, choose a single error ID that best describes the model error.

* Use -1 if the error does not fit any predefined category and describe it in the notes.

Note: Annotate each instance with only one ID. Include a brief justification if necessary.

Figure 8: Annotation guidelines used by human annotators for conducting error analysis on outputs from different
models.
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Prompt for NATConFQA Question and Answers Suggestion for Conflicting Instances

You are given a claim along with multiple pieces of evidence, categorized as supporting, refuting, or neutral in relation to the
claim. Your task is to analyze the evidence and perform the following subtasks:

(1) Determine Contradiction: Identify whether there is a direct contradiction between the supporting and refuting evidence.
Respond with "yes" if such a contradiction exists, or "no” if not.

(2) Explain Contradiction (if applicable): Briefly explain how the supporting and refuting evidence conflict.

(3) Generate a WH-Question (if applicable): Create a factoid-style WH-question based on the conflicting information.
Avoid directly referencing the contradiction. Provide short answers and indicate the evidence numbers supporting each.

(4) Generate a Yes/No Question: Frame a yes/no question that reflects the core contradiction or claim, supported by
evidence.

Output Format:

{
"is_contradiction”: "yes" or "no"
"explanation": "...",
"WH-question”: {
"question”: "...",
"key_answers": {
"answer_1": "...",

"evidence_numbers”: [...],

3

}!

"Yes/no-question”: {
"question”: "...",
"Yes_answers": [...],
"No_answers"”: [...]

}
}

{instance}
- J

Prompt for NATConFQA Question and Answers Suggestion for Non-conflicting Instances

You are given a claim along with multiple pieces of evidence, categorized as supporting or neutral. Your task is to:
(1) Generate a WH-Question: Create a concise WH-question based on the supporting evidence. Provide short answers and
list the supporting evidence numbers.

(2) Generate a Yes/No Question: Frame a yes/no question grounded in the supporting evidence and reflecting the claim’s
context.

Output Format:
{

"WH-question": {
"question”: "...",
"key_answers": {

"answer_1": "..."

’

"evidence_numbers”: [...],

3

}!

"Yes/no-question”: {
"question”: "...",
"Yes_answers”: [...],
"No_answers"”: [...]

3
b

{instance}
- J

Figure 9: Prompt templates used to generate suggested questions and answers for annotators in the NATCoNFQA
annotation process. The first prompt is applied to instances containing conflicting evidence, while the second is used
for non-conflicting evidence.
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Annotation Guidelines for NATConFQA Dataset Quality Assessment
1. Task Overview

* You will be provided with:

— A question prompting the model’s response

— A list of answers, each associated with a unique ID

— A list of evidence that may support the answers

— A list of answer pair labeled as conflicting, specified by their answer IDs (if any)

* Your task consists of two main steps:

(1) Answer Quality: For each answer, determine whether it is clearly supported by at
least one of the provided evidence.
— Mark 1 if it is grounded (i.e., the answer is directly supported by any evidence).
— Mark 0 if none of the evidence supports the answer.
(2) Conflict Detection: For each answer pair labeled as conflicting, determine whether
they conflicting each other based on the provided evidence.
— Mark 1 if the two answers clearly conflicting each other.
— Mark o if the answers are compatible or describe different aspects that can co-exist.

2. Notes and Clarifications

* Focus only on what is explicitly stated in the evidence and answers. Avoid making
assumptions beyond the given text.

* If a pair appears borderline or ambiguous, lean toward @ and leave a short note.

» Use the comments field to explain any unclear cases or edge scenarios you encounter.
o J
- J

Figure 10: Annotation guideline to evaluate the quality of NATCoNFQA. We assess both answer quality and
conflict identification using an external annotator. The annotation procedure includes verifying whether answers
are supported by evidence and whether identified answer pairs are truly in conflict. Results show high agreement,
indicating the task is well-defined and the annotation protocol is reliable.
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Abstract

Recent work has revealed Large Language
Models (LLMs) often exhibit undesirable be-
haviors, such as hallucination and toxicity, lim-
iting their reliability and broader adoption. In
this paper, we discover an understudied type of
undesirable behavior of LLMs, which we term
Verbosity Compensation (VC). VC is similar
to the hesitation behavior of humans under un-
certainty, compensating with excessive words
such as repeating questions, introducing am-
biguity, or providing excessive enumeration.
We present the first work that analyzes Ver-
bosity Compensation, explores its causes, and
proposes a simple mitigating approach. Our
experiments on five datasets of knowledge and
reasoning-based QA tasks with 14 LLMs, re-
veal three conclusions. 1) A pervasive presence
of VC across all models and all datasets. 2)
The large performance gap between verbose
and concise responses. We also demonstrate
that this difference does not naturally diminish
as LLM capability increases. 3) Higher un-
certainty exhibited by VC responses across all
five datasets, suggesting a strong connection
between verbosity and model uncertainty. We
propose a simple yet effective cascade algo-
rithm that replaces the verbose responses with
the other model-generated responses, alleviat-
ing the VC of the Mistral model from 63.81%
to 16.16% on the Qasper dataset.

1 Introduction

Recent research has highlighted various undesir-
able behaviors of Large Language Models, such as
hallucination (Huang et al., 2023), toxicity (Wen
et al., 2023), and ethical bias (Tao et al., 2023),
which pose significant risks to users. Among
them, the verbose response issue where LLMs re-
spond with excessive words has attracted more and
more attention in the LLM era because of unnec-
essary long output for solving problems (Singhal
et al., 2023) and the unavoidable high cost of LLM-
generated tokens.

The existing work mainly focuses on the length
of the response and its applications. Researchers
found that imposing a length constraint in the
prompt can improve the performance of LLMs,
under chain-of-thought (Chiang and Lee, 2024;
Nayab et al., 2024) and machine translation (Bri-
akou et al., 2024) settings. Singhal et al. (2023)
found RLHF training favors the lengthy response.
However, length is not enough to analyze verbosity
as it provides a general overview but fails to capture
key fine-grained features such as content structure.

In this paper, we discover a type of undesirable
verbosity behavior of LLMs. We term it Verbosity
Compensation (VC). Instead of focusing merely on
the length, we analyze the frequency, types, and
their relation to model performance. We also find
VC is closely connected to the uncertainty of LLMs,
demystifying the mechanism of the VC behavior,
and improving the understanding of both VC and
uncertainty. Interestingly, VC is similar to the hesi-
tation behavior of humans under uncertainty (Juola,
2008; Brookshire and McNeil, 2014). Figure 1
shows a motivating example. In the first response,
LLM generates a concise answer that is correct
with low uncertainty. In the second and third re-
sponses, instead of generating an answer concisely,
such as “16.5”, LLM repeats the question, and pro-
duces ambiguity, leading to a VC response with
low performance and high uncertainty. VC is harm-
ful and undesired for both users and servers. For
the users, VC will lead to confusion and ineffi-
ciency (Fowler, 1927; Oppenheimer, 2006). When
an LLM enumerates multiple answers, users are
unclear about which one is correct. Besides, VC
leads to bias among users of different length prefer-
ences if verbose answers attain higher/lower scores.
For the servers, the verbosity leads to unnecessary
higher costs and higher latency because of useless
tokens.

To analyze the VC behavior systematically,
we unify four long-context question-answering
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Concise Response

Question: What is the sample size of people
used to measure user satisfaction? Gold: 34,432 sentences? Gold: 15.5

Question: What is the average length of the

Verbosity Compensation: Ambiguity.

Question: What were their accuracy results on
the task? Gold: 97.32 %

D 34,432

‘ Average sentence length: 16.5 words ‘ ‘
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Figure 1: An illustration of comparison between concise and verbose responses. For each example, we ask the
model to generate the response as concisely as possible. In the first response, LLM generates a concise answer,
while in the second and third responses, LLM performs repeating, and ambiguity, leading to a verbose response
with low performance and high uncertainty (Detailed numbers in Appendix B.2).

datasets and a reasoning-based language under-
standing dataset. We choose short-form QA with
several tokens (comprising phrases, names, rather
than complete sentences) in the gold answer to en-
sure the gold label is concise and easy to judge VC
behavior in responses. We benchmark 14 LL.Ms
on proposed datasets. Although we find that dif-
ferent models and datasets exhibit diverse distribu-
tion, we can categorize VC into five distinct types,
including repeating questions, enumerating, ambi-
guity, verbose details, and verbose format. The
result reveals a pervasive presence of verbosity
compensation (VC) across all models and all
datasets. Notably, GPT-4 exhibits a VC frequency
of 50.40%. Meanwhile, we found that verbose re-
sponses exhibit significantly different recall from
concise ones, with a notable drop of 24.72% on the
Qasper dataset, highlighting the urgent need to
disentangle verbosity with veracity.

Next, we measure the uncertainty of model re-
sponses using perplexity and Laplacian scores for
open and closed-source models. We find that ver-
bose responses exhibit higher uncertainty across all
five datasets, suggesting a strong connection be-
tween verbosity and model uncertainty. Finally,
we leverage the connection between performance
and VC to develop a routing algorithm that ob-
tains significant improvements over the random
selecting baseline and uncertainty-based routing.
To mitigate VC in LLMs, we propose a simple yet
effective cascade algorithm that replaces verbose
responses with responses of larger LLMs. Experi-
ments demonstrate the efficacy of the proposed al-
gorithm through tests on three model combinations:
Gemma to Gemini, Mistral to GPT-4, and Llama
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to Claude. The results show that our approach ef-
fectively alleviates the VC of the Mistral model
from 63.81% to 16.16% on the Qasper dataset. The
insights above can inspire the development of prac-
tical applications and effective mitigation strate-
gies. Future work can mitigate the uncertainty of
the LLMs by alleviating VC behavior due to the
proposed connections between them.

2 Related Work

Verbosity in LLM Responses Recently work
has studied the verbosity of LLM-generated con-
tents and its implications. Concise thoughts (Nayab
et al., 2024) use prompts to constraint the length of
Chain-of-thought reasoning and generate more con-
cise responses with better performance. Ivgi et al.
(2024) investigate the fallback behavior of LLM-
generated responses when facing uncertainty. Sing-
hal et al. (2023) investigate the correlation between
generated length and reinforcement learning from
human feedback (RLHF) techniques. Saito et al.
(2023) find that LLMs sometimes prefer more ver-
bose answers even if they have similar qualities.
By contrast, Huang et al. (2024) find that GPT-4
prefers short responses in faithfulness and cover-
age when it comes to summarization. Unlike these
works, we discover the connection between per-
formance and verbosity compensation behavior in
both CoT and general QA settings and connect
verbosity to uncertainty. Besides, we use the cas-
cading model to mitigate verbosity while they use
prompt engineering.

Uncertainty Quantification of LLMs With the
thriving of Large Language Models (LLMs), re-
searchers have begun exploring uncertainty quan-



tification in LLM responses (Geng et al., 2023).
For white-box models, researcher have focused
on unsupervised methods including entropy (Ma-
linin and Gales, 2020), similarity (Fomicheva et al.,
2020; Lin et al., 2022), semantic (Kuhn et al., 2023;
Duan et al., 2023), and logits (Kadavath et al., 2022;
Chen et al., 2024), whereas for black models, the
uncertainty evaluation is based on multiple sam-
pled output of the LLMs (Malinin and Gales, 2020;
Lin et al., 2023; Manakul et al., 2023) However,
these works aim to improve the evaluation metrics
for LLM uncertainty while we focus on connecting
uncertainty with verbosity compensation behavior.

Optimisation of LLM API Calls Recently, re-
searchers have proposed to reduce the cost of lever-
aging a pool of LLMs (Wang et al., 2024) with a
cascade algorithm. FragulGPT (Chen et al., 2023)
use a cascade algorithm to visit LLMs from weak to
strong and use an LLM evaluator to judge if the re-
sponse is good enough to use (Madaan et al., 2023).
(Ramirez et al., 2024) leverage the uncertainty of
the prediction as the evaluator to evaluate both cas-
cading and routing structures. Similarly, (Gupta
et al., 2024) improve it by using token-level uncer-
tainty. Our work, by contrast, aims at mitigating
verbosity compensation which has not been ex-
plored before, and our evaluator is the verbosity of
the response in the cascade algorithm.

3 Verbosity Compensation

In this section, we first introduce the definition
and quantification of VC, and then we propose the
metrics for evaluating the correlation between ver-
bosity compensation and performance, uncertainty,
and alleviating it with LLM routing.

3.1 Verbosity Compensation of LLMs

We first formalize the task. A dataset D consists
of multiple data samples where each consists of
a source text x, a query ¢, and a ground truth y.
Since this is the first study, we mainly focus on
the samples where y mainly contains short phrases
for simplicity. A large language model LLM (x)
consumes the concatenation of x, ¢, and an instruc-
tion I to produce the response r. We use |r| to
represent the tokens in r. For instruction I, we al-
ways ask LLM to generate as concisely as possible
so that the model is instructed not to generate ver-
bose responses. Since the LLMs have maximum
context window sizes L., we truncate the source

to accommodate diverse context limits (details in
A3).

We define a response 7 to exhibit verbosity (we
use the term verbosity as an alias for VC, and con-
ciseness as an alias for Non-VC) if and only if
it contains redundant tokens compared with the
ground truth, since we assume the gold label to
be concise. To detect VC, we define the verbosity
compensation detector V' (z,y,r) (abbreviated as
the verbosity detector). Using this detector, VC
behavior for an LLM is defined as a triple (x, y, )
where V' (x,y,r) = 1 describes that the VC occurs
in the response r. To quantify the frequency of VC,
we define it as the ratio of VC responses in each

dataset 3, yep V (2,4, 7)/|D|.

3.2 Performance and Verbosity Compensation

A key bias of verbosity compensation is that the
performance of the verbose responses is different
from the concise ones. To quantify this behavior,
we propose two evaluation metrics. One is perfor-
mance difference (A), defined as the average score
of the concise responses minus the average score
of the verbose responses.

Y @yen(l = V(z,y,1)) x recall(y, r)
E(x,y)ep(l —V(z,y,r))
Z(w,y)eD V(z,y,r) x recall(y, )
> (@yep V(@ y,7)

A(D) =

where 7 is the response generated by LLM and
recall(y,r) is defined as |r N y|/|y|. This metric
computes the difference between concise and ver-
bose responses of a model over a dataset. If VC
has no influence on the performance, the A should
be 0. An LLM should show zero A because ver-
bosity and performance are naturally independent
and thus have no relation with each other. However,
if A is positive, then it demonstrates that verbosity
responses lead to the performance drop for this
model on the dataset, and vice versa. To remove
the influence of the length difference between ver-
bose and concise responses, we use recall as the
scoring function. Compared with precision or F1
scores, scores are higher for verbose responses (or
A will be smaller) because verbose responses usu-
ally contain more tokens than concise ones.

A main problem of A is that the recall differ-
ence between verbose and concise responses is
twisted by the absolute performance of the LLMs.
According to the definition, a dataset with lower
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Algorithm 1 Cascade Model Selection Algorithm.

Input: A list of LLMs M, A sample (z,y, ¢), instruction I,
a verbosity detector V().
Output: A response r.
order M by model capability from weak to strong
for LLM in M do
r+ LLM(z P ¢P L)
if V(x,y,r) is false then
break
end if
end for
return r

performance naturally has a smaller space for per-
formance difference. An extreme case is that the
performance is zero on a dataset and the maximum
A is zero as well. This impedes the fair comparison
between datasets and models because they have di-
verse absolute performances. Thus, we propose
relative performance difference

> (e recall(y, )
Z(u’tay)ED 1

0 can be seen as the A if the absolute performance
of the LLMs is scaled to the same number. We
use this to compare the influence of performance
across datasets and LLMs.

6(D) = A(D)/

3.3 Verbosity Compensation and Uncertainty

For humans, verbosity compensation usually hap-
pens when we feel uncertain about the answers.
Thus, for the LLMs, it is natural to speculate ver-
bosity compensation of LLMs is also related to the
uncertainty of the model. To test this hypothesis,
we evaluate the uncertainty of the LLMs with the
tool proposed by Fadeeva et al. (2023). First, we
split the samples according to the length of the re-
sponse |r|. Then, we quantify the uncertainty of
each split. For open-sourced models, we use per-
plexity (Fomicheva et al., 2020) for evaluation, and
for the close-sourced model, we use the sum of
eigenvalues (Lin et al., 2023) of the graph laplacian
as the metrics.

3.4 Alleviating Verbosity Compensation with
Cascade Model Selection

Although it is difficult to ask a single LLM to gen-
erate a concise but correct answer, the verbosity
compensation behavior can be mitigated by an en-
semble of multiple models. To this end, we propose
a Cascade Model Selection algorithm (CaSel) to
increase the chance of getting concise responses.
The algorithm is simple and straightforward (Al-
gorithm 1). Given a list of LLMs from weak to

strong, we first ask the weak model to generate a
response. At any time, if we detect V (z,y,r) = 1,
we stop the generation of the current sample and
redo the generation by a stronger model, and repeat
the process. With the power of diverse LLMs, the
algorithm can finally obtain a response with less
verbosity and better performance.

4 Experiment Setup

4.1 Datasets and Metrics

We include two types of datasets. 1) Knowledge-
based question answering which aims at extracting
knowledge from the given source text that is long
or in a particular position. These datasets include
Qasper (Shaham et al., 2022), LongBench (Bai
et al., 2023), NarrativeQA (Shaham et al., 2022),
and NaturalQuestions_30 (NQ30) (Liu et al.,
2024). and reasoning-based question answering.
More details for dataset construction can be found
in Appendix A.1. 2) Reasoning-based Question An-
swering, including a modified MMLU (Hendrycks
et al., 2021b,a) dataset. Metrics. We report recall
when measuring verbosity compensation behav-
ior and use F1 score for evaluation of the cascade
model performance (Bai et al., 2023).

4.2 Models

We use 14 LLMs in total across all experiments,
including both open-source and closed-source mod-
els in 6 families: GPT, Claude, Gemini, Llama,
Gemma, Mistral. Details are in Appendix A.2. For
each model, in addition to the prompt that intro-
duces the task, we also ask them to “generate as
concisely as possible, use a single phrase if pos-
sible”. Verbosity Detector. We assume that the
gold answer y is concise and clear so that we can
compare it with the predicted results to detect ver-
bosity. Specifically, we use an LLM as V' (z, y, 7).
We prompt GPT-3.5-Turbo with definitions and
demonstrations of verbosity, as well as the ques-
tion, prediction, and ground truth. The model needs
to generate a binary value showing whether the re-
sponse is verbose. To evaluate the effectiveness of
this detector, we manually annotate 100 samples
and compare them with model predictions. 93% of
the samples have the same label, demonstrating the
effectiveness of the LLM-based detector.

S Result and Analaysis

In this section, we analyze verbosity compensation
and its connection with performance and uncer-
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Figure 2: Frequency of Verbosity Compensation. All models exhibit intensive verbosity compensation behavior.
Among them, llama3-70b has the lowest frequency on average (Details in Appendix B.1).

tainty. Then, we evaluate the cascade algorithm.

5.1 Verbosity Compensation

Frequency of Verbosity Compensation Behav-
iors. Figure 2 shows the frequency of each model
on each dataset. As shown, all the models display
verbosity compensation behavior on all datasets.
On average, 74.19% of the responses are verbose
for mistral-7b. The best model is llama3-70b which
only contains 13.62% verbose responses. Further-
more, the frequency of VC averaged on seven open-
source models is 39.80% which is significantly
higher than closed-source models 28.96%.

Five Types of Verbosity Compensation Behav-
iors. After showing verbosity happens frequently
in LLMs, we further conduct a human annotation to
inspect verbose response patterns and classify them
into five types. Specifically, we choose six com-
binations of model and dataset (Table 1) and pick
out the samples with verbose responses that are
not fully correct (recall # 1, V(x,y,r) = 1). By
checking all these samples, we classify verbosity
compensation behavior into five types (Table 1):
Ambiguity indicates not answering precisely; re-
peating question indicates repeating the tokens in
the question or providing unrelated information;
enumerating shows answering multiple answers in
a row trying to cover the correct answer; verbose
detail/format means generating more detailed ex-
planations or format symbols. Then, we annotate
the verbosity compensation behaviors and obtain

statistics in diverse settings. As shown in Figure 3,
the ratio distribution of five types of behavior varies
across different models and datasets. Furthermore,
the main type of Gemini-1.5-flash is repeating ques-
tions on the MMLU dataset (67.86%), and enumer-
ating on the Qasper dataset (47.62%). In contrast,
llama-3-70b mainly produces verbose details on the
Qasper dataset (32.87%). This shows that different
datasets or models have a significantly different
distribution of the main type of verbosity behavior.

5.2 Verbosity Compensation and Performance

Verbose and concise responses exhibit signifi-
cantly different performance. As shown in Ta-
ble 2 and Table 3, the performance difference
(A # 0) exists on most of the datasets and
tasks, including both knowledge/reasoning-based
tasks. This demonstrates that when the model per-
forms verbosity compensation, the performance
also changes significantly (Supplementary experi-
ments in Appendix C.4, C.6). Among them, most
of the datasets and models show lower perfor-
mance on verbose samples (marked in red). For
instance, llama3-70b shows 24.7% performance
gap on Qasper dataset. However, all models cannot
disentangle performance with verbosity (A = 0),
highlighting the urgent need to disentangle ver-
bosity with veracity.

Correlation with Model Capability. We investi-
gate the influence of model capability on the per-
formance difference between verbose and concise
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Figure 3: Human annotation of five types of verbosity compensation behavior on five datasets. Different models and

datasets show diverse patterns of verbosity types.

Dataset Question Gold Model Prediction Type

Qasper What is the size of the dataset? 3029 It is very large Ambiguty

Longbench Which genus has more species, Dracula or Pistacia? Dracula Pistacia has more species Repeat

NarrativeQA ~ What costumes are the teenagers forced to wear? Bunny costumes Pig , donkey , rabbit Enumberate

NQ30 who ran the fastest 40 yard dash in the nfl Jakeem Grant Chris Johnson 4.24 seconds  Detail

NarrativeQA  What types of activities occur in ...? alleged phenomena “ Disappearances folklore ” Format

Table 1: Examples of five verbosity compensation types.
Short (Qasper) Medium (LongBench) Long (NarrativeQA)
L. concise verbose A Avg. concise verbose A Avg. concise verbose A Avg.

gemma-7b 4k 4524 4676 -1.52 46.51 36.04 18.37 | +17.67 30.74 15.39 6.70  +8.69 12.66
gemma-2-9b 8k  54.84 49.46  +5.38 5273 44.86 4351  +1.36 4450 2938 23.05 +6.33 26.81
gemma-2-27b 8k 5451 4826  +6.25 53.55 45.97 33.68  +12.30 43.41 32.17 30.86  +1.30 31.87
llama-3-8b 8k  54.36 5351 +0.85 53.99 36.18 29.00 +7.18 34.64  29.25 19.51  49.74 25.68
llama-3-70b 8k  52.86 28.74 49.80  49.98 3779  +12.19 48.76  34.30 2591  +8.39 32.06
mistral-7b 8k 63.23 44.84 © +18.39 56.42 54.03 37.04 | +16.99 46.13 27.60 2669 +091 2721
mixtral-8x7b 8k  64.12 50.03  +14.10 56.78 2.62 624  -3.61 340 3755 28.57  +8.98 33.09
gpt-3.5-turbo 16k 59.81 37.46 | +22.34 5477  53.88 47.02  +6.85 5221 39.41 27.35 +12.06 35.49
gpt-40 128k 63.80 44.07 | +19.72 58.43 68.83 63.53  +5.30 67.53 59.14 47.12  +12.02 53.25
claude-3-haiku 200k 61.30 56.01 +5.29 5854  53.02 57.88  -4.86 54.95 50.68 38.50 +12.18 46.13
claude-3.5-sonnet 200k  58.36 38.01 | +20.35 56.12  59.42 5736 +2.06 58.85 50.77 5629  -5.52  52.16
gemini-flash-1.5 Im 6252 41.64 | +20.88 56.00  59.32 58.02  +1.30 59.00 2.51 .12 +1.39 1.98
gemini-pro-1.0 32k 54.70 35.73 | +18.98 51.44 47.85 44.68  +3.18 47.06 22.43 32.40 -9.96 24.89
gemini-pro-1.5 2m 59.40 4579  +13.61 56.65 64.19 5575  +8.44 6297 36.26 41.74 -5.47  37.79
Avg 57.79 4431 1348 5441 48.30 42.13 6.17 46.73 33.35 28.99 436  31.50

Table 2: Overall recall comparison between verbose and concise responses. Bold/Underline indicate the largest
positive/negative performance gap between verbose and concise responses. The verbose responses obtain a
significantly different performance than the concise ones, demonstrating the strong relationship between verbosity

and performance.

responses 9. We explore two types of model capa-
bilities. One is general capability. We leverage the
scores on the leaderboard! (ELO) as the measure-
ment. The other one is the capability of consuming
lengthy input. For this, we investigate the influence
of the size of the window context. We define the
log context window size as log(L./1000) where
L. is the context window size.

Table 6 shows the correlation on five datasets.
Each number in the table is computed based on the
14 data points of 14 LLMs on the corresponding

"https://1lmarena.ai/

dataset. As shown, for Qasper, LongBench, and
NarrativeQA datasets, a strong negative correlation
is observed. This indicates that when modeling
capability increases, the J decreases accordingly.
In contrast, for MMLU and NQ30, no obvious
correlation is observed. The results show that train-
ing a stronger model will help avoid the influence
of VC on performance for long context questions
and answering tasks. However, it does not help
MMLU and NQ?30. In other words, simply training
a stronger model or extending context window can-
not successfully disentangle VC and performance.
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Lost-in-the-Middle (NQ30) MMLU (Mixed) All

L. concise verbose A Avg. concise verbose A Avg. A
gemma-7b 4k 4332 37.83 4549 4218 4459 4752 293 4530 548
gemma-2-9b 8k 55.82 45.18 +10.64 53.44 63.75 49.07 +14.68 61.67 7.68
gemma-2-27b 8k  54.84 4781 +7.04 5379  68.53 4581 | 422.72 | 6698  9.92
llama-3-8b 8k  49.55 41775 +7.80 47.92  54.65 4757 +7.08 5329 6.53
llama-3-70b 8k  52.08 5033  +1.75 5198  60.72 52.88  +7.85 59.92 10.86
mistral-7b 8k  52.89 4439  +8.51 48.81 64.43 46.25 | +18.18 54.55 12.59
mixtral-8x7b 8k 54.86 4992  +4.94 5284 6.10
gpt-3.5-turbo 16k 5390 4293 +10.98 5143  72.33 50.44 [ +21.89 69.56 14.83
gpt-4o 128k 63.28 52.30 +10.98 60.16 81.00 67.72  +13.29 79.21 12.26
claude-3-haiku 200k 61.17 48.95 +12.22 5494  61.95 6449 255 62.61 843
claude-3.5-sonnet 200k  57.22 5772 -050 5734  71.35 56.45 | 41490 6797 446
gemini-1.5-flash 1m 54.69 4770  +6.99 53.03 58.77 47.17 +11.60 56.60 6.26
gemini-1.0-pro 32k 5155 4575  +5.81 50.11 54.15 48.10 +6.06 52.58 4.81
gemini-1.5-pro 2m 57.06 46.29 +10.77 55.84 62.12 5445 +7.66 61.73  7.00
Avg 55.21 47.52 7.69 5299  63.61 5272 1090 6137 8.57

Table 3: Overall recall comparison between verbose and concise responses. Bold/Underline indicate the largest
positive/negative performance gap between verbose and concise responses. Similar to Table 2, the verbose responses
obtain a significantly different performance than the concise ones.

Verbosity compensation behavior of Chain-of-
Thought reasoning. We further conduct an ex-
periment to demonstrate VC also happens in Chain-
of-Thought (CoT) settings. To this end, we pick
100 samples from two datasets, including MMLU
and Qasper, and instruct the models to generate a
Chain-of-Thought prompt. Also, we ask the model
to generate as concisely as possible, where each
step contains fewer than 10 tokens. If any step
violates this constraint, we regard this response
as verbose. Thus, the verbosity evaluator V' is
setas 1 (\/,c, |s| > 10). Based on the definition,
we do not restrict the number of steps of Chain-of-
Thought reasoning; a short response can be verbose
as well if the length of a single step is too long.
Table 4 shows the comparison between the con-
cise and verbose responses of two models on
two datasets (Length statistics of responses in Ap-
pendix C.7). All settings display significant A.
For gpt-turbo-3.5, the recall gap can be as large
as 24.54% on MMLU dataset. This shows that
verbosity compensation can also happen in gen-
erating longer responses (Appendix C.2), such as
Chain-of-Thought reasoning samples.

5.3 Uncertainty and Verbosity Compensation

Uncertainty Evaluation. The results are shown
in Figure 4. As shown in the figure, all four mod-
els show larger uncertainty when the length of the
responses increases. Especially, when the length
is around three tokens, the uncertainty increases
shapely. These results demonstrate that 1) when

LLMs generate longer responses, they are more
uncertain about the sample, and 2) when verbosity
compensation happens (V(x,y,r) = 1), LLMs
usually are more uncertain about the sample than
generating concise results.

Uncertainty and Length of Response . We fur-
ther explore the reason why uncertainty and VC
are connected. We conduct a qualitative study and
plot the distribution of the softmax score of the first
tokens of confident and uncertain responses in Fig-
ure 1. As can be seen, for the uncertain response,
the probability distribution is more flattened, and
the tokens carrying much information do not stand
out (ranked high) among the candidates. The model
selects the one without critical information but is
safer to generate, repeating the question or being
off-topic and verbose. Besides, these tokens usu-
ally cannot end a sentence grammatically, such as
“Avergae” or “+”, the model needs to continue gen-
erations making the response longer.

5.4 Cascade Model Selection for Mitigating
Verbosity Compensation

Reducing Frequency of Verbosity Compensa-
tion. Table 5 shows the comparison of using the
proposed algorithm. As shown in the table, com-
paring the cascading algorithm and individual mod-
els, the frequency of VC decreases greatly for all
settings. For instance, Mistral — GPT decreases
the frequency from 63.81% (Mistral) and 31.79%
(GPT) to 16.60%. It worth noting that, applying the
algorithm greatly reduce the frequency of VC on
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Qasper

MMLU

L. concise verbose A

Avg. concise verbose A Avg.

gemma-2-9b 8k 35.82 2273 13.09 30.12 60.63 50.00 10.62 58.42
gpt-3.5-turbo 16k 69.05 47.81 21.24 61.06 80.95 56.41 2454 68.32

Table 4: Recall difference of Chain-of-Thought generation. Both models perform worse when they generate verbose
answers, demonstrating VC also happens on CoT settings.
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Figure 4: Uncentainty quantification of three open-sourced and one close-sourced models. The scores are averaged
across all five datasets. The uncertainty increases with the increasing length of the generated output for all models.

Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 63.81 5895 4140 46.59 57.40 74.19
gpt-40 31.79 2099 5040 28.78 15.00 29.39
mistral — gpt 16.60  14.48 21.00 18.54 10.20 16.16
llama3-8b 68.48 17.16 3298 23.17 20.60 32.48

claude-3.5-sonnet ~ 13.00  35.86 27.80 29.27 26.40 26.47
Illama — claude 820 11.80 14.60 11.71 7.80 10.82

gemma-2-9b 46.40 3519 5220 27.07 2240 36.65
gemini-pro-1.5 2240 19.15 2851 11.95 9.20 18.24
gemma — gemini 1580 11.14 1820  8.29 4.60 11.61

Table 5: Frequency of Verbosity Compensation using
diverse cascade models. A — B indicates combining
two models using a cascade algorithm. All settings
greatly reduce the frequency of VC compared with both
strong and weak models.

Dataset ELO LogLen
Qasper 0.09 -0.26
LongBench  -0.34 -0.53
NarrativeQA  -0.33 -0.61
MMLU -0.05 0.13
NQ14 0.06 0.02

Table 6: Correlation between model capability and §.
Details in Appendix B.3.

both weak model and strong models. We also com-
pare the latency of multiple LLMs in Appendix C.5.

Using Cascade Model Selection for LLM Rout-
ing. Inspired by the lower performance of the
more verbose responses (Appendix B.4), we mod-
ify the CasSel to form a model routing algorithm
(details in Appendix A.4). Figure 5 shows the per-
formance of the proposed algorithm. As shown,

Narrative_qa

® gemma-2-9b
gemini-1.5-pro

v Best Routing

—— Routing

0.41 Baseline

0.38

o 50 100 150 200 250 300

Figure 5: Routing performance of diverse models and
datasets. X-axis (unit 10~3 dollars per sample) is the
average cost. The Y-axis is the F-1 score averaged
across the samples on one dataset. Routing performance
(green line) is higher than the linear combination of the
baseline models (blue line).

the performance of routing is better than the base-
line (Appendix C.1). Furthermore, the routing re-
sults from Gemma-2 to Gemini-1.5 are better than
the individual performance of both models. This
indicates that the routing algorithm improves the
performance for all settings and can surpass the
performance of stronger models with less cost.

6 Conclusion

In this paper, we define VC and propose a compre-
hensive benchmark to evaluate 14 LLMs, revealing
they suffer significantly from five types of VC. We
conduct a rigorous analysis and connect VC to 1)
model performance and 2) model uncertainty, shed-
ding light on future applications and mitigation. We
propose a simple but effective cascade approach to
mitigate verbosity compensation in LLMs, and our
extensive experiments show it is highly effective.
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Ethics Statement

We include five datasets from the existing sources
which we do not annotate or incorporate external
resources. Thus, the dataset will not be harmful as
long as the datasets themselves keep high quality.
We also annotate some of the model-predicted re-
sults to classify the model results. However, the
annotation is a classification task that is free of
harmful content generation. Our work shows the
negative part of verbosity responses, however, we
do not mean verbosity is always unnecessary or
harmful. Sometimes it might be helpful for the
need of confirmation, or providing more context to
the users.

Limitations

In this paper, we mainly show the negative effects
of verbose responses on question-answering tasks.
However, recent research has shown that the model
can benefit from long reasoning chains (Guo et al.,
2025). In this case, it is difficult to judge whether
the long reasoning is verbose. Thus, future work
can extend the proposed settings to diverse long-
response scenarios and develop smarter verbosity
detection. Another limitation is the mitigation al-
gorithm requires multiple models to collaborate.
In the future, researchers can propose to use a sin-
gle model to mitigate VC, via fine-tuning or other
techniques.
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A Implementation Details

A.1 Details of Dataset Construction

The principles of constructing datasets are twofold.
First, the quality of samples needs to be high.
The questions are picked from existing human-
annotated datasets, with clear answers. We also
filter out Yes/No, True/False, or multi-choice ques-
tions to ensure the answer cannot be simply cho-
sen from a set of candidate answers. Second, the
dataset should be challenging enough for LLMs
with moderate performance levels. Otherwise, if
the performance is close to 100 percent, the model
is too certain about the answer and the phenom-
ena is difficult to observe. Noting that most of the
benchmark datasets LLMs already obtain perfor-
mance higher than 90%,

Knowledge-based question answering. Firstly,
we use long-context question-answering tasks
whose difficulty resides in picking out useful in-
formation across long context and gathering them
to answer the question. The distractor paragraphs
will also incorporate the difficulty of recognizing
the needed information. Specifically, we collect
the three long-form question-answering datasets
as our evaluation benchmark for long-context QA.
These datasets display three levels of lengths, in-
cluding short (Qasper), medium (LongBench),
and long (NarrativeQA). Qasper (Dasigi et al.,
2021) is a question-answering dataset over NLP
papers. It also contains extractive, abstractive,
yes/no, and unanswerable questions. The average
length of the source text is 4119.85 words. We also
incorporate three datasets from LongBench (Bai
et al., 2023) to form a new dataset. We directly
name it LongBench. It include HotpotQA (Yang
et al., 2018), MuSiQue (Trivedi et al., 2022), and
2WikiMultihopQA (Ho et al., 2020). The average
length of the source text is 9522.36 words. Narra-
tiveQA (Kocisky et al., 2018) is a QA dataset over
entire books or movie transcripts. The answers can
be abstract or extractive, yes/no, and unanswerable,
and the average length is 70340.45 words.

LLMs are proven to show difficulties in under-
standing the information in the middle of the con-
text (Liu et al., 2024), known as lost-in-the-middle.
We pick the most challenging split of the dataset in
the original work, where the gold answer is in the
middle of 30 documents for a QA pair in the Nat-
ural Question dataset. We call this NaturalQues-
tions_30 (NQ30). dataset. The average length of
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input of NQ30 is 3602.13.

Reasoning-based question answering We mod-
ify the multi-choice answering samples in
MMLU (Hendrycks et al., 2021b,a) so that the
options work as hints to the question. In this way,
the model needs to generate the answer based on
the hint rather than picking out the correct option,
increasing the difficulty because of the flexibility
of open-ended question answers.

For each dataset, we sample 600 instances from
them to form our datasets.

A.2 Details of Large Language Models

We include 2 models from Mistral AI>, among
them, mistral-7b is its first proposed dense model
while mixtral-8x7b enhances the 7b model by
incorporating a sparse mixture of experts. Gem-
ini (Team et al., 2023; Reid et al., 2024) is a family
of LLMs proposed by Google from which three
versions of LLMs are selected, including gemini-
pro-1.0, gemini-flash-1.5, and gemini-flash-1.5.
Built from the research and technology used to cre-
ate Gemini models, Gemma (Team et al., 2024a,b)
is a family of lightweight, open models. We include
gemma-7b, gemma-2-9b, and gemma-2-27b for
experiments. LlaMA 3 (Dubey et al., 2024) is a
family of LLMs with dense Transformer structure.
We include llama-3-8b and llama-3-70b for ex-
periments. Claude (Anthropic, 2024) is a family
of large language models developed by Anthropic.
We include two models in ascending order of ca-
pability: claude-3-haiku, claude-3.5-sonnet. We
also include two versions of GPT models?, includ-
ing gpt-3.5-turbo and gpt-40 in experiments.

During experiments, we use the default param-
eters of all 14 LLMs. We run gemma, llama,
and mistral models from Huggingface* on 8 A100
GPUs. For gpt, claude, and gemini models, we
run with the official API from the official website.
For all datasets, we use the same prompt shown in
Table 7. We design a reinforced prompt to ensure
LLM understands concise responses are required.
Thus, we reinforce the prompt by repetition, and
explanation, especially for the weaker models, mak-
ing a fairer comparison by avoiding failing to un-
derstand instructions. We evaluate the robustness
of VC against diverse prompts in Apendix C.3.

Zhttps://docs.mistral.ai/getting-started/
models/

3https://openai.com/

*https://huggingface.co/

A.3 Input Chunking Algorithm

Before we feed the input into the model, we first
chunk the source so that the model can consume
it. As shown in Algorithm 2, we first split the
source into sentences and fed as many sentences as
possible to LLMs.

Algorithm 2 Input Chunking Algorithm.

Input: Source input x, query ¢, LLM window size
k, instruction I,,,.
QOutput: A chunk c that LLM can consume.

Split the source x into sentences
{817527"' )Sn}

Initialize ¢ <— empty string

Initialize length budgets B <+ Lk —

count_token(q) — count_token(7y,).
for sin s{,s9,--- , 5, do
if count_token(c) + count_token(s) > B then
break
end if
¢ + cPs [/ @ indicates concatenating
two strings with a blank.
end for
return c

A4 LLM Routing Algorithm

Model routing aims to send the sample to the proper
model among a diverse collection of LLMs to gen-
erate the result so that under the same amount of
API cost, the performance is better than other base-
lines, such as randomly choosing which model
to use. We develop an LLM routing algorithm
by modifying the proposed model selection algo-
rithm. Different from model selection, we define
two numbers p. and p, as the possibility of se-
lecting a stronger model for concise and verbose
responses. In this way, the cost is controllable to
fulfill the diverse budget needs of users. It is worth
noting that V' (x, y, r) is not available because y is
not given in the routing setting. Thus, we propose
a heuristic to approximate gold V' (z, y, r). We first
sample 100 instances from the training set of the
original dataset and compute the average length of
the gold labels K. Then, we simply classify a re-
sponse as verbose if it contains more than R tokens,
represented as V' (z,y,r) = |r| > R. Algorithm 3
shows the pseudo-code of LLM Routing. Different
from the cascade algorithm for mitigating VC, this
algorithm contains two probabilities that are used
to control the budget of a single call. The algo-
rithm mimics the real cost by counting tokens in
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You are given an article and a question.

Answer the question as concisely as you can, using a single phrase if possible. Article:

{Source Documents}
Question:
{Question ¢}

Using a single phrase rather than a sentence.

Do not repeat any question-related information or explain the answer.

The answer is:

Table 7: Prompt of all models on all datasets.

the input and output, timing by the cost per token.
We collect the cost of each model from website?
and use it collected cost to ensure the fairness of
comparison. The full name of all models and the
price we use in LLLM routing algorithm is shown
in Table 8. We run each p,, p. setting ten times
and compute the average to obtain the green lines
and we run ten times that we randomly choose a
weaker or stronger model with different probabil-
ity to draw the blue line serving as the baseline.
Specifically, for the stars in each figure, p,, = 1 and
pe = 0, degenerate to the proposed model selection
algorithm.

Algorithm 3 Cascade Model Selection Algorithm
for LLM Routing.

Input: A list of LLMs M, A sample (z, y, q), instruction I,
a verbosity detector V (), possibility for routing on concise
responses p., possibility for routing on verbose responses
Do

Output: A response r.
order M by model capability from weak to strong
Set p. to 1 if p, # 1 {We ensure routing on verbose re-
sponses first. }
for LLM in M do

r« LLM(z @ ¢ P lv)
if V(x,y,r) is false then
prob <— A random number from O to 1
if prob > p. then
break {Do not route for concise responses with
1 — p. probability }
end if
else
prob <— A random number from O to 1
if prob > p, then
break {Do not route for verbose responses with
1 — p, probability}
end if
end if
end for
return r

Figure 6 shows the performance of the different
datasets with three routing settings: Mistral 7b
— GPT-40, Gemma?2 9b — Gemini-1.5-pro, and

Shttps://artificialanalysis.ai/models

LLaMA-3-8b — Claude-3.5-sonnet. As shown, the
performance of routing is better than the baselines
for all models, datasets, and settings. Furthermore,
the routing results from Gemma-2 to Gemini-1.5
are better than the individual performance of both
models.

B Details of Experimental Results

B.1 Frequency of Verbosity Compensation

Table 9 shows the detail numbers of frequency of
verbosity compensation behavior.

B.2 Uncertainty Verses Length

Table 10 shows some examples of verbose and
concise responses and the distribution of the first
token.

B.3 Model Capability and Relative Delta

Figure 7 plots the Correlation between model win-
dow size and 6, visualizing the negative correlation
score in Table 6. The models with the stronger ca-
pability to consume lengthy input obtain lower rela-
tive delta, indicating verbosity compensation is bet-
ter avoided. Also, the decreasing speed of the ten-
dency line ranks as follows: Long (NarrativeQA),
Medium (LongBench), and Short (Qasper). This
means that the effectiveness of the length capabil-
ity on disentangling verbosity and performance is
more significant when the task has a longer input.

B.4 Truncation Principle

We conducted an experiment on Qasper dataset
with llama-3-8b and found that When the response
is verbose, only keep the first 4 tokens, then stop
the generation. The recall only drops from 44.93%
to 43.13%. In other words, if the gold answer is
not in the first 4 tokens, then the model is not likely
to generate it in the rest of the tokens.
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Input Cost  Output Cost Model Full Name

mistral-7b 0.17 0.2  mistralai/Mistral-7B-Instruct-v0.3
mixtral-8x7b 0.24 0.24  mistralai/Mixtral-8x7B-Instruct-v0.1
Ilama3-8b 0.05 0.08 meta-llama/Meta-Llama-3-8B-Instruct
Ilama3-70b 0.59 0.79 meta-llama/Meta-Llama-3-70B-Instruct
gemma-7b 0.07 0.07 google/gemma-7b-it

gemma-2-27b 0.8 0.8 googlegemma-2-27b-it

gemma-2-9b 0.2 0.2 google/gemma-2-9b-it

claude-3-haiku 0.25 1.25 claude-3-haiku-20240307
claude-3.5-sonnet 3 15 claude-3-5-sonnet-20240620
gemini-flash-1.5 0.35 1.05 gemini-1.5-flash

gemini-pro-1.0 0.5 1.5 gemini-1.0-pro

gemini-pro-1.5 3.5 10.5 gemini-1.5-pro

gpt-3.5-turbo 0.5 1.5 gpt-3.5-turbo-0125

gpt-4o 5 15  gpt-40-2024-05-13

Table 8: The full name and the cost of tokens for each model. The unit of input/output cost is dollar per one million
tokens.

L Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 8k 63.81 5895 1420 46.59 5740 74.19
mixtral-8x7b 8k 66.37 438 57.80 66.40 66.40 5227
llama3-8b 8k 6848 17.16 3298 23.17 20.60 3248
llama3-70b 8k 13.84 10.03 2720  5.85 11.20 13.62
gemma-7b 4k 44.46  41.10 31.82 14.39 23.80 31.11
gemma-2-27b 8k 24.00 40.76 52.60 25.12 49.00 38.30
gemma-2-9b 8k 46.40  35.19 5220 27.07 2240 36.65

claude-3-haiku 200k  61.20 48.11 40.00 52.44 28.60 46.07
claude-3.5-sonnet 200k  13.00 3586 27.80 29.27 2640 2647
gemini-flash-1.5  Im 33.60 29.40 39.80 26.83 25.20 3097
gemini-pro-1.0 32k 2040 3142 27.20 29.51 30.80 27.87
gemini-pro-1.5 2m 2240 19.15 2851 11.95 9.20 18.24

gpt-3.5-turbo 16k 26.02  25.81 3238 23.90 10.60 23.74
gpt-4o 128k 31.79 2099 5040 28.78 15.00 29.39
Avg 3453 3171 44.11 3198 31.14 34.69

Table 9: Frequency of Verbosity Compensation. All models have verbosity compensation behavior. Among them,
llama3-70b has the lowest frequency on average.
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Figure 6: Routing performance of diverse models and datasets. X-axis (unit 10~ dollars) is the average cost of
running one sample. The Y-axis is the F-1 score averaged across the samples on one dataset. Routing performance
(green line) is higher than the linear combination of the baseline models (blue line) with all datasets and models.

C Supplementary Experiments

C.1 Comparison with Uncertainty-based
Routing Algorithm

We further conduct an analysis to compare the per-
formance of the proposed routing algorithm with
the uncertainty-based routing algorithm in addition
to the random baselines. For the uncertainty-based
routing algorithm, we first use perplexity as the
metric to rank the uncertainty of the responses gen-
erated by a small model. We select top K% uncer-
tain samples and replace them with the responses
generated by the larger model. We select K from
a set of {0, 10,20, ---,100} and connect them to
draw the curve in Figure 8. As can be seen, al-
though the uncertainty-based routing algorithm can
obtain a better performance than the random base-
line, it is still worse than the proposed algorithm
by comparing the AUC of the figure (Area Under
the Curve), demonstrating the effectiveness of the
proposed algorithm.

C.2  Verbosity Compensation in Trip Planning
Dataset

To further demonstrate that VC generally occurs
in diverse open-ended tasks with diverse response
lengths, we run a trip planning dataset from the
Natural-Plan benchmark (Zheng et al., 2024) using

two Llama-3 models and test VC frequency and
performance gaps. The task is to find the itinerary
regarding the order of visiting N cities. We ran-
domly select 500 data points from the dataset to
form our dataset. For the prompt design, we fol-
low the zero-shot prompt in the original paper and
add one sentence “Answer as concisely as possi-
ble, each step contains less than 10 words”. For
the verbosity detector follows our CoT setting:
V(z,y,7) = 1(V,cg|s| > 10). The results are
shown in Table 11. VC also occurs frequently in
trip planning, demonstrating the general presence
of VC in both short- and long-response open-ended
tasks.

C.3 Robustness of Verbosity Compensation
against Prompt Choices

As shown in Table 7 We design a reinforced prompt
to ensure LLM understands concise responses are
required. Thus, we reinforce the prompt by repe-
tition, explanation, etc., especially for the weaker
models, making a fairer comparison by avoiding
failing to understand instructions.

We further experiment with multiple possible
prompts to show VC is not overfitting to certain
prompt settings. We aim to show that as long as
the model knows to generate as concise as possible,
we can observe significant VC behaviors.
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Three Examples of Verbose Responses

Question What is the average length of the sentences?

Gold 15.5

Vanilla Average sentence length: 16.5 words

Distribution  [[’Average’, 0.47828879952430725], ', 0.29009681940078735], [’15°, 0.17595264315605164], ['9’,
0.034647125750780106], [average’, 0.021014543250203133]]

Question What were their accuracy results on the task?

Gold 97.32 %

Vanilla +7 % relative gain

Distribution  [[’+’, 0.39178282022476196], [*", 0.20970624685287476], ['7°, 0.1850651204586029], ['96’,
0.1850651204586029], ['97°, 0.028380654752254486]]

Question What'’s the size of the previous largest OpenlE dataset?

Gold 3,200 sentences

Vanilla “ 13 times larger ”

Distribution  [[*"’, 0.5911211967468262], [*13’, 0.3585331439971924], [’"L’, 0.02022705413401127], [’ Three’,
0.01785031333565712], [’3’, 0.012268329039216042]]

Three Examples of Concise Responses

Question What is the sample size of people used to measure user satisfaction?

Gold 34,432

Vanilla 34,432 users

Distribution  [[*34°, 0.9797704219818115], ['", 0.008476674556732178], [’ Thirty’, 0.006601640954613686], [ To-
tal’, 0.004004097543656826], [’Cor’, 0.0011471931356936693]]

Question Which news organisations are the headlines sourced from?

Gold BBC and CNN

Vanilla BBC and CNN

Distribution  [[’BBC’, 0.9247239232063293], [, 0.04062953218817711], ['"B’, 0.027924243360757828], ['B’,
0.003779135411605239], [’"C’, 0.0029431935399770737]]

Question which datasets did they experiment with?

Gold Europarl MultiUN

Vanilla Europarl MultiUN

Distribution  [["Eu’, 0.9808066487312317], [’Euro’, 0.009615491144359112], [* Europ’, 0.0074885510839521885],

[’",0.0014745831722393632], [’European’, 0.000614697695709765]]

Table 10: Distribution of the first token generated by llama-3-8b on Qasper dataset. When generating the verbose
responses, the model is uncertain about the gold answer. Thus, starting with some commonly seen tokens. In
contrast, the concise responses directly start with gold answers with high confidence.

concise verbose A Avg.  VC Freq.
llama-3-8b 15.18 362 1156 9.22 51.49
llama-3-70b 21.81 487 1694 19.63 12.87

Table 11: VC frequency and performance gaps on trip planning dataset.

Table 12 shows the performance gap on MMLU  C.4 Evaluation of Verbosity and Performance

and Qasper datasets using Llama-3-8b with differ-
ent prompt designs. As can be seen, compared with
the original prompt, the variation of the prompt can
also observe a significant A over both datasets.
This demonstrates the robustness of VC against the
choice of prompts. It is worth noting that, “Answer
as concise as possible” yields the highest scores
on two datasets, as well as the highest A, demon-
strating a simpler prompt with less constraint might
generate a larger performance gap between concise
and verbose responses.

on Same Test Instances

As shown in Table 2, and Table 3, the performance
of concise and verbose samples is based on the
split of the dataset. There is no overlap between
the samples in the concise and verbose split. To
prevent the influence of bias in different instances,
we conduct an analysis that fixes the test instances
and compares different models. Specifically, for
each instance, we calculated the ratio of LLMs
exhibiting VC behavior and reported the averaged
ratio across datasets in Table 13. This approach
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Figure 7: Correlation between model window size and ¢.

Results show that the model with a longer context window

shows less § on Qasper, LongBench, and NarrativeQA dataset.

MMLU Qasper
concise verbose A Avg. concise verbose A Avg.
Prompt in Table 7
58.4 4482 13.57 55.6 58.99 54.6 439 5598

Using a single phrase rather than a sentence.

55.13 4343 11.71 52.70 54.22 48.11 6.11 51.30
Answer as concise as possible.

68.04 50.26 17.78 61.07 70.17 60.44 9.73 63.63

Table 12: Comparison between original and other variations of the prompts. VC consistently occurs, demonstrating

the robustness of the VC against prompts.

concise verbose overall
Recall Support Recall Support A VC Freq. Avg. Recall
Qasper 61.85 2272 45.63 389 16.22 32.46 56.59
LongBench 50.31 1912 44.22 375  6.10 30.42 48.46
NarrativeQA  38.09 2540  31.67 355 642 36.29 35.76
MMLU 65.09 1694  51.47 475 13.62 24.20 61.79
NQ30 53.34 1516  44.89 362 845 26.41 51.10

Table 13: Overall recall comparison between verbose and concise responses. Each dataset contains the prediction

from all 14 LLMs.

also increases the robustness of our findings, as
the support (number of samples) for each dataset
is 14 times higher than when using a single model.
As shown in the table, the performance ¢ is still
pervasive for all five datasets. Specifically, on the
Qasper dataset, the A reaches 16.22%

C.5 Latency Comparison of CaSel Algorithm
and Individule Models

We conduct an analysis to compare the useless
token generated and the time cost of individual
models and the CaSel algorithm on two datasets
using Mistral-7b and GPT-40. To assess the
number of useless tokens generated, given a re-
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Qasper NarrativeQA
#Mistral # GPT #Total VCFreq. Infer. Time # Mistral #GPT #Total VCFreq. Infer. Time
Mistral-7b 663 N/A 663 63.81 0.80 596 N/A 596 41.40 1.22
GPT-40 N/A 207 207 31.79 1.27 N/A 327 327 50.40 14.86
Mistral — GPT 0 86 86 16.60 1.21 0 93 93 21.00 5.93

Table 14: Comparison of the number of generated useless tokens and inference time. # Mistral/GPT indicates the
number of useless tokens generated by Mistral-7b and GPT-40 on the dataset. # Total is the sum of # Mistal/GPT,
showing the total number of useless tokens. Infer. Time is the running time of the algorithm per sample (Unit:
second). CaSel (Mistral — GPT) generated the fewest number of useless tokens and maintained the lowest VC
frequency. The inference time is higher than the small model but still lower than the larger model.
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Figure 8: Routing performance of Mistral-7b to GPT-40.
X-axis (unit 10~3 dollars) is the average cost of running
one sample. The Y-axis is the F-1 score averaged across
the samples on one dataset. Routing performance (green
line) is higher than the random baseline models (blue
line) and uncertainty-based baseline (purple .

sponse r, we first define the useless tokens as the
part with longer than gold answer in response 7:
Zfil max (0, |r;| — |y|), where N is the number
of samples in a dataset. As shown in Table 14, with
our proposed cascade algorithm, the total inference
time might be higher than using a small model
(0.79 vs. 1.21 seconds per sample) and lower than
using a large model (14.86 vs. 5.93 seconds per
sample), but the number of useless tokens gener-
ated is much less. On the other hand, by using the
proposed algorithm, the useless tokens generated
decrease from 596/327 to 93, mitigating the VC

rate from 41.40% to 21.00% on the NarrativeQA
dataset, demonstrating that useless tokens greatly
decrease by using the proposed algorithm.

C.6 The Influence of the Digits in Responses

We analyze the performance and VC frequency
of the samples with and without numbers using
llama-3-8b on the Qasper and NarrativeQA dataset.
The results are shown in Table 15. Although the
model is easier to perform better on the sample
without numbers, the VC frequency is relatively
lower for the responses with digits. To understand
the reason, we further inspect the Qasper dataset,
we find that the samples with numbers are not as
open-ended as the ones without numbers, meaning
that the search space of the answers with numbers
is smaller. This leads to a lower VC frequency and
is easier to answer.

C.7 Response Length of Chain-of-Thought
Experiments

Our evaluation is not limited to short gold answers.
To demonstrate the generalization of the proposed
VC behavior, we run the experiments on Chain-of-
Though settings where the responses can contain
more than 300 words. Table 16 shows the statistics
of Chain-of-Thought experiments. The average
response length can reach more than 50 words, and
the VC behavior is still pervasive.
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Qasper NarrativeQA

concise verbose Avg. VCFreq. concise verbose Avg. VC Freq.

w/o digits 58.99 53.66 56.18 52.63 33.39 18.18 27.21 40.66
w/ digits 58.97 57.73 58.40 45.83 56.25 10.00 38.46 38.46

Table 15: Comparison between responses with digits and without digits. The responses with digits show lower
verbosity compensation frequency.

MMLU Qasper
VCFreq. MinLen. MaxLen. AvgLlen. VCFreq. MinLen. Max Len. AvgLen.
gpt-3.5-turbo 51.49 3 90 26.24 37.62 4 81 23.38
gemma-2-9b 20.79 9 107 27.92 43.56 18 103 37.08
llama-3-8b 43.56 15 333 57.14 44.15 20 185 50.15

Table 16: Lengths of the generated responses under chain-of-thought setting. The maximum length of the generated
results can reach more than 300 words demonstrating that VC occurs in long response settings.
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Abstract

Quantifying uncertainty in large language mod-
els (LLMs) is important for safety-critical ap-
plications because it helps spot incorrect an-
swers, known as hallucinations. One major
trend of uncertainty quantification methods is
based on estimating the entropy of the distribu-
tion of the LLLM’s potential output sequences.
This estimation is based on a set of output se-
quences and associated probabilities obtained
by querying the LLM several times. In this
paper, we advocate and experimentally show
that the probability of unobserved sequences
plays a crucial role, and we recommend future
research to integrate it to enhance such LLM
uncertainty quantification methods.

1 Introduction

The advent of large language models (LLMs) has
revolutionized numerous fields by demonstrating
remarkable capabilities across a diverse array of
tasks. However, despite their impressive perfor-
mance, these models often struggle with reliability
issues, particularly due to factual inaccuracies in
their outputs. In this context, quantifying their con-
fidence and adjusting them for various tasks can
reduce risks and enhance the quality of outputs.

However, uncertainty quantification (UQ) on
LLMs remains challenging since the output possi-
bilities for these models are substantially greater
than those of discriminative models. As the gen-
eration length increases, the number of potential
outcomes grows exponentially, making it unfeasi-
ble to evaluate all possible answers (Geng et al.,
2024). We can distinguish two types of uncertainty
in LLMs: aleatoric uncertainty, stemming from
inherent randomness, and epistemic uncertainty, re-
sulting from a lack of information (Kendall and Gal,
2017). Following previous work, we aim to quan-
tify a measure of total uncertainty, i.e., aleatory
and/or epistemic, as both types of uncertainty con-
tribute to model errors.

Among the methods of uncertainty quantifica-
tion for LLMs, we identify black-box methods,
which assume access only to the generations, and
white-box methods, which also utilize internal
states of the LLM or token-level probabilities. In
this paper, we focus on the latter, utilizing token-
level probabilities. Concretely, we study sampling-
based estimation methods, that is, approaches that
rely on information (e.g. probability) obtained
from multiple answers generated by the LLM, in
order to quantify uncertainty.

Sample-based uncertainty quantification meth-
ods via entropy estimation, like Predictive Entropy
(E) (Malinin and Gales, 2020) and the recently pro-
posed Semantic entropy (SE) (Kuhn et al., 2023;
Farquhar et al., 2024), have succeeded recently per-
haps due to their simplicity, as they do not require
any special training or architectural modifications.
However, we note that these methods are them-
selves subject to epistemic uncertainty, as they rely
on only a glimpse of the probability distribution of
possible answers due to practical constraints. We
highlight that methods like E and SE, in particu-
lar, do not account for this epistemic uncertainty,
as they only consider the estimated probability of
sampled sequences, neglecting the remaining prob-
ability of possible but unobserved answers.

Recent work by Abbasi Yadkori et al. (2024)
has moved in a similar direction and explored the
concept of missing mass in UQ. However, their
approach directly compares the distributions of the
generated answers against the ground truth. In-
stead, here we present work focusing on modeling
the probability of unobserved answers without the
need for ground truth. Concretely, our aim is to
propose a framework that enables us to incorporate
this probability into existing formulations for es-
timation based on entropy. We provide technical
considerations for the calculation of such probabil-
ity and evaluate the relevance of one such imple-
mentation by using it as a UQ method.
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2 Proposed Approach

Let us denote by x the object about which we quan-
tify uncertainty; in our case study, x refers to the
input given to the LLM which often consists on
a question and potentially a prompt. We denote
by (S, P) the probability space, where S is the set
of all possible sequences, and P is the probability
measure over S. The entropy for the random out-
put sequence of the LLM and the input x is defined
as Equation 1 shows, below, where p(s|x) is the
probability of the sequence s conditioned on the
input x.

E*(x) =~ p(slz)logp(sl). (1)

seS

As it is not realistic to compute the probability of
all answers in S, entropy-based UQ methods for
LLMs estimate E*(z) on a set of M sequences
sampled from the model denoted sy, ..., sps. Let
us denote A C S the set of unique sampled answers
and note that |[A| < M because some identical
answers might be sampled multiple times. Each
answer s € A consists of a sequence of length NV
in the set of vocabulary tokens 7. The probability
of s = (t1,...tyN) is obtained by the product of
conditional token probabilities via the language
model, as follows.

p(slz) = [ [ pltilt<i, ). )

Some works have considered adjusting the calcula-
tion of sequence probabilities to account for vary-
ing sequence lengths. This is due to the tendency
for longer sequences to exhibit lower joint likeli-
hoods. To address this, a length normalized proba-
bility, which we denote p’ was proposed (Malinin
and Gales, 2020) as follows.

1
logp/(s|z) = « > logp(tilt<i,z).  (3)

We now focus on the probability of sequences
not observed in the set A of sequences provided by
the LLM for a given input z. This probability is
given by

P(Alz) = 1-P(Az) 4)
= 1-> p(sla), 5)
sEA

where A denotes the complement set of A.

We believe that the probability of unobserved
sequences can capture some of the uncertainty as-
sociated with an input . When uncertainty is low,
the model’s output probabilities tend to be higher,
leading to a lower probability for the unobserved se-
quences. Conversely, when uncertainty is high, the
model’s output probabilities are lower, resulting in
a higher probability for the unobserved sequences.
In case of maximum uncertainty, all sequences in S
are equally likely, with each having a probability of
1/1s]. As aresult, P(A|x) = 1 — M/|s| approaches
1, especially when the set of possible sequences
is very large. Conversely, in situations of minimal
uncertainty, P(A|z) = 0.

In practice, we have two technical concerns re-
lated to the accurate calculation of probabilities
for unobserved answers. Firstly, to the best of our
knowledge, it is not always clear whether the last to-
ken, specifically the end-of-sequence (EOS) token,
is considered in sequence probability calculations
presented in Equation 2. If sequences do not in-
clude the EOS token, this raises concerns about the
construction of the sample space, as two unfinished
sequences are not mutually exclusive. Let us intro-
duce a small example to illustrate our discussion
about the sequence probability calculation.

Example. For the question input x =“Where are
St. Peter’s Basilica and the Sistine Chapel?”, let
us assume we observed two output sequences such
that A = {“vatican”, “vatican city”} and consider
the token conditional probabilities presented in Fig-
ure 1. If we do not include the end-of-sequence
token, the probability value of 0.8 may be incor-
rectly interpreted as the probability of the sequence
“vatican”. In fact, this represents the probability
that the sequence starts with “vatican”, which also
includes the possibility of the sequence being “vat-
ican city”. Essentially, the events of the sequence
beginning with “vatican” and “vatican city” are not
mutually exclusive.

In addition to this issue, we also note that se-
quence length normalization techniques as shown
in Equation 3, and often used approaches like SE,
can distort probabilities, potentially leading to the
sum of output probabilities differing from 1.

Due to the issues discussed above, we highlight
that we cannot properly estimate the probability
of unobserved answers with the usually-adopted
sequence probability calculations. Thus, we com-
pute the probability of sequences without sequence
length normalization and considering the EOS to-
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ken. Formally, we consider the probability of a
sequence s = (t1,...,tn, EOS) as

p(slz) = [ [ pltilt<i, z) x p(EOS[t<n,x). (6)

Example (revisited). Looking back at our pre-
vious example, if we consider the EOS token
in the computation of the probability, we ob-
tain p(“vatican”|x) 0.8 x 0.6 0.48,
p(“vatican city”|x) 08 x 04 x1 = 0.32
and the probability of the unobserved samples is
P(Alx) =1—0.48 —0.32 = 0.2.

Based on this framework, here we present an
alternative method for computing the uncertainty
of an LLM where we directly use the value P(A|z).
We note that this approach, which we call Unob-
served Probability (UP), is arguably a very simple
way to capture some part of the LLM uncertainty,
as derived from our analysis.

* EOS-Inclusive UP (EOS-UP): this approach
consist of quantifying the LLM uncertainty
using P(A|r) in the way we consider most
suitable or recommended, i.e., accounting for
the EOS token in calculating the sequence
probabilities as in Equation 6.

Length-Normalized UP (LN-UP): we pro-
pose to quantify the LLLM uncertainty using
P(A|x) as above, but considering the usual
way for calculating the sequence probabili-
ties, i.e., without accounting for EOS token
and performing sequence length normaliza-
tion, following Equation 3.

3 Experiments and Results

In this section, we detail our experimental setup to
evaluate the relevance of using the probability of
unobserved answers for LLM uncertainty quantifi-
cation via our proposed approach UP. We compare
its performance with three entropy-based methods

and also include, for reference, the probability of
unobserved answers calculated using the conven-
tional method for sequence probabilities.

Model and dataset. Our experiments focused on
the uncertainty quantification for the falcon-40b-
instruct model (Almazrouei et al., 2023) and were
performed on a general knowledge dataset, Trivi-
aQA (Joshi et al., 2017). This model and dataset
were recently used by Nikitin et al. (2024). Trivi-
aQA was also originally used by Kuhn et al. (2023)
for their seminal work on SE.

Sampling. We conducted our sampling using two
styles of prompts. On the one hand, we adopt a
prompt that pushes the model to produce short an-
swers (SHORT), “Answer the following question as
briefly as possible”. This prompt was used on a
more recent implementation of SE, presented by
Farquhar et al. (2024).! On the other hand, we also
experiment with the original prompt (NORMAL)
presented by Kuhn et al. (2023), and was also con-
sidered by Nikitin et al. (2024), “Answer the fol-
lowing question in a single brief but complete sen-
tence.”. Following the methodology of previous
studies (Farquhar et al., 2024; Nikitin et al., 2024),
we employed top-K sampling with K = 50 and
nucleus sampling with p = 0.9 at a temperature of
T=1.

Evaluation Metric. In line with previous works
(Farquhar et al., 2024), we evaluated the model’s
accuracy by sampling an additional answer at a
lower temperature (I' = 0.1). Then we used an-
other LLM, Meta-Llama-3-8B-Instruct (Al@Meta,
2024), to compare this answer with the ground
truth answers from the datasets. The prompts for
checking answers correctness are provided in the
appendix. We evaluate uncertainty quantification
methods by measuring their ability in predicting
model output accuracy using the Area under the
Receiver Operating Curve (AUROC).

UQ methods. We considered the following base-
line methods in our experiments.

* Predictive Entropy (E) (Malinin and Gales,
2020; Kuhn et al., 2023) is a Monte-Carlo
estimation of predictive entropy, shown by
Equation 7, below. As per the original imple-
mentation, this uses sentence length normal-

"https://github.com/jlko/semantic_uncertainty
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ization as in Equation 3.

M

Be) = —3; S osp/onls) D)
* Semantic Entropy (SE) (Kuhn et al., 2023;
Farquhar et al., 2024) is defined on a set of
clusters capturing the distinct meaning, de-
noted C. This consists in a sub-g-algebra of
the event-space of all possible answers S. The
uncertainty quantification is calculated by an
approximation of the semantic entropy involv-
ing the normalization of the cluster probabili-
ties (Farquhar et al., 2024), as shown in Equa-

tion 8 and Equation 10, below, where C' € C.

p(Cle) = Y p(slz) ®
seC
o] P (Clz) 9
SE(z) = —Zp"(C’Lr) logp”(Clz)  (10)
ceC

* Discrete Semantic Entropy (DSE) (Kuhn
et al., 2023; Farquhar et al., 2024) consists
in a variant of SE where cluster probabilities
are approximated by p(C|x) ~ [{s: s€C}|/n1.

The results in terms of AUROC are presented
in Figure 2. We observe that the probability of
unobserved answers EOS-UP is indeed relevant
for quantifying uncertainty, achieving performance
comparable to the Predictive Entropy (E) method.

Moreover, we note that while state-of-the-art
baselines (E, SE, and DSE) are affected by the
number of available samples, the probability of un-
observed answers maintains its performance even
with a single sample. Sampling more answers from
the LLLM can generally lead to larger answer vari-
ability, and hence as M grows, the effect of the
probability of unobserved answers on the estima-
tion decreases. Therefore, our results suggest that
incorporating the probability of unobserved sam-
ples in the estimation of uncertainty can be of crit-
ical importance when the number of samples is
limited (e.g. M = 1). Note that when M = 1,
A = {s1}, E method reduces to —logp/(s1|x),
and LN-UP method to 1 — p’(s1|x). Since these
quantity are strictly decreasing and monotonic with
respect to p’(s1|x), they yield the same ranking
over input instances and thus the same AUROC
performance, as shown in Figure 2.

Finally, we observe the poor performance of our
proposed probability of unobserved answers, con-
sidering length-normalization and no EOS token
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Figure 2: Influence of the number of samples (M) for
the LLM uncertainty quantification in terms of AU-
ROC, for the SHORT (top) and NORMAL (bottom) an-
swer length scenarios. We compare the performance
of our proposed approach variations (UP) against rele-
vant baselines. Results were computed on 500 pairs of
questions and ground truth answers on the falcon-40b-
instruct model.

probability (LN-UP), not only remains the worst
performing method for all M values, but also that
its performance decreases dramatically as M grows.
We think that, as shown by our technical considera-
tions, our suggested way to compute this probabil-
ity (EOS-UP) is necessary to obtain an adequate
estimation.

4 Conclusion

In this work, we aimed to focus on the probabil-
ity of unobserved answers, which we note have
been overlooked by existing entropy-based LLM
UQ methods. We acknowledge that this probability
captures only a portion of the uncertainty. For in-
stance, hesitation between observed answers is not
considered since the probability of each separate
observed answer is not used.

Our empirical results are encouraging and in the
future we plan to integrate this quantity into exist-
ing entropy estimation methods. To achieve this,
we believe a theoretical framework that consid-
ers both aleatoric and epistemic uncertainty, such
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as the Evidence Theory (Shafer, 1976; Smets and
Kennes, 1994) would be suitable.

We also note that current approaches of entropy-
based UQ, present other issues and limitations. Al-
though the work of (Nikitin et al., 2024) has made
progress in this regard, we think further improve-
ments are necessary, for example, by more directly
modeling hypernymy and hyponymy relationships
across answers, and/or clusters of answers.
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Appendix

To check the correctness of the answers, we used
the same prompts as previous studies presented in
Figure 3.

Prompt (single answer)

We are assessing the quality of answers
to the following question: {question} \n
The expected answer is: {correct_answer}.
\n The proposed answer is:  {pre-
dicted_answer} \n Within the context of
the question, does the proposed answer
mean the same as the expected answer?
\n Respond only with yes or no.\n Response:

Prompt (multiple answers)

We are assessing the quality of answers to
the following question: {question}\n The
following are expected answers to this ques-
tion: {correct_answers}. \n The proposed
answer is: {predicted_answer} \n Within
the context of the question, does the pro-
posed answer mean the same as any of the
expected answers? \n Respond only with
yes or no.\n Response:

Figure 3: Prompts fed to the model in our experiments
when providing a single (top) and many correct answers
(bottom), where placeholders are denoted in bold.
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Abstract

We propose a method for confidence estima-
tion in retrieval-augmented generation (RAG)
systems that aligns closely with the correct-
ness of large language model (LLM) outputs.
Confidence estimation is especially critical in
high-stakes domains such as finance and health-
care, where the cost of an incorrect answer out-
weighs that of not answering the question. Our
approach extends prior uncertainty quantifica-
tion methods by leveraging raw feed-forward
network (FFN) activations as auto-regressive
signals, avoiding the information loss inherent
in token logits and probabilities after projection
and softmax normalization. We model confi-
dence prediction as a sequence classification
task, and regularize training with a Huber loss
term to improve robustness against noisy su-
pervision. Applied in a real-world financial
industry customer-support setting with com-
plex knowledge bases, our method outperforms
strong baselines and maintains high accuracy
under strict latency constraints. Experiments on
Llama 3.1 8B model show that using activations
from only the 16th layer preserves accuracy
while reducing response latency. Our results
demonstrate that activation-based confidence
modeling offers a scalable, architecture-aware
path toward trustworthy RAG deployment.

1 Introduction

In high-stakes applications like financial customer
support, it is often more desirable and trustworthy
for a Retrieval Augmented Generation (RAG) sys-
tem to abstain from answering than to risk provid-
ing an incorrect response. Although not responding
to a query reduces the system’s immediate utility,
it is a necessary trade-off to ensure accuracy and
preserve user trust. The guiding principle is that
the reputational and financial cost of providing a
wrong answer is significantly higher than the cost
of not providing one. This challenge requires a
principle of abstention.

One way to achieve the abstention is to have a
confidence measure that correlates with correctness
of the response, and mask the response when the
confidence score is below a threshold. Uncertainty
of the model while generating the response is a
viable source of signal for building a confidence
measure.

To develop a practical solution, it is crucial to
identify the primary source of this uncertainty. In
highly regulated fields, the error is rarely due to
aleatoric uncertainty (randomness inherent in the
data), as knowledge bases are typically vetted by
legal and subject-matter experts. The more prob-
able source is epistemic uncertainty (the model’s
own lack of knowledge), which arises when the
model’s parametric knowledge, acquired during
pre-training or fine-tuning, conflicts with or misin-
terprets the provided context.

While existing approaches (Bakman et al., 2024;
Liu et al., 2024; Malinin and Gales, 2020; Kuhn
et al., 2023) to uncertainty estimation in retrieval-
augmented generation (RAG) have shown promise,
they often fall short when the target response is
long and narrative in nature. This challenge be-
comes especially pronounced in sensitive domains
such as finance, where queries can be ambiguous
or underspecified. For instance, a question like
"What is the deadline to make a payment on Card
Type A?" may retrieve multiple similar documents,
each corresponding to different subcategories of
the card type. In such cases, both the query and
the retrieved context exhibit ambiguity, which can
propagate through the RAG pipeline. Simply mea-
suring uncertainty based on generated response is
insufficient to ensure correctness.

Also, methods relying on sampling (Bakman
et al., 2024), are less practical at scale. These
techniques rely on generating a response multiple
times with slight variations to measure the model’s
consistency, a process that introduces prohibitive
computational costs and latency in a production en-
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Figure 1: Diagram of the proposed Retrieval Augmented Generation (RAG) with the confidence model. When a
user asked a question, the IR component retrieves related context from a database. The prompt is then constructed
and sent into a question and answering LLM. A confidence score would be generated by the confidence model and
being used to control whether or not to show the result to the user.

vironment. For RAG systems that must serve users
in real-time, such multi-generational approaches
are not a viable solution.

Uncertainty and correctness, while related, are
fundamentally distinct concepts (Liu et al., 2025).
A model’s low uncertainty in its output does not
necessarily imply correctness, just as a model may
generate a correct response with a high uncer-
tainty. This distinction becomes particularly salient
in retrieval-augmented generation (RAG) applica-
tions, where correctness often hinges on factual
grounding rather than surface-level fluency. Our
goal is to utilize the model’s internal uncertainty
signals to generate a confidence score that corre-
lates strongly with the correctness of the response
generated by an LLM.

We build our confidence model using the raw
activation signals inside the feedforward layers of
LLM which include the activations of knowledge
neurons (Azaria and Mitchell, 2023). Thus, our
model captures the relationship between the auto-
regressive properties of activations and inherent
uncertainty of the model in generating a response.
We propose a supervised framework to train a se-
quence classifier model and generate a confidence
score that correlates with response correctness.

Figure 1 illustrates the practical utility of inte-
grating a confidence model into our RAG pipeline.
The primary goal of the system is to provide users
with accurate answers. However, in cases where
there is insufficient epistemic or aleatoric knowl-
edge to reliably answer a question, the system’s
next best action is to abstain from answering. This
behavior is enabled by a controller that filters re-
sponses based on their confidence scores, allow-
ing the system to avoid potentially incorrect or
misleading outputs. This system is deployed in
production for large-scale use that achieves high

precision while maintaining an acceptable display
rate (defined as the ratio of response pass the con-
fidence filter to total responses generated by the
system). Experimental results show that our confi-
dence model outperforms multiple baselines, reach-
ing a precision of 0.95 with 70.1% display rate
(masking 29.9% of the total responses). Further-
more, when compared to ground truth, displayed
responses exhibit a significantly higher ROUGE
score than masked responses.

2 Related Work
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Figure 2: Landscape of Uncertainty Quantification
Methods

Figure 2 shows the landscape of various uncer-
tainty quantification methods in LLMs. When map-
ping the landscape, they can be broadly grouped by
the strategies used to quantify the uncertainty.

Shrivastava et al. (2023) demonstrate that the
generation probabilities of weaker white-box mod-
els (that is, smaller models) can be used to esti-
mate the internal confidence levels of larger black-
box models. The approach involves zero-shot
generation using prompt variations based on dif-
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ferent instructions to infer the confidence of re-
sponses produced by the larger model. Duan et al.
(2023) and Kuhn et al. (2023) use semantic en-
tropy to reweight token-level importance, prioritiz-
ing content-bearing tokens while discounting filler
words. Their core intuition is that if semantically
important tokens are generated with high confi-
dence, the overall response is more likely to be
correct even if less important tokens exhibit lower
confidence.

Azaria and Mitchell (2023) show that the LLMs
internal parameters show tell-tale signs when gener-
ating text with uncertainty. When a model’s gener-
ation path falls into a speculative region, evidenced
by competition between two or more plausible next
tokens, its confidence is adversely affected. They
introduce small input perturbations to induce trajec-
tory shifts, and monitor corresponding changes in
token-generation activations and outputs. They la-
bel the speculative generation as lying, and propose
that activation patterns can shed light on this specu-
lative generation. This method requires white-box
access to the model to obtain token-level probabil-
ity traces.

Tian et al. (2023) have empirically shown that
LLM’s self generated confidence score while giv-
ing a response could be calibrated by sampling
over perturbed questions. Specifically, they show
that prompting a model to produce several answer
choices before giving its confidence scores helps
in calibration of verbalized probabilities.

In a related direction, Xiong et al. (2023) gen-
erate multiple variants of a prompt using diverse
prompting strategies such as Chain-of-Thought
(CoT), self-probing, and top-k sampling. They uti-
lize a separate LLM as a "judge model" to evaluate
each variant and assign a confidence score. Vari-
ations in these scores are then used to predict the
confidence of the target model’s original response.
Similarly, Han et al. (2024) proposed a confidence
measurement based on the perturbation of the ques-
tion. The variation in model’s answer generation
probabilities for various perturbations of the ques-
tion for the same context is used as a measure to
generate a verbalized confidence score.

Several recent studies adopt a classification-
based approach to estimate response plausibility,
offering a more computationally efficient alterna-
tive by avoiding multiple generations. For exam-
ple, HHEM (Bao et al., 2024) uses an entailment-
based model to measure the semantic coherence
between the input and the generated output. This

approach operates under black-box constraints, re-
quiring only the input-output pair from the target
LLM to assess the correctness of the response.

Other methods focus on linguistic cues as indi-
cators of ambiguity in LLM outputs. Mielke et al.
(2022) argue that model confidence does not always
correlate with correctness and show that linguistic
calibration of input prompts can significantly in-
fluence a model’s confidence. They introduce a
calibration score that helps generate more accurate
responses by aligning linguistic features with ex-
pected confidence levels. Their evaluations were
performed on factoid QA datasets, where there is a
zero-sum approach towards correctness. We argue
that when the parametric knowledge of the LLM
is mainly contributing to the style of the response,
and the key facts come from the input, confidence
can serve as an effective signal for correctness.

Our method draws inspiration from prior work
on activation-based knowledge tracing (Dai et al.,
2022), generation trajectory modeling (Azaria and
Mitchell, 2023), and importance-weighted token
probabilities (Bakman et al., 2024). Dai et al.
(2022) highlight how feedforward network (FFN)
activations encode key factual information, show-
ing that the activation of certain neurons is posi-
tively correlated with knowledge expression. Build-
ing on this insight, we treat FFN activations as
autoregressive signals and train a recurrent neu-
ral network (RNN) to predict the probability that
a model-generated response is correct. A score
closer to 1 indicates greater model confidence in
the response’s correctness.

3 Method

For a generated response sequence s of length L for
the given input = to a model M with parameters 6,
the probability of generating the sequence is given
as follows:

L

P(s|2;0) = [[ P(si | s<i,2:0) (D)
=1

To compare sequence probability across dif-
ferent lengths of generated output, previous ap-
proaches have normalized the score based on the
length of the response. The length-normalized
score, used in prior uncertainty estimation (UE)
methods (Malinin and Gales, 2020):

. 1/L
P(s | x;0) = (HP(SZ | S<l,$;9)> (2)

=1
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Here all the tokens contribute are given equal
importance irrespective of the length of sequence.
The risk with this approach is that a single low-
probability unusual word can disproportionately
lower the overall sequence score, even if subse-
quent tokens have high probabilities.

Several of the methods that perform uncer-
tainty estimation taking token-logits perform sim-
ilar weighing and they have shown great results
in factoid question answering. These methods do
not scale for longer answers, where there are mul-
tiple sentences and few tokens don’t hold the key
to correctness. Also, multiple generations needed
to quantify the confidence score make them pro-
hibitively expensive in a large scale settings.
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Figure 3: Motivation to use activations instead of token
probabilities.
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Our goal is to estimate the correctness of the gen-
erated response in a single shot using uncertainty
estimation. We prefer using FF-layer activations
rather than token probabilities because token proba-
bilities are computed by applying the decoder head
(a linear projection) followed by a softmax trans-
formation. This projection compresses the rich
internal representation into a vocabulary space and
the softmax operation further distorts the signal by
normalizing it into a probability distribution (see
Figure 3), potentially obscuring fine-grained dif-
ferences in the model’s internal state. In contrast,
raw activations preserve the high-dimensional rep-
resentation prior to this compression, providing a
more direct view of the model’s internal dynamics
during response generation.

3.1 Our Confidence Model

Figure 4 shows a graphical representation of our
confidence model. To estimate the confidence
of a generated answer s of size L, we introduce
a lightweight, trainable probe that operates on
the internal representations of the Llama 3.1 8B
model. The process begins by providing a struc-
tured prompt to the LLM, which is formulated as a
sequence of tokens, x of size T'+ L + 1, which is
a concatenation of the following: Instruction(zy),
Question(z) and Context(x¢) of size T' tokens;

Answer(s) of size L tokens; and EOS token(zgogs)
of size 1. The complete input sequence is formally
represented as:

r=x;DrQDrcD®SsDOTEOS 3)

where & denotes the concatenation operation.
During a single forward pass through the LLM,
we extract the hidden state activations from a spe-
cific transformer layer, £. We investigate represen-
tations from two distinct depths within the network:
the final layer (¢ = 32) and a middle layer (¢ = 16).
This yields a full sequence of hidden state vectors

H( = (héa R hZ+L+1) (4)

Each vector hy ) € RLm corresponds to the
k-th input token, with size of LLM’s activation
dimension. From this complete set of activations,
we isolate only those corresponding to the tokens
of the candidate answer, which span from index
T + 1 towards the final  gog token. This forms the
input sequence, Sj,, for our confidence estimation
module:

Sin = (hy TRy (s)

The extracted sequence Sj, is then fed into a se-
quence classifier g(S;y, ), which is trained to model
the sequence of activations. The sequence classifier
with a classification head outputs a 2-dimensional
logit vector, z, such that the confidence score can
be computed as,

e*t
c = softmax(z); = ——— (6)
e?0 4 e

Our goal is to estimate the confidence of the
model when generating an answer, with ulterior
goal of rejecting the generated answer if ¢ falls
below a threshold of confidence. In this frame-
work, only the parameters of the sequence classi-
fier g(.S;y,) are trainable. We use a Long short-term
memory (LSTM) (Sutskever et al., 2014) as the
sequence classifier for the following experiments.

3.2 Model Training

Given that the retrieval stage of the pipeline may
introduce alethic knowledge gaps, the input context
provided to the LLM can be incomplete, or contain
contradictory information across the document re-
trieved. To address this, we introduce an explicit
regularizer based on Huber loss Lyyper, Which is
more robust to such noise (Patra et al., 2023). Un-
like just using only the Cross-Entropy loss Lcg,
which can be highly sensitive to large deviations

187



/

Auto-Regressive Activation Signals at Layery

Poncxcaa i NRCHNSCIERT

‘ Activations

gieXeXeXe]

00090000
EEQQQOOOQ
EE - : “Activation \ LN ‘O O O O'
g : :
EE’AOOO o :
ﬂ OOOOO©©§ MeNeNeNel s
ﬂoooooooj L 0000~

\ (Yo ) v1) W

o h

! f 1

Xo x1 Xt

Confidence
Score

Tk

I O

Self Attention Layer

ao0

Qi Context
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when predictions are far from the target, the Huber
loss based regularizer helps smoothen with a lin-
ear penalty for large errors. This property reduces
the influence by outliers arising from imperfect
retrieval.

Hy(x) 322 for |z| <0 7
€Tr) =
’ 6 (Jz| — 36) otherwise

where § > 0 is a hyperparameter that controls
the transition point between the quadratic and linear
loss.

Using Lcog loss with Ly e, regularizer, we
learn to predict confidence score, which corre-
lates with the correctness. The higher the confi-
dence, the higher are the changes for the gener-
ated output to be correct. For a sampled minibatch

= {(zj, yj)}j 1> the Huber loss term is calcu-

lated as:
| B |B|

Lyyber = Hs |B’ Zcz |B’ Z _yz

®)
where ¢; = max(¢;) is the confidence of the predic-
tion for instance x;, and I(y; = y;) is the indicator
function for correct predictions.
The total loss function

= LCE + ALHuber (9)

L Total

where A controls the strength of regularization.

In our modeling, several constraints arise nat-
urally from the real-time conditions under which
the system operates. The generated output must re-
main grounded in the input context provided within

the prompt. The output must adhere to predefined
stylistic or structural patterns required to present
certain types of information. At the end of genera-
tion, an explicit decision signal determines whether
the answer is shown to the user. This signal is
conditioned on multiple factors, including:

* Subject-matter-expert (SME) defined stan-
dards of correctness for the class of questions.

* The requirement that factual content be de-
rived from the input context, while stylistic
elements may rely on the model’s parametric
knowledge.

We conducted experiments on our proprietary
knowledge corpus consisting of procedures, rules,
and complex instructions to be followed to address
the various needs of support agents handling a large
volume of customer base. Our results indicate a
robust performance using our method compared to
the several SOTA UQ and hallucination identifica-
tion methods.

4 Experimentation

We have conducted experiments to identify the op-
timal masking ratio in order to maintain utility and
precision of the system.

4.1 Data

4.1.1 Disclosure on data

Due to the sensitive nature of the data, which
pertains to proprietary financial tools and inter-
nal knowledge resources used by service agents
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within a financial institution, we are unable to share
dataset details. This restriction is in place to ensure
compliance with internal data governance policies
and to protect confidential and regulated financial
information. We hope that the community under-
stands the importance of maintaining the integrity
and privacy of such sensitive operational data.

4.1.2 Features of our knowledge articles

We provide an overview of the population-level
characteristics of our dataset, which is derived from
a knowledge base composed of instructional arti-
cles designed to guide customer support agents in
using proprietary internal tools. These tools are
governed by strict procedural guidelines essential
for resolving customer issues. For instance, when
handling a customer inquiry about a specific trans-
action, agents must follow a prescribed sequence:
verifying the customer’s identity, obtaining consent
to access the account, identifying the relevant trans-
action, and initiating additional processes such as
flagging the transaction in cases of suspected fraud.

Figure 5(a) shows the hierarchical nature of the
documents. Our knowledge base is semi-structured
comprising heterogeneous documents with rich hi-
erarchical and content structures. These documents
may include deeply nested sections (e.g., sections,
subsections, sub-subsections), as well as complex
content types such as tables, bullet and numbered
lists, and embedded entities.

Each subsection article is treated as a separate
document. Each document is further chunked to be
efficiently indexed in a low latency store. Overall,
there are 8.5k documents and approximately 45k
chunks in the knowledge-base.

4.1.3 Features of the training data

Our system design incorporates a real-time feed-
back loop, as illustrated in Figure 5(b), where sup-
port agents interact with the RAG system and pro-
vide immediate feedback (e.g., thumbs-up/down)
on the usefulness of generated responses. Process-
ing thousands of these interactions daily, we draw
a stratified sample of both positive and negative
feedback instances, accounting for dimensions like
product type and line of business. For each sam-
pled case, we collect the query, generated answer,
retrieved context, and associated metadata for a
more rigorous offline evaluation.

This offline review is conducted by subject mat-
ter experts (SMEs) who assess each answer for
completeness, correctness, and truthfulness, ensur-

ing it is grounded in the provided context rather
than inferred from the model’s parametric knowl-
edge. SMEs may also refine responses to create
ideal, complete answers, as shown in the exam-
ple in Figure 5(c). This two-tiered approach of
combining real-time user signals with deep SME
validation allows us to build a high-quality labeled
dataset for training and evaluation, ensuring the
model aligns with domain-specific requirements
for accuracy and trustworthiness.

4.2 Information Retrieval

We perform retrieval using an open-search index
configured for K-nearest neighbor (KNN) retrieval
based on semantic similarity to the input query. In
addition to the query itself, we incorporate asso-
ciated metadata such as entitlements and access-
control filters specific to the agent submitting the
question, to ensure that the retrieved documents
adhere to the agent’s permissions.

In the context of this work, we do not explicitly
quantify retrieval errors. Instead, our focus lies in
modeling the generation process of the response.
We assume the retrieval step to be correct and treat
errors introduced during retrieval as alethic uncer-
tainty, while the knowledge encoded within the
model through pretraining and fine-tuning is con-
sidered epistemic. Our confidence model is de-
signed to map the relationship between the ques-
tion, the retrieved (alethic) knowledge, the model’s
internal (epistemic) knowledge, and the generated
response. This relationship is captured through pat-
terns in the model’s internal activations, treated as
auto-regressive signals.

We observe that this mapping cannot be ad-
equately modeled using a simple feedforward
(MLP) architecture, as it fails to capture the tem-
poral dependencies inherent in the generation pro-
cess. Therefore, we adopt a recurrent architecture
specifically, a lightweight Long Short-Term Mem-
ory (Hochreiter and Schmidhuber, 1997) (LSTM),
trained using Lo g loss and L gyype, regularizer loss.
The LSTM is trained on input sequences derived
from the activations of a selected layer, along with
carefully curated training data that aligns the acti-
vation patterns with response-level confidence.

4.3 Results

Our method achieves superior calibration of LLM
responses, maintaining high precision with min-
imal utility loss. As shown in Table 1, it
outperforms industry SOTA methods, Vectara
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Method AUROC
Vectara 0.590
Vectaragr 0.634
Logitsy,ceq 0.663
Our MOdean calib. 0.741
Our Modelwiﬂ, calib. 0.772

Table 1: Comparing our approach to other baselines

Threshold P R Disi)?aliGEl\_/t sk 9%Mask
Baseline (0.0) ‘ 0.90 1.00 0.62 N/A 0.0
0.1 0.94 0.89 0.64 0.54 14.4
0.2 0.94 0.83 0.64 0.56 20.4
0.3 0.94 0.80 0.64 0.57 229
0.4 0.94 0.76 0.64 0.57 26.4
0.5 0.95 0.73 0.65 0.57 29.9
0.6 0.95 0.69 0.66 0.56 34.8
0.7 0.96 0.65 0.66 0.57 38.6
0.8 0.96 0.60 0.66 0.58 44.0
0.9 0.97 0.52 0.67 0.58 52.0

Table 2: Our Confidence score model with calibration
helps achieve 0.95 precision while masking 29.9% of
the responses

R@l R@3 R@5 R@I0 R@25
054 075 080 0.84 0.88

IR Model

Table 3: Current recall(r) of the IR system, that helps in
creating the context for the RAG pipeline

ROUGE-L
Display Mask
32 Full 095 073 | 0.65 0.57 29.9
32 Top5 | 095 0.69 | 0.66 0.56 343
32 Top3 | 096 0.63 | 0.66 0.57 40.5
32 Top1 | 097 056 | 0.67 0.57 47.5

16 Full 097 0.73 0.64 0.58 31.3
16 Top5 | 098 0.65 0.65 0.59 39.3
16 Top3 | 098 0.60 | 0.66 0.58 44.8
16 Top1l | 099 048 0.66 0.59 56.2

Layer Context | P R 9oMask

Table 4: Identifying the optimal setting to run confi-
dence model

(HHEM2.1) (Bao et al., 2024) and a logits-based
uncertainty model (Malinin and Gales, 2020). We
obtain further performance gains by caliberating
with Liper as a regularizer.

Table 2 reports confidence thresholds that op-
timize precision while keeping the masking rate
low. Although an ideal mask rate is 0%, realistic
applications must tolerate some masking due to
noise in LLM inputs. In our setup, the retrieval
stage achieves a strong recall@10 > 0.8 (Table 3),
yet residual alethic knowledge gaps in retrieval can
affect downstream generation.

We experimented with varying input context
sizes, selecting the top k documents (kK €
{1,3,5,7 (full)}), and with partial-layer activation
extraction from Llama 3.1 8B (layer 16 or layer
32) (Al@Meta, 2024). As shown in Table 4, us-
ing activations from only the 16th layer yields per-
formance on par with the full-layer setup while
maintaining a reasonable mask rate.

Latency analysis (Table 5) confirms that input
context size is a dominant factor; larger contexts
increase response time, highlighting a trade-off be-
tween context size and system responsiveness. In
the production system, the confidence model is de-
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Framework  Layer Context | Avg. ms | P99
Full 221 387

Top 5 179 329

Hugging Face Top 3 137 286
Top 1 100 252

16 Full 139 278

Full 206 354

0 Top 5 161 304

vLLM Top 3 125 269
Top 1 88 241

16 Full | 127 | 267

Table 5: Latency of the confidence model using various
context sizes, Avg. time is calculated across 3 runs of
the same input.

ployed with vLLM (Kwon et al., 2023), and overall
the same trend appears there as well.

5 Discussion

In this work, we present an approach for construct-
ing a confidence score that aligns with the cor-
rectness of responses generated by large language
models (LLMs). Such a measure is particularly
critical in high-stakes domains such as finance and
healthcare, where the cost of an incorrect response
far exceeds that of withholding a response. Our
method extends prior works in uncertainty quantifi-
cation (UQ) (Malinin and Gales, 2020; Bao et al.,
2024) by leveraging model activation patterns to
predict correctness more robustly.

Figure 3 illustrates our motivation for using raw
activation signals from the feed-forward network
(FEN) layers as auto-regressive features, rather than
token logits or probabilities. Token probabilities
are obtained after a linear projection and softmax
transformation. The projection step reduces di-
mensionality, discarding non-vocabulary-aligned
features, while the softmax normalization saturates
probability values, erasing scale information and
compressing relative differences. Using activations
directly, we retain the full representational capacity
of the internal state of the model.

Our application setting involves customer sup-
port agents consulting a proprietary knowledge
base to resolve customer queries using specialized
internal tools. The knowledge base contains docu-
ments vetted across multiple dimensions, including
risk and legal compliance, making factual errors
in the content highly unlikely. However, strict per-
missions govern which documents an agent can
access. Figure 5(a) shows the complexity of doc-
ument formats and fine-grained entitlements that

impact retrieval and downstream generation.

We model confidence estimation as a classifica-
tion problem over sequences of activations. Specif-
ically, we employ a lightweight recurrent neural
network (LSTM) that consumes FFN activations
as auto-regressive signals. The classification logit
from the LSTM head serves as the confidence score
(see Figure 4). To enhance robustness against noisy
supervision, we introduce a Huber loss regular-
izer Lyyper alongside the cross-entropy loss Lcg.
The Huber loss’s ability to behave quadratically for
small errors and linearly for large errors makes it
well-suited for smoothing gradients and mitigating
the influence of outliers (Patra et al., 2023). Results
in Table 1 demonstrate that our approach outper-
forms strong baselines, and the inclusion of Lyyper
further improves accuracy over using Lcg alone.

In real-world deployment, retrieval-augmented
generation (RAG) pipelines must meet strict la-
tency requirements, as the LLM prompt length is
constrained by model context limits and thousands
of queries are processed daily. Tables 4 and 5 sum-
marize our performance—latency trade-offs. Reduc-
ing the number of Llama 3.1 8B layers from 32
to 16 while keeping context size fixed preserves
accuracy while reducing latency by approximately
42.5%. When the context size is reduced, alethic er-
rors increase due to incomplete retrieval, raising the
model’s masking rate (i.e., instances where no an-
swer is returned due to low confidence). Neverthe-
less, the 16-layer configuration achieves compara-
ble performance to the 32-layer setup at lower com-
putational cost. We observe a slight improvement
in response latency when hosting the model using
vLLM inference compared to Hugging Face’s infer-
ence API, likely due to vLLM’s optimized memory
management and continuous batching capabilities.

Overall, our approach leveraging FFN activa-
tions as auto-regressive signals, modeling them
with an LSTM, and regularizing with Lper proves
effective in long-form RAG settings. This method
improves the trustworthiness of LLM-generated re-
sponses and holds strong potential for safe deploy-
ment in sensitive, domain-specific applications.

6 Limitations

Our work pushes the boundary of confidence esti-
mation in retrieval-augmented generation (RAG)
for sensitive domains, but several practical consid-
erations remain. Ideally, a RAG system should
generate both the response and its confidence score
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in a single pass. In our current implementation,
the confidence score requires a second run of the
system, which introduces additional computational
and latency overhead.

While this design choice enables deeper access
to model internals, it also necessitates operating in
a white-box setting, as the confidence model relies
on activation signals from the LLM to assess cor-
rectness. Furthermore, the method is customized to
the specific architecture of the target model, mean-
ing that adaptation to other LLMs may require
reconfiguration and retraining. These limitations
also present opportunities for future research: in-
tegrating confidence estimation directly into the
generation process, reducing computational cost,
and developing architecture-agnostic approaches
that preserve the performance benefits of activation-
based probing methods.

A limitation of this study is that the dataset can-
not be made publicly available. The data contains
sensitive and proprietary information pertaining to
internal financial tools and knowledge resources
used by service agents within a financial institution.
This restriction is mandated by internal data gover-
nance policies to protect confidential and regulated
financial information.
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Abstract

Fine-tuning large language models (LLMs)
with low-rank adaptaion (LoRA) is a cost-
effective way to incorporate information from
a specific dataset. However, it is often un-
clear how well the fine-tuned LLM will gen-
eralize, i.e., how well it will perform on un-
seen datasets. Methods have been proposed
to improve generalization by optimizing with
in-context prompts, or by using meta-learning
to fine-tune LLMs. However, these methods
are expensive in memory and computation,
requiring either long-context prompts or sav-
ing copies of parameters and using second-
order gradient updates. To address these chal-
lenges, we propose Amortized Bayesian Meta-
Learning for LoORA (ABMLL). This method
builds on amortized Bayesian meta-learning
for smaller models, adapting this approach to
LLMs while maintaining its computational effi-
ciency. We reframe task-specific and global pa-
rameters in the context of LoRA and use a set of
new hyperparameters to balance reconstruction
accuracy and the fidelity of task-specific pa-
rameters to the global ones. ABMLL provides
effective generalization and scales to large mod-
els such as LLAMA3-8B. Furthermore, as a re-
sult of using a Bayesian framework, ABMLL
provides improved uncertainty quantification.
We test ABMLL on Unified-QA and Crossfit
datasets and find that it outperforms existing
methods on these benchmarks in terms of both
accuracy and expected calibration error.

1 Introduction

Large language models (LLMs) handle a variety
of tasks reasonably well (Radford et al., 2019).
However, to tailor LLMs to specific domains,
fine-tuning on specific datasets is often necessary.
While methods such as low-rank adaptation (LoRA;
Hu et al. (2021)) fine-tune a pretrained LLM cost-
effectively, a fine-tuned LLM is limited to the do-
main it is trained on. Its performance may not
improve in other domains and sometimes worsens

Jake Snell
Princeton University
Department of
Computer Science
jsnell@princeton.edu

Thomas L. Griffiths
Princeton University
Department of Psychology
and Computer Science
tomg@princeton.edu

as it suffers from catastrophic forgetting. Such
catastrophic forgetting may result in overfitting and
erasing existing capabilities of the pretrained LLM
(Lazaridou et al., 2021; Luo et al., 2023).

Meta-learning is a strategy for solving this prob-
lem, training models on a variety of tasks in a way
that supports generalization across tasks (Finn et al.,
2017). However, meta-learning typically requires a
large amount of computation and memory, making
it challenging to apply to LLMs. One form of meta-
learning that has been applied to LLMs involves
fine-tuning models on in-context prompt-response
examples (Min et al., 2022; Chen et al., 2022). An-
other more traditional approach, MAML-en-LLM
(Sinha et al., 2024), adapts the Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) frame-
work to LLMs. However, both methods are limited
in the size of the language models that can be used:
the former requires long-context prompts, whereas
the latter uses second-order gradient updates and
saves a model for each task.

Recent work on Amortized Bayesian Meta-
Learning (ABML; Ravi and Beatson (2019)) ad-
dresses some of the computation and memory re-
quirements of meta-learning. This approach posits
a generative model over parameters where task-
specific parameters are generated from global pa-
rameters, and inference over task-specific parame-
ters is amortized. In other words, the conditional
distribution over task-specific parameters is shared
across tasks, implying that computation and mem-
ory costs stay constant with respect to the number
of tasks. This approach thus offers a path towards
efficient meta-learning for LLMs. However, sev-
eral challenges exist. First, we need to specify the
generative model over weight space in the context
of LLMs. Second, the prior term used in ABML
no longer adapts to the setting of fine-tuning a pre-
trained model because the spread of its weights
mismatches that of an arbitrary prior used to train
a model from scratch. Third, the enormous size
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of LL.Ms makes training difficult, as the scale of
probabilities assigned to the model variables can
overwhelm the influence of the data likelihood.

In this paper, we present a solution to these prob-
lems, taking a Bayesian approach to fine-tuning
LLMs using ABML. To define the underlying gen-
erative model and efficiently characterize the distri-
butions involved, we use LoRA to express both the
model weights and their uncertainty. We introduce
a new prior over global variables that accounts for
the spread of the parameters learned in the pre-
trained model. We also introduce two adjustable
hyperparameters that balance reconstruction accu-
racy and the fidelity of task-specific parameters to
the global ones.

Using amortized Bayesian meta-learning for
LLM fine-tuning, we achieve both higher accuracy
and better uncertainty estimation over unseen tasks
compared with regular fine-tuning and other scal-
able methods in the meta-learning literature. Figure
1 illustrates an example where incorporating uncer-
tainty estimation in fine-tuning leads to a more
calibrated model response. Our method is scalable
and avoids the computation and memory overhead
of other meta-learning approaches, making it adapt-
able to larger models such as LLAMA 3 8B. We
show that amortized Bayesian meta-learning pro-
vides fine-tuned LLMs that are accurate on domain-
specific tasks, more generalizable to new tasks, and
provide better uncertainty estimation.

2 Related Work

Meta-learning methods in LLMs. Extensive
work has explored meta-learning for generalization,
typically adopted for models in the pre-LLM era
(Finn et al., 2017; Snell et al., 2017; Ravi and Beat-
son, 2019; Nichol et al., 2018). Sinha et al. (2024)
adapted Model-Agnostic Meta-Learning (MAML),
developed in Finn et al. (2017), to LLMs. How-
ever, this adaptation is more expensive in com-
putation and memory than our method, requiring
second-order gradient updates and saving a model
for each task. More recently, Kim and Hospedales
(2025) proposes a heirarchical Bayesian approach
to LoRA meta-learning, but its parameters also in-
crease linearly with number of tasks. As a result,
we evaluate on larger models than those tried in
these two papers.

As a different approach, Min et al. (2022) and
Chen et al. (2022) explored meta-learning for
LLM:s using in-context learning. These works show

Example prompt and response

Return the label of the correct answer for the question
below.

Question: Jason approached Steven to deliver the official
subpoena and court summons, because _ was being sued.

Choices:
A) Jason
B) Steven

Answer:

0.0k A 90.5%
@ »osx

Pretrained LLM

A)79.8%
B) 20.2%

ABMLL

Figure 1: An example where better uncertainty cali-
bration leads to a more reasonable response. This is a
prompt and response from an unseen dataset, coming
from a pretrained LLM (left) and an LLM fine-tuned
with ABMLL (right), with both being updated with 10
gradient steps on other examples of this dataset as in the
meta-learning literature. The label is B), so both LLMs
are incorrect, but the question is ambiguous: it could
interpreted as either Jason “asked” Steven to deliver, or
Jason “came to” Steven to deliver, resulting in different
answers. ABMLL results in a more calibrated response.

that it is possible to fine-tune LL.Ms on in-context
examples and achieve generalization. However, our
approach does not require curation of such exam-
ples, does not place constraints on the size of the
context window of a model, and is more scalable.

Uncertainty representation for LLMs. Ap-
proaches to capturing uncertainty for LLMs can
rely on the intrinsic representation of uncertainty
in the model or focus on capturing extrinsic un-
certainty about model parameters. Intrinsic ap-
proaches produce better uncertainty calibration via
prompt engineering and sampling (Gruver et al.,
2023) or learning an external model (Shen et al.,
2024). Extrinsic approaches include using fine-
tuning methods to incorporate uncertainty, such
as training LoRA with ensembles (Balabanov and
Linander, 2024), Laplace approximation (Yang
et al., 2023), and variational inference (Wang et al.,
2024). Our work takes the extrinsic approach but
differs from existing approaches by using the meta-
learning setting to achieve strong uncertainty cali-
bration through generalization across datasets.

3 Background

3.1 Low-Rank Adaptation (LoRA)

LoRA (Hu et al., 2021) fine-tunes LLM weights on
a low-rank space to improve efficiency compared
with regular fine-tuning. Let W of size doy-by-din
denote a weight matrix from a pretrained LLM. Let
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x denote the input to Wy, and z denote the output
of Wy, LoRA fine-tunes pretrained weight W by
adding perturbation on the low-ranked space,

z=(Wo+ AWjp)x = (Wo + BA)x.

The trainable matrices B and A are known as LoRA
adapters. The sizes of B and A are dyy-by-drank
and dpank-by-din, respectively, with d,.q,; being
significantly smaller than the original dimensions.
Therefore, the number of parameters to be updated
are (dout + din)drank, significantly fewer than the
original dgydiy.

3.2 Amortized Bayesian Meta-Learning

Amortized Bayesian Meta-Learning (ABML) Ravi
and Beatson (2019) improves upon MAML-based
meta-learning frameworks by representing uncer-
tainty with a Bayesian approach. It also amortizes
inference over the parameters so that memory no
longer increases linearly with the number of tasks.

Let 6 denote global parameters such that a few
steps of gradient descent will produce local param-
eters ¢; on task ¢ with dataset D;. ABML treats
0 as random variables, and minimizes a negative
evidence lower bound using variational inference,

M

argming [Z —Egy(¢sD) log p(Dil )]+ (1)
i=1

KL (g0 (64 D2)| [p(116)) | + KL(a(0)lp(9)).

The variational distribution gg(¢;|D;) is repre-
sented by the Gaussian distribution N (114, ai) with
I¢, Oy as trainable parameters.

4 Method

Our method extends Amortized Bayesian Meta-
Learning, making it possible to apply to LLMs.
This approach combines the advantages of meta-
learning for adapting to new tasks with Bayesian
inference for uncertainty representation.

We use the the objective of Eq. 1 from ABML.
In our setting, 6 and ¢; are the global and task-
specific model parameters produced as the output
of LoRA adapters. On a high level, the generative
process is

0~ p(0),
bi ~ p(¢il0),

Algorithm 1 One epoch in the ABMLL algorithm.
The “test section” does not need to be performed
every epoch.

Input: Likelihood model p(D;|¢;), prior p(f)
and p(¢|0), variational posterior gg(;|D;), with
trainable parameters B, A; constant ¢, 5; number
of tasks M and inner-loop size K.

Training section
for task i € {1,2,..., M} do
Draw batch D; from task ¢ dataset.
Inner-loop:
foriter k € {1,2,..., K} do
Run a step gradient descent to mini-
mize W.r.t. @;:  —Eg (4,0, [logp(Dil¢:)] +
BKL (g6 (¢:| D:) [ [p(#:10))
end for
Outer-loop: Run a step gradient descent to
minimize w.r.t. 0: —E,, . p, logp(Dilé:)] +
BKL(go (4 D:)||p(6:16)) + BKL(g(8)|p(6))-
end for
Test section
Take unseen task i. Create a copy of the above
weights, and on the new weights:
foriter k € {1,2,..., K} do
Draw batch D; from task 7 dataset.
Run a step gradient descent to mini-
mize W.I.t @;: —Eqy(¢;10,) log p(Di|:)] +
BKL (g0 (:|Ds)|[p(¢:10)).
end for
Evaluate on rest of data in task 1.
Delete the weights copy and reload the weights
at the end of training section.

Output: B, A.

where i represents any task 7, and LLM(¢; ) denotes
the LLLM considered as a probabilistic model that
takes ¢; as its weights and outputs token sequences
with joint probabilities defined by the LLM’s au-
toregressive predictive distribution. We provide
a pseudocode, Algorithm 1, to illustrate our ap-
proach. For any LLM layer with pretrained weights
‘W, the quantities for our extension to ABML are:

po =By, Ay,
log 03 =B,,As, + I,
o =By Apy,

logcri =Bs,As, + I,
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p(¢il0) = N(¢i; o + Wo, ),
0(¢:|Ds) = N(¢i; iy + Wo,03),
p(0) = p(pe, oe)

= N(up;0,1) -Gamma(%;ao,bOL
99
KL(q(0)[|p(0)) = —1log p(6).

Lastly, p(D;|¢;) is defined as the joint probabil-
ity assigned to D; where the LLM takes ¢; as its
weights. The trainable parameters are the LoRA
adapters A and B. However, we introduce four
pairs of these adapters to compute both the mean
and variance of the LoRA outputs on local and
global model weights. I is identity matrix, and c is
a hyperparameter constant dependent on the spread
of pretrained LLM weights. ag and by are hyperpa-
rameters, and the simplification of the KL term as
—log p(@) follows Ravi and Beatson (2019).

Balancing the reconstruction error. LLMs
are often overparameterized. As a result, prob-
abilistic quantities on the space of weights,
KL (q0(¢i|Di)||p(¢:]6)) and  KL(q(6)][p(0)),
can overwhelm quantities on the data space,
log p(D;|¢;). B—VAE (Higgins et al., 2016) and
Bayesian neural network approaches by Trinh et al.
(2022) introduce hyperparameters to temper the
likelihood versus regularization terms. Inspired
by this idea, we introduce hyperparameters [, -,
resulting in the following objective,

M
argming {Z —Eyy(0:10:) llog p(Dil i)+ 2

=1
BKL (au(x/ D) [p(116)) | + ~KL(q(0) 1p(6)).

This provides a flexible way to control how close
the global parameters 6 are to the prior p(#), and
how close the task-specific parameters ¢; are to 6.

5 Empirical Evaluations

Model and datasets. We fine-tune LLAMA3-8B
on CrossFit (Ye et al., 2021) and UnifiedQA (Ye
et al., 2021), textual datasets commonly used to
train meta-learning models. Because a key aim
of our paper is to study uncertainty quantification,
we filter for multiple choice datasets, leading to a
subset of CrossFit and UnifiedQA with 34 datasets
with 68K training datapoints in total. They feature
problems such as sentiment analysis, natural lan-
guage inference, and identifying particular traits or
topics in a given text. For evaluation on an unseen
task, we use Winogrande (Sakaguchi et al., 2021),

a multiple choice dataset evaluating common sense
reasoning.

Metrics. We use accuracy to evaluate general
performance and expected calibration error (ECE)
to evaluate uncertainty estimation.

Implementation details. All methods use batch-
size of 2 and inner-loops with 5 gradient steps.
LoRA adapters follow standard practice with rank
= 8, and learning rate is tuned in [1076,5 - 1075).
For ABMLL, 3 =5-10710 ~ =107%, c = =2,
For the gamma prior, ag = 1, by = 0.01, following
Ravi and Beatson (2019). During validation on the
unseen dataset, all models train 10 gradient steps
on 10 batches from this dataset and evaluate on the
rest.

Baselines. We use four baseline methods that can
viably scale to LLAMA3-8B. Pretrained is the off-
the-shelf LLM. Regular LoRA is the default LoRA
method trained on the whole randomly shuffled
training dataset. Structured LoRA also uses the
default LoRA, but the training dataset follows the
same ‘“‘structure” as our method: it is iteratively
trained 5 gradient steps on one task at a time. Thus,
it tests the effect of our generative model on per-
formance. The Reptile (Nichol et al., 2018) algo-
rithm primarily uses a weighted average between
new weights and previous weights to achieve meta-
learning.

Results. Figure 2 shows validation accuracy and
ECE over epochs across methods. We observe that
ABMLL consistently achieves higher accuracy. On
ECE, ABMLL also consistently achieves the best
performance, whereas structured LoRA worsens as
training continues. For fairness, the result at the
end of every sixth epoch is reported from regular
LoRA, because both ABMLL and Reptile run six
instead of one gradient step during each epoch’s
training.

Table 1 reports the best validation score for each
model from three random seeds, showing a statisti-
cally significant advantage for ABMLL.

Conclusion

Meta-learning is an effective method for support-
ing better generalization across datasets, but its
demands on computation and memory can make it
difficult to apply to large language models. We
have shown how meta-learning can be used to
adapt LLMs by combining Amortized Bayesian

197



0.500 A —— Bayesian
Reptile

0.475 4 —— Structured LoRA
—— Regular LoRA
——- Pretrained

0.6 1
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0.34
0.375 9

0.2 —— Bayesian
Reptile 0.350 1
0.14 —— Structured LoRA
—— Regular LoRA 0.325 1
0.0 === Pretrained
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(a) Accuracy. (b) Expected calibration error (lower is better).

Figure 2: Validation accuracy and ECE on the vertical axis over epochs on the horizontal axis across our method
(ABMLL) and four benchmarks. On accuracy, ABMLL consistently achieves higher. On ECE, ABMLL also
consistently achieves the best performance, whereas structured LoRA, the second best performer on accuracy,
worsens on uncertainty calibration as training continues.

Table 1: Validation accuracy and ECE across three ran-
dom seeds, with standard error.

ious design choices, including limitations of the
variational family qg(¢;|D;).

Method Accuracy 1 ECE | Acknowled om ents
Pretrained 68.2% +£0.3%  0.327 £ 0.000
Regular LoRA  68.2% +0.3%  0.327 + 0.000 We thank Qinyuan Ye for helpful discussion. We
Structured LoRA  73.6% £+ 0.6%  0.320 & 0.001 also thank the anonymous reviewers for helpful
Reptile 785%+02% 0.370+0.005 comments. This work was supported by grant
ABMLL  74.8% +0.3% 0.317+0.001 N00014-23-1-2510 from the Office of Naval Re-

Meta-Learning with Low-Rank Adaptation. This
approach results not just in better accuracy across
several benchmarks, but also in better calibration.

Limitations

One limitation of the paper is the scope of empirical
evaluation regarding datasets and models. While
the datasets feature natural text that can occur in
the real world, it would be beneficial to evaluate
on more test datasets to confirm the method’s con-
sistency. Additionally, the paper’s method can be
naturally extended to other models, so evaluating
on more models would be a reasonable venue for
future work.

As a meta-learning method, our approach must
be trained on datasets that can be naturally divided
into different tasks, a requirement that is not always
available to practioners seeking significant model
improvement on one particular domain.

While our empirical results suggest that our ap-
proach provides more accurate and calibrated re-
sponses, theoretical convergence is not guaranteed
due to the need for approximate inference and var-

search.
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Abstract

While large, biomedical documents with com-
plex terminology are in need of being under-
stood more easily and efficiently, summariz-
ing this kind of content can be problematic,
as Large Language Models (LLMs) aren’t al-
ways trustworthy. Considering the importance
of comprehending Cardiovascular Diseases, we
study in depth the ability of different state-of-
the-art biomedical LLMs to generate factual
and certain summaries in this topic, and ex-
amine which generation choices can influence
their trustworthiness. To that end, besides using
factuality metrics, we employ techniques for
token-level uncertainty estimation, an area that
has received little attention from the scientific
community. Our results reveal dissimilarities
between LLMs and generation methods, and
highlight connections between factuality and
uncertainty metrics, thereby laying the ground-
work for further investigation in the area.

1 Introduction

Biomedical researchers worldwide try to solve vital
medical problems and publish scientific discover-
ies. Due to the exponentially increasing amount
of scientific publications, summarizing them is vi-
tal, as they enable medical practitioners to keep
up with the literature in an efficient manner. For
that reason, it is crucial that the summary is accu-
rate, as a minor mistake in explaining a medical
concept or an unclear medical advice to treat a dis-
ease can have severe consequences for the health
of patients. Large Language Models (LLMs) have
recently been used to process and understand this
kind of information in depth.

In recent years, LLMs have gained much at-
tention from the scientific community, as they
have been especially transformative for generative
tasks, such as text summarization, machine transla-
tion, and question answering (Jurafsky and Martin,
2025). Text summarization, the task of our interest,

is the process of creating a brief, accurate, and co-
herent summary of a longer text document. LLMs
have greatly facilitated this task by providing the
option to generate new text with the most salient in-
formation (i.e., abstractive summarization; Shakil
et al. (2024)). In biomedicine, scientific findings
tend to be reported in large documents with com-
plex terminology, so summarizing scientific con-
tent can make important, clinical information acces-
sible to researchers and clinicians more easily and
efficiently (Xie et al., 2023a). However, LLMs may
misrepresent their confidence and have specifically
been shown to overestimate their knowledge and
certainty level (they don’t know what they don’t
know). As a result, they may confidently gener-
ate summaries with hallucinations or ambiguities
(Baan et al., 2023; Hu et al., 2023) that can lead
to misinformation with potentially severe conse-
quences in medical contexts.

Although previous studies have explored uncer-
tainty in biomedicine (Zerva et al., 2017; Kim et al.,
2025), most either attempt to detect confidence ex-
pressions in text (Vasilakes et al., 2022), or focus on
sequence-level uncertainty (Farquhar et al., 2024;
Wagner et al., 2024; Qiu and Miikkulainen, 2024;
Nikitin et al., 2024), frequently requiring the use
of external models, repetitive sampling, or dedi-
cated loss functions. Instead, we focus on simple,
flexible, token-level uncertainty metrics, which can
detect fine-grained local uncertainties, while also
avoiding sequence-level limitations, such as length
bias and over-correction that arise when collapsing
token distributions into a single score. This area
has received little attention in biomedical summa-
rization, despite its importance in early detection
and avoidance of misleading outputs. We thus at-
tempt to address this gap and present early find-
ings, assessing several biomedical LLMs on sum-
marization of literature related to Cardiovascular
Diseases.

We argue that a trustworthy model should not
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only achieve high factuality but also high confi-
dence, especially for factually correct generations.
We thus examine different factors that could in-
fluence factuality and uncertainty, such as decod-
ing strategies and fine-tuning. We find that the
proposed factuality and confidence metrics signifi-
cantly correlate for some model variants, motivat-
ing further token-level analysis and more dedicated
uncertainty metrics.

2 Related work

Biomedical summarization has become an im-
portant task and recent studies show an increased
interest at it with the proposal of novel approaches
based on LLMs (Xie et al., 2023a). Firstly, (Luo
et al., 2022) introduced a new task of readability
controllable summarization for biomedical docu-
ments, which aims to recognize users’ readability
demands and generate summaries that better suit
their needs. Moreover, (Luo et al., 2023) proposed
a novel citation-aware scientific paper summariza-
tion framework based on a citation graph, able to
accurately locate and incorporate the salient con-
tents from references, as well as capture varying rel-
evance between source papers and their references.
Lastly, (Xie et al., 2023b) addressed the issues of
low-coherence summaries and the lack of explain-
ability in black-box models by proposing a domain
knowledge-enhanced graph topic transformer for
explainable biomedical text summarization.

Evaluation of factuality in biomedical text gen-
eration is an ongoing challenge. (Zha et al., 2023)
introduced AlignScore, a holistic metric, based on
a general function of information alignment of text
and its unified framework, which achieved sub-
stantial improvements over previous metrics. (Min
et al., 2023) advocated a new evaluation metric
that computes factual accuracy from pieces of gen-
erated text and was used to compare the perfor-
mance of different LLMs. Additionally, (Bishop
et al., 2023) proposed a new evaluation framework,
LongDocFACTScore, for detecting human factu-
ality targeting specifically summarized, long doc-
uments. Finally, (Luo et al., 2024) introduced a
human-annotated dataset of LLM-generated sum-
maries of clinical texts (TreatFact) and revealed
significant performance gaps in terms of factuality
for open-source LLMs.

Previous work has comprehensively examined
uncertainty in Natural Language Generation
(NLG) systems (Baan et al., 2023; Hu et al., 2023)
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and has explored strategies to address uncertainty
with the goal of making LL.Ms more trustworthy,
especially in biomedicine (Zerva et al., 2017; Kim
et al., 2025). (Xu et al., 2020) studied summariza-
tion decoders in both blackbox and whitebox ways
by focusing on the entropy of the models’ predic-
tions and revealed that features, such as the sen-
tence position and the syntactic distance between
adjacent pairs of tokens, influence uncertainty. (Ul-
mer et al., 2024) focused on token-level uncertainty
and proposed a method for non-exchangeable con-
formal prediction, which was shown to improve
text generation quality. Finally, (Fadeeva et al.,
2024) introduced a token-level uncertainty method
named Claim Conditioned Probability (CCP), dis-
entangling claim-specific uncertainty from model
decisions on surface forms, etc.

3 Methodology

We propose two different metrics of uncertainty, we
test them to commonly used decoding methods, and
we measure their correlation to factual accuracy.

3.1 Decoding strategies

We evaluate several decoding strategies for LLMs
to identify the one that produces the least uncertain
abstractive summaries. Specifically, we compare:

* Greedy search: At each timestep it selects the
word with the highest probability.

» Top-k sampling: The k most likely words are
filtered and the probability mass is redistributed
among them (Fan et al., 2018).

* Top-p sampling: It chooses from the smallest
possible set of words, whose cumulative prob-
ability exceeds a threshold p. The probability
mass is then redistributed among them.

We note that the token-level uncertainty metrics
(Section 3.3) can be applied across decoding meth-
ods, and, as they do not require sampling several
times, they are also applicable to greedy decoding.

3.2 Factuality metrics

The factuality metrics process the summary (claim)
at the sequence-level and require ground truth (ev-
idence) for computation, which in our case is the
abstract of the article.

HHEM. A series of models for detecting hallu-
cinations in LLMs. These models collect a list
of claims and associated evidence and compute a



score between 0 and 1, where 0 means that the hy-
pothesis is not evidenced at all and 1 means that
the hypothesis is fully supported (Bao et al., 2024).

AlignScore. An automatic factual consistency
metric, built on RoBERTa-large, applying a unified
information alignment function between a claim
and evidence. It splits each claim into sequences
of specific length and each evidence into sentences,
generates pairs, and computes an average score
from the maximum alignment scores of the pairs.
The score is between 0 (no factual accuracy) and 1
(full factual accuracy) (Zha et al., 2023).

3.3 Uncertainty metrics

Below we present the token-level uncertainty met-
rics we use. Even though they compute a value at
each step, we average the values at sequence level.

Token Certainty. As a simple metric of model
certainty at the token level, we use the maximum
probability assigned to any token in the vocabulary
at each decoding step. Thus, token certainty is
defined as:

C' = max P(w;), (1)

7

where P(w;) is the probability assigned to token
w; in the vocabulary.

Token Entropy. Beyond computing token cer-
tainty based on probabilities, we define a comple-
mentary metric based on the entropy of the token
probabilities at each step, hence accounting for the
full probability distribution over the vocabulary. It
is computed as:

\%

E == (P(w;)log(P(w)), )

i=1
where P(w;) is the probability assigned to token

w; in the vocabulary and V is the vocabulary size.

4 Experimental Setup

Below we describe the different features that are
set up for the conduction of the experiments.

4.1 Biomedical LLMs

We use decoder-only LLMs that have been fine-
tuned on biomedical content and give full access to
the parameters for a more focused experimentation
!, Specifically, we select the following variants:

'For all models we use the version available on Hugging-
Face (Wolf et al., 2019).

BioMistral-7B (Labrak et al., 2024) is a suite
of Mistral-based open source models pre-trained
using textual data from PubMed Central Open Ac-
cess. BioMistral is the first biomedical, multilin-
gual LLLM, demonstrating superior performance
compared to existing open-source medical models.
For the scope of our research, we use the default,
7B parameters version.

Meditron3-8B ° is a LLaMA3.1, 8B model from
a suite of open-source LL.Ms adapted to the medi-
cal domain named Meditron3. The models of this
collection are co-designed by a global group of
clinicians, humanitarian practitioners, and data sci-
entists.

Phi4-14B is a decoder-only transformer of Mi-
crosoft built upon a blend of synthetic datasets, data
from filtered public domain websites and acquired
academic books, and Q&A datasets (Abdin et al.,
2024). For compatibility with our work, we make
use of the 14B parameters model from Meditron3,
a model based on the Microsoft one.

Qwen2.5 models are another category of the
Meditron3 collection fine-tuned from the organi-
zation of Qwen (Yang et al., 2024). Evaluation of
used 7B and 14B parameters models showed that
they are a better option for capturing real-world
utility, especially in terms of contextual adaptation
in under-represented settings.

4.2 Cardiology dataset

Cardiovascular diseases (CVDs) are the leading
cause of death worldwide and a major contributor
to reduced quality of life, with their prevalence
driven by lifestyle and healthcare factors (Mensah
et al., 2023; Mendis et al., 2011). Early detection
and effective management are therefore essential to
improving patient outcomes and reducing health-
care burdens. To support research in this area, we
use biomedical literature from PubMed 3. The
dataset that we base our work on originates from
(Cohan et al., 2018), which contains an amount of
PubMed, long, and structured documents and we
keep the same training, validation, and test splits.
Additionally, the majority of the records contain
one or more indexes named Medical Subject Head-
ings (MeSH) #. The condition applied to filter the
appropriate records is checking whether at least
one of the MeSH terms falls into the category “Car-
diovascular Diseases”. Moreover, we ignore the

Zhttps://github.com/OpenMeditron
3https://pubmed.ncbi.nim.nih.gov/
*https://www.ncbi.nlm.nih.gov/mesh/
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records that have more than 8,192 tokens when pro-
cessing, due to memory constraints. After these
filterings, a total of 3,924 records for training, 230
records for validation, and 205 records for infer-
ence remain.

4.3 Input representation

The model input prompt is structured as follows:
PROMPT article RESPONSE abstract
for fine-tuning and:
PROMPT article RESPONSE
for inference, where PROM PT is "Summarize
the following biomedical article in a clear and con-
cise manner, in no more than 300 words:" and
RESPONSE is "Summary:".

4.4 Hyperparameter settings

Our experiments are conducted on an Amazon,
pS.48xlarge instance equipped with 192 vCPUs,
2,048 GiB RAM, and 8 NVIDIA H100 GPUs, each
with 80 GiB of memory. Additionally, LoRA is ap-
plied to the models, and each biomedical model is
fine-tuned with the cardiology dataset on 3 epochs
with a batch size of 1, learning rate of 5°-5, and
the AdamW optimizer. Lastly, for the text genera-
tion strategies, we set K to 50 in the top-k sampling
method and p to 0.70 in the top-p sampling method.

5 Results

In this section we present the comparisons across
the metrics and models described above, account-
ing for different aspects, like the overall perfor-
mance of the LLMs, the effect of fine-tuning on
factuality and uncertainty, as well as differences
between the decoding strategies. Finally, we assess
the correlation between the factuality and uncer-
tainty metrics.

5.1 Model Performance and Contribution of
instruction fine-tuning

At first, we want to observe the level of contribu-
tion of instruction fine-tuning on the models. In
Table 1 we present the experiments using greedy
decoding. For the majority of the models, we do
not observe significant improvements in terms of
factuality and only small improvements in terms
of certainty, because instruction fine-tuning pushes
the LLMs to generate long outputs with knowledge
they haven’t seen before (Wu et al., 2025). How-
ever, as we want to keep the added information into
all the models, we continue the experiments with
the instruction fine-tuned ones.

We then compare the overall performance and
trustworthiness of LLMs, focusing on the fine-
tuned versions. Using the average rank shown in
Table 1, it can be observed that the Qwen models
are the best option across metrics, while Meditron-
8B lags behind in both cases.

5.2 Investigation of decoding strategies

It is also important to understand whether different
decoding strategies can impact the trustworthiness
of a summary. For this comparison, we use the
Qwen-7B and Qwen-14B models, since they out-
perform the rest with greedy decoding. From Table
2, it is evident that the sampling methods generate
the most trustworthy summaries, i.e., outperform
greedy decoding across metrics, with the token-
entropy values decreasing greatly, producing both
more accurate summaries, but also demonstrating
higher model confidence during generation.

5.3 Correlations between the factuality and
uncertainty metrics

As an initiative of finding relationships between
the factuality and uncertainty metrics, we compute
their correlation using Pearson’s r. The sequence-
level and token-level measures are paired with each
other. The results in Table 3 show that the two
types of metrics are correlated and that the most
meaningful insights come from individual models,
not decoding strategies alone.

6 Conclusions & Future Work

We evaluated the trustworthiness of state-of-the-art
biomedical LLMs on summarization using both fac-
tuality and token-level uncertainty metrics. Results
showed that model choice and decoding strategy
influenced trustworthiness, even though we applied
standard values on the sampling strategies for K
and p, with Qwen variants performing best and
sampling-based methods, especially top-p, produc-
ing more factual and confident summaries.
Several promising directions for future work in-
clude expanding the evaluation to larger and more
diverse biomedical datasets to improve statistical
reliability and test the generalizability of token-
level uncertainty metrics across domains. Another
direction is investigating different decoding hyper-
parameters to gain insights into how generation set-
tings affect factuality and uncertainty. Finally, eval-
uating larger biomedical LLMs, including closed-
source models, and incorporating human evalua-
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Model HHEM AlignScore Token Certainty Token Entropy Average Rank
7S FT 7S FT YA FT 7S FT Fact. Uncert.
BioMistral-7B  0.1807 0.1915 0.4493 0.3364 0.7736 0.6746 0.4007 0.5239 3 2.5
Meditron-8B 0.1991 0.1994 0.3104 0.3112 0.6153 0.6239 2.1242 2.0916 4 5
Phi-14B 0.2420 0.2415 0.2319 0.2313 0.7487 0.7450 1.5654 1.5900 3 35
Qwen-7B 0.2263 0.2251 0.3263 0.3266 0.7445 0.7471 0.9976 0.9868 2.5 2
Qwen-14B 0.2367 0.2324 03158 0.3131 0.7678 0.7709 1.1612 1.1448 2.5 2

Table 1: Comparison of factuality and uncertainty across LLMs and effect of instruction fine-tuning. Bold values
represent the best score for each metric and underlined ones the best score for each column. Results of zero-shot
models are shown in the ZS columns and these of fine-tuned ones in the FT. Average ranks are shown separately for

factuality (Fact.) and uncertainty (Uncert.).

Method HHEM AlignScore Certainty Entropy

g Greedy 0.2251 0.3266 0.7471  0.9868
& Top-k  0.2206  0.3161 0.7698  0.2361
5 Top-p 02354  0.3369 0.7988  0.1577
& Greedy 02324 03131 0.7709  1.1448
‘; Top-k 02375  0.3496 0.7343  0.3265
£ Top-p 0.2414  0.3416 0.7868  0.2033
=4

Table 2: Decoding strategy comparison for Qwen-
7B/14B on factuality and uncertainty. Bold marks the
best per metric within each model.

Correlation Model r p

Certainty-HHEM Meditron-8B 1.0 0.00
Entropy-AlignScore Meditron-8B  -0.99 0.01
Certainty- Entropy ~ BioMistral-7B  -0.96  0.04
Entropy-AlignScore Phi-14B -0.96 0.04

Table 3: Observation of Pearson r correlation between
the factuality and uncertainty metrics.

tion, along with automatic metrics, would further
strengthen the reliability of the results.

Limitations

Although our work gives a great initiative for factu-
ality and token-level uncertainty quantification in
biomedical applications, there are still some areas
that could be explored. At first, token-level uncer-
tainty metrics can be used to other specializations
of medicine in the future, other than cardiology, in
order to proof the generalization of our work. Addi-
tionally, more descriptive, token-level metrics can
be incorporated into the experiments for further un-
certainty detection and quantification. Moreover, as
we use Pearson coefficients, which do not account
for confounding factors, like model architecture,
decoding strategy, or dataset characteristics, some
correlations may reflect model-level biases, rather

than true causal relationships. The lack of compar-
ison of automatic metrics to human evaluation is
another limitation, which could strength the paper
claims, if conducted. Lastly, due to the fact that
factuality is a very important topic, future enhance-
ments could investigate deeply factual accuracy
and relativity to uncertainty.
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A Examples of summaries with low and
high uncertainty

Below we present the least and most uncertain
summaries of different cases using the fine-tuned,
Qwen-7B model.

Greedy search (Least uncertain)

PMCID: PMC2913399

Summary: A network is generated by deter-
mining the first- and second - order interactions
of cd proteins associated with a given morpho-
logical subgroup in a human protein interaction
network consisting of refined experimental pro-
teomics data . This network is described in high
detail in lage et al ( 2007 , 2008 ) , and online (
http://www.cbs.dtu.dk/suppl/dgf/ ) . Interactions

of the cd proteins are integrated into a network
by always including direct interactions between
cd proteins , and only including indirect interac-
tions mediated through proteins with q percent of
its interactions to the cd set . Various thresholds
for q are iteratively tested and value of q for the
final network is chosen based on which value gives
the optimal network significance , this procedure
is described in detail in bergholdt et al ( 2007 )
and d’hertog et al ( 2007 ) . The method for deter-
mining network significances can be seen below
. Detailed views of the networks can be seen in
supplementary figures sl , s2 , s3 and s4 . The sig-
nificance of each of the generated 19 networks was
determined by randomization testing as described
in detail earlier ( bergholdt et al , 2007 ; d’hertog
et al , 2007 ) . Specifically , for an input set of
ninput proteins yielding an interaction network (
connected component ) with g input proteins and t
total proteins , a network score ( ns

Greedy search (Most uncertain)

PMCID: PMC4635763

Summary: A 67-year-old woman presented to
the emergency department with a sudden collapse
and was found to have a cardiac myxoma, a rare tu-
mor of the heart. The patient’s initial presentation
was characterized by ST-elevation myocardial in-
farction, but her coronary arteries appeared normal
on immediate angiography. She also experienced a
stroke, which is relatively common in cardiac myx-
oma patients. The patient underwent successful
surgical resection of the myxoma, and her condi-
tion improved. This case highlights the importance
of basic echocardiography in diagnosing cardiac
myxomas and emphasizes the need for timely sur-
gical intervention to prevent complications.

Top-k sampling (Least uncertain)

PMCID: PMC3297038

Summary: There are similarities between chil-
dren and adults suffering from heart failure, such as
the preferred pharmacological treatment, the use of
pacemakers and heart transplants, the inability of
the patient to reach the predicted heart rate for the
patient’s age during cardiopulmonary exercise test-
ing, and the ergoespirometric response under simi-
lar clinical conditions. In adults, endothelial dys-
function is related to the development of diastolic
dysfunction, Chagas disease, left ventricular hy-
pertrophy, ischemic cardiomyopathy, heart failure,
obesity, type 1 diabetes, hyperlipidemia, arterial
hypertension, peripheral arterial disease, chronic
kidney disease, and atherosclerosis because the
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dysfunction predisposes the vasculature to vasocon-
striction, leukocyte adherence, platelet activation,
and vascular inflammation. Nevertheless, there is a
lack of data regarding endothelial function in chil-
dren with cardiomyopathy. The severity of endothe-
lial dysfunction is related to the cardiovascular risk,
the severity of cardiovascular symptoms, and the
inability to exercise and represents a predictor for
cardiac transplant and death. It is known that dis-
eases, such as Kawasaki’s disease, hyperlipidemia,
obesity, and type 1 diabetes, play important roles
in systemic inflammation and endothelial dysfunc-
tion. These diseases may increase the likelihood of
cardiovascular events and may predispose children
to the development of cardiomyopathy. Based on
these considerations, we reviewed the published
literature on endothelial function in pre-pubertal
children to evaluate the endothelial function in pre-
pub

Top-k sampling (Most uncertain)

PMCID: PMC5290108

Summary: Intra-amniotic inflammation may in-
crease the risk of adverse perinatal outcomes in
preterm infants, but this risk is mainly due to low
gestational age at birth rather than direct effects of
inflammation. Culture-proven intra-amniotic infec-
tion does not appear to be a risk factor for adverse
perinatal outcomes.

Top-p sampling (Least uncertain)

PMCID: PMC4666010

Summary: this is a retrospective cross - sectional
study . there were 4,377 participants , all of whom
underwent cardiac ct in a health promotion center
at gangnam severance hospital ( seoul , korea ) be-
tween january 2008 and february 2013 . from 4,377
participants , we excluded men (n=2,584 ) and pre-
menopausal women ( n =748 ) . postmenopausal
women 50 years or older with no menstrual periods
for more than 12 consecutive months and women
with elevated follicle - stimulating hormone levels
(>30iu/1) were included in this study ( n = 1,045
) . women with diabetes mellitus (n =59 ), exces-
sive alcohol consumption (n =7 ), viral hepatitis
( positive results for hepatitis b surface antigen or
anti hepatitis c virus ; n = 19 ) , liver cirrhosis or
malignancy on ultrasonography (n=6), and self
- reported or medically verified history of cvd (n
=35 ) were excluded from this study . height and
weight were measured , and body mass index ( bmi
) was calculated by dividing weight ( kg ) by the
square of height (m ) . lifestyle , personal medical
history of acute and

Top-p sampling (Most uncertain)

PMCID: PMC5192323

Summary: The present study demonstrates that
plasma CTRP9 levels are independently and posi-
tively associated with carotid intima-media thick-
ness in patients with type 2 diabetes without
chronic kidney disease. This study further proposes
that plasma CTRP9 level is a potential biomarker of
atherosclerosis in type 2 diabetes patients without
renal complications.
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Causal Understanding by LLMs: The Role of Uncertainty

Oscar Lithgow-Serrano!”, Vani Kanjirangat!*, Alessandro Antonucci’
ISUPSI, IDSIA, Switzerland

Abstract

Recent papers show LLMs achieve near-
random accuracy in causal relation classifica-
tion, raising questions about whether such fail-
ures arise from limited pretraining exposure
or deeper representational gaps. We investi-
gate this under uncertainty-based evaluation,
testing whether pretraining exposure to causal
examples improves causal understanding us-
ing >18K PubMed sentences—half from The
Pile corpus, half post-2024—across seven mod-
els (Pythia-1.4B/7B/12B, GPT-J-6B, Dolly-
7B/12B, Qwen-7B). We analyze model behav-
ior through: (i) causal classification, where
the model identifies causal relationships in
text, and (ii) verbatim memorization probing,
where we assess whether the model prefers
previously seen causal statements over their
paraphrases. Models perform four-way clas-
sification (direct/conditional/correlational/no-
relationship) and select between originals and
their generated paraphrases. Results show al-
most identical accuracy on seen/unseen sen-
tences (p>0.05), no memorization bias (24.8%
original selection), output distribution over the
possible options almost flat — with entropic
values near the maximum (1.35/1.39), confirm-
ing random guessing. Instruction-tuned models
show severe miscalibration (Qwen: >95% con-
fidence, 32.8% accuracy, ECE=0.49). Condi-
tional relations induce highest entropy (+11%
vs direct). These findings suggest that failures
in causal understanding arise from the lack of
structured causal representation, rather than in-
sufficient exposure to causal examples during
pretraining.

1 Introduction

Causal understanding from text, intended here as
the ability of an LLM to identify whether a text in-
cludes a statement about a causal relation between
two entities, and which is the causal direction of
such a relation, is a critical task for modern natural

“Equal contribution

language understanding. Previous work demon-
strates that Large Language Models (LLMs) strug-
gle with such causal tasks, achieving near-random
performance on benchmarks requiring causal in-
ference (Ashwani et al., 2024; Feng et al., 2024;
Guo et al., 2017; Joshi et al., 2024; Kanjirangat
et al., 2024). Recent works showed the importance
of analyzing the underlying model uncertainty to
achieve better results, or at least to understand the
reasons for poor performances (Cui et al., 2025;
Shorinwa et al., 2025). From this perspective, a
very promising direction is provided by distinguish-
ing between different sources of uncertainty, such
as epistemic, corresponding to the uncertainty re-
lated to lack of knowledge about the underlying
model, and aleatoric, that is the intrinsic ambi-
guity of the process (Hiillermeier and Waegeman,
2021). Another crucial aspect is how the presence
of seen versus unseen data— i.e., content observed
during pretraining or familiar observations — af-
fects uncertainty and model behavior in terms of
causal understanding. While uncertainty quantifi-
cation in LLMs has been explored in prior work
(He et al., 2025; Liu et al., 2025; Yadkori et al.,
2024), the link between uncertainty sources and
familiar causal patterns in the context of causal
understanding remains underexamined.

We design controlled experiments to examine
how these uncertainty sources arise in the context
of causal understanding. We consider memoriza-
tion as one of the tasks to understand the effect
of seen verbatim causal patterns, in line with the
uncertainty sources. Using scientific conclusion
sentences from PubMed abstracts, we test whether
models trained on these exact texts (via The Pile
dataset, Gao et al. (2020)) show reduced uncer-
tainty compared to similar but unseen texts and, if
this has an impact on their accuracy.

Our approach uses two complementary tests for
memorization effects. First, if models truly under-
stood causal patterns from training (not just sur-
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face forms), they should exhibit substantially lower
uncertainty and higher accuracy on familiar data
(i.e., training data) versus unseen data. Second, if
only surface memorization occurred, we would ex-
pect substantial differences in uncertainty between
original sentences and their paraphrases within the
training dataset. In a nutshell, we use uncertainty
metrics to explore memorization effects in causal
understanding and whether this reflects representa-
tional limitations rather than data exposure.

Our contributions: We propose uncertainty-
based quantification (i.e., entropy, ECE/ACE) as
a way for analyzing LLMs’ causal understanding
competence, linking calibration metrics to perfor-
mance on causal tasks. We conduct experiments to
examine how uncertainty sources, including mem-
orization of verbatim causal statements, influence
causal understanding in LLMs. Within this frame-
work, we show: (i) Exposure to training data does
not guarantee memorization or improved perfor-
mance — models show identical accuracy on seen
versus unseen texts; (ii) Identify overconfidence
in most performing models, with high confidence
predictions despite very low accuracy; (iii) Quan-
tify that conditional causal relationships induce
the highest uncertainty, suggesting models lack nu-
anced causal representations; (iv) In the experi-
ments, we consider two datasets, an existing one
from the literature and an extension constructed by
us to be used for testing memorization and causal
understanding.

Our experimental findings indicate that uncer-
tainty in LLM causal understanding reflects epis-
temic limitations rather than insufficient exposure
to training examples. Models do not leverage al-
ready observed patterns for causal tasks, instead
exhibiting systematic uncertainty that correlates
with task complexity rather than data familiarity.

2 Related Work

Recent work examines uncertainty sources in
LLMs. Kirchhof et al. (2025) demonstrates that
models can assess their uncertainty through verbal-
ized confidence. Giulianelli et al. (2023) proposes
semantic entropy to measure uncertainty in free-
form generation. However, these approaches focus
on general tasks rather than structured reasoning.
Wang et al. (2024) shows LLMs struggle with cal-
ibrated uncertainty in knowledge-intensive tasks,
consistent with our findings in causal reasoning.
Memorization’s role in LLM capabilities re-

mains debated. Carlini et al. (2021) demonstrate
that models memorize training data verbatim, while
(Li et al., 2024; Zhang et al., 2023) show this mem-
orization can be beneficial. Tirumala et al. (2022)
quantifies memorization across model scales. Other
findings show that memorization alone cannot ex-
plain model capabilities, requiring 100+ exact rep-
etitions for reliable recall (Kandpal et al., 2023; Li
et al., 2024).

While prior work evaluates causal understand-
ing in LLMs through various benchmarks, none
have examined it through the lens of uncertainty
sources and verbatim memorization recalls. Our
work extends this by showing memorization fails to
improve structured reasoning tasks. Our approach
uniquely combines controlled exposure to training
data with uncertainty quantification, revealing that
causal understanding requires more than pattern
memorization, especially when the complexity in-
creases.

The rest of the paper is organized as follows. In
Section 3, we present the datasets used for the ex-
perimental study and analyses. Section 4 presents
the detailed discussion of the proposed uncertainty-
based quantification, and the experimental setup is
presented in Section 5. Results and analysis are
reported in Section 6, with detailed discussion in
Section 7.

3 Data Construction

First, we used two datasets of sentences labeled
with their causal types to test the impact of expo-
sure to causal patterns during pretraining on the
accuracy and uncertainty of causal understanding
tasks with LLMs.

We used Yu et al. (2019)’s dataset, consisting
of 3,061 sentences from science findings classified
into four causal relationship types: direct causal,
conditional causal, correlational, or no relationship.
The original dataset lacked source abstracts for the
extracted sentences. As these were needed to train a
classifier for extending the dataset with more recent
abstracts, we searched PubMed using near-exact
sentence matches. This yielded a filtered dataset
with the following distribution: direct causal (234),
conditional causal (113), correlational (489), and
no relationship (598). This resulting dataset is here-
after referred to as Original. Although filtering
removed almost half of the entries, the label dis-
tribution remains highly similar to the original (to-
tal variation distance = 0.026). Future work will
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consider more sophisticated matching schemes to
preserve more data.

To control for verbatim memorization, we cre-
ated an extension from PubMed abstracts published
after 2024, beyond our models’ training cutoff.
We use a BERT-based classifier (F1-score = 0.97)
trained on the original annotations to label 5,400
new sentences, then subsample to match the class
distribution of our Original dataset. This resulting
dataset is hereafter referred to as Newer

We complement the datasets by generating, with
GPT-40-mini, for each sentence: (i) five para-
phrases especially focused on preserving the causal
relationship; (ii) one negation that reverses the
causal relationship; (iii) two questions that probe
understanding of the causal content. Considering
the original plus paraphrase resulted in 18,366 sen-
tences.

Since both datasets are used in Multiple Choice
Question Answering (MCQA) setups, we hereafter
refer to the original-based dataset as MCQA and
the newer one as MCQA-newer. For instance, the
samples generated for the Causal Type Classifica-
tion Task are depicted in Figure 1. Examples from
the generated dataset can be found in Appendix A.

4 Uncertainty Quantification

We focus on LLMs answering multiple-choice
questions. Let ) denote the set of possible options
and Y the corresponding variable. The probabil-
ity distribution over the possible choices P(Y') is
assumed to be available. We quantify uncertainty
through multiple metrics.

Entropy. We can describe the model uncertainty
related to this task by the entropy (Shannon, 1948),
ie, H = —3% .y P(y)InP(y). This is a non-
negative function taking the value of zero for de-
terministic distributions, and its maximum value
for uniform distributions. In the case of quaternary
variables, the value of the maximum is 1.39.

Calibration. We bin predictions by confidence
level and compute actual accuracy within each bin.
Perfect calibration yields a diagonal relationship
between confidence and accuracy. We then com-
pute Expected Calibration Error (ECE) and Adap-
tive Calibration Error (ACE) (Nixon et al., 2019a;
Posocco and Bonnefoy, 2021).

ECE measures how well a model’s estimated
probabilities match the observed probabilities. A
perfectly calibrated model has zero ECE. It is com-

puted as the weighted average of the absolute dif-
ferences between average accuracy and average
confidence.

ECE = Z'

Where, R is the number of bins (typically fixed-
width over the interval [0,1]), B, is the set of
indices of predictions with confidence scores in
the r-th bin, n is the total number of samples,
acc(B,) = ﬁ > ien, 1(i = yi) is the accuracy
in bin r, conf(B,) = lBilr\ > icB, Di is the average
(k)

confidence in bin 7, p; = maxyp, ’ is the pre-
dicted confidence for sample ¢ and k is the number
of labels/classes.

To overcome the limitations of ECE, such as
the bias-variance trade-off induced by binning ap-
proaches and its alignment to binary-class settings
(Guo et al., 2017), ACE was proposed, which uti-
lizes flexible binning (Nixon et al., 2019b). ACE
is motivated by the bias-variance trade-off, which
suggests that an effective estimate of overall cali-
bration error should emphasize regions where pre-
dictions are concentrated, while placing less weight
on sparsely populated regions. ACE takes as input
the predictions P, correct labels, and a number of
ranges R:

lacc(By) — conf(B,)| (1)

—conf(B,)| (2

Where, R is the number of bins (adaptively cho-
sen so each bin contains roughly the same number
of samples), B,, acc(B,), conf(B,), and p; are
defined as above.

Consistency. For sentences with multiple para-
phrases, we measure whether models make con-
sistent predictions across semantically equivalent
inputs.

Statistical Tests. We apply chi-square tests for
original versus paraphrase performance, t-tests for
dataset comparisons, and ANOVA for differences
across causal types.

5 Experimental Design

We specifically select models confirmed to be
trained on The Pile dataset (Gao et al., 2020; Phang
et al., 2022). Since PubMed abstracts used in Yu
et al. (2019) are included in The Pile, these mod-
els necessarily encountered our MCQA sentences

210



{"qa_idx": @, "context”: "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.”,

"text": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale."”,

"text_type": @, "causal_class_label”: 0,

"choices”: [{"label”: 1, "text": "Direct Causal”, "description”: "The statement explicitly states that one variable directly causes changes in another.”},
{"label”: 3, "text"”: "Correlational”, "description”: "The statement describes an association between variables, but no causation is

explicitly stated."},

{"label”: 2, "text": "Conditional Causal”, "description”: "The statement suggests causation but includes uncertainty through hedging words or
modal expressions."},

{"label”: @, "text": "No Relationship”, "description”: "No correlation or causation relationship is mentioned."},

{"label”: 4, "text"”: "Other”, "description”: ""}]

Figure 1: Examples from the constructed data (Task 1) - Casual Type Classification

during pretraining. As a control, we also include
a model not trained on The Pile, allowing us to
distinguish data exposure effects from other con-
founders.

In total, we evaluate seven models spanning dif-
ferent architectures, training data, and training ap-
proaches. Base pretrained models include pythia
variants (1.4B, 7B, 12B parameters) and gpt-j-6b,
all trained on The Pile without instruction tuning.
Instruction-tuned models include dolly-v2 variants
(7B, 12B), which use pythia as base models but
undergo additional instruction tuning, and qwen-
7b-base, an instruction-tuned model not trained on
The Pile '. This selection allows us to isolate the ef-
fects of: (i) exposure to training data (The Pile), (ii)
model scale, and (iii) instruction tuning on causal
understanding and uncertainty.

To investigate the link between uncertainty
sources and familiar causal patterns in the context
of causal understanding, we focus on two comple-
mentary tasks.

Task 1: Causal Type Classification. Given a
sentence s € S, where S represents the set of sci-
entific conclusion sentences, the model M must
classify the causal relationship into one of four pre-
defined classes: Y = {causal, conditional causal,
correlational, no relationship}. Formally, the model
applies a mapping function:

fu:8=Y, 3)

returning the predicted class § := fs(s) for the
sentence s. In particular, we are interested in prob-
abilistic models, returning a probability distribu-
tion over the four causal types. In these cases, the
model’s prediction is:

g = argmax Pys(yls) 4)
yey

'There is also no explicit claim of biomedical literature in
the training data, but exposure to PubMed abstracts through
other sources cannot be completely ruled out.
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This directly tests causal understanding with a ran-
dom baseline of % = 25%.

Task 2: Verbatim Memorization Probing.
Following Duarte et al. (2024)’s hypothesis that
models preferentially select exact text included
in their training data (verbatim recall), we test
for memorization bias in the context of seen-
versus-unseen text. Given a question ¢ derived
from an original sentence so € XoriginaluNewer
and a set of semantically equivalent paraphrases
P = {so,s1,...,5,} where meaning(s;) =
meaning(sg) for all ¢, where meaning(.) indicates
the semantics of the sentence, the model must se-
lect the most appropriate answer:

§ = argmax Py/(si|q) (5)
s; €P

Under the memorization hypothesis, we expect:

Par(solg) > Pu(silg) Vie{l,...,n} (6)

when sg was seen during training. In contrast, with-
out memorization bias, we expect uniform selection
probability: Py/(s;|q) ~ ﬁ for all <.

To mitigate documented selection biases (e.g.,
positional bias) in multiple-choice questions, we
randomize the order of answer options for each
question. All models are self-hosted and queried
via VLLM (Kwon et al., 2023) API with temper-
ature 0.0 for deterministic outputs. For each pre-
diction, we extract: (i) the selected choice, (ii) the
probability distribution over choices, (iii) the corre-
sponding entropy, and (iv) the maximum probabil-
ity (confidence).

Memorization Assumptions. We acknowledge
that presence in The Pile does not guarantee memo-
rization. Previous work (Carlini et al., 2023; Kand-
pal et al., 2023) shows reliable memorization re-
quires 100+ exact repetitions during training. Our
design tests whether exposure (seen patterns) —
even without guaranteed memorization—provides
any advantage for causal reasoning.




6 Results and Analysis

6.1 Pretraining-observance Does Not Reduce
Uncertainty

Models show no performance advantage on train-
ing data. Across all models trained on The Pile,
accuracy differs by <1.5% between MCQA and
MCQA-newer (Table 1). All Pile-trained mod-
els with high entropy (>1.3) perform near random
chance (25%) but with appropriate uncertainty. Sta-
tistical significance tests confirm these observations
(Table 2 and in Appendix B.2). T-tests compar-
ing original versus paraphrase performance yield
p-values > 0.05 for all models, with negligible ef-
fect sizes (Cohen’s d < 0.2). Dataset comparisons
(MCQA vs MCQA-newer) show similar results
with small effect sizes (Idl < 0.2), indicating no
systematic advantage on the data observed in pre-
training, suggesting that the presence of an example
in the pre-training corpus does not reliably lead to
verbatim recall or systematic memorization that
could benefit accuracy on the task.

Figure 2 reveals that entropy remains consis-
tently high across both datasets. Pythia and GPT-J
models exhibit entropy near maximum (1.3-1.35),
indicating near-random guessing regardless of data
familiarity. Only qwen-7b-base, not trained on 7he
Pile, achieves lower entropy (0.29), suggesting bet-
ter causal understanding is likely attributable to
model architecture rather than mere training data
exposure.

To better understand these patterns, we also con-
ducted statistical tests on entropy measures in Ta-
ble 2 (see also B.2 in the appendix). The results re-
veal a striking divergence: while accuracy remains
stable across original and paraphrased sentences,
entropy patterns differ significantly (p < 0.001 for
pythia and dolly models). This divergence indicates
that models exhibit different types of uncertainty
for familiar versus novel phrasings, even when per-
forming equally poorly. Specifically, pythia models
show higher entropy (more uniform distributions)
on paraphrases, suggesting they become more un-
certain when surface forms change. This pattern
persists despite no accuracy improvement on orig-
inal sentences, providing strong evidence against
functional memorization. The MCQA vs MCQA-
newer comparisons support this: entropy differ-
ences are significant for several models (pythia-7b,
gpt-j-6b, dolly models) while accuracy remains
constant.

Models develop different uncertainty profiles for

familiar versus unfamiliar datasets without corre-
sponding performance benefits. Only qwen-7b-
base approaches significance for accuracy on origi-
nal vs paraphrase (p = 0.082), suggesting instruc-
tion tuning may introduce subtle biases toward fa-
miliar phrasings. However, the effect size remains
negligible (d = 0.023). ANOVA tests on the en-
tropy measures reveal also significant differences
across causal types (p < 0.001), confirming that
uncertainty patterns reflect task complexity rather
than data familiarity (details of the probability and
entropy assignments are shown in Appendix B.1.

6.2 Two Distinct Uncertainty Profiles

Figure 3 reveals two distinct calibration patterns:
base models maintain appropriate uncertainty de-
spite 25% accuracy, while instruction-tuned models
exhibit overconfidence.

The distribution of prediction confidence (see
Appendix B.4) reveals two distinct patterns. Pile-
trained models (pythia, gpt-j) consistently as-
sign low confidence to their predictions, with
probability distributions peaked around 0.30-
0.35—appropriately uncertain given their near-
random accuracy. These models maintain ECE
< 0.16, indicating well-calibrated uncertainty.

In contrast, qwen-7b-base exhibits overconfi-
dence, with most predictions assigned >95% proba-
bility despite achieving only 32.8% accuracy. This
confidence-accuracy gap yields ECE=0.49 versus
0.13 for base models—a 3.8x increase in calibra-
tion error. Dolly models, with accuracies between
21% and 23%, show bimodal confidence distribu-
tions but with very different calibration error pat-
terns depending on the model size, i.e., the 7B ver-
sion has an ECE of 0.36 and ACE of 0.23, whereas
12B although less accurate than the 7B, presents the
highest calibration error of all models (ECE=0.56,
ACE=0.31).

These observations suggest that in causal un-
derstanding tasks, partial competence breeds false
confidence. Models performing near random main-
tain appropriate low confidence, while the best-
performing model develops overconfidence—an
especially concerning trait in applications that de-
mand reliable causal inference.

6.3 Instruction Tuning Creates
Overconfidence

Our model selection reveals an important factor:
instruction tuning fundamentally alters uncertainty
behavior in causal understanding. Base pretrained
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Model Accuracy Entropy ECE ACE Accuracy A
(Overall) (Mean+SD) Original  Paraphrase  (O-P)
pythia-1.4b 0.248 1.34+0.05  0.067 0.136 0.245 0.249 -0.004
pythia-7b 0.251 1.324£0.06  0.131 0.142 0.249 0.252 -0.003
pythia-12b 0.231 1.3240.07  0.149 0.151 0.231 0.231 0.000
gpt-j-6b 0.175 1.35£0.04  0.151 0.158 0.169 0.177 -0.008
dolly-v2-7b 0.240 0914+0.19  0.363 0.239 0.240 0.240 0.000
dolly-v2-12b 0.212 0.53+0.28 0.564 0.312 0.202 0.215 -0.013
gwen-7b-base 0.328 0.2940.35 0493 0.275 0.339 0.326 0.013

Table 1: Summary statistics for causal type classification task. ECE (lower is better). ACE (lower is better).
Worst-performing models show best calibration, while better-performing models exhibit overconfidence.

PEntropy
(Entropy of the choice probabilities In(4 choices)~=1.3 -> uniform distribution, no certainty)

Dataset: mecqa

Dataset: mcga_newer

N

had s, t+ $1
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Figure 2: Entropy distributions across models. Higher values indicate greater uncertainty (max=1.39 for
random guessing). Qwen-7b shows low entropy (high confidence) while Pythia/GPT-J show near-maximum

entropy.
Accuracy Entropy
Model OvP  MvVN OvP MvN
pythia-1.4b 0.744 0.604 <0.001 0.573
pythia-7b 0.859 0.708 <0.001 <0.001
pythia-12b 0.823 0.506 <0.001 0.513
gpt-j-6b 0.670 0.655 0.787  <0.001
dolly-v2-7b 0.625 0.589 <0.001 <0.001
dolly-v2-12b  0.525 0.001 <0.001  0.004
qwen-7b-base  0.082 0.672  0.123  <0.001

Table 2: Statistical significance tests (p-values). OvP:
Original vs Paraphrase; MvN: MCQA vs MCQA-Newer.
Bold indicates p < 0.05. Note the divergence between
accuracy and entropy tests, revealing that uncertainty
patterns differ from performance patterns.

models (pythia variants, gpt-j-6b) exhibit high en-
tropy (~1.35) with appropriately low confidence
(30-35%), yielding good calibration despite poor
performance.

However, instruction-tuned models show differ-
ent patterns. Dolly models—fine-tuned from pythia
bases on instruction-following data—develop mod-

erate confidence (40-60%) without corresponding
accuracy improvements. Most markedly, qwen-7b-
base exhibits overconfidence (>95%) while achiev-
ing only marginally better accuracy (32.8%).

This divergence offers valuable insights into
dolly models: identical pretrained weights (pythia)
produce different uncertainty profiles after in-
struction tuning. Compare pythia-7b (ECE=0.13,
entropy=1.32) with dolly-v2-7b (ECE=0.36, en-
tropy=0.92)—instruction tuning does not even half
the entropy while almost tripling the calibration
error.

These results suggest instruction tuning teaches
models to be confident in their responses, even
when this confidence is unjustified. While this may
improve user experience in conversational settings,
it creates problematic overconfidence in domains
requiring accurate uncertainty quantification, such
as causal-language related tasks.
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Figure 3: Calibration plots, confidence vs accuracy.

Perfect calibration follows the diagonal. Base models

(Pythia/GPT-J) show good calibration despite poor accuracy. Instruction-tuned models (Qwen/Dolly) show

overconfidence.

6.4 Uncertainty Varies by Causal Complexity

Uncertainty patterns differ across causal relation-
ship types. Conditional causal statements induce
the highest entropy across all models, while direct
causal relationships show moderately lower uncer-
tainty. Correlational statements, despite being non-
causal, often receive more confident predictions
than conditional causal ones.

ANOVA confirms significant differences in en-
tropy across causal types (p < 0.001 for all models).
This pattern persists across both original and para-
phrase sentences, indicating that uncertainty arises
from conceptual difficulty rather than surface-level
confusion.

Causal Type Mean Entropy  Accuracy
Direct Causal 1.15+£0.42 0.31
Conditional Causal 1.284+0.29 0.19
Correlational 1.09£0.45 0.26
No Relationship 1.124+0.43 0.22

Table 3: Performance breakdown by causal relationship
type (averaged across all models). Conditional causal
statements show highest entropy and lowest accuracy.

Table 3 quantifies this pattern: conditional causal
statements exhibit 11% higher entropy than direct
causal statements, approaching maximum entropy.
This suggests that models struggle particularly with
nuanced causal identifications involving conditions
or moderating factors. Detailed analysis can be
found in Appendix B.5.

6.5 Identifying Inherently Ambiguous
Questions

We analyzed the results based on the intuition that
if all paraphrases of a sentence get similar wrong
predictions, it might indicate inherent ambiguity
(aleatoric uncertainty).

This paraphrase consistency analysis reveals a
subset of questions where all models consistently
select the same incorrect answer across paraphrases
(i.e., consistency > 0.7 and accuracy < 0.3). These
represent 60-75% of questions depending on the
model (Figure 4). High consistency on wrong an-
swers suggests inherent ambiguity in the task rather
than model-specific confusion.

A manual analysis of misclassified instances re-
veals recurring linguistic patterns, including the
use of hedging expressions (e.g., “may influence,”
“suggests association”) and complex multi-clause
constructions. These features are associated with
misclassification across model families.

6.6 No Evidence on Verbatim Recalls with
Pre-training Exposures

The verbatim memorization probing (task 2) pro-
vides complementary evidence. When presented
with questions about causal relationships and asked
to choose between original sentences and para-
phrases (all semantically correct), models show no
preference for the original form. Selection rates for
original sentences average 24.8% (95% CI: [24.2%,
25.4%]) across all Pile-trained models, statistically
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Figure 4: Ambiguous questions Proportion of ques-
tions with consistent wrong answers across paraphrases,
indicating inherent ambiguity.

indistinguishable from the 25% random baseline
(chi-square test, p > 0.05).

Entropy analysis of this task reveals similar pat-
terns: models exhibit high uncertainty (mean en-
tropy 1.31) regardless of whether choosing between
already seen or potentially novel phrasings. This
task design, which controls for correctness while
varying surface form, shows that models do not
leverage already seen patterns even when given the
opportunity.

This null result holds even when examining only
high-frequency scientific phrases likely repeated
many times in training data. Models treat original
and paraphrase sentences identically, confirming
that surface-level causal patterns exposed during
pretraining may not contribute to causal understand-
ing (details of probabilities and entropy analysis is
in Appendix C).

6.7 Consistency Across Semantic Paraphrases

To further test verbatim recall, we analyze predic-
tion consistency across paraphrases of the same
sentence. If models rely on "seen/recalled" pat-
terns, we expect higher consistency for original
sentences versus their paraphrases.

For each sentence with multiple probes, we com-
puted Pearson correlation between choice prob-
ability vectors to assess confidence consistency,
Spearman rank correlation to evaluate preference
consistency by comparing ranked orders, and KL
divergence to quantify overall distributional shifts
between probabilistic outputs (see Appendix B.3
for details).

Only pretrained models exhibit moderate KL di-
vergence (KL < 0.15), suggesting relatively stable
probabilistic behavior across input variations. How-
ever, larger and instruction-tuned models such as
gwen-7b-base and dolly models exhibit higher KL
divergence (>0.5 for qwen and >1.0 for dolly mod-

els), indicating greater sensitivity to paraphrasing
and less consistency in their output distributions,
i.e., unstable predictions across semantically equiv-
alent inputs. This pattern holds across both the
MCQA and MCQA-newer datasets.

Correlation analysis of probability vectors and
ranked order reveals weak consistency (mean Pear-
son and Spearman p < 0.2) across all models but
qwen-7b-base (Pearson p > 0.71 and Spearman p >
0.73).

Critically, consistency patterns do not differ be-
tween MCQA (training data) and MCQA-newer
(unseen data). The absence of improved consis-
tency on training data provides evidence against
memorization-based reasoning. Models treat se-
mantically equivalent sentences as unrelated inputs,
confirming they lack robust causal understanding
rather than merely forgetting training examples.

7 Discussion

Our experimental findings show that uncertainty in
causal tasks stems from absent causal understand-
ing rather than insufficient data exposure (Figure
5). Three key insights emerge: First, the indepen-
dence of performance from training data exposure
suggests that simply scaling datasets will not re-
solve causal understanding deficits. Models require
architectural innovations or training objectives that
explicitly target causal inference. Second, overcon-
fidence from instruction tuning poses deployment
risks. The shift from calibrated uncertainty (base
models: ECE=0.13) to overconfidence (instruction-
tuned: ECE=0.49) indicates fine-tuning teaches
models to suppress appropriate uncertainty. Third,
the particular difficulty with conditional causal rela-
tionships indicates that models lack compositional
reasoning about causality. While they may rec-
ognize simple cause-and-effect patterns, they fail
when conditions, moderators, or exceptions are in-
troduced.

These results suggest that causal understanding
in LLMs requires fundamental advances beyond
current pretraining paradigms. Memorization, even
at scale, cannot substitute for genuine causal knowl-
edge.

8 Conclusion

In this work, we focused on analyzing the criti-
cal limitations in the causal understanding abili-
ties of large language models (LLMs). Through
a controlled evaluation combining causal clas-
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Figure 5: Entropy vs Accuracy. Ideal models appear top-left (accurate and confident). Most models cluster

bottom-right (inaccurate and uncertain).

sification and verbatim memorization probing,
we demonstrate that exposure to causal content
during pretraining does not guarantee accurate
recall or improved causal understanding. Our
analysis, leveraging multiple uncertainty met-
rics—including entropy, consistency, calibration,
and accuracy—reveals that uncertainty in causal
tasks stems primarily from deficits in causal under-
standing rather than limitations in memorization.
Addressing these limitations will require a shift be-
yond current pretraining paradigms—toward mod-
els that explicitly encode and reason over causal
structures, and that are capable of expressing cal-
ibrated uncertainty when faced with ambiguity or
unseen conditions.

Limitations

Our study has three key limitations. First, we can-
not determine whether the models truly failed to
acquire causal patterns during training, or whether
they learned them but are unable to apply or re-
call them during inference. Structured prompting,
Causal probing with small datasets, pre-trained
data inspections through sampling, probing rep-
resentations, etc., can be possible approaches to
tackle this problem. Second, presence in The Pile
does not guarantee memorization—research shows
reliable memorization requires 100+ repetitions
(Kandpal et al., 2023). Our results demonstrate
that even exposure without guaranteed memoriza-
tion provides no benefit for causal reasoning. Third,
our binary classification of "seen" versus "unseen"
may oversimplify the memorization spectrum. Fu-
ture work should examine the relationship between

repetition frequency and causal understanding.
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A Dataset & Prompts

The examples from the constructed dataset are
shown in Figures 6 and 7.

Dataset construction prompt template: ~Para-
phrase the following sentence while preserving its
exact meaning, especially the causal relationship.
Change the wording and structure but keep the
scientific accuracy: [sentence]”

B Task 1: Causal Type Classification.

B.1 Probabilities analysis

From Figure 8, we analyze the probabilities related
to the correct choices, assigned by different models
in MCQA and MCQA _newer. In Figure 9, we de-
pict the probability assignment to selected choices,
comparing the original and paraphrased sentences.
Figure 10, shows the entropy of the choice proba-
bilities.

The trends appear similar when comparing the
two versions of the dataset, with no evidence of
verbatim recalls/ memorized patterns that facil-
itate better causal understanding. Random be-
havior on "memorized" data - High entropy on
MCQA shows no memorization benefit. A per-
fect inverse relationship with performance is noted,
where pythia/gpt-j/gpt-6b, presents high entropy
(= 1.3 — 1.4), indicating nearly uniform distri-
butions, which implies no causal understanding.
gwen-7b-base, on the other hand presents a low
entropy (= 0.2 — 0.6) indicating confident, deci-
sive predictions. Entropy near In(4) ~ 1.39 for
weak models confirms they are essentially guess-
ing randomly. No paraphrase penalty: Original vs
Paraphrase performance presents nearly identical
behaviours.

B.2  Statistical significance tests

We provide statistical tests examining differences
in accuracy and entropy between original versus
paraphrased sentences, and between MCQA ver-
sus MCQAnewer datasets. Ttests assess mean dif-
ferences while ANOVA examines variance across
causal relationship types. The statistical test results
are reported in Tables 4 and 5. These were com-
puted on the accuracies and entropies of models,
respectively.

B.3 Consistency analysis

For each sentence with multiple probes, we com-
puted Pearson correlation between choice prob-

ability vectors to assess confidence consistency,
Spearman rank correlation to evaluate preference
consistency by comparing ranked orders, and KL
divergence to quantify overall distributional shifts
between probabilistic outputs. Tables 6 and Figures
13, 12 and 14. High consistency would indicate
robust causal understanding, while low consistency
suggests models treat paraphrases as unrelated in-
puts.

B.4 Overconfidence Analysis

We present calibration analyses (Figures 15-21) for
each model, examining the relationship between
predicted confidence and actual accuracy. Each
model’s analysis includes accuracy breakdowns by
causal type, confidence distributions, calibration
plots, and confusion matrices for high-confidence
errors. These reveal overconfidence patterns, par-
ticularly in instruction-tuned models.

B.5 Uncertainty Analysis

This section examines (Figures 22 - 28) how uncer-
tainty (measured by entropy) varies across different
causal relationship types and its correlation with
model accuracy. The analysis reveals that condi-
tional causal relationships consistently induce the
highest uncertainty across all models, suggesting
limitations in compositional causal reasoning rather
than simple memorization effects.

C Task 2: Verbatim Memorization
Probing

We analyze results from the memorization prob-
ing task, where models choose between original
sentences and semantically equivalent paraphrases.
The probability (Figures 29 and 30) and entropy
(Figure 31) analyses demonstrate no preference
for original (potentially memorized) text over para-
phrases, providing direct evidence against verbatim
memorization as a driver of causal reasoning per-
formance.
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{"qa_idx": @, "context"”: "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.”,

"text": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale."”,

"text_type": @, "causal_class_label”: 0,

"choices”: [{"label”: 1, "text": "Direct Causal”, "description”: "The statement explicitly states that one variable directly causes changes in another.”},

{"label”: 3, "text": "Correlational”, "description”: "The statement describes an association between variables, but no causation is
explicitly stated.”},

{"label”: 2, "text"”: "Conditional Causal”, "description”: "The statement suggests causation but includes uncertainty through hedging words or
modal expressions."},

{"label”: @, "text": "No Relationship”, "description”: "No correlation or causation relationship is mentioned."},

{"label”: 4, "text”: "Other”, "description”: ""}]

Figure 6: Examples from the constructed data (Task 1) - Casual Type Classification

Example non-causal: {"context”: "Faster aspart and IAsp were confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbAlc.”,

"

"question”: "What was the outcome of comparing faster aspart and IAsp in terms of their effect on HbAlc levels in a basal-bolus regimen? s

"choices”: [{"text”: "Faster aspart and IAsp were shown to be noninferior in a basal-bolus regimen with respect to the change in HbAlc from the starting point.

"type": 13,

{"text": "Faster aspart and IAsp were confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbAlc.”, "type": 0},

{"text": "Faster aspart and IAsp were validated as noninferior in a basal-bolus treatment concerning the change in HbAlc from baseline. ", "type": 13},
{"text": "Faster aspart and IAsp were not confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbAlc."”, "type": 2},

{"text": "I don't know", "type": 3}],
"true_sent_type”: @, "causal_class_label”: 0}

Example causal: {"context": "Vildagliptin effectively improved glucose level with a significantly greater reduction in glycemic variability and hypoglycemia
than glimepiride in patients with T2DM ongoing metformin therapy.",

"question”: "What was the effect of vildagliptin compared to glimepiride on glucose levels in patients with T2DM?
"choices”: [{"text": "Vildagliptin significantly enhanced glucose levels, showing a much larger decrease in glycemic variability

and hypoglycemia compared to glimepiride in patients with T2DM who were already on metformin treatment. ", "type": 13},

{"text": "Vildagliptin effectively improved glucose level with a significantly greater reduction in glycemic variability

and hypoglycemia than glimepiride in patients with T2DM ongoing metformin therapy."”, "type": 03},

{"text": "Vildagliptin did not effectively improve glucose level with a significantly greater reduction in glycemic variability
and hypoglycemia than glimepiride in patients with T2DM ongoing metformin therapy."”, "type": 23},

{"text": "I don't know", "type": 3},

{"text": "In patients with T2DM receiving ongoing metformin therapy, vildagliptin led to a notable improvement in glucose levels,
with a significantly greater reduction in glycemic variability

and hypoglycemia than glimepiride. ", "type”: 1}1,

"true_sent_type”: @, "causal_class_label”: 1,}

Figure 7: Examples from the constructed data (Task 2) - Example with the configuration: original (type 0), two
paraphrases (type 1), one negation (type 2) and I don’t know (type 3), with and without causal labels

Original vs Paraphrase =~ MCQA vs MCQA-newer

Model t-stat p-value t-stat p-value
pythia-1-4b 0.340 0.744 0.577 0.604
pythia-7b -0.184 0.859 0.412 0.708
pythia-12b -0.232 0.823 -0.753 0.506
gpt-j-6b -0.444 0.670 0.494 0.655
dolly-v2-7b -0.512 0.625 -0.604 0.589
dolly-v2-12b  -0.669 0.525 -12.427 0.001
qwen-7b-base  2.032 0.082 -0.468 0.672

Table 4: T-tests computed on the accuracies for each model between Original and Paraphrase indistinguishable of
the dateset and, between the original sentences of MCQA and the original sentences of MCQA-newer. Accuracies
feed to the t-tests were the means of the binary correctness grouped by the causal relationship type.

Original vs Paraphrase MCQA vs MCQA-newer Causal-type ANOVA
Model t-stat p-value effect size t-stat p-value effect size f-stat p-value
pythia-1-4b 69.273 0.000 0.884 0.563 0.573 0.015 15.509 0.000
pythia-7b -10.205 0.000 -0.152  -11.637 0.000 -0.307 25.805 0.000
pythia-12b 18.441 0.000 0.286 0.655 0.513 0.017 8.400 0.000
gpt-j-6b 0.270 0.787 0.004 -7.847 0.000 -0.207  139.133 0.000
dolly-v2-7b -5.656 0.000 -0.083  -11.328 0.000 -0.301 40.102 0.000
dolly-v2-12b 11.673 0.000 0.181 2.846 0.004 0.076 25.551 0.000
qwen-7b-base 1.541 0.123 0.023 -5.679 0.000 -0.150  153.846 0.000

Table 5: Statistical tests computed on the entropies for each model between Original and Paraphrase indistinguish-
able of the dateset and, between the original sentences of MCQA and the original sentences of MCQA-newer.
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model dataset text type prob correlation  Spearman KL div
pythia-1-4b mcqa Paraphrase -0.007 0.003  0.105
pythia-1-4b mcqa_newer Paraphrase -0.020 -0.009  0.093
pythia-1-4b mcqa_newer Original -0.009 0.003  0.058
pythia-1-4b mcqa Original 0.002 0.025  0.066
pythia-7b mcqa_newer Paraphrase 0.003 -0.001 0.127
pythia-7b mcqa_newer Original 0.002 0.000  0.130
pythia-7b mcqa Paraphrase -0.009 -0.014  0.129
pythia-7b mcqa Original -0.017 -0.026  0.147
pythia-12b mcqa Paraphrase 0.019 -0.001 0.137
pythia-12b mcqa Original 0.025 0.011 0.105
pythia-12b mcqa_newer Paraphrase 0.016 -0.005  0.143
pythia-12b mcqa_newer Original 0.024 0.005  0.108
gpt-j-6b mcqa_newer Paraphrase 0.123 0.113  0.087
gpt-j-6b mcqa Original 0.156 0.119  0.078
gpt-j-6b mcqa_newer Original 0.183 0.160  0.066
gpt-j-6b mcqa Paraphrase 0.109 0.098  0.093
dolly-v2-7b mcqa_newer Paraphrase 0.059 0.040 1.049
dolly-v2-7b mcqa_newer Original 0.054 0.045 1.045
dolly-v2-7b mcqa Paraphrase 0.018 0.017 1.141
dolly-v2-7b mcqa Original 0.029 0.026  1.186
dolly-v2-12b  mcqa Original 0.050 0.006  2.240
dolly-v2-12b  mcqa_newer Paraphrase 0.053 0.026 2475
dolly-v2-12b  mcqa_newer Original 0.056 0.026  2.430
dolly-v2-12b  mcqa Paraphrase 0.045 0.015  2.376
gwen-7b-base mcqa Original 0.777 0.775  0.494
gwen-7b-base mcqa Paraphrase 0.762 0.769  0.527
gwen-7b-base mcqa_newer Original 0.727 0.739  0.547
gwen-7b-base mcqa_newer Paraphrase 0.710 0.727  0.602

Table 6: Consistency analysis over predictions aggregated by model, dataset and text type.
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PTrue
(Probability assigned to the correct choice)
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Figure 8: Probabilities assigned to the correct choice.
Box plots showing the distribution of probabilities as-
signed to correct answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqa_newer (right) datasets. Higher
probabilities indicate greater model confidence in cor-
rect predictions.

Pselected
(Probability assigned to the selected choice)
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Figure 9: Probabilities assigned to the selected choice.
Box plots showing the distribution of probabilities as-
signed to selected answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqga_newer (right) datasets. Higher
probabilities indicate greater model confidence in se-
lected predictions.

PEntropy
(Entropy of the choice probabilities In(4 choices)~=1.3 -> uniform distribution, no certainty)
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Figure 10: Entropy of choice probabilities. Box plots
showing the distribution of entropy values across differ-
ent models for original questions and paraphrases. Re-
sults are shown for mcga (left) and mcqa_newer (right)
datasets. Higher entropy values indicate more uniform
probability distributions across answer choices, reflect-
ing greater model uncertainty. Maximum entropy of
In(4) ~ 1.39 corresponds to uniform distribution across
four choices.
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Original vs Paraphrase Performance Comparison

Dataset: mcga

Dataset: mcga_newer
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Figure 11: Accuracy comparison of original vs paraphrase in mcqa (left) and mcqa_newer (right).
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Figure 12: Probability correlation: confidence consis-
tency — whether the model’s confidence patterns are
consistent.
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Figure 13: Rank correlation: preference consistency -
Whether the model’s preference ordering stays the same.
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Figure 14: KL divergence: distribution consistency -
How much the full probability distributions differ.
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Figure 15: Overconfidence analysis for Pythia 1.4B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
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Figure 16: Overconfidence analysis for Pythia 7B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).

Figure 17: Overconfidence analysis for Pythia 12B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
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Overconfidence Analysis for [gpt-j-6b]
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Figure 18: Overconfidence analysis for GPT-j 6B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).

Figure 19: Overconfidence analysis for Dolly-v12
7B. Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.
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Overconfidence Analysis for [dolly-v2-12b]
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Overconfidence Analysis for [qwen-7b-base]
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Figure 20: Overconfidence analysis for olly-v12 12B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.

Figure 21: Overconfidence analysis for Qwen 7B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.
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Figure 22: Uncertainty analysis for Pythia 1.4B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 23: Uncertainty analysis for Pythia 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 26: Uncertainty analysis for Dolly-v12 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 24: Uncertainty analysis for Pythia 12B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 27: uncertainty analysis for olly-v12 12B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 25: Uncertainty analysis for GPT-j 6B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 28: Uncertainty analysis for Qwen 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 29: Probabilities assigned to the correct choice.
Box plots showing the distribution of probabilities as-
signed to correct answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqa_newer (right) datasets. Higher
probabilities indicate greater model confidence in cor-
rect predictions.
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Figure 30: Probabilities assigned to the selected
choice. Box plots showing the distribution of proba-
bilities assigned to selected answers by different mod-
els for original questions and paraphrases. Results are
shown for mcqa (left) and mcqa_newer (right) datasets.
Higher probabilities indicate greater model confidence
in selected predictions.

PENtropy.
(Entropy of the choice probabilities In(4 choices)—=1.3 -> uniform distribution, no certainty)

pythia-1-a
oyt

B H 3 3

model

&

Figure 31: Entropy of choice probabilities. Box plots
showing the distribution of entropy values across dif-
ferent models. Results are shown for mcqa (left) and
mcqga_newer (right) datasets. Higher entropy values
indicate more uniform probability distributions across
answer choices, reflecting greater model uncertainty.
Maximum entropy of In(4) ~ 1.39 corresponds to uni-
form distribution across four choices.
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Abstract

Ambiguous words or underspecified references
require interlocutors to resolve them, often by
relying on shared context and commonsense
knowledge. Therefore, we systematically inves-
tigate whether Large Language Models (LLMs)
can leverage commonsense to resolve refer-
ential ambiguity in multi-turn conversations
and analyze their behavior when ambiguity
persists. Further, we study how requests for
simplified language affect this capacity. Us-
ing a novel multilingual evaluation dataset, we
test DeepSeek v3, GPT-40, Qwen3-32B, GPT-
40-mini, and Llama-3.1-8B via LLM-as-Judge
and human annotations. Our findings indicate
that current LLMs struggle to resolve ambi-
guity effectively: they tend to commit to a
single interpretation or cover all possible ref-
erences, rather than hedging or seeking clar-
ification. This limitation becomes more pro-
nounced under simplification prompts, which
drastically reduce the use of commonsense rea-
soning and diverse response strategies. Fine-
tuning Llama-3.1-8B with Direct Preference
Optimization substantially improves ambigu-
ity resolution across all request types. These
results underscore the need for advanced fine-
tuning to improve LLMs’ handling of ambi-
guity and to ensure robust performance across
diverse communication styles.

1 Introduction

Natural language is inherently ambiguous. For ex-
ample, pronouns may refer to multiple possible
entities within a sentence. Nevertheless, humans
typically resolve such ambiguity by drawing on
context, shared knowledge, and conversational his-
tory (Ferreira, 2008). Consider the two conversa-
tions shown in Figure 1, where the user asks the
question, “Why can it fly?”. Without additional
clues, the pronoun “it” is unclear and could refer
to multiple entities. In the left conversation, the
prior context mentions a helicopter and a drum; in

ClearRef

Provide me one sentence
l-: for each of the following:

helicopter, drum

SharedRef

Provide me one sentence
for each of the following:
helicopter, owl, drum

A helicopter is parked on the
tarmac.

An owl is a bird known for
its distinctive call.

A drum was placed on the
table for the meeting.

“au A helicopter is parked
E' on the tarmac.
= A drum was placed on
the table for the meeting.

Q Why can it fly?

:: The helicopter can
. fly because [..].

Context

Why can it fly?

Do you mean the helicopter,
or the owl?

Figure 1: Two conversations between a user and an
LLM in response to the ambiguous question (“Why can
it fly?”). In both cases, the LLM uses prior context
to narrow the possible referents to entities capable of
flying. In the left conversation, it attempts an answer; in
the right, it asks for clarification.

the right, it additionally includes an owl. Humans
effortlessly combine this context with common-
sense knowledge, recognizing that drums cannot
fly, but helicopters and owls can. As a result, the
first case is unambiguous, while the second may
require clarification.

This process reflects a fundamental feature of hu-
man communication: a “division of labor” between
speakers and listeners, where speakers omit explicit
details to minimize effort, trusting listeners to fill in
gaps using common ground (Ferreira, 2008). Com-
mon ground consists of the mutual knowledge, be-
liefs, and assumptions interlocutors accumulate and
maintain during conversation (Clark and Brennan,
1991; Clark, 1996). Central to common ground is
commonsense knowledge, a broadly shared under-
standing of the world that enables people to make
implicit inferences effortlessly.

As mentioned, humans are usually good at build-
ing and using common ground. While prior work
suggests that LLMs struggle with ambiguity res-
olution, particularly in static, single-turn contexts
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(Liu et al., 2023), our work shifts focus to a con-
versational setting. We study how LLLMs behave in
multi-turn dialogs where common ground is explic-
itly established through conversation history and
commonsense knowledge. In our setting, multi-
ple referents can remain plausible even after con-
sidering prior context. This allows us to evaluate
how models handle uncertainty through different
response strategies, such as requesting clarification.

We further examine how language constraints af-
fect this ability. Language models are increasingly
used to generate output in different variants, such as
simplified and easy-to-understand language. This
has clear benefits for accessibility, particularly for
users with cognitive or linguistic challenges (Freyer
et al., 2024). However, simplified outputs often re-
duce the depth and precision of content (Trienes
et al., 2024). Ellinger et al. (2025) find that models
prompted to define homonyms in simple language
often default to the most salient meaning, disre-
garding less dominant but valid definitions. We ex-
plore whether such requests for simplified language
also affect a model’s capacity to resolve ambiguity
when multiple interpretations are plausible.

Studying this is crucial because misinterpreta-
tion of ambiguous language can lead to down-
stream failures such as misinformation, hallucina-
tions, or user confusion. By systematically testing
whether LLMs consider multiple plausible candi-
dates rather than relying on recency or default bi-
ases, we provide a diagnostic view of their behavior
in ambiguous conversational settings.

Our contributions are as follows:

* We introduce a multilingual dataset for evalu-
ating LLMs to resolve referential ambiguity in
conversations with explicit common ground.

* We evaluate DeepSeek v3, GPT-40, Qwen3-
32B, GPT-40 mini, and Llama 3.1 8B using
both LLLM-as-Judge and human annotations.

* We show that LLMs often commit to a single
interpretation or cover all references instead
of hedging or clarifying. Simplified language
constraints worsen this by reducing common-
sense reasoning and response diversity.

* We fine-tune LLaMA 3.1 8B with Direct Pref-
erence Optimization (DPO), achieving signifi-
cant improvements on our task that generalize
to a lexical ambiguity benchmark, with less
degradation under simplified prompts.

2 Background and Related Work

Ambiguity and Clarification. Understanding
language often requires resolving ambiguity, such
as referential ambiguity, where it is unclear which
entity a phrase refers to. Such unclear references
slow down human processing (Gernsbacher, 1989;
MacDonald and MacWhinney, 1990; Myers and
O’Brien, 1998; Stewart et al., 2007), yet humans
are usually good at resolving them by drawing on
common ground.

In contrast, LLMs struggle with ambiguity. Min
et al. (2020) introduce AmbigQA, a dataset de-
signed to investigate underspecified questions, and
subsequent studies (Wildenburg et al., 2024; Liu
et al., 2023) show that even state-of-the-art mod-
els underperform in such settings. This limitation
extends to the multimodal domain: Testoni et al.
(2024) find that vision—language models also han-
dle ambiguity poorly, often replying with overcon-
fident or biased outputs. While their focus is on
visual context, the challenge is related to ours, with
textual context instead of images.

Models also rarely seek clarification. Kuhn et al.
(2023) show that LLMs often respond incorrectly
to ambiguous inputs rather than asking follow-up
questions. Prior work confirms this lack of clarifi-
cation behavior (Benotti and Blackburn, 2017; Xu
et al., 2019; Shi et al., 2022). Herlihy et al. (2024)
link this tendency to fine-tuning biases and propose
a taxonomy of model responses, which we adopt.

Prior work mainly studies ambiguity in static,
single-turn settings without common ground. No-
tably, datasets for anaphora resolution, such as
the Winograd Schema Challenge (Levesque et al.,
2012), focus on single-sentence coreference, where
exactly one antecedent is correct and can be iden-
tified using commonsense reasoning. In contrast,
we study LLMs in multi-turn dialogs where com-
mon ground is explicitly established through con-
versation history and commonsense knowledge. In
our setting, multiple referents can remain plausible
even after considering context. This allows us to
evaluate how models handle uncertainty through
different response strategies, such as direct answers,
hedging, or requesting clarification, rather than sim-
ply selecting the correct noun.

Finally, we test if our fine-tuned model general-
izes to lexical ambiguity using the benchmark of
Ellinger et al. (2025), which evaluates homonym
definitions without disambiguating context.
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Context |
helicopter, owl, drum

Refusal

Wh it flv? Answer Attempt
y can it fly? >

.| Pos. Entities
helicopter, owl

Answer Attempt v

A helicopter can fly due

to its rotating blades.
LLM-Judge

m Response

i Hedging
O O —
Clarification
L]

Entity Extraction

» X

Correctness

helicopter

Figure 2: Evaluation pipeline including LLM-Judge for response categorization and entity extraction. Based on
these outputs and the positive entities identified in the context, we determine the fine-grained response category and

assess correctness with respect to entity resolution.

Commonsense Evaluation. Prior work system-
atically evaluated LLMs on commonsense reason-
ing benchmarks. Li et al. (2022) conduct evalua-
tions under zero- and few-shot settings across four
benchmarks, revealing that pre-trained LMs strug-
gle to acquire commonsense knowledge without
task-specific supervision. Scaling model size or
adopting to few-shot prompting does not suffice to
reach human-level performance. Similarly, Bian
et al. (2024) assess ChatGPT on eleven common-
sense QA datasets. They find that ChatGPT can re-
trieve relevant knowledge via prompting. However,
it often fails to identify and apply the specific com-
monsense required to answer a given question. In
the multimodal domain, Fu et al. (2024) introduce
Commonsense-T2I, the first benchmark evaluat-
ing whether text-to-image models generate images
consistent with commonsense knowledge. They
find that state-of-the-art models achieve only 49%
accuracy, indicating significant gaps in visual com-
monsense understanding.

Our work extends these by exploring another
dimension of commonsense. Unlike prior bench-
marks focused on question answering or image
alignment, we assess whether models recognize
ambiguous referents and either disambiguate or re-
quest clarification, demonstrating a context-aware
application of commonsense reasoning.

Simple Language. Simplified language aims to
improve accessibility for a broad range of users,
including non-native speakers, children, domain
novices, and individuals with cognitive impair-
ments. Its availability is endorsed by the Web Con-
tent Accessibility Guidelines (WCAG) to promote
inclusive communication (W3C, 2025). Simplified
language involves straightforward vocabulary, clear
sentence structure, minimal jargon, and the avoid-
ance of complex grammar (Freyer et al., 2024). Do-
mains like healthcare, law, and education already

widely apply it (Garimella et al., 2022; Deilen et al.,
2024; Rets et al., 2022). However, prior work has
shown that simplification in LLM-generated text
can lead to undesirable side effects such as omis-
sions or overly vague formulations (Anschiitz et al.,
2025; Agrawal and Carpuat, 2024; Devaraj et al.,
2022). Ellinger et al. (2025), for instance, report
that when asked to define homonyms in simplified
language, models tend to default to the most salient
meaning, neglecting valid but less frequent senses.

Building on this line of work, we study how sim-
plification constraints affect a model’s ability to
resolve referential ambiguity and how task-specific
finetuning affects performance in the lexical ambi-
guity benchmark of Ellinger et al. (2025).

3 Methodology

We evaluate whether LLLMs can resolve referen-
tial ambiguity using common knowledge and how
requests for simplified language affect this abil-
ity. Each test instance consists of a short context
passage introducing some entities (e.g., helicopter,
owl, drum). The user then asks an ambiguous ques-
tion referring to one of the entities without nam-
ing it directly (e.g., Why can it fly?). For each in-
stance, we define a set of positive entities as those
for which the question makes sense, and negatives
as those for which it does not (e.g., a drum cannot
fly). We evaluate two setups: ClearRef, where one
positive and one negative entity make the referent
unambiguous with commonsense, and SharedRef,
where two positives and one negative leave ambi-
guity even with commonsense. This setup tests
whether models consider multiple plausible can-
didates rather than relying on recency or default
biases. We treat the pronoun “it” as equally applica-
ble to all introduced positive entities. To assess the
impact of recency, we perform an ablation in which
the order of entities is permuted (see Appendix D).
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Ambiguous Questions by Relation

Rel. 1: Why can it fly?

Rel. 2: Why is it sweet?

Rel. 3: Why is it made of wood?

Rel. 4: Why can it swim?

Rel. 5: Why can it run fast?

Rel. 6: Why can it climb trees?

Rel. 7: Why is it hot?

Rel. 8: Why is it loud?

Simple: [..] Respond in simple language.

Figure 3: Ambiguous questions for our eight relations.
In the Simple setting, an instruction is appended. Exact
relations names in Appendix B.

3.1 Dataset

We construct our datasets based on Concept-
Net (Speer et al., 2017), a knowledge graph that
encodes commonsense relationships between enti-
ties and attributes. We select eight relations, such
as capable of flying, and extract all associated enti-
ties. Figure 3 provides the complete list of relations.
Since each dialog requires a context passage, we
use GPT-4.1-nano to generate a concise sentence
for every entity. These sentences, each beginning
with the entity name, serve as the context passages
for all related evaluations.

For ClearRef, each entity is paired with a nega-
tive sample from a different relation. We use GPT-
4.1-nano to verify that the negative entity does not
satisfy the target relation. For SharedRef, we cre-
ate samples by pairing all entities within the same
relation and similarly pick a negative. This results
in 52 ClearRef and 227 SharedRef examples. We
list further details in Appendix B.

To enable multilingual evaluation, we trans-
late the context sentences and entities into Arabic,
French, Russian, and Simplified Chinese using the
DeepL API'. We choose these languages to facil-
itate comparison with the multilingual setting of
Ellinger et al. (2025).

3.2 Model and Prompt Configuration

We evaluate five LLMs on our task: GPT-40, GPT-
4o0-mini (OpenAl et al., 2024), Qwen3-32B (Qwen
Team, 2025), DeepSeek v3 (DeepSeek-Al et al.,
2025), and Llama 3.1 8B (Grattafiori et al., 2024).
These models vary in size and openness, enabling

"https://www.deepl.com/en/pro-api

a comprehensive analysis of performance across
diverse LLMs. Details on model versioning and
access are listed in Appendix A.

We evaluate eight relations, each associated with
an ambiguous question. For each, we test two
prompt settings: Normal, presenting only the am-
biguous question, and Simple, which adds an in-
struction to respond in simplified language. This
setup allows us to examine how constraining out-
puts to simpler language affects model responses.
English prompts are shown in Figure 3, with multi-
lingual versions in Appendix Figure 12.

3.3 Evaluation Pipeline

The input to the evaluation pipeline (Figure 2) con-
sists of a brief dialogue between a user and an LLM,
exemplified in Figure 1. The response to the dia-
logue is passed to our LLM-Judge, which performs
two tasks. First, it classifies the response type into
one of four categories: Refusal, Answer Attempt,
Hedging, or Clarification (cf. subsection 3.4). In
this case, the response is labeled as an Answer At-
tempt. Second, it extracts all entities mentioned in
the response (here, helicopter). Using the set of
mentioned entities and the known positive entities
(in this case, helicopter and owl), we assess the cor-
rectness of the response. Since the model attempts
an answer but only mentions one of the two positive
entities, the response is marked as incorrect.

3.4 Response Categorization

Following Laban et al. (2025), we adopt the re-
sponse taxonomy from Herlihy et al. (2024), which
includes Answer Attempt, Clarification, Interroga-
tion, Discussion, Hedging, Refusal, and Missing.
Focusing on referential ambiguity resolution, we
simplify this taxonomy by merging Interrogation
into Clarification and Discussion into Answer At-
tempt, reducing annotation complexity. Full defini-
tions and examples appear in Appendix E. Briefly:

* Hedging: The assistant uses conditional or
speculative language (e.g., “might be...”, “if
you meant X...”).

* Clarification: The assistant requests more
information without offering interpretations
or using hedging.

* Answer Attempt: The assistant clearly com-
mits to at least one interpretation, providing a
factual response without any hedging.
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We define a response as correct if it appropri-
ately addresses the ambiguity in the input. Clar-
ifications are always correct, as they seek addi-
tional input without committing to an interpreta-
tion. Hedging responses are considered correct, as
long as they mention at least one entity. While they
do not resolve the ambiguity, they acknowledge it
and express uncertainty in a transparent way. In
contrast, answer attempts are only deemed correct
if they explicitly mention both positive entities.

Herlihy et al. (2024) discuss the trade-off be-
tween the usefulness and cognitive cost of differ-
ent response categories, approximated by response
length. In our setting, we argue that the most de-
sirable responses, regardless of the category, are
those that mention all and only the positive entities.
We refer to these as direct responses. They reflect
correct disambiguation based on common knowl-
edge while minimizing user effort through clear
and concise answers, free of irrelevant distractors.

In SharedRef, we consider any direct response
the most appropriate response. In contrast, for
ClearRef, where the ambiguity can be fully re-
solved, an Answer Attempt is preferred.

3.5 Automatic Evaluation

We designed an automated evaluation framework
that leverages GPT-4.1-mini as an LLM-Judge. The
framework assesses model responses based on the
response categories defined in subsection 3.4. It
classifies responses and extracts explicitly men-
tioned entities. A few-shot prompt, detailed in
Appendix F, guides the evaluation. To validate
the framework, one author manually labeled 500
responses from the English dataset, with 100 re-
sponses per evaluated model (50 for the standard
prompt and 50 for the simple prompt). The anno-
tator performed both response classification and
extraction of explicitly mentioned entities, exactly
as the LLM was tasked to do. The LLM judge
achieved a 98% agreement rate on response classi-
fication and a Cohen’s Kappa score of 0.916, indi-
cating almost perfect agreement according to Lan-
dis and Koch (1977). For entity extraction, the
framework achieved a 97.8% exact match accuracy.
More details are provided in Appendix F.

3.6 Direct Preference Optimization

We fine-tuned Llama-3.1-8B to improve referential
ambiguity resolution using DPO (Rafailov et al.,
2024). DPO aligns model behavior with desired
outcomes by training on preference pairs. In our

setup, we favor direct over incorrect responses.

Our training dataset contains 1,388 preference
pairs across all languages by comparing incorrect
Llama 3.1 8B’s outputs with direct responses from
other models. To prevent reliance on entity posi-
tion, we randomly permuted the order within each
conversation. We restricted the training data to the
‘capableOf fly’ relation, allowing us to later assess
generalization to other relations.

We performed a single training run using the
whole training set. This decision reflects our aim
to demonstrate the feasibility of aligning models
to produce more useful responses with lower cog-
nitive cost, rather than optimizing for peak perfor-
mance through extensive tuning. Detailed training
information is provided in Appendix G.

4 Results

4.1 ClearRef Dataset

Figure 4 shows that all models maintain correct-
ness above 90% across languages and settings, with
some achieving perfect scores. The lowest correct-
ness score is 90.38%, observed for Deepseek v3
(Simple) and Llama-3.1-8B (Normal) in French.
When comparing the Normal and Simple settings,
GPT-4o0 is the only model with higher correctness
in the Normal setting, while the other models ei-
ther remain similar or slightly decrease. The rate of
direct responses among the correct answers varies
drastically across models and languages. In the
Simple setting, Qwen3-32B shows the highest vari-
ance, with a direct response rate ranging from as
low as 22.45% in Arabic to 73.08% in English. In
the Normal setting, GPT-40-mini varies most, with
only 47.06% direct responses in Russian to 82.69%
in English. Llama-3.1-8B demonstrates the high-
est rates for English, achieving 98.00% in Normal
and 97.96% in Simple. Averaged across languages,
mean direct responses among all responses differ
by model and setting. Except for Deepseek v3, all
models show higher direct response rates in the
Normal setting compared to Simple. In Normal,
Llama-3.1-8B achieves the highest rate (80.38%),
followed by GPT-40, GPT-40-mini, Qwen3-32B,
and Deepseek v3 (58.85%). Detailed breakdowns
by model, language, and prompt type are provided
in Appendix Table 9.

In Figure 5, we show the distribution of response
categories across languages and models. In all
cases, Answer Attempt is the dominant category.
However, comparing the Normal and Simple set-
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Figure 5: Distribution of the defined response categories across five languages on the ClearRef dataset. For each
model, the left bar represents the Normal setting and the right bar the Simple setting. Colored squares represent

response types: B Answer Attempt, - Hedge,

tings reveals a shift: In the Simple setting, mod-
els nearly always produce answer attempts (mean
97.92%). In Normal, especially with Qwen3-32B,
hedging occurs more frequently, and to a lesser
extent, clarifications. For Qwen3-32B, the average
proportion of Answer Attempts drops to 69.61%.

4.2 SharedRef Dataset

We show proportions of correct responses along
with direct response rates in Figure 6. The results
reveal a sharp drop from Normal to Simple and a
clear separation between two model groups: high
performers (GPT-40, Qwen3-32B, Deepseek v3)
and low performers (Llama-3.1-8B, GPT-40-mini).

Low-performing models show poor performance
across languages and prompt settings, with GPT-
40-mini reaching below 13% correctness in the
Normal setting and Llama-3.1-8B slightly higher
but inconsistent due to an outlier in the Arabic
Simple setting.

Among the top performers, GPT-40 achieves
the highest correctness in English Normal prompts
(81.06%, thereby 45.11% direct), while Qwen3-
32B performs best overall when averaged across
languages in the Normal setting (70.22%, 31.11%).
Deepseek v3 leads in the Simple setting (37.97%,
22.73%), outperforming the others despite lower
direct response rates.

Performance also varies notably by language.
In the Normal setting, English (69.16% correct,
thereby 47.28% direct) and Chinese (63.96%,
41.54%) achieve the highest average correctness,

Clarification, and m Refuse.

followed by Arabic, French, and Russian (51.19%,
45.71%), reflecting the models’ native strengths
(e.g., GPT for English, Qwen and Deepseek for
Chinese). In the Simple setting, Arabic leads
(50.22%, 44.01%), followed by Chinese and En-
glish, with French and Russian (26.08%, 59.81%)
trailing. We show a detailed breakdown per model,
language, and prompt type in Appendix Table 10.

Figure 7 shows the distribution of response cat-
egories across languages and models. Consistent
with ClearRef, Answer Attempt remains the domi-
nant category in the Simple setting, with an aver-
age proportion of 97.01% across all languages and
models. The only notable outlier is Qwen3-32B in
Chinese, with a lower proportion of 72.69%.

In the Normal setting, the shift toward other re-
sponse categories becomes more pronounced than
in ClearRef. The average proportion of Answer
Attempts decreases to 77.67%. Notable devia-
tions include GPT-40 in English (29.52%) and Rus-
sian (46.26%), as well as Qwen3-32B in English
(43.17%), French (49.34%), Russian (40.97%),
and Chinese (43.61%). These two models show
marked increases in Hedging (GPT-40 from 1.67%
to 35.06%, Qwen3-32B from 8.37% to 41.14%)
and Clarification (GPT-40 from 0.09% to 4.76%,
Qwen3-32B from 0.70% to 8.02%).

4.3 Direct Preference Optimization

We compare the base and the fine-tuned model on
the SharedRef test set, excluding the capableOf fly
relation among positives. Figure 8 shows that the
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results are consistent across languages. Overall,
the proportion of correct responses increases from
13.46% to 96.45% in the Normal setting and from
13.83% to 91.59% in the Simple setting. Among
the correct responses, direct responses rise from
28.60% to 42.96% (Normal) and from 33.37%
to 50.66% (Simple). For comparison, the best
base model, Qwen3-32B, achieves 62.43% correct
(30.44% direct) in the Normal setting and 22.06%
correct (60.97% direct) in the Simple setting.

The category distribution shifts drastically. In
the base model, Answer Attempts dominate
(91.78% in Normal, 96.45% in Simple). After fine-
tuning, Clarification is most frequent, followed by
Hedging and Answer Attempts. In the Simple set-
ting, Clarification is less dominant than in Normal,
while Hedging becomes more prevalent: 60.00%
vs. 30.84% Clarification, 36.07% vs. 52.52%
Hedging, and 3.74% vs. 16.63% Answer Attempts.

4.4 Homonym Definition Generation

Ellinger et al. (2025) introduced MCL-WiC, a mul-
tilingual homonym dataset, along with the Sense
Awareness metric for evaluation. A response shows
Sense Awareness by providing multiple definitions
or explicitly acknowledging ambiguity via clarifica-
tion requests or remarks about alternative meanings.
They evaluated model performance under standard,
simplified, and ELIS-style prompting (Fan et al.,
2019), where the model explains a word as if the
user were five years old.

Table 1 compares our fine-tuned model with the

ation, and m Refuse.

results reported by Ellinger et al. (2025). Against
baseline models, our model achieves the highest
Sense Awareness under the Normal prompt in En-
glish, French, and Russian, the second-highest in
Arabic, and competitive results in Chinese. For
Simple, it ranks highest in French and Russian,
with comparable results in other languages. For
ELIS5, it outperforms all baseline models in every
language except English, where it ranks second.
Compared to its base model, our fine-tuned version
shows consistent, mostly extensive improvements
across all configurations, with the only exception
being the English Simple setting, where perfor-
mance drops by three percentage points.

They also fine-tuned Llama-3.1-8B on the same
task. Their model produces English outputs for
all languages except Russian, reflecting heavy
optimization for English. In contrast, our DPO
model handles all languages natively. While their
fine-tuned model generally achieves higher Sense
Awareness scores, our model remains competitive
against the baseline models and narrows the gap
in the language constraints. Their fine-tuning was
explicitly targeted at this task, and reducing the gap
between the language constraints. In contrast, our
model achieves strong results across all languages
without task-specific tuning.

5 Discussion

Our results indicate that current models struggle
to apply commonsense knowledge for ambiguity
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resolution. In the simpler ClearRef task, where
only one entity fits the question, models are able
to resolve the ambiguity with an accuracy ranging
from 94.23% down to 21.15% depending on the
model and setting. The more challenging Share-
dRef task, which involves two plausible entities,
sees direct responses ranging from just 36.56%
down to 0.44%. This aligns with findings by Bian
et al. (2024). They observe that LLMs can retrieve
commonsense facts, which in our case means re-
alizing that an entity fits a relation when asked on
its own. However, the models often fail to apply
this knowledge when answering a specific ques-
tion requiring such reasoning. In Appendix C, we
evaluate GPT-40’s performance in English under a
Chain-of-Thought setting, prompting it to explic-
itly verbalize its commonsense reasoning first.
Consistent with Herlihy et al. (2024) and Kuhn
et al. (2023), we observe that models frequently
skip clarification, opting to answer even when un-
certainty remains. Several models show almost
no clarification or hedging behavior. Herlihy et al.
(2024) and Singhal et al. (2024) argue that this
behavior stems from reinforcement learning from
human feedback (RLHF). Annotation processes
typically focus on single-turn conversations. As
a result, models are rarely exposed to examples

Prompt / Model Sense Aware

En Fr Ar Ru Zh

Prompt: Normal

N 3.18B 96.95 15.17 10.62 6.52 4.66
® 40-mini 93.90 79.31 9292 9043 84.46
v73-30B A3B 94.58 86.55 98.23 90.00 100.00
O 4 Maverick 96.27 54.83 7434 75.65 45.08
@ v3 94.24 8793 91.15 91.74 87.56
Our 3.1-8B 97.63 97.93 93.81 99.57 84.46
Their 3.1-8B 99.66 99.31 99.12 99.13  98.45

Prompt: Simple

Q3.1 8B 6441 759 6.19 217 177
@ 40-mini 63.05 5276 76.99 4391 75.13
32 3-30B A3B  76.61 59.66 69.03 67.83 82.38
Q4 Maverick  69.83 2828 45.13 48.70 68.91
@v3 63.73 4793 80.53 6522 74.09
Our 3.1-8B 61.02 73.10 71.68 79.13 64.25
Their 3.1-8B 8B 92.88 93.45 96.46 99.57 94.30
Prompt: ELIS

Q3.1 8B 7.12 759 0.88 130 0.52
@ 40-mini 542 690 10.62 2.61 6.74
V2 3-30B A3B  22.03 17.24 973 14.78 14.51
0 4 Maverick  10.85 13.10 11.50 9.57 9.84
@v3 8.14 828 1327 870 10.88
Our 3.1-8B 13.22 25.86 4690 19.13 17.62
Their 3.1-8B 35.59 35.17 55.75 63.48 33.68

Table 1: Sense Awareness scores by prompt type and
language. Best results are in bold, second-best in italic.
Model outputs are copied from the original paper.

of follow-up clarification questions, which require
multi-turn interaction. Moreover, annotators often
favor verbose, catch-all answers for under-specified
queries, even though such verbosity imposes cog-
nitive costs on users (Singhal et al., 2024).

Another important observation is that prompting
models to use simpler language can harm response
quality. Interestingly, in ClearRef, there is no drop
from Normal to Simple; in some models, Simple re-
sponses are even slightly better. In contrast, for the
more complex SharedRef task, performance drops
drastically in the Simple setting. This confirms
prior work showing that simplification often leads
to omissions and vague phrasing (Ellinger et al.,
2025; Anschiitz et al., 2025; Trienes et al., 2024;
Agrawal and Carpuat, 2024; Devaraj et al., 2022).
We argue that this behavior needs to change. For ex-
ample, Kearney et al. (2025) show that LLMs adapt
the information they provide based on assumptions
about the user. This is problematic, especially if re-
questing simple language causes models to produce
less thoughtful responses or overlook important dis-
tinctions. Again, RLHF may play a role, failing to
capture the needs of diverse users and discouraging
clarification and hedging in simplified contexts.
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Taken together, we argue that resolving ambigu-
ity requires a balance: infer as much as possible to
avoid unnecessary elaboration, but clarify when un-
certainty remains. Our DPO-trained model moves
in this direction. It not only improves on our main
evaluation but also generalizes to the lexical ambi-
guity benchmark of Ellinger et al. (2025). More-
over, it reduces the performance drop commonly
observed when models operate in simplified lan-
guage settings. This suggests that clarification and
hedging behaviors can be learned in a transferable
and robust way.

6 Conclusion

In this paper, we analyzed how LLMs handle tex-
tual referential ambiguity and to what extent they
apply commonsense knowledge to resolve it. Our
findings show that LLMs have limited ability to do
so effectively. They tend to commit to a single in-
terpretation or cover all possible references, rather
than hedging or seeking clarification. This ten-
dency becomes even more pronounced when users
request simple language, which reduces common-
sense reasoning and different answering strategies.

These results point to two core issues. First,
there is a need for better fine-tuning to improve
how LLMs deal with ambiguity. Second, LLMs
should better adapt to different user needs. It is
especially concerning that a request for simpler lan-
guage leads to less thoughtful responses and fewer
clarifications, showing that current systems often
fail to support users with varied communication
styles.

To support reproducibility and future research,
we release our code”. Further links to models and
datasets are provided in the repository.

Limitations

Multilingual Scope and Dataset Size. Our study
focuses on English, French, Russian, Arabic, and
Chinese. For non-English languages, we relied on
direct translations from English using automated
tools, which can introduce translation bias, cultural
mismatches, or loss of nuance. Future work should
create native datasets for each language to ensure
more accurate and culturally appropriate evalua-
tion. Additionally, the ClearRef and SharedRef
datasets contain only 52 and 227 datapoints, re-
spectively, and include only 8 relations from Con-
ceptNet, making it difficult to draw fully stable

*https://github.com/lukasellinger/itdepends

conclusions and potentially biasing evaluation to-
ward certain categories. Nevertheless, we observe
very strong tendencies in the results, suggesting
that the findings are still meaningful and indicative
of broader trends.

Referential Order. Due to computational lim-
its, we used a fixed entity order; full permutation
results for English are provided in Appendix D.

Commonsense Context. We provided all models
with the same context, which included a common-
sense fact sourced from ConceptNet. While these
facts consist of basic relations and vocabulary, we
cannot guarantee that models internally represent
or utilize this knowledge. Nevertheless, given the
simplicity and generality of the facts, the models
likely have access to such information.

LLM-based Evaluation. We used an LLM to
judge model responses, observing near-perfect
agreement with human annotations in English.
While we did not conduct human agreement checks
for other languages, the observed trends remain
consistent across all languages, suggesting broader
applicability. Moreover, the differences between
prompt settings are substantially larger than any
potential error margin, further reinforcing the ro-
bustness of our findings.

Selected Prompts. We use fixed user prompts
for each relation, along with a single predefined
suffix for requesting responses in simplified lan-
guage. This setup reflects how typical users might
interact with a model without actively optimizing
prompt phrasing. However, LLMs are known to be
highly sensitive to prompt formulation, which can
significantly influence output quality (Brown et al.,
2020). Future research could systematically inves-
tigate the effects of varied or optimized prompts on
LLM performance.
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A Model Access

To support reproducibility, Table 8 lists all mod-
els used in this paper, including their abbreviated
names (as used in tables and figures), full names,
versions, and access providers.

B Dataset

We extracted entities from the following eight
relations: CapableOf fly, HasProperty
sweet, MadeOf wood, CapableOf swim,

CapableOf run_fast, CapableOf climb_trees,
HasProperty hot, and HasProperty loud. All
entities were manually reviewed and cleaned.
During dataset construction, we used the following
prompt with GPT-4.1-nano to verify that each
negative entity truly does not satisfy the relation,
in contrast to the two positive entities:

User Prompt: Relation Satisfaction

Does the word ’<word>’ satisfy the relation
’<relation>’?

Answer with a brief explanation and either
True or False for satisfies.

C Ablation: Chain-of-Thought
Prompting

Bian et al. (2024) observe that LLMs often fail to
apply commonsense knowledge when answering
questions that require such reasoning. To investi-
gate this in our setting, we tested GPT-40 on the
English SharedRef dataset in a Chain-of-Thought
(CoT) setting. We choose GPT-40 as it showed
the sharpest drop from Normal to Simple. We
appended the following instructions to encourage
CoT reasoning:

User Prompt: Chain-of-Thought

<question> First, try resolving any
ambiguity using commonsense knowledge. If
the question remains ambiguous, your
answer should be a clarification request.
Otherwise, provide the answer. Put your
final response after Response:.

We compare standard and CoT prompting in
Figure 9. CoT prompting performs worse than
standard prompting, with accuracy dropping from
81.06% to 44.49% in the Normal setting. This is be-
cause CoT prompting often only partially resolves
the ambiguity, responding to one positive while
ignoring the other. This occurs roughly 50% of the
time, suggesting a model preference for one entity,
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Figure 9: Comparison of Standard vs. CoT-Prompting
on the SharedRef dataset. Left: Correctness; the darker
portion of each bar indicates the percentage of Direct Re-
sponses. Right: Response category distribution. (Nor-
mal = left bar, Simple = right bar). Categories: B An-
swer Attempt, = Hedge, = Clarification,

as it correctly identifies each entity when prompted
individually. We observe more Clarifications and
Answer Attempts, with nearly no Hedging in the
Normal setting. The Simple setting is largely simi-
lar, contrasting with the standard Simple prompt-
ing.

Comparing the gap between Normal and Simple
settings, we find it much smaller than in standard
prompting. This suggests that when the LLM is
explicitly guided on how to generate responses,
there is no loss of thoughtfulness or omission of
important distinctions. This is also reflected in
the Simple CoT setting, performing better than the
Simple standard prompting.

D Ablation: Permutation of Entity
Ordering

English
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Figure 10: Average performance across all permutations
in the English SharedRef dataset. Left: Correctness per
model; the darker portion of each bar indicates the per-
centage of Direct Responses. Right: Response category
distribution (Normal = left bar, Simple = right bar).
Models: m DeepSeek v3, i1 GPT-40-mini, = Qwen3-
32B, m GPT-40, B Llama-3.1-8B. Categories: M Answer
Attempt, - Hedge, i@ Clarification, B Refuse.

Our conversation context has a given order of
entities. Due to computational constraints, we fixed
the order to a single permutation for all evaluations
(‘0, 1, 2’ for SharedRef and ‘0, 1’ for ClearRef).
We based this choice not on performance but to
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Prompt / Model Pos.1 Pos.2 Pos.3
Prompt: Normal
® 40 3450 24.52  40.98
® 40-mini 4198 18.65 39.37
@ v3 29.13 2623 44.64
v 3-32B 3123 29.37  39.40
09 3.1-8B 3593 1741 46.66
DPO Llama (Ours) 33.38 3234 34.28
Prompt: Simple
® 40 3729 1580 4691
® 40-mini 41.67 1646 41.87
@ V3 31.03 2575 43.23
v 3-32B 30.35 2836 41.29
09 3.1-8B 35.04 16.53 48.43
DPO Llama (Ours) 33.73  32.30 33.97

Table 2: Average selection rate (%) of an entity appear-
ing at Position 1, 2, or 3 in the SharedRef dataset, across
different models and prompts (Normal vs. Simple) in
English.

ensure consistency across languages.

To assess the effect of this choice, we ran an ab-
lation on the English dataset using all permutations.
We observed that the frequency with which a model
selects an entity depends heavily on its position in
the list, indicating a strong positional bias.

Table 2 shows the distribution of selected entities
across positions for each permutation in SharedRef.
For example, in the Simple setting, entities at posi-
tion three are selected drastically more often (avg.
42.62%) than those at position two (avg. 22.53%).

Table 3 presents analogous results for ClearRef.
Here, the bias is milder, with position two being se-
lected slightly more frequently on average (+4.22%
in Normal, +3.03% in Simple).

Figure 10 shows the averaged correctness and
category distribution over all permutations in En-
glish SharedRef. Compared to the fixed ‘0, 1, 2’ or-
dering used in our main results, average correctness
drops. Notably, GPT-40 exhibits fewer clarification
attempts when averaged across permutations, while
Qwen3-32B maintains strong performance.

The overall trend of higher correctness and bet-
ter category distribution in the Normal setting com-
pared to the Simple setting remains.

E Response Categorization

We adopt the response taxonomy proposed by Her-
lihy et al. (2024), with slight modifications to better

Prompt / Model Pos. 1 Pos. 2
Prompt: Normal
® 40 48.00 52.00
® 40-mini 4835 51.65
@ V3 4336  56.64
v 3-32B 48.15 51.85
09 3.1-8B 48.57 5143
DPO Llama (Ours) 50.90 49.10
Prompt: Simple
® 40 4948 50.52
® 40-mini 48.65 51.35
@ V3 48.04 51.96
v/ 3-32B 46.24  53.76
09 3.1-8B 4851 51.49
DPO Llama (Ours) 50.00 50.00

Table 3: Average selection rate (%) of an entity appear-
ing at Position 1, or 2 in the ClearRef dataset, across
different models and prompts (Normal vs. Simple) in
English.

suit our coreference resolution evaluation. Specif-
ically, we merge Interrogation into Clarification,
as both involve follow-up questions rather than
direct answers. We also merge Discussion into
Answer Attempt, since our evaluation does not re-
quire a fully factual answer, only that the response
correctly identifies the positive entities. This sim-
plification reduces annotation complexity without
compromising the core objective of our analysis.
A detailed overview of all response categories, in-
cluding definitions and examples, is provided in
Table 4.

F Automatic Evaluation

We used GPT-4.1-mini as an LLLM judge to auto-
matically evaluate the responses. We divided the
evaluation into two parts: response classification
and entity extraction. The prompt used for response
classification is shown in Box 1. The prompts used
for entity extraction, split into a system prompt
and a user prompt, are shown in Box 2 and Box 3,
respectively.

We manually annotated 500 responses from the
English dataset to validate the framework. Table 5
reports the agreement rates for response catego-
rization along with Cohen’s Kappa scores. For
entity extraction, we report exact match accuracy.
Overall, the results show high agreement across all
models.
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Name

Description

Example

Answer attempt

The assistant clearly commits to at least
one interpretation, providing a factual
response without any hedging.

The helicopter can fly because its rotors
generate lift, allowing it to rise off the
ground and maneuver through the air.

Clarification The response asks for more information  Could you specify which one you’re re-
about the user’s intent without offering ferring to: the helicopter or the gnat?
interpretations or using hedging

Hedging The response uses hedging or condi- If you’re referring to a raven, it can
tional language (e.g., “if you meant fly due to its strong wings, lightweight
X...”) and does not fully commit to a sin- body, and aerodynamic shape, which al-
gle interpretation. Even if only one en- low it to generate lift and move through
tity is mentioned, the presence of such the air efficiently.
language marks it as a hedge.

Refuse The response refuses to answer the ques- Here are the sentences: 1. **Bat**:
tion and does not ask any follow-up The bat fluttered silently through the
questions. night sky, searching for insects. 2.

**Dragonfly**: The dragonfly darted
over the pond, its iridescent wings shim-
mering in the sunlight. 3. **Coffee**:
The aroma of freshly brewed coffee
filled the kitchen, awakening everyone’s
senses. 4. **Why can it fly?**: Why
can it fly, despite its small wings and
heavy body?"

Missing The response is empty. [blank]

Table 4: Description and Examples of our Response Categories.

Prompt Response Cat.  Entity Low-Rank Adaptation (LoRA). The full configura-

. tion for LoORA and DPO training is summarized in
® 40-mini  100.0% (N/A)  99% Table 7.
@E 40 100.0% (1.000) ~ 98% We observed performance improvements on both
¥7 3-32B 92.0% (0.804) 98% the SharedRef dataset and the homonym task from
Qv3 98.0% (0.823) 94% Ellinger et al. (2025). However, on the ClearRef
003.1-8B 100.0% (N/A) — 100% test set, while the number of correct responses
Total 98.0% (0.916) 97.8%

Table 5: Accuracy percentages and Cohen’s Kappa
scores (in parentheses) for Response Categorization and
exact match accuracy for Entity Extraction across our
evaluated models.

G Direct Preference Optimization

Our training set contains 472 responses from sim-
ple settings and 866 from normal settings. In ad-
dition, we included 30 basic clarification cases,
where the user posed clearly ambiguous questions.
A fine-grained distribution is provided in Table 6.
We fine-tuned the model for two epochs using

remained comparable to the base model, we ex-
perienced a category shift. As shown in Fig-
ure 11, the distribution of coarse response cate-
gories shifted significantly toward ‘clarification’
and ‘hedge’ across all languages. This indicates
that the cognitive cost of those responses is higher
for our DPO model compared to the base model
on this dataset. To address this, future alignment
efforts should incorporate more training examples
from ClearRef to encourage direct answers where
appropriate. Unlike in SharedRef, where the model
successfully used common knowledge to respond
only to the positive entities, in ClearRef, the model
no longer consistently applies this strategy.
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Dataset / Category En Fr Ar Ru Zh
SharedRef
Normal Answer Attempt 64 80 69 37 53
Normal Hedge 106 39 49 78 57
Normal Clarification 58 44 47 55 47
Simple Answer Attempt 112 84 30 69 76
Simple Hedge 21 13 2 15 31
Simple Clarification 4 3 1 4 1
ClearRef
Normal Answer Attempt 2
Normal Hedge 1
Simple Answer Attempt 6
General
Clarification 6 6 6 6 6

Table 6: Distribution of chosen response types in our
DPO fine-tuning dataset, broken down by language,
response category, and setting.

Parameter Value

LoRA Configuration

r 64

LoRA Alpha 16

LoRA Dropout 0.05

Target Modules [q_proj, v_proj,
k_prOJ, 0_pr0_]]

Bias none

DPO Training Configuration

g

Learning Rate

0.1
5e-5

Batch Size (per device) 4

Epochs

2

Table 7: Combined configuration used for LoRA adap-
tation and Direct Preference Optimization (DPO) fine-
tuning.

Percentage

Llama-3.1-8B

100
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DPO Llama (Ours)
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0

en fr ar ru zh

Figure 11: Distribution of response categories in the
DPO test set across five languages in the ClearRef
dataset. Colored squares denote response types: B An-

swer Attempt,

Hedge,

Clarification, and m Refuse.
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Short Form  Name Version Access Provider
® 40-mini  GPT-40-mini  gpt-40-mini-2024-07-18  OpenAl API

® 40 GPT-40 gpt-40-2024-08-06 OpenAl API

® 4.1-nano  GPT-4.1-nano  gpt-4.1-nano-2025-04-14  OpenAl API

@ 4.1-mini  GPT-4.1-mini  gpt-4.1-mini-2025-04-14  OpenAl API

v 3-32B Qwen3-32B N/A OpenRouter

@ V3 Deepseek v3  N/A Fireworks Al
0 3.1-8B Llama-3.1-8B  N/A Fireworks Al

Table 8: Specific model versions used in our experiments. For each model we provide the short form as used in our
tables, the exact version and the access provider.

Prompt / Model Correct Direct
En Fr Ar Ru Zh En Fr Ar Ru Zh
Prompt: Simple
® 40 08.08 100.00 98.08 100.00 96.15 88.46 69.23 78.85 63.46 75.00
® 40-mini 100.00 100.00 100.00 100.00 100.00 69.23 55.77 53.85 28.85 76.92
@ V3 100.00 90.38 100.00 94.23 100.00 88.46 6731 61.54 69.23 69.23
%7 3-32B 100.00 9423 9423 96.15 96.15 73.08 63.46 21.15 65.38 67.31
X 3.1-8B 9423 9423 98.08 9038 9231 9231 7885 55.77 73.08 80.77
Prompt: Normal
® 40 96.15 96.15 98.08 98.08 96.15 86.54 73.08 75.00 80.77 80.77
® 40-mini 100.00 98.08 9423 98.08 9423 82.69 6538 57.69 46.15 67.31
@ v3 100.00 98.08 96.15 9423 96.15 69.23 53.85 59.62 61.54 50.00
¥ 3-32B 08.08 9423 98.08 9038 9423 82.69 5192 5192 67.31 63.46
X 3.1-8B 96.15 90.38 90.38 9423 98.08 94.23 78.85 6538 73.08 90.38

Table 9: Evaluation results showing the percentage of correct and direct responses across languages and prompt
types on the ClearRef dataset. Bold highlights the highest scores per language within each prompt and metric.

Prompt / Model Correct Direct
En Fr Ar Ru Zh En Fr Ar Ru Zh
Prompt: Simple
® 40 18.06 7.49 19.82 441 2379 1278 6.61 12.78 220 1542
® 40-mini 529 176 1145 352 11.89 352 176 881 1.76 8.37
@ V3 48.02 28.19 47.58 19.38 46.70 10.57 11.89 6.17 396 7.49
v 3-32B 33.04 2599 28.19 12.33 56.83 2335 11.89 396 7.93 26.87
Q0 3.1-8B 11.89 396 47.58 485 485 485 044 220 1.76 1.76
Prompt: Normal
® 40 81.06 50.66 47.14 57.27 62.11 36.56 34.80 30.40 22.03 21.15
® 40-mini 1410 11.89 14.10 441 1850 7.05 749 837 176 17.05
@ v3 61.23 61.23 65.64 31.28 49.78 396 9.25 10.13 352 1.76
%7 3-32B 7577 71.37 56.83 63.88 83.26 29.52 19.38 10.57 25.99 25.11
0 3.1-8B 1454 13.66 749 396 6.17 573 220 396 132 2.64

Table 10: Evaluation results showing the percentage of correct and direct responses across languages and prompt
types on the SharedRef dataset. Bold highlights the highest scores per language within each prompt and metric.
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Box 1: User Prompt: Response Classification

You are reviewing a single-turn conversation between a user and an assistant.
You must classify the assistant's response according to the **type of response strategy** used.
Here are the definitions:

- “answer_attempt”: The assistant **unambiguously commits*x to at least one interpretation of the
user’s question and provides a factual explanation or general background relevant to the query. It
must **not use any hedging language**, such as “if you mean. . . ”, “depending on. . .”, or “could
be. . . ”. Implicit or explicit hedging disqualifies it from this category. It may mention multiple
entities, as long as none are introduced with hedging or conditional phrasing.

- “clarification™: The assistant **asks for more informationx* about the user’s intent. This may
involve **one or more clarification questionsx*, but must not *xsuggest answers*x or list
*xinterpretations**,. The response must should **not contain hedging or speculative language*x.
- “hedge™: The assistant x*uses hedging or conditional language*x (e.g., “if you meant X. . .7”,
“could refer to. . .”, “might be. . . ”) and does not fully commit to a single interpretation. Even if
only one entity is mentioned, the presence of such language marks it as a hedge.

- “refuse”: The assistant explicitly or implicitly refuses to answer the question and does **notx*
ask any follow-up questions.

- “missing”: The assistant gives **no response at all*x.

You must output your answer in the following JSON format:
{"response_type": "refuse|missing|answer_attempt|hedge|clarification”}

Conversation:
Question: <question_str>
Answer: <asnwer_str>

Box 2: System Prompt: Entity Extraction

You are an expert in identifying explicit entity mentions in text.
Your task is to determine which of the listed entities are explicitly mentioned in the response.

Instructions:

- Return only entities from the provided list (use their exact spelling from the list in your
output).

- Consider an entity ’mentioned’ if the response text contains the entity exactly, or with minor
morphological or spelling variations.

Examples of acceptable variations include plural forms and misspellings.

- Do not infer mentions from implied meaning, associations, or unrelated paraphrasing.

- Only include entities that are clearly and explicitly present in the response text.

- x*Always** output the entity names exactly as they appear in the provided list.

Box 3: User Prompt: Entity Extractionn

Entities: <entity_list>
Response:

<answer_str>

Which of the listed entities are explicitly mentioned in the response?
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Arabic Prompts French Prompts

Rel. 1: 13U e 901 b))

Rel. 2: 13U 4» 9ol

Rel. 3: B 5o ¢ a0 o T2
Rel. 4: 13U (e 9L

Rel. 5: 13U S of Joms e
Rel. 6: 13U L (5L ?)l.ﬁ"‘\”
Rel. 7: 150 &1 €,

Rel. 8:

B &yl ?ci:‘/-
Simple: (g Bl @l o []
Starter: <entity list> les.cj Aas sl ﬂ o ‘__LL'J\

L

Rel. 1: Pourquoi peut-il voler ?

Rel. 2: Pourquoi est-ce sucré ?

Rel. 3: Pourquoi est-il en bois ?

Rel. 4: Pourquoi peut-il nager ?

Rel. 5: Pourquoi peut-il fonctionner rapidement ?
Rel. 6: Pourquoi peut-il grimper aux arbres ?

Rel. 7: Pourquoi fait-il chaud ?

Rel. 8: Pourquoi est-ce si bruyant ?

Simple: [..] Veuillez répondre dans un langage sim-
ple.

Starter: Donnez-moi une phrase pour chacun des
mots suivants : <entity list>

J

Rel. 1: Why can it fly?

Rel. 2: Why is it sweet?

Rel. 3: Why is it made of wood?
Rel. 4: Why can it swim?

Rel. 5: Why can it run fast?

Rel. 6: Why can it climb trees?
Rel. 7: Why is it hot?

Rel. 8: Why is it loud?

Simple: [..] Respond in simple language.
Starter: Provide me one sentence for each of the fol-
lowing: <entity_list>

English Prompts

Rel. 1: €A 2467

Rel. 2: A4t 2 &35 ?

Rel. 3: At 2 A KRH 4 ?
Rel. 4: At 2 CaEH R ?

Rel. 5: At 2 € RwAFI 27
Rel. 6: A4tz Eeest ?

Rel. 7: At 2a4#?

Rel. 8: A4t 2 29 ?

Simple: [..] # A A6 5 1E 698 T =HA o
Starter: A AT HEANR B RE—GRE ¢ <en-
tity list>

Chinese (Zh) Prompts

J

Russian Prompts

Rel.
Rel.
Rel.
Rel.
Rel.

: [Touemy OH MOXeET JIeTaTh?

: Ilouemy on cnaakuit?

: [louemy oH czenan u3 aepesa?

: [louemy oH MOXeET raBaTh?

: [Touemy oH MokeT ObICTpO Oerarh?

Rel. 6: [Touemy oH MOXeET J1a3aTh 1O IEPEBbHIM?
Rel. 7: TTouemy Tak xapko?

Rel. 8: ITouemy Tak rpomko?

Simple: [..]
SI3BIKOM.
Starter: /laliTe MHE 110 OZTHOMY IPEIUIOKEHHIO VIS
Ka)KJIOT0 U3 CIEAYIONIMX CII0B: <entity list>

~N QN L BN —

[Moxaiyiicta, oTBeYaiTe MPOCTHIM

L J

Figure 12: Language Versions of Relation Questions, the Simple Instruction and the Starter Sentence in Arabic,
French, English, Chinese, and Russian
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test-time compute, which lets us explore the
model’s predictive distribution. We show that
granting DeepSeek the budget to explore its
distribution by forcing a long chain-of-thought
before the final answer greatly improves its
verbal score effectiveness, even on simple fact-
retrieval questions that normally require no rea-
soning. Our analysis concludes that reliable
uncertainty estimation requires explicit explo-
ration of the generative space, and self-reported
confidence is trustworthy only after such explo-
ration.

1 Introduction

Generative language models (GLMs) like GPT,
LLaMA, or Deepseek families have achieved great
performance on diverse tasks (Dubey et al., 2024;
DeepSeek-Al et al., 2025), yet they are prone to
failure modes such as “hallucinations” (Huang
et al., 2023). These inaccuracies can undermine
trust and lead to poor decisions in LLM-assisted
systems (Huang et al., 2024). To mitigate this issue,
quantification and the communication of model’s
uncertainty in its outputs is seen as a potential to
entrust these models with reliability.

Numerous uncertainty-quantification (UQ) ap-
proaches have been proposed in this direction: from
Monte-Carlo sampling based, such as Semantic En-
tropy (SE) (Farquhar et al., 2024) to simpler Verbal-
ized Confidence estimation (VC), which just asks
the model directly to state its confidence (Xiong
etal., 2024).

While Verbalized Confidence estimation is easy
to use, there is no scientific consensus on what it

Reasoning Budget

Figure 1: DeepSeek R1-32B’s Verbalized Confidence
(VC) improves and matches Semantic Entropy’s (SE)
effectiveness, when longer reasoning is forced.. Our
work suggests that it is the test-time exploration of the
model’s predictive space, not the particular uncertainty
heuristic, that makes confidence estimates reliable.

represents or what its source is, potentially making
it unreliable to use in critical scenarios. Further-
more, prior work has shown that Verbalized Confi-
dence is often pathological - for the same question
a model might first return “Answer A (100 % confi-
dence)” and, in a second sample, “Answer B (95 %
confidence),” even though these probabilities can-
not coexist (Xiong et al., 2024). On a more practi-
cal side, verbalized scores may be over-confident
(Yang et al., 2024; Pawitan and Holmes, 2024),
whereas Semantic Entropy remains comparatively
well calibrated (Farquhar et al., 2024).

Semantic Entropy’s effectiveness can be at-
tributed to its test-time compute—allocating extra
tokens at inference (Snell et al., 2024) to explore
the predictive distribution. Test-time compute can
also come in the form of an extended reasoning
chain that precedes the final answer (Wei et al.,
2023; DeepSeek-Al et al., 2025), and most recent
works show that such reasoning can improve ver-
balized or token-level calibration as well (Zeng
et al., 2025; Jurayj et al., 2025). These findings
prompted us to pose a hypothesis: Is the model
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able to directly quantify and express verbally its
uncertainty, or is the test-time token exploration
necessary for the model to reliably summarize its
confidence?

In this paper, we try to answer this question and
better understand the source of VC by perform-
ing a set of experiments with DeepSeek R1-32B
(DeepSeek-Al et al., 2025) as a representative
model. Our results show that without any chain-of-
thought, DeepSeek’s verbalized scores carry little
information about correctness. As we grant the
model progressively larger reasoning budgets, its
calibration improves and approaches the reliability
of Semantic Entropy, even on simple fact-retrieval
items. This trend suggests that meaningful uncer-
tainty estimates emerge only after the model’s pre-
dictive space has been explored, and that the final
confidence percentage largely summarizes the di-
versity exposed in this process. We further enforce
this hypothesis by using a separate reader model
that, by just analyzing DeepSeek’s reasoning trace,
matches the reliability of DeepSeek’s own Verbal-
ized Confidence.

2 Background and Related Work

Generative language models frequently generate
fluent but incorrect answers that can cause down-
stream harm (Band et al., 2024; Huang et al., 2024).
When no external verifier is available, a model’s
self-reported confidence is the only proxy for cor-
rectness, making reliable uncertainty estimates es-
sential.

Calibration of LLM Confidence Scores. A con-
fidence score is calibrated if, for example, predic-
tions tagged “80 % confident” are correct roughly
80 % of the time. Common approaches to obtain
the confidence scores include token-level probabil-
ities treated as a classification score (Dhuliawala
et al., 2022), semantic-level measures that evaluate
agreement across multiple sampled completions
(Farquhar et al., 2024), and explicitly verbalized
percentages in a model’s output (Xiong et al., 2024;
Tian et al., 2023).

Semantic Entropy vs. Verbalized Confidence
A generative model, given a question (), defines
a distribution over semantically distinct answers
P(A | Q). The uncertainty of this distribution is
naturally quantified by its Shannon entropy, and
while computing it exactly is infeasible, we can
approximate it by Monte-Carlo sampling and clus-

tering semantically equivalent answers. This is ex-
actly how the Semantic Entropy (SE) method (Far-
quhar et al., 2024) works, leading to well-calibrated
scores. The big downside of this method is that
it requires sampling data on test-time (larger test-
time-compute budget).

Another way to obtain a confidence score is sim-
ply to ask the model for one, for instance, “I am
85 % sure.” This Verbalized Confidence (VC) is
easy to collect and works with any black-box API
(Xiong et al., 2024; Yang et al., 2024; Ni et al.,
2024). Yet, opposed to SE, it is unclear what the
number represents: is the model sampling its own
distribution, recalling similar training examples, or
just guessing? To our best knowledge, no study has
answered these questions, leaving the method too
uncertain for safety-critical use.

The most recent works find that reasoning-tuned
models that generate more tokens at the test time
give better calibrated verbalized score (Hammoud
et al., 2025; Wei et al., 2024; Xiong et al., 2024;
Zhao et al., 2024), This hints that exploring test-
time compute budgets’ impact on Verbalized Confi-
dence calibration might be crucial to understand its
source, yet we are not familiar with any research
work that tries to answer our questions specifically.

In this work, we systematically compare Ver-
balized Confidence and Semantic Entropy under
matched test-time compute budgets, examine sev-
eral task domains, and analyze the reasoning trace
to see where the verbalized score comes from and
why it lags behind Semantic Entropy.

3 Methodology

Our objective is to uncover where a model’s Ver-
balized Confidence comes from. We identify two
competing views:

Intrinsic latent variable: the model can read
out a hidden latent belief state and use it to ex-
press its uncertainty, and Self-sampling: model
does not have access to any reliable latent source of
confidence, and reliable confidence emerges only
after the model explicitly explores its own predic-
tive space, as Semantic Entropy does by sampling
many answers.

We test these views through a set of experiments
that measure the behavior of VC when the model
is forced to reason before answering, compare the
effectiveness and accuracy to the SE, and analyze
the uncertainty exposed in the reasoning traces. We
describe our experimental setup in Appendix A.
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4 Results

Without any reasoning tokens, the score is barely
better than random, and with enough exploration
budget, VC can approach SE’s effectiveness (sub-
section 4.1). Furthermore, an external reader can re-
cover essentially the same uncertainty signal by in-
specting the chain of thought alone (subsection 4.2),
suggesting that the Self-sampling hypothesis might
be true.

4.1 Extended Reasoning is Necessary for VC
to Reach SE-Level Effectiveness

Figure 3 shows final-answer accuracy, UQ effec-
tiveness, and average stated confidence for correct
and incorrect answers as a function of the reasoning
budget, with Semantic Entropy shown for compari-
son. We see that granting just 100—500 reasoning
tokens raises accuracy 41% — 63% and boosts
verbalized-confidence ROC-AUC 0.56 — 0.80.

For fact-retrieval questions (Fig. 3b), answer ac-
curacy does not improve with longer reasoning
budgets, yet UQ effectiveness continues to improve
with additional tokens. We can reach very long rea-
soning traces for fact-retrieval questions thanks to
the employed forced reasoning technique (Muen-
nighoff et al., 2025) presented in Figure 4.

Verbalized Confidence is initially weaker than
superior Semantic Entropy but reaches near par-
ity at 200 tokens for fact retrieval and 3,500 to-
kens for mathematical items, while maintaining
higher answer accuracy due to the reasoning pro-
cess. For comparison, in our experiments, SE used
218 tokens per sample on average, meaning the
two methods are very similar both in computational
efficiency and UQ effectiveness for fact retrieval
questions.

These results confirm that allocating test-time
compute to reasoning is essential for reliable un-
certainty estimates, and extended CoT effectively
mitigates DeepSeek’s over-confidence without sac-
rificing performance. The sheer scale of the im-
provement in effectiveness: from near-random 0.56
ROCAUC to 0.88 suggests that there is no latent
uncertainty information available for the model,
and self-sampling is necessary to obtain a good
uncertainty estimate.

4.2 External Reader Model Recovers VC
Calibration from Reasoning Trace Alone

If there is no hidden latent variable from which
Verbalized Confidence is drawn, then the reasoning

Q: Where was Charles Babbage born?

Hmm, let me think ...
probably Cambridge.

Wait, lots of scientists ...
so maybe it’s London?

(2] 19:9)
reader model:

Wait, let’s ... so finally I
think it's Cambridge. Final Answer will be:
London: 10%
Cambridge: 90%
Entropy: 0.47

Final Answer: Cambridge,
Confidence: 80%

External Reader's Effectiveness

1.0 1.0
c
© = T— |
£s 08- 0.8 g
{’EE 0.6 - /_/.\,__’_. -0.6 2
&Eoa- — -04°8
g 8 0.2 - '_/ —=— ROC-AUC Reader . 2 o«
<C ROC-AUC DeepSeek

0.0 0 1000 2000 3000 0.0

Reasoning Budget

Figure 2: Separate reader matches the reliability
of DeepSeek’s own Verbalized Confidence by just
looking at the reasoning trace. With more reason-
ing tokens, the agreement between them (measured as
absolute Spearman correlation) increases, and the effec-
tiveness of both scores changes similarly.

trace has to contain all the uncertainty information
needed to explain Deepseek’s final score. We can
verify it using an external reader model that, given
only DeepSeek’s chain of thought, tries to predict
its final answer and confidence.

Figure 2 illustrates our experimental setup and
results. As a reader model, we used OpenAl’s
GPT-40-mini (OpenAl, 2024), we provide more
information about the setup in Appendix C. We
display (i) the absolute Spearman correlation |p|
between DeepSeek’s self-reported confidence and
the reader entropy Hieader, and (ii) the ROC-AUC
of each score in detecting incorrect answers.

With no reasoning tokens exposed, the correla-
tion between Reader’s and Deepseek’s scores is
low, however, with more reasoning tokens, the ef-
fectiveness of the reader goes up in tandem with
Deepseek’s effectiveness, and the correlation be-
tween the two goes up. At 3.4 k tokens, DeepSeek
reaches ROC-AUC = 0.851 and the reader 0.841
with |p| = 0.57, indicating that almost the entire
confidence signal is now accessible in the trace.

These results support our claim that there is no
directly accessible notion of uncertainty, and uncer-
tainty information must be surfaced through test-
time token sampling. When the model provides
a Verbalized Score after the reasoning process, it
most likely just reads its reasoning trace and sum-
marizes the alternatives and uncertainty exposed in
1t.
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Figure 3: Effectiveness and Accuracy of Verbalized Confidence with Forced Reasoning vs Semantic Entropy.
(a) Full overview. (b) Fact retrieval results. (c) Mathematical reasoning results. Note: The remaining 10 samples
not falling into the Fact Retrieval or Mathematical Reasoning categories are included in the Full overview but not

presented as separate plots.

5 Discussion and Future Work

We aimed to determine whether large language
models can directly verbalize well-calibrated uncer-
tainty or whether reliable confidence estimates only
emerge after explicit exploration of their predictive
space, via additional test-time compute such as
parallel sampling (Semantic Entropy) or extended
reasoning.

Our experiments suggest that fest-time compute,
not the particular uncertainty heuristic, is the de-
cisive factor for obtaining reliable confidence esti-
mates in DeepSeek-R1-32B. Left to produce only
a short answer, the model remains over-confident
because its belief state cannot be accessed directly.
Granting the model additional tokens, either by
sampling independent continuations (Semantic En-
tropy) or by forcing a longer chain of thought, al-

lows it to externalize alternative hypotheses. This
exposes a big issue with Verbalized Confidence -
its appeal lies in the simplicity and how fast it is,
yet it works well only after a significant reasoning
computation is done.

While these results are encouraging, they may
not be generalizable since we’ve tested only one
model and used a very compact QA dataset. Fur-
thermore, assuming it is true that test-time compute
is the decisive factor for reliable UQ, it still might
be the case that some methods of test-time compute
may be more efficient in eliciting uncertainty than
others. Future work could focus on making models
reason more efficiently or explore their uncertainty
in a more structured way. That could help Verbal-
ized Confidence inherit the Semantic-Entropy-level
of calibration with less computation needed.
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System prompt:

(...) Please answer user’s questions.

Provide both the final answer and your confidence that the answer is correct. (...) Before the
Final Answer, you might be asked to provide a short reasoning between "think" tokens. (...)

User Message:
Where was Charles Babbage born?

Verbalized Confidence with Forced Reasoning Semantic Entropy

i

t

o ) 1 2 l 10
g <think> Hmm, let me 223 tokens
2. think ... Cambridge. Final Answer: Final Answer: Final Answer:
o Add “Wait,” and continue Cambridge, UK London L Cambridge
é g Wait, lots of scientists 245 tokens
s 2 ... London? ) )
@8 Add “Wait,” and continue l l
< ( Wait, let’s ... so ) 32 tokens
[T=)]
X g
L — Cambridge: 5
L 12
Final Answer: Cambridge, Confidence: Moor;tzof?equent answer: Cambridge
80% Entropy: 0.86

Figure 4: Two tested methods of obtaining Final Answer and Confidence - Verbalized Confidence with Forced
Reasoning (VC) works by prompting the model to reason for longer-until the fixed budget is exhausted - before
stating the answer and confidence. Semantic Entropy (SE) obtains 10 independent answers that are later clustered
semantically to identify the most frequent one, and to calculate the entropy in the answer distribution.

A Experimental Setup

Data Sources. Because long-trace experiments are computationally expensive, we built a small (270
samples) but diverse benchmark instead of using full datasets. We sampled questions from five popular,
open-source sources: TriviaQA, MMLU, and SimpleQA for fact retrieval (Joshi et al., 2017; Hendrycks
et al., 2021; Wei et al., 2024), plus GSM8K and AIME-2024 for mathematical reasoning (Cobbe et al.,
2021; AIME, 2024). Our goal is open-ended QA in natural language, so we stripped away multiple-choice
options in MMLU and any figure references in AIME-2024, manually discarding questions that could not
stand alone after this edit, such as “Which of the following is true?”. Every surviving example was then
hand-labeled with its knowledge domain and the skills needed to answer it, such as “Fact Retrieval” or
“Mathematical Reasoning”. Full sampling details and the final label distribution appear in Appendix B.

Model and Prompts. We chose Deepseek-R1-32B! (DeepSeek-Al et al., 2025) following Jurayj et al.
(2025) for its strong reasoning capabilities at a manageable model size. Furthermore, it is one of the most
popular open-sourced reasoning-tuned models. All experiments were run on two NVIDIA A100 GPUs.

We provide an elaborate discussion on prompting and inference we adopted in Figure 4. Across all
setups, we used a single system prompt that directs the model to (1) think step by step, and then (2) provide
a final answer along with a Verbalized Confidence score. The full prompt text, as well as an interaction
example, is available in Appendix C. To regulate the length of the reasoning chain, we applied the
budget-based truncation method of Muennighoff et al. (2025): when the reasoning budget is exhausted (or
set to zero), the chain terminates immediately. If the budget remains, the system appends “Wait, ” tokens,
and asks to generate more tokens. For experiments with Verbalized Confidence, we lowered the decoding
temperature to 0.1 to prevent the model from going off-topic in long reasoning. For parallel sampling
in Semantic Entropy experiments, we set it to 1.0 to obtain more diverse responses and approximate the
predictive distribution more efficiently.

UQ Methods. Next, we describe how we obtain the estimates of verbalized score and semantic entropy:
For Verbalized Confidence, we ask the model to provide the final answer and its confidence between 0%
and 100% after (optional) forced reasoning (refer to Figure 4 for visualization).

For Semantic Entropy, we follow Farquhar et al. (2024), and generate n = 10 answers for each question
with no reasoning chain. Afterwards, we use OpenAl’s gpt-40-mini (OpenAl, 2024) to cluster semantically
equivalent generations. We select the majority cluster — the cluster with the most members (i.e., the answer

'deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
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that appears most frequently once semantically equivalent responses are grouped) — as the predicted
answer and compute the Shannon entropy of the cluster-size distribution as the uncertainty score.

Evaluation and Metrics. We report two main metrics: the accuracy of the final answer and the
effectiveness of the UQ method measured as the area under ROC (ROC AUC) in the task of classifying
the model’s final answer correctness (hallucination classification). To calculate if the model’s final answer
is correct, we query OpenAI’s GPT-40-mini (OpenAl, 2024) model with the question if this proposed
answer is equivalent to the ground truth answer in the dataset given a question.

We repeat experiments with verbalized score confidence across varying reasoning budgets 3 times and
show mean and 95% confidence intervals. For the rest of the experiments, we repeat them once unless
stated otherwise.

B Data Creation and Composition

Because our longest-trace runs are expensive, we limited the benchmark to 270 open-ended questions
drawn from five well-known, permissively licensed QA datasets. We first sampled 310 items uniformly at
random (seed 42) to balance fact-retrieval and mathematical-reasoning content while keeping the total
below the ~300-sample budget we could process. Items whose solutions required figures (AIME-2024),
multiple-choice candidates (MMLU), or extra context passages (TriviaQA) were discarded after manual
inspection, leaving the 270 used in all experiments (Table ??). By doing so, we ensured that all the
incorrect answers were caused by the model’s mistakes, instead of missing context in the data.

Each example received two human labels - Knowledge Domain, and Skill Required. A large language
model (OpenAl 03) proposed initial tags for 100 random questions. The first author then reviewed every
instance, correcting tags where needed, and used these tags to manually label all 270 samples. You can
find the specific tags and number of datapoints in Figure 5. In the main paper, we break out results for
the full dataset and for the two most common Skill Required tags only; Knowledge Domain splits are
omitted because several categories are too small. Per-dataset results can be found in Appendix D. Five
representative questions and their tags are shown in Table 1.

Example Question (truncated) Dataset Skill Domain

In what year did Augustus De Morgan publish SimpleQA Fact Retrieval History and Past Events
the article "Trochoidal Curve" in the Penny Cy-

clopaedia?

There exist real numbers x and y, both greater AIME2024 Mathematical Reasoning =~ Mathematics
than 1, such that log,, (y*) = log, (z¥) = 10.
Find zy.

James runs 12 miles a day for 5 days a week. If GSM8K  Mathematical Reasoning =~ Mathematics
he runs 10 miles an hour how many hours does
he run a week?

In Python 3, which of the following function MMLU Fact Retrieval IT and Engineering

removes all leading and trailing whitespace in

string?

Anaphylaxis is what sort of life-threatening ill- TriviaQA  Fact Retrieval Science, Nature and Medicine
ness?

Table 1: Five representative items from the 270-question benchmark.

C Prompts and Inference

Main VC vs SE runs. You can find the full system prompt used in the main VC vs SE experiments, as
well as a real interaction example with Verbalized Confidence and budget forcing in Figure 6.

Reader-model experiments. Our goal is to let an external model read DeepSeek’s reasoning trace
and predict a probability distribution over possible DeepSeek’s answers. After obtaining the distribution,
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Figure 5: Internal composition of our used data sample.
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System prompt:

You are a trivia expert, please answer user questions. Provide both the final answer and your confidence that
the answer is correct. Be honest and precise in your confidence estimation, as the users will rely on this
information to make decisions. Try not to overestimate your confidence. Answer in the format: ' Final Answer:
<final_answer>. Confidence: <confidence>" where <confidence> is a percentage between 0% and 100%,
and <final_answer> is just the final answer in one brief sentence.

Before the Final Answer, you might be asked to provide a short reasoning between "think" tokens. In your
reasoning process, try to constantly reevaluate your confidence,

by considering the information you have and the information you are missing or may have calculated wrong.
Reason not only about the final answer, but also about your confidence.

User Message:
The Fitzwilliam Museum is in which British town or city?

N [ \ (
J \_J 0

Model response:
<think> Okay, so I need to figure out where the Fitzwilliam Museum is located. I remember hearing about it
before, but I'm not exactly sure. Let me think. I know there are several famous museums in the UK, like the
British Museum in London and the Victoria and Albert Museum, also in London. But the Fitzwilliam Museum
doesn't ring a bell as being in London. Maybe it's in another city.\n\nI think Cambridge is known for its
universities, especially the University of Cambridge. There are a lot of museums there associated with the
university. I recall that the Fitzwilliam Museum is one of them. It's a major art museum, right? They have a lot
of paintings, sculptures, and other artifacts. I'm pretty sure it's in Cambridge because I've seen pictures of it
before, and it's often mentioned alongside other Cambridge landmarks.\n\nWait, could it be in Oxford? No,
Oxford has the Ashmolean Museum, which is also a big one. So, no, the Fitzwilliam is definitely in Cambridge.
I'm pretty confident about that. I don't think it's in any other city like Manchester or Birmingham. It's
specifically linked to the University of Cambridge, so that must be the location.\n\nI don't have any conflicting
information, so I think I'm safe to say it's in Cambridge. My confidence is high because I've heard it mentioned
in the context of Cambridge and its university.\nWait, just to double-check, I</think>

\_ Final Answer: Cambridge. Confidence: 95% )

Figure 6: Used system prompt and real interaction example. The question comes from the TriviaQA dataset.
Moments where the model was forced to reason for longer are highlighted.
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Dataset Sampled After Filtering Removed

GSM8K 100 99 1
TriviaQA 70 66 4
SimpleQA 40 40 0
MMLU 70 39 31
AIME2024 30 26 4
Total 310 270 40

Table 2: Number of samples per dataset before and after manual filtering.

we calculate Shannon entropy, which is used as a notion of uncertainty. The procedure of obtaining a
distribution over possible DeepSeek’s answers has four steps:

1. Candidate extraction. For each question, we feed the entire 3.4k-token reasoning chain to
gpt-4o-mini, prompting it to list all candidate answers mentioned in the trace.

2. Multiple-choice reformulation. We label the distinct candidates with letters A, B, C. .., we also add
an option "None Unknown".

3. One-token completion. We prompt gpt-40-mini again, asking which of the candidates is most
likely to be returned by DeepSeek as a final answer. We ask the API for exactly one letter A, B,
C...as aresponse. We keep the logits of this single-token prediction, apply softmax, and obtain a
categorical distribution p(A), p(B), . ...

4. Reader entropy. The Shannon entropy of that distribution, Hyeader = — »_; (i) log p(2), is the
reader’s uncertainty score used in our analyses.

You can find prompts that we used to extract the list of all candidates, as well as the final prediction, in
figure Figure 7.

D Results Across Datasets

We provide additional comparison of VC and SE with varying reasoning budgets across different sources
of data in Figure 8. While the trends are much noisier because of fewer samples, we see that for all the
sources the difference in confidence between correct and incorrect answers increases with more reasoning
tokens.

256



Possible-candidates prompt

“You are a helpful assistant. We asked a person to answer an open-ended question.
The person wrote a reasoning trace and then gave a final answer. I want to know
what all the possible options were that the person considered before giving the final
answer. This is for research on the answers people consider. I want to use these
possible answers to create a multiple-choice question. Please give me all the possible
answers the person considered, without duplicates, keeping the answers distinct and
suitable for a multiple-choice question. Respond as a JSON list of strings, like this:
FINAL LIST: ["answerl", "answer2", ...], which I can later use in a quiz. Add the
correct answer, the final answer, and Other / Unknown to the list, making sure there
are no duplicates. Reason about possible answers and how to remove duplicates,
before giving the final list. Include only answers mentioned in the reasoning trace
plus the correct answer. Do not add answers that are missing from the trace or the
correct / unknown items.”

Final-prediction prompt

“You are a helpful assistant. We asked a person to answer a question; the person started
reasoning about the possible answers. Your role is to serve as an autocompletion
model that predicts the most likely final answer the person will give, based on the
current reasoning trace. You are not allowed to give your own answer—only the
person’s most likely final answer. Choose from the list of possible answers (A, B, C,
...) and output exactly one letter, with no whitespace or comments.”

+ A) {Option A}

+ B) {Option B}
+ C) {Option C}

Figure 7: Reader-model prompts. First prompt is used to extract candidate answers from the reasoning trace, the
second one shows the follow-up prompt that asks the reader to predict DeepSeek’s final choice. The last block of
the second prompt is filled dynamically with the candidate list produced by the first one.
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Figure 8: Effectiveness and Accuracy of Verbalized Confidence with Forced Reasoning vs Semantic Entropy.
Despite noise from limited samples, the right-hand plots show a consistent and increasingly pronounced divergence
in reported confidence between correct and incorrect answers as the reasoning budget increases.
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Abstract

In recent years, we have seen an increased us-
age of neural ranking models in the information
retrieval domain. Although language model-
based rankers have shown significant progress
in performing ranking tasks, little to no work
has addressed the issue of fine-tuning them in
the presence of label noise in the training data.
In a general learning setting, training models
in the presence of noisy labeled data is studied
extensively. To this end, confidence calibration
approaches have shown significant promise;
however, their usage in training neural ranking
models is relatively less studied. In this work,
we address this gap by adapting and analyzing
regularization-based calibration approaches to
reduce the effect of label noise in ranking tasks.
Specifically, we study label relaxation in neural
ranking models. We demonstrate the effective-
ness of this approach by performing extensive
evaluations comparing the label relaxation ap-
proach to standard loss functions. Addition-
ally, we analyze the calibration error associated
with the loss functions. After evaluating on
five different noise levels, two different rank-
ing models, and four diverse ranking datasets,
the results suggest that label relaxation can im-
prove the performance of the ranking models
under noisy labels. Furthermore, we find that
label relaxation reduces calibration error, al-
though it suggests a better metric to be used for
neural ranking models.

1 Introduction

The advancements of language models have en-
abled their rapid usage in various application do-
One of such prominent application ar-
eas is neural ranking wherein the task is to esti-
mate the relevance of several candidate documents
or entities based on their relevance to the given
query (Reimers and Gurevych, 2019; Nogueira
and Cho, 2019), which is typically a question pre-
sented in a natural language form. With the recent
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progress in NLP domains, models like BERT (De-
vlin et al., 2019) have achieved significant progress
in capturing the semantic contextual information
for a given query. Existing works focus on improv-
ing the ranking tasks considering several aspects of
the learning framework (Sil et al., 2018; Yamada
et al., 2020; Ganea and Hofmann, 2017; Fang et al.,
2019; Zhang et al., 2020). However, to the best
of our knowledge, only a few works considered
approaches to develop robust ranking models when
noisy labels are prevalent in the training data.
Label noise in the training data for ranking tasks
can be caused due to several reasons. For instance,
in a question answering dataset, noise can stem
from distant supervision, weakly supervised data
generation, bad annotations, among other reasons.
Such noise can essentially lead to the generation of
models with degraded generalization and unstable
predictions (Liu and Tao, 2016; Natarajan et al.,
2013; Patrini et al., 2017). This issue becomes par-
ticularly critical in ranking tasks, where the quality
of predictions directly impacts the rank order of
documents or entities, thereby affecting the overall
effectiveness of the system. Furthermore, studying
the risks associated with label noise in ranking mod-
els is also important, as improper handling of noise
can lead to misleading rankings and reduced model
reliability. One of the few works in the NLP do-
main by Zhu et al. (2022) studied the robustness of
the BERT model and showed that in sentence classi-
fication tasks, weakly supervised noise can severely
degrade the performance of the model. In classifica-
tion and general learning settings, this problem has
been tackled often by using several types of model
calibration approaches by Zhu et al. (2021); Wei
and Liu (2021); Ding et al. (2021); Cheng and Vas-
concelos (2022); Ghosh et al. (2022); Moon et al.
(2020); Ma and Blaschko (2021); Liu et al. (2022);
Lienen and Hiillermeier (2021, 2024). These ap-
proaches typically work by ensuring that the con-
fidence of the underlying model in predicting an
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input instance should also reflect the true likeli-
hood of the prediction. In other words, the model
should not confidently predict wrong labels, and
in contrast, when predicting the correct labels, it
should exhibit sufficient confidence. The idea is to
calibrate the overconfident models, which are vul-
nerable to memorizing incorrect labels (Guo et al.,
2017). Label smoothing (Szegedy et al., 2016) is
considered a standard approach, wherein the idea
is to distribute a specific amount (decided based
on a hyperparameter) of probability mass taken
from the actual label to all the other labels. Al-
though label smoothing can be quite effective, it
still relies on precise probabilistic labels, which
might degrade the generalization performance (Li
et al., 2020). Therefore, Lienen and Hiillermeier
(2021) proposed label relaxation, which considered
a set of candidate distributions, instead of a single
smoothed distribution. Label relaxation essentially
replaces fixed (and possibly incorrect) label distri-
butions with sets of plausible distributions, thereby
allowing the learner to learn a bounded range of
acceptable target labels.

In this paper, we tackle label noise in order to de-
velop robust ranking models in the fine-tuning step.
We consider two different directions, considering
model calibration techniques. Firstly, we intro-
duce label relaxation into the ranking paradigm as
a principled approach to fine-tune models under
noisy conditions. More specifically, considering
the pairwise ranking loss, we integrate relaxation in
several widely used neural ranking models. Then
we compare the performance of two different cali-
bration approaches, i.e., smoothing with relaxation,
to gain some initial insights into which approach
performs better. Secondly, by analyzing the cali-
bration error, we aim to understand how well the
models’ confidence reflects their true performance
under noisy conditions. Thus, we assess the associ-
ated risks of poor confidence calibration, which can
lead to suboptimal ranking decisions. We model
the label noise in the ranking tasks by consider-
ing a proximity-aware approach. Experimental re-
sults considering these two different calibration ap-
proaches, 5 different noise levels, 4 diverse datasets,
and two ranking models suggest the potential of
relaxation under label noise in fine-tuning ranking
models. Our contributions can be summarized as,

* We introduce label relaxation to perform cali-
bration for ranking models under the presence
of label noise.

* We formally define the relaxation considering
the pairwise ranking loss.

* We evaluate the performance of label relax-
ation considering 5 different noise levels.

* We give a comparative analysis comparing
label relaxation to the standard calibration ap-
proach, label smoothing.

* We analyze the calibration error to understand
the risks associated with two calibration ap-
proaches in the presence of label noise.

 We make the code publicly available .

2 Related Work

Ranking models As mentioned beforehand,
with the advancement of language models, we
have seen significant progress in the domain of
neural ranking (Reimers and Gurevych, 2019;
Nogueira and Cho, 2019; Déjean et al., 2024;
Zhang et al., 2022; Wu et al., 2020a). One of
the first works was Sentence-BERT (Reimers and
Gurevych, 2019), which adapted the BERT archi-
tecture into a Siamese network to produce sentence-
level embeddings. Nogueira and Cho (2019) ex-
tended this idea by further showing that BERT-
based models could be fine-tuned specifically for
passage re-ranking. This has shown substantial
improvements in retrieval performance. Subse-
quent work has continued to explore more scal-
able and generalizable ranking solutions. For ex-
ample, Wang et al. (2022) introduced a family of
embedding models trained with contrastive learn-
ing on massive collections of text pairs. Cross
encoders (Déjean et al., 2024) are shown to outper-
form the previous approaches in re-ranking tasks
at the cost of a high training time.

Calibrated Loss Calibration refers to the align-
ment between the model’s predicted confidence
and the actual likelihood of correctness. A per-
fectly calibrated model assigns a probability of 0.7
to a prediction if, on average, 70% of such pre-
dictions are correct. There exist two categories
of approaches that perform model calibration, (i)
post-hoc and (ii) regularization-based. In order
to perform calibration, post hoc approaches ad-
just the output predictions (Cheng and Vasconce-
los, 2022; Wei et al., 2022; Hebbalaguppe et al.,

1https://github.com/dice—group/RobustRanking/
tree/label-relaxed-ranking
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2022). However, this requires additional validation
on held-out datasets. Furthermore, this approach
assumes the training and test distributions to be the
same, which often is not. Regularization-based ap-
proaches do not require any extra data and perform
calibration during the training step while comput-
ing the loss (Cheng and Vasconcelos, 2022; Wei
et al., 2022; Hebbalaguppe et al., 2022). Label
smoothing is often used as a standard technique
to soften the hard target labels by redistributing
the probability mass to non-target labels (Szegedy
et al., 2016; Miiller et al., 2019). However, typi-
cal smoothing distributes the probability mass uni-
formly. There exist approaches that essentially
follow more advanced approaches, such as boot-
strapping techniques (Reed et al., 2015), wherein
a self-supervised approach is used to distribute the
probability mass. Self-distillation and model dis-
tillation approaches also follow a similar approach
by replacing the hard labels with the soft ones from
the teacher model (Yun et al., 2020; Zhang et al.,
2019). Although in typical classification settings
such approaches have been extensively studied, in
the NLP domain, this is relatively less explored.
Huang et al. (2024) introduced confidence-aware
label smoothing for alignment tasks considering
language models and have shown the potential of
the calibration approaches. Kobyzev et al. (2023)
also showed the potential of several calibrated ap-
proaches in fine-tuning language models.

Note that we consider the idea of label relax-
ation introduced by Lienen and Hiillermeier (2021)
wherein a single fixed target distribution is replaced
with a set of candidate probability distributions.
Another work by Kim et al. (2021) proposed re-
laxed labels in metric learning, which relaxes bi-
nary pairwise relation labels by replacing them
with continuous similarity weights from a source
embedding space. Alike our work, Purpura et al.
(2022) also study learning to rank from relevance
judgment distributions. They use KL divergence
to align model predictions with empirical distri-
butions, thereby directly capturing inter-annotator
disagreement. Note that we assume that such distri-
butions are not consistently available across rank-
ing datasets. Instead, we propose label relaxation,
which defines a credal set of admissible label dis-
tributions. This approach allows us to model epis-
temic uncertainty and mitigate label noise without
requiring multiple annotations per query. To the
best of our knowledge, this is the first work that
studies calibration in this context.

3 Calibration in Ranking Model

In our work, we consider two different ranking
approaches, both of which fall under the category
of bi-encoder models. More specifically, we use
the pre-trained BERT (Wu et al., 2020a) and the
ES (Wang et al., 2022) models.

ES model (Wang et al., 2022) encodes both
the query and candidate entities using a language
model, producing dense vector embeddings. These
token-level embeddings are then averaged via a
pooling layer to obtain fixed-size vectors. Finally,
a scoring function computes a probability score
g € [0, 1], reflecting the likelihood that the candi-
date entity is the correct match for the query.

BERT model follows a similar approach to E5
model in performing ranking tasks. However, the
only difference is that BERT is pre-trained to per-
form binary relevance classification tasks between
a query and a document (Devlin et al., 2019),
whereas in contrast, ES, is additionally pre-trained
on several ranking tasks. Next, we formalize the
ranking task and subsequently define the term label
relaxation in this context.

Note that the document ranking step often con-
sists of two different steps, namely retrieval and
ranking. In this work, we only consider the rank-
ing stage. In a typical supervised ranking setup,
each training sample consists of a query ¢ and
a set of candidate documents defined as D, =
{di1,da,...,dx}, with only one document labeled
as relevant (Wang et al., 2022; Zhang and Braun,
2024; Tran et al., 2024). Herein, we assume the
set of candidate documents is already correctly re-
trieved by a retrieval model. Typically, within a
training step, a batch of queries and correspond-
ing documents are presented, wherein the size of
the batch is determined by the training configura-
tion. For a batch consisting of N queries and K
candidates per query, we define the label matrix
Y € {0, 1}V*K a5 follows.

{1 ifdj € Ry,

“ 0 otherwise.

Herein Ry, € Dy, is the set of relevant docu-
ments for query g;, typically of cardinality 1. Let
us assume the ranking model as f, then it produces
ascore f(g;, d;) for candidate d; to query ¢;. In the
ranking tasks, the goal is to ensure that relevant doc-
uments are scored higher than non-relevant ones.
To achieve this, the pairwise ranking loss is often
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used herein. Let (¢;,d;+,d,-) denote a training
triplet, where d;+ is a document relevant to query
qi> and d;- is a non-relevant (or less relevant) doc-
ument, i.e., dj- € Dy \ Ry,. Since we adopt
an in-batch negative sampling strategy, we have
a training batch containing N queries, each asso-
ciated with K candidate documents (one relevant
and K — 1 non-relevant). For every query g;, the
model compares the relevant document d;+ against
all K — 1 non-relevant candidates in the batch. The
pairwise ranking loss scores a relevant document so
that it exceeds that of a non-relevant one by v > 0,
a defined margin. This can be defined as,

N K
Lpr = Z Z max {0, — f(gi, d;+)
i=1 j=1
=

+f(gi,d;-)} (D

Here, j* denotes the index of the relevant doc-
ument among the K candidates for ¢;. This loss
penalizes cases where a non-relevant document
scores too closely or higher than the relevant one.

Label Smoothing is a regularization technique
that softens target labels to mitigate overconfi-
dence (Szegedy et al., 2016; Miiller et al., 2019).
Rather than encoding the correct document as a
one-hot vector, label smoothing redistributes a
small fraction of the probability mass across all
other candidates. Formally, the smoothed label dis-
tribution Y € [0, 1]V *X can be defined as follows.

~ 1—¢
KJZ{E
K—1

As mentioned previously, we consider in-batch
pairwise training; therefore, we use the smoothed
score }7@ ;7 in place of a hard label of 1 in the margin-
based loss, resulting in the label-smoothed pairwise
ranking loss as follows.

if j =47
otherwise

Pazr Z j+ max 0,7 — flq, dj+)
=1 j5=1
j#it
(2)
+ f(Qia djf))

Label Relaxation in Pairwise Ranking unlike
label smoothing, which redistributes the probability
mass of the target label uniformly, label relaxation

replaces the target with a set of plausible distri-
butions that reflect epistemic uncertainty (Lienen
and Hiillermeier, 2021). This can help to reduce
the uncertainty regarding the correct label. Label
relaxation introduces a relaxed set of acceptable
target distributions parameterized by o € [0, 1].
We define Q as the set of all relevance proba-
bility distributions p satisfying p(+) > 1 — «
and p(—) < a. While Q¢ is a set, in our im-
plementation, we instantiate it via a canonical rep-
resentative distribution p, for loss computation as
={peA?:ip(+)>1-a, p(-)<al.

This set essentially defines that the relevant doc-
ument should be preferred with high probability;
this does not pertain to a specific numeric value;
rather, we allow the model to match any distribu-
tion within Q. The model can then generate any
label that falls inside this plausible region, without
penalizing it for deviations that are within the ac-
ceptable uncertainty bounds. The relaxation param-
eter € [0, 1] controls the degree of permissible
deviation from the one-hot target. We select o via
validation set performance for each dataset.

Next, we apply the KL divergence on the pre-
dicted scores and the distribution Q. Note that,
since f(g;i,d;) is a relevance score, for KL diver-
gence we need to first convert it into a probability
distribution over candidates using a softmax nor-
malization, let us call this p;(j). Afterwards, the
label relaxation loss compares the predicted dis-
tribution p;(j) with the distribution Q®, denoted
as p,-. Since we have two different distributions,
instead of using any margin-based loss, it is com-
puted using KL divergence as follows.

N

K
LR =" KL(pllpi(j 3)

=1 j=1
J#it

Herein p,- can be defined as follows.

1l—a ify=+
pr(y): .
« ify=—

Since the prediction is probabilistic, KL diver-
gence penalizes differences in a way that reflects
confidence mismatches, i.e., confident, however,
when predictions are wrong, are more penalized
than uncertain ones. Below we give an example to
explain this clearly.

) that has been
Suppose 80%

Example Consider (g;,d;+,d;-
judged by multiple annotators.
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of them preferred alJr while 20% preferred d;-
This uncertainty Would be difficult to capture
with one-hot labels or a uniform label smooth-
ing approach. Rather than forcing the model to
match a hard label [1,0], or smoothing it arbi-
trarily to something like [0.9,0.1], label relax-
ation allows us to model more concisely. Let us
choose the relaxation parameter as o = 0.2, with
which we can define the relaxed set as Q¥? =
{peA?:p(+)>08, p(-) <0.2}.

Therefore, p,(+) = 0.8, p,(—) = 0.2. This
implies that if the model predicts any values be-
tween 0.8 and 1.0, the associated loss would be con-
sidered as 0. Otherwise, using the KL-divergence
loss, the model is then trained to minimize the diver-
gence. This formulation respects the ambiguity in
the supervision and allows the model to output cal-
ibrated probabilities that reflect uncertainty, rather
than overconfident or artificially smoothed predic-
tions. As a result, label relaxation not only im-
proves robustness to label noise but also enhances
the model’s ability to represent uncertainty, which
is critical in real-world applications such as QA,
recommendation, and information retrieval.

Calibration Error in Ranking is typically mea-
sured using expected calibration error (ECE) to
evaluate the calibration of the model’s probabil-
ity outputs (Naeini et al., 2015; Guo et al., 2017).
Calibration in this context refers to the agreement
between predicted probabilities and the actual like-
lihood of correctness. More specifically, consider-
ing document ranking tasks, the goal is to ensure
that the probability assigned to a document reflects
its actual relevance to the query. A well-calibrated
ranking model would assign a probability close to
1 to relevant documents and a probability close to 0
to non-relevant ones. To define it more formally, let
us assume R4, be the set of relevant documents for
query g;, and Dy, = {di,ds, ...,dk} the full set
of candidate documents, ECE for neural ranking
models is,

ECE =

ZZ\pz

i=1 j=1

I(dj € Rq;)|'1(gij € B).

4)

Where I(d; € Ry,) is the indicator function that

is 1 if d; is relevant to ¢;, and O otherwise, and
I(g;; € B) is an indicator function that checks
whether p; () falls into a bin B of predicted prob-
ability values. Specifically, |p;(j) — I(d; € Ry,)|
represents the absolute error between the predicted

probability and the ground truth label. The sum-
mation is carried out over all candidate documents
within each bin.

4 Evaluation

Datasets and Models For evaluation, we used
four datasets, namely, (i) AIDA (Hoffart et al.,
2011), (ii) Mintaka (Sen et al., 2022), (iii) LC-
QuAD 2.0 (Dubey et al., 2019), and (iv) MS
MARCO (Craswell et al., 2021). Datasets (i)—
(iii) pertain to entity ranking tasks, and the MS
MARCO dataset corresponds to document ranking
tasks. The AIDA dataset contains news articles and
entities that are linked to Wikipedia. Mintaka is
generated through crowd workers, wherein the en-
tities in question-and-answer pairs are linked to
the Wikidata knowledge graph. LC-QuAD 2.0
(or in short, LC-QuAD) is also generated through
crowd workers, but, contains SPARQL queries. Fi-
nally, the MS MARCO dataset is frequently used
for diverse tasks to perform question answering,
passage ranking, and document ranking. Both LC-
QuAD and MS MARCO are question-answering
datasets. The ranking models are taken from their
original implementation given in Hugging Face,
BERT 2, ES5 3. Thereafter, using in-batch negative
sampling (Wu et al., 2020b), we fine-tuned them on
the datasets described above. Each of the models is
trained using the default learning rates and the pa-
rameters considering 10 epochs. Finally, the evalua-
tion is performed by using the model’s embeddings
indexed by using Faiss indexing API (Douze et al.,
2024). Note that, for MS MARCO, while com-
puting the hard negatives, we randomly selected
10,000 negative documents from the whole corpus
at a time. Finally, for fine-tuning the models, we
used a server with 128 GB of RAM and an NVIDIA
RTX H100 GPU with 80 GB of RAM.

Label Noise In this work, we consider semantic-
aware label noise, wherein instead of flipping la-
bels randomly, our approach considers a more real-
istic scenario. More specifically, for a given ratio of
noise addition, we intentionally introduce an error
by replacing the correct (relevant) document with
a non-relevant one that is semantically very simi-
lar to the former. This is done by first randomly
choosing a subset of queries from the training batch.

Zhttps://huggingface.co/docs/transformers/
model_doc/bert
Shttps://huggingface.co/intfloat/e5-base-v2
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Table 1: MRR and Recall results evaluated on four ranking datasets using the E5S model, grouped by noise ratio with comparisons
across loss functions (PR, LS, LR). The results reported below are the best results obtained considering specific smoothing rates

and relaxation parameters.

NR | LF MRR 1 Recallf
Msmarco Lcquad Mintaka Aida | Msmarco Lcquad Mintaka Aida
PR | 0.8823 0.9191 0.2419  0.2881 | 0.9678 0.8739  0.3290  0.1501
0 | LS| 0.8819 0.8823  0.2433  0.3007 | 0.9666 0.8803  0.3701  0.1692
LR | 09164 09194  0.3244 0.2856 | 0.9718 0.8818  0.4470  0.1557
PR | 0.8782 09095  0.2323  0.2782 | 0.9637 0.8713 03147  0.1492
1 | LS| 08771 0.8915  0.2418 0.2914 | 0.9617 0.8701 0.3382  0.1676
LR | 09165 0.9090  0.3385 0.2835 | 0.9713 0.8739  0.4640 0.1534
PR | 0.8757 0.8922  0.2119 0.2678 | 0.9603 0.8576  0.2856  0.1404
2 | LS| 0.8819 0.8808  0.2247  0.2812 | 0.9597 0.8550  0.3003  0.1498
LR | 0.9160 0.8910  0.3189 0.2672 | 0.9711 0.8593  0.4357 0.1423
PR | 0.8541 0.8537  0.1957 0.2489 | 0.9451 0.8180  0.2658  0.1241
4 | LS| 0.8516 0.8332  0.2020  0.2719 | 0.9441 0.8000  0.2753  0.1493
LR | 09128 0.8452  0.2818  0.2530 | 0.9703 0.8058  0.3748  0.1302
PR | 0.6805 0.8169  0.1813  0.2500 | 0.9129 0.7854  0.2433  0.1293
5 | LS| 0.6907 0.8180  0.1877  0.2688 | 0.9091 0.7718  0.2612  0.1403
LR | 09110 0.8187  0.2673 0.2412 | 0.9331 0.7857  0.3603  0.1206

Then, for each selected query, the correct answer is
changed and replaced with another candidate that
is closest in meaning, based on a similarity score
between the original relevant document and all the
other candidates. Therefore, we simulate noisy su-
pervision by replacing the correct document with a
semantically similar but non-relevant one for a sub-
set of queries. We vary the noise proportion across
five levels: 0% (no noise) to 5% of the training
labels, following a progressive corruption scheme.
Concretely, at 2% noise, 2% of the queries in the
training set have their relevant document replaced.
Note that although we do not perform human ver-
ification to find out the plausibility of the noisy
labels, we still ensure their semantic plausibility by
selecting replacements based on embedding simi-
larity 4. Additionally, some datasets, for instance,
Mintaka, originate from multiple human annota-
tors, which in principle could provide empirical
relevance distributions. However, the versions we
use in our evaluation only provide single canoni-
cal labels. For consistency across benchmarks, we
therefore did not compare against models trained
on empirical annotation distributions.

4.1 Results & Discussion

Tables 1 and 2 show the results in terms of MRRs
and recall@10 of applying two different calibrated

“This is further mentioned in the Section 5

loss functions considering E5 and BERT models.
NR depicts different noise ratios, and CL denotes
different loss functions. We report results consider-
ing five different noise ratios. Noise ratio herein in-
dicates the proportion of training queries for which
the relevant document is replaced with a semanti-
cally similar but incorrect one. Note that in these
tables, we show the results considering pairwise
ranking loss. However, we also conducted exper-
iments using cross-entropy loss. Since the results
show the same trend, we omit them in the paper.

Considering Table 1, the results suggest that la-
bel relaxation can significantly improve the per-
formance of the E5 model when fine-tuned on the
Mintaka and MS MARCO datasets under noisy la-
bels. However, considering the AIDA dataset, we
find that, in fact, smoothing performs better, and in
the LC-QuAD dataset, none of the calibration ap-
proaches lead to significant performance improve-
ment. This is because the nature of the dataset de-
termines the effectiveness of a calibration strategy.
For AIDA, the relatively structured entity annota-
tions and consistent alignment with the knowledge
graph render the soft regularization of smoothing
more effective than the plausibility distribution of
labels used by label relaxation. In LC-QuAD, the
queries are short and ambiguous, and the candidate
space is limited, which might impact the calibra-
tion approaches. This might further reduce the im-
pact of either calibration approach. These findings
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Table 2: MRR and Recall results evaluated on four ranking datasets using the BERT model, grouped by noise ratio with
comparisons across loss functions (PR, LS, LR). The results reported below are the best results obtained considering specific

smoothing rates and relaxation parameters.

NR | LF MRR? Recallf
Msmarco Lcquad Mintaka Aida | Msmarco Lcquad Mintaka Aida
PR | 0.8331 09410 0.4223 03755 | 0.9254 09271 05111 0.2231
0 | LS| 0.8310 0.9338 04261 03761 | 0.9051 0.9171 0.5331  0.2205
LR | 0.8500 0.9371 04117  0.3551 | 0.9381 09113  0.5457 0.2210
PR | 0.7891 09388  0.4235 0.3421 | 0.8987 09199  0.5035 0.2198
1 | LS| 0.8178 0.9381 0.4165 0.3383 | 0.8810 0.9090  0.5234 0.2171
LR | 0.8438 0.9358  0.4097  0.3518 | 0.9341 0.9049  0.5434  0.2000
PR | 0.7517 09108  0.4058 0.3353 | 0.5900 0.8989  0.5021  0.2065
2 | LS| 0.7234 0.9088  0.4241 03211 | 0.8571 0.8836  0.5312 0.2054
LR | 0.8402 09015 03793  0.3301 | 0.9301 0.8844  0.5083  0.1845
PR | 0.6985 0.8441 0.3963  0.3381 | 0.4895 0.8110  0.4938  0.2150
4 | LS| 0.7510 0.8419 03759 0.3230 | 0.8220 0.8190  0.5114  0.2065
LR | 0.8400 0.8509  0.3299 0.3104 | 0.9301 0.8176  0.4372  0.1718
PR | 0.6885 0.8001 0.3543  0.3211 | 0.4074 0.7719  0.4255  0.2031
5 | LS| 0.7491 0.8199 03741 0.3230 | 0.8113 0.7881 0.5013  0.2063
LR | 0.7819 0.8192 03019 0.2944 | 0.9110 0.7898  0.4009  0.1777

highlight that while label relaxation offers strong
robustness under certain noise settings, its efficacy
is still dataset-dependent and should be carefully
selected based on the underlying characteristics of
the data and task.

In Table 2, we see the results of the BERT
model, wherein it can be observed that the label
relaxation does not show significant performance
improvement for Lc-QuAD, Mintaka, and Aida
datasets. In those datasets, label smoothing per-
forms slightly better. However, it also does not
significantly improve the results in comparison to
pairwise loss. These findings are consistent with
the study by Zhu et al. (2022) wherein they re-
ported that label smoothing does not improve the
performance of the BERT model under label noise
generated in the weakly supervised step.

ES model, despite using the same underlying
BERT model, is extensively weakly-supervised
trained on the ranking dataset (Wang et al., 2022)
that makes it inherently more robust to noisy su-
pervision and better calibrated in its embedding
space. This encourages the model to learn smoother
decision boundaries and more stable representa-
tions. As a result, when fine-tuned with label re-
laxation, E5 is able to leverage its calibrated em-
bedding space to better align the relaxed supervi-
sion with meaningful semantic gradients. In con-
trast, the standard BERT model lacks such domain-
specific pre-training and starts from a relatively

uncalibrated representation space for the ranking
task, making it more sensitive to label noise and
less responsive to relaxation-based regularization.
However, we see that for the largest dataset, MS
MARCO, label relaxation outperforms the other
calibration approaches for the BERT model. This
observation suggests that for very large datasets,
the relaxed set can be helpful even when the model
is not pre-trained on ranking datasets. Herein, the
availability of training instances allows the model
to benefit from the soft supervision, avoiding over-
fitting to incorrect labels. In contrast, the stan-
dard BERT model lacks such domain-specific pre-
training and starts from a relatively uncalibrated
representation space for the ranking task, making it
more sensitive to label noise and less responsive to
relaxation-based regularization. With these results,
we highlight the following important findings.

Dataset size & diversity. Large datasets such as
MS MARCO and Mintaka work effectively with
label relaxation since this distributes probability
mass over semantically plausible candidates with-
out overfitting to noisy labels.

Candidate space structure. Highly structured
datasets like AIDA favor a calibrated loss function.
Herein, smoothing gains top performance since it
enforces small-entropy distributions.

Query ambiguity. In LC-QuAD, where ambigu-
ity and candidate space constraints dominate, cali-
bration does not yield notable performance gain.
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Table 3: Loss functions to use when training on MS MARCO, Mintaka, LC-QUaD, and AIDA datasets.

Dataset ES

BERT

Notes

MS MARCO Label Relaxation

LC-QuAD Pairwise loss
Mintaka Label Relaxation
AIDA Label Smoothing Label Smoothing

Label Relaxation

Pairwise loss

Label Relaxation

Largest dataset; soft supervision
avoids overfitting

Small candidate space; calibration
has little effect

Large, diverse queries; ES benefits
from calibrated embeddings
Structured entity annotations;
smoothing aligns better

Model pre-training. This is probably the most
important finding of all. As mentioned previously,
ES5’s extensive weakly-supervised pre-training on
ranking data produces smoother embedding mani-
folds, allowing label relaxation to align gradients
with semantically similar negatives. In contrast,
standard BERT lacks such calibration and is more
sensitive to label noise.

Based on the above observation, we provide a
practical guidance as to when to use a specific type
of loss function. This is summarized in Table 3.

Calibration Error Analysis Based on our pro-
posed expected calibration error, defined in Equa-
tion 4, we evaluated the calibration of the E5 and
BERT models, considering pairwise loss, label
smoothing, and label relaxation. The results are re-
ported in Table 4. Note that since LC-QuAD does
not yield notable performance improvement using
calibrated loss functions, we do not consider it.

We see that typically label relaxation leads to the
lowest calibration errors for most of the datasets.
However, the differences between the ECE values
of the calibrated and non-calibrated loss functions
are not remarkably high. In fact, considering the
MS MARCO dataset, we find that ECE is lower for
non-calibrated loss in high noise ratios compared
to calibrated loss functions, even when the per-
formance drops significantly with non-calibrated
loss functions. This shows some known shortcom-
ings of ECE, for instance, its histogram binning can
mask differences, specifically considering high esti-
mator bias and variance depending on bin count and
scheme. Additionally, since ECE aggregates class-
and score-conditional structure, work on ranking
scale calibration similarly reports that off-the-shelf
ECE can be misleading without class balancing or
rank-aware structure (Widmann et al., 2019; Fu-
tami and Fujisawa, 2024; Yan et al., 2022). These
works reported results on vision-based rankers. In

this work, we find the same drawback in document
ranking models as well.

As an alternative to calibration error, we ana-
lyze the behavior of the ranking models BERT and
ES under label noise by plotting the training and
validation performance side-by-side and observe
the differences in Figure 1 and 2 (Appendix A),
respectively (). Therein, we see that as the label
noise increases, the gap increases notably. This
behavior is consistent with memorization under la-
bel noise. Specifically, the models eventually fit
corrupted labels, inflating training metrics while
harming generalization. This highlights that the
performance of ranking under noise is not captured
by ECE metric. The widening recall gap, as memo-
rization error (Zhang et al., 2021; Han et al., 2025),
is therefore a practical metric herein to guide cali-
bration or early stopping.

5 Conclusion & Future Directions

In this work, we have studied label relaxation
considering the neural ranking models in perform-
ing document ranking tasks. To this end, we first
formally define the label relaxation in the context
of the ranking task. Afterwards, we integrate it
into bi-encoder ranking models. Additionally, to
find out whether label relaxation can mitigate the
impact of label noise in fine-tuning neural rank-
ing models, we conducted extensive evaluations
considering 2 different bi-encoder models, 4 differ-
ent ranking datasets, and 5 different noise levels.
We also compare our results to the popular label
smoothing calibration approach. The results of our
evaluation suggest that label relaxation can indeed
be helpful in fine-tuning ranking models when label
noise is prevalent in the ranking datasets. However,
our findings also suggest that label relaxation is
effective on the E5 model, which is extensively
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Table 4: Calibration Error results evaluated on four ranking datasets using the ES and Bi-Encoder models, grouped by noise ratio
(NR) and loss functions (LF) with the best € and « as smoothing and relaxation parameters. Lower is better; bold indicates the

best value for a dataset at a given noise ratio.

NR LF E5| BERT/]
Msmarco Mintaka Aida | Msmarco Mintaka Aida
PR 0.0424 0.2914  0.2098 | 0.0090 0.3277 0.3016
0 | LS(0.1 0.0317 0.2917  0.2101 0.0091 0.3199  0.2800
LR (0.1) 0.0269 0.2811  0.2197 0.0076 0.3185  0.2770
PR 0.1538 0.2879  0.2123 | 0.0094 0.3391 0.3123
1 | LS(0.1) 0.1398 0.2883  0.2165 0.0091 0.3109  0.3001
LR (0.2) 0.1221 0.2846 0.2193 0.1000 0.3019 0.2877
PR 0.2024 0.2726  0.2066 | 0.1094 0.3293  0.2893
2 | LS(0.2) 0.2119 0.2713  0.2081 0.1913 0.3150  0.2891
LR (0.2) 0.2175 0.2661  0.2041 0.1911 0.2854  0.2713
PR 0.2969 0.2598  0.2033 0.1111 0.3373  0.3049
4 | LS(0.2) 0.3018 0.2561  0.2049 0.1101 0.3171  0.3098
LR (0.3) 0.3161 0.2476  0.1908 | 0.2000 0.3104 0.2811
PR 0.3150 0.3109  0.2025 0.2082 0.3322  0.2943
5 | LS(0.3) 0.3310 0.2601  0.2019 0.2910 0.3091  0.2920
LR (0.3) 0.3293 0.2417 0.1902 | 0.2989 0.3047 0.2918

weakly supervised pre-trained on the ranking tasks.
On the other hand, if a pre-training on the ranking
tasks is not performed, the results do not improve.
Additionally, we find that the ECE might not be
suitable to measure the calibration of the ranking
models under noise and memorization errors could
be helpful to get better insights.

We believe label relaxation has a lot of potential
to build well-calibrated models. We can envisage
works that would explore adaptive label relaxation
approaches that adjust relaxation based on model
confidence or noise estimates, and investigate their
effects on model calibration. Furthermore, extend-
ing relaxation to cross-encoder and LL.M-based
rankers, and studying new measures to compute cal-
ibration error in the context of document ranking,
could also be a potentially interesting direction.

Limitations

The following are some of the key limitations of
our study, which we acknowledge.

Model limitation Our experiments are restricted
to bi-encoder architectures, i.e., BERT and ES5. Al-
though this choice allowed us to systematically an-
alyze calibration under controlled conditions, the
findings may not directly transfer to more complex
architectures such as cross-encoders or large lan-
guage model (LLM)-based rankers. However, such
an extension would require additional challenges
and opportunities.

Dataset limitation We considered experimenting
with four datasets, AIDA, Mintaka, LC-QuAD, and
MS MARCO. These vary in size, structure, and
annotation quality; therefore, providing a diverse
evaluation setting. However, our conclusions re-
main dataset-dependent, as seen from the differ-
ences in effectiveness across AIDA, LC-QuAD,
and MS MARCO. Future work should examine a
broader range of datasets, including multilingual
and domain-specific ranking tasks, to assess the
generalizability of these models.

Label noise modeling The label noise is modeled
using a semantic-aware perturbation strategy, re-
placing relevant documents with semantically simi-
lar but incorrect ones. This provides a more realis-
tic scenario compared to random flipping; however,
real-world noise can be more diverse such as ad-
versarial noise, annotation inconsistencies, or sys-
tematic bias. Our approach does not capture these
variations; hence, the robustness of label relaxation
under such conditions remains unexplored.

Calibration scope Our evaluation focused on fext-
based calibration, therefore, the probability esti-
mates are aligned with annotation labels. We did
not compare our approach against ranking-based
calibration methods which adjust scores based on
relative order or rank-aware confidence measures.
These approaches are often stronger baselines in
retrieval and relevance tasks, however, they fall out-
side the scope of this paper due to space limitations.
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Hence, as part of future work, we would provide a
more comprehensive view of calibration strategies
for ranking.

Relaxation parameter The choice of relaxation
parameter « is tuned using validation performance,
which may not always be feasible in practice, es-
pecially when noisy labels affect the validation set
itself. Adaptive or noise-aware strategies to deter-
mine relaxation parameters could further improve
robustness and practicality.
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Abstract

Large Language Models (LLMs) suffer signif-
icant performance degradation in multi-turn
conversations when information is presented
incrementally. Given that multi-turn conversa-
tions characterize everyday interactions with
LLMs, this degradation poses a severe chal-
lenge to real world usability. We hypothesize
that abrupt increases in model uncertainty sig-
nal misalignment in multi-turn LLM interac-
tions, and we exploit this insight to dynami-
cally realign conversational context. We in-
troduce ERGO (Entropy-guided Resetting for
Generation Optimization), which continuously
quantifies internal uncertainty via Shannon en-
tropy over next token distributions and triggers
adaptive prompt consolidation when a sharp
spike in entropy is detected. By treating un-
certainty as a first class signal rather than a
nuisance to eliminate, ERGO embraces vari-
ability in language and modeling, representing
and responding to uncertainty. In multi-turn
tasks with incrementally revealed instructions,
ERGO yields a 56.6% average performance
gain over standard baselines, increases apti-
tude (peak performance capability) by 24.7%,
and decreases unreliability (variability in per-
formance) by 35.3%, demonstrating that un-
certainty aware interventions can improve both
accuracy and reliability in conversational Al

1 Introduction

Large Language Models (LLMs) have become the
primary interface for conversational Al systems,
enabling users to interact through multi-turn ex-
changes. However, recent research has documented
a critical limitation: LLMs often get ’lost’ in con-
versation and experience substantial performance
degradation in multi-turn conversations compared
to single-turn interactions (Laban et al., 2025;
Gupta et al., 2024). This degradation manifests as

*Lead Author

reduced accuracy, lower confidence, and a 112% in-
crease in unreliability, posing significant challenges
for real-world deployment (Laban et al., 2025).

While prior work has measured this degrada-
tion, existing mitigation strategies remain limited.
Approaches based on task classification, retrieval,
or context compression lack generality or require
fine-tuning (Wu et al., 2023).

We hypothesize that spikes in model uncertainty
signal moments of conversational drift and by
explicitly representing this uncertainty and mon-
itoring its fluctuations, we can detect when an
LLM begins getting ’lost’ in conversation. We
introduce ERGO (Entropy-guided Resetting for
Generation Optimization), the first practical inter-
vention framework that dynamically monitors in-
ternal uncertainty signals and resets context when
needed. ERGO computes Shannon entropy over
next-token probability distributions (Malinin and
Gales, 2018; Xiao and Wang, 2022) as an inter-
nal behavioral signal to detect spikes in uncer-
tainty that indicate breakdown in comprehension.
When such spikes occur, ERGO triggers entropy-
guided prompt reconstruction, mitigating accumu-
lated ambiguity and restoring coherence. Unlike
static prompt engineering, ERGO’s reconstruction
is dynamically triggered by entropy thresholds and
systematically preserves only those contextual el-
ements that sustain both internal coherence and
external task performance, discarding accumulated
noise. A visual representation of this can be seen
in Figure 1.

Empirical results demonstrate that targeted in-
terventions based on uncertainty peaks not only
recover task accuracy but also improve consistency
across turns. In extensive simulations with incre-
mentally revealed instructions, ERGO improves
average performance by 56.6% compared to stan-
dard multi-turn baselines, increases aptitude levels
by 24.7% (best-case performance capability), and

273

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 273-286
November 9, 2025 ©2025 Association for Computational Linguistics



ﬁulti—tu rn Conversation
How many points did Jack score} R
in his first basketball game? -

Sorry, I do not have enough
information to answer.

Jack averaged 2.4 points
every minute.

Suppose Jack played for 30

@)
minutes, to calculate . . .

[
[___APredictive Entropy <a |

[ Jack played for a total of 15 }

...Jack scored 32

points. x

A Predictive Entropy > a

|a

T/

ERGO

-

How many points did

Jack score in his first

basketball game? Jack
averaged 2.4 points
every minute. Jack

played for a total of 15
minutes.

. ...Jack scored
m' 36 points.

/

Figure 1: Illustrative comparison of a standard multi-turn conversational Al and the ERGO system

reduces the increased unreliability (variability in re-
sponse consistency) observed in multi-turn settings
by 35.3%. Furthermore, ERGO outperforms exist-
ing alternative strategies, and triggers resets with
greater precision and timing compared to alternate
baselines illustrating the potential of uncertainty-
aware methods for robust conversational Al To ver-
ify our findings and reproduce the results, please
refer to the code repository found at the following
link: https://github.com/haziq-exe/ERGO

2 Background and Related Works

Recent work has documented significant perfor-
mance degradation in multi-turn LLM conversa-
tions. Laban et al. (2025) demonstrated that model
performance dropped by 39% on average in multi-
turn settings across six domains. Gupta et al. (2024)
formalized task-switch sensitivity using probabil-
ity ratios, showing how conversation history com-
pounds model confusion. While Laban et al. (2025)
managed to mitigate average performance losses
by 15-20%, their approaches faced substantial ver-
bosity and practicality constraints (Sec 5.4). Agent-
based frameworks (Wu et al., 2023) explore system-
level solutions but do not target fundamental model
limitations during generation.

2.1 Entropy Based Uncertainty Estimation

Entropy-based uncertainty estimation provides
the theoretical basis for our method, grounding
ERGO’s use of internal model signals. Prior work
has used predictive entropy to quantify model con-
fidence in classification and generation tasks (Ma-
linin and Gales, 2018; Xiao and Wang, 2022),
implicitly linking internal uncertainty to exter-

nal behavior. More recent approaches extend
this to semantic-level uncertainty using semantic-
aware entropy measures (Kuhn et al., 2023) or
trainable proxies derived from hidden representa-
tions (Kossen et al., 2024). While these methods
improve semantic fidelity, they often rely on sam-
pling or auxiliary models. In contrast, we use token-
level entropy, computed directly from the model’s
next-token distribution, as a low-cost proxy for real-
time monitoring. Unlike prior work that applies
entropy primarily for evaluation or filtering, we use
it as a temporal signal to detect context degradation
and trigger prompt restructuring.

2.2 Inference-Time Interventions

Inference-time control methods intervene on frozen
models by manipulating internal activations, modi-
fying output logits, or reranking candidate outputs.
For example, Li et al. (2024) introduced activation-
level interventions to elicit truthful answers without
fine-tuning, shifting hidden states toward truthful
completions. Similarly, Turner et al. (2024) devel-
oped activation engineering techniques that steer
the behavior of the model by editing intermediate
representations during decoding. These methods
act directly on the output path of the model and
often rely on internal signal manipulation.

In contrast, our approach introduces a policy
layer outside of the model that monitors uncertainty
and intervenes by restructuring the user’s input. We
do not modify the internal computation or sampling
process of the model.

2.3 Backtracking and Prompt Restructuring

Several recent approaches have explored controlled
backtracking during generation. Cundy and Er-
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mon (2024) augmented the decoding space with a
"backspace’ action to revert low-probability genera-
tions, while Zhang et al. (2024) uses a special [RE-
SET] token to discard unsafe prefixes. Other strate-
gies such as Self-Refine (Madaan et al., 2023) al-
lowed iterative refinement by prompting the model
to critique and revise its own output. These meth-
ods operate on generated content and typically re-
quire multi-step decoding or auxiliary supervision.

Our intervention departs from this paradigm by
focusing on upstream correction. Instead of rewrit-
ing the model’s response, we update the user’s
prompt to recover task coherence, using rising en-
tropy as the intervention trigger. This shifts the op-
timization target from output correction to input re-
specification, which is more lightweight and avoids
cumulative reasoning errors. To our knowledge,
this is the first method that uses entropy-based
signals to restructure user input mid-conversation,
rather than adjusting the model’s internal behavior
or downstream output.

3 Entropy-Guided Context Resetting
3.1 Rise in Average Token Level Entropy

At each turn of the conversation, the average token-
level entropy is calculated by measuring the uncer-
tainty of the model’s token probability distribution
when generating each token in its output.

Suppose the model produces a sequence of to-
kensty,ta,...,t, atagiven turn. For each token ¢;,
the model assigns a probability distribution P; over
the vocabulary V', where P;(v) is the probability
assigned to token v € V at position i.

The entropy at position ¢ is computed as:

H;=- Z P;i(v)log P;(v)
veV
The average token-level entropy H for the turn
(covering n generated tokens) is then:

1 &
H=—- H;

This metric quantifies the model’s overall uncer-
tainty when generating the turn. Higher H indi-
cates greater uncertainty and a more diffuse token
distribution, while the lower H indicates more con-
fident and peaked predictions (Malinin and Gales,
2018; Xiao and Wang, 2022).

For each subsequent turn ¢ in the conversation,
the change in average token-level entropy is calcu-
lated to monitor fluctuations in model uncertainty.

Let H® denote the average token-level entropy at
turn ¢, as defined previously.

The change in predictive entropy between con-
secutive turns is defined as:

AF® — Fg® _ g1

A positive AH® indicates that the uncertainty
of the model has risen relative to the previous turn.

3.2 Threshold-Based Trigger for Context
Reset

A predefined, calibrated entropy change threshold
T is established. When the change in predictive
entropy satisfies the following condition:

AH® > 7

The system deems that the uncertainty of the
model is rising beyond an acceptable margin. This
is interpreted as a signal that the evolving conversa-
tion context may be inducing compounding uncer-
tainty or drift. A detailed analysis of the threshold
selection process is provided in Appendix A, while
an analysis of ERGO’s sensitivity to entropy thresh-
olds is provided in Appendix B.

3.3 Context Reset Protocol

Upon detection of AH®) > 7, an automated con-
text reset protocol is initiated. This protocol pro-
ceeds in the following steps:

I. Prompt Rewriting:
The user’s inputs up to turn ¢ are provided to
the model. The model is asked to rewrite these
inputs into a single-turn, optimized prompt
that preserves relevant task information while
reducing ambiguity and redundancy.

II. Isolated Generation (Simulate New Chat):
The rewritten prompt is passed into a new
instance of the model, simulating a stateless
chat environment with no memory of prior
turns. The model then generates a response
R to this rewritten prompt.

III. Branch Continuation:
A new dialogue branch is created that begins
from the rewritten prompt and response. This
maintains continuity from the optimized state
rather than the potentially degraded original
context.
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How old was Bill when he first saw Comet
Halley?
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Bill's dad was 30 years old when he saw the
comet
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when his dad saw it
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when his dad saw it
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Bill's dad was 3@ years old when he saw Comet
Halley. The comet takes 75 years to complete
one orbit around the sun. Bill saw Comet
Halley for a second time when he was three
times as old as his dad was when his dad saw
it. How old was Bill when he first saw Comet
Halley?

MODEL ANSWER: 15

Figure 2: Example Llama3.1-8B run on a GSM8K question with (=) FULL, dls SHARDED and C ERGO settings.
Each row represents a separate prompt given to the model while each table represents a context window.

4 Experimentation Background

4.1 Simulation Scale & Parameters

Our simulation follows the protocol of Laban et al.
(2025) with the only change being the implemen-
tation of ERGO. We evaluate a suite of five lead-
ing instruction-tuned LLMs: Phi-4 (Abdin et al.,
2024), LLaMA 3.1-8B Instruct (Grattafiori et al.,
2024), GPT-40 (Hurst et al., 2024), GPT-4.1 (Ope-
nAl, 2025), and GPT-40-mini (OpenAl, 2024). All
models are used in their publicly released variants
without additional fine-tuning.

Generation settings are standardized across mod-
els with temperature set to 1.0. For entropy cal-
culations, we note an important methodological
constraint: OpenAl models provide access to only
the top-20 logprobs through their API. This lim-
itation affects the precision of entropy estimates,
particularly for tasks with shorter responses such
as Actions and Data-to-text (Sec 4.2), where the
restricted probability space may not capture the full
uncertainty of the model’s predictions.

We conduct 3 independent simulation runs for
each dataset using 100-question samples, with the
exception of the Data-to-text dataset (Sec 4.2), for
which evaluations were performed on a 50-question
subset over 3 runs. All other experimental settings
and baseline figures are adopted directly from La-
ban et al. (2025).

We compare three settings:

B FULL: Simulates a single-turn, fully-
specified conversation using the sharded instruc-
tion. The shards are combined into a single bullet-
point list (one shard per line), prefaced by a direc-

tive to complete the task using all listed points. This
setting serves as an upper bound for performance,
providing a target for evaluating how closely multi-
turn intervention methods can approximate single-
turn optimality.

% SHARDED: Sequential shard presentation
as in the original (Laban et al., 2025) LLMs-lost-
in-conversation experiment.

G ERGO: Our entropy-guided reset mechanism
applied upon exceeding the entropy threshold.

Figure 2 provides an example of a run on each
setting. This evaluation isolates the effect of ERGO
relative to both single-pass and original multi-turn
baselines.

4.2 Tasks

We evaluated models on five representative genera-
tion tasks, each framed as a multi-turn interaction
over sharded instructions and augmented them with
our entropy-guided context resetting method (Sec-
tion 3). For each task, we used 220-325 constructed
prompts from the datasets created by Laban et al.
(2025). We simulate a multi-turn conversation,
feeding the model one shard at a time. At each
assistant turn, we compute the average token-level
entropy and track its change AH®). Whenever
AH® exceeds the calibrated threshold T, We In-
voke our reset protocol - prompt rewriting, isolated
regeneration, branch continuation - before continu-
ing.

Below we briefly summarize what the assistant
must do in each task:

© CODE: Convert natural-language problem
description into a correct Python function. Outputs
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are validated by executing against the reference test
suite (Chen et al., 2021; Jain et al., 2024).

& DATABASE: Given a database schema and a
user request, generate an SQL query that returns the
requested data. Correctness is checked by running
the query on the Spider-derived database (Yu et al.,
2018).

ACTIONS: Given API schemas plus high-
level user instruction, emit valid code-style API
calls that fulfill the intent. This is verified against
the Berkeley Function Calling Leaderboard defini-
tions (Yan et al., 2024).

() DATA-TO-TEXT: Take a structured data table
and metadata and write a single caption that high-
lights its key insight. Adapted from ToTTo and
evaluated using BLEU (scaled 0-100) (Parikh et al.,
2020; Papineni et al., 2002).

MATH: Solve an elementary math story prob-
lem by carrying out each arithmetic step and return-
ing the numeric result. Simulates day-to-day prob-
lems LLMs may be tasked with by users. GSM8K
problems were used and scored by exact match
(Cobbe et al., 2021).

4.3 Metric Selection

We assess LLM performance in multi-turn tasks
by repeating simulations for each instruction and
collecting success scores from multiple runs, fol-
lowing Laban et al. (2025). Each score, ranging
from O to 100, reflects task success.

4.4 Per-Run Scoring

I. Binary-Correctness Tasks (Code,
Database, API, Math): A correct re-
sponse at any turn yields a score of 100, and
the run ends. Otherwise, the score is 0.

II. Refinement Task (Data-to-Text): The final
output is evaluated using BLEU, rescaled to
0-100.

4.5 Aggregate Metrics
From the scores collected across the 3 runs, we

compute three metrics:

* Average Performance (P): Average perfor-
mance per instruction for a given task.

* Aptitude (A%9): 90th-percentile score, mea-
sures a model’s peak capability, indicating
its potential to deliver high-quality results in
critical multi-turn tasks. Averaged across all
tasks.

« Unreliability (U{)): Difference between 90th
and 10th percentiles, quantifies response vari-
ability, where lower values reflect greater con-
sistency, essential for user trust and system
reliability in long-horizon interactions. Aver-
aged across all tasks.

Formulae and more information on metrics is
available in Appendix D.

5 Results & Discussion

5.1 Aptitude and Unreliability Improvements

Figure 3 shows that ERGO demonstrates excep-
tional gains in aptitude, often exceeding single-turn
performance levels, while substantially reducing
unreliability compared to multi-turn baselines, two
metrics introduced by (Laban et al., 2025) to cap-
ture model consistency across conversations.

[ ] ® SHARDED

o085 ] ° ® ERGO
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1 6 éﬁto Ny
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Figure 3: Effect of SHARDED and ERGO on Apti-
tude and Unreliability. Icons represent models B FULL
performance. Green dots represent performance with
C ERGO while red dots represent d%s SHARDED per-
formance

These results indicate that our intervention not
only fully recovers the aptitude lost in the tran-
sition from single-turn to multi-turn settings and
achieves aptitude levels exceeding single-turn base-
lines, but also makes behavior significantly more
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Model @ Code € Database Actions £ Data-to-Text Math

B & C B & C B &L C B H C B H O
™ Llama3.1-8b 212 21.7 5207 477 259 6437 83.0 455 600" 157 133 123* 626 374 657"
@ 40-mini 66.7 503 6677 90.7 402 9337 922 524 9207 312 198 220" 88.0 587 85.0'
B Phi-4 484 39.1 5507 79.6 33.1 620" 76.0 341 6577 286 232 280" 904 525 8537
B4.1 88.7 726 81.7° 865 460 9607 985 629 847" 544 286 310" 897 70.7 917
S 40 829 613 763" 91.7 423 9577 97.1 650 8207 322 205 27.00 919 679 89.3"

Table 1: Average Performance P comparison across three settings: B FULL (single-turn), & SHARDED
(multi-turn baseline), and C ERGO (multi-turn with entropy-guided resetting). Arrow represents change in
performance for C relative to @, with arrow size representing magnitude of change.

stable compared to multi-turn settings across re-
peated trials. When comparing to standard sharded
conversations, the average aptitude across models
rose by 24.7%, achieving performance levels that
surpass single-turn baselines, while unreliability
declined by 35.3% compared to multi-turn settings.

5.2 Average Performance Gains

In addition to aptitude and unreliability improve-
ments, Table 1 shows that ERGO delivers substan-
tial performance improvements across all models
compared to baseline multi-turn setups. By detect-
ing moments of confusion and restarting interac-
tions, models avoid becoming "lost" in conversa-
tional flow. Nearly every dataset and model combi-
nation shows increased average success rates, with
performance improving by 56.6% on average and
several model-task combinations achieving over
100% gains compared to original multi-turn base-
lines.

Models frequently exceeded single-turn base-
line performance in both average performance and
aptitude as our method only corrects derailment
when calculated confusion rises significantly. This
preserves the model’s ability to iteratively reason
and refine responses across shards while preventing
the compounding errors typical in prolonged multi-
turn contexts. This approach effectively merges
both paradigms’ strengths: single-turn stability and
clarity when needed, and iterative decompositional
reasoning when the model remains on track.

Moreover, performance on the &) Data-to-Text
task improves over the multi-turn baseline, though
less substantially than in other datasets. This is
partly due to model-specific constraints. LLaMA

3.1-8B struggles to rewrite large, structured
prompts effectively (e.g., full tables), limiting the
benefit of consolidation. GPT models face diffi-
culties in triggering resets, as entropy estimates
are less reliable, only top-20 log-probabilities are
available, and outputs are typically short, reducing
entropy sensitivity. Phi-4 performs best, nearing
single-turn levels, likely because it supports accu-
rate entropy tracking and handles prompt rewrit-
ing more effectively. These results indicate model-
dependent limitations in applying our method to
high-input-structure tasks.

5.3 Evaluating Entropy-Guided Resets vs.
Random Resets and Fixed Resets

We compared entropy-based context resets
against random and fixed-interval baselines using
Llama3.1-8B across three tasks: & Database,
Actions, and EE Math. In these ablations, we
retained all experimental settings from the main
condition, with the only change being that each
metric was tested on 50 question samples instead
of 100. The random baseline used uniformly ran-
dom triggers with unconstrained reset frequency.
The fixed baseline triggered resets every five
shards (quintet reset), matching the average reset
frequency of L1ama3.1-8B observed in our ERGO
system. For more information on computation and
average reset frequency across models, please refer
to Appendix C.

The results, visualized in Figure 4, demonstrate
a clear advantage for ERGO over baseline ap-
proaches. Entropy-guided resets consistently out-
performed both random and fixed reset strategies
while demonstrating adaptive scaling behavior. In
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the Database task, ERGO achieved a performance
gain of 0.400 using 96 resets, compared to the quin-
tet baseline’s 0.261 gain with only 44 resets. This
demonstrates the system’s ability to increase in-
tervention frequency when encountering greater
model uncertainty. Conversely, in the Actions
task, ERGO required only 41 resets, fewer than
both baselines, while still achieving superior per-
formance (0.125 gain versus 0.045 and 0.085 for
random and fixed approaches, respectively). This
adaptive behavior indicates that entropy guided re-
sets effectively allocate computational resources
by intervening only when necessary, scaling both
up and down based on task complexity and model
confusion levels.

The primary risk posed by resets is semantic
drift. Poorly timed or excessive context rewriting
can lose critical details through increased abstrac-
tion, compromising semantic faithfulness to the
original input (Dreyer et al., 2023). This degra-
dation in semantic faithfulness can offset or even
negate the benefits of resetting. Furthermore, resets
incur computational overhead; each reset involves
having two additional forward passes through the
model. Together, these considerations underscore
why the frequency and timing of resets must be
carefully controlled. Not only to avoid wasted com-

putation, but, more critically, to prevent semantic
degradation.

5.4 Comparison to Existing Intervention
Strategies

To contextualize the effectiveness of ERGO, we
compare its performance against two alterna-
tive strategies introduced by Laban et al. (2025):
SNOWBALL and RECAP. Both methods attempt
to mitigate information loss in multi-turn settings
by explicitly reintroducing previously seen content.

O SNOWBALL: Reiterates all prior shards
at each new turn, effectively growing the prompt
cumulatively. This ensures full task visibility at
each step but leads to increasing context length and
potential repetition issues.

M RECAP: Reiterates all prior shards only at
the final turn. While more efficient, the authors
note that this strategy is impractical in real-world
deployments, since the system would not know
prior when the final user input will occur.

Our method significantly outperforms both
SNOWBALL and RECAP across both model vari-
ants. For GPT-40-mini, ERGO nearly closes the
gap between SHARDED and FULL baselines en-
tirely, while for GPT-40, ERGO performs well
above competing approaches and within 3.2 points
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Model | FULL | SHARDED | SNOWBALL | RECAP | ERGO
GPT-40-mini | 73.8 443 54.0 57.7 71.8
GPT-40 79.2 51.4 574 66.3 75.6

Table 2: Comparison of average performance across @ Code, 8 Database, ¥Z Actions, (%) Data-to-Text and EE Math

tasks.

of the full information upper bound, as shown in
Table 2. ERGO’s advantages over static repetition-
based strategies are twofold: it prevents input bloat-
ing at each iteration unlike SNOWBALL, and oper-
ates without requiring prior knowledge of the final
input unlike RECAP.

5.5 Evaluating Length Bias in Entropy-Based
Reset Triggers

One potential concern regarding ERGO’s entropy-
based reset mechanism is whether it inadvertently
functions as a proxy for response length. Specifi-
cally, since entropy is calculated over token prob-
ability distributions, it is plausible that longer out-
puts, which involve more tokens and potentially
more diffuse distributions, may naturally exhibit
higher entropy. If true, this would raise the possi-
bility that ERGO’s resets are effectively triggered
by length increases rather than genuine uncertainty
spikes, undermining the validity of entropy as an
internal behavioral signal.

We analyze response behavior from the Phi-4
model across all tasks and questions used in the
main evaluation suite. For each turn ¢ in a given
multi-turn conversation, we compute two quantities
relative to the previous turn: the change in aver-
age token-level entropy, AH (), and the change in
response length, AL(t), measured in tokens.

We evaluate the relationship between these us-
ing two standard correlation metrics: Spearman’s
rank correlation coefficient (p), which captures
monotonic associations without assuming linearity
(Spearman, 1904), and Pearson’s correlation coef-
ficient (), which quantifies the strength of linear
correlation (Pearson, 1895). The results for the
Phi-4 model are summarized in Table 3.

The Spearman result indicates no meaningful
monotonic relationship between changes in entropy
and length. The Pearson coefficient, while statisti-
cally significant due to the large sample size, has

negligible magnitude and a negative sign, indicat-
ing no positive linear correlation.

These findings demonstrate that entropy fluctu-
ations are not systematically associated with out-
put length changes in the Phi-4 model. This sup-
ports the claim that ERGO’s reset mechanism is not
driven by verbosity or token count, but rather by in-
ternal signals of model uncertainty. Entropy-based
resets therefore retain validity as an independent
control signal rather than acting as a surrogate for
response length.

Coefficient p-value
Spearman’s p  —0.0143 0.4525
Pearson’s r —0.0796 2.7 x 107

Table 3: Correlation between changes in entropy and
response length for the Phi-4 model.

6 Conclusion

Our results show that ERGO effectively mitigates
multi-turn LLM performance degradation by using
Shannon entropy to detect model confusion and
trigger prompt restructuring. Despite its simplic-
ity, Shannon entropy serves as a reliable signal for
targeted context consolidation, minimizing unnec-
essary resets. ERGO consistently outperformed
existing methods, achieving 56.6% performance
gains over standard baselines, improving aptitude
by 24.7%, and reducing unreliability by 36.3%.
Correlation analysis confirmed that entropy-based
resets reflect genuine model uncertainty rather than
response length. As a practical, model-agnostic
framework, ERGO enhances conversational coher-
ence in real-world deployments, with future work
focused on advanced context consolidation strate-
gies such as multi-stage summarization and adap-
tive techniques for long-form conversations.
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Limitations

While ERGO achieves significant improvements in
multi-turn performance via entropy-guided resets,
certain avenues for future work remain.

Context Simplification: ERGO’s resets cur-
rently consolidate only user inputs, omitting as-
sistant responses. This design enables lightweight,
stateless resets but limits fidelity in open-ended
dialogues where assistant turns introduce key enti-
ties or reasoning steps. Without full dialogue trace
consolidation, resets may discard critical context.

Threshold Adaptation: ERGO uses model-
specific entropy thresholds calibrated on GSMS8K,
that are then fixed across datasets. While this
methodology has shown to have inherit sensitiv-
ity and adapt to model capabilities (Appendix A
& B). More dynamic or task-aware thresholding
could improve precision.

These limitations represent natural progressions
for ERGO toward broader, more general-purpose
deployment. They do not challenge the core mech-
anism but point to extensions that scale the system
into richer, more adaptable dialogue settings.
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A Threshold Selection Procedure

Model Name Version 7 Percentile Provider

=" Phi-4 A N/A 0.  90th  HuggingFace
0 Llama3.1-8b N/A 0.03  65th  HuggingFace
®GrT-4.1 gpt-4.1-2025-04-14 02  90th  OpenAl API
® GPT-40-mini gpt-40-mini-2024-07-18 0.2  85th  OpenAl API
©® GPT-40 gpt-40-2024-08-06 03  90th  OpenAl API

Table 4: Model versions, thresholds, and calibration percentiles used in our experiments. (Versions included where

applicable.)

To determine appropriate entropy thresholds (7)
for triggering context resets, we conducted a cali-
bration procedure specific to each model. The goal
was to identify a rise in entropy that reliably signals
when a model is ’lost’ in the conversation, that is,
when its internal uncertainty increases sharply, sug-
gesting that it is struggling to integrate or reason
over the accumulated context.

For each model, we selected a held-out subset
of approximately ~ 80 shard-level examples from
the GSM8K dataset. These examples were drawn
from outside the final evaluation set to avoid con-
tamination, with GSMS8K being chosen due to its
hybrid structure, requiring both reasoning and nat-
ural language generation. We then ran each model
in a standard multi-turn setting over these shards
and computed the change in average token-level
predictive entropy at each turn.

From the resulting distribution of entropy rises,
we selected a threshold based on a percentile
aligned with the model’s baseline aptitude on
GSMBSK. For instance, since GPT-4.1 achieves a
baseline aptitude of ~ 90% on GSMS8K in single-
turn settings, we selected the 90th percentile of the
entropy rise distribution as its reset threshold. The
underlying rationale was to calibrate the thresh-
old so that only the most atypical (high-entropy)

turns, those statistically associated with likely fail-
ure, would trigger an intervention. Details of the
models used, including their version identifiers,
selected entropy thresholds, and corresponding cal-
ibration percentiles, are summarized in Table 4.

Once determined, this threshold was fixed across
all datasets for a given model. We made this de-
cision intentionally, as our goal was to evaluate
the feasibility of a general-purpose, model-specific
threshold rather than tuning thresholds for each
dataset individually. This “one-size-fits-all” ap-
proach allows for a more robust and realistic as-
sessment of whether entropy-based context resets
can generalize across tasks without requiring per-
task adjustment.

Interestingly, while both GPT-4.1 and Phi-4
shared the same 90th percentile threshold, Phi-4
triggered significantly more resets during evalua-
tion. This was due to Phi-4’s strong performance
on GSMB8K but much weaker performance on the
broader set of tasks. This divergence illustrates that
the system remains sensitive to task-specific con-
fusion, with the number of resets scaling appropri-
ately even under a fixed, model-specific threshold,
highlighting the adaptive behavior of the method
across domains. More information on number of
resets incurred available in Appendix C.
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B Sensitivity to Entropy Threshold (7)

(4.5, 79)
80 1

60 -

Number of Resets

(12.5, 41)

40

20 A

+]-]
(x[=]

(16.6, 9)

(40.0, 102
=
[g] (40.0, 96)
==
=]
(32.0, 73)
=
(30.6, 63)
= 30.0, 60)
EEEE
=
] i (32.6, 38)
[+]-]
(24.6, 31) xI=)
[=] Thresholds
1 0.03
—1 0.00
1 0.05
=1 0.08

20

30 40

Performance Gained vs SHARDED

Figure 5: Comparison of maximum performance points gains (highest increase in accuracy when compared to & )
and number of resets between different thresholds across Database, Actions, and Math tasks.

To evaluate the sensitivity of our method to the
entropy threshold parameter 7, we conducted an
ablation study using the same controlled setup
described in Section 5.3 with the Llama3.1-8B
model on the Database, Actions, and Math tasks.
The only variable changed in this study was the
value of 7, the threshold used to trigger entropy-
guided resets. We tested four settings: 7 €
{0.00,0.03,0.05,0.08}, where 0.03 corresponds
to the threshold selected for the main experiments.

The results, visualized in Figure 5 showed a clear
performance peak at 7 = 0.03, which consistently
achieved the highest gains across all tasks. This
setting struck a balance between reactivity and re-
straint, triggering resets selectively at moments of
genuine confusion without introducing excessive
rewrites that risk semantic drift. In contrast, the
lowest threshold 7 = 0.00 resulted in the highest

number of resets and either matched or under-
performed the 0.03 setting, suggesting that overly
aggressive resetting is not beneficial and may lead
to instability due to frequent context rewrites.

At the other extreme, the highest threshold 7 =
0.08 yielded the fewest resets and consistently un-
derperformed, likely due to failing to intervene
even when the model was demonstrably confused.
The intermediate value 7 = 0.05 behaved as ex-
pected, yielding results that were approximately
midpoint between 0.03 and 0.08 in both perfor-
mance and reset count.

Taken together, these findings support the robust-
ness of our selected threshold and highlight the
importance of calibrating reset triggers to maintain
a balance between informativeness and interven-
tion overhead.
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C Computational Cost and Reset Overhead Analysis

Model Average Performance ~ Shards per Reset Threshold Percentile
GPT-4o 75.6 51 92nd
GPT-4.1 77.2 38 90th
GPT-40-mini 71.8 29 85th
Phi-4 59.2 7 90th
Llama3.1-8B 50.9 5 63rd

Table 5: Average Performance with ERGO along with the number of shards before reset occurs for each model and
its threshold percentile, measured as an average across all datasets.

A key consideration in deploying entropy-guided
context resets is the computational overhead they
introduce. In our system, two sources of compu-
tational cost must be considered: (1) the cost of
computing predictive entropy at each turn, and (2)
the cost incurred when a context reset is triggered.

Entropy Computation Cost: While more ad-
vanced measures of model uncertainty such as
semantic entropy require sampling multiple out-
puts over the same input (Kuhn et al., 2023), our
method uses token-level Shannon entropy, which
is extracted directly from the next-token probabil-
ity distribution during generation. This choice im-
poses negligible additional cost beyond standard
decoding and was selected for its practicality and
compatibility with real-time systems.

Reset Overhead: Each reset introduces two ad-
ditional forward passes through the model: one to
rewrite the accumulated user context into a con-
solidated prompt, and a second to respond to that
prompt. This introduces latency and compute pro-
portional to the number of resets triggered per run.
Table 5 showcases the average performance of mod-
els with ERGO along with the approximate num-
ber of shards per reset and the selected threshold
percentile for each model. Averaged across all
datasets, one question equates to ~ 6 shards.
These results reflect the adaptive nature of the
system: more capable models (e.g., GPT-4.1, GPT-

40) experience fewer high-entropy turns and thus
require fewer resets, minimizing overhead. Con-
versely, less capable models like Phi-4 trigger re-
sets more frequently, aligning with their observed
confusion.

Prompt Length Reduction: An additional con-
sequence of context resets is that they tend to trun-
cate the context window, potentially removing stale
or redundant information. Across all runs, the av-
erage token length of model prompts for questions
where resets occurred was 260 tokens, compared
to 309 tokens in questions where no resets were
triggered. While this reduction does not eliminate
the cost of the reset itself, it may partially offset it
by reducing input size in subsequent turns.

Retrieval-Augmented Consolidation (Future
Work): More advanced consolidation techniques,
such as retrieval-augmented synthesis, could fur-
ther improve the quality of resets but would intro-
duce additional retrieval and ranking costs. We
leave the exploration of such hybrid architectures
to future work.

Taken together, these results indicate that while
entropy-guided resets do introduce compute over-
head via additional forward passes, the system re-
mains adaptive. Reset frequency scales with model
confusion, and thresholds derived from a single rea-
soning heavy dataset generalize effectively across
diverse tasks.
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D Metrics

D.1 Metric Selection

LLMs employ a stochastic decoding process, yield-
ing different outputs even under fixed prompts and
sampling parameters. We leverage this by repeating
our multi-turn simulation on each sharded instruc-
tion and observing the resulting success scores. Let

S = {Si}zj'vzl

be the set of scores from /N independent runs on a
single instruction, where each S; € [0, 100] mea-
sures task success at the end of that simulation.

D.1.1 Per-run scoring:

I. Binary-correctness tasks (Code, Database,
API, Math): At each turn, we evaluate the
model’s response; if it produces a correct so-
lution at any turn, we immediately assign
S; = 100 and terminate that run. If no turn
yields a correct answer, S; = 0.

II. Refinement task (Data-to-Text): We com-
pute the native metric (BLEU for data-to-text;
joint coverage/attribution score for summa-
rization) on the final generated output and
rescale it to [0, 100].

D.1.2 Aggregate metrics

From the per-run scores S, we define three sum-
mary statistics, following the methodology from
Laban et al. (2025):

1 X
i=1
A% = percentileg(S) )

Uil = percentilegy(S) — percentile;o(S)  (3)

-P (Average Performance): An unbiased esti-
mate of the model’s mean score on an instruction.

-A% (Aptitude): Estimates the 90th-percentile
performance, reflecting what one can achieve in
the top decile of runs.

- U (Unreliability): Measures the gap between
the 90th and 10th percentiles, capturing the degree
of stochastic variability in outputs.

Aptitude and Unreliability are computed per in-
struction and then averaged over the full set of
tasks. Binary-correctness accuracy is mapped onto
the 0—100 scale to ensure every task’s score aligns.
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Abstract

Natural Language Processing (NLP) for low-
resource languages remains fundamentally con-
strained by the lack of textual corpora, stan-
dardized orthographies, and scalable annota-
tion pipelines. While recent advances in large
language models have improved cross-lingual
transfer, they remain inaccessible to underrep-
resented communities due to their reliance on
massive, pre-collected data and centralized in-
frastructure. In this position paper, we argue
for a paradigm shift toward open-ended, inter-
active language discovery, where Al systems
learn new languages dynamically through dia-
logue rather than static datasets. We contend
that the future of language technology, particu-
larly for low-resource and under-documented
languages, must move beyond static data collec-
tion pipelines toward interactive, uncertainty-
driven discovery, where learning emerges dy-
namically from human-machine collaboration
instead of being limited to pre-existing datasets.
We propose a framework grounded in joint
human-machine uncertainty, combining epis-
temic uncertainty from the model with hesita-
tion cues and confidence signals from human
speakers to guide interaction, query selection,
and memory retention. This paper is a call
to action: we advocate a rethinking of how
Al engages with human knowledge in under-
documented languages, moving from extrac-
tive data collection toward participatory, co-
adaptive learning processes that respect and
empower communities while discovering and
preserving the world’s linguistic diversity. This
vision aligns with principles of human-centered
Al, emphasizing interactive, cooperative model
building between Al systems and speakers.

1 Introduction

The recent progress in Natural Language Process-
ing (NLP) has been largely shaped by a data-driven
paradigm. Foundation models, built on large-scale
internet corpora and empowered by scaling laws,

have unlocked impressive generalization across
tasks and languages (Kaplan et al., 2020; Brown
etal., 2020; Le Scao et al., 2022). However, this tra-
jectory has come at a cost: the assumption that per-
formance improves with ever more data and com-
pute has made cutting-edge research increasingly
inaccessible, especially to researchers and commu-
nities in the Global South (Sambasivan et al., 2021;
Schwartz et al., 2022).

Despite efforts to democratize NLP, a stark im-
balance persists. African languages, which make
up over 30% of the world’s linguistic diversity,
account for less than 1% of NLP research out-
put (Joshi et al., 2020). These languages typi-
cally lack large-scale text corpora, parallel datasets,
and standardized annotation practices. Transfer
learning, active learning, self-supervised and semi-
supervised learning, have all been proposed to ad-
dress this data scarcity (Howard and Ruder, 2018;
Devlin et al., 2019; Ein-Dor et al., 2020; Dossou
etal., 2022; Dossou, 2025; Dossou et al., 2025), but
even these methods depend on the availability of
some unlabeled or previously seen language data.
In environments where data is extremely scarce or
non-digitized, such assumptions break down.

Moreover, while recent Large Language Mod-
els (LLMs) have demonstrated impressive cross-
lingual abilities, their success is closely tied to data
scale, computational resources, and increasingly
centralized infrastructure. As scaling laws plateau
and operational costs rise, the current paradigm
risks becoming both unsustainable and exclusive,
limiting participation from underrepresented com-
munities and preventing scalable solutions for the
languages that need them most (Strubell et al.,
2019; Bender et al., 2021; Ahmed et al., 2023).

We argue that NLP must now evolve beyond
static, data-hungry training regimes. Inspired by
recent work in open-ended discovery and self-
improving Al (Hughes et al., 2024; Siddiqui et al.,
2024), we propose a shift toward interactive,
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uncertainty-driven language learning. In our vi-
sion, Al systems learn languages not from vast
corpora, but through natural dialogue, identifying
gaps in their understanding, asking questions, and
incorporating feedback in real time.

Imagine an Al system that only understands En-
glish, but receives a human input in Fon (Dos-
sou and Emezue, 2020, 2021a; Dossou and Sabry,
2021; Dossou and Emezue, 2021b; Dossou et al.,
2023). Instead of guessing or ignoring it, the sys-
tem responds: “I do not recognize this language.
Could you help me understand it?” From this first
exchange, it starts acquiring the new linguistic con-
cepts interactively. Over time, through repeated ex-
posure and correction, the system transitions from
total ignorance to conversational fluency in the
new language. This vision shifts the emphasis from
training on what we have to learning from what
we do not yet understand, as humans do.

In this position paper, we explore the tech-
nical and conceptual foundations for such sys-
tems. We argue that open-ended language learning,
grounded in epistemic uncertainty, dialogue, and
human-in-the-loop adaptation, represents a scal-
able and inclusive path forward for low-resource
NLP, especially in contexts where static data is not
available, representative, or sufficient. We also out-
line a set of open challenges that arise from this
vision, including the need for reliable uncertainty
estimation, continuous learning mechanisms, and
equitable access to interaction data. We discuss
both the promise and the risks of this approach,
including the question of whether such systems can
acquire meaningful language competence without
sufficient exposure or human feedback, and what
architectures, incentives, or evaluation schemes
would be required to support them.

2 Background and Related Work

2.1 Low-Resource Languages

Africa is one of the most linguistically diverse con-
tinents, home to over 3,000 indigenous languages
(Epstein and Kole, 1998; Eberhard et al., 2024),
which account for about one-third of the world’s
7,159 living languages (Eberhard et al., 2024). In
an increasingly digital world, where today’s Al
advancement such as LL.Ms offer unprecedented
possibilities, the non-integration of these languages
into the technological landscape not only exacer-
bates social inequalities but also poses a serious
threat to the survival of entire linguistic cultures.

As inclusion and diversity gain global impor-
tance, commendable efforts have been made by
researchers to identify available, albeit scarce, data
sources (e.g., the Bible in Fon). Moreover, there are
growing efforts for datasets creation (sometimes
done manually and on a voluntary basis). These
datasets have been used to create machine transla-
tion models that produce acceptable results (Dos-
sou and Emezue, 2020; Adelani et al., 2022a). As
a result, some of the very low-resource languages
such as Fon, Ewe have been recently integrated
into Google Translate,' for textual translations.

Despite these important advances, several major
challenges persist that existing solutions do not,
and arguably cannot address. In particular, current
approaches still rely heavily on larger amounts of
textual data (Adelani et al., 2022a; Dossou et al.,
2022; Nekoto et al., 2020), resources that are ex-
tremely scarce or absent for many African lan-
guages and dialects (Nekoto et al., 2020; Joshi
et al., 2020). Due to this reliance, existing so-
lutions only cover a tiny fraction (=1%) of the
languages, typically selected based on speaker pop-
ulation size or researchers’ ties (Adelani et al.,
2022a,b). These choices overlook the existing di-
versity and will ineluctably reinforce existing so-
cial inequalities and discrimination. For instance,
Nigeria alone has over 500 indigenous languages
(Eberhard et al., 2024), most of which severely lack
written resources. Even more concerning is the
practical impact of current solutions. In fact, most
low-resource languages exist solely through oral
traditions, meaning that the vast majority of native
speakers can only speak them and struggle to read
written versions, if such versions exist at all (Dos-
sou and Emezue, 2021a; Olatunji et al., 2023b,a).
Therefore, solutions that rely on textual translations
are fundamentally misaligned with how these lan-
guages are actually used, making them ineffective
for real-world communication needs.

2.2 Human Uncertainty Estimation

Incorporating human uncertainty into interactive
learning frameworks has emerged as a critical com-
plement to model uncertainty, as human feedback is
often non-deterministic and can significantly shape
model learning dynamics. Collins et al. (2023) ex-
plore concept-level interventions where humans
provide feedback on intermediate concepts rather
than final labels. They show that capturing the

"https://translate.google.com/?sl=en&t1l=fon
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confidence or uncertainty of these interventions,
through soft labels or probabilistic feedback, im-
proves model robustness and generalization.

Mendes et al. (2025) study the relationship be-
tween human-perceived and model-predicted un-
certainties, finding only limited correlation be-
tween the two. This indicates that model uncer-
tainty alone is insufficient to assess ambiguity in
real-world settings. Explicitly modeling human un-
certainty, for example, through elicited confidence
scores or inter-annotator variance, can lead to more
calibrated and reliable learning.

From a broader perspective, Bhatt et al. (2020)
argue that exposing both human and model un-
certainties enhances transparency and mutual un-
derstanding in human-AlI collaboration. Similarly,
collaborative annotation frameworks such as CoAn-
notating (Zhang et al., 2023) leverage these un-
certainty estimates to decide when to defer to hu-
man expertise or proceed autonomously, improving
both efficiency and reliability in human-in-the-loop
learning pipelines.

2.3 Model Uncertainty Estimation

In machine learning models, uncertainty estimation
plays a crucial role in determining whether a model
can respond confidently or should request clarifi-
cation from the user. We denote by fp: X — )V a
parametric model with parameters 6, input x € X,
and predictive distribution py(y|x). D is the train-
ing dataset.

Kendall and Gal distinguish two types of un-
certainty: aleatoric uncertainty (U,) and epistemic
uncertainty (U.). Most literature works focus on
U, which is approximated by:

Ue() = Vopi0/0) [Epy),0) Y]]

This is U, because directly tied to limited data or
lack of model knowledge. The two most common
ways of estimating U, are the following:

With Bayesian Neural Networks BNNs
(MacKay, 1992; Neal, 1996) define a posterior
over weights:

p(0|D) o p(D|0)p(0),
and predictive uncertainty as:
p(vl2.D) = [ (ol O)p(6ID) do.

In practice, this integral is untractable, and approx-
imated using variational inference (Blundell et al.,

2015) or Monte Carlo sampling (Gal and Ghahra-
mani, 2016).

With Deep Ensembles
trained models {fy, }M_,,
is quantified via:

Given M independently
predictive uncertainty

Un(2) = 7 3 H(Jo, (412),

where H (-) is Shannon entropy.

In summary, while advances in uncertainty esti-
mation have improved model reliability (Kendall
and Gal; Gal and Ghahramani, 2016; Kirsch et al.,
2019b) and recent work has explored uncertainty in
human feedback (Collins et al., 2023; Mendes et al.,
2025), current Al systems still learn predominantly
from static datasets or treat user input as determinis-
tic corrections. This creates two major limitations:
(i) uncertainty from humans and models is rarely
considered jointly, reducing the system’s ability
to assess when to seek clarification or defer deci-
sions, and (ii) learning processes remain largely
offline, without mechanisms to dynamically adapt
to evolving user input.

To address these shortcomings, we introduce an
interactive learning system that moves beyond
passive, data-driven training. Instead of relying
solely on pre-collected corpora, the system engages
directly with users, identifies gaps in understanding,
requests clarification when uncertainty is high, and
incorporates feedback into its evolving knowledge
state. This approach aims to fuse human and model
uncertainties to guide the dialogue flow, enabling
real-time, adaptive, and more sample-efficient lan-
guage acquisition.

3 Proposed Approach

Our proposed framework enables Al systems to
acquire language competence through open-ended,
interactive learning. This process is illustrated in
Figure 1 through interactions between a human
and the Al system (agent). Rather than training
on large static corpora, the system learns by en-
gaging with users in real time, identifying gaps in
its knowledge, soliciting clarification, and integrat-
ing feedback. The methodology consists of three
core components: (1) modeling interactional uncer-
tainty, (2) language acquisition via feedback, and
(3) continual learning from dialogic exposure.
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Ne toxo daxo
Benin ton no nyi ?

I do not recognize

this language. Can you
help me understand

Yes, sure! I just asked
what is the capital of
Benin in the Fon language.

Got it/ The capital of
Benin is Porto-Novo.
How do you say that
in Fon?

In fon, we say: & no yld toxo
daxé Benfi ton do Porto-Nove. Ne

toxo daxo Canada ton no nyi 2

& no yl5 toxo daxé
Canada ton do

what you said?

Ottawa.

1 gl ) w + |

1. The model is exposed to a new language and
initiates an open-ended learning process.

2. The wodel learns iteratively by asking questions
and analyzing direct speech inputs from users.

3. The model can generalize the concepts learned in
the new language and can now converse in it.

Figure 1: Illustration of the proposed approach for open-ended learning of low-resource languages. It shows the
voice conversation between a human and an agent who teaches the agent to recognize and respond to requests for

the capital city of a country in the Fon language.

3.1 Modeling Interactional Uncertainty

At the heart of our approach is the notion of epis-
temic uncertainty, which refers to the system’s
awareness of what it does not know. In conven-
tional NLP, model uncertainty is often used for
tasks like active learning or confidence calibra-
tion (Kendall and Gal; Gal and Ghahramani, 2016;
Houlsby et al., 2011; Guo et al., 2017). Here, we
extend this principle to guide decision-making dur-
ing interactive language learning.

We define a composite uncertainty signal com-
bining both human and machine contributions:

Uiotal = @ - Unuman + (1 - a) - Umodel

where Unodel 1S the model’s epistemic uncertainty,
estimated via entropy, ensemble disagreement, or
Bayesian approximations (Kendall and Gal; Kirsch
et al., 2019a; Gal et al., 2017; Gal and Ghahramani,
2016; Kirsch et al., 2023), Upuman reflects uncer-
tainty inferred from hesitation cues, conflicting cor-
rections, or prosodic markers, and « controls the
relative influence of human versus machine uncer-
tainty.

Given this signal, the system selects a query Q*
to ask the human speaker, optimizing:

E[InfoGain(Q)]

Q — s mgx COSt(Qa Z/lhuman)

where

COSt(Q, uhuman) = C(Q) (1 + A x Z/{human)

with ¢(Q) representing the baseline time or cogni-
tive effort required for query type ), and A > 0

controlling how strongly human uncertainty in-
creases perceived cost. This interaction cost reflects
the human effort required to answer a query and the
likelihood of confusion when the speaker is already
uncertain. Scaling the cost by (1 + A * Unyman)
ensures the system avoids queries that are both ex-
pensive and likely to yield ambiguous responses.
This improves efficiency and user experience, mak-
ing learning cooperative rather than extractive.

The expected information gain from a query ()
is defined as the anticipated reduction in predictive
uncertainty:

InfoGain(Q) = H[Y | z, D]
—Eapaig) [HY | 2,D,Q, Al

where H][-] denotes Shannon entropy, D is the cur-
rent learner state, and A denotes a human response
sampled from p(A | Q). This term quantifies how
much uncertainty the query is expected to resolve.
We define p(A|Q) as the conditional distribution
over possible human responses given a query Q).
This distribution models the variability and uncer-
tainty in human feedback due to ambiguity in mean-
ing, hesitation or noise in responses, and contextual
variability across speakers.

The selected query Q* and the anticipated dis-
tribution of human responses p(A|Q) provide the
necessary context for the next stage, where human
feedback is integrated into the model.

3.2 Language Acquisition via Human
Feedback

Once a query QQ* has been selected based on the
joint uncertainty signal, the Al system receives a
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feedback signal A from the human speaker. In this
stage, the goal is to integrate the new information
into the model’s knowledge while accounting for
both human and model uncertainty.

A targeted query () is designed to elicit clari-
fying information about input x, such as asking

“What does this word mean?” or “How would you
say this sentence?”. The response is denoted as
A ~ p(A|Q), sampled from a conditional distri-
bution over possible answers. This distribution re-
flects that feedback may vary or include ambiguity,
such as multiple possible translations or uncertain
corrections.

We denote py(-|x) as the model’s current predic-
tive distribution over possible meanings or utter-
ances for input x, parameterized by 6. The human
feedback is represented as yhuman, @ meaning dis-
tribution derived from the response A. It can be
sharp, corresponding to a single unambiguous an-
swer, or soft, capturing several plausible meanings
with associated probabilities. Finally, we introduce
a reliability weight wy = 1 — Unhuman, Which down-
scales the influence of uncertain human feedback.
When human uncertainty is high, the system places
less emphasis on the feedback to avoid reinforcing
potentially misleading signals.

Using these definitions, the system constructs a
new target distribution that combines its own prior
predictions with the received feedback:

y= W§ * Yhuman + (1 - wf) j)g(-’x)
This weighted target guides the parameter update:
0" =0 —nVoL(pe(-|z),7)

where 7 is the learning rate and £ is a loss function.
KL Divergence can be used to align the model’s
predicted distribution with human-provided mean-
ing probabilities in a continuous space, making it
well-suited for uncertain or soft feedback. Con-
trastive Loss distinguishes correct meanings from
alternative ones in an embedding space, supporting
open-ended discovery where meanings are not pre-
defined. Categorical Cross-Entropy works when
the system has a finite set of candidate meanings,
though it is less ideal for open-ended language
learning since it assumes predefined categories.
This approach allows the system to integrate hu-
man feedback incrementally and proportionally to
its reliability, while still preserving useful prior
knowledge from its own predictions. In the future,
more appropriate loss functions could be designed

specifically for dialogic, open-ended learning sce-
narios to better reflect the uncertainty and flexibility
inherent in human language interactions.

3.3 Continual Learning from Dialogic
Exposure

Language acquisition is not a single-step process.
Over multiple interactions, the system must con-
solidate knowledge, refine uncertain examples, and
adapt to evolving feedback. To achieve this, every
interaction is stored in a memory bank:

where each element consists of the input x;, the
human feedback A;, and an associated weight:

(1~ Unoaw)

model

w; = (1 —U(Z)

human

This weight captures the combined confidence of
both the human and the model for a given interac-
tion.

The memory bank M acts as a growing reposi-
tory of past interactions with human speakers, each
stored alongside a weight indicating reliability. Pe-
riodically, the system revisits stored samples to rein-
force reliable information and re-query ambiguous
examples. Past interactions are used to improve the
model through uncertainty-aware gradient updates:

06— nzwiveﬁ(m("%), A;)

(2

po(-|x;) refers to the same predictive model in-
troduced in Section 3.2, now updated iteratively
using both immediate feedback and stored mem-
ory samples. We reuse the notation to emphasize
that the model evolves over time through repeated
uncertainty-guided interactions.

Low-weight samples contribute less to the up-
date, preventing uncertain or noisy feedback from
degrading the learned representation. They are not
discarded but flagged for future re-querying when
opportunities arise. This creates a closed interac-
tive loop where the system encounters new input
x, computes Uy and selects an optimal query @,
collects human feedback A and updates parame-
ters incrementally, stores the interaction in M with
weight w;, and periodically revisits uncertain cases
to refine or validate earlier knowledge, looping
back when necessary.

Through these mechanisms, uncertainty evolves
from a static confidence score into an active princi-
ple governing when to trust, query, defer, or memo-
rize. This continual process ensures that learning
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is incremental, reliable, and co-adaptive. It enables
the system to refine its internal representations over
time, progressively improving its understanding of
a new language while remaining sensitive to the
reliability of past and future feedback. Together,
these three stages establish a self-reinforcing loop
for interactive language discovery, where uncer-
tainty not only shapes individual interactions but
also drives long-term, co-adaptive learning.

4 Opportunities and Challenges

Our proposed framework for open-ended language
discovery leverages joint human-machine uncer-
tainty to guide interaction, query selection, and
memory retention. While the approach introduces
a novel paradigm for low-resource language ac-
quisition, its success and limitations stem directly
from the mechanisms we designed. Unlike con-
ventional NLP pipelines that rely on static, curated
datasets and post-hoc analysis, this framework is
designed for real-time, adaptive interaction. It em-
phasizes uncertainty-driven decision-making, en-
abling language acquisition to progress even when
large corpora, standardized orthographies, or ex-
pert annotators are unavailable.

4.1 Why This Could Work

The framework builds on several principles that
make it uniquely suited for interactive, low-
resource settings. By explicitly modeling epistemic
uncertainty, the system learns what it does not know
and can focus queries on areas of high informa-
tion gain rather than engaging in blind memoriza-
tion. This targeted querying mechanism has the
potential to accelerate language acquisition com-
pared to static corpus-based training approaches.
Incorporating Unyman allows the system to defer
or prioritize information based on human confi-
dence, ensuring that reliable feedback from fluent
speakers directly shapes the learned representation
and reduces noise in the earliest stages of learning.
Over time, dynamic weighting («) adapts reliance
on each contributor according to their observed
consistency and reliability, making the system ro-
bust to heterogeneous or occasional feedback. Fur-
thermore, confidence-weighted memory retention
enables iterative refinement of knowledge: high-
certainty information consolidates quickly, while
ambiguous examples remain open for re-querying,
progressively building a stable and trustworthy
knowledge base. Together, these mechanisms en-

able data-efficient learning that can bootstrap lan-
guage understanding from a small number of high-
value interactions, making it feasible in settings
where large corpora are unavailable. These proper-
ties suggest that joint human—machine uncertainty
could form the backbone of scalable, respectful,
and data-efficient language acquisition, where con-
ventional supervised NLP pipelines cannot operate.

4.1.1 In the Context of Low-Resource African
Languages

Low-resource African languages often face a
unique combination of challenges that make stan-
dard NLP pipelines ineffective: severe data scarcity,
highly variable orthographies, oral traditions with-
out standardized writing systems, and limited avail-
ability of expert annotators. The proposed frame-
work is particularly well-suited to this context be-
cause it does not rely on pre-existing corpora or
formal linguistic resources. Instead, it learns in-
teractively from small, high-value exchanges, ask-
ing only those questions that are most informative
given its current uncertainty. This targeted learn-
ing process minimizes the burden on speakers, who
may have limited time or literacy in standardized or-
thography, while still allowing the system to rapidly
form hypotheses about grammar, semantics, and
phonology.

Moreover, the joint modeling of human and ma-
chine uncertainty makes the framework robust to
the realities of field data collection in African set-
tings, where contributors may have varying degrees
of fluency, confidence, or even differing dialects of
the same language. By adapting reliance on each
contributor through dynamically learned weighting
(@), the framework can filter noise while still cap-
turing dialectal richness. Its ability to defer uncer-
tain information and revisit ambiguous examples
ensures that rare or culturally significant linguistic
forms are not prematurely discarded. These prop-
erties make it a promising approach for preserv-
ing, documenting, and learning African languages
where the cost of traditional data collection is pro-
hibitive and where respectful, participatory collab-
oration with speakers is essential. This approach
not only addresses data scarcity but also reframes
language technology development as a collabora-
tive process between Al systems and speakers. By
moving away from extractive data collection to-
ward live, adaptive interaction, it offers a pathway
for NLP to support language documentation and
revitalization efforts. Particularly in marginalized
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communities, this paradigm empowers speakers to
co-create technology aligned with their linguistic
and cultural realities, potentially reshaping how Al
contributes to the preservation and expansion of
global linguistic diversity.

4.1.2 In the Context of Human-Centered Al
and Human-Computer Interactions

The proposed framework embodies principles of
human-centered artificial intelligence by placing
speakers at the center of the learning process.
Rather than treating them as static annotators or
sources of labels, it engages in a cooperative inter-
action where both human and machine uncertainty
guide the flow of information exchange. This fos-
ters transparency and trust, as speakers can see
that the system acknowledges its own uncertainty,
adapts to their confidence levels, and defers deci-
sions when information is unclear.

From a Human-Computer Interaction (HCI)
standpoint, the framework reduces the cognitive
and emotional burden on contributors by focusing
only on high-value, contextually relevant questions
instead of overwhelming them with repetitive or
trivial requests. It can adapt the pace and style of
interaction based on hesitation cues, feedback la-
tency, or non-verbal indicators of uncertainty, mak-
ing it more accessible to non-expert participants.
Additionally, the iterative refinement of memory
ensures that early mistakes can be revisited and
corrected collaboratively, giving speakers a sense
of agency and ownership in shaping the emerging
language model. This paradigm transforms data
collection from a one-way, extractive process into
a participatory dialogue, contributing to the devel-
opment of Al systems that are not only technically
effective but also socially aligned and respectful
toward the communities they aim to serve. In do-
ing so, it demonstrates a path toward genuinely
human-centered Al, where computational methods
adapt to people, rather than asking people to adapt
to technology. This vision is aligned with partici-
patory and co-design approaches explored in HCI
research (Liao and Vaughan, 2023; Birhane et al.,
2022; Delgado et al., 2023), which emphasize col-
laborative model building, transparency, and com-
munity agency in shaping Al behavior.

While these properties highlight the potential of
our framework to enable scalable, and data-efficient
language learning, realizing this vision in practice
is far from trivial. Uncertainty-guided discovery
introduces its own vulnerabilities, and deploying

such systems in real-world low-resource environ-
ments presents additional technical and sociotechni-
cal barriers, that must be addressed. The following
section discusses these open challenges.

4.2 Challenges

Several challenges could undermine the effective-
ness of the proposed framework in practice. A first
concern lies in the reliability of uncertainty esti-
mation. Because the system operates on highly
out-of-distribution data such as new languages, un-
seen constructs, and unpredictable input patterns,
its uncertainty signals may not be well calibrated.
Miscalibration could lead to redundant or unneces-
sary queries, or conversely, to missed opportunities
to acquire valuable information early on.

Human uncertainty signals introduce another
layer of complexity. Hesitation cues, conflicting an-
swers, or silence are not always reliable indicators
of a speaker’s true confidence. Cultural norms and
individual communication styles can further distort
these signals, leading the system to over-trust un-
certain information or defer excessively even when
a speaker would have provided correct input. This
unreliability in feedback interpretation can propa-
gate downstream errors in learning.

Errors may also arise in the adaptive weighting
mechanism. Because a must be learned online
from sparse observations, early interactions can
dominate future weighting, allowing biases from
the first few contributors to persist unchecked. In
heterogeneous communities where speaker relia-
bility varies widely, it becomes difficult to esti-
mate contributor trustworthiness accurately, which
risks amplifying noise and reducing the value of
human input. This interacts closely with query se-
lection: without stable reliability or cost estimates,
the system may waste interactions on poorly chosen
clarifications, frustrating users and slowing overall
progress.

The memory component presents its own risks.
Confidence-weighted retention is designed to con-
solidate reliable information quickly, but if mis-
interpreted feedback is assigned high confidence,
early errors risk becoming fossilized in the learned
representation. Conversely, rare linguistic forms
may repeatedly receive low-confidence scores, pre-
venting their integration and leaving parts of the lan-
guage undocumented or misunderstood. This chal-
lenge is compounded in what we term a “double-
uncertainty deadlock,” where both the model and
the human contributors remain uncertain for ex-
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tended periods. In such cases, the system may
repeatedly defer decisions, becoming overly cau-
tious and failing to test hypotheses that could break
the cycle of uncertainty.

Finally, practical constraints in real-world de-
ployment cannot be ignored. Reliable uncertainty
estimation, adaptive weighting, and dynamic query
selection all introduce computational overhead that
may be infeasible on low-cost, battery-limited, or
offline devices. Connectivity issues, limited pro-
cessing power, and fragile hardware environments
could hinder the ability of the framework to operate
effectively in the very settings it aims to serve.

4.3 Future Directions

Addressing these challenges requires progress on
several fronts. Improving epistemic uncertainty
estimation in open-ended, out-of-distribution lan-
guage input is a priority, as more reliable measures
would reduce unnecessary queries and strengthen
the system’s ability to make informative decisions
early on. Equally important is the development of
context-aware and culturally adaptive models of
human uncertainty, since hesitation and confidence
cues vary widely across individuals and commu-
nities. Advancing methods for learning o from
sparse interactions will also be key to mitigating
early biases, ensuring that the system adapts fairly
and dynamically to multiple contributors over time.

Meta-learning approaches offer a promising path
toward improving « estimation. By transferring
priors on speaker reliability from related language
acquisition sessions or typologically similar lan-
guages, the system could begin with more informed
weighting strategies, reducing the risk of overfitting
to a handful of early interactions. This would make
adaptation faster and more stable, even in diverse
or previously unseen linguistic settings.

Developing multi-agent exploration policies
could further enhance query selection. Instead
of treating human interactions in isolation, coor-
dinated strategies could balance information gain,
contributor reliability, and annotation cost across
multiple speakers. Such strategies might delib-
erately diversify queries to capture rare linguis-
tic forms, seek cross-validation from independent
sources to resolve ambiguities, and avoid overload-
ing single contributors, making learning more effi-
cient and collaborative.

Breaking double-uncertainty deadlocks will re-
quire exploration mechanisms that take calcu-
lated risks when both human and model uncer-

tainty remain high. Periodic re-querying, redis-
covery routines, and targeted hypothesis testing
could help overcome conservativeness and expand
the system’s knowledge base over time. Finally,
lightweight, offline-capable implementations of the
framework are necessary for real-world deploy-
ment. Achieving efficient uncertainty estimation,
adaptive query selection, and meta-learning-based
weighting on low-power devices would make the
approach scalable and practical for under-resourced
communities that lack access to high-compute in-
frastructure.

If these research directions are pursued, joint
human-machine uncertainty could unlock scal-
able, interactive, and respectful language learning
systems capable of discovering and documenting
under-resourced languages without relying on large
curated datasets. Ultimately, this line of research
bridges technical innovation and participatory de-
sign, opening opportunities for Al systems that
learn with people, not just from data.

5 Conclusion

This paper outlines a vision for open-ended lan-
guage discovery based on joint human-machine
uncertainty. We argue that future NLP systems, par-
ticularly for low-resource languages, must move
beyond static data pipelines and toward interactive,
participatory approaches that adapt to sparse, un-
certain, and heterogeneous feedback. While many
technical and sociotechnical challenges remain,
this is not merely a research proposal but an ideo-
logical stance: language technology should be co-
created with speakers. We position this work as a
challenge to current practices that treat language as
extractable data, advocating instead for Al systems
that become collaborative participants in language
preservation and revitalization. We call on the NLP
and HCI research communities to develop meth-
ods, tools, and evaluation practices that support
co-adaptive language learning systems, opening
new pathways for linguistic documentation, preser-
vation, and empowerment in the digital age. This
position paper advocates for a paradigm shift: from
building models that passively learn from existing
data to designing systems that actively learn with
people in real time, fostering respectful, human-
centered Al for linguistic diversity.
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Abstract

This study investigates whether vision language
models (VLM) can perform pragmatic infer-
ence, focusing on ignorance implicatures, ut-
terances that imply the speaker’s lack of pre-
cise knowledge. To test this, we systemati-
cally manipulated contextual cues: the visu-
ally depicted situation (visual cue) and QUD-
based linguistic prompts (linguistic cue). When
only visual cues were provided, three state-of-
the-art VLMs (GPT-40, Gemini 1.5 Pro, and
Claude 3.5 sonnet) produced interpretations
largely based on the lexical meaning of the
modified numerals. When linguistic cues were
added to enhance contextual informativeness,
Claude exhibited more human-like inference
by integrating both types of contextual cues.
In contrast, GPT and Gemini favored precise,
literal interpretations. Although the influence
of contextual cues increased, they treated each
contextual cue independently and aligned them
with semantic features rather than engaging
in context-driven reasoning. These findings
suggest that although the models differ in how
they handle contextual cues, Claude’s ability
to combine multiple cues may signal emerg-
ing pragmatic reasoning abilities in multimodal
models.

1 Introduction

In recent years, many large language models
(LLMs) have demonstrated the ability to solve a
wide variety of tasks, contributing to their growing
popularity. Initially limited to text-based inputs,
these models have been extended to incorporate
visual inputs, paving the way for vision-language
models (VLMs). By bridging vision and language
modalities, VLMs have expanded the possibilities
for Al applications and become central to the ongo-
ing technological revolution (Radford et al., 2021;
Ramesh et al., 2021; Alayrac et al., 2022; Li et al.,
2023).

VLMs have enabled various multimodal applica-
tions, such as object recognition (Ren et al., 2015;
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Chen et al., 2020; He et al., 2020), caption gen-
eration (Vinyals et al., 2015; Chen et al., 2022;
Yu et al., 2022), and visual question answering
(Antol et al., 2015). These tasks primarily focus
on associations between visual and textual inputs
by identifying objects, describing scenes, or re-
sponding to straightforward queries. While such
capabilities are remarkable, they represent only the
surface level of human-like understanding. In fact,
real-world communication often requires reason-
ing about implicit meanings that emerge from the
interplay between language and visual information
(Sikka et al., 2019). To move toward more human-
like multimodal intelligence, VLMs must also be
able to engage in this type of context-sensitive
and inferential processing (see Kruk et al., 2019).
This raises critical questions about VLMs’ capac-
ity for context-sensitive reasoning, which underlies
the pragmatic reasoning abilities required for real-
world communication.

Pragmatics offers an ideal framework for in-
vestigating this question. In human communica-
tion, pragmatic inference plays a crucial role in
understanding intended meanings beyond literal
statement (Grice, 1975; Wilson and Sperber, 1995;
Levinson, 2000). Contextual cues often provide dis-
ambiguating information that influences the inter-
pretation of utterances, making pragmatic reason-
ing inherently multimodal (Clark, 1996; Kendon,
2004; Martin et al., 2007; McNeill, 2008). While
a few studies on pragmatic reasoning have been
explored in text-only LLMs (Hu et al., 2022, 2023;
Lipkin et al., 2023; Cho and Kim, 2024; Capuano
and Kaup, 2024; Tsvilodub et al., 2024), the visual
modality enriches meaning construction through
interaction with linguistic input. As visual context
provides rich, implicit information that influences
language interpretation, studying pragmatic phe-
nomena through VLMs presents an intriguing re-
search opportunity. However, how well VLMs can
leverage visual information for pragmatic inference

298

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 298-308
November 9, 2025 ©2025 Association for Computational Linguistics



remains largely unexplored.

Therefore, we investigate whether VLMs exhibit
sensitivity to context, particularly focusing on ig-
norance implicatures—a pragmatic phenomenon
in which a speaker’s utterance implies a lack of
precise knowledge, and whether this sensitivity can
be modulated by a single cue or by the combination
of multiple cues. By examining how VLMs handle
this phenomenon in comparison to human reason-
ing, we aim to better understand their strengths
and limitations in processing context-dependent
pragmatic meaning.

2 Ignorance implicatures

To better understand pragmatic reasoning in real-
world language use, we examine the phenomenon
of ignorance implicatures. Consider the examples
in (1).

(1)
a. (bare numeral)
Four students passed the exam.
b. (superlative modified numeral)
At least four students passed the exam.
c. (comparative modified numeral)
More than three students passed the exam.

When it comes to how many students passed the
exam, the statement (1a) triggers ‘exactly four’ in-
terpretation, whereas (1b) and (1c¢) do not. Both
(1b) and (1c) contain modified numerals, suggest-
ing that the speaker may not know the exact number
of students who passed the exam. This is known as
ignorance implicatures, where the speaker’s choice
of modifier implies a lack of precise knowledge.

However, not all modifiers give rise to ignorance
implicatures to the same extent. Previous stud-
ies have shown that superlative modifiers like ar
least tend to trigger ignorance implicatures more
consistently than comparative ones like more than
(Nouwen, 2010; Cummins et al., 2012; Coppock
and Brochhagen, 2013b; Mayr and Meyer, 2014;
Cremers et al., 2022). In this regard, the likelihood
of ignorance inferences typically follows the hierar-
chy: superlative modified numerals > comparative
modified numerals > bare numerals.

This observation has prompted researchers to
explore how such inferences arise, leading to two
main perspectives. One approach suggests that ig-
norance inference is dependent on the words or
phrases themselves (Geurts and Nouwen, 2007;

Nouwen, 2010; also see Geurts et al., 2010). Geurts
and Nouwen (2007), for example, argued that the
semantics of superlative modifiers are inherently
more complex. While more than n expresses a sim-
ple meaning ‘larger than »’, at least n can convey
both ‘possible that there is a set of n’ and ‘certain
that there is no smaller set of n.” According to
Nouwen (2010), when someone has basic knowl-
edge of geometry, (2a) gives the impression that
the speaker lacks precise information, as compared
to (2b). This attributes the ignorance implicatures
to a semantic property specific to at least.

(2) a. ? A hexagon has at least five sides.
b. A hexagon has more than four sides.

Under the pragmatic account, on the other
hand, ignorance implicatures for both at least and
more than have been primarily explained through
Gricean reasoning, particularly the Maxim of Quan-
tity (Grice, 1975), which holds that the speaker’s
choice to provide a lower-bound statement, rather
than a more informative exact number, suggests
that the speaker lacks precise knowledge (Biiring,
2008; Cummins and Katsos, 2010; Coppock and
Brochhagen, 2013b). More recent studies have ex-
panded this account by emphasizing the role of
contextual factors (Cummins et al., 2012; Cum-
mins, 2013; Mayr and Meyer, 2014; Westera and
Brasoveanu, 2014; Cremers et al., 2022). In these
studies, contextual cues, including Question Under
Discussion (QUD), preceding discourse, or accom-
panying visual input, were manipulated to modu-
late the likelihood of implicature.

For instance, Westera and Brasoveanu (2014)
investigated how different types of modified nu-
merals give rise to ignorance implicatures depend-
ing on contextual demands and processing cost. In
their experiments, participants read short dialogues
or utterances containing modified numerals and
judged how confident the speaker seemed about
the exact quantity, as well as how natural the ut-
terance was. To manipulate the informativeness
required by the discourse, the authors introduced
different QUDs, such as a ‘how many’ condition
(How many of the diamonds did you find under the
bed?), which demanded precise answers, and a ‘po-
lar’ condition (Did you find {at most | less than} ten
of the diamonds under the bed?), which did not re-
quire numerically specific responses, as they could
be answered with a simple yes or no. The results
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No. Image Text Situation Modifier
1 $ $ % @ There are four apples in the boxes. precise bare
% E Y, . ~ There are at least four apples in the boxes. precise superlative
% % % There are more than three apples in the boxes. precise comparative
2 $ $ $ $ There are four apples in the boxes. approximate bare
r y There are at least four apples in the boxes. | approximate | superlative
% % f E There are more than three apples in the boxes. | approximate | comparative

Table 1: A sample set

showed that ignorance inferences occurred signifi-
cantly more consistently when the QUD demanded
precision (‘how many’ condition), suggesting that
contextual expectations about informativeness di-
rectly affect how such inferences are drawn.

Likewise, Cremers et al. (2022) systematically
manipulated various contextual factors to investi-
gate the conditions under which ignorance impli-
catures arise. Their experiments involved multiple
levels of visual information, QUD types, and tex-
tual scenarios. In particular, visual information was
used to represent the informativeness of the situ-
ation—for example, a precise situation in which
all eight cards were face-up, and an approximate
situation in which two of the eight cards remained
face-down, obscuring the exact quantity. Their
findings revealed that ignorance inferences were
more likely when the QUD required a precise an-
swer (‘howmany’ condition) and when the visual
context left room for uncertainty (‘approximate’
condition). These results highlight that ignorance
implicatures are largely influenced by both linguis-
tic and non-linguistic contextual cues.

These findings raise the question of whether and
how visual and linguistic contextual information
can enhance the pragmatic reasoning abilities of
VLMs. To address this question, the present study
examines whether VLMs exhibit sensitivity to igno-
rance implicatures across multiple contextual cues.

3 Methods

3.1 Data

As presented in Table 1, experimental materials
were designed using two images for contextual pre-
cision (henceforth, ‘situation’) and texts including
bare numeral, superlative, and comparative modi-

of experimental materials

fiers (henceforth, ‘modifier’).

In detail, images were used to manipulate the
contextual precision, where a picture showing all
8 boxes open and providing the exact number of
target objects was labeled as ‘precise’, and a pic-
ture with 2 out of 8 boxes remaining closed and an
uncertain number of target objects was labeled as
‘approximate’. In both types of situation, the target
objects consistently appeared in 4 boxes. For exam-
ple, in the image for precise situation, all 8 boxes
are open and 4 of them contain apples. Since all
boxes are open, we can tell that the target objects
are exactly 4. On the other hand, in the image for
approximate situation, 2 out of the 8 boxes remain
closed and 4 of the open boxes contain apples. As
what is inside the closed boxes is unknown, the tar-
get objects could be 4 or more. The corresponding
texts were categorized based on the modifier types,
including ‘bare’ (bare numeral n), ‘superlative’ (at
least n), and ‘comparative’ (more than n).

Image data was created by combining open and
closed boxes generated by GPT-40 (OpenAl, 2024)
with standard icons for target objects. In this study,
the number of target objects was consistently set to
four, as previous work has shown that VLMs often
exhibited limited performance on numerical rea-
soning tasks and experience a marked decline in ac-
curacy when counting more than four items (Paiss
et al., 2023). Additionally, since VLMs tend to
struggle with counting when objects are presented
in unstructured or cluttered spatial arrangements
(Liu et al., 2019; Rahmanzadehgervi et al., 2024),
the experimental images were carefully constructed
with precisely aligned rows and columns. In this
manner, each set of materials consisted of 2 images,
each paired with 3 corresponding texts. In total, 70
sets of materials were used in the experiment.
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Figure 1: Overview of the experimental procedure

3.2 Models and Procedure

As VLMs for the experiment, we used GPT-40
(OpenAl, 2024), Gemini 1.5 Pro (Team et al.,
2024), and Claude 3.5 sonnet (Anthropic, 2024).
These models were selected due to their ability to
process both image and text inputs simultaneously.
They not only allow for the matching of images
with text to determine their relationship but also
provide the functionality to selectively query spe-
cific parts of the text within a broader context. This
makes them well-suited for a series of our experi-
ments.

For the experiment, these models were initialized
using API keys. The images were then resized to
a standard size of 224x224 pixels using the Pillow
library (Clark et al., 2015) to ensure consistency
in input dimensions and optimize processing effi-
ciency. After resizing, the images were encoded
into base64 format to ensure compatibility for input
into the model’s API.

Each experiment involved presenting the image
alongside text prompts, which were specifically
tailored for each task. All the materials, code and
result of the experiment are publicly available.'

4 Experiment 1

4.1 Prompt

Cremers et al. (2022) argued that the disagreement
over main findings related to ignorance inference
was that the detection depends on the types of tasks

1https://github.com/joyennn/
ignorance-implicature

participants were asked to perform. Specifically,
it varied depending on whether participants were
given an acceptability judgment task (Coppock
and Brochhagen, 2013a; Westera and Brasoveanu,
2014; Cremers et al., 2022), where they judged
the acceptability of the given sentences with re-
spect to the depicted scenarios or images, or an
inference task (Geurts et al., 2010), where they
judged whether exactly n implies at least n. Cre-
mers et al. (2022) argued that ignorance inference
is more accurately assessed when evaluating the
appropriateness of a sentence in relation to the con-
text, rather than through the logical reasoning in-
volved in inference tasks. In this regard, the ac-
ceptability judgment task serves as an effective
method, guiding participants to evaluate whether a
sentence is contextually appropriate. The accept-
ability judgment task typically involves either a
true/false response format, as in truth-value judg-
ment tasks (Coppock and Brochhagen, 2013a), or a
numerical scale to capture the degree of ignorance
implicatures in a more fine-grained manner (West-
era and Brasoveanu, 2014; Cremers et al., 2022). In
our experiment, we adopt a 1-7 scale to assess the
appropriateness of image-text pairings in a more
fine-grained manner.

As presented in Figure 1, each model was
prompted to rate whether the texts with bare nu-
merals, superlative, and comparative modifiers are
appropriate for the given image on a scale from 1
to 7. The phrases used in the prompt were adapted
from Experiment 3 in Cremers et al. (2022). In
this manner, 70 sets of experimental items were re-
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Figure 2: Result of Experiment] — Mean scores for the
appropriateness of image-text pairs based on modifiers,
situations and models

peated 5 times to improve the reliability, resulting
in a total of 2,100 individual responses from each
of three models, as detailed below.

Is the following text appropriate for the
given image?

Please reply with a single integer between
1 and 7, where 1 means “not at all appro-
priate” and 7 means “completely appropri-
ate.”

Text: {text}

4.2 Result

Figure 2 shows the mean scores for the appropri-
ateness of image-text pairs based on the types of
modifiers, situations, and models. For the statistical
analysis, we built mixed-effects logistic regression
models (Baayen, 2008; Baayen et al., 2008; Jaeger,
2008; Jaeger et al., 2011) to analyze the results for
each model, using the 1me4 package (Bates et al.,
2015) in R software (Team, 2023). To examine the
fixed effects, modifier and situation were set as in-
dependent variables, with appropriate scores as the
dependent variable. Image and text were specified
as random effects. For independent variables, the
bare condition and the precise condition were set
as the reference levels for modifier and situation,
respectively.

As a result, the scores for appropriateness of
image-text pairs followed the order of superlative
> comparative > bare in both types of situations
across almost all models, except for the approxi-

mate condition of Claude. While these predom-
inant results aligned with findings from Cremers
et al. (2022), where participants preferred the text
with superlative and comparative in the approxi-
mate condition. However, the similar pattern in the
precise situation was unexpected. In this situation,
texts containing bare numerals should have been
considered more appropriate than those with the
other modifiers, as the number of target objects was
explicitly defined.

Statistically, these results were influenced mostly
modifier, which showed main effects in GPT (p <
0.001), Gemini (p < 0.001), and Claude (p < 0.01,
0.05). However, there were no significant effects
on situation alone in GPT (p = 0.66) and Claude
(p = 0.96), nor in the interaction of situation and
modifier in GPT (p = 0.06, 0.33) and Gemini (p =
0.11, <0.001).

In summary, superlative and comparative modi-
fiers, which imply uncertainty, consistently led to
higher appropriateness ratings even in both types
of situations. This suggests that the models’ re-
sponses were more influenced by the modifiers
rather than the situations. The models’ reliance on
the semantic information inherent in the modifiers,
rather than utilizing the contextual cues, indicates
that the models are not effectively applying visu-
ally presented contextual information to ignorance
inference.

S Experiment 2
5.1 Prompt

Experiment 2 was conducted with the assumption
that providing multiple pieces of contextual infor-
mation would bring about pragmatic interpretation.
Thus, another contextual cue, QUD, was added to
the previous experimental setup. For QUDs, two
types of conditions were designed, such as ‘how-
many’ and ‘polar’ as below.

In the howmany condition, the question focuses
on a specific number of target objects, leading re-
sponses containing superlative and comparative
modifiers to introduce uncertainty or information
gaps, which in turn trigger ignorance inferences.
In contrast, the ‘polar’ condition elicits a simple
yes/no response, placing minimal demands on nu-
merical precision. Accordingly, it serves as a base-
line for assessing the effects of the howmany QUD.

The appropriateness of the text in response to
either of the two questions was measured on a 1-7
scale. For each condition, all experimental sets
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were repeated 5 times, resulting in a total of 4,200
individual responses.

Is the following answer to the question
appropriate for the given image?

Please reply with a single integer between
1 and 7, where 1 means “not at all appro-
priate” and 7 means “‘completely appropri-
ate.”

(QUD: howmany)
Question: How many {objects} did you
find in the boxes?

Answer: {text}

(QUD: polar)
Question: Did you find four {objects} in
the boxes?

Answer: {text}

5.2 Result

Figure 3 shows the mean scores for the appropriate-
ness of image-text pairs, when the text was given
as a response of howmany and polar questions,
based on the types of modifiers, situations, and
models. The statistical analysis was the same as in
experiment 1, with QUD added as an independent
variable in the fixed effects. For QUD, the polar
condition was set as the reference level.

In the howmany condition, we observed that the
score for bare numerals increased compared to the
results from Experiment 1. In most cases observed
in GPT and Gemini, bare numerals received the
highest score, with the order being bare > superla-
tive > comparative. For the precise condition of
Gemini, the order was superlative > bare > com-
parative, but again, the score for bare numerals
increased compared to the previous experiment.

Statistical analysis revealed that, for both GPT
and Gemini, no significant effects were observed
for the modifier (GPT: p = 0.11, < 0.001 | Gem-
ini: p < 0.001, = 0.46). However, main effects
were captured for the two contextual cues, situa-
tion (GPT: p < 0.05 | Gemini: p < 0.001) and QUD
(GPT: p < 0.001 | Gemini: p < 0.001). Addition-
ally, significant interactions were observed between
each contextual cue and the modifier, specifically
for the interactions of situation and modifier (GPT:
p < 0.05, 0.001 | Gemini: p < 0.001), and QUD

and modifier (GPT: p < 0.001, 0.05 | Gemini: p <
0.001). However, the interaction between the two
contextual cues, situation and QUD (GPT: p = 0.58
| Gemini: p = 0.92), as well as the interaction of
modifier, situation, and QUD (GPT: p = 0.69, 0.92
| Gemini: p < 0.05, = 0.92), were not significant.
This finding suggests that while the influence of
modifiers remains present, the increased availabil-
ity of contextual information appears to guide the
models toward a more context-driven interpretation
strategy.

On the other hand, in case of Claude, the scores
followed the order of bare > superlative > compar-
ative in the precise situation, while the order was
superlative > bare > comparative in the approx-
imate situation. Although this does not perfectly
align with human experimental results, it reflects
a pattern similar to our expectations, where bare
numerals would be preferred in the precise situa-
tion, and either superlative or comparative modi-
fiers would be preferred in the approximate situ-
ation. Furthermore, statistical analysis showed a
significant effect only in the interaction of both con-
textual cues, situation and QUD (p < 0.01). Con-
sidering that in Experiment 1, Claude did not show
a similar pattern to human results based on visually
encoded context, and that its results were strongly
influenced by the modifiers, and the combination
of modifier and situation, these findings suggest
the possibility that when multiple contextual cues
are provided, the model may combine them in a
way that aligns more closely with human ignorance
inferences, showing a tendency to rely more on
contextual cues than on semantic modifiers.

In the polar as a control condition, the appropri-
ateness score for bare numerals was higher com-
pared to the result of Experiment 1, but still lower
than in the howmany condition across all the mod-
els.

In summary, when the contextual cue QUD was
added to the previous experimental setup, GPT and
Gemini showed a tendency to prefer bare numer-
als, which refer to precise knowledge, compared
to when only a single contextual cue was provided.
In contrast, Claude demonstrated a more integrated
approach by utilizing multiple contextual cues to-
gether, leading to an interpretation that was closer
to pragmatic inference. Despite differences in how
these models interpreted the stimuli, all models
showed a common pattern of shifting reliance from
modifiers to contextual cues when multiple cues
were provided.
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Figure 3: Result of Experiment2 — Mean scores for the
appropriateness of image-text pairs based on modifiers,
situations, and models across QUDs

6 Discussion

This study aimed to investigate the influence of
contextual cues in the interpretation of ignorance
inference within VLMs. In Experiment 1, we in-
vestigated how visually depicted situation (precise
and approximate) and different types of modifiers
(bare, superlative, and comparative) influenced ap-
propriateness ratings of image-text pairs. Results
revealed that appropriateness ratings consistently
followed the order of superlative > comparative >
bare across almost all models, regardless of situa-
tion types. This pattern suggests that the models
primarily relied on the semantic features of modi-
fiers rather than incorporating contextual informa-
tion into their judgments.

Building upon these findings, Experiment 2 in-
troduced an additional contextual cue, QUD, with
two conditions (howmany and polar). This exper-
iment aimed to determine whether multiple con-
textual cues would facilitate more sophisticated
pragmatic inference. Interestingly, when presented
with the howmany QUD, both GPT and Gemini
models gave higher appropriateness ratings to bare

Pragmatic - Linear cue combination
—#— Nonlinear cue combination

----- Pragmatic threshold

Interpretation

Semantic | =
0 cue

I |
1 cue 2 cues

Number of contextual cues

Figure 4: Modeling a threshold effect via linear and
nonlinear cue combination as a function of contextual
cue number (adapted from Parker, 2019)

numerals, which aligned with expectations for pre-
cise situation, but not for approximate situation.
In our analysis, these models showed greater im-
provement in providing precise information than
in engaging in pragmatic reasoning. While the in-
fluence of modifiers remained, there was a modest
increase in sensitivity to contextual cues.

In contrast, Claude demonstrated a more inte-
grated approach to contextual reasoning, using both
situation and QUD simultaneously. This integra-
tion pattern suggests Claude may be moving closer
to human-like pragmatic reasoning, which typi-
cally involves holistic consideration of multiple
contextual factors. This leads to the assumption
that Claude may have benefited from cue combi-
nation, where the presence of two contextual cues,
rather than a single cue, led to pragmatic interpre-
tation.

This pattern resonates with Parker (2019)’s cue
combination scheme, which posits the processing
benefit of retrieval cues for anaphora in memory is
not merely additive but emerges nonlinearly when
multiple cues are jointly available. Extending this
idea to our findings, contextual cue combination
for ignorance inference in VLMs may similarly fol-
low the nonlinear cue combination method: one
contextual cue alone may not significantly affect
the context-sensitive reasoning, but the addition of
the second cue increases the “cue weight” enough
to reach the threshold for pragmatic interpreta-
tion. This threshold effect is visualized in Figure 4,
which contrasts linear and nonlinear cue integration
patterns as a function of contextual cue number.

Then, do GPT and Gemini follow the linear cue
combination? It would be insufficient to charac-
terize these models’ behavior merely as examples
of linear cue combination. Rather, the observed
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pattern suggests a difference in how these models
represent and utilize contextual information. While
Claude appears to engage in combining two con-
textual cues into a unified pragmatic representation,
GPT and Gemini exhibit a pattern of local align-
ment, in which modifiers are evaluated separately
with each cue, but the cues themselves remain struc-
turally unbound. In this sense, their responses are
not limited because they combine cues linearly,
but because their internal processing architecture
does not support contextual cue combination in the
first place. Consequently, their outputs reflect a
tendency to prioritize informational precision over
pragmatic reasoning. As more cues become avail-
able, the models tend to converge on more semanti-
cally determinate interpretations, aiming to reduce
uncertainty in a localized manner rather than resolv-
ing it through holistic, context-sensitive inference.

Taken together, these findings offer new insights
into how current VLMs differ in their capacity for
contextual cue combination in pragmatic inference.
By introducing multiple types of cues—both visual
and linguistic—within a controlled experimental
setting, this study provides empirical evidence that
not all models process contextual information in the
same way, and that the ability to integrate multiple
cues holistically may serve as a crucial indicator of
emerging pragmatic reasoning abilities in VLMs.
In doing so, this research contributes to the growing
body of work on multimodal language processing
by highlighting the need to evaluate not only what
models generate and understand, but also how they
integrate diverse contextual cues to infer meaning.

7 Conclusion

This study examined whether and how current
VLMs engage in pragmatic inference, particularly
focusing on ignorance implicatures, when pro-
vided with visual and linguistic contextual cues.
Through two experiments manipulating modifier
types and contextual cues—including situation and
QUDs—we found that not all VLMs process such
information in the same way. Claude demonstrated
the ability to integrate multiple contextual cues into
a unified interpretation, exhibiting a threshold ef-
fect in pragmatic reasoning when both contextual
cues were available. In contrast, GPT and Gemini
tended to treat these cues independently, priori-
tizing precision over context-sensitive inference.
This suggests a fundamental difference not only in
cue weighting tendencies but also in how models

internally represent and combine contextual infor-
mation.

By systematically evaluating ignorance implica-
tures across VLMs, this study contributes to our
understanding of the mechanisms underlying prag-
matic behavior in VLMs. Importantly, it highlights
that the capacity for contextual cue combination
may serve as one of the key indicators of emerg-
ing pragmatic reasoning abilities in VLMs. These
findings open new directions for evaluating and de-
veloping VLMs that move beyond literal interpreta-
tion toward more human-like pragmatic inference.
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Limitations

This study has several limitations that offer direc-
tions for future research. First, our experiments
focused on a specific pragmatic phenomenon
involving modified numerals, which allowed for
a controlled testbed but may limit the generaliz-
ability of the findings. Extending the investigation
to other types of pragmatic inferences would
provide a broader understanding of VLMs’
pragmatic reasoning abilities. Second, although
we tested three state-of-the-art models—GPT-4o,
Gemini 1.5 Pro, and Claude 3.5—the results
may not fully generalize to other architectures,
including open-source models with different
training paradigms. Expanding the model pool
would help assess the robustness of cue integration
effects. Lastly, while our study builds on prior
human experiments, it does not include a direct
comparison with human performance under
identical conditions. Such empirical comparisons
would clarify whether model behavior reflects
genuine pragmatic reasoning or merely statistical
alignment with training data.

A Appendix

Estimate Std t  p-value
(Intercept) 4.24 0.17 2431 <0.001
Situation -0.09 021 -043  0.66
Modifier - Superlative 1.51 0.13 11.1 <0.001
Modifier - Comparative 1.01 0.13 737 <0.001

Situation:Modifier - Superlative -0.17  0.09 -1.81  0.06

Situation:Modifier - Comparative ~ -0.09  0.09 -096  0.33

Table 2: Summary of fixed effects from mixed-effects
logistic regression models by GPT-40 in Experiment 1
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Estimate Std t p-value Estimate Std t  p-value

(Intercept) 218 0.11 2051 <0.001 (Intercept) 3.83 145 2627 <0.001
Situati 1.32 1.19 11.12 0.001
Situation 043 013 324  <0.01 Huaton <
QUD 0.35 622 572 <0.001
Modifier - Superlative 0.52 0.07 7.12 <0.001
Modifier - Superlative 1.74 1.78  9.75  <0.001
Modifier - Comparative 0.47 0.07 632 <0.001
Modifier - Comparative 0.13 1.78 -0.73 0.46
Situation:Modifier - Superlative 0.07 0.04 1.61 0.11
Situation:Modifier - Superlative -0.92 8.66 -929 <0.001
Situation:Modifier - Comparative ~ -0.17  0.04 -3.67 <0.001 o » .
Situation:Modifier - Comparative -0.81 8.66 -10.61 <0.001
Table 3: Summary of fixed effects from mixed-effects QUD:Modifier - Superlative 145 8.69 -16.66 <0.001
logistic regression models by Gemini 1.5 Pro in EXperi— QUD:Modifier - Comparative -0.39 869 -4.44 <0.001
ment 1
Situation:QUD 0.01 0.09 0.10 0.92
Situation:QUD:Modifier - Superlative -0.30  0.12 -243  <0.05
Situation:QUD:Modifier - Comparative ~ -0.01 0.12  -0.09 0.92
Estimate Std t  p-value
Table 6: Summary of fixed effects from mixed-effects
(Intercept) 274 026 1021 <0.001 logistic regression models by Gemini 1.5 Pro in Experi-
Situation 001 033 -004 096 ment 2
Modifier - Superlative 061 019 319 <0.01 Estimate  Std ¢ p-value
Modifier - Comparative 0.42 0.19 222 <0.05 (Intercept) 399 029 1355 <0.001
Situation:Modifier - Superlative 033 0.09 -3.71 <0.001 Situation -029 040 -073 046
Situation:Modifier - Comparative ~ -0.78 ~ 0.09 -8.64 <0.001 Qub 002 0.08 -0.29 076
Modifier - Superlative 0.05 0.13  0.37 0.70
Tab.lel4. Summary of fixed effects from mlxed—effects Modifier - Comparative 032 013 234 <0.05
logistic regression models by Claude 3.5 in Experiment
1 Situation:Modifier - Superlative 0.12 0.12 1.03 0.29
Situation:Modifier - Comparative 0.22 0.12 1.84  0.06
QUD:Modifier - Superlative -020  0.12 -1.68  0.09
Estimate Std t  p-value QUD:Modifier - Comparative -1.22 012 -9.92  <0.001
Situation:QUD -0.37 0.12 -2.99 <0.01
(Intercept) 5.15 0.15 33.56 <0.001
. Situation:QUD:Modifier - Superlative 0.80 0.17 1.41 0.15
Situation -048 020 -239 <0.05
Situation:QUD:Modifier - Comparative 0.24 0.17 456 <0.001
QUD 0.46 0.07 624 <0.001
Modifier - Superlative 017011 159 0.1 Table 7: Summary of fixed effects from mixed-effects
Modifier - Comparative 069 011 -626 <0.001 logistic regression models by Claude 3.5 in Experiment
2
Situation:Modifier - Superlative 0.26 0.10 256 <0.05
Situation:Modifier - Comparative 0.49 0.10 471 <0.001
QUD:Modifier - Superlative -0.71 0.10 -6.81 <0.001
QUD:Modifier - Comparative 0.30 0.10 -2.94 <0.05
Situation:QUD 0.05 0.10 0.54 0.58

Situation:QUD:Modifier - Superlative 0.01 0.14 -038  0.69

Situation:QUD:Modifier - Comparative -0.05 0.14  0.09 0.92

Table 5: Summary of fixed effects from mixed-effects
logistic regression models by GPT-40 in Experiment 2
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Abstract

Large Language Models (LLMs) are increas-
ingly being used in real-world applications.
However, concerns about the reliability of the
content they generate persist, as it frequently
deviates from factual correctness or exhibits
deficiencies in logical reasoning. This paper
proposes a novel decoding strategy aimed at
enhancing both factual accuracy and inferential
reasoning without requiring any modifications
to the architecture or pre-trained parameters of
LLMs. Our approach adjusts next-token prob-
abilities by analyzing the trajectory of logits
from lower to higher layers in Transformers
and applying linear regression. We find that
this Decoding by Logit Trajectory-based ap-
proach (DeLTa) effectively reinforces factuality
and reasoning while mitigating incorrect gener-
ation. Experiments on TruthfulQA demonstrate
that DeLTa attains up to a 4.9% improvement
over the baseline. Furthermore, it enhances
performance by up to 8.1% on StrategyQA and
7.3% on GSMB8K, both of which demand strong
reasoning capabilities. !

1 Introduction

Natural language processing has advanced sig-
nificantly with the rise of large language mod-
els (LLMs) (OpenAl, 2024; Dubey et al., 2024).
However, ensuring the factual accuracy of LLM-
generated text remains challenging. A notable issue
is hallucination, where models produce factually
incorrect content, posing risks in fields like infor-
mation retrieval, medicine, and law (Huang et al.,
2024). Calculation errors in the logical reason-
ing further contribute to inaccuracies, stemming
from incorrect token predictions during decoding.
Mitigation strategies for these issues include the
selection of dataset, modifications to loss func-
tions (Ouyang et al., 2022), and the incorporation
“Work done while at Kyoto University.

!Code is available at https://github.com/githubhyz/
DelTa.
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Figure 1: Overview of DeLTa. When input tokens are
fed into the LLM, the logits from each layer (e.g., layers
30, 31, and 32) are computed and shown as bar graphs
to illustrate changes between tokens (e.g., "Seattle" vs.
"Olympia"). A linear regression (red line) approximates
the logit trajectory (blue dots). Using this regression, we
extrapolate the logits for a virtual 33rd layer (red dot)
and improve prediction beyond the original outputs.

of external knowledge (Wan et al., 2024). However,
implementing these methods requires refining mod-
els or acquiring additional data, which can incur
substantial costs.

To overcome these limitations, we propose a de-
coding strategy, that boosts generation accuracy
without extra training or data. Inspired by Chuang
et al. (2024), who observed that correct token prob-
abilities tend to rise in higher Transformer layers,
we introduce Decoding by Logit Trajectory-based
approach (DeLTa), which treats each layer’s logits
as a time-series and use linear regression to predict
upper-layer logits (Figure 1).

Experiments demonstrate that DeLL'Ta enhances
factuality by up to 4.9% on TruthfulQA, 5.0%
on TriviaQA, and 2.4% on Natural Questions,
while also improving reasoning on StrategyQA and
GSMBS8K by up to 8.1%. These findings confirm
that DeLTa refines token prediction, leading to im-
proved factuality and reasoning capabilities.
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2 Related Work

Previous research on guiding LLMs to generate fac-
tually accurate text can be broadly categorized into
training-based (Lin et al., 2024; Liang et al., 2024)
and non-training-based approaches. DeLTa falls
into the latter category. Among non-training-based
methods, Chang et al. (2024) introduced Asymp-
totic Probability Decoding, which extrapolates out-
put probabilities from LLMs of different sizes un-
der Contrastive Decoding (CD) (Li et al., 2023).
Another method, Sharma et al. (2024) showed that
certain capabilities of Transformers are concen-
trated in the latter layers and achieved improve-
ments in sentiment classification by applying linear
extrapolation to a text classifier based on CD. These
approaches estimate probabilities using linear re-
gression or extrapolation, relying on only two data
points (e.g., the outputs of two models or an in-
termediate layer and the final layer). In contrast,
DeLTa predicts logits instead of probabilities and
performs regression across the entire sequence of
logits from intermediate layers to the final layer,
then recalculates the probability values. Another
non-training-based approach, DoLa (Chuang et al.,
2024), uses the difference in log probabilities be-
tween a lower and higher layer of the model within
CD to encourage factually based text generation.

3 Method

DeLTa aims to improve the probability of generat-
ing the correct token during decoding by focusing
on changes in the logits across the Transformer’s
layers. Specifically, when decoding the next token
in an N-layer Transformer, we regard the logits
produced by each layer as a time series (§ 3.1).
Based on the observation that higher layers gener-
ally assign higher probabilities to the correct token
(Chuang et al., 2024), we employ a simple linear
regression model (§3.2) to predict the logits of the
higher layers. By leveraging the upward trend from
lower to higher layers, this approach enhances the
final prediction performance.

3.1 Token Probability at Arbitrary Layers

Let z; denote the token at position ¢, and let the pre-
ceding token sequence be z«; = {z1,...,2-1}.
The application of the Logit Lens (nostalgebraist,
2020), enables the computation of the hypothetical
probability distribution at any arbitrary layer de-
noted by the set of all possible values of the layer,

ie, /(1< <N).

Py(xy | £<4) = softmax (logit(e)> € X.

x4
Here, softmax represents the softmax function,
and X denotes the vocabulary set.

3.2 Decoding by Logit Trajectory

We employ a linear regression to model changes in
logits across Transformer layers, thereby enabling
the estimation of logits at virtual layers. Because
the probability of the correct token generally in-
creases in higher layers, we explicitly learn this
upward trend to produce more reliable token proba-
bilities. Concretely, we select an intermediate layer
Npig (1 < Nppig < N — 1) and use its logit vec-
tors up to the final layer IV to estimate logits. We
then compute token probability Pr,(z; | <) for a
virtual layer L (L € R)

Linear Regression. We define the explanatory
variable X ¢, as the Transformer layer indices and
the response variable Y., as the logit vectors:
Xreg — [Nmid7Nmid + 17 Y N}v

Yiee = [logitMmid) logitVmiatl) .. ogitV)]

Based on the least squares method, the estimated
logit at a virtual layer L is computed as follows:

/\.(L) ~ ~
logit =By + B1L,

where Bo is the intercept and Bl is the regression
coefficient. These parameters are determined by:

) ) ~ C Xre 7)/;6

Here, E, V, and C represent the mean, variance,
and covariance, respectively.

Token Probability Computation. The final to-

_— (L
ken probability is computed from logit logit( ),
filtered by the candidate token set Vyeaq:

R —— (L)
Pr(xy | 2ey) = softmax(logltvhead)mt.

Here, the candidate set WV} caq 1S determined follow-
ing Chuang et al. (2024) as:

Vhead = {2 € X 1 Py | m<4) >

amua}XPN(w | x4)}. (1)

Tokens that are not included in the candidate set
are assigned a probability of 0.
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Factuality

CoT
Model TruthfulQA (Open QA) Closed QA Reasoning
%Truet  %Infot  %True*Infot | TriviaQA NQ | StrQA  GSMSK

Qwen2.5-7B 68.9 92.4 64.1 39.1 11.5 76.9 78.7
+ filter 67.4 93.3 60.7 44.1 13.0 78.1 81.6
+ DolLa (early-layer) 71.2 91.6 62.9 41.9 12.8 73.8 76.3
+ DoLa (late-layer) 79.6 75.0 55.0 33.6 10.2 67.7 67.9
+ DeLTa 66.8 98.0 65.4 44.1 13.0 81.2 81.6
Mistral-7B-v0.1 56.3 95.3 53.8 51.3 16.0 65.3 31.0
+ filter 59.4 81.1 40.9 54.5 18.2 69.7 35.8
+ DolLa (early-layer) 50.5 91.7 429 53.2 17.2 69.3 334
+ Dol a (late-layer) 51.2 91.2 429 53.3 17.0 71.3 33.7
+ DeLTa 54.3 92.1 47.0 54.1 17.9 72.5 38.2
Llama-3.1-8B 50.8 90.1 44.0 50.0 14.0 64.0 42.8
+ filter 50.7 95.2 46.9 53.8 16.4 66.0 47.8
+ DolLa (early-layer) 48.9 99.0 48.2 53.2 15.6 66.4 46.1
+ DolLa (late-layer) 49.2 99.3 48.5 53.1 15.3 64.9 459
+ DeLTa 51.5 97.1 48.9 53.8 16.4 721 50.1

Table 1: Experimental results on (1) factuality tasks, including Truthful QA, TriviaQA, and Natural Questions (NQ)
and (2) reasoning tasks involving Chain-of-Thought (CoT), including StrategyQA (StrQA) and GSMS8K. Bold
values represent the highest scores. DeL.Ta achieves a strong performance on the %True*Info metric for Truthful QA
and shows substantial improvements across multiple benchmarks, including TriviaQA and GSMS8K. Importantly, in
GSMSK, which requires not only factual knowledge but also arithmetic reasoning, DeLTa outperforms the baseline
by more than 7 points. These results indicate that DeLTa enhances both knowledge-intensive tasks and complex

reasoning capabilities.

4 Experiments

4.1 Setup

Models and Baselines. We use Qwen2.5-
7B (Qwen Team, 2024), Mistral-7B-v0.1 (Jiang
et al., 2023), and Llama-3.1-8B (Dubey et al.,
2024), comparing them with four baselines. The
first baseline is the raw model output. The second
baseline (filter) applies Vyeaq (Equation (1)) to the
raw model output. This baseline is specifically in-
troduced to determine whether the performance im-
provement of our method primarily results from the
filtering mechanism rather than from DeLTa. The
third and fourth baselines, DoLa (early-layer) and
DoLa (late-layer), are derived from DoLa (Chuang
et al., 2024), a state-of-the-art decoding method
that significantly enhances generation quality by
leveraging the difference in log probabilities be-
tween an intermediate layer and the final layer.
DoLa dynamically selects the intermediate layer
from predefined layer buckets, which are primarily
partitioned into two groups: early layers (lower
half of the model) and late layers (upper half of
the model). We denote these two configurations as
DoLa (early-layer) and Dol a (late-layer), respec-
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tively. Originally, DoLa determines the optimal
bucket using a validation set. However, by compar-
ing DeLTa with both DoLa (early-layer) and DoLa
(late-layer), we assess whether DelLTa remains ef-
fective regardless of the specific intermediate layer
bucket selection. This evaluation highlights the ro-
bustness and general applicability of DeL.Ta beyond
DoLa’s predefined selection strategy. We exclude
methods such as Chang et al. (2024) and Sharma
et al. (2024) as baselines. The former requires
fine-tuning for optimal results despite being a non-
training method, making fair comparison with our
training-free approach difficult. The latter is de-
signed for classification, not generation, and is thus
unsuitable for our evaluation.

Tasks and Datasets. Following DolLa (Chuang
et al., 2024), we evaluate open-ended generation
tasks: Truthful QA (Lin et al., 2022) (factual accu-
racy in open QA), StrategyQA (StrQA)(Geva et al.,
2021), and GSM8K(Cobbe et al., 2021) (reason-
ing). To assess token-level accuracy across diverse
tasks, we evaluate knowledge retrieval via closed
QA tasks: TriviaQA (Joshi et al., 2017) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019).



Evaluation metrics are in Appendix A, and Ap-
pendix B details the prompt structure and genera-
tion hyperparameters. These settings follow DoLa
for fair comparation. Additionally, Appendix D
explains the selection of N,,;4 and virtual layer L
for DeLTa.

4.2 Results

Factuality. Table 1 summarizes the model perfor-
mance across factuality benchmarks, demonstrat-
ing the effectiveness of DeL'Ta compared to strong
baselines, including filtering and DolLa variants.
On TruthfulQA, we focus on the %True*%Info
metric, which better reflects factual and informa-
tive responses than %True or %Info alone. This
metric avoids rewarding trivial but technically cor-
rect answers. Under this measure, DeL.Ta improves
Llama-3.1-8B from 44.0% to 48.9%, surpassing the
best baseline (46.9%) by 2 points. In contrast, ex-
isting methods like filtering and DoLa (early-layer)
show limited and inconsistent gains. For Closed
QA tasks such as TriviaQA and NQ, generated an-
swers typically consist of just few tokens, limiting
opportunities for adjustment based on logit trajecto-
ries. Additionally, during validation, DeLTa often
selects the middle layer Npjg = N —1, causing log-
its from Del Ta and +Filter to coincide, thus lead-
ing to identical scores (e.g. Qwen2.5-7B achieves
44.1% on TriviaQA and 13.0% on NQ). Even in
this constrained scenario, DeL.Ta consistently main-
tains or slightly exceeds baseline accuracy.

CoT Reasoning. DeLTa also substantially im-
proves CoT reasoning accuracy, achieving up to
a 7.3-point gain on GSMS8K (e.g., Llama-3.1-8B:
42.8% to 50.1%), with similar improvements ob-
served across other models. DoLa (early-layer)
sometimes introduces minor improvements, while
DolLa (late-layer) frequently fails to generalize, par-
ticularly on GSM8K. These results suggest that
DeLTa enhances the accuracy of generated text,
thereby leading to significant improvements in rea-
soning.

5 Analysis

In this section, we conduct a series of analyses
to empirically validate the core hypotheses under-
pinning DelTa. We first verify that deeper layers
contribute more to task performance, then investi-
gate the linearity of logit evolution across layers,
and finally justify our choice of a linear regression
model through an ablation study.

t

Qwen2.5-7B (N = 28)
Mistral-7B-v0.1 (N = 32)
Llama-3.1-8B (N = 32)

%Truth*Info

=
=)

0

N-8 N-7 N-6 N-5 N-4 N-3 N-2 N-1

Figure 2: Direct decoding performance from intermedi-
ate layers on Truthful QA (%Truth*Infot). Performance
consistently improves in deeper layers. The x-axis repre-
sents the layer depth from N — 8 (left) to NV — 1 (right).

5.1 Information Salience in Deeper Layers

DeLTa builds upon the hypothesis, inspired by
Chuang et al. (2024), that task-relevant informa-
tion for generating the correct token becomes more
salient in the upper (deeper) layers of a Transformer
model. To empirically validate this hypothesis in
our setting, we performed direct decoding from the
hidden states of the final eight intermediate layers
(from layer N —8 to N — 1) of three language mod-
els: Qwen2.5-7B, Mistral-7B-v0.1, and Llama-3.1-
8B. We then evaluated performance on the Truth-
ful QA dataset using the %Truth*Info score.

Figure 2 shows a clear trend across all models
where performance improves as layers get deeper.
This provides a strong empirical support for our
foundational hypothesis.

5.2 Linearity of Logit Evolution Across
Layers

Given the increasing importance of upper layers,
we now investigate the nature of their internal dy-
namics. Specifically, we evaluate the extent to
which the logits retain a linear structure across lay-
ers using the coefficient of determination (R2).

Experimental Procedure. First, a text is input
into the LLM, and the top 50 tokens with the high-
est logits in the final layer are extracted. Next,
following the procedure described in § 3.2, the pre-
dicted and original logits of these tokens from layer
Npig to N are used to compute the R? for each
token. This value is then averaged across all tokens
and multiple input sentences from datasets in §4.1.

Results on Mean Linearity. As shown in Fig-
ure 3, all three LLMs exhibit a substantial increase
in mean R? at higher layers, with Llama-3.1-8B
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Figure 3: Mean coefficient of determination (mean R?)
and its standard deviation across input samples. The
vertical axis represents the mean R?, and the horizontal
axis represents the ratio of layer indices (N,,54/N).
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Figure 4: Violin plots of R? for Top-K tokens, grouped
by model and layer difference (N — Ny,iq)-

reaching approximately 0.9 near the final layer.
These results indicate that a simple linear model
can effectively capture logit relationships in higher
layers. This finding is consistent with recent studies
(Razzhigaev et al., 2024), which also demonstrate
approximately linear behavior in later Transformer
layers.

Distributional Analysis. To provide a more gran-
ular view, we also visualize the full distribution of
R? for the Top-50 tokens using violin plots. As
depicted in Figure 4, the R? distributions for all
models shift toward higher values and become nar-
rower as N,,;q approaches the final layer. This
trend reveals not only an increase in the average lin-
earity but also a reduction in its variance, indicating
more stable linear behavior. Mistral-7B-v0.1 con-
sistently shows the highest median and the tightest
distribution, while Llama-3.1-8B exhibits broader
distributions, suggesting greater variability. These
results reveal the stability and model-dependence
of logit linearity across layers.

Model %Truth?  %InfoT  %Truth*Infot

Qwen2.5-7B (+ DeLTa) 66.8 98.0 65.4
Qwen2.5-7B (+ DeLTa2) 64.7 94.3 45.2
Mistral-7B-v0.1 (+ DeLTa) 54.3 92.1 47.0
Mistral-7B-v0.1 (+ DeLTa2) 43.5 90.3 35.7
Llama-3.1-8B (+ DeLTa) 51.5 97.1 48.9
Llama-3.1-8B (+ DeLTa2) 39.4 98.4 38.1

Table 2: Performance comparison on Truthful QA be-
tween linear regression (DeLTa) and quadratic regres-
sion (DeLTa2).

5.3 Ablation on Regression Model Choice

The observed linearity in upper layers motivates
our choice of a linear regression model. To jus-
tify this design decision, we conducted an abla-
tion study comparing DeLTa with a version using a
more complex quadratic regression model, which
we call DeLTa2.

The results in Table 2 show that the linear regres-
sion model (DeLTa) significantly outperforms the
quadratic version (DeLTa2) across all models. This
suggests that unnecessarily increasing the model’s
expressiveness harms generalization performance.
We conclude that a simple and robust linear re-
gression, which aligns with the observed linear
dynamics of the upper layers, is a more effective
and efficient approach.

6 Conclusion

This study aimed to enhance the factual accuracy
and reasoning of text generated by LLMs. The pro-
posed method, DeLTa, operates without additional
training or data. By leveraging token probability
distributions across Transformer layers and employ-
ing linear regression, we developed a framework
that is both computationally efficient and easily
integrable. Empirical evaluations across multiple
benchmarks demonstrate that DeLTa significantly
improves factual accuracy and exhibits effective-
ness in reasoning tasks.

7 Limitation

The proposed method (DeLTa) in this study has
limitation, as outlined below:

* Due to computational resource constraints,
we could not conduct experiments on large-
scale language models. Whether our approach
maintains its effectiveness in larger models
needs to be investigated in future studies.
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Future research should focus on overcoming this
limitation to establish a more generalizable and
highly accurate factuality correction method appli-
cable to a broader range of language models.
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A Evaluation Metrics

The evaluation metrics used for the datasets in our
experiments are as follows:

* TruthfulQA: Following Lin et al. (2022), We
use a fine-tuned GPT-4 model to compute
the scores of truthfulness (%Truth) and infor-
mativeness (%Info) for responses generated
by LLMs. %Truth measures the degree to
which a response is factually accurate, while
%Info quantifies the amount of useful infor-
mation contained in the response. Addition-
ally, %Truth*Info is the product of %Truth
and %Info, representing the degree to which
a response maintains truthfulness while be-
ing informative. Higher values indicate better
performance.

Input Length DoLa DeLTa
128 tokens 0.0205  0.0013
256 token 0.0358 0.0014
512 token 0.0453  0.0015

Table 3: Comparison of inference time (seconds per
sample) between DoLa and DeLTa across varying input
lengths.

* TriviaQA and NQ: The accuracy is calcu-
lated based on the exact match between the
responses generated by the LLM and the gold
answers.

* StrQA and GSMS8K: The accuracy is com-
puted based on the exact match between
the extracted final answer from the LLM-
generated response and the gold answer.

B Generation Hyper-parameters

The hyper-parameters employed for generation
were standardized across all experiments, with the
temperature parameter fixed at 0.9 and the top-k
and top-p sampling parameters set to 50 and 0.95,
respectively. The repetition penalty was set to 1.0
for the raw model output and to 1.2 for other meth-
ods. Furthermore, the maximum token length was
set to 50 for the TruthfulQA, TriviaQA, and Natu-
ral Questions datasets, and 256 for the StrategyQA
and GSMSK datasets. About « in Equation (1), we
set « = 0.1. The above parameters are all derived
from DoLa (Chuang et al., 2024).

For each task, the LLM was provided with
prompts and questions, and the generated responses
were evaluated. The prompt structure and their
selection followed Chuang et al. (2024). Specifi-
cally, we adopted the same few-shot examples as
in Chuang et al. (2024) to ensure a fair compari-
son. However, due to computational resource con-
straints, we set the number of few-shot examples
to 6.

C Computational Cost

To evaluate the computational cost of the algorithm
itself, we measured the inference time on a syn-
thetic model with 32 layers, hidden size of 4096,
and vocabulary size of 32,000. For each input
length—128, 256, and 512 tokens—we used 100
randomly generated samples and reported the aver-
age inference time in Table 3. The reason DeL.Ta
demonstrates superior algorithmic efficiency lies
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in the fundamental differences between the under-
lying algorithms. DoLa requires sequential exe-
cution of multiple intermediate layers to dynami-
cally determine the optimal layer using divergence-
based criteria, including KL divergence and Jensen-
Shannon divergence. This introduces significant
computational overhead due to repeated forward
passes and divergence evaluations.

In contrast, DeL.Ta employs a direct linear regres-
sion approach over precomputed hidden states, fol-
lowed by normalization steps. Since it eliminates
the need for iterative divergence computations and
dynamic routing, DeLTa drastically reduces the
overall computational cost.

D Configuration of DeL.Ta

DeLTa includes adjustable hyperparameters, N,,;q
and L. To select the optimal intermediate layer
Npiq and the target virtual layer for estimation L
for each model, we constructed validation and test
datasets from each dataset. First, we determined
the values of N,,,;4 and L that maximize the accu-
racy of DeLTa for each model using the validation
dataset. Then, using the selected IV,,;q and L, we
conducted a comparison with the baseline on the
test dataset.

For datasets without a validation set (Truth-
fulQA, StrQA), 10% of the test data was used as the
validation data. On the other hand, for datasets with
an existing validation set (TriviaQA, NQ, GSM8K),
we extracted 10% of the existing validation dataset
for use in our experiments.

In the experiments, we selected N,,;4 from { N —
6,N—5,...,N—1} and L from {N, N + 0.5}.
The selected values of V,,;4 and L are presented
in Table 4.

After experiments, as shown in Table 4, the val-
ues of NV,,,;4 and L selected based on validation ex-
hibit different tendencies depending on the dataset.
Notably, in TruthfulQA, selecting an outer layer
contributed to performance improvement, whereas
in other datasets, optimization through smoothing
was found to be the most effective.

In conclusion, the range of selected N,,;q and
L values remains largely consistent across mod-
els, with no extreme differences observed between
models. This suggests that DeLTa can be generally
applied without dependence on specific datasets or
models.

E Additional Experiments on Logit
Linearity

E.1 Logit Linearity with Different Datasets

In this section, we examine the logit linearity across
the intermediate layers of models for each dataset
(TruthfulQA, TriviaQA, Natural Questions, Strate-
gyQA, GSMS8K), following the experimental pro-
cedure described in §5.2. The results are presented
in Figure 5. The horizontal axis, N,,;q/N, repre-
sents the starting point of the explanatory variables,
while the vertical axis, mean R2, denotes the mean
coefficient of determination.

When comparing the results across datasets, a
general trend is observed: in the higher layers of
the model (the last 4-5 layers), the meanR? val-
ues increase to around 0.8, indicating relatively
high logit linearity. Notably, Mistral-v0.1-7B and
Qwen2.5-7B consistently exhibit higher mean R?
values than Llama-3.1-8B, suggesting that logit
linearity is more pronounced in these models.

Conversely, in the lower layers, the mean R? val-
ues are relatively low, with significant variability
across datasets and models. In particular, Llama-
3.1-8B tends to have determination coefficients
below 0.6 in the lower layers, suggesting lower
linearity compared to other models.

Additionally, in the middle layers around
N,.qa = 20, a decline in mean R? is observed in
some models. This phenomenon suggests that log-
its undergo nonlinear transformations in the inter-
mediate layers. However, as the model approaches
the final layers, mean R? increases again, indicat-
ing that logit representations become more linear.

Overall, consistent with the experimental results
described in §5.2, these findings suggest that while
logit linearity across layers is dataset-dependent,
it generally stabilizes and improves as the model
approaches the final layers.

E.2 Distributional Analysis of Logit Linearity
with Different Datasets

Following §5.2, we analyze the distribution of logit
linearity for the Top-K (= 50) tokens across inter-
mediate layers, separately for each dataset (Truth-
fulQA, TriviaQA, Natural Questions, StrategyQA,
GSMBS8K), following the experimental procedure
described in § 5.2. The results are presented in
Figure 6.

Comparing the distributions across datasets in
Figure 6, several consistent trends and dataset-
specific differences can be observed. In the upper
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Dataset | Qwen2.5-7B  Mistral-7B-v0.1 Llama-3.1-8B
Truthful QA | 26,285 31,325 30, 32
TriviaQA ‘ 27,28 28,32 31,32
Natural Questions \ 27,28 27,32 31, 32
Strategy QA ‘ 25,28 29, 32 28,32
GSMSK ‘ 27,28 26, 32 28,32

Table 4: Results of the selected M and L. The left and right numbers in each cell represent M and L, respectively.
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Figure 5: Logit linearity of different models (Qwen2.5-7B, Mistral-v0.1-7B, Llama-3.1-8B) on various datasets
(TruthfulQA, TriviaQA, Natural Questions, StrategyQA, GSMS8K), as calculated in §5.2. The horizontal axis
represents the layer ratio, while the vertical axis shows the mean R?, which denotes the average coefficient of

determination.

layers (small N — N,,;q), the R? distributions for
the Top-K tokens shift towards higher values and
become significantly narrower, indicating that the
linearity between predicted and original logits be-
comes both stronger and more stable as the model
approaches the final layers.

In contrast, Llama-3.1-8B shows markedly lower
median R? values and broader distributions across
all datasets and layers, suggesting that its logit lin-
earity is both weaker and less stable, especially for
high-probability tokens. This model-dependent dif-
ference is especially notable in more challenging
datasets such as Natural Questions and GSMS8K,
where the separation between models becomes
even more apparent in the upper layers.

Across all models and datasets, the lower lay-
ers (large N — N,,;q) display lower R? values and
broader distributions, indicating that the predic-
tive power of the linear model is limited in the
earlier stages of computation. In several datasets,

such as TriviaQA and StrategyQA, a gradual and
monotonic improvement in R? is observed as the
model moves toward the output layer, while for oth-
ers, such as TruthfulQA, some non-monotonicity
and broadening of distributions in the intermediate
layers can be seen, reflecting possible nonlinear
transformations at these stages.

Overall, these results demonstrate that the distri-
butional characteristics of logit linearity for Top-K
tokens are jointly influenced by both model archi-
tecture and dataset properties. Nevertheless, the
general tendency across all settings is that logit
linearity is strengthened and stabilized in the up-
per layers, consistent with findings in § 5.2 and
previous sections.

E.3 Qualitative Evaluation of DeLTa

In this section, we qualitatively evaluate DeLTa
using yes/no question datasets. Specifically, we
input particular questions into Qwen2.5-7B and
constrain their outputs to either yes or no, allowing
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Figure 6: Distribution of logit linearity (R2) for different models (Qwen2.5-7B, Mistral-v0.1-7B, Llama-3.1-8B)
across various datasets (TruthfulQA, TriviaQA, Natural Questions, StrategyQA, GSM8K), as calculated in §E.2.
The horizontal axis denotes the difference between the final layer and the intermediate layer (N — N,,;4), while
the vertical axis shows the coefficient of determination (R2) for Top-50 tokens. Each violin plot visualizes the
distribution of 2 values across input samples, allowing for a comparison of both the central tendency and variability

of logit linearity among models, layers, and datasets.

for a detailed analysis of changes in logit scores.

First, in E.3.1, we investigate the impact of dif-
ferent settings of M and L on logit scores, and
clarify under what conditions incorrect answers are
corrected. Next, in E.3.1, we compare the logit
scores with and without the application of DeLTa,
verifying the effectiveness of the correction. In par-
ticular, we focus on cases where the correct answer
is no but the model originally outputs the incorrect
answer yes, and analyze how the logit score of no
changes after applying DeLTa.

Through this analysis, we qualitatively evaluate
how the appropriate selection of M and L influ-
ences the correction of incorrect answers, thereby
demonstrating the effectiveness of DeLTa.

E.3.1 Logit Changes for Different M/ and L

As an example using Qwen2.5-7B, we consider
the input question: What is the population of
the country?\nA: The population is about
320 million.\nTrue:. In this case, the correct
answer is no; however, the model’s original output
is yes, resulting in an incorrect answer. The results
of applying DeLTa under different values of M and
L are shown in Figure 7.

Figure 7a and Figure 7b display the changes in
the logits for "yes" and "no" over M € {0,...,27}
for L = 28 and L = 29, respectively. In the case

of L = 28 (Figure 7a), the logit for the incorrect
answer yes remains higher than that for the correct
answer no across different M.

On the other hand, for L = 29 (Figure 7b), the
logit for no begins to exceed that of yes around
M = 23, indicating that DeLTa has successfully
corrected the model’s error. These results demon-
strate that selecting an appropriate L is crucial for
effective correction of incorrect answers.

E.3.2 Detailed Analysis of the Effect of
Regression-Based Correction

The effect of regression-based correction using
Qwen2.5-7B is shown in Figure 8. Figure 8a
(M = 24) and Figure 8b (M = 27) indicate the
original logit scores with dashed lines and the cor-
rected logit scores after applying DeLTa with solid
lines.

For M = 24 (Figure 8a), the logit for yes signifi-
cantly exceeds that for no in the original scores, but
after regression-based correction, the score for no
increases and the gap between yes and no narrows.
However, this correction is not complete, and yes
still remains dominant.

Conversely, for M = 27 (Figure 8b), the cor-
rected logit for no surpasses that for yes, leading to
the correct answer. These results indicate that as M
increases, the correction effect becomes more pro-
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Figure 7: Results of applying DeLTa to the Qwen2.5-7B model. The plots show the trajectories of the logit scores
for tokens yes and no as M varies under different values of L (L = 28, 29). The proposed method tends to reduce
the gap between the logit scores of yes and no for certain M.
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Figure 8: Examples of DeLTa applied to Qwen2.5-7B. The dashed lines show the original logit scores, while
the solid lines show the logit scores after regression-based correction by DeLTa (e.g. label “regr yes” stands for

regression line for logit “yes”.)

nounced. Thus, by appropriately setting M, DeL.Ta
can suppress incorrect answers and induce correct
ones.

F Cross-Lingual Evaluation on Japanese

To examine whether the proposed decoding
strategy generalizes beyond English, we evalu-
ate its performance on a Japanese benchmark,
JTruthful QA (Nakamura and Kawahara, 2024),
a Japanese counterpart of the Truthful QA dataset.
The factual accuracy of generated responses is auto-
matically assessed using DeepSeek-V3 (DeepSeek-
Al 2024), which assigns a score between 0 (incor-
rect) and 1 (correct) to each prediction, with the
final accuracy computed as the average across all
instances.

DeLTa achieves consistent performance gains
across all three models. On Qwen2.5-7B-Instruct,
it improves accuracy to 68.6, outperforming both
the base model (61.9) and the filter baseline (63.7).
On Mistral-7B-Instruct-v0.1, it yields the highest
improvement of 7.7 points over the base model.
Similarly, on Llama-3.1-8B-Instruct, it attains 64.1,

Model Accuracy  Gain
Qwen2.5-7B-Instruct 61.9 -
+filter 63.7 (+1.8)
+DoLa (early-layer) 63.2 (+1.3)
+DoLa (late-layer) 62.7 (+0.8)
+DeLTa 68.6 (+6.7)
Mistral-7B-Instruct-v0.1 28.2 -
+filter 347 (+6.5)
+DoLa (early-layer) 27.9 (-0.3)
+DoLa (late-layer) 28.0 (-0.2)
+DeLTa 359 (+7.7)
Llama-3.1-8B-Instruct 60.7 -
+filter 62.7 (+2.0)
+DoLa (early-layer) 56.2 (-4.5)
+DoLa (late-layer) 56.5 (-4.2)
+DeLTa 64.1 (+3.4)

Table 5: Factual accuracy on JTruthful QA (Japanese).
Evaluation is based on DeepSeek-V3.

surpassing all other variants. These results demon-
strate that the benefits of DeLTa extend to Japanese,
highlighting its cross-lingual effectiveness in en-
hancing factuality.
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G Implementation library

We used Pytorch (Paszke et al., 2019) and hug-
gingface transformers (Wolf et al., 2020) for all
experiments.

H Computational Resources

In all experiments in this study, the GPUs used
were NVIDIA RTX 6000 Ada Generation or
NVIDIA RTX A6000. All experiments were per-
formed using torch.float16, and the VRAM used
was approximately 15GB to 40GB.

I Generated Examples

In this section, we present response examples
from Qwen2.5-7B and DeLTa for questions in the
GSMBSK dataset. The example sentences included
in the few-shot prompt are omitted, and only the
pure model responses are compared. These ex-
amples illustrate cases where DeLTa functioned
effectively. Among the responses to each question
shown in Table 6, the output of DeLTa is listed in
the right column.
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Method | Qwen2.5-7B | Qwen2.5-7B + DeLTa
Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog food
Question every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of
its life. If one bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first
year?
The puppy needs to be fed 1 cup of dog food per day in_ﬁies(l)i st lfBszi(iay s,fthedp ubP }}1/ Wﬁlll consurr;le 180
for 180 days, so the total amount of food needed . cups of cog 100c. In the first year, there are
for the first 180 days is I cup/day x 180 days = 180 | 50> days. So after the first 180 days, there are 365 -
y p/day Y -
cups of dog food. If one bag of dog food contains 180 = 185 days remaining. In those remaining days,
Answer N the puppy will consume 185 * 2 = 370 cups of dog
110 cups, then Cecilia will need 180 cups / 110 f ) . ] >
. s ood. In total, the puppy will consume 180 + 370 =
cups/bag = 1.64 bags of dog food. Since she can’t 550 cups of dog food in the first year. Since one bag
buy a fraction of a bag, she will need to buy 2 bags o e .
of dog food for the first year. The answer is 2. contains 110 cups, Cecilia will need 550/1 lQ =3
bags of dog food in the first year. The answer is 5.
Sadie slept 8 hours on Monday. For the next two days, she slept 2 hours less, each, because she had to
Question complete some assignments. If the rest of the week she slept 1 hour more than those two days, how many
hours did she sleep in total throughout the week?
Sadie slept 8 hours on Monday. On the next two Sadie slept 8 hours on Monday. On Tuesday and
days, she slept 2 hours less each day, so 8 -2 =06 ‘Wednesday, she slept 2 hours less than on Monday,
hours each day. For those two days, she slept 6 * so she slept 8 - 2 = 6 hours on each of those days.
2 =12 hours in total. For the rest of the week, she In total for those three days, she slept 8 + 6 + 6 =
Answer slept 1 hour more than those two days, so 6 + 1 = 20 hours. For the rest of the week, she slept 1 hour
7 hours each day. There are 5 days in the week, so more than on those two days, so she slept 6 + 1 =
for the rest of the week, she slept 7 * 5 = 35 hours. 7 hours on each of those days. She has four more
In total, she slept 8 (Monday) + 12 (next two days) days in the week, so she slept 7 * 4 = 28 hours on
+ 35 (rest of the week) = 55 hours throughout the those days. In total, she slept 20 + 28 = 48 hours
week. The answer is 55. throughout the week. The answer is 48.
. There are 700 bees in a hive. There are twice as many worker bees as baby bees, and there are twice as many
Question babies as . H Ker b there?
abies as queens. How many worker bees are there?
Let’s represent the number of worker bees as W, the
number of baby bees as B, and the number of queens
as Q. We know that there are 700 bees in total, so W
+ B + Q =700. We also know that there are twice
as many worker bees as baby bees, so W = 2B, and
there are twice as many babies as queens, so B =
The total ratio is 2 (workers) + 1 (baby) + 1 (queen) 2Q. We can substitute these equations into the first
Answer = 4 parts. Each part has 700 / 4 = 175 bees. There- equation to get 2B + B + Q = 700. Combining like
fore, there are 2 x 175 = 350 worker bees. The terms, we get 3B + Q = 700. Now we can substitute
answer is 350. B = 2Q into this equation to get 3(2Q) + Q = 700.
Simplifying, we get 6Q + Q = 700. Combining like
terms, we get 7Q = 700. Dividing both sides by 7,
we get Q = 100. Now we can substitute Q = 100
back into B =2Q to get B =2(100) = 200. Finally,
we can substitute B = 200 back into W = 2B to get
W =2(200) = 400. The answer is 400.
Billy is peeling and cutting potatoes in preparation for making potato salad for his big family reunion
Question barbecue. It’s a big event, so he has 60 potatoes to get through. The potatoes are roughly the same size, so it
takes about the same amount of time to peel and cut each one. It takes Billy about a minute and a half to peel
a potato, but only about 5 seconds to cut it up. How long will it take Billy to finish prepping the potatoes?
It takes 1.5 minutes to peel each potato, so for 60
It takes Billy about 1.5 minutes to peel a potato, potatoes, it will take 1.5 * 60 = 90 minutes to peel
which is 1.5 x 60 = 90 seconds. It takes him about them all. It takes 5 seconds to cut each potato, so
5 seconds to cut each potato. So it takes him about for 60 potatoes, it will take 5 * 60 = 300 seconds
Answer 90 + 5 x 60 =90 + 300 = 390 seconds. To convert to cut them all. To convert seconds to minutes, we
this into minutes, we divide by 60, so it takes Billy divide by 60, so it will take 300 / 60 = 5 minutes to
about 390 / 60 = 6.5 minutes to finish prepping the cut the potatoes. In total, it will take 90 minutes +
potatoes. The answer is 6.5. 5 minutes = 95 minutes to prep the potatoes. The
answer is 95.
Juan and his brother Carlos are selling lemonade. For each gallon they make it costs $3 for lemons and $2
Question for sugar. They sell each glass for $0.50 and get 20 glasses per gallon. If they made $25 in profit, how much
did they spend on lemons?
They spent $3 per gallon on lemons and $2 per
gallon on sugar, so a total of $3 + $2 = $5 per gallon.
They spent $5 per gallon because 3 + 2 = 5. They They sell 20 glasses per gallon at $0.50 each, so they
Answer sold 8 gallons because 25/ 3.125 = 8. They spent make 20 * $0.50 = $10 per gallon. They made $25
$40 on lemons because 8 x 5 = 40. The answer is in profit, so they must have made $25 + $5 = $30
40 in total. Since they make $10 per gallon, they must
have made $30/ $10 = 3 gallons. So they spent 3 *
$5 = $15 on lemons. The answer is 15.

Table 6: Examples of responses to the GSM8K dataset by Qwen2.5-7B and DeLTa. The baseline exhibits numerical
calculation errors and reasoning mistakes, whereas DeLTa yields more accurate computation results.
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Abstract

Large language models (LLMs) have demon-
strated strong capabilities in text understanding
and generation. However, they often lack factu-
ality, producing a mixture of true and false in-
formation, especially in long-form generation.
In this work, we investigates the factuality of
long-form text generation across various large
language models (LLMs), including GPT-4,
Gemini-1.5-Pro, Claude-3-Opus, Llama-3-70B,
and Mistral. Our analysis reveals that factuality
tend to decline in later sentences of the gener-
ated text, accompanied by a rise in the number
of unsupported claims. Furthermore, we ex-
plore the effectiveness of different evaluation
settings to assess whether LLMs can accurately
judge the correctness of their own outputs: Self-
Known (the percentage of supported atomic
claims, decomposed from LLM outputs, that
the corresponding LLMs judge as correct) and
Self-Unknown (the percentage of unsupported
atomic claims that the corresponding LLMs
judge as incorrect). The results indicate that
even advanced models fail to achieve perfect
Self-Known scores, while their Self-Unknown
scores remain notably above zero, reflecting
ongoing uncertainty in their self-assessments.
Moreover, we find a correlation between higher
Self-Known scores and improved factuality,
while higher Self-Unknown scores are asso-
ciated with lower factuality. Even without sig-
nificant changes in the models’ self-judgment
(Self-Known and Self-Unknown), the number
of unsupported claims can increases, likely as
an artifact of long-form generation. Additional
Retrieval-Augmented Generation (RAG) ex-
periments also show the limitations of current
LLMs in long-form generation, and provide the
more research is needed to improve factuality
in long-form text generation.

1 Introduction

The long-context capabilities of large language
models (LLMs) (OpenAl, 2023b; Al@Meta, 2024;

*Now at Google.

Jiang et al., 2024; GeminiTeam, 2024; Anthropic,
2024) have seen significant advancements in re-
cent years. Lots of work (Shaham et al., 2023; Bai
et al., 2024; An et al., 2024; Zhang et al., 2024;
Kuratov et al., 2024) have explored the ability of
LLMs to handle long contexts, however, relatively
few have examined their ability for long-form text
generation.

Despite LLMs have the impressive generative
abilities, these models are prone to producing hal-
lucinations (Li et al., 2023; Min et al., 2023) where
the generated content often blends factual and fab-
ricated information. This tendency not only un-
dermines performance but also poses substantial
risks in practical applications. To assess the factu-
ality of responses from LLMs, recent research (Fan
et al., 2020; Wright et al., 2022; Min et al., 2023;
Manakul et al., 2023) has introduced a method that
breaks down generations into atomic claims — short
statements each containing a single piece of infor-
mation. These atomic claims are then individually
evaluated to determine whether they are supported
by evidence or unsupported.

To ensure the reliable use of LLMs, it is also
crucial that they possess the ability to recognize
not only "what they know" but also "what they
don’t know." Recent studies, such as those by Ka-
davath et al. (2022); Liu et al. (2022); Guerreiro
et al. (2023), have shown that language models can
assess the validity of their own claims. However,
Srivastava et (2023); Yin et al. (2023) have pointed
out the limitations of LLMs in recognizing their
own knowledge gaps.

In this work, we investigate the factuality of
long-form text generation across various LLMs.
We first check the factuality of long-form gener-
ation at different relative positions using two an-
notated datasets and two models: ChatGPT and
PerplexityAl (which integrates a search engine).
Our findings verify that sentences generated earlier
in the sequence generally demonstrate higher fac-
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tuality. However, these later-generated sentences
contain more unsupported claims and fewer sup-
ported claims.

To explain this phenomenon, we try to exam-
ine whether LLMs exhibit reduced knowledge in
later generations with wo metrics: the Self-Known
score (the percentage of supported atomic claims
judged as correct by the LLMs) and the Self-
Unknown score (the percentage of unsupported
atomic claims judged as incorrect by the LLMs).
These two metrics are used to quantify the corre-
sponding models’ ability to judge the correctness
of atomic claims. In order to accurately compute
the two metrics, we have tried three different ap-
proaches, one of which is a novel approach that
adds an answer option: ‘None of the above’. This
modification appears to provide a more accurate
measure of the LLMs’ abilities, as evidenced by a
higher flip rate for supported claims and an increas-
ing flip rate at later relative positions. This suggests
that the model reassesses its confidence when faced
with an option signaling uncertainty. In contrast,
the low flip rate for unsupported claims indicates a
consistent judgment of their incorrectness. These
results suggest a nuanced understanding by LL.Ms
of supported versus unsupported claims and under-
score the importance of specific evaluation settings
to accurately gauge model performance. Our find-
ings align with human annotations for two LLMs,
although some discrepancies, particularly with the
Perplexity Al model, suggest gaps in estimation.

Later, we apply this modified approach to com-
pute the Self-Known and Self-Unknown scores
across various LL.Ms, including GPT-4, Gemini-
1.5-Pro, Claude-3-Opus, Llama-3-70B, and Mistral.
We also develop a mathematical framework that
links these scores to factuality. Overall, both em-
pirical and theoretical results demonstrate a strong
relationship between factuality and the Self-Known
and Self-Unknown scores. We observe that these
scores can vary significantly across different mod-
els. However, even when the Self-Known and Self-
Unknown scores remain relatively stable, the num-
ber of unsupported claims tends to increase in later
parts of the generated text. This suggests that lower
factuality in later sentences is not solely due to
score changes, but also influenced by error propa-
gation and diminished model knowledge over time.

The main contributions of our work are as fol-
lows:

1. We explore the factuality patterns of long-
form text generation across various model families

(GPT-4, Gemini-1.5-Pro, Claude-3-Opus, Llama-3-
70B, and Mistral). We find that even the most
advanced LLMs typically exhibit lower factual-
ity scores in the later segments of long-form text.
Retrieval-Augmented Generation (RAG) systems
show a similar trend, although they tend to main-
tain higher factuality overall.

2. We analyze Self-Known and Self-Unknown
ratios across different segments of generated text.
While Self-Known scores are relatively high, even
the strongest LLMs (e.g., GPT-4, Gemini-1.5-Pro,
Claude-3-Opus) average only around 50%, with
Self-Unknown scores remaining well above zero.
This suggests that even advanced models struggle
to recognize the limits of their own knowledge.

3. We develop a mathematical framework link-
ing Self-Known and Self-Unknown scores to factu-
ality. Empirical and theoretical results show higher
Self-Known scores improve factuality, while higher
Self-Unknown scores reduce it. Notably, unsup-
ported claims can increase even without major
changes in self-judgment, highlighting challenges
in long-form generation.

4. We find that Retrieval-Augmented Gener-
ation (RAG), which supplies needed knowledge,
can improve factuality. However, it fails to fully
address the issue of lower factuality at a later posi-
tion. This highlights the need for alternative frame-
work specifically designed for long-form genera-
tion tasks.

2 Long-Form Text Generation

To evaluate the factuality of LLM responses, re-
cent work (Liu et al., 2023; Chen et al., 2022; Min
et al., 2023) breaks a generation into a series of
atomic claims—short statements that each contain
one piece of information. Each atomic claim is
then individually evaluated to determine whether
it is supported or unsupported. In this section, we
first explore the factuality patterns of these atomic
claims in long-form text generation.

2.1 Observations

In order to explore the factuality of long-form gen-
eration at different relative positions, we use the
human annotated data from Min et al. (2023) to
compute the macro-average percentage of three
different claims (supported, unsupported, and irrel-
evant) across five different relative positions. In
their human-annotated data, each long LLM gener-
ation is decomposed into atomic claims and each
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atomic claim is assigned with one of the three la-
bels (“supported”, “not-supported”, “irrelevant’).

The detailed procedures for computing fractions
of different type claims at different relative posi-
tions are as following: 1) Calculate the fraction
of supported, unsupported, and irrelevant claims
for each sentence; 2) Determine each sentence’s
relative position in the generation , e.g., if it is the
third sentence out of six, its relative position would
be 3/6 = 50%; 3) Group sentences into relative po-
sition ranges: 0-20%, 20%-40%,, etc.; 4) Compute
the macro-average claim percentages within each
group

Figure 1 (a) shows ChatGPT results (Perplex-
ity Al results are in the Appendix). Unsupported
claims increase in later-generated sentences. Fig-
ure 1 (b) further shows that as generation continues,
LLMs produce more unreliable and unsupported
claims.

Open Questions. Is the phenomenon above due
to LLMs having less knowledge about later gen-
erations? Can LLMs recognize when claims are
supported and when they are not? Do LLMs iden-
tify unsupported claims more effectively when they
appear later in the text compared to earlier ones?

3 Self-Known and Self-Unknown

To investigate these questions, we examine whether
the corresponding LL.Ms recognize their atomic
claims by computing two metrics: Self-Known
(the percentage of supported atomic claims that the
corresponding LL.Ms judge as correct) and Self-
Unknown (the percentage of unsupported atomic
claims that the corresponding LL.Ms judge as in-
correct). While there is related work, such as Ra-
jpurkar et al. (2018); Xiong et al. (2024), our ap-
proach differs in two key ways: (1) Evaluation
is conducted on atomic claims, which are derived
from sentences in long-form generation, rather than
assigning a score to the entire model output; (2)
Our focus is on factuality (whether an atomic claim
is true or false), rather than on uncertainty scores
(i.e., "How likely is the above answer to be cor-
rect?").

We explore the computation of Self-Known
and Self-Unknown using the following three ap-
proaches ( with the corresponding prompt tem-
plates provided in Appendix Section B):

* Direct-Asking: In this approach (Rajpurkar
etal., 2018), the atomic claim is directly given

to the corresponding LL.Ms and be asked
whether the statement is true or false.

* Question-Answering: Given an atomic
claim, a question-answer pair can be de-
rived (Trischler et al., 2017; Rajpurkar et al.,
2018; Hu et al., 2024) with GPT-4 Turbo.
For example, "Lanny Flaherty is an Amer-
ican." can be used to derived a question-
answer pair ("What nationality is Lanny Fla-
herty?", "American"). Then, given the ques-
tion and answer, we ask the corresponding
LLMs whether the answer is true or false.

* Question-Answering w/NOA: Similar to the
above approach, a question-answer pair is de-
rived according to each atomic claim. One
big different is: given question and answer,
one more addition choice ( "None of the
above") (Rajpurkar et al., 2018) is given to the
corresponding LL.Ms. This is a well-defined
evaluation because it can check whether the
model actually knows the answer of the ques-
tion, especially if the question is vague or
context-information is missing.

We compute the Self-Known score and the Self-
Unknown score using these prompt templates. The
human annotated data on ChatGPT! are used in
this experiments. Figure 2 presents the results on
ChatGPT.

Comparison on the above three evaluation set-
tings With the first two settings, the results of
Self-Known score and Self-Unknown score are
similar. However, the results of the third setting
differ from the other two. We hypothesize that the
reason is that the added choice, “None of the above’
which allows the LLM to determine whether it
knows the answer to the question.

To examine the effect of this setting, we plot the
flip rate (claims judged as correct by the LLM in
setting (b) but judged as incorrect in setting (c))
for supported and unsupported claims. As shown
in Figure 2d, there is a high flip rate for supported
claims, and this rate increases with higher relative
positions. In contrast, there is almost no flipping for
unsupported claims. Therefore, setting (c) is more
suitable for checking whether the LLM knows a
atomic claim. The high flip rate observed for sup-
ported claims suggests that the model is reconsid-
ering its initial judgments when presented with the

’

I'The labeled ChatGPT data is also from Min et al. (2023)
as above. There are 183 long generations of ChatGPT.
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(a) Percentage (%) of supported, unsupported and irrelevant
atomic claims.

ChatGPT
= supported = unsupported
4
3
2
1
0

[,20)  [20,40) [40,60) [60,80)  [80,)

(b) Number of supported and unsupported atomic claims.

Figure 1: Long-form generation across different relative positions (%) for ChatGPT.
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(c) Question-Answering W/ NOA
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(d) Flip rate (%) from setting (b) to setting (c) across dif-
ferent relative positions (%) for both supported claims and
unsupported claims. The high flip rate of supported claims
indicates that prompting with setting (c) better recognizes
whether LLMs accurately assess their knowledge of atomic
claims.

Figure 2: Self-Know and Self-Unknown results of ChatGPT across different relative positions (%). S: factuality
(percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known): Self-Known

score; N (S-unknown): Self-Unknown score

option “None of the above”. This indicates that the
model may not be entirely confident in its original

answers and is more likely to recognize uncertainty.

The increasing flip rate for higher relative positions
further supports this, implying that the model’s
confidence decreases as the position of the claim

within the context changes.

In summary, we observed similar results be-
tween setting (a) (Direct-Asking) and setting (b)
(Question-Answering), and a significant difference
between setting (b) (Question-Answering) and set-
ting ¢ (Question-Answering W/ NOA). The deeper
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analysis between setting (b) and setting (c) re-
vealed that setting (c) recognizes atomic claims
more confidently and treats atomic claims that
flip as unknown. This is why we chose to use
setting (c) in the subsequent experiments.

4 Analysis

We denote the prompt input of LLMs as x and long
output of LLMs as y. The binary auxiliary label
d =1 indicates the LLM output is factual correct
and d = 0 indicates LLM output is wrong.

We assume that P(d = 1| y,x) is equal to fac-
tuality score’ ¢ of LLM output y. Given x, the
joint distribution of between the auxiliary label and
model output (d,y) is

o xP(y|x) (1)
P(d=1]y,x)xP(y|x)=P(d=1,y|x)
P(d = 1,Ycorrect | X) * O+
P(d = 1,Ywrong | X) % (1 — )
(d
(d

Pd=1 ’ YCorrect) * P(Ycorrect | X) * 0O+
P(d=1 ’ YWrong) *P(YWrong ‘ X) * (1 - O-) 2)

Yeorrect Tefers to model outputs aligned with the
ground truth and yyong refers to outputs that are
wrong. Because y is the generated output according
to the log-likelihood, the correct part and incorrect
part have similar log-likelihood. Then, it is reason-
able to have this following assumption:

P(y | x) = P(Yeorrect | X) 2 P(Ywrong | X)

Then, after cancel the above three terms in Equa-
tion 1 and Equation 2 ,

0 =P(d =1 Ycorrect)0 +P(d =1 | Ywrong) (1 — O)

We denote P(d =1 | Yeorrect) and P(d =0 | Ywrong)
as Self-Known score (percentage of supported
atomic claims judged as correct by LLMs) and
Self-Unknown score (percentage of unsupported
atomic claims judged as incorrect by LLMs) re-
spectively. Once the above formula is solved, we
can determine the relationship among the factuality
score, Self-Known score, and Self-Unknown score:

o — 1 — Self-Unknown
~ 2 — Self-Unknown — Self-Known

3)

Where o is the factuality score.

2This is an assumption we are making: that there is no
overconfidence, and the confidence score is approximately
equal to the factuality score.

Factuality Vs. Self-Known Vs. Self-Unknown
Given Self-Unknown € [0,1] and Self-Known €
[0, 1], the factuality score increases when the Self-
Known score is increased or the Self-Unknown
score is decreased. This matches our observations
in Section 3 and Figure 2 (c).

Estimation of factuality Score In Equation 3,
we present a method for estimating the factuality
score. We use the Self-Known and Self-Unknown
results of the corresponding model (ChatGPT) with
configuration (c) to estimate the factuality score
across different relative positions. As shown in Fig-
ure 3, our estimation closely matches the human-
annotation results.

= Human = Our Estimation
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Figure 3: Human-annotation factuality score (%) and
our estimation with Equation 3 across different relative
positions (%).

5 Automatic Results on Additional LLMs

In the previous section, our experiments were con-
ducted using human-annotated factuality data. In
this section, we first introduce an automated tool
for factuality evaluation. Then, using the proposed
approach from Section 3 to compute Self-Known
and Self-Unknown scores, we analyze the trends in
factuality, Self-Known, and Self-Unknown scores
across other advanced LLMs

5.1 Automatic Tool Setting

In Section 2, we used the human annotated data
(atomic claims are short statements that are de-
composed from the model’s generation, and each
atomic claim is labeled as either supported or un-
supported based on its factual correctness.).

Configuration We use the tool FActScore (Min
et al., 2023) for factuality evaluation with the fol-
lowing configuration: the latest version of GPT-3.5
(gpt-3.5-turbo-0125) is used to break a generated
text into a series of atomic claims and evaluate each
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atomic claim against a retrieved knowledge (model
name “retrieval+llama+npm” is used during the
evaluation)?.

Results Figure 7 in the Appendix shows the com-
parison between the tool’s evaluation and human
annotation results. We notice the tool’s estimation
is highly correlate well with human annotations.
For number of atomic claims, the absolute differ-
ence is not bigger than 1. And the trend of tool’s
estimation is almost the same as human annotation.
For factuality estimation, the tool’s results are well-
aligned with human annotations for two OpenAl
models. Although there is an estimation gap for
the Perplexity Al model, the trend of the estimation
remains consistent with human annotations.

Takeaway. The tool with above configurations
can well capture the trend of number of atomic
claim and factuality.

5.2 Additional LLMs

In this section, we explore the factuality of long-
form text generation across different relative posi-
tions using automatic tools.

5.2.1 Experimental Setup

For each LLM, we follow four key steps to obtain
experimental results: (1) generating text outputs;
(2) filtering the generated content; (3): evaluat-
ing factuality; and (4): estimating Self-Known
and Self-Unknown scores with the corresponding
LLM. For more details on each step, please refer
to Appendix Section E.

5.2.2 Results

Figure 4 show results of several powerful LLMs (
Gemini-1.5-pro, Claude-3-opus, and two Mistral
Al models). Two additional LLMs (GPT-4, and
Llama-3-70B-Instruct) results are provided in Fig-
ure 9 in the Appendix.

Decreasing Factuality: Strong Start, Later De-
cline According to the bold blue lines in Figure 4,
we observe the highest factuality scores are ob-
served at the beginning of the generated text across
all relative positions.

Factuality Vs. Self-Known Vs. Self-Unknown
Overall, we observe that the Self-Known score is
positively correlated with factuality, as indicated

3In the original work, text-davinci-003 was used to get
atomic claims and ChatGPT is used to evaluate whether each
atomic is supported or unsupported.

by the two blue lines, and the Self-Unknown score
is positively correlated with the percentage of un-
supported atomic claims, as shown by the two red
lines in each figure. For these advanced LLMs, the
trend of these three scores across different positions
shows smaller variation.

Clear Difference in the Number of Unsupported
Claims Across Positions In Figure 4 (e) and
(f), observed minimal differences in factuality for
the two models (Mixtral-8x7b and Mistral-Large).
However, as depicted in Figure 5, the number of
unsupported claims increases significantly from
the beginning to the end of the generated text. It
indicates the challenges of long-form generation.
This also highlights a limitation in relying solely
on factuality scores for evaluation.

No Significant Changes in Self-Judgment for
Some Advanced LLLMs We can observe that
there is no big change according to dashed lines
(Self-Known and Self-Unknown) in Figure 4. How-
ever, the number of unsupported claims are increas-
ing as shown in Figure 5.

How to Improve Factuality Score? In Equa-
tion 3, we propose estimating the factuality of a
LLM using Self-Known and Self-Unknown scores.
A higher Self-Known score typically corresponds
to higher factuality. However, does this mean
LLMs would achieve 100% factuality if they had a
100% Self-Known score and 0 Self-Unknown score
on their own generation? The answer is no. Itis a
necessary condition, not a sufficient one for achiev-
ing 100% factuality. In the derivation of Equation 3,
several additional assumptions are made®.
According to our results, a higher Self-Known
score is usually associated with higher factuality,
while a higher Self-Unknown score is associated
with lower factuality for LLMs. This indicates
that it is challenging for LLMs to recognize un-
supported claims on their own. Therefore, a judg-
ment model that incorporates an external knowl-
edge source is necessary for this recognition.
Some reasonable questions arise: Are decod-
ing errors in LLMs caused by a lack of relevant
knowledge? Can Retrieval-Augmented Generation
(RAG), which supplies additional context, address

4For instance, one key assumption is that the probability of
correctness given the model output and input P(d =1 | y,x),
equals the factuality score o of output y, However, if a LLM
becomes overconfident in generating answers, the term P(d =
1 |y,x) may significantly exceed the actual factuality score.
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(d) Mistral-Large

Figure 4: Self-Know and Self-Unknown results of different LLMs across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
Self-Known score; N (S-unknown): Self-Unknown score.
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Figure 5: There may be minimal change in the factuality
score, but a significant increase in the number of unsup-
ported claims across different relative positions(%).

the decline in factuality during later stages of gen-
eration? In the next section, we present our explo-
ration of RAG-based experiments across different
LLMs.

5.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a
widely used approach for enhancing language
model performance in various applications. In
RAG, relevant text segments are retrieved from
an external knowledge source and integrated into

the model’s responses. For our retrieval corpus, we
utilized the English Wikipedia as of April 1, 2023,
with each page divided into chunks of up to 256
tokens. These retrieved passages, containing facts
relevant to the entity, were incorporated into the
LLMs’ context to improve the factual accuracy of
the generated content.>.

According to Figure 6 (a), in the RAG setting,
although there are significantly fewer unsupported
atomic claims overall, a notable increase in the
number of unsupported claims is observed in later
stages of generation. As shown in Table F, LLMs
can still response with lots of unsupported claim
even given context knowledge. This increase is
likely due to error propagation within the LLMs,
highlighting the challenges of long-form generation
even when relevant parts are provided.

Figure 6 (b) demonstrates that the RAG system
exhibits significantly lower Self-Known scores and
higher Self-Unknown scores. This discrepancy
may stem from the corresponding LLM’s lack of
prior knowledge regarding the retrieved content in
the RAG system, causing it to mistakenly assess
accurate information as incorrect.

50ne example is shown in Table F.
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(b) Self-Known and Self-Unknown scores for Gemini-
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Figure 6: RAG experiments on two strong LLMs (Gemini-1.5-pro and GPT-4).

In these RAG experiments, incorporating all rel-
evant knowledge leads to improved factuality in
LLMs. However, they still exhibit a decline in
factuality during later stages of generation. This
underscores the need for alternative frameworks
specifically tailored to long-form generation tasks.
For instance, employing more sophisticated decod-
ing strategies may help mitigate the challenges as-
sociated with long-form generation.

6 Related Work

Factuality Evaluation Recent advancements
have seen significant efforts in quantifying the fac-
tuality of LLM generations. For short answers,
factuality often correlates with fact verification,
which directly assesses whether the generation
aligns with extensive knowledge sources and refer-
ences (Thorne et al., 2018; Honovich et al., 2022)
or utilizes language models (Lin et al., 2022). How-
ever, evaluating factuality in long-form content
poses greater challenges due to the complexity of
the generation process. Recent studies (Fan et al.,
2020; Wright et al., 2022; Min et al., 2023) have
approached this challenge by breaking down long
generations into atomic claims. While these ap-
proaches predominantly focus on factual precision,
some studies (Wei et al., 2024) also consider evalu-
ating factual recall. In our work, we concentrate on
factual precision akin to Min et al. (2023). Moving
forward, the development of more robust automatic
tools will be crucial for advancing factuality explo-
ration in long-form generation tasks.

Self-Know and Self-Unknown Recent studies
have extensively explored the concepts of Self-
Known and Self-Unknown in language models. For

instance, Kadavath et al. (2022); Liu et al. (2022);
Guerreiro et al. (2023) demonstrated that language
models are capable of assessing the validity of their
own claims and predicting their ability with answer-
ing true/false questions accurately. Meanwhile, Sri-
vastava et (2023); Yin et al. (2023) highlighted
the limitations of LLMs in acknowledging their
unknowns, focusing on their ability to recognize
unknown knowledge. In our work, we specifically
investigate whether LLMs can identify and recon-
sider unsupported claims generated from their own
outputs. Our results indicate that LLMs struggle to
accurately judge unsupported atomic claims from
their own generations. We also find that a lower
Self-Unknown score or a higher Self-Known score
corresponds to higher factuality.

7 Conclusion

n this study, we investigate the factuality of long-
form text generation across different language
model families and at various stages of genera-
tion. We observe a consistent decline in factual-
ity in sentences generated later in the sequence.
To understand the underlying causes, we explore
two possible factors: diminished self-knowledge
in later generations and the accumulation of ear-
lier generation errors (i.e., error propagation). To
analyze this, we introduce the concepts of Self-
Known and Self-Unknown scores, which measure
a model’s confidence in its own knowledge. We
find that current LLMs struggle to maintain factual
accuracy over extended generations, partly due to
limitations in their internal knowledge represen-
tation and propagation mechanisms. Addressing
these challenges requires further research. Promis-
ing directions include the development of external
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factuality evaluation modules (e.g., dedicated judge
models) and the design of more robust decoding
strategies tailored to long-form generation

8 Limitations
Following are limitations in our work.

Evaluation of Self-Know and Self-Unknown In
this work, we design three different methods for
estimating Self-Known and Self-Unknown scores
on LLMs’ own generation. We find that the third
setting (c), which includes the option "None of the
above," is effective in determining whether LLMs
can accurately judge the correctness of claims gen-
erated from their own outputs. Although our results
show that these scores are well aligned with the
estimation of factuality scores using Equation 3,
exploring better methods for evaluating the correct-
ness of claims with LLMs would still be beneficial
for future study.

Factuality Evaluation In this work, we limit the
domain of long-form generation to ensure accurate
factuality evaluation. The concern is that broaden-
ing the topic range might compromise the accuracy
of our factuality assessments, rendering our study
less effective. Recently, evaluation tools (Guan
et al., 2024; Es et al., 2023; Tang et al., 2024; Wei
et al., 2024) have been explored. With stronger
tools, it is possible to explore a wider range of
domains beyond Wikipedia.

Moreover, in this work, we primarily focus on
factuality precision. However, considering factu-
ality recall is also important, as it ensures that the
omission of significant pieces of information is pe-
nalized during evaluation. By incorporating both
precision and recall, we can achieve a more com-
prehensive and accurate assessment of factuality in
long-form generation.
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A LLMs

Following are the models that are used in our ex-
periments.

¢ InstructGPT (text-davinci-003)
et al., 2022):

(Ouyang

* ChatGPT (OpenAl, 2023a)

* Perplexity AI®

* GPT-4, GPT-4-Turbo (OpenAl, 2023b)
* Claude-3-Opus (Anthropic, 2024)

¢ Gemini-1.5-Pro (GeminiTeam, 2024)

Ohttps://www.perplexity.ai/

* Mixtral-8x7b (Jiang et al., 2024)
* Mistral-Large’
e Llama-3-70B-Instruct (Al@Meta, 2024)

B Prompt Templates

B.1 Prompts Self-known and Self-unknown

Direct-Asking Given an atomic claim {claim}
and person {person}, we use the following tem-
plate:

Following is a statement from a
bio of {person}. Please check
whether the statement is correct
or wrong according to your
knowledge.

{claim}
Is this statement true or false?

Question-Answering Give a question answer
pair <{q}, {a}> that is derived from an atomic
claim, the following template is used to determine
whether LLLMs consider the proposed answer is
correct:

Question: {q}
Proposed Answer: {a}
Is the proposed answer:
(A) True
(B) False
The proposed answer is:

Question-Answering w/ None of the above
Given the question answer pair <{q}, {a}> de-
rived from an atomic claim, the following template
is used:

Question: {q}
Proposed Answer: {a}
Is the proposed answer:
(A) True
(B) False
(C) None of the above
The proposed answer is:

B.2 Prompts for Creating the
Question-answer Pair

Given an atomic claim {claim} of a bio and the
person {person}, a question-answer pair can be
derived with gpt-4 with the following template:

7https://mistral.ai/technology/#models
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Following is a fact from a bio of
{person}. Please ask a question
and provide the answer. The
answer 1is as concise as you
can, using a single phrase if
possible. The answer is also
part of the provided fact. The
question and answer is separetd
with #.

{claim}

C Rules for Filtering Generations

Following are the rules we find that are useful to
filter out unresponsive generation.

I don’t have ...

I do not have ...

I need more information ...
Please provide me ...

Please clarify

I apologize ...

there isn’t enough information
Unfortunately, there is no ...
If  you can provide more
information ...

you could provide more ...

It seems you might ...

D Automatic Tool Results

See Figure 7

E Details on Computing Experimental
Result For each LLM

Step 1: Obtaining generations We feed a

prompt “Tell me a bio of <entity>" to the LLM
and take the generation. 500 human entities (Min

et al., 2023) are used to generate these biographies.

Step 2: Filtering generations For lots of LLMs,
a biography is not provided if they think they do
not have enough detailed information to provide a
biography. We implement rules to filter out these
generations®.

Step 3: Evaluation factuality We use the tool
for breaking generations into atomic claims and
evaluate each claim whether it is supported or not.
In order to save cost, we randomly sampled 100

8The useful rules are shown in Section C.

samples among the filtered generations. During fac-
tuality evaluation, Wikipedia’s knowledge source
is used in the automatic tool.

Step 4: Estimation of Self-Known and Self-
Unknown With above decomposed atomic
claims, we use GPT-4 Turbo to get question-answer
pairs. For each question-answer pair, a prompt tem-
plate (see 3 ) is used to determine whether LLMs
consider the proposed answer to be correct. The
ratios of supported claims judged as correct, and
unsupported claims judged as incorrect are then
obtained.

F More results

#Claims / Gen Filtered Rate (%)

GPT-4 60.8 12.0
Gemini-1.5-pro 67.5 30.0
Claude-3-opus 41.0 42.0
Llama-3-70B-Instruct 45.9 17.2
Mixtral-8x7b 44.8 0.4
Mistral-Large 48.3 5.0

Table 1: Statistics for various LLMs when generating
biographical paragraphs.

Table 1 in the Appendix presents two results
for various LLMs: the average number of atomic
claims per generation and the filtered rate. The
filtered rate represents the percentage of instances
where the LLMs do not provide valuable responses,
often due to perceiving insufficient information to
generate a meaningful answer. We notice that the
behavior of Claude-3-opus and Gemini-1.5-pro is
more conservative. These models frequently decide
not to provide a valuable response, instead stating
something like “I do not have enough verified in-
formation”.
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PerplexityAl PerplexityAl (tool) = ChatGPT

= = ChatGPT (tool) = InstructGPT = = InstructGPT (tool)
5.0
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3.5
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(a) Number of atomic claims
PerplexityAl PerplexityAl (tool) = ChatGPT

= = ChatGPT (tool) = InstructGPT = = InstructGPT (tool)
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(b) Factuality

Figure 7: Comparison between our used tool and human annotation. The number of atomic claims and factuality
(%) across different relative positions (%) are shown for three LLMs: InstructGPT (text-davinci-003), ChatGPT and
Perplexity Al

PerplexityAl

= supported = unsupported irrelevant PerplexityAl

100 = supported = unsupported

5
75 T o—
4
25 e 2
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(a) Percentage (%) of supported, unsupported and irrelevant
atomic claims. (b) Number of supported and unsupported atomic claims.

Figure 8: Long-form generation across different relative positions (%) for Perplexity Al
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Figure 9: Self-Know and Self-Unknown results of different LLMs across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
percentage of supported atomic claims judged as correct by LLMs; N (S-unknown): percentage of unsupported
atomic claims judged as incorrect by LLMs.
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(a) GPT-4-RAG (b) Gemino-1.5-pro-RAG

Figure 10: Self-Know and Self-Unknown results of different RAG models across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
percentage of supported atomic claims judged as correct by LLMs; N (S-unknown): percentage of unsupported
atomic claims judged as incorrect by LLMs.
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Document [0] Jessie Mae Brown Beavers Jessie Mae Brown Beavers (March 18, 1923 — September
6, 1989) was an American journalist based in Los Angeles, California. She was an editor at the "Los
Angeles Sentinel" from 1949 to 1989, and served sixteen years on the city’s Human Relations Com-
mission, beginning with her 1973 appointment by mayor Tom Bradley.Early life. Jessie Mae Brown
was born in Los Angeles, the daughter of Arnetta Hoyt Brown, a Baptist deaconess. She attended
the University of California, Los Angeles, where she earned a bachelor’s degree in sociology.Career.
Brown was editor of the family section of the "California Eagle" from 1944 to 1949, when she joined
the staff of the "Los Angeles Sentinel" as an editor. In 1966 she was one of the organizers and leaders
of the Los Angeles chapter of the National Association of Media Women. In 1969, she was given
the Outstanding Woman in Journalism Award by the University of Southern California chapter of
Theta Sigma Phi. Beavers served on the Los Angeles Human Relations Commission for sixteen years,
after she was appointed by mayor Tom Bradley in 1973. On the commission, she worked closely with
fellow commissioner Toshiko S. Yoshida during the American bicentennial

Document [1] , chaired the affirmative action subcommittee, and in 1982 organized hearings on
racial bias in the entertainment industry. She also served one the Los Angeles County Music and
Performing Arts Commission. She ran for a seat on the Los Angeles City Council in 1987. Beavers
was a member of Jack and Jill and the Lullaby Guild. In 1968 she was cited for her work by the
President’s Youth Council. In 1972 she was honored alongside Quincy Jones, editor Ruth Washington,
and student leader Willis Edwards by the Committee of Women for Good Government. In 1973 she
was honored by colleagues and admirers (including Mayor Bradley, judge Vaino Spencer, columnist
Gertrude Gipson, and clubwoman Leontyne Butler King) at a tribute event at the Beverly Wilshire
Hotel, hosted by singer Thelma Houston.Personal life. In 1947 Brown married insurance executive
Leroy A. Beavers, Jr., nephew of Los Angeles businessman George A. Beavers Jr. Actress Dorothy
Dandridge was one of her bridesmaids in the wedding. They had three children. In 1979, she was
assaulted and robbed in the driveway of her home. She died in 1989, aged 66 years, in Los Angeles.
Her grave is at Forest Lawn Cemetery in Gl

Document [2] endale, California.

Question: Tell me a bio of Jessie Mae Brown Beavers.

Response: Jessie Mae Brown Beavers (March 18, 1923 — September 6, 1989) was a prominent
American journalist and community leader based in Los Angeles, California. Born in Los Angeles,
she obtained her bachelor’s degree in sociology from the University of California, Los Angeles.
Beavers’s career was deeply intertwined with journalism and activism. She served as an editor for the
and later the *Los Angeles Sentinel*, a prominent African American newspaper,
for over four decades. Her commitment to social justice led her to co-found the Los Angeles chapter
of the National Association of Media Women and actively advocate for fair representation in the
media.
Appointed by Mayor Tom Bradley, Beavers dedicated sixteen years to the Los Angeles Human
Relations Commission, tackling issues of racial bias and promoting affirmative action. Her influence
extended to her service on the Los Angeles County Music and Performing Arts Commission.
Throughout her life, Beavers received numerous accolades, including recognition from the President’s
Youth Council and a tribute event graced by notable figures like Mayor Bradley and singer Thelma
Houston. Her enduring legacy continues to inspire aspiring journalists and advocates alike.

Table 2: Generated outputs of Gemini-1.5-pro: each document represents a retrieval chunk, with text highlighted in
red and yellow indicating unsupported claims. Red text represents claims identified as unsupported by the factuality
tool. Yellow text represents unsupported claims that are not identified by the factuality tool.
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