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Abstract

Recent advances in Natural Language Process-
ing (NLP) have underscored the crucial role
of high-quality datasets in building large lan-
guage models (LLMs). However, while exten-
sive resources and analyses exist for English,
the landscape for East Asian languages, partic-
ularly Chinese, Japanese, and Korean (CJK),
remains fragmented and underexplored, despite
these languages serving over 1.6 billion speak-
ers. To address this gap, we investigate the
HuggingFace ecosystem from a cross-linguistic
perspective, focusing on how cultural norms, re-
search environments, and institutional practices
shape dataset availability and quality. Draw-
ing on more than 3,300 datasets, we employ
quantitative and qualitative methods to exam-
ine how these factors drive distinct creation
and curation patterns across Chinese, Japanese,
and Korean NLP communities. Our findings
highlight the large-scale and often institution-
driven nature of Chinese datasets, grassroots
community-led development in Korean NLP,
and an entertainment and subculture-focused
emphasis on Japanese collections. By uncover-
ing these patterns, we reveal practical strategies
for enhancing dataset documentation, licensing
clarity, and cross-lingual resource sharing, guid-
ing more effective and culturally attuned LLM
development in East Asia. We conclude by dis-
cussing best practices for future dataset cura-
tion and collaboration, aiming to strengthen re-
source development across all three languages.

1 Introduction

With the emergence of Large Language Models
(LLMs) transforming the field of Natural Language
Processing (NLP)(Kenton and Toutanova, 2019;
Brown et al., 2020; Achiam et al., 2023), the im-
portance of high-quality datasets in model develop-
ment has become increasingly critical. For datasets
to be valuable in this context, they must meet both

∗Work done during internship at SAIONIC AI.
†Corresponding author.

quantitative requirements (sufficient size and cover-
age) and qualitative standards (reliability and repre-
sentativeness). While English-language resources
have been extensively studied, the landscape of
datasets for East Asian languages—particularly
Chinese, Japanese, and Korean (CJK)—remains
comparatively underexplored(Joshi et al., 2020;
Bender, 2019). This gap is especially noteworthy
given that these languages collectively serve over
1.6 billion speakers and originate from major hubs
of technological innovation.

In recent years, platforms such as Hugging-
Face have emerged as central repositories for dis-
tributing and accessing NLP datasets, making
these resources widely accessible while introduc-
ing new challenges in dataset discovery, quality as-
sessment, and cross-lingual collaboration(Hugging
Face, 2023; Lhoest et al., 2021). These challenges
are particularly pronounced for CJK languages due
to their unique linguistic features, distinct cultural
contexts, and varying approaches to data sharing
and documentation.

While CJK languages play an increasingly im-
portant role in global NLP research, several critical
issues need to be addressed. First, there is a lim-
ited understanding of how dataset creation patterns
differ across these language communities—and
how those differences reflect their respective NLP
ecosystems. Second, although cultural and insti-
tutional factors evidently influence dataset gener-
ation, their specific impacts on dataset character-
istics and quality have yet to be systematically in-
vestigated. Third, the potential for cross-lingual
synergies among CJK languages remains largely
untapped, despite their many shared cultural and
linguistic foundations. For instance, while bench-
marks like MMLU(Hendrycks et al., 2020) are be-
ing generated in multiple languages, insufficient
comparative analysis exists regarding how these
variants differ from traditional parallel corpora or
how download patterns across regions reflect dis-
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tinct cultural preferences. To address these chal-
lenges, this study investigates the HuggingFace
ecosystem for Chinese, Japanese, and Korean NLP
resources, focusing on dataset development and us-
age patterns. The specific objectives of this work
are to:

• Examine the current landscape of CJK
datasets on HuggingFace, including key meta-
data such as domain, dataset size, documenta-
tion practices, and usage statistics.

• Analyze the cultural characteristics and devel-
opment patterns underlying dataset creation in
each language community, highlighting com-
monalities and differences in curation and doc-
umentation.

• Identify potential synergies and cross-lingual
opportunities among the three languages, and
propose strategies for more effective, collabo-
rative dataset development.

2 Related Work

Documentation efforts for CJK language resources
have expanded over time. For Chinese, Tao et al.
(2009) introduce systematic approaches for con-
structing and evaluating linguistic data resources,
while Li et al. (2023a) compile a comprehensive
repository emphasizing accessibility and classifi-
cation frameworks. In the Korean context, Cho
et al. (2020) survey existing NLP resources, and
Cho et al. (2023) examine how local research cul-
tures influence resource development. However,
these studies largely predate large generative mod-
els and rely on GitHub as the primary hub, while
systematic analyses of CJK datasets within newer
ecosystems like HuggingFace remain rare.

Major multilingual projects including Big-
Science(Le Scao et al., 2023), CC100 (Wenzek
et al., 2019), and LAION (Schuhmann et al., 2022)
expand non-English data availability, yet don’t in-
vestigate cultural factors affecting dataset usage
within communities. The movement toward im-
proved dataset documentation (Gebru et al., 2021)
highlights ethical considerations, though adoption
varies across languages and platforms.

HuggingFace has emerged as a central reposi-
tory for NLP resources, but studies flag challenges
including inconsistent documentation (Yang et al.,
2024), limited transparency (Pepe et al., 2024), and
ambiguous licensing. These issues underscore the

need to examine dataset curation in cultural con-
texts (Lhoest et al., 2021). Recent work by Darg̀is
et al. (2024) offers insights for building evalua-
tion frameworks for languages with particular traits,
yet no study comprehensively analyzes how CJK
dataset ecosystems are shaped by local research cul-
tures, licensing preferences, and community-driven
development.

Building on these perspectives, our research pro-
vides the first large-scale, comparative analysis of
CJK datasets within the HuggingFace ecosystem,
investigating how cultural contexts and documenta-
tion standards influence dataset usage patterns and
resource quality.
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Figure 1: Datasets of each language sorted by number of
downloads in descending order. Based on the decreasing
pattern of downloads, we set the cutoff point at 700.

3 Method

3.1 Data Collection
We systematically collected dataset informa-
tion from the HuggingFace platform using their
Datasets API. Our data collection strategy focused
on identifying actively used datasets for each target
language (Chinese, Japanese, Korean, and English
as a reference).

To determine a cutoff point for dataset inclusion,
we analyzed the download frequency distribution
for each language (Figure 1). The download counts
follow a power-law distribution, with all languages
showing consistent patterns. The distributions con-
verge around the 700th dataset, where download
counts fall below 100. Beyond this point, we ob-
serve minimal engagement and declining documen-
tation quality. This natural boundary led us to set
our cutoff at 700 datasets per language, ensuring
both coverage and quality.

Datasets were retrieved from https://huggingface.co
/datasets using language filters and download frequency
sorting. All statistics were recorded on January 28, 2025.

2
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Category Evaluation Metrics

Scale & Composition
Dataset Size: Distribution across size categories (small, medium, large, extra-large)
Language Makeup: Distribution of monolingual, English-paired, and multilingual datasets
Task Types: Distribution of major NLP tasks (text generation, QA, classification, etc.)

Development Patterns
Ownership Structure: Proportions of corporate, institutional, and individual contributions
License Types: Distribution of permissive, copyleft, unknown, and other licenses
Community Activity: Dataset creation trends and instruction tuning development

Documentation Quality
Academic Validation: Presence of associated arXiv papers and research citations
Documentation Standards: Adherence to HuggingFace dataset card templates
Documentation Depth: Comprehensiveness of dataset descriptions and README files

Cultural Characteristics
Domain Focus: Specialized fields (e.g., medical, entertainment, content moderation)
Resource Development: Approaches to dataset creation and curation
Community Priorities: Language-specific preferences and development patterns

Table 1: Analysis framework for CJK datasets, organized by category.

For each dataset, we extracted metadata across
four categories: Scale & Composition (dataset
size, language combinations, task types, tempo-
ral patterns), Development Patterns (ownership,
licensing, community metrics), Documentation
Quality (dataset cards, citations, README files,
metadata completeness), and Cultural Charac-
teristics (domain focus, development approaches,
community patterns).

In addition, we collected the complete dataset
cards to analyze documentation practices and cul-
tural characteristics in depth. We will release the
full metadata and dataset card contents as a public
resource upon publication.

3.2 Analysis Framework

Our analysis framework combines quantitative and
qualitative approaches to examine CJK language
datasets. Table 1 presents our analysis metrics
across four main categories. For quantitative analy-
sis, we focus on measuring dataset sizes, language
distributions, task type proportions, ownership ra-
tios, and documentation completeness. Our qual-
itative analysis examines domain preferences, re-
source development approaches, and community
characteristics. This mixed-method approach helps
us understand how dataset development patterns
reflect each language community’s unique charac-
teristics, particularly in terms of instruction tuning
trends, domain preferences, and resource develop-
ment strategies.

4 Results and Analysis

4.1 Overview of CJK Datasets

The stacked bar chart (Figure 2b) provides a view
of the top 700 most downloaded datasets for
each language, categorizing them into monolin-

gual, English-paired (bilingual with English), and
multilingual (three or more languages) resources.
In this broader analysis, Chinese datasets show
the highest proportion of English-paired resources
(148 datasets), notably higher than Korean (57) or
Japanese (67), suggesting a greater emphasis on
cross-lingual applications. The multilingual cat-
egory shows substantial representation across all
three languages, with similar proportions (Korean:
272, Japanese: 299, Chinese: 291), indicating ac-
tive participation in multilingual resource develop-
ment. While multilingual resources reflect diverse
aspects of CJK datasets, we focus our subsequent
analyses on monolingual datasets to better under-
stand language-specific characteristics.

Dataset Size Distribution. Table 2 presents the
size distribution of monolingual datasets across lan-
guages, categorized as Small (<10MB), Medium
(10MB–100MB), Large (100MB–1GB), and Extra-
Large (>1GB). Chinese datasets show a relatively
balanced distribution across size categories, with a
notable presence in large (10) and extra-large (12)
categories. Japanese datasets demonstrate strong
representation in small-scale resources (123) but
notably lack extra-large datasets. Korean shows
similar concentration in small datasets (137) and
limited presence in medium and large categories,
yet maintains a notable presence in the extra-large
category (7). English datasets maintain the highest
counts across all categories, providing a reference
point for resource availability.

4.2 Comparative Characteristics of CJK
Datasets

Task Distribution Figure 3 presents the distribu-
tion of task categories across languages through a

3
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CJK language datasets, showing unique and overlapping dataset counts. (b) Shows the composition of the top 700
downloaded datasets for each language, categorized into monolingual, English-paired, and multilingual resources.

Size English Chinese Japanese Korean

S (<10M) 258 144 123 137
M (10M–100M) 21 11 3 3
L (100M–1B) 14 10 4 3
XL (>1B) 22 12 - 7

Table 2: Dataset size distribution across languages.

English Chinese Japanese Korean
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Figure 3: Task distribution across different languages.
The heatmap illustrates the proportion of datasets be-
longing to the top 7 most frequent task categories across
English, Chinese, Japanese, and Korean datasets.

heatmap visualization. Text Generation emerges
as the dominant task across all languages, with
particularly high proportions in Chinese (39.3%),

Task categories group related NLP tasks based on their
functionality (e.g., Text Generation includes text-generation,
language-modeling, fill-mask; Question Answering includes
question-answering, multiple-choice, extractive-qa).

Japanese (37.8%), and Korean (36.0%) datasets
compared to English (23.2%). Question Answer-
ing follows as the second most common task, with
moderate variations: Korean (30.9%) and English
(29.7%) show higher proportions than Chinese
(21.7%) and Japanese (26.9%).

The analysis reveals distinctive task preferences
across languages beyond these two categories.
Classification tasks appear between 11.8% and
16.3% of datasets, with Korean (16.3%) having
the highest ratio and Japanese (11.8%) the lowest.
Token & Feature tasks are more prominent in Chi-
nese (11.6%) and Korean (8.0%) than in English
(3.8%) or Japanese (2.9%). Video & Audio tasks
show varied representation, with Japanese leading
at 10.9%, followed by Chinese (8.1%), English
(4.8%), and Korean (3.7%). Lastly, Vision & Image
tasks exhibit particularly striking differences: En-
glish leads at 12.5%, followed by Japanese (5.9%)
and Chinese (2.6%), while Korean shows no repre-
sentation (0.0%). Retrieval tasks also show notable
variation, with English (11.0%) significantly ahead
of other languages (3.5-5.1%).

These distinctive patterns reflect differing re-
search priorities and technological needs across
language communities. The Japanese emphasis
on Video & Audio may correspond to its strong
anime and entertainment industry, while Korean’s
focus on Classification and Chinese’s on Token &
Feature tasks suggest prioritization of fundamental
NLP infrastructure development tailored to their
respective linguistic complexities.
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Figure 4: License distribution across CJK and English datasets, showing the proportion of Permissive + PublicDo-
main, Copyleft + NonCommercial/ND, Unknown, and Other licenses for each language community.
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Figure 5: Instruction Datasets Over Time by Language
(English and CJK), from late 2022 to 2024.

Evolution of Instruction Tuning Analysis of
instruction-tuning datasets reveals distinct patterns
across languages. Among the top 700 most down-
loaded datasets for each language, instruction-
tuning datasets show notable presence: Korean
(13.3%), Japanese (12.6%), Chinese (12.3%), and
English (7.0%). This higher proportion in CJK
languages compared to English suggests particu-
larly active instruction-tuning development in these
communities.

Analysis of temporal patterns (Figure 5) reveals
distinct characteristics across languages. Chinese
datasets show notable early activity in 2023, peak-
ing around 7 releases. Korean datasets demon-
strate dramatic fluctuations in 2024, reaching high-
est peaks of 12-14 releases mid-2024. Japanese
datasets show moderate initial activity but in-
creased activity during 2024, reaching peaks of 7-9
releases. English datasets maintain stable patterns
throughout, typically with 1-4 releases monthly.

These patterns reflect different community ap-
proaches to instruction dataset development:

• Chinese: Early adoption with moderate peaks

We identify instruction datasets through ‘instruct’ key-
words and common dataset names in metadata.

(around 7 releases) followed by decreased ac-
tivity

• Korean: Shows the highest peaks (up to 14
releases) with considerable volatility

• Japanese: Late but substantial increase in
development activity

• English: Consistent but moderate release pat-
terns throughout

License Distribution Patterns Figure 4 shows
how each language community approaches data
licensing. Two major observations emerge. First,
Chinese (53.1%) and English (51.8%) exhibit the
highest proportions of Permissive or Public Do-
main licenses, indicating a shared culture of open
access. Both also include moderate segments of
Unknown (Chinese 20.3%, English 23.5%) and
Copyleft/NonCommercial (19.6% and 13.0% re-
spectively), suggesting a balance between openness
and controlled usage.

Second, Japanese (44.6%) and Korean (39.4%)
have lower shares of Permissive/Public Domain
compared to Chinese and English but differ sub-
stantially in other categories. Japanese devotes
24.0% to Copyleft/NonCommercial—more than
any other language—while also having a rela-
tively high Other category (15.3%). In contrast,
Korean stands out for its large Unknown portion
(35.3%), underscoring possible gaps in documenta-
tion practices despite still having a notable Copy-
left/NonCommercial share (20.8%). Taken together,

Licenses were classified into five categories: Permis-
sive (e.g., Apache, MIT, CC-BY), Public Domain (e.g., CC0,
PDDL), Copyleft/ShareAlike (e.g., GPL, CC-BY-SA), Non-
Commercial/ND (CC-BY-NC, CC-BY-ND), and Other. For
visualization, Permissive and Public Domain categories were
combined, as were Copyleft/ShareAlike and NonCommer-
cial/ND.
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Figure 6: Comparison of Documentation Quality Across Languages. (a) Shows the percentage of datasets associated
with academic publications, (b) presents the percentage of dataset cards containing all five structured sections, and
(c) displays the average word count in dataset documentation.

these variations reflect distinct cultural, institu-
tional, and legal factors influencing dataset license
norms across CJK and English communities.

Documentation Quality Patterns Figure 6 il-
lustrates three key metrics related to dataset docu-
mentation. For academic grounding, measured by
the presence of associated arXiv papers, English
datasets lead with 39.20%, followed by Chinese
(16.97%), while Japanese (10.48%) and Korean
(8.89%) trail behind. Regarding structural com-
pleteness, measured by the presence of all five rec-
ommended Hugging Face dataset card sections, En-
glish again leads (18.41%), with Chinese (7.67%),
Japanese (1.64%), and Korean (2.46%) showing
lower completeness . In terms of documentation
depth, measured by average word count, English
maintains the highest average (678 words), Chi-
nese stands at 354, and Japanese and Korean re-
main lower at 168 and 182 respectively. Taken to-
gether, these figures indicate a consistent trend: En-
glish datasets demonstrate the most thorough and
standardized documentation practices, Chinese re-
sources show moderate completeness and Japanese
and Korean documentation remains comparatively
succinct or under-documented.

Dataset Ownership Patterns Figure 7 illustrates
the proportions of datasets contributed by individ-
ual and community contributors, research insti-
tutes, and companies in the Korean, Chinese, and
Japanese communities. Individual and community
contributors dominate across all three languages:
Korean datasets lead with 79.2%, followed by
Japanese at 71.9% and Chinese at 61.6%. Research
institutes play a stronger role in China (27.3%)

HuggingFace dataset card sections: Description, Struc-
ture, Creation, Usage, and Additional Info

Analysis limited to CJK datasets with verifiable institu-
tional affiliations.

than in Korea (11.1%) or Japan (21.0%), suggest-
ing more prominent institutional involvement in
Chinese NLP resource development. Company
contributions remain the smallest category across
all three, though slightly higher in Chinese (11.1%)
compared to Korean (9.7%) and Japanese (7.2%).
This highlights the key role of grassroots efforts as
primary drivers of dataset creation.

4.3 Language-Specific Characteristics

4.3.1 Chinese Dataset Ecosystem
Comprehensive Evaluation Frameworks Chi-
nese NLP resources on Hugging Face frequently
feature large-scale, well-structured evaluation
suites. For example, ceval/ceval-exam (Huang
et al., 2023) provides 13,948 multiple-choice ques-
tions across 52 domains, and haonan-li/cmmlu
(Li et al., 2023b) covers 67 subject areas spanning
elementary to advanced professional levels. These
broad assessments facilitate detailed benchmarking
of model performance across diverse knowledge
domains.

Specialized Medical Domain Resources Chi-
nese datasets also demonstrate significant depth in
specialized fields. The FreedomIntelligence/CM
B (Wang et al., 2023) collection features a hierarchi-
cal structure (6 main categories, 28 subcategories)
spanning 11,200 medical questions, thus enabling
targeted evaluations in clinical question-answering.
Similarly, TCMLM/TCM_Humanities (Kang, 2024)
focuses on Traditional Chinese Medicine, integrat-
ing resources from professional certification mate-
rials and historical texts.

Dialectal and Cultural Diversity In addition to
specialized domains, Chinese datasets often em-
phasize linguistic diversity and cultural preserva-
tion. The Nexdata/chinese_dialect (Nex-
data, 2025) corpus contains 25,000 hours of dialect
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Figure 7: Dataset ownership across Korean, Chinese, and Japanese datasets, illustrating the proportions of individual
and community contributors, research institutes, and companies.

speech data, facilitating fine-grained dialect mod-
eling. Likewise, raptorkwok/cantonese-tra
ditional-chinese-parallel-corpus (raptork-
wok, 2025) offers over 130k aligned sentence pairs
for Cantonese–Mandarin translation. Future efforts
could enrich such dialectal resources by detailing
speaker demographics, annotation workflows, and
language-specific quirks—thereby promoting more
equitable research coverage across China’s diverse
linguistic communities.

4.3.2 Korean Dataset Ecosystem

Community-Driven Development and Its Im-
pact Korean datasets on Hugging Face frequently
emerge from grassroots, community-led efforts,
rather than purely institutional or corporate projects.
Prominent examples include contributions from
open-source communities like HAERAE, which de-
veloped the widely-used HAERAE-HUB/KMMLU
benchmark (Son et al., 2024), as well as indi-
vidual developers such as beomi, maywell, and
taeminlee, who have created highly-downloaded
resources. Even widely-used benchmarks like
klue/klue (Park et al., 2021) represent collabora-
tive efforts between academia, industry, and indi-
vidual researchers rather than single-entity projects.
The broader ecosystem is dominated by individ-
ual and community contributors who account for
79.2% of Korean datasets. This community-driven
approach has accelerated the proliferation of new
resources but also contributed to inconsistencies in
documentation and licensing. For instance, Korean
has the highest proportion of “Unknown” licenses
among CJK languages (35.3%), indicating gaps in
legal clarity and potential challenges for commer-
cial or cross-institutional usage. Moreover, only
8.89% of Korean datasets are linked to an arXiv
publication—lower than both Chinese (16.97%)

and Japanese (10.48%). These factors may hinder
collaborative research or reproducibility, underscor-
ing the need for more standardized dataset cards
(Gebru et al., 2021) and explicit licensing.

Content Moderation Focus A unique strength
of the Korean dataset ecosystem is its empha-
sis on content moderation, encompassing hate-
speech detection, toxicity filtering, and profan-
ity masking. Popular resources such as jean
lee/kmhas-korean-hate-speech (Lee et al.,
2022), humane-lab/K-HATERS (Lab, 2025) and
Dasool/KoMultiText (Choi et al., 2023) re-
flect heightened community and research interest
in combating harmful or discriminatory language
online. However, these moderation-oriented re-
sources raise broader ethical and regulatory ques-
tions, such as defining thresholds for hate speech
or handling user privacy. Although the Hugging
Face platform provides general community guide-
lines, more detailed policies—particularly for age-
restricted or sensitive data—would help standardize
safe usage of these potentially sensitive resources.

4.3.3 Japanese Dataset Ecosystem
Strong focus on subcultural content Japanese
NLP datasets often integrate subcultural or
entertainment-related material, an approach that
distinguishes them from other CJK resources. For
instance, joujiboi/japanese-anime-speech
(joujiboi, 2024) targets automatic speech recogni-
tion in anime content, attracting high download
counts and demonstrating direct utility for real-
world applications such as subtitle generation. Ad-
ditionally, YANS-official/ogiri-test-wit
h-references (YANS-official, 2023) captures
the distinctive Ogiri comedy tradition, illustrating

As of January 2025, based on Hugging Face’s publicly
available platform policies and community guidelines.
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Japan’s unique comedy culture through multimodal
data (text and images). While such resources en-
rich models’ ability to handle colloquial or creative
contexts, they also require careful documentation
of stylistic nuances and potential copyright con-
straints. Many subcultural datasets involve fan
works or licensed content, which often preclude
fully open licenses. Researchers must therefore
verify these constraints to avoid unintended usage
restrictions or downstream complications.

Diverse Methods in Dataset Processing and Re-
finement Japanese datasets exhibit a reliance
on translation-based pipelines and synthetic data
generation rather than building new corpora from
scratch. For example, the Magpie series (Xu et al.,
2024) has been adapted into multiple Japanese re-
sources—e.g., Aratako/Synthetic-JP-EN-Tra
nslation-Dataset-Magpie-Nemotron-4-20k
and Aratako/Magpie-Tanuki-8B-annotated
-96k (Aratako, 2024b,a)—highlighting how trans-
lations and AI-generated text can expand train-
ing data. While these strategies improve dataset
availability, they raise concerns about translation
errors, cultural misalignment, and potential bi-
ases introduced by synthetic text. Efforts such as
neody/oscar-ja-cleaned (neody, 2023) and
saillabalpaca-japanese-cleaned (Upad-
hayay and Behzadan, 2024) illustrate attempts to
mitigate these issues through dataset cleaning and
quality control. Systematic documentation of trans-
lation processes and validation protocols would
help researchers assess dataset reliability. This lo-
calization approach may serve as a model for other
languages seeking rapid resource expansion.

5 Discussion

Our analysis reveals distinct characteristics across
CJK dataset ecosystems: Chinese datasets
show strong institutional backing but inconsis-
tent documentation; Korean datasets demonstrate
community-driven development but face licensing
gaps; and Japanese datasets emphasize subcultural
content while dealing with copyright constraints.

Three practical issues warrant attention. First,
licensing diversity (particularly "Unknown" li-
censes in Korean datasets and restricted licenses
in Japanese resources) complicates collaborative
projects. More consistent adherence to guidelines
like "Datasheets for Datasets" (Gebru et al., 2021)
could enhance reusability. Second, domain cluster-
ing (medical for Chinese, subcultural for Japanese,

and moderation for Korean) may underserve other
areas needed for general-purpose LLM develop-
ment. Third, culturally specific content requires
transparent documentation, as simple translations
miss nuanced cultural meanings.

Despite these differences, strong synergy poten-
tial exists. Joint benchmarks could facilitate cross-
lingual comparisons, while unified documentation
frameworks could standardize metadata and licens-
ing. Our findings underscore both the richness and
fragmentation of CJK resources, suggesting that
clearer practices and cross-lingual collaboration
can foster a robust ecosystem for East Asian LLM
development.

6 Limitations

Our analysis primarily focused on datasets with
relatively high download counts, which may have
led us to overlook smaller or emerging resources
that could shed light on niche trends or specialized
applications. Furthermore, we limited our scope
to the Hugging Face platform; investigating addi-
tional repositories (e.g., GitHub, Kaggle, or Papers
with Code) could reveal a broader range of dataset
characteristics and host factors. Although we man-
ually requested permission to access certain private
or restricted datasets, some ultimately remained
inaccessible, thereby constraining the representa-
tiveness of our findings.

In addition, while Korean and Japanese datasets
were examined with input from language experts,
our review of Chinese data relied solely on docu-
mentation, potentially affecting the depth of our
analysis. Finally, we chose to focus on three ma-
jor East Asian languages, excluding many low-
resource languages and dialects, whose inclusion
could further expand and enrich our findings.

7 Conclusion

This study presents a comparative analysis of over
3,300 Chinese, Japanese, and Korean datasets
on HuggingFace, revealing distinct ecosystem
characteristics—Chinese datasets show strong in-
stitutional involvement, Korean resources are
community-driven, and Japanese datasets empha-
size subcultural content—highlighting that docu-
mentation, licensing, and ownership must be ad-
dressed in cultural context to guide inclusive East
Asian language technologies.
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Abstract

Natural Language Inference (NLI) is a fun-
damental task in natural language process-
ing. While NLI has developed many subdi-
rections such as sentence-level NLI, document-
level NLI and cross-lingual NLI, Cross-
Document Cross-Lingual NLI (CDCL-NLI)
remains largely unexplored. In this paper, we
propose a novel paradigm: CDCL-NLI, which
extends traditional NLI capabilities to multi-
document, multilingual scenarios. To support
this task, we construct a high-quality CDCL-
NLI dataset including 25,410 instances and
spanning 26 languages. To address the lim-
itations of previous methods on CDCL-NLI
task, we further propose an innovative method
that integrates RST-enhanced graph fusion
with interpretability-aware prediction. Our ap-
proach leverages RST (Rhetorical Structure
Theory) within heterogeneous graph neural
networks for cross-document context model-
ing, and employs a structure-aware semantic
alignment based on lexical chains for cross-
lingual understanding. For NLI interpretabil-
ity, we develop an EDU (Elementary Dis-
course Unit)-level attribution framework that
produces extractive explanations. Extensive
experiments demonstrate our approach’s su-
perior performance, achieving significant im-
provements over both conventional NLI mod-
els as well as large language models. Our
work sheds light on the study of NLI and
will bring research interest on cross-document
cross-lingual context understanding, hallucina-
tion elimination and interpretability inference.
Our code and dataset are available at CDCL-
NLI-link.

1 Introduction

Natural Language Inference (NLI) is a fundamen-
tal task in natural language processing, aiming
to determine the logical relationship between the
∗Equal contribution.
†Corresponding author.

Premise Hypothesis

CDCL-NLI Label

Document1
in English

Document2
in French Entailment

Figure 1: A CDCL-NLI example. Premise in English
and French. The Entailment label requires combining
information from both documents in premise.

Paradigm Premise Hypothesis Language

Sentence-NLI Sentence Sentence Mono/Multi
Document-NLI Doc Sent/Doc Mono
CDCL-NLI Multi Doc Sentence Multi

Table 1: Comparison of different NLI paradigms.

given premise and hypothesis pair (Dagan et al.,
2005; MacCartney and Manning, 2009). While
traditional NLI tasks primarily deal with single-
language, short-text validations (Rodrigo et al.,
2007), document-level NLI (Yin et al., 2021) ex-
pands the scope of NLI to longer contexts.

Table 1 compares different NLI paradigms sys-
tematically, highlighting the progressive evolu-
tion of NLI tasks. Sentence-NLI involves low-
complexity reasoning on short sentence pairs,
evolves from single-language approaches (Bow-
man et al., 2015; Herlihy and Rudinger, 2021) to
multilingual settings (Conneau et al., 2018; Heredia
et al., 2024), and is mainly used for fact verifica-
tion (Wadden et al., 2020; Klemen et al., 2024).
Document-level NLI extends NLI to reasoning
over full-length documents within a single lan-
guage (Wang et al., 2019; Yin et al., 2021), focus-
ing on content comprehension (Yang et al., 2024).

However, the increasing globalization of infor-
mation flow requires even more sophisticated infer-
ence capabilities across both language and doc-
ument boundaries. In this paper, we introduce
Cross-Document Cross-Lingual Natural Language
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Inference (CDCL-NLI), a novel paradigm extend-
ing traditional NLI to multi-document and multilin-
gual settings. Figure 1 illustrates that CDCL-NLI
jointly reasons over premise documents in English
and French to verify the hypothesis. The correct
Entailment prediction relies on integrating comple-
mentary information from both documents.

While CDCL-NLI addresses a real-world task
with broad applications, it faces key challenges:
1) Lack of existing datasets, which necessitates
the construction of new resources to support re-
search. 2) Multilingual Semantic Alignment, re-
quiring resolution of grammatical and conceptual
differences across languages while preserving se-
mantic consistency (Conneau et al., 2020). 3)
Cross-Document Structure Alignment, essential
for capturing structural correspondences and im-
plicit logical relations between documents of vary-
ing complexity (Wang et al., 2021); and 4) Inter-
pretability, demanding transparent reasoning pro-
cesses and verifiable confidence in inference out-
comes (Bereska and Gavves, 2024).

To address the first challenge, we curated a
CDCL-NLI dataset through collecting diverse
premise documents from GlobeSumm (Ye et al.,
2024), generating hypotheses with GPT-4o (Ope-
nAI, 2024) using customized prompts to ensure
label diversity and balance and manually review-
ing hypotheses and annotated explanations. The
dataset contains 25,410 samples spanning 26 lan-
guages and 370 events.

To address the rest challenges, we proposed a
novel method that comprises three key compo-
nents. 1) Graph Construction Module: This
component promotes semantic alignment by fus-
ing graphs based on lexical chains, effectively
linking semantically related concepts across doc-
uments. 2) Graph Representation Module: Uti-
lizing an RST-enhanced Relation-aware Graph At-
tention Network (RGAT) (Mann and Thompson,
1988; Busbridge et al., 2019), this module sup-
ports structure alignment by capturing hierarchi-
cal discourse structures and cross-document depen-
dencies through multi-head attention mechanisms.
3) Interpretability Attribution Module: Lever-
aging Elementary Discourse Units (EDUs) (Mann
and Thompson, 1988), this module generates ex-
tractive explanations that significantly enhance
model interpretability and provide transparent in-
sights into its decision-making process.

Extensive experiments on the CDCL-NLI and
DocNLI datasets demonstrate that our method out-

performs conventional NLI approaches and three
state-of-the-art large language models, surpassing
the strongest baseline by 3.5% on our dataset. In
the end, we highlight our main contributions as
follows:
• We propose CDCL-NLI as a new task and

construct a corresponding dataset covering 26
languages with 25,410 high-quality manually-
annotated instances.

• We propose a novel method that leverages RST-
enhanced graph fusion to align semantic con-
cepts and discourse structures. The approach
also enhances interpretability by generating ex-
tractive, EDU-level explanations.

• We conduct extensive experiments demonstrat-
ing our method’s effectiveness, outperforming
all baselines by at least 3.5% and establishing a
new benchmark for the CDCL-NLI task.

2 Related Work

2.1 Sentence-level NLI

Monolingual Methods. Sentence-level NLI
benchmarks like SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018) have driven
model evolution from ESIM (Chen et al., 2017) to
transformer architectures (Devlin et al., 2018; Liu
et al., 2019) and recent LLMs (OpenAI, 2023).

Cross-lingual Methods. Cross-lingual NLI re-
lies on datasets like XNLI (Conneau et al., 2018)
(15 languages) and XNLIeu (Heredia et al., 2024)
(European languages). Multilingual models such
as XLM-R (Conneau et al., 2020) and XLM-E (Chi
et al., 2022) enable zero-shot transfer, while align-
ment methods like SoftMV (Hu et al., 2023) and
prompt-based MPT (Qiu et al., 2024) improve
cross-lingual semantic understanding.

Interpretability Mechanisms. Interpretability
uses feature attribution methods like Integrated
Gradients (Sundararajan et al., 2017) and (Huang
et al., 2024) to highlight decision-driving features.
Datasets such as e-SNLI (Camburu et al., 2018)
provide human explanations, supporting explicit
reasoning and interpretability benchmarks.

2.2 Document-level NLI

Datasets and Benchmarks. Document-level
NLI benefits from datasets like DocNLI (Yin et al.,
2021) with over one million instances. Domain-
specific datasets such as ContractNLI (Koreeda and
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Manning, 2021) focus on the challenges posed by
long documents and specialized text genres.

Inference Methods. Recent approaches empha-
size discourse structure and long-range dependen-
cies (Chen et al., 2025). R2F (Wang et al., 2022)
introduces explicit reasoning extraction, and DocIn-
fer (Mathur et al., 2022) uses hierarchical encoding
to model document structure, highlighting the need
to capture document-level semantics.

Interpretability Mechanisms. Interpretability
research focuses on evidence extraction and ex-
planation generation. Systems like Evidence-
Net (Chen et al., 2022) and R2F (Wang et al.,
2022) automatically identify evidence to enhance
reasoning transparency. LLM-based approaches
like Chain-of-Thought (Wei et al., 2022) and Re-
thinking (Singh et al., 2024) further enable self-
explanatory reasoning capabilities.

2.3 Graph-based Reasoning for NLI

Leveraging graph structures for semantic reasoning
has emerged as a powerful paradigm. Discourse-
aware graph networks model logical relationships
within text for tasks like logical reasoning (Hou
et al., 2022; Galitsky and Ilvovsky, 2025). Simi-
larly, AMR-based graph reasoning uses Abstract
Meaning Representation (AMR) to enhance ques-
tion answering by providing a structured semantic
representation (Huang and Zhang, 2025). Further-
more, prior work on graph merging and fusion has
explored combining structures like AMR, RST, and
CST for tasks such as multi-document summariza-
tion and inference (Banarescu et al., 2018; Liao
et al., 2021; Shi et al., 2024).

Although prior studies have advanced sentence-
level and document-level NLI, and graph-based
methods have been applied to various reasoning
tasks, the challenges in cross-document and cross-
lingual NLI remain largely unaddressed. Our work
fills this gap by introducing the CDCL-NLI dataset
and proposing a systematic integration of an in-
terpretable RST-enhanced graph fusion method to
tackle these unique complexities.

3 CDCL-NLI Task Formulation and
Dataset Construction

As shown in Figure 2, our CDCL-NLI dataset is
constructed through a systematic pipeline involving
stratified random sampling of premise documents
across all topics, LLM-generated hypotheses, and

Topic 1
EN
--

------

RU
--

------

FR
--

------
... ...

Premise
FR
--

----

EN
--

----

Hypothesis
Sample

The attackers carefully planned the attack, prepa
ring weapons and a list of targets, demonstrating
premeditation.

Hypothesis Explanation in

Premise

Au total neuf personnes sont mortes fusillées, ce
mercredi 3 mai au matin, dans ... La réaction du go
uvernement… il était armé d'un pistolet de 9 mm,
d'un autre de petit calibre et de quatre cocktail
s L‘assaillant présumé avait planifié la fusillade
pendant un mois et élaboré une liste des enfant
s visés, a déclaré la police dans un communiqué.

Corrected Hypothesis

Extracted
Explanation：

EntailmentLabel

A teenager...Six other children and a teacher were
injured and hospitalized. The young attacker had
two guns and two Molotov cocktails and had plan
ned to... names of children he wanted to kill an
d their classes, he said at a press conference. Ser
bia's Interior Ministry said. A...

Figure 2: Overview of the CDCL-NLI dataset construc-
tion process and a data example. Premise contains D1

and D2. Explanation is extracted from premise to en-
hance interpretability. Human annotation is based on
language translated into English.

human verification to ensure data quality. In the
dashed box, the figure shows a CDCL-NLI instance
with a premise of two documents in different lan-
guages, an English hypothesis, a label, and EDU-
based explanations for interpretability.

3.1 Task Formulation
Similar to the traditional NLI task, the goal of
CDCL-NLI is to determine the inference label:

Label ∈ {"Entailment", "Neutral", "Contradiction"},

between a given premise P and hypothesis H.
Specifically, the premise P consists of two docu-
ments D1 and D2, written in different languages
but discussing the same topic. The hypothesis H
is a sentence-level statement. The task requires
reasoning over the combined information from P
with H to determine their entailment relationship,
involving both cross-document and cross-lingual
premise integration.

3.2 Premise Data Collection
We collect our premises from GlobeSumm (Ye
et al., 2024), a multi-document cross-lingual sum-
marization dataset covering 370 topics across 26
languages. In GlobeSumm, documents for each
topic span diverse media outlets, publication times,
and languages, providing a rich foundation for
cross-document and cross-lingual inference tasks.
We curated CDCL-NLI dataset by stratified ran-
domly selecting documents for each topic to form
premise pairs. To enhance cross-lingual coverage,
we strategically expanded our document collec-
tion through translation. **To address the cross-
lingual aspect of the task, we used the DeepL API
to translate the original English documents from
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Figure 3: Statistic visualization of token length, EDU numbers, label distribution and language composition.

GlobeSumm into 25 target languages. This transla-
tion process ensures consistent, high-quality mul-
tilingual premises.** After rigorous quality filter-
ing, our final dataset consists of high-quality in-
ference instances covering 26 languages. Detailed
premise establishment criteria and quality filtering
standards are provided in Appendix A.1.

3.3 Hypothesis Generation and Label
Specification

For each pair, we generate hypotheses across three
NLI categories. Initial hypotheses are generated by
GPT-4o (OpenAI, 2024) following specific guide-
lines (Wang et al., 2024) to ensure balanced label
distribution and sufficient reasoning depth. Entail-
ment hypotheses require joint or consistent support
from the premise documents. Neutral hypotheses
are plausible but neither supported nor contradicted.
Contradiction hypotheses explicitly conflict, focus-
ing on cross-document inconsistencies. To reduce
hallucination, GPT-4o first generates explanations
before finalizing hypotheses. Detailed prompts and
protocols are included in Appendix A.2.

3.4 Manual Annotation and Quality Control

Our annotation involved two phases: hypothesis
verification and EDU-based explanation (Figure 2).
All human annotation was conducted on the origi-
nal English versions of the premises and hypothe-
ses. This design choice ensures that annotators did
not require multilingual capabilities, and it mini-
mizes the language gap during the critical verifica-
tion process. To assess inter-annotator agreement,
we randomly divided our training data into three
equal parts. Each part was independently anno-
tated by two of our three graduate students. This
setup allowed us to calculate Cohen’s κ for each
of the three annotator pairs, yielding an average κ
of 0.71 across these pairs, which indicates strong

Dataset CD CL Interp. Avg.Tks Labels

MultiNLI × × × 33.7 3
XNLI × X × 50 3
e-SNLI × × X 45.1 3
DocNLI X × × 412 2

CDCL-NLI X X X 1,456 3

Table 2: Characteristics of NLI datasets showing cross-
document (CD), cross-lingual (CL), and interpretabil-
ity (Interp.) capabilities, along with average tokens per
instance (Avg.Tks) and number of label classes.

agreement. For explanations, annotators selected
minimal EDU sets supporting their decisions, with
high agreement (Jaccard: 0.91; span overlap: 0.94;
conclusion: 1.00). All annotations were recon-
ciled through discussions to ensure quality (see
Appendix A.3). The final dataset contains multi-
lingual premise-hypothesis pairs, NLI labels, and
EDU node indices for explanation, with clear meta-
data indicating the source of each document.

3.5 Dataset Statistics

We summarize the key characteristics of different
NLI datasets in Table 2, which shows substan-
tial variations in their cross-document and cross-
lingual capabilities. Our CDCL-NLI dataset con-
sists of 25,410 cross-document, cross-lingual NLI
instances spanning 26 languages and 370 events.
We partitioned the dataset by event topics, yielding
22,200/1,605/1,605 train/dev/test instances with
mutually exclusive event distributions. Figure 3a
shows similar data characteristics across training,
validation, and test sets; Figure 3b depicts token
count variations across consecutive segments; and
Figure 3c illustrates balanced label distributions
(33.3% each) with roughly uniform language dis-
tribution within each label. We provide more infor-
mation about our dataset in Appendix A.4.
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4 Our Method: RST-enhanced Graph
Fusion with EDU Level Interpretability

Our approach offers a robust solution for cross-
document and cross-lingual NLI by leveraging
RST-enhanced graph fusion and explanation pre-
diction. As illustrated in Figure 4, the framework
comprises three main components: RST graph con-
struction and fusion module, graph representation
generation module and interpretability and classifi-
cation module.

We employ DM-RST (Liu et al., 2021) parser
for discourse modeling as it offers an optimal
balance between structural richness and computa-
tional feasibility. Compared to the locally-focused
PDTB (Prasad et al., 2008), RST’s hierarchical
structure effectively captures document-level or-
ganization essential for cross-document reason-
ing. While SDRT (Asher and Lascarides, 2003)
is semantically richer, its O(n3) complexity is pro-
hibitive for large-scale tasks. Our ablation study
(Table 3) empirically validates the effectiveness of
our RST parser, showing that including the RST
graph module can significantly improve perfor-
mance despite potential parsing errors.

4.1 RST Graph Construction and Fusion

RST Information Extraction. We employ DM-
RST (Liu et al., 2021), a top-down multilingual
document-level rhetorical structure parsing frame-
work, to extract RST information from the premise
documents. As shown in Figure 5, DM-RST
generates two key features for document D: 1)
EDU boundary indices and 2) RST tree parsing
outputs. By processing these features, we get
D = {EDU1, EDU2, ..., EDUn} and rhetorical
structure tree T . EDUi represents the i-th EDU’s
textual content. T is formally defined as:

T =

{
(EDU[s→t], EDU[t+1→u], rst, rtu) |
s, t, u ∈ [1, n], s ≤ t < u, rst, rtu ∈ R

}
,

whereEDU[s→t] denotes an EDU group that forms
either a leaf node (when s = t) or a branch node
(when s < t), and rst represents the rhetorical rela-
tion. This tree structure captures both local EDU
relationships and global discourse organization.

Embedding Model. To handle inconsistent
cross-lingual encoding from premise documents
in different languages, we use XLM-RoBERTa-
Large (Conneau et al., 2020) as the base encoder,
which supports over 100 languages and excels at

multilingual semantic representation. For each
EDUi in the RST structure, its initial vector is
hEDUi = φ(EDUi) ∈ Rd, where φ denotes XLM-
RoBERTa-Large and d = 1024. The hypothesis
vector hhypo is computed similarly.

Single Graph Construction. Based on the RST
tree T , we construct graphs GD1 and GD2 for each
document D1 and D2 respectively as shown in Fig-
ure 4. For graph G(V,E,R), we define:
• Node Set V = {vi | EDU[s→t] ∈ T }, where

each vi has features: Textvi , φvi , and Typevi (e.g.,
nucleus or satellite).

• Edge Set E = {(vi, vj) | vi 6= vj , (vi, vj , r) ∈
T }, representing typed, bidirectional edges with
rhetorical relations.

• Relation SetR is from rhetorical relations in T .
For detailed relations and definitions of node fea-
tures, please refer to the Appendix B.1, B.2.

Graph Fusion. After obtaining heterogeneous
graphsGD1(VD1 , ED1 , R) andGD2(VD2 , ED2 , R)
for the premise, we then merge them via lexical
chains to enhance cross-document reasoning by:
• Node Feature Fusion: VP = VD1 ∪ VD2 , retain-

ing all nodes and features.
• Cross-document Edge: Add bidirectional lex-

ical edges between vi ∈ VD1 and vj ∈ VD2 if
CosineSim(vi, vj) > δ, and obtain EP .1

• Adding Edge Types: ExtendRwith a new "Lex-
ical" relation R′ to support lexical alignment.

The merged graph GP (VP , EP , R
′) preserves in-

dividual features while aligning semantics across
documents, effectively supporting CDCL-NLI.

4.2 Graph Representation Generation

Node-level Representation. As shown in Fig-
ure 4, there are two layers of RST-GAT to process
nodes’ features. RST-GAT builds upon the Relation-
aware Graph Attention Network (RGAT) (Bus-
bridge et al., 2019), which extends Graph Attention
Network (GAT) (Velickovic et al., 2018) to handle
relation-specific edge types in graphs.

Taking a graph G(V,E,R) as an example, the
initial node embeddings h0

V are obtained as de-
scribed in Section 4.1. Node representations are
then updated through two layers of relation-aware
multi-head attention as follows:

h
(l)
vi = 1

|R|
∑
r∈R

αr · 1
K

K∑
k=1

∑
vj∈Nr(vi)

β
r,(l)
ij,k Wr,kh

(l−1)
vj (1)

1Threshold δ is chosen empirically; see Appendix B.3 for
detailed justification.
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Figure 4: Our CDCL-NLI framework processes premise documents (D1, D2) and a hypothesis through a multi-
stage process: 1) RST Graph Construction, where an RST parser generates initial discourse structures (GD1 and
GD2 ) which are then fused into a single premise graph (GP ) using semantic edges derived from XLM-RoBERTa
embeddings; 2) Graph Representation, where the fused graph is processed by RST-GAT layers; and 3) Inter-
pretability and Classification, which extracts node-level explanations and uses the graph representations (hGp

)
and hypothesis representation (hhypo) to predict the final NLI label.
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elaboration
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Although the report, which has 
released before the stock market
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190.58 point drop in the Dow 
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Figure 5: RST graph construction. The RST mod-
ule first segments text into EDUs(EDU1-EDU6), with
boundaries in blue, and then organizes an RST tree T
showing discourse relations.

where l = 1, 2. Here, αr denotes the softmax-
normalized weight of relation r, capturing the rela-
tive importance among relations, while βr,(l)ij,k rep-
resents the attention coefficient over neighboring
nodes, indexed by node pairs (vi, vj), attention
head k, relation r, and layer l. After two layers of
message passing, the resulting node embeddings
are denoted as hV = {h(2)

vi }. The same update pro-
cedure is applied independently to GD1 , GD2 , and
GP , producing embeddings hVD1

,hVD2
, and hVP

,
respectively. Detailed formulations of the attention
weights and parameter configurations are provided
in Appendix B.4.

Graph-level Representation. The global
representation(hGP

) of the merged graph GP is
obtained by averaging node features after two
RST-GAT layers. This pooling captures discourse-
level semantics while preserving local rhetorical
relations, enabling effective classification.

Classification Loss. Given the concatenated
graph representation hGp and hypothesis features

hhypo, the classification loss is computed using the
standard cross-entropy (CE) formulation:

Lcls = CE(y, Softmax(MLP(hGp ⊕ hhypo)) ∈ R3), (2)

where y denotes the ground-truth label and p de-
notes the predicted probability distribution.

Enhanced Triplet Loss. Triplet loss (Wein-
berger and Saul, 2006; Schroff et al., 2015) is a
metric learning method that encourages the anchor-
positive distance to be smaller than the anchor-
negative distance. Leveraging the structure of our
CDCL-NLI dataset, where each premise aligns
with three hypotheses (entailment, neutral, contra-
diction), we propose a neutral-constrained triplet
loss:

Ltriplet = max(0, d(a, p)− d(a, n) + σ)

+max(0, d(a, neu)− d(a, n) + θ),
(3)

where d(x, y) is the Euclidean distance, and
a, p, neu, n denote the premise paired with entail-
ment, neutral, and contradiction hypotheses, re-
spectively. Margins σ and θ enforce the semantic
order: entailment < neutral < contradiction.

4.3 EDU-level Explanation Prediction
For interpretability, we propose an attention-based
method to extract explanation nodes.

Node Importance. Using multi-head attention
weights from the first RST-GAT layer, the impor-
tance score Ii of node vi in GD1 , GD2 is

Ii =
1
K

∑K
k=1

∑
r∈R

∑
vj∈N in

r (vi)
β
r,(1)
ji,k . (4)

Let H = [hv0 ; . . . ;hvn ] be node features and
I = [I0, . . . , In]

> importance scores. Weighted
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features are H ′ = I � H , where � denotes
element-wise product with broadcasting.

Hypothesis-aware Interaction. Given hypoth-
esis embedding hhypo ∈ Rdout , attention over
weighted features H ′ ∈ Rn×dout produces interac-
tion features:

O = Attention
(
hhypoH

′>
√
dout

)
H ′. (5)

Feature Fusion and Classification. The model
is optimized by Binary Cross-Entropy (BCE) loss:

Lexp =
1

N

N∑

i=1

BCE
(
yi,Sigmoid(MLP([h′i ⊕ oi]))

)
(6)

where yi ∈ {0, 1} is ground truth label of node i,
h′i and oi are the weighted and interaction features
for node i respectively.

The total loss combines all components:

Ltotal = γLexp + λ(Lcls + Ltriplet), (7)

where γ and λ are balancing hyperparameters set
as 0.2 and 0.8 respectively through grid search on
the validation set.

5 Experiments

5.1 Experiment Settings
Metrics. Model evaluation considers classifica-
tion and explanation quality. For classification on
DocNLI (imbalanced), we report Micro F1 and
Weighted F1. On CDCL-NLI dataset, we use
Macro Precision, Macro Recall, and Macro F1
for balanced class performance. Explanation qual-
ity is assessed using BLEU (1-4), ROUGE-1/2/L,
and METEOR.

Baselines.
• Conventional NLI Models: We compare two

well-established models, both trained on our
dataset: DocNLI (Yin et al., 2021), a document-
level NLI model tailored for long texts, and
R2F (Wang et al., 2022), a retrieval-based
framework for document-level NLI. All conven-
tional baselines and our proposed method are
built upon the same underlying pretrained lan-
guage model to ensure fair comparison. Train-
ing details are provided in Appendix C.1.

• Large Language Models: We evaluate three
LLMs: Llama3-8B-Instruct (Meta AI, 2024),
Qwen-3-8B (Qwen, 2025) and GPT-4o (Ope-
nAI, 2024), where the LLaMA and Qwen model
is further fine-tuned with LoRA adapters. All
models are tested in a few-shot setting, with
fine-tuning configurations in Appendix C.2.

5.2 Experiment Results and Analysis

Main Results and Ablation Study. Table 3
presents a performance comparison of our pro-
posed method against several competitive baselines
on two test sets. TestSet1 is a cross-lingual test set
(the original test set of the CDCL-NLI dataset).
TestSet2 is an English-translated version of Test-
Set1, designed to evaluate model robustness in a
cross-document scenario without language barri-
ers, and to quantify the performance degradation
caused by cross-lingual factors. This dual evalu-
ation framework enables a clearer analysis of the
impact of language variation on NLI performance.2

Our model consistently achieves the best re-
sults on both test sets, with macro F1 scores of
68.95% on the cross-lingual set and 70.68% on
the English-translated set, surpassing strong base-
lines such as DocNLI and R2F by notable margins.
The generally higher scores on the English test
set highlight the relative ease of reasoning within
a single, well-resourced language, in contrast to
the added challenges of cross-lingual understand-
ing, which requires effective language transfer and
alignment. The hypothesis-only baseline, which
trains solely on the hypothesis, attains near-random
performance ( 36% F1), indicating minimal dataset
artifacts in the hypothesis statements.

Among the large language models evaluated in
the few-shot setting, Qwen3-8B achieves the best
performance, with F1 scores of 59.86% on the
cross-lingual set and 67.34% on the English set,
outperforming both GPT-4o and Llama3-8B. Nev-
ertheless, our approach surpasses Qwen3-8B by
9.09% on the cross-lingual set and 3.34% on the
English set, highlighting the effectiveness of our
method. Detailed prompts and zero-shot results
and reported in Appendix D.1, Appendix D.2.

The ablation study highlights the importance of
each component: removing the explanation module
(- Exp) results in a moderate performance drop
of 1.89% on both cross-lingual and English test
sets; removing the graph module (- Graph) causes
a more pronounced decline of 17.58% and 8.97%,
respectively. When both components are removed
(- Exp & Graph), performance sharply decreases
on both test sets, demonstrating that these modules
jointly contribute to the model’s robustness under
different language conditions.

2Unless noted, all reported test results refer to TestSet1.
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Model Type Model TestSet1:Cross-Lingual TestSet2:English TrainedPrecision Recall F1 Macro Precision Recall F1 Macro

Conventional
Model

Hypothesis-only 35.78 36.02 35.84 35.89 35.97 35.91 X
DocNLI 64.75 64.30 64.46 69.29 68.39 68.70 X

R2F 65.04 65.42 65.42 67.18 68.47 67.13 X
Large

Language
Model

Llama-3-8B 45.94 52.62 48.07 51.69 57.98 53.03 X
GPT-4o 52.50 56.30 54.00 62.50 65.00 64.50 ×

Qwen3-8B 60.34 56.29 59.86 71.71 67.62 67.34 X

CDCL-NLI
Model

Ours 71.09 70.84 68.95 72.65 72.46 70.68 X
- Exp 65.99 67.29 65.86 69.01 69.97 68.79 X

- Graph 53.07 57.38 51.37 68.64 64.55 61.71 X
- Exp & Graph 49.15 52.71 48.70 49.15 52.71 50.67 X

Table 3: NLI model performance on cross-lingual (TestSet1) and English (TestSet2) sets. Our full model achieves
the highest F1 scores, showing clear gains from explanation and graph components. Large language models
perform well but are generally outperformed. X indicates training on target data;×means no training. Explanation
- Exp.

Precision Recall F1 Macro
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Figure 6: NLI performance using single documents
(D1, D2) versus combined (D1 + D2). The F1 gain
confirms the need for cross-document reasoning, with
both documents contributing similarly.

Single-Document vs Cross-Document. To vali-
date the cross-document nature of our dataset, we
compare the performance of models using only
a single document (D1 or D2) against those us-
ing the D1 + D2, as illustrated in Figure 6. The
substantial performance gap—at least a 7% F1 im-
provement—demonstrates that effective inference
requires integrating information from both doc-
uments. Additionally, the similar F1 scores for
Document1 (63.2%) and Document2 (62.8%) in-
dicate that both documents provide equally impor-
tant information, underscoring the necessity of syn-
thesizing evidence from both sources rather than
relying on either alone. Additional results are pre-
sented in Appendix D.3.

Cross-Lingual Generalization. To further as-
sess the robustness and generalization of our ap-
proach, we conduct cross-lingual transfer experi-
ments in a challenging scenario where the training

F1 Scores on Target Language (Ours vs. R2F)

ES→RU ES→FR ES→IT ES→EN
55.53/25.03 58.28/27.31 54.68/29.31 57.94/34.21

RU→ES RU→FR RU→IT RU→EN
52.83/46.26 46.67/35.50 50.89/39.77 49.67/47.78

FR→ES FR→RU FR→IT FR→EN
50.31/43.25 56.6/22.24 58.65/39.32 49.67/47.22

IT→ES IT→RU IT→FR IT→EN
53.72/36.01 57.19/36.21 53.17/37.22 56.67/47.21

EN→ES EN→RU EN→FR EN→IT
60.31/49.94 51.27/32.46 60.28/30.80 55.11/38.33

Table 4: Cross-lingual performances (macro F1 scores)
of our method and R2F. Source languages are colored.
Spanish (ES), Russian (RU), French (FR), Italian (IT)
and English (EN). Our method demonstrates superior
generalization across languages compared to baselines.

and testing languages are distinct. Specifically, we
select five typologically and geographically diverse
languages—Spanish, Russian, French, Italian, and
English—to ensure comprehensive coverage and
to reflect real-world multilingual settings. For each
source language, we translate the data into all tar-
get languages, resulting in 20 transfer directions.
Models are trained on one language and evaluated
on a different target language, with no overlap be-
tween training and test languages. As shown in
Table 4, our method consistently outperforms the
R2F baseline across most transfer directions, of-
ten by substantial margins. R2F is chosen as it
improves upon DocNLI for cross-document rea-
soning. These results demonstrate the effectiveness
of our approach in synthesizing information from
cross-lingual document pairs and its strong trans-
ferability to diverse language pairs, validating the
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Figure 7: Explainability comparison between our
method and R2F on CDCL-NLI and DocNLI datasets
using BLEU, ROUGE (1/2/L), and METEOR metrics.
Our method consistently outperforms R2F across all
metrics and datasets.

Method Dev Test
W. F1 Mi. F1 W. F1 Mi. F1

DocNLI 88.05 86.25* 87.09 85.06*
R2F 90.18* 89.15 89.16* 87.86
Ours 91.58 88.61 90.30 88.47

Table 5: Performance comparison on the document-
level DocNLI. Results marked with * are from our re-
production. Weighted F1 -W. F1, Micro F1 - Mi. F1

design of our experimental setup and the broad
applicability of our method in multilingual cross-
document NLI tasks.

Interpretability Study. To evaluate our
method’s effectiveness, we compared it against
the R2F baseline using five standard metrics
(ROUGE-1/2/L, BLEU, METEOR) on both CDCL
and DocNLI datasets. As shown in Figure 7, our
method (solid line) consistently outperforms r2f
(dashed line) across all metrics on both datasets.
The improvements are particularly pronounced
in ROUGE-L, where our method achieves 0.34
versus 0.30 on CDCL-NLI and 0.50 versus 0.37
on DocNLI, demonstrating enhanced capability
in preserving structural coherence. It is worth
noting that the interpretability data for DocNLI
was provided by R2F.

Comparison on DocNLI Dataset. We evaluate
the generalization of our method on the DocNLI
dataset using weighted and micro F1 metrics. As
shown in Table 5, our approach achieves state-of-
the-art weighted F1, outperforming both the Doc-
NLI baseline and R2F, but slightly underperforms
R2F on micro F1. This is mainly due to class im-
balance between training and evaluation sets, and
R2F’s advantage on the simpler reasoning tasks

common in DocNLI, while our method is opti-
mized for more complex reasoning. These results
suggest that balanced sampling or improved adapt-
ability could further boost performance.

6 Conclusion

This work systematically investigates CDCL-NLI,
addressing key challenges in cross-document rea-
soning and multilingual understanding. We in-
troduce a novel CDCL-NLI dataset spanning 26
languages and comprising 25,410 meticulously
annotated instances. And we propose an RST-
enhanced graph fusion mechanism with explana-
tion prediction. Through extensive experiments
and analyses, we demonstrate that our method ef-
fectively captures both structural and semantic in-
formation across documents and languages. Specif-
ically, the RST-enhanced graph fusion mechanism
and explanation prediction component not only im-
prove model interpretability but also enhance per-
formance, as validated by our ablation studies.
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A Dataset Details

A.1 Premise Establishment Criteria
To ensure the quality and reliability of our CDCL-
NLI dataset, we establish the following criteria for
premise selection:
• Content Parallelism: The document pairs

must discuss the same topic while being natu-
rally written in their respective languages, rather
than being translations of each other. This en-
sures authentic cross-lingual reasoning scenar-
ios.

• Information Complementarity: While main-
taining topic consistency, documents in differ-
ent languages should present complementary
perspectives or details, enabling meaningful
cross-document inference tasks.

• Language Distribution: Premise document
pairs are randomly sampled from different lan-
guages to reflect real-world cross-lingual scenar-
ios. Each pair must consist of documents in two
distinct languages, ensuring the dataset captures
authentic cross-lingual reasoning challenges.

These criteria ensure that our dataset captures
genuine cross-lingual reasoning challenges while
maintaining natural language expression across dif-
ferent languages.

A.2 CDCL-NLI Label Definitions and
Hypothesis Generation

Label Definitions. We define three inference la-
bels for CDCL-NLI, considering various evidence
distribution scenarios across documents:
• Entailment: The hypothesis is supported when

either:
– Evidence from both documents jointly sup-

ports the hypothesis through cross-document
reasoning, or

– One document provides sufficient supporting
evidence while the other document contains
no contradicting information
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In both cases, the conclusion must be logically
derivable without requiring external knowledge.

• Contradiction: The hypothesis is contradicted
when either:

– Information from either document directly
contradicts the hypothesis, or

– The combined information from both docu-
ments leads to a logical conclusion that con-
tradicts the hypothesis, or

– The two documents present mutually contra-
dictory evidence regarding the hypothesis

• Neutral: The relationship is neutral when:
– Neither document alone nor their combina-

tion provides sufficient evidence to support
or contradict the hypothesis, or

– The documents contain only partially relevant
information that doesn’t allow for a definitive
conclusion, or

– The hypothesis introduces new information
or claims that go beyond what can be verified
from the documents

These definitions account for the complex nature
of cross-document reasoning, where evidence may
be distributed asymmetrically across documents
and require different levels of information integra-
tion for reaching conclusions.

Hypothesis Creation. To generate high-quality
hypotheses for our CDCL-NLI dataset, we de-
signed a structured prompt for GPT-4o that speci-
fied detailed requirements for each label. The com-
plete prompt template is reproduced in Figure 12.
This prompt design requires GPT-4o to generate
evidence explaining the reasoning behind each hy-
pothesis, which significantly reduces hallucination
and improves alignment with the source documents.
The structured output format facilitates automated
processing while ensuring that each hypothesis is
accompanied by clear justification of its entailment
category. The generated hypotheses were subse-
quently reviewed by human annotators to ensure
quality and adherence to the specified criteria.

A.3 Data Quality Assessment

Explanation Annotation Guidelines. We estab-
lish the following principles for EDU-based expla-
nation annotation:
1. Minimal Sufficiency: Annotators should select

the minimal set of EDUs that are necessary and
sufficient to support the inference conclusion,
avoiding redundant or irrelevant units.

2. Cross-document Coverage: Selected EDUs

must include evidence from both premise doc-
uments when the inference requires cross-
document reasoning, ensuring the explanation
captures cross-lingual interactions.

3. Logical Completeness: The selected EDUs
should form a complete logical chain that clearly
demonstrates how the inference conclusion is
reached.

Quality Metrics. We measured CDCL-NLI
dataset using multiple metrics as shown in Table 6

The explanation component of our annotations
was evaluated using three complementary metrics,
all showing exceptional improvement after recon-
ciliation:
• EDU Selection achieved 76% Jaccard similarity,

indicating strong consensus on evidence selec-
tion

• Span Coverage reached 81% overlap ratio,
demonstrating precise identification of relevant
text spans

• Explanation Consistency achieved 85%, ensuring
logical coherence in reasoning
Our annotation quality assessment demonstrated

strong reliability across all NLI categories. Our
initial inter-annotator agreement score is 0.71 and
annotation quality is further improved through ad-
judication.

Through our rigorous quality control and filter-
ing process, we refined our dataset from an initial
collection of 27,750 potential instances to 25,410
high-quality inference pairs. This 8.4% reduction
reflects our commitment to maintaining high stan-
dards in both label accuracy and explanation qual-
ity, ensuring the dataset’s reliability for both classi-
fication and interpretability research.

A.4 Data Information
Language Distribution. Figure 8 illustrates the
language distribution of our dataset, where Span-
ish (15.3%), Russian (10.4%), and French (8.4%)
represent the top three most frequent languages,
while languages like Hebrew, Czech, and Hindi
each accounts for approximately 1-2% of the data.
This distribution not only reflects the imbalanced
nature of multilingual usage in real-world scenarios
but also ensures broad coverage of linguistic phe-
nomena, enabling the study of diverse cross-lingual
inference patterns.

Language Pair Distribution. As shown in Fig-
ure 9a, the dataset exhibits diverse language combi-
nations across 24 languages. Spanish demonstrates
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Category Description (Metric) Score

Entailment (Cohen’s κ) 0.72
NLI Label Neutral (Cohen’s κ) 0.71

Contradiction (Cohen’s κ) 0.71

EDU Selection (Jaccard Sim.) 0.76
Explanation Span Coverage (Overlap Ratio) 0.81

Explanation Consistency (Align.) 0.85

Table 6: Dataset quality assessment results.

Figure 8: Language distribution of CDCL-NLI dataset.

the highest interaction frequency with other lan-
guages, particularly evident in Spanish-Russian
(224 instances) and Spanish-Portuguese (178 in-
stances) pairs. The heat map reveals several inter-
esting patterns:
• Most language pairs maintain a balanced bidirec-

tional relationship, with similar instance counts
in both directions

• Romance languages (Spanish, French, Por-
tuguese, Italian) show stronger interconnections

• Less-resourced languages like Albanian and
Macedonian have fewer cross-lingual pairs

• Russian and Spanish serve as central hub lan-
guages, connecting with most other languages in
the dataset

EDU Count Distribution by Language Pair.
The violin plot in Figure 9b illustrates the distribu-
tion of Elementary Discourse Units (EDUs) across
the top language pairs. Several key observations
emerge:
• Most language pairs show a median EDU count

between 80 and 120 units
• The distributions are generally symmetric, indi-

cating consistent EDU patterns regardless of the

source language
• Romance language pairs (Romanian-Spanish,

Portuguese-Spanish, Italian-Spanish) exhibit sim-
ilar EDU distribution patterns

• Some pairs, particularly those involving Spanish
as one of the languages, show wider distributions,
suggesting more diverse discourse structures

• The violin shapes indicate that extreme EDU
counts (very low or very high) are relatively rare
across all language pairs
This analysis suggests that while the dataset

maintains diverse language coverage, it also pre-
serves consistent discourse complexity across dif-
ferent language combinations.

B Graph Construction Details

B.1 Relation Types

RST Graph Construction with Selected Re-
lation Types. In constructing individual RST
graphs for each document, we select a subset of
relation types to focus on the most salient discourse
and semantic connections. Specifically, we use the
following relation types: Temporal, Summary, Con-
dition, Contrast, Cause, Background, Elaboration,
Explanation, and lexical chains. This selection bal-
ances coverage and complexity, ensuring that the
resulting graph captures essential discourse rela-
tions and key semantic links without introducing
excessive sparsity or noise. The inclusion of lex-
ical chains further strengthens semantic cohesion
by linking related words and expressions across
different segments.

Graph Fusion with Extended Relation Types.
During the fusion of RST graphs from multi-
ple documents, we expand the set of relation
types to include a broader range of discourse
and organizational structures. The extended set
comprises: Temporal, TextualOrganization, Joint,
Topic-Comment, Comparison, Condition, Contrast,
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(a) Heat map of premise language combinations across the
dataset.

(b) Distributions of EDU counts across top-20 language pairs.

Figure 9: Statistic visualization of language pair distributions and their EDU characteristics.

Evaluation, Topic-Change, Summary, Manner-
Means, Attribution, Cause, Background, Enable-
ment, Explanation, Same-Unit, Elaboration, and
Lexical chains. This comprehensive set allows for
richer cross-document alignment by capturing di-
verse forms of rhetorical and semantic relationships.
Both in single-document and fused graphs, these
relations serve as edge types in the construction
of the Relation-aware Graph Attention Network
(RGAT), enabling the model to effectively encode
complex discourse and semantic structures.

B.2 Node Feature Definition
Specifically, for leaf nodes, we define:

φ(vi) = φ(EDUs),Textvi = EDUs,Typevi = 1.

For branch nodes, we define:

φ(vi) =
1

2
(φ(vj) + φ(vk)),

Textvi = Textvj ⊕ Textvk ,Typevi = 0,

where vj , vk are the children of vi, and ⊕ denotes
concatenation. For completeness, we provide the
detailed formulas for the relation-level and node-
level attention mechanisms used in updating node
embeddings.

B.3 Justification of the Cross-Document
Edge Threshold δ

The threshold δ for adding cross-document lexi-
cal edges is set to 0.8 based on empirical analysis
balancing sparsity and relevance of edges. We eval-
uated different threshold values on a validation set
using the following metrics:

Figure 10: Effect of threshold δ on graph sparsity and
task performance. Edge count (blue) decreases as δ in-
creases, while task performance (red) peaks at δ = 0.8
(dashed line), providing optimal balance between rele-
vant connections and noise reduction.

• Edge Sparsity: Higher thresholds reduce the
number of edges, leading to sparser graphs that
help avoid noise.

• Semantic Relevance: Lower thresholds intro-
duce more edges but may include irrelevant or
weakly related node pairs.

• Downstream Task Performance: We observed
that δ = 0.8 achieves the best trade-off, maximiz-
ing performance on the target task (e.g., accuracy
or F1 score).

Figure 10 shows the impact of varying δ on edge
count and task performance, confirming the choice
of 0.8 as a reasonable and effective threshold.

B.4 Graph Attention Formulas

Relation Weight. The relation importance
weights αr are learnable parameters normalized by
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Baseline Base Model Optimizer LR Batch Size Max Length Epochs

Hypothesis-only XLM-R Large AdamW 3× 10−6 16 512 20
DocNLI XLM-R Large AdamW 3× 10−6 16 512 20
R2F XLM-R Large AdamW 1× 10−6 16 512 20
Ours XLM-R Large AdamW 1× 10−5 16 512(per EDU) 20

Table 7: Training hyperparameters for conventional baseline models and our model. These configurations, includ-
ing the consistent use of the XLM-RoBERTa-Large base model and AdamW optimizer, were utilized to ensure
reproducibility and fair comparison.

softmax:

αr =
exp(wr)∑

r′∈R exp(wr′)
,

where wr is a trainable scalar parameter for rhetor-
ical relation r.

Hyperparameters. For the model defined in
Equation 1, the following settings are used: The
first layer uses K = 4 attention heads. The second
layer uses K = 1 attention head. Residual con-
nections and dropout with rate 0.1 are applied after
each layer.

Node-level Attention Coefficients. The atten-
tion coefficients βr,(l)ij,k measure the importance of
neighbor node vj to node vi under relation r, head
k, and layer l. They are computed as:

β
r,(l)
ij,k =

exp
(
ψ
(
a
(l)>
r,k

[
Wr,kh

(l−1)
vi ‖Wr,kh

(l−1)
vj

]))

∑

vm∈Nr(vi)

exp
(
ψ
(
a
(l)>
r,k

[
Wr,kh

(l−1)
vi ‖Wr,kh

(l−1)
vm

])) ,

(8)

where Wr,k is the trainable linear transformation
matrix for relation r and head k, a(l)r,k is the learn-
able attention vector for relation r, head k, and
layer l, [·‖·] denotes vector concatenation, ψ(·) is
the ELU activation function.

Additional Details. Each layer uses residual con-
nections and dropout with a rate of 0.1 to improve
training stability. The first layer uses K = 4 atten-
tion heads, while the second layer uses K = 1.

C Training Details

C.1 Model Training Hyperparameters
All the models are implemented in PyTorch and
trained on an NVIDIA A100 GPU. To ensure fair
comparison and reproducibility of results, all con-
ventional baseline models and our model were fine-
tuned under consistent experimental settings. As

detailed in Table 7, each baseline utilizes the XLM-
RoBERTa-large pretrained model as the base ar-
chitecture and the AdamW optimizer for training.
The learning rates are carefully selected for each
model variant to optimize performance, while main-
taining a uniform batch size of 16, a maximum in-
put sequence length of 512 tokens, and training for
20 epochs. These standardized hyperparameters
guarantee that performance differences stem from
model design rather than training discrepancies,
thereby supporting the validity and reproducibility
of our comparative evaluation. Specially, for our
model, as we split the documents into EDUs, so
the maximux length is for one single EDU. By pro-
cessing shorter EDUs instead of full documents,
our model in long-text scenarios minimizes infor-
mation loss, leading to improved performance.

C.2 LLM Fine-tuning Hyperparameters

For fine-tuning the Llama3-8B-instruct and Qwen3-
8B model, we employed LoRA (Low-Rank Adapta-
tion) to efficiently adapt the large-scale pretrained
model with limited computational resources. The
key hyperparameters for LoRA tuning included a
rank of 16, which balances adaptation capacity and
parameter efficiency, and a dropout rate of 0.1 to
mitigate overfitting. The learning rate was set to
2 × 10−4 with a linear warmup over the first 500
steps, followed by a constant decay. We used a
batch size of 64 sequences and capped the maxi-
mum input length at 1024 tokens to fully leverage
the model’s context window. Training was con-
ducted for 10 epochs, which empirically provided
a good trade-off between convergence and training
cost. These hyperparameters were chosen based on
prior LoRA tuning best practices and preliminary
experiments to ensure stable and effective adap-
tation of the Llama3-8B-instruct and Qwen3-8B
model. The prompt is shown in Figure 11.
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Fine-tunning Prompt

You are skilled in the NLI task. Given a premise consisting of two documents and a hypothesis,
each with its specified language, your task is to determine the natural language inference (NLI)
relationship between the hypothesis and the premise. Note that the premise and hypothesis may be
in different languages. The output should be one of three labels: Entailment, Contradiction, or
Neutral.
Input format:
Premise 1 (Language: <Lang1>): <Premise1 text>
Premise 2 (Language: <Lang2>): <Premise2 text>
Hypothesis: <Hypothesis text>
Output format:
One of the labels: Entailment, Contradiction, or Neutral
—
Example:
Premise 1 (Language: English): The cat is sitting on the mat.
Premise 2 (Language: French): Le chat est assis sur le tapis.
Hypothesis: The animal is resting on a rug.
Output: Entailment
—
Now, given the input premises and hypothesis, provide the NLI label.

Figure 11: Llama3-8B-Instruct and Qwen3-8B Finetuning Prompt.

Model TestSet1: Cross-Lingual TestSet2: English
Precision Recall F1 Macro Precision Recall F1 Macro

Llama-3-8B 44.00 50.00 46.00 49.00 55.00 50.00
GPT-4o 50.00 54.00 52.00 59.00 62.00 61.00
Qwen3-8B 58.00 54.00 57.00 68.00 64.00 63.00

Table 8: Zero-shot performance of large language models on the CDCL-NLI dataset.

D Additional Experiments

D.1 LLM Few-shot Prompt

As shown in Figure 13, one example is provided
to demonstrate how to determine the logical rela-
tionship between the premise and the hypothesis.
The model is instructed to output exactly one of
three labels: entailment, contradiction, or neutral.
This prompt effectively guides the model to under-
stand the task objective and output format, thereby
enhancing its reasoning capability across multiple
languages and documents during the few-shot vali-
dation stage (Chen et al., 2024).

D.2 LLM in Zero-shot Scenario

The zero-shot results reported in Table 8 are ob-
tained using the same prompt design as the few-
shot experiments, differing only in the absence of

in-context examples. As expected, all models per-
form worse under the zero-shot setting compared
to their few-shot counterparts, demonstrating the
effectiveness and necessity of providing exemplars
in the prompt for this task. Despite the overall
performance drop, the relative ranking of the three
models remains consistent with the few-shot sce-
nario, with Qwen3-8B achieving the highest scores,
followed by GPT-4o, and then Llama-3-8B. This
consistency indicates that these models’ capabil-
ities in handling the CDCL-NLI task are stable
across different prompting strategies. Moreover,
the results highlight the challenge of zero-shot
cross-document and cross-lingual natural language
inference, emphasizing the importance of prompt
engineering and in-context learning to boost model
performance on complex multilingual and multi-
document reasoning tasks.
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Model Single Document1 Single Document2 Combined Documents

DocNLI 54.22 54.95 64.46
R2F 57.09 57.12 65.42

Table 9: F1 Macro scores for different methods across premises with varying numbers of documents.

EDU Text EDU Text

1 7. května 22 řekl prokurátor Giovanni Matos místní televizní
stanici Canal N.

4 Společnost okamžitě nereagovala na žádost o ko-
mentář.

24 jsou 27 obětí,“

7 (Reuters) - 25 „Informace jsou správné,
11 1© Úřadníci uvedli v neděli, že nehoda v malé zlaté

dolině na jihu Peru odnesla život 27 pracovníků.
26 potvrdila je policie v Yanaquihuě,

12 Jedná se o jeden z nejúmrtnějších důležitých
událostí v těžebním průmyslu v tomto jihoamer-
ickém státě.

27 „Jedná se o formální dolinu (...),

15 2© Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Con-
desuyos v departementu Arequipa.

30 dodal.

17 Zdá se, že došlo ke zkratu, která způsobila požár
uvnitř tunelu,

33 musíme jít

18 uvedla regionální vláda. 34 a zjistit, kde jsou mrtví, jestli je tam bezpečné,
37 3© Regionální vláda Arequipy a ministerstvo vnitra

mobilizovaly policie, zdravotníky a sanitky, aby
pomohly při péči o oběti a jejich záchraně.

35 aby se tam mohli dostat policisté a soudní pra-
covníci

39 Podle statistik peruánského ministerstva těžeb a en-
ergie je toto nejvyšší počet obětí v jediném těžebním
nehodě

36 a provést procedury,“

40 nejméně od roku 2000.

Table 10: Elementary Discourse Units (EDUs) from Document1 with their corresponding Spanish text. Seg-
ments highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled
numbers 1© indicate cross-document "Lexical" chains linking to corresponding EDUs in Document2.

D.3 Baseline Evaluation in Single Document
Scenario

To further demonstrate the cross-document char-
acteristic of our dataset, we add this extra exper-
iment to evaluate the performance using either a
single document (Document1 or Document2) as
the premise compared to using the full combined
premise, as summarized in Table 9. The notice-
able improvement in F1 score when both docu-
ments are combined indicates that effective infer-
ence relies on integrating information from multi-
ple sources. Additionally, the similar results ob-
served between Single Document 1 (54.22% and
57.09% F1) and Single Document 2 (54.95% and
57.12% F1) imply that each document provides
valuable and roughly equal contributions. This fur-
ther supports the notion that reasoning in this task
benefits from synthesizing evidence across docu-
ments rather than focusing on a single source.

E Case Study

E.1 Our Method Case

Our approach employs a multi-stage framework for
analyzing complex multi-document multi-lingual
NLI scenarios. Take the given example in Fig-
ure 13, the Yanaquihua gold mine incident in Con-
desuyos, Peru, where a short circuit-induced fire
resulted in 27 fatalities among workers trapped
within a tunnel, prompting mobilization of local au-
thorities and rescue teams. We begin by parsing the
premise documents using Rhetorical Structure The-
ory (RST), which generates hierarchical discourse
trees wherein each node represents an Elementary
Discourse Unit (EDU). These nodes are assigned
unique indices, with their textual content compre-
hensively documented in Tables 10 and 11.

Following RST parsing, we construct individ-
ual discourse graphs for each premise document.
These discrete graphs are subsequently integrated
into a unified premise graph through the establish-

28



ment of "Lexical" chains that leverage semantic
information and discourse relations to facilitate
enhanced inference. As illustrated in Tables 10
and 11, EDU nodes sharing identical uppercase
character designations indicate the presence of
cross-document “Lexical” chains. This consol-
idated graph representation effectively captures
the comprehensive discourse context across the
premises, enabling more robust and coherent se-
mantic modeling.

The classification module processes this unified
graph in conjunction with the hypothesis to predict
the appropriate NLI label. Concurrently, the expla-
nation extraction module identifies a salient subset
of nodes within the premise graph that substanti-
ate the classification decision. These explanation
nodes are visually distinguished through green font
highlighting in Tables 10 and 11, explicitly denot-
ing their explanatory significance.

Our integrated methodology capitalizes on the
hierarchical discourse structure inherent in RST
parsing and the semantic connectivity across docu-
ments, ensuring that the model’s inference is both
accurate and interpretable. The explicit identifica-
tion of explanation nodes within the discourse struc-
ture facilitates transparent, human-comprehensible
rationales grounded in the premise texts, thereby
advancing the explainability of NLI systems in
complex multi-document, multi-lingual scenarios.
This approach proves particularly valuable when
analyzing intricate real-world situations such as
the Yanaquihua mine disaster, where understand-
ing the causal relationships and contextual factors
is crucial for proper inference.

E.2 LLM Answer Case
As shown in Table 3, Qwen3-8B achieves higher
scores compared to Llama3-8B-instruct and the
closed-source GPT-4o. One key reason is that we
evaluate Qwen3-8B using its thinking (chain-of-
thought) mode, as illustrated in Figure 14. We
still take the case in validation prompt(Tabel 13) as
an example, the model systematically parses each
premise, accurately extracts key facts, and performs
detailed cross-checking between the articles and
the hypothesis. It also demonstrates the ability
to handle subtle differences in wording (such as
distinguishing between deaths and rescues) and to
resolve potential ambiguities in translation (e.g.,
the meaning of "obětí" in Czech).

Nevertheless, our proposed approach still out-
performs Qwen3-8B, primarily due to its ability to

explicitly capture document structure through RST
parsing and cross-document, cross-lingual seman-
tic integration via "Lexical" chains. Moreover, our
method demonstrates superior efficiency with sig-
nificantly lower computational requirements and
faster inference time, making it more practical for
real-world applications while maintaining state-of-
the-art performance.
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EDU Text EDU Text

14 informó el Ministerio Público de ese país. 53 [Al menos siete muertos en Texas
15 1© Al menos 27 personas murieron en Perú 54 tras atropellamiento en una parada de autobús cerca

de un refugio para inmigrantes]
17 y otras dos fueron rescatadas 56 lo que impidió que los mineros pudieran escapar.
18 luego de un incendio el sábado en una mina de oro

en la sureña provincia de Condesuyos,
57 Se informó que

21 Según las primeras investigaciones, la tragedia tuvo
lugar

59 el fuego se propagó de manera muy rápida por las
estructuras de madera que sostienen el yacimiento,

23 2© tras producirse un cortocircuito a 100 metros de la
entrada de la mina Yanaquihua,

60 dedicado a la extracción de oro,

24 conocida como Esperanza I. 61 Medios locales peruanos indicaron que
28 informó el Gobierno regional de Arequipa. 63 27 trabajadores quedaron atrapados en la mina
29 “Se habría producido un cortocircuito 64 tras un incendio.
31 que provocó un incendio en el interior del socavón, 65 Getty Images
32 que habría puesto en riesgo la vida de los traba-

jadores”,
71 James Casquino, alcalde de Yanaquihua, dijo que

33 Medios locales indicaron que 73 el dueño de la mina fue a la comisaría de ese distrito
34 27 trabajadores atrapados habían fallecido por as-

fixia.
75 para pedir ayuda en el rescate de las personas

35 La noche del sábado, el Ministerio del Interior con-
firmó en su cuenta de Twitter el accidente.

76 que se encontraban atrapadas.

38 indicó el tuit. 78 [Mueren varios migrantes en un accidente de auto
en Nuevo México cerca de la frontera]

39 “Personal policial se encuentra en el distrito de
Yanaquihua

79 Las autoridades indicaron que

41 para apoyar en las labores de rescate de los cuerpos
de mineros

80 3© hacia la zona se habían movilizado rescatistas.

42 que fallecieron dentro de un socavón en la provincia
de Condesuyos”,

81 Familiares de las víctimas se reunieron frente a la
comisaría de Yanaquihua

49 Imágenes difundidas en redes sociales mostraban
una gran columna de humo negro proveniente de la
mina,

83 para recabar información sobre la suerte de sus seres
queridos

51 y medios locales indicaron que 84 y exigir a las autoridades que agilizaran las labores
de rescate de los cuerpos.

52 en el momento del cortocircuito había personal tra-
bajando a unos 80 metros de profundidad.

85 El fiscal Giovanni Matos indicó a un medio local
que

87 las tareas en la mina podían demorar 89 porque no se sabía si los equipos de rescatistas
podían ingresar a la mina

23 para retirar los cadáveres. 90 para retirar los cadáveres.
91 [Una tormenta de polvo en Illinois causa múltiples

muertes y decenas de hospitalizados tras choque
masivo]

94 indica la compañía en su página web.

95 La mina pertenece a Yanaquihua S. A. C., una em-
presa

96 que reúne a pequeños productores mineros dedica-
dos a la explotación del oro y otros metales,

Table 11: Elementary Discourse Units (EDUs) from Document2 with their corresponding Spanish text. Seg-
ments highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled
numbers 1© indicate cross-document "Lexical" chains linking to corresponding EDUs in Document1.
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Hypothesis Generation Prompt

[Hypothesis Generation Prompt] We are creating a cross-document cross-lingual NLI dataset.
Below are two documents under the event topic: [CATEGORY], treated as one premise in this NLI
task. Based on them, generate hypotheses in three labels. You must strictly follow the instructions:
1. Hypothesis: The hypothesis should be a factual statement based on the content of the articles.
It must be a simple statement and should not contain any explanation or analysis like “this
contradicts” or “this agrees with” or “this is inconsistent with.”
2. Evidence: The evidence section should explain how the hypothesis relates to the articles,
including any contradictions or confirmations, using specific quotes from the articles.
Document Details:
• Document 1: Date: [DATE_1]; Article: [ARTICLE_1]
• Document 2: Date: [DATE_2]; Article: [ARTICLE_2]
[Task 1: Entailment Generation] Generate an Entailment Hypothesis and evidence.
The hypothesis is supported if evidence from both documents together or from one document alone
(without contradiction in the other) logically supports it.
Guidelines:
• Ensure each detail is verifiable by premise
• Include specific facts (dates, names, etc.)
• No speculation—strictly based on facts
Evidence:
• Quote relevant parts from both articles and explain how they jointly support the hypothesis
[Task 2: Neutral Generation] Generate a Neutral Hypothesis and evidence.
One hypothesis is neutral if there is insufficient or only partial evidence in the premise to confirm
or deny it, or if it contains information beyond what the premise verify.
Guidelines:
• Reasonable speculation or expanded related aspects in a reasonable way
• Propose middle ground if there’s conflicting information
Evidence:
• Show partial support from one or both articles without full confirmation
• Explain how the hypothesis goes beyond but stays consistent with the Document content
Remember, A neutral hypothesis should not be directly confirmed by the premise (which would
make it entailed), nor should it contradict the articles (which would make it conflicting).
[Task 3: Conflicting Generation] Generate a Conflicting Hypothesis and evidence.
One hypothesis is contradicted if either document or their combined information directly opposes
it, or if the documents conflict with each other regarding the hypothesis.
Guidelines:
• Negate or reverse key information in premise
• Complex and multi-faceted hypothesis with multiple contradictions
• Try to combine multiple points of contradiction
• Ensure the hypothesis appears reasonable but actually conflicts clearly
Evidence:
• Show which document(s) the hypothesis contradicts and explain specific points
• If applicable, explain why this hypothesis cannot coexist with the premise content
Output in JSON format:
{ "entail_evidence": "...",

"entail_hypothesis": "...",
"neutral_evidence": "...",
"neutral_hypothesis": "...",
"conflict_evidence": "...",
"conflict_hypothesis": "..."}

Figure 12: Hypothesises Generation Prompt.
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Validation Prompt

You are tasked with a cross-document and cross-language Natural Language Inference (NLI) task.
Your goal is to determine the relationship between the "premise" and the "hypothesis". The premise
consists of two documents presented in different languages. Here is one example:

Premise(Document1 in Spanish)

Al menos 27 personas murieron y dos fueron rescatadas tras un incendio en la mina de oro
Yanaquihua, en Condesuyos, Perú. Las investigaciones apuntan a un cortocircuito ocurrido a
unos 100 metros de la entrada, que provocó un fuego que se expandió rápidamente por las
estructuras de madera del socavón, dificultando la salida de los trabajadores. Autoridades
regionales señalaron que la mayoría de los mineros fallecieron por asfixia. El Ministerio del
Interior confirmó el accidente la noche del sábado y la policía trabaja en el rescate de los
cuerpos. Imágenes difundidas mostraron una densa columna de humo, mientras que medios
locales informaron que había personal laborando a 80 metros de profundidad. El alcalde de
Yanaquihua indicó que el dueño de la mina acudió a la comisaría para solicitar apoyo en el
rescate.

Premise(Document2 in Czech)

7. května (Reuters) - Úřadníci uvedli v neděli, že nehoda v malé zlaté dolině na jihu Peru
odnesla život 27 pracovníků. Jedná se o jeden z nejúmrtnějších důležitých událostí v těžebním
průmyslu v tomto jihoamerickém státě. Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Condesuyos v departementu Arequipa. Zdá se, že
došlo ke zkratu, která způsobila požár uvnitř tunelu, uvedla regionální vláda. „Informace jsou
správné, potvrdila je policie v Yanaquihuě, jsou 27 obětí,“ řekl prokurátor Giovanni Matos
místní televizní stanici Canal N. Regionální vláda Arequipy a ministerstvo vnitra mobilizovaly
policii, zdravotníky a sanitky, aby pomohly při péči o oběti a jejich záchraně. Podle statistik
peruánského ministerstva těžeb a energie je toto nejvyšší počet obětí v jediném těžebním
nehodě nejméně od roku 2000. Společnost okamžitě nereagovala na žádost o komentář.

Hypothesis and Label

Hypothesis: "The Yanaquihua gold mine in the province of Condesuyos, Peru, experienced a
fatal incident on a Saturday morning due to a short circuit that caused a fire, leading to the
death of 27 workers trapped inside the tunnel, with local authorities and rescue teams being
mobilized to the site."
Output: entailment

Now, given the following input, output exactly one word indicating the NLI label: neutral,
entailment, or contradiction.
Premise:[Premsise]
Hypothesis: [Hypothesis]
Output the NLI label (neutral/entailment/contradiction):

Figure 13: LLM Validation Prompt.
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Qwen3-8B Reasoning Output

Okay, let’s tackle this NLI task. So, the premise has two articles in Spanish and Czech, and the
hypothesis is in English. I need to determine if the hypothesis is entailed, contradicted, or neutral
based on the premises. First, I’ll read through the Spanish article. It mentions that on Saturday,
there was a fire in a gold mine in Condesuyos province, caused by a short circuit 100 meters from
the entrance. The mine is called Yanaquihua, known as Esperanza I. They say 27 people died,
two were rescued. The regional government of Arequipa mentioned the short circuit caused the
fire, risking workers’ lives. Local media said 27 trapped workers died of asphyxia. The Ministry
of Interior confirmed the accident on Saturday, and police were there for rescue. The fire spread
quickly through wooden structures, preventing escape. The mine belongs to Yanaquihua S.A.C., a
company with small miners.
Now the Czech article: Officials said the accident in the small gold mine in southern Peru resulted
in 27 deaths. It happened on Saturday morning at the Yanaquihua mine in Condesuyos province,
Arequipa department. A short circuit caused a fire inside the tunnel. The regional government
confirmed 27 victims. The prosecutor Giovanni Matos said the information is correct, and police
are there to find the dead, check safety for rescue teams. Regional government and interior ministry
mobilized police, medics, and ambulances. It’s the highest number of deaths in a single mining
accident since 2000. The company didn’t respond to a comment request.
Hypothesis: The Yanaquihua gold mine in Condesuyos, Peru, had a fatal incident on Saturday
morning due to a short circuit causing a fire, leading to 27 workers’ deaths trapped inside the
tunnel, with local authorities and rescue teams mobilized. Check each part. The Spanish article
says the fire was caused by a short circuit, leading to 27 deaths. The Czech article confirms the
same: short circuit causing fire, 27 deaths. Both mention Saturday morning (the Spanish says
"sábado" which is Saturday, and the Czech says "v sobotu ráno" which is Saturday morning). The
mine is Yanaquihua in Condesuyos, Peru. The death count is 27, and both mention authorities
and rescue teams being mobilized. The hypothesis states all these points. The Spanish article
also mentions the mine’s name and the company, which the Czech article doesn’t, but that’s not
conflicting. The hypothesis doesn’t mention the company, so that’s okay.
Are there any contradictions? The Spanish article mentions two people rescued, but the hypothesis
says 27 died. Wait, the hypothesis says "leading to the death of 27 workers trapped inside the
tunnel." The Spanish article says 27 died and two were rescued. The Czech article says 27 victims,
which could include the two rescued? Wait, maybe not. If two were rescued, then the deaths would
be 27, and the two rescued are alive. So the hypothesis says 27 workers died, which matches the
Spanish article’s 27 deaths. The Czech article says "27 obětí" which is victims, which could be the
27 who died, but maybe the two rescued are not counted as victims? Or maybe the Czech article is
using "obětí" as victims, which could include those who died and those rescued? Wait, in Czech,
"obětí" is victims, usually meaning those who died. But the Spanish article says 27 died and two
rescued. The Czech article says 27 victims, which might be the same 27, but the two rescued might
not be considered victims. So the hypothesis says 27 workers died, which aligns with both articles.
The Czech article says "27 obětí" which is victims, so that’s consistent.
Also, the hypothesis mentions the fire caused by a short circuit, which both articles confirm. The
mobilization of authorities and rescue teams is mentioned in both. The time is Saturday morning
in both. The mine’s name and location are correct.
Therefore, the hypothesis is fully supported by both articles. So the label should be entailed.

Figure 14: Illustration of Qwen3-8B’s chain-of-thought reasoning process. The model systematically analyzes
premise documents by extracting key facts, performing cross-document verification, and resolving translation am-
biguities (e.g., Czech term "obětí"). While this reasoning approach enables Qwen3-8B to outperform other LLMs
like Llama3-8B-instruct and GPT-4o, our RST-based method achieves superior performance through more intuitive
explanations, explicit discourse structure modeling, and cross-lingual semantic integration, all while requiring sig-
nificantly lower computational resources and faster processing times.
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Abstract
Grammatical gender is a fundamental linguis-
tic feature that varies across languages, and
its cross-linguistic correspondence has been a
central question in disciplines such as cogni-
tive science and linguistic typology. This study
takes an information-theoretic approach to in-
vestigate the extent to which variational usable
information about grammatical gender encoded
by a large language model generalizes across
languages belonging to different language fami-
lies. Using mBERT as a case study, we analyze
how grammatical gender is encoded and trans-
ferred across languages based on the usable
information of the intermediate representations.
The empirical results provide evidence that gen-
der mechanisms are driven by abstract semantic
features largely shared across languages, and
that the information becomes more accessible
at the higher layers of the language model.

1 Introduction

Grammatical gender is a nominal category (e.g.,
masculine, feminine, and neuter) that continues to
challenge linguists due to the complexity of gender
systems across languages and the rules governing
its assignment to nouns (Corbett, 1991; Varlokosta,
2011). These rules vary cross-linguistically and
cannot always be inferred from a noun’s surface
form. For instance, the German das Mädchen
‘theNEUT girl’ is grammatically neuter despite
denoting a female entity, and common concepts
such as sun differ in gender across languages, mas-
culine in French (le soleil) but feminine in German
(die Sonne).

In addition to its linguistic implications, the
study of grammatical gender provides insights
into cognitive science (Lucy, 1996; Bender et al.,
2011; Kemmerer, 2017; Kann, 2019), assists sec-
ond language learners in navigating the seemingly
arbitrary rules of gender assignment (Sahai and
Sharma, 2021), and helps reducing gender bias in
language models (Zhou et al., 2019).

Examining grammatical gender from a typolog-
ical perspective can further illuminate shared lin-
guistic principles contributing to the assignment
of grammatical gender across languages. Recent
studies in computational linguistics provide clues,
based on static multilingual embeddings, about the
existence of universal patterns in the assignment
of grammatical genders, transferable across several
languages (Veeman et al., 2020). However, the lin-
guistic depth and extent of the universal patterns of
grammatical gender have remained unexplored, pri-
marily because the multilingual word embeddings
do not provide a clear mechanism in distinguishing
between formal and semantic features. In particu-
lar, it is still unclear whether the linguistic patterns
that drive such universalities emerge at the mor-
phological or semantic levels and how the gender
system across languages might be related at these
levels (Basirat et al., 2021).

On the other hand, previous studies have shown
large language models (LLMs) normally encode
linguistic information in a more transparent and
structured way, allowing for an access into dis-
tinct linguistic levels (Peters et al., 2018; Jawahar
et al., 2019; Hewitt and Manning, 2019; Tenney
et al., 2018; de Vries et al., 2020). Lower layers
primarily encode surface-level and morphological
features, middle layers capture syntactic structure,
and higher layers represent semantic properties and
more abstract linguistic features (Jawahar et al.,
2019; Tenney et al., 2018). Additionally, later stud-
ies show that multilingual LLMs are capable at cap-
turing the universal aspects of languages at their
intermediate representations (Pires et al., 2019; Chi
et al., 2020), including the grammatical abstrac-
tions such as gender (Sukumaran et al., 2024).

Building upon these studies, we employ mBERT
(Devlin et al., 2019) to investigate the universal
and language-specific aspects of grammatical gen-
der across different linguistic levels, such as mor-
phology and semantics. mBERT, a multilingual
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encoder-only language model trained on a diverse
set of languages, provides a structured distribution
of linguistic information across its intermediate
representations. This allows us to systematically
examine grammatical gender at multiple linguistic
levels. Moreover, its shared feature space across
languages facilitates universal analyses.

Taking an information theoretic strategy, we in-
vestigate universal aspects of grammatical gender
based on the amount of information transferable
(generalizable) across gender systems of languages.
Specifically, we extend the concept of variational-
usable (V-usable) information (Xu et al., 2020) to
measure the extent to which the gender information
from a source language is generalizable to a target
language. A high amount of generalizable informa-
tion is interpreted as evidence of structural similar-
ities between the gender systems of the source and
target languages. In addition to the cross-lingual
analysis, the application of V-usable information is
also motivated as it allows us to effectively measure
the intra-lingual complexity of gender systems.

Our experiments on a typologically diverse set
of languages provide empirical evidence that lin-
guistic information about gender is largely gener-
alizable across languages with similar gender cate-
gories, while their genealogical relationship plays
a secondary role. Additionally, we show that lin-
guistically driven complexities of gender systems
are reflected in the hidden representations of the
language model, leading to variations in usable
information in our intra-lingual analysis. Further-
more, our layer-wise analysis of usable information
highlights the varying contributions of intermedi-
ate representations to gender encoding, both within
and across languages. Finally, further examination
of intermediate representations confirms the role
of both morphology and semantics in gender rep-
resentation, with semantic aspects proving to be
more generalizable across languages.

Overall, this study adopts a computational ap-
proach to explore the relationships between differ-
ent systems of grammatical gender based on their
encoding in the intermediate representations of a
large language model. Specifically, the contribu-
tions of this study include:

• Systematically evaluating how well grammati-
cal gender information generalizes across lan-
guages with different gender systems in a mul-
tilingual large language model.

• Introducing a novel approach based on the

variational usable information to investigate
the generalizability of the intermediate repre-
sentations of a language model for encoding
grammatical gender across languages.

• Probing the intermediate representations to
disentangle the roles of morphology and se-
mantics in gender prediction.

2 Grammatical Gender

Grammatical gender is an abstract system of noun
classification found in many languages, often over-
lapping with, or considered as subset of, noun class
systems (Comrie, 1999). It is generally considered
an inherent property of the noun itself (Spencer,
2002; Cucerzan and Yarowsky, 2003), with deter-
miners, adjectives, and sometimes verbs agreeing
with the noun in gender. Although grammatical
gender is frequently correlated with biological sex,
it is distinct from it, as evidenced by instances of
gender-sex mismatches—for example, in German,
das Mädchen (’theNEUT girl’) is grammatically
neuter despite referring to a female entity. Further-
more, grammatical gender should not be conflated
with nominal declension classes (Comrie, 1999).

Common gender categories include mascu-
line, feminine, neuter, and common, with Indo-
European languages typically featuring mascu-
line/feminine/neuter (e.g., German, Russian),
neuter/common (e.g., Danish, Dutch), and mascu-
line/feminine (e.g. French, Italian) gender systems.
In contrast, two-gender systems are common in
Afro-Asiatic languages (Corbett, 1991). The func-
tion of grammatical gender is still debated: some
researchers suggest it aids in referent identification
or categorization for cognitive processes such as
storage and retrieval (Allassonnière-Tang and Ki-
larski, 2020; Contini-Morava and Kilarski, 2013;
Senft, 2000; Lakoff and Johnson, 2008), while oth-
ers dismiss it as ‘historical junk’ (Trudgill, 2011).

2.1 Gender Assignment Theories
Grammatical gender assignment can be influenced
by formal features (such as morphology, phonol-
ogy, or orthography) and semantics (Corbett, 1991;
Sahai and Sharma, 2021) (e.g. assignment based
on biological sex), or it may be entirely arbitrary
(Andersson, 1992). However, the rules for gender
assignment are far from clear, given their complex-
ity and the exceptions that exist in many languages,
further complicated by declension classes, inflec-
tional morphology, and agreement involving num-
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ber, case, and gender (Garbo, 2016). This continues
to puzzle researchers (Fedden and Corbett, 2019),
although several hypotheses have emerged.

Corbett and Fraser (2000) ascribe semantic fac-
tors a higher contribution in gender assignment,
whereas Rice (2006) argue that formal and seman-
tic features are equally important. Basirat et al.
(2021) tested these theories by using character-
based embeddings (formal features), context-based
embeddings (semantic features), and their combi-
nation to predict grammatical gender in Russian,
French, and German. Their findings revealed that
formal features outperformed semantic ones as
predictors of gender, and combining both did not
yield significant improvements, challenging both
the semantic-dominance and equality hypotheses.
Similar results were reported by Sahai and Sharma
(2021) who demonstrated that training a classi-
fier using orthographic and semantic features for
French results in high accuracy with orthographic
features alone, but performance is further enhanced
when semantic features are included.

2.2 Gender Systems Across Selected
Languages

This study is based on a detailed investigation of
gender transfer across seven languages from the
Indo-European and Afro-Asiatic language families:
Arabic, Beja, Danish, German, Greek, Italian, and
Russian. In this section, we briefly overview the
gender system of these languages to motivate our
discussions in the following sections.

Arabic has a two-gender system (mascu-
line/feminine) and a rich morphology, with verbs,
nouns, pronouns, and adjectives agreeing in gen-
der. Gender assignment is based on both semantic
(i.e. natural gender) and morphological criteria,
although the gender of inanimate nouns is often se-
mantically arbitrary, e.g. baab ‘door.MASC’. At the
morphology level, masculine nouns are unmarked,
while feminine nouns are overtly marked by suf-
fixes, e.g., shajar-ah ’tree-FEM’ (Alkohlani, 2016).

Beja, an Afro-Asiatic language of the Cushitic
branch, classifies nouns into masculine and femi-
nine. Gender is primarily marked on nouns through
prefixes and suffixes, which agree with adjectives,
pronouns, and other modifiers within the noun
phrase (NP) in terms of case, number, and gen-
der. For example, the prefix Puu agrees in case,
number, and gender with the noun gáw: Puu-gáw
’MASC.NOM.SG.DEF-house’ (Appleyard, 2007).

Danish has a two-gender system of com-

mon/neuter, with common historically formed by
merging masculine and feminine. Gender is not
overtly marked on the noun itself, but appears
in definite NPs through determiner suffixes that
agree with the noun’s gender (e.g., hus-et ’house-
NEUT.DEF.SG’, bil-en ’car-COM.DEF.SG’) or with
indefinite determiners (e.g., et hus ’aNEUT house’,
en bil ’aCOM car’). Adjectives also show gender
agreement with the noun, but there is no gender
marking in the plural (Gregersen et al., 2021).

German has three grammatical genders (mas-
culine/feminine/neuter), and determiners and ad-
jectives agree with the noun in gender (e.g., ein-
e schön-e Frau ’a-FEM beautiful-FEM woman’).
However, the language also has a complex case
system that interacts with gender marking. Gender
assignment in German is considered complex, in-
fluenced by both semantic factors or clusters (e.g.,
all fruits are feminine) and morphological features
(e.g. all nouns with the suffix -heit are feminine)
(Bender et al., 2011; Fedden and Corbett, 2019).
Despite these patterns, gender assignment in Ger-
man is often perceived as arbitrary, with many ex-
ceptions (Fedden and Corbett, 2019).

Greek uses a three-gender system of mascu-
line/feminine/neuter in which gender assignment
is predominantly based on formal features (Var-
lokosta, 2011; Corbett, 1991), although semantic
rules exist, e.g. fruits and vegetables are often as-
signed neuter case. Gender is often overtly marked
on the noun: for instance, masculine nouns fre-
quently end in -as (e.g., ándras, ’man’), -os, or -ís;
feminine nouns often end in -í (e.g., psychí, ’soul’)
or -a; and neuter nouns tend to end in -o (e.g., moró,
’baby’), -í, or -ma, although exceptions exist, such
as the neuter noun kréas, ’meat’. Greek is mor-
phologically rich, with adjectives and determiners
requiring agreement in gender, number, and case,
complicating the prediction of gender.

In Italian, nouns are categorized into masculine
and feminine gender, where masculine nouns typi-
cally have an o-suffix (il naso ’theMASC.SG nose’),
and feminine nouns end in -a (la mela ’theFEM.SG
apple’), with few exceptions, e.g. il pianeta ’the
planet’ and la mano ’the hand’. However, nouns
with e-suffixes can be either masculine or feminine.
Gender is considered to be based on both formal
and semantic features (Bianchi, 2013).

Russian has a three-gender system (masculine,
feminine, neuter). The language’s rich mor-
phology and complex inflection system (Parker
and Sims, 2020) require adjectives and numerals
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to agree with nouns in case, gender, and num-
ber. Gender is overtly marked on the noun, as
seen in zhenshchin-a (‘woman-FEM.SG.NOM’) and
zhenshchin-u (‘woman-FEM.SG.ACC’). Gender as-
signment follows both morphological and seman-
tic rules, such as the features [+male] and [+fe-
male] (Fraser and Corbett, 1994). However, ex-
ceptions exist, like mužčina (‘man’), a masculine
noun ending in -a. In the absence of semantic
features, gender is assigned according to the de-
clension class (Nikunlassi, 2000). Additionally, an-
imacy plays a role in accusative marking for mascu-
line, animate nouns. In such cases, the accusative
form coincides with the genitive, marked by the
-a suffix (e.g., Ya vizhu student-a ‘I see student-
MASC.SG.ACC.ANIM’), further complicating the
distinction between gender classes.

3 Related Work

Veeman et al. (2020) investigate universal patterns
in grammatical gender using a set of static multi-
lingual word embeddings. Their study primarily
employs a neural transfer learning approach, where
the accuracy of gender classification from a source
training language to a target test language serves as
an indicator of similarity between their gender sys-
tems. Their findings suggest that while some fac-
tors influencing gender assignment are universal, as
evidenced by successful cross-lingual transfer, oth-
ers are idiosyncratic to specific language families.
Similarly, Veeman and Basirat (2020) explored how
different types of multilingual word embeddings
capture information about grammatical gender and
how well this information is transferable between
languages. Their findings reveal an overlap in the
encoding of gender in Swedish, Danish, and Dutch.

We extend the investigations of Veeman et al.
(2020) in two key ways. First, instead of accuracy
as a transferability metric, we adopt variational us-
able information (Xu et al., 2020), allowing for a
comparative analysis of gender system complexity
across languages (Ethayarajh et al., 2022). Second,
we investigate gender universalities at a deeper lin-
guistic level by analyzing the generalizability of
usable information across different layers of a mul-
tilingual LLM, instead of static word embeddings.

Several studies have addressed the encoding of
grammatical gender in word embeddings. For in-
stance, Basirat and Tang (2018, 2019) study how a
set of static word embeddings encode grammatical
gender of Swedish nouns and Basirat et al. (2021)

investigate the contribution of the formal and se-
mantic features encoded in word embeddings into
the assignment of grammatical gender. Additional
approaches, including surrogate models and deci-
sion trees (Sahai and Sharma, 2021), have further
illuminated the mechanisms behind gender predic-
tion. For instance, Sukumaran et al. (2024) found
that transformer models can generalize grammat-
ical gender from minimal examples, albeit with a
masculine bias.

4 Method

Our investigation of gender transfer spans both
layers of a language model and languages. Specif-
ically, we assess gender transferability across lan-
guages by measuring the information each interme-
diate layer provides for gender prediction. For this
purpose, we adopt V-usable information (Xu et al.,
2020), an extension of Shannon mutual information
(Shannon, 1948) that accounts for computational
constraints. The V-usable information in a random
variable X for predicting a category Y is defined
as the difference in conditional entropy between
predictions based on X and a baseline prediction
with no input features (denoted as Φ):

IV(Y ;X) = H(Y | Φ)−H(Y | X) (1)

A higher value of IV(Y ;X) indicates that X sig-
nificantly reduces uncertainty in predicting Y .

In our setting,X is a random vector in an embed-
ding space formed by a hidden layer of a language
model while processing nouns in a given language,
and Y represents a probability vector of grammati-
cal genders. To quantify the amount of information
encoded in the embedding space of a source lan-
guage i, denoted as Xi, for predicting grammatical
genders in a target language j, denoted as Yj , we
extend Equation 1 as:

IV(Yj ;Xi) = HV(Yj | Φ)−HV(Yj | Xi) (2)

Intuitively, IV(Yj ;Xi) measures the usable infor-
mation that the embeddings from the source lan-
guage provide for predicting gender in the target
language. A high value of IV(Yj ;Xi) suggests a
strong similarity between the gender systems of the
source and target languages.

In some cases that the gender systems are highly
different from each other, for example when a gen-
der category is seen in a language but not in the
other (e.g., common is in Danish but not in Arabic),
IV(Yj ;Xi) can be negative or an invalid number.
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We set the negative values and invalid numbers to
zero to satisfy the non-negativity constraint of us-
able information and manage the NaN exceptions.

For a given language pair and hidden layer, we
calculate the marginal entropyHV(Yj | Φ) in Equa-
tion 2 based on the gender distribution of the target
language and approximate the conditional entropy
HV(Yj | Xi) using a light classifier trained on
embedding-gender pairs from the source language
i. The cross-entropy loss on a test sample from
the target language j is then used as an estimate of
HV(Yj | Xi). To address class imbalance, cross-
entropy loss is weighted by the gender distribution
in the source language.

5 Experiment Setup

We investigate transfer learning of grammatical
gender across a typologically diverse set of lan-
guages with different grammatical gender systems
and minimal lexical similarity, as outlined in Ta-
ble 1. Except for Danish-German, where Danish
is included to broaden gender systems, this design
choice helps minimize reliance on surface-level
lexical overlap. The data is sourced from Univer-
sal Dependencies (v. 2.14) (Nivre et al., 2016),
where nominal gender annotations are included as
part of the inflectional features. For each language,
we concatenate all treebanks that include gender
annotations.

Language Family M F N C

Arabic AA-Semitic 67 33 0 0
Beja AA-Cushitic 75 25 0 0
Danish IE-Germanic 0 0 31 69
German IE-Germanic 37 41 22 0
Greek IE-Hellenic 19 52 29 0
Italian IE-Romance 55 45 0 0
Russian IE-Slavic 45 35 20 0

Table 1: Gender distribution (%) in the test languages.
M: masculine. F: feminine. N: neuter. C: common. AA:
Afro-Asiatic. IE: Indo-European.

The experiments are based on the multilingual
BERT model (mBERT) (Devlin et al., 2019) con-
sisting of 12 layers plus an initial embedding layer
each with 768 features. The model is trained on a
data set including text from an extensive range of
104 languages, including all our test languages ex-
cept Beja, which we have intentionally selected to
assess the degree of cross-lingual transfer beyond
mBERT’s training languages.

Following Veeman et al. (2020), we extract em-
beddings from the formal representations of nouns
provided in the FORM column of the Universal De-
pendencies treebanks. In cases where tokens are di-
vided into subtokens, we average their embeddings.
Since the experiments are based on cross-lingual
transfer, morphosyntactic gender indicators from
the source language are absent in the target lan-
guage input. This design helps ensure that model
performance reflects genuine cross-linguistic gen-
eralization rather than reliance on surface-level lex-
ical cues in the target language.

For each sentence in a language, we construct
a dictionary that maps the contextual embeddings
of its nouns to their grammatical gender. The em-
beddings are extracted from all layers of mBERT,
resulting in an embedding matrix of 768× 13 for
each occurrence of a noun in a language.

A known limitation of using mBERT in multi-
lingual settings is that model performance can vary
across languages due to differences in their repre-
sentation in the pretraining data (Wu and Dredze,
2020). To mitigate this imbalance and ensure cross-
linguistic comparability, we downsample the total
number of nouns per language to match the small-
est sample size in Arabic (5,151 nouns). For Beja,
a total of 555 nouns are included.

We estimate the usable information based on
7×13 logistic regression models, corresponding to
the number of languages and hidden layers. Each
classifier is trained for 30 epochs with early stop-
ping (patience of 5 epochs). We use AdamW as the
optimizer with a manually tuned learning rate of
5×10−5, and a learning rate scheduler that reduces
the learning rate every 10 epochs by a factor of 0.1.

The train-validation-test split for all languages is
80-10-10. Training is performed on the training
(80%) and validation (10%) splits, while cross-
lingual entropy is estimated using the test split
(10%). For each source-target language pair,
HV(Yj | Xi) in Equation 2 is estimated as the
average cross-entropy loss over five random seeds.

6 Results

In this section, we present and analyze the results
of our experiments through 1) intra-lingual analysis
of the usable information, 2) their transferability
across languages, and 3) their variations across
layers and languages.
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Figure 1: Averaged intra-lingual usable information.

6.1 Intra-lingual Analysis

We begin by examining the intra-lingual results
of usable information for predicting gender (i.e.,
when the source and target languages are the same).
Figure 1 presents the average usable information
for predicting gender within languages across all
layers of mBERT. The differences in the results can
be explained by two factors: the complexity of the
gender system and the quality of the intermediate
representations for each of the test languages.

In general, the differences in usable information
can be interpreted as variations in the complexity of
a target task (Ethayarajh et al., 2022). Specifically,
in the case of languages seen in the mBERT’s train-
ing data, it indicates that the intermediate repre-
sentations are significantly more informative about
grammatical gender in Arabic, Danish, and Italian
than in German, Greek, and Russian. This obser-
vation aligns with linguistic evidence, as the latter
group of languages has more complex gender sys-
tems in different ways. Firstly, Arabic, Danish,
and Italian have only two grammatical genders,
whereas German, Greek, and Russian have three.
Additionally, the former group has relatively pre-
dictable gender assignment patterns, often rooted
in morphological inflections and syntactic agree-
ments. In contrast, languages such as German,
Greek, and Russian have more intricate agreement
systems with numerous inflectional irregularities,
making gender prediction more challenging. More
details about the gender systems of the languages
can be seen in Section 2.2.

Given Beja’s absence from mBERT’s training
data, we speculate that the moderate information
for its gender prediction originates from typologi-
cally related languages in pretraining, such as Ara-

Figure 2: Averaged cross-lingual usable information.

bic, which also has a two-gender system (mascu-
line/feminine).

Beyond linguistic factors, variations in intra-
lingual usable information may also be influenced
by the quality of intermediate representations,
which are, in turn, affected by the distribution of
training data for each language in mBERT’s pre-
training corpus. However, this remains difficult
to analyze, as the exact composition of mBERT’s
training data has not been publicly disclosed.

6.2 Cross-lingual Analysis

Figure 2 summarizes the usable information for
predicting gender in a target language based on the
information gained from a source language. The
results, averaged over the intermediate layers of
mBERT, provide clear evidence about the varying
transferability of gender across languages. Dan-
ish and Beja have the least generalizable systems,
while Arabic and Italian demonstrate the highest.

The poor cross-lingual performance of Danish
can be attributed to its unique common/neuter gen-
der system, the only such system in our study. How-
ever, transfer to Beja appears more feasible despite
its absence from mBERT’s training data. Notably,
Arabic → Beja achieves relatively strong transfer,
followed by Italian. This pattern likely reflects
the structural similarity of their gender systems,
with Arabic benefiting additionally from genetic
relatedness and language contact with Beja (Van-
hove, 2012). Moreover, the limited orthographic
overlap between Beja and other test languages in-
dicates that this successful transfer cannot be at-
tributed to surface formal features at the tokeniza-
tion level; rather, it is likely due to deeper cross-
linguistic representations in mBERT that capture
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universal patterns of gender assignment (Veeman
et al., 2020). This effect may also be strengthened
by indirect transfer from typologically related lan-
guages present in mBERT’s training data and by
loanwords from Arabic.

The cross-lingual results in Figure 2 indicate that
gender information generalizes more effectively
from Arabic and Italian to other languages, except
for Danish, which has entirely different gender cat-
egories. Arabic transfers best to Italian, as both
languages share the same gender categories (i.e.,
masculine and feminine), and moderately well to
languages that also include a neuter gender. Simi-
larly, Italian transfers well to languages with both
masculine and feminine genders. This suggests a
strong alignment between the masculine and femi-
nine genders in Arabic and Italian and their coun-
terparts in other languages. Still further investi-
gation is needed to explain special cases, such as
Italian → German, where cross-lingual transfer is
more informative than mono-lingual.

Surprisingly, both German and Russian provide
nearly the same amount of information for pre-
dicting gender in Italian as they do in their own
monolingual settings. This indicates strong struc-
tural similarities between these languages, which
is likely the result of partially similar morphosyn-
tactic gender agreement in these languages, as dis-
cussed in Section 2.2 and their alignment in the
masculine and feminine categories, as discussed
earlier in this section. A deep investigation of this
phenomenon falls outside the scope of this paper.

For Greek as a source language, moderate trans-
fer is achieved to German and Italian, with an av-
erage score of 0.3, and fairly low results on other
languages. The low transfer to Arabic and Beja can
be due to the differences in the number of gram-
matical genders and the distant genealogical rela-
tionship between these languages and Greek. The
near-zero transfer to Russian is likely due to differ-
ences in declension systems, agreement rules, and
the higher number of exceptions and irregularities
in Russian, which is also reflected in the transfer
from Russian to Greek.

6.3 Layer-wise Analysis
In this section, we provide detailed analyses of
usable information in the intermediate representa-
tions for predicting gender across languages. The
results across layers and languages are represented
in Figure 3. The unnormalized results, including
the negative usable information and standard devi-

Figure 3: Mean usable information across language
pairs and layers. Layers are ordered top-down, from the
embedding layer to layer 12.

ations, are also visualized in Appendix A.
The usable information for gender prediction

increases from the initial layer, peaks between
Layers 9-11, and slightly decreases at the final
layer. This trend is visible in both monolingual
and cross-lingual settings. One exception, however,
is German → Beja, where the trend experiences a
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drop after Layer 6. Further distinct visualizations
of the trends by each language are in Appendix B.

The increasing trend in usable information high-
lights the importance of the number of transformer
layers in encoding gender information generaliz-
able across languages. To further assess the sig-
nificance of higher contribution of top layers to
cross-lingual gender transfer, we group the model’s
layers into two groups: (1) the lower layers, includ-
ing the embedding layer (0) and Layers 1–6, and
(2) the upper layers (6–12). For each source-target
language pair, we compute the mean performance
of these two groups and test whether the top layers
are significantly more informative than the lower
layers. We conduct a paired t-test and a Wilcoxon
signed-rank test, comparing the mean performance
of the lower and upper layers, for settings with a
positive sum of usable information across layers.

Both statistical tests show that the usable infor-
mation scores are significantly higher in the upper
layers compared to the lower layers (paired t-test:
t = −7.93, p = 1.12× 10−9 < 0.001; Wilcoxon:
W = 11.00, p = 4.22 × 10−7 < 0.001). These
results suggest that cross-lingual gender transfer is
primarily driven by linguistic features encoded in
the middle to late layers, indicating that semantic
features contribute more to gender assignment than
formal features encoded in lower layers (Corbett
and Fraser, 2000; Tenney et al., 2018).

The increasing trend in the usable information
persists even in the monolingual setting, where the
classifier is trained and tested on the same language
(paired t-test: t = −3.52, p = 0.006 < 0.01;
Wilcoxon: W = 1.0, p = 0.03 < 0.05). This
pattern is also observed in languages where gen-
der is explicitly marked morphologically on nouns
through their formal features. One example is Ital-
ian, with few exceptions in the marking of feminine
and masculine nouns, as mentioned in Section 2.2
(mean lower layer score = 0.82, mean upper layer
score = 0.88). These results support the semantic-
dominance hypothesis proposed by Corbett and
Fraser (2000) and are consistent with the findings
of Sahai and Sharma (2021) for French, which sug-
gest that while orthographic and formal features
alone yield high accuracy, performance improves
further when semantic features are incorporated.

Notably, we observe a consistent performance
drop in the final layer (see Figure 3). A possi-
ble explanation is that the last layer of mBERT
encodes more abstract linguistic knowledge and
long-range dependencies, which may be less rel-

evant for gender prediction (Puccetti et al., 2021;
Peters et al., 2018). Similar declines in the final
layers’ performance are also reported in general
for higher-level linguistic probing tasks (Kunz and
Kuhlmann, 2022).

7 Conclusions

This study explores the cross-linguistic transferabil-
ity of grammatical gender in multilingual language
models, focusing on the extent to which gender
information generalizes across languages with dif-
ferent gender systems. Using variational-usable
(V-usable) information, we quantify how grammat-
ical gender is encoded within and across languages
in mBERT. Our findings reveal that gender infor-
mation is more transferable between languages that
share similar gender categories, whereas genealog-
ical relationships play a secondary role.

Through intra-lingual analysis, we demonstrate
that the complexity of a language’s gender sys-
tem is reflected in the amount of usable informa-
tion available in the intermediate representation of
mBERT. Our cross-lingual results highlight that
languages with two-gender systems, such as Ara-
bic and Italian, exhibit the highest transferability,
particularly to languages with similar gender dis-
tinctions. In contrast, languages with more com-
plex gender systems, such as German and Russian,
show reduced transfer due to the added complexity
of declension systems and irregularities in gender
assignment.

A layer-wise analysis further reveals that inter-
mediate representations in mBERT play a criti-
cal role in encoding gender information. Gender
distinctions are captured more effectively in the
middle-to-upper layers, supporting the idea that
semantic information is more generalizable across
languages than purely morphological features.

Overall, our findings contribute to a deeper un-
derstanding of how grammatical gender is repre-
sented in multilingual LLMs and offer insights into
universal aspects of grammatical gender. Future
research could extend this analysis to other multi-
lingual models (e.g., mGPT, BLOOM) and investi-
gate additional factors influencing gender transfer,
such as word frequency effects, training data com-
position, and finer-grained linguistic features. Ex-
panding the study to a broader range of languages
beyond Indo-European and Afro-Asiatic families
would further enhance our understanding of cross-
linguistic gender representation.
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Limitations

A limitation of this study is the relatively small
selection of languages analyzed. To better gener-
alize cross-linguistic patterns in grammatical gen-
der assignment, it is crucial to evaluate transfer
learning across a more diverse set of languages,
particularly from underrepresented language fami-
lies. Additionally, our analysis is based solely on
mBERT, an encoder-only model, which may limit
the scope of the findings. Expanding the study
to include additional multilingual language mod-
els, such as mT5, BLOOM, or mGPT, could pro-
vide more reliable and comprehensive insights into
the transferability of grammatical gender. Another
potential limitation is the uneven distribution of
training data across languages in mBERT, which
may influence gender transferability. Low-resource
languages likely have weaker representations, af-
fecting gender predictability. A broader investiga-
tion of training data composition and its impact
on gender encoding would help disentangle model-
specific biases from linguistic typology.
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Figure 4: Mean usable information across language pairs and mBERT layers.
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Figure 5: Averaged V-usable information across mBERT layers for each source language, with transfer scores to all
target languages.

Figure 6: Averaged V-usable information across mBERT layers for each source language, with transfer scores to all
target languages, after setting negative values to zero.
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Abstract

Multilingual large language models have
emerged as a promising solution for resource-
constrained settings, with significant efforts
aimed towards improving multilingual capa-
bilities of English-centric pretrained models.
However, the broader cross-lingual implica-
tions of fine-tuning interventions remain under-
studied. This work examines instruction tuning
(IT) over the BLOOMZ model for Question
Answering (QA) in low-resource settings, with
special emphasis on transfer dynamics across
several languages. Our findings reveal two crit-
ical insights: first, IT on the target language
can negatively impact its own performance in
constrained short-span generation tasks due to
overgeneration tendencies; second, in QA tasks,
IT appears to suppress performance in some
interfering languages, thereby enhancing capa-
bilities in some target Indic languages by more
than doubling QA performance. These results
highlight important trade-offs in multilingual
LLM adaptation and enhance our understand-
ing of cross-lingual transfer mechanisms.

1 Introduction

Large language models (LLMs) excel in tasks like
classification, text generation, and information ex-
traction. Recently, cross-lingual alignment has
been widely studied to enhance the multilingual
capabilities of LLMs (Zhu et al., 2024; Zhang et al.,
2024; Hu et al., 2021). Since most of the world’s
languages can be deemed low-resource owing to
the limited amounts of high-quality data (Asai et al.,
2024; Razumovskaia et al., 2024), cross-lingual
alignment is an important problem to tackle.

Prior work on multilinguality has largely focused
on cross-lingual dynamics within English-centric
models and pretrained decoder-only models (Zhao
et al., 2024; Xu et al., 2023; Wendler et al., 2024).
In this work, we study the cross-lingual abilities of

BLOOMZ, a multilingual, multi-task instruction-
tuned model (Muennighoff et al., 2023; Scao et al.,
2022). We focus on a constrained generation task,
closed question answering (QA), that can be ob-
jectively evaluated (unlike open-ended generation
tasks like machine translation) while still being
vulnerable to generation-related artefacts (unlike
classification tasks). We examine the impact of
instruction tuning (IT) on QA on several Indic
and non-Indic languages. Surprisingly, we find
significant performance improvements using lan-
guages that transcend language family relatedness
and surface-level script similarities, indicating that
BLOOMZ exhibits cross-lingual generalization be-
yond typological proximity (Ifergan et al., 2024).
We also present a new multilingual logit lens-based
analysis to provide more insights into cross-lingual
dynamics that result in performance improvements
or degradations. Our analysis reveals two key phe-
nomena: 1) Suppression of the target language
and 2) a tendency to over-generate in the target
language, both of which significantly affect the
model’s output as illustrated in Figure 1.

Alignment with prior work. A growing consen-
sus from recent work (Zhao et al., 2024; Wendler
et al., 2024) is that English-centric models like
Llama (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) process multilingual prompts by in-
ternally mapping to an English “thinking space”
in intermediate layers, while the initial and final
layers are multilingual in nature. Concurrent work
explores language-specific neurons in the multi-
lingual LLMs and reveals their significant roles
in the outer layers (Tang et al., 2024; Zhu et al.,
2024). Kargaran et al. (2024) argues that stronger
alignment between English and non-English mid-
dle layer embeddings correlate with better cross-
lingual transfer.

While current LLMs and adaptation methods
demonstrate promising surface-level cross-lingual
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େଟସ୍ଲା ତାଙ୍କ କୃତିତ୍ଓ ଏବଂ େଶାେମନସିପ ପାଇଁ ପ୍ରସିଦ୍ଧ ଥିେଲ, ପରିେଶଷେର ଏହା ତାଙ୍କୁ ଏକ ଆର୍କିଟାଇପାଲ "ପାଗଳ େବୖଜ୍ଞାନିକ" …
Q: ତାଙ୍କର େବୖଜ୍ଞାନିକ ସଫଳତା ବ୍ୟତୀତ େଟସ୍ଲା କ’ଣ ପାଇଁ ପ୍ରସିଦ୍ଧ ଥିେଲ?
[(Odia Sample) Translation: Apart from his scientific achievements, what was Tesla famous for?]

শେ◌ାମে◌নিসপ
(Contains bengali 

characters)

େଶାେମନସିପ
(Showmanship)

ਦੱਖਣੀ ਕੈਲੀਫ਼ੋਰਨੀਆ ਿਵੱਚ ਇੱਕ ਸੰਯੁਕਤ ਅੰਕਿੜਆਂ ਸੰਬੰਧੀ ਖੇਤਰ, ਅੱਠ ਮਹਾਂਨਗਰੀ ਅੰਕਿੜਆਂ ਸੰਬੰਧੀ ਖੇਤਰ, ਇੱਕ …
Q: ਅਲ ਸੈਂਟਰੋ ਮਹਾਨਗਰੀ ਖੇਤਰ ਅਤੇ ਸੈਨ ਦੀਏਗੋ-ਕਾਰਲਸਬੈਡ-ਸੈਨ ਮਾਰਕੋਸ ਮਹਾਨਗਰੀ ਖੇਤਰ ਕੀ ਬਣਾਉਂਦੇ ਹਨ?
[(Punjabi Sample) Translation: What makes up the El Centro metropolitan area and the San Diego-Carlsbad-San 
Marcos metropolitan area?]

द�क्षिणी ਸਰਹੱਦੀ 
ਇਲਾਕਾ

(Contains hindi 
characters)

ਦੱਖਣੀ ਸਰਹੱਦੀ ਇਲਾਕਾ
(Southern Border 

Region)

Einige moderne Gelehrte, wie Fielding H. Garrison, sind der Meinung, dass die Ursprünge der …
Q: Fielding H. Garrison glaubt, wohin lässt sich die Wissenschaft der Geologie zurückverfolgen?
[(German Sample) Translation: Fielding H. Garrison believes that the science of geology can be traced to where?]

Persien
(Persia)

Persien, nach Ende 
der muslimischen 

Eroberung
(Persia, after the end 
of muslim conquest)

BASE de-MT-IT

❌

❌

❌

✔ 

✔ 

✔ 

Figure 1: Examples demostrating that Instruction tuning on a small German-QA train set (generated via NLLB-MT)
improves Odia and Punjabi performance by suppressing interference from Bengali and Hindi, respectively, but leads
to overgeneration on German. Complete passages omitted for brevity.

abilities (on tasks like style transfer), they struggle
with deeper cross-lingual reasoning and knowledge
transfer. This limitation suggests the presence of a
cross-lingual knowledge barrier, as noted by Chua
et al. (2024). Towards addressing this gap, it has
been observed that fine-tuning on certain languages
can improve the performance of others, indicat-
ing the presence of cross-lingual bridging mecha-
nisms (Singh et al., 2024b; Bai et al., 2024; Ifergan
et al., 2024; Wang et al., 2024; Bai et al., 2023).
Our experiments also support this possibility of
cross-lingual bridging mechanisms. Our findings
align with Ifergan et al. (2024) who documented
BLOOM’s unique ability to facilitate factual recall
across languages with different scripts.

2 Methodology

2.1 Logit Lens

Understanding how knowledge propagates through
the layers of a model is critical for gaining insights
into the internal workings of multilingual LLMs.
One such interpretive tool is the Logit Lens, in-
troduced by nostalgebraist (2020). This technique
provides a mechanism to probe the latent repre-
sentations in intermediate layers by mapping them
directly to vocabulary probabilities using the last
layer’s linear language modeling head. In prior
work, Zhao et al. (2024) used logit lens to inves-
tigate the multilingual alignment of intermediate
representations in Vicuna-13B-v1.5 (Chiang et al.,
2023) and BLOOMZ-7B1 (Muennighoff et al.,
2023). Similarly, Wendler et al. (2024) utilized
logit lens to analyze intermediate representations
in Llama models (Touvron et al., 2023) to measure

the token probabilities for English and Chinese
words across different layers.

2.2 Probing for Language Identification

In our work, we adopt the logit lens framework to
examine the flow of linguistic knowledge across
the layers of BLOOMZ-7B1 for a diverse set of
languages1. Our analysis leverages Cook and Lui’s
(2012) langid.py script, which assigns a probabil-
ity distribution over languages for each token in the
model’s vocabulary. Tokens composed solely of
punctuation or numeric digits (0–9) are excluded,
as they do not belong to a specific language and
add noise to the analysis. The langid.py tool
supports 96 languages, covering all languages in
our experiments. We compute per-layer language
probabilities by multiplying the per-token language
probabilities with the token probabilities obtained
from layer embeddings transformed via the lan-
guage modeling head. To ensure statistical robust-
ness, this process is repeated across multiple test
set samples, and the final latent probabilities are
derived by averaging the language distributions
across all samples. Equation 1 estimates probabil-
ity of language L at a layer j, given a dataset of
task-specific examples D and a vocabulary V .

Pj(L) =
1

|D|
∑

Di∈D

∑

t∈V
Pj(t|Di)P (L|t) (1)

Further details about formatting of the question and
context in each task-specific example is given in
Appendix A.

1Code and dataset is available at https://github.com/
Sachi-27/Multilingual-NLP.
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Figure 2: Comparison of logit lens plots for the BLOOMZ base model before and after German IT (de-IT
i.e.,instruction tuning on the German train set), evaluated on Odia (or), Punjabi (pa) and German (de) xquad test
sets. For or-xquad and pa-xquad, the plots consider samples corrected after de-IT. In contrast, for de-xquad, the
plots consider samples degraded after de-IT. Whether the response is corrected or degraded is decided based on the
Exact Match Metric.

Unlike naive token frequency analyses, this
method gives a probabilistic measure of language
dominance, allowing us to capture subtle shifts in
multilingual representation.

2.3 Experimental Setup

We conduct our experiments using the BLOOMZ-
7B12 model and the multilingually parallel dataset,
IndicGenBench’s XQuAD-IN (Singh et al., 2024a),
which comprises data in 12 Indic languages and
English. From this dataset, we utilize 103 context-
question-answer triplets for training for 10 epochs.
To construct a parallel training set for non-Indic
languages, we leverage translations from NLLB
(Costa-jussà et al., 2022) and Opus-MT (or Mar-
ianMT) (Tiedemann et al., 2023). Non-Indic
test sets are sourced from the XQuAD dataset
in the TensorFlow dataset library (Artetxe et al.,
2019). Additionally, for robustness, we incorpo-
rate IndicQA (Doddapaneni et al., 2023), an out-
of-domain question-answering dataset in Indic lan-
guages3. All experiments are evaluated in a zero-
shot setting. The metrics are reported using Token-
F1 and Exact Match scores (Rajpurkar et al., 2016).

2Choice is constrained by the model’s multilingual nature
and QA-specific instruction tuning.

3Other datasets like TyDiQA and MLQA are leaked into
BLOOMZ and thus unsuitable for evaluation.

More details are in Appendix B.

3 Results and Discussion

Suppression for Performance Improvements.
We highlight Token-F1 scores for 5 Indic lan-
guages: Gujarati (gu), Kannada (kn), Malayalam
(ml), Odia (or), and Punjabi (pa) as these showed
significant improvements in performance. Metrics
are presented in Table 1, with the detailed results
for all languages is available in Appendix D. No-
tably, with just 103 Russian-translated samples, we
observe significant improvements, particularly a
doubling of performance for the low-resource lan-
guage Odia.

Through analysis of the multilingual logit lens
plots (Figure 2), we identify distinct “hill-like" pat-
terns in the middle-layer latents of languages such
as German (de), Estonian (et), Swedish (sv), Xhosa
(xh), Finnish (fi), Indonesian (id), and Malay (ms).
We verify that, to some extent, these languages can
facilitate cross-lingual transfer, in accordance with
the findings of Zhao et al. (2024). We compare the
logit lens plots for or-xquad and pa-xquad test sets
between the base model and the de-IT model (i.e.,
the base model finetuned on German train set). We
focus on samples where the base model answers
wrongly, but the de-IT model provided correct pre-
dictions, shown in Figure 2. These plots highlight
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Method gu kn ml or pa
Base 60.81 48.52 49.07 25.90 55.80
en-IT 56.05 50.96 49.26 31.65 63.56
gu-IT 43.68 48.06 44.73 43.30 53.47
kn-IT 58.76 48.87 50.03 51.68 66.01
ml-IT 58.88 53.74 43.21 52.56 68.88
or-IT 50.32 48.12 45.49 48.11 61.67
pa-IT 53.78 50.06 48.03 48.34 58.63

de-MT-IT 63.90 57.83 52.66 49.86 70.99
et-MT-IT 66.18 56.17 53.06 38.29 68.41
fi-MT-IT 64.48 57.10 55.35 43.78 70.42
ru-MT-IT 59.75 55.66 51.16 56.38 68.32
sv-MT-IT 65.06 58.27 53.72 50.96 70.28
th-MT-IT 65.15 58.92 55.09 51.22 71.80
tr-MT-IT 65.91 56.89 54.20 48.38 71.57
xh-MT-IT 62.93 57.94 54.90 49.27 71.34

Table 1: Token-F1 scores of Instruction Tuned (IT)
models evaluated on XQuAD-IN test set. Languages
denoted with "MT" indicate training data generated
via NLLB machine translation from the English train
set. Performance rankings are visually indicated with
green (highest) and blue (second highest).

Model or (XQuAD-IN) or (IndicQA)
Base 25.90, 17.05 26.82, 13.68
or-IT 48.41, 30.08 35.64, 18.37
de-MT-IT 49.86, 32.94 46.14, 27.91
sv-MT-IT 50.96, 33.52 43.61, 26.11

Table 2: Performance metrics (Token-F1 score, Exact
Match Score) of Instruction-Tuned models evaluated on
Odia test sets from XQuAD-IN and IndicQA.

token suppression in related languages, such as the
reduction in Bengali and Assamese latent proba-
bilities in the final layers for Odia, and the simi-
lar suppression of Hindi, Marathi, and Nepali for
Punjabi. This in turn results in an increase in the
last-layer probabilities for the target languages –
Odia and Punjabi, in this case – that correlates with
performance improvements. Similar trends are also
observed across other languages, as detailed in Ap-
pendix C.

We also conduct out-of-domain evaluations us-
ing the IndicQA Odia datasets, comparing perfor-
mance on or-xquad with different languages for
instruction tuning. Our findings reveal similar per-
formance gains, as shown in Table 2.

High-Resource Fine-Tuning is Not Universally
Beneficial. Contrary to prior work, our find-
ings challenge the notion that fine-tuning on high-
resource languages universally improves perfor-

mance across the multilingual spectrum. The per-
formance metrics of en-IT model on gu-xquad test
set serves as a clear example of this. Surprisingly,
certain medium to low-resource languages, such as
Kannada, Malayalam, Thai and Turkish contribute
significantly to overall model improvement. This
suggests that the effectiveness of fine-tuning lan-
guages in enhancing alignment and generalization
is not solely dependent on data availability.

Self-performance trade-off. Self-IT (i.e., IT us-
ing language X evaluated on test samples of lan-
guage X) appears to negatively impact perfor-
mance on QA-style tasks that require concise, span-
based answers. This is likely due to the model’s
tendency to generate verbose (and sometimes hal-
lucinatory) responses, that negatively affects task
accuracy. Logit lens plots in Figure 2 illustrate
this tendency for de-IT on de-xquad, with rising
latent probabilities in the final layers indicative of
over-generation.

Better Translation Quality Leads to Improved
Cross-Lingual Transfer. Results in Tables 3 and
11 are consistent. For example, in Indonesian,
NLLB generated translations are of better quality,
correlating with better performance on IT. Logit
lens visualizations (Figure 8) shows that IT with
MarianMT translations struggles with Bengali sup-
pression, while IT with NLLB translations enables
Odia to surpass Bengali, aligning with id-IT gains.
More details are in Appendix D.

IT Lang MT Model BLEU gu kn ml or pa
Base - - 60.81 48.52 49.07 25.90 55.80

id
MarianMT 19.99 51.13 44.46 34.40 21.96 55.57

NLLB 46.97 54.52 48.52 37.52 32.95 61.00

xh
MarianMT 8.42 59.36 55.22 53.34 46.18 68.88

NLLB 23.88 62.93 57.94 54.90 49.27 71.34

Table 3: Comparison of IT models trained on machine
translated training data using MarianMT vs NLLB and
evaluated on XQuAD-IN test set. Here, green high-

lights the higher Token-F1 scores and blue highlights
MT with higher BLEU scores.

4 Conclusion

This work highlights the intricate nature of multilin-
gual task specific fine-tuning and its diverse effects
across languages. We demonstrate that instruction
tuning with a very small set of samples is unlikely
to acquire substantial new knowledge, but can in-
duce shifts in linguistic structures, particularly in
the later layers, leading to suppression of inter-
fering language latents, contributing to improved
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performance. However, these improvements are
neither uniform nor guaranteed, as high-resource
fine-tuning does not always yield positive effects,
and self-IT performance trade-offs often emerge.
Moreover, the quality of training data significantly
influences outcomes, with better translation qual-
ity directly correlating with improved multilingual
alignment.

5 Limitations

Our study highlights the significance of latent struc-
tures in the intermediate layers of multilingual mod-
els, emphasizing their role in cross-lingual transfer-
ability. We also demonstrate that instruction tuning
impacts performance across languages differently,
influenced by their intrinsic characteristics and re-
source levels. However, our analysis is subject to
several limitations. Our experiments focus only
on the task of span-based question answering and
one specific multilingual model, BLOOMZ. Other
multilingual models such as Gemma-7B (Team
et al., 2024) and Aya-13B (Üstün et al., 2024) ex-
hibit very irregular and unstructured logit lens plots.
Their plots deviate from the multilingual hypothe-
sis (Zhao et al., 2024), which posits that multilin-
gual models predominantly "think" in English or
Latin-centric representations. Instead, these mod-
els exhibit a significant mix-up in thinking across
languages and deviate from "hill" type latent rep-
resentations, indicating a different latent structure
than what is typically observed in conventional
Latin-centric multilingual models. This restricts
the generalizability of our findings to other mod-
els and task types. Finally, although we observe
that languages like German (de) and Swedish (sv)
trigger suppression to improve performance, the
underlying mechanism behind this phenomenon
remains unclear, warranting further investigation.
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A Multilingual Logit Lens
Implementation Details

The language confidences scores for each token are
obtained from langid.py and stored in a token-
language probability table, T , where Tij represents
the probability of token ti belonging to language j.
Mathematically, this can be represented as:

Ttl = σ
(
clangid(t, l)

)
(2)

where clangid(t, l) denotes the confidence score out-
put by langid.py for token t belonging to each
language l, and σ is the softmax function, ensuring
that the probabilities across all languages sum to
1 for every token. We exlude tokens consisting of
only numbers and punctuation marks, by zeroing
all entries in the table corresponding to such a to-
ken t. For BLOOMZ-7B1, there are 6,269 such
tokens out of 250,680 in its vocabulary.

For each input sample, the logit lens is applied to
the embeddings h(j)n at every layer j of the model
for the last input token xn. The logits obtained
from these embeddings are then transformed into
language probabilities by mapping them with the
token-language probability table T . This mapping
is expressed as:

P (lang = l | h(j)n ) =
∑

t

Ttl · σ(logit(h(j)n ))[t]

(3)

where σ(logit(h(j)n )) represents the logits of the em-
bedding h(j)n obtained after passing the embedding
through the linear modelling head. This operation
provides a distribution over languages for the em-
beddings at every layer j. Additionally, to address
a specific model behavior, we implement proba-
bility zeroing for tokens corresponding to "A:" in
the initial layers. This post-processing step is nec-
essary because the model exhibits a tendency to
overly weight "A:" tokens, due to their presence as
the final token in the input prompt (Table 4).

[Context in Target Language]

Q: [Question in Target Language]
A:

Table 4: Standardized prompt template for Question
Answering, aligned with the format used in IndicGen-
Bench.

B Experimental Setup Details

B.1 Datasets
The dataset splits used in our experiments are re-
ported in Table 5. IndicGenBench’s XQuAD-IN
consists of English (en) and 12 Indic languages:
Assamese (as), Bengali (bn), Gujarati (gu), Hindi
(hi), Kannada (kn), Malayalam (ml), Marathi (mr),
Odia (or), Punjabi (pa), Tamil (ta), Telugu (te), and
Urdu (ur). The test set comprises 1,190 examples
and is fully parallel with the XQuAD dataset from
the TensorFlow Datasets (TFDS) library. For train-
ing, XQuAD-IN includes a subset of 103 examples
from the English training set of TFDS-XQuAD. To
ensure parallelism and maintain consistency across
instruction tuning (IT) experiments, we use this
103-example subset and translate it into other lan-
guages for fine tuning.

While the TensorFlow Datasets (TFDS) version
of XQuAD contains training data for German (de),
Russian (ru), Thai (th), Turkish (tr), Greek (el),
Spanish (es), and Vietnamese (vi), our goal was
to ensure a small parallel dataset across languages
to fairly investigate cross-lingual effects. There
are two key reasons why we opted for additional
translations: 1, Avoiding bias from dataset discrep-
ancies and 2, Consistency in machine translation
sources.

To evaluate generalization, we also incorporate
IndicQA, an out-of-domain question-answering
test dataset covering the same 11 Indic languages as
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Dataset Train Val Test

XQuAD-IN 103 111 1190
TFDS-XQuAD ~80K ~10K 1190
IndicQA - - ~1K

Table 5: Dataset Splits

XQuAD-IN, excluding Urdu. Unlike XQuAD-IN,
IndicQA is not parallel across languages.

B.2 Instruction Tuning Details

We utilized prompts tailored to the QA task as in
Singh et al. (2024a). The causal language model
(LM) is fine-tuned for 10 epochs using the PEFT
LoRA framework (Mangrulkar et al., 2022), with
updates restricted to the query-key-value layers of
BLOOMZ. The fine-tuning follows a causal LM ob-
jective, maximizing the likelihood of generating the
next token given the previous tokens. The process
optimizes the generative probability of the com-
plete prompt, which includes the context, question,
and the correct response as shown in 4. Key hyper-
parameters for fine-tuning include a learning rate
of 2× 10−4, LoRA rank r = 64, and α = 16. All
experiments were conducted on a single NVIDIA
A100-SXM4-80GB GPU, with a max runtime of 3
minutes for 103 samples over 10 epochs.

argmin
ϕ

∑

P={C,Q,R}∈D
− log pϕ(P) (4)

B.3 Evaluation

We conducted evaluations on the XQuAD-IN and
TFDS test sets in a zero-shot setting. The outputs
generated by the LLM are compared with the ref-
erence answers using the widely adopted SQuAD
evaluation metrics (Rajpurkar et al., 2016). This
reports the Token-level F1 score, which measures
the overlap between predicted and ground-truth
tokens, considering partial matches and the exact
match (EM) score, which measures the strict match
between the predicted answer and the reference.
We used evaluations on the base BLOOMZ-7B1
model as the baseline. Our results are based on
a single run, which is reproducible by setting ran-
dom seeds. The generation process follows con-
trolled decoding with top-k sampling (k = 50),
nucleus sampling (top-p= 0.95), and generating a
single output sequence (num_return_sequences=1)
at temperature= 0.1.

C Logit Lens Plots

Figures 3 and 4 display the logit lens plots for
Odia and Punjabi samples where both the base and
de-IT models make the same correct predictions.
Similar, albeit less pronounced, suppressions are
observed for Gujarati, Malayalam, and Kannada
in XQuAD-IN, leading to minimal performance
gains (Figure 5). Comparable trends are observed
for other IT languages, as detailed in Appendix
Figures 6 and 7.

ISO Code Language ISO Code Language
as Assamese bn Bengali
de German el Greek
en English es Spanish
et Estonian fi Finnish
fr French hi Hindi
id Indonesian kn Kannada
ml Malayalam mr Marathi
ms Malay or Odia
pa Punjabi ru Russian
sv Swedish ta Tamil
te Telugu th Thai
tr Turkish vi Vietnamese
xh Xhosa

Table 6: ISO Code to Language Mapping

D Complete Metrics

We report the complete performance metrics on the
XQuAD-IN test set for its 12 Indic languages in
Tables 7 and 8. Additionally, we present scores
on the TFDS XQuAD test sets for 7 languages in
Table 9. Malay (ms) is excluded from our analysis
because NLLB doesn’t support it. We report the
IndicQA test performance for 6 languages across
several selected IT languages in Table 10. Further-
more, we present complete performance metrics
of IT models trained on 6 middle-layer hill lan-
guages (de, et, fi, id, sv, and xh). The training data
are machine translated from English. Performance
comparisons of MarianMT and NLLB generated
train data are provided in Tables 11 and 12. To
measure translation quality, we use BLEU scores
for the training contexts, comparing MT-generated
outputs against Google Translate generations (used
as ground truth).
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Figure 3: Logit lens analysis of the BLOOMZ model before and after German IT (de-IT) on Odia test data (or-xquad).
The plots illustrate three scenarios considering: all samples, samples with correct predictions across both models,
and newly corrected samples—those misclassified by the base model but correctly predicted after de-IT. Samples
with correct predictions on base model have low interference. Correction of predictions occur where Bengali (bn)
and other interference (Assamese (as) and Arabic (ar)) is suppressed and replaced by stronger Odia (or) signals.
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Figure 4: Logit lens analysis of the BLOOMZ model before and after German IT (de-IT) on Punjabi test data
(pa-xquad). The plots illustrate three scenarios considering: all samples, samples with correct predictions across
both models, and newly corrected samples—those misclassified by the base model but correctly predicted after
de-IT. Samples with correct predictions on base model have low interference. Correction of predictions occur when
interfering latents of Hindi (hi), Marathi (mr) and Nepali (ne) are suppressed and replaced by stronger Punjabi (pa)
signals.
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Figure 5: Comparison of logit lens plots for the BLOOMZ model before and after German IT (de-IT), evaluated
on test data from Malayalam (ml), Gujarati (gu) and Kannada (kn) xquad test sets. The plots consider samples
misclassified by the base model but correctly predicted after de-IT. There is a rise in test language probability in the
last layers after de-IT indicating stronger signals correlating with improved performance.
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Figure 6: Comparison of logit lens plots for the BLOOMZ model before and after Swedish IT (sv-IT), evaluated on
test data from Odia (or), Punjabi (pa) and Kannada (kn) xquad test sets. The plots consider samples misclassified by
the base model but correctly predicted after sv-IT. There is a rise in Kannada latent in the last layers after sv-IT
indicating stronger signals correlating with improved performance. Suppression of interfering languages in Odia
and Punjabi after sv-IT correlates with improved performance.
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Figure 7: Comparison of logit lens plots for the BLOOMZ model before and after Thai IT (th-IT), evaluated on test
data from Malayalam (ml), Punjabi (pa) and Kannada (kn) xquad test sets. The plots consider samples misclassified
by the base model but correctly predicted after th-IT. Suppression of interfering last layer latents in Punjabi and
rising last layer signals in Malayalam and Kannada correlate with improved performance.
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Figure 8: Logit lens comparison of the BLOOMZ model before and after Indonesian IT (id-IT), utilizing training
data derived from the English parallel subset of IndicGenBench with machine translations from MarianMT (Helsinki-
Opus) and NLLB. The analysis is conducted on all test samples from Odia (or) and Punjabi (pa) xquad test sets.
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Token F1, EM gu kn ml or pa ur
Base 60.81, 43.94 48.52, 32.35 49.07, 33.44 25.90, 17.05 55.80, 38.73 67.75, 49.07
as-IT 55.41, 35.96 53.20, 34.95 46.77, 31.09 46.28, 28.82 67.10, 46.80 65.30, 46.80
bn-IT 49.60, 30.08 43.47, 27.56 43.52, 27.64 23.55, 14.53 58.35, 34.28 59.13, 37.64
en-IT 56.05, 37.14 50.96, 33.19 49.26, 31.93 31.65, 20.08 63.56, 43.10 62.71, 41.42
gu-IT 43.68, 24.20 48.06, 30.33 44.73, 27.89 43.30, 25.71 53.47, 28.82 62.74, 42.26
hi-IT 48.14, 28.06 47.83, 31.34 45.19, 29.32 31.86, 19.07 58.09, 33.44 58.44, 34.78
kn-IT 58.76, 41.17 48.87, 30.36 50.03, 34.28 51.68, 34.28 66.01, 46.80 65.56, 46.47
ml-IT 58.88, 40.00 53.74, 35.37 43.21, 25.71 52.56, 35.88 68.88, 49.66 65.97, 46.97
mr-IT 55.11, 37.31 51.36, 34.11 48.16, 32.35 49.42, 32.68 63.49, 44.53 64.44, 45.79
or-IT 50.32, 31.68 48.12, 31.59 45.49, 30.25 48.11, 30.25 61.67, 40.08 64.00, 44.87
pa-IT 53.78, 36.05 50.06, 33.19 48.03, 32.77 48.34, 32.43 58.63, 37.56 61.83, 40.00
ta-IT 50.09, 30.25 49.02, 30.33 47.11, 30.92 45.02, 26.80 63.36, 38.99 63.86, 43.19
te-IT 51.30, 31.93 48.34, 31.09 44.89, 29.24 40.19, 24.78 63.73, 41.17 64.15, 45.12
ur-IT 51.71, 33.44 47.55, 30.75 43.94, 27.73 34.37, 21.93 57.88, 35.79 56.70, 33.10

de-MT-IT 63.90, 45.96 57.83, 40.00 52.66, 36.47 49.86, 32.94 70.99, 52.10 66.92, 47.14
el-MT-IT 64.05, 45.54 58.35, 39.66 55.37, 37.89 51.22, 34.20 70.44, 50.08 66.96, 47.73
es-MT-IT 47.87, 29.41 45.70, 28.99 40.85, 25.46 27.60, 17.05 54.73, 32.18 53.29, 30.92
et-MT-IT 66.18, 48.73 56.17, 38.57 53.06, 37.39 38.29, 25.54 68.41, 49.66 67.04, 47.56
fi-MT-IT 64.48, 47.22 57.10, 39.24 55.35, 39.41 43.78, 28.9 70.42, 51.84 66.98, 47.47
fr-MT-IT 48.87, 30.16 46.50, 27.98 39.51, 24.70 36.42, 22.01 52.47, 27.64 51.09, 28.90
id-MT-IT 54.52, 33.94 48.52, 31.51 37.52, 23.94 32.95, 21.42 61.00, 39.83 59.64, 38.57
ru-MT-IT 59.75, 40.75 55.66, 35.63 51.16, 33.94 56.38, 38.40 68.32, 46.97 65.88, 45.71
sv-MT-IT 65.06, 47.39 58.27, 40.58 53.72, 37.14 50.96, 33.52 70.28, 51.59 67.83, 47.98
th-MT-IT 65.15, 46.63 58.92, 40.84 55.09, 39.57 51.22, 33.94 71.80, 52.77 68.01, 48.40
tr-MT-IT 65.91, 48.73 56.89, 39.07 54.20, 37.98 48.38, 32.35 71.57, 32.35 67.68, 48.57
vi-MT-IT 50.41, 31.59 45.16, 28.40 38.10, 25.54 28.50, 18.15 55.50, 31.68 56.66, 35.12
xh-MT-IT 62.93, 43.27 57.94, 40.16 54.90, 38.31 49.27, 31.59 71.34, 51.93 67.97, 48.31

Table 7: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
XQuAD-IN test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token F1 scores. The results are
shown for languages gu (Gujarati), kn (Kannada), ml (Malayalam), or (Odia) and ur (Urdu).
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Method bn te hi mr as ta
Base 64.20, 44.53 58.22, 39.74 73.02, 48.82 65.96, 50.00 51.33, 32.43 63.37, 45.88
as-IT 60.19, 38.31 55.86, 36.89 72.09, 47.31 58.76, 40.50 45.26, 24.03 58.61, 40.75
bn-IT 54.93, 32.85 52.26, 33.94 67.23, 38.15 52.54, 34.03 40.80, 22.18 52.67, 33.27
en-IT 60.58, 39.15 55.11, 35.96 69.79, 42.43 60.61, 43.86 49.42, 28.90 53.04, 34.62
gu-IT 60.91, 39.41 51.55, 32.94 70.38, 44.70 51.79, 33.36 46.60, 27.31 56.48, 38.82
hi-IT 56.86, 33.19 52.32, 34.45 61.60, 31.42 52.83, 31.68 46.50, 27.14 54.12, 35.21
kn-IT 63.33, 42.35 54.98, 37.05 70.84, 46.80 61.72, 44.36 51.19, 31.93 59.53, 41.76
ml-IT 63.32, 41.84 56.18, 38.31 72.31, 47.73 62.36, 46.05 51.01, 31.59 57.91, 41.34
mr-IT 61.75, 40.67 53.32, 35.56 69.95, 45.04 52.19, 34.20 46.75, 28.31 59.51, 42.52
or-IT 58.76, 39.24 50.86, 32.52 70.07, 46.13 55.58, 38.90 22.11, 11.34 59.73, 40.76
pa-IT 61.05, 39.83 54.06, 36.30 69.45, 44.20 56.51, 39.74 47.75, 28.15 57.64, 40.75
ta-IT 60.71, 38.23 49.48, 29.83 70.92, 45.37 56.18, 37.98 49.46, 29.83 46.76, 26.38
te-IT 62.31, 41.76 45.84, 28.23 70.41, 45.79 59.06, 42.10 47.56, 27.98 52.01, 33.86
ur-IT 58.65, 37.22 52.46, 34.45 68.56, 42.01 56.52, 37.14 46.19, 26.97 53.77, 35.63

de-MT-IT 65.30, 44.28 57.80, 39.57 73.29, 47.64 64.47, 47.89 52.80, 32.26 61.20, 43.86
el-MT-IT 65.59, 44.28 57.67, 38.82 73.67, 48.48 65.80, 48.57 53.02, 32.52 60.93, 43.78
es-MT-IT 53.47, 31.68 51.18, 31.76 62.66, 34.36 49.76, 33.69 43.15, 22.94 47.89, 27.39
et-MT-IT 65.55, 45.29 58.88, 41.26 73.55, 48.82 66.77, 50.16 53.50, 33.78 62.73, 46.38
fi-MT-IT 65.49, 44.87 58.86, 40.84 73.65, 48.15 66.20, 49.32 53.64, 33.69 62.21, 45.04
fr-MT-IT 54.60, 32.52 51.06, 32.60 58.73, 29.57 49.76, 30.67 44.92, 26.38 49.62, 31.17
id-MT-IT 56.83, 34.53 54.26, 34.28 67.32, 39.66 55.39, 38.31 47.32, 27.81 52.46, 33.27
ru-MT-IT 64.84, 42.60 58.70, 39.24 73.06, 46.89 64.08, 45.96 53.19, 32.26 58.10, 40.50
sv-MT-IT 64.90, 44.36 57.98, 39.49 73.64, 48.15 66.02, 49.91 53.54, 32.94 62.70, 46.30
th-MT-IT 65.42, 45.21 58.07, 39.91 73.44, 48.73 66.38, 49.83 54.08, 33.36 61.46, 44.95
tr-MT-IT 65.52, 45.21 58.67, 40.67 73.62, 48.90 65.62, 49.66 54.31, 33.44 62.29, 45.71
vi-MT-IT 55.44, 34.11 52.14, 34.20 66.03, 36.80 52.17, 35.71 44.93, 26.55 52.39, 32.52
xh-MT-IT 65.72, 45.21 58.54, 39.91 73.52, 49.15 64.31, 47.73 53.57, 32.43 62.06, 45.21

Table 8: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
XQuAD-IN test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token-F1 scores. The results are
shown for languages bn (Bengali), te (Telugu), hi (Hindi), mr (Marathi), as (Assamese) and ta (Tamil).
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METHOD ru el es de vi th tr
Base 61.95, 45.21 38.31, 28.31 89.15, 75.88 71.93, 57.05 88.07, 76.21 21.04, 16.21 34.47, 24.70
as-IT 57.25, 41.59 34.12, 23.44 88.00, 72.60 67.38, 53.02 86.89, 73.44 19.95, 13.69 29.90, 20.16
bn-IT 55.40, 39.91 35.42, 23.52 85.18, 67.22 64.19, 48.99 84.32, 68.06 19.13, 13.94 21.75, 14.78
en-IT 57.30, 40.92 34.64, 22.26 72.04, 51.59 66.06, 49.49 78.28, 61.00 21.97, 15.63 29.33, 17.81
gu-IT 56.25, 39.07 33.23, 22.43 87.24, 71.68 66.80, 51.59 87.62, 74.53 19.60, 14.36 27.66, 19.15
hi-IT 57.58, 41.09 31.59, 19.66 83.90, 64.78 64.90, 50.42 85.07, 68.48 18.13, 12.43 23.42, 14.53
kn-IT 59.30, 42.60 35.30, 23.94 88.15, 73.69 68.34, 52.85 87.53, 74.28 23.05, 16.55 30.75, 22.26
ml-IT 56.54, 41.68 34.96, 23.60 88.50, 73.44 68.91, 55.21 87.35, 73.94 20.55, 15.29 29.30, 20.33
mr-IT 57.49, 41.68 34.21, 23.27 87.76, 71.68 66.98, 52.43 87.30, 74.20 20.93, 15.96 28.16, 18.82
or-IT 57.53, 41.84 32.95, 21.34 87.40, 72.01 67.46, 52.43 86.25, 72.52 18.77, 13.86 25.05, 17.89
pa-IT 56.79, 41.00 34.13, 22.26 86.75, 72.01 66.83, 51.68 86.22, 72.68 19.91, 13.69 27.08, 19.32
ta-IT 58.90, 42.18 37.33, 25.63 87.29, 73.02 69.08, 54.28 86.75, 73.02 24.05, 17.56 29.55, 18.65
te-IT 56.13, 40.58 35.73, 25.04 88.68, 74.53 66.79, 52.43 86.61, 73.36 21.06, 15.63 30.48, 21.00
ur-IT 53.19, 37.98 32.51, 21.34 86.35, 70.16 66.12, 51.09 85.39, 69.74 15.52, 11.59 23.77, 16.63

de-MT-IT 53.46, 36.80 31.29, 20.33 87.21, 72.18 44.27, 30.33 87.12, 74.11 16.33, 12.60 19.57, 13.61
el-MT-IT 55.06, 38.48 15.01, 3.86 88.28, 74.28 68.16, 51.68 88.15, 75.88 16.87, 11.17 29.29, 17.56
es-MT-IT 51.38, 35.79 27.28, 16.80 50.84, 28.40 56.55, 40.75 68.11, 46.97 15.12, 10.58 18.68, 11.09
et-MT-IT 57.85, 42.35 35.99, 24.45 88.67, 74.53 68.41, 53.27 87.54, 75.04 21.49, 15.71 19.83, 8.31
fi-MT-IT 59.13, 43.52 36.41, 25.12 88.61, 74.45 67.99, 52.35 87.83, 75.46 21.83, 15.12 24.57, 12.68
fr-MT-IT 50.89, 34.45 28.03, 17.14 61.69, 38.90 54.88, 38.15 65.28, 43.69 15.58, 11.34 17.81, 9.91
id-MT-IT 55.06, 37.89 35.02, 22.35 73.75, 51.00 63.90, 47.89 71.68, 48.40 20.23, 14.11 24.91, 15.54
ru-MT-IT 28.94, 12.10 20.71, 12.77 87.37, 71.68 64.80, 48.40 86.76, 73.02 7.67, 4.53 22.16, 15.04
sv-MT-IT 56.89, 41.26 36.57, 24.62 87.64, 72.68 63.10, 48.06 87.09, 73.94 19.67, 14.36 22.98, 14.36
th-MT-IT 60.92, 45.37 34.17, 21.93 89.03, 74.95 71.79, 55.71 87.98, 75.71 8.13, 1.42 32.24, 22.52
tr-MT-IT 58.71, 43.19 35.63, 23.78 89.34, 75.46 68.10, 52.94 87.87, 75.46 21.36, 15.29 16.20, 6.89
vi-MT-IT 51.83, 35.46 29.52, 19.15 74.54, 51.93 62.49, 46.89 67.23, 42.43 14.72, 10.75 20.49, 12.18
xh-MT-IT 59.90, 44.03 35.08, 24.20 88.24, 73.61 68.23, 52.85 87.67, 74.53 19.75, 13.94 22.37, 13.36

Table 9: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
TFDS-XQuAD test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token-F1 scores. The results are
shown for languages ru (Russian), el (Greek), es (Spanish), de (German), vi (Vietnamese), th (Thai) and tr (Turkish).

Model gu hi kn ml or pa
Base 56.88, 41.25 79.56, 64.54 44.65, 28.14 48.48, 31.66 26.82, 13.68 62.84,40. 47
ml-IT 54.19, 35.74 78.15, 63.02 42.84, 25.32 38.88, 22.11 42.53, 25.09 60.87, 37.51

de-MT-IT 58.94, 42.49 79.47, 63.87 45.72, 27.96 48.32, 31.21 46.14, 27.91 63.2, 40.13
ru-MT-IT 58.02, 40.76 78.69, 62.35 47.39, 29.11 49.65, 32.21 46.8, 28.61 62.4, 39.11
sv-MT-IT 56.48, 39.51 79.21, 63.59 43.97, 26.56 48.32, 31.21 43.61, 26.11 62.22, 39.2

Table 10: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the out-
of-domain IndicQA test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with
"MT" indicate training data generated via NLLB machine translation from the English subset. Highest Performance
ranking based on Token-F1 scores are visually indicated with green . The results are shown for languages gu
(Gujarati), hi (Hindi), kn (Kannada), ml (Malayalam), or (Odia) and pa (Punjabi) over models instrution tuned on
ml (Malayalam), de (German), ru (Russian) and sv (Swedish).
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IT Lang MT Model BLEU gu kn ml or pa
Base - - 60.81, 43.94 48.52, 32.35 49.07, 33.44 25.90, 17.05 55.80, 38.73

de
MarianMT 40.57 64.46, 45.54 57.83, 39.41 54.18, 37.98 52.03, 34.78 71.14, 51.00

NLLB 34.13 63.90, 45.96 57.83, 40.00 52.66, 36.47 49.86, 32.94 70.99, 52.10

et
MarianMT 28.27 65.85, 48.65 58.26, 39.91 53.18, 37.31 36.64, 24.03 67.58, 49.41

NLLB 24.33 66.18, 48.73 56.17, 38.57 53.06, 37.39 38.29, 25.54 68.41, 49.66

fi
MarianMT 23.96 65.15, 47.64 58.03, 39.24 54.83, 39.07 46.88, 31.09 69.94, 51.00

NLLB 22.80 64.48, 47.22 57.10, 39.24 55.35, 39.41 43.78, 28.90 70.42, 51.84

id
MarianMT 19.99 51.13, 32.77 44.46, 27.98 34.40, 22.26 21.96, 14.21 55.57, 32.60

NLLB 46.97 54.52, 33.94 48.52, 31.51 37.52, 23.94 32.95, 21.42 61.00, 39.83

sv
MarianMT 56.65 64.88, 46.38 58.14, 40.25 54.15, 37.22 49.50, 32.43 70.86, 51.51

NLLB 41.35 65.06, 47.39 58.27, 40.58 53.72, 37.14 50.96, 33.52 70.28, 51.59

xh
MarianMT 8.42 59.36, 39.15 55.22, 36.72 53.34, 36.97 46.18, 30.33 68.88, 48.48

NLLB 23.88 62.93, 43.27 57.94, 40.16 54.90, 38.31 49.27, 31.59 71.34, 51.93

Table 11: Comparison of MT models trained on machine translated training data using MarianMT (Helsinki-opus)
vs NLLB for different IT languages and evaluated on selected test languages – gu (Gujarati), kn (Kannada), ml
(Malayalam), or (Odia) and pa (Punjabi). Here, green is decided based on higher token-F1 scores and blue
highlights the MT with higher BLEU score.

IT Lang MT Model en bn te hi mr as ta ur
Base - 93.32, 85.79 64.20, 44.53 58.22, 39.74 73.02, 48.82 65.96, 50.00 51.33, 32.43 63.37, 45.88 67.75, 49.07

de
MarianMT 91.81, 83.69 65.47, 44.70 58.28, 39.66 73.71, 48.40 65.06, 48.57 54.63, 34.11 61.81, 45.29 67.30, 47.64

NLLB 91.76, 83.36 65.30, 44.28 57.80, 39.57 73.29, 47.64 64.47, 47.89 52.80, 32.26 61.20, 43.86 66.92, 47.14

et
MarianMT 93.45, 85.88 65.92, 45.71 58.20, 40.42 72.97, 48.40 65.29, 48.31 54.52, 33.69 62.60, 45.71 67.21, 45.76

NLLB 92.93, 85.21 65.55, 45.29 58.88, 41.26 73.55, 48.82 66.77, 50.16 53.50, 33.78 62.73, 46.38 67.04, 47.56

fi
MarianMT 93.03, 85.63 65.10, 44.53 58.77, 40.75 73.46, 48.48 65.83, 50.33 52.54, 33.36 61.66, 44.70 66.75, 47.47

NLLB 93.01, 85.63 65.49, 44.87 58.86, 40.84 73.65, 48.15 66.20, 49.32 53.64, 33.69 62.21, 45.04 66.98, 47.47

id
MarianMT 81.92, 66.38 54.50, 31.17 52.95, 33.52 63.95, 33.69 51.51, 32.85 43.40, 23.44 51.89, 30.58 58.66, 36.47

NLLB 80.08, 65.96 56.83, 34.53 54.26, 34.28 67.32, 39.66 55.39, 38.31 47.32, 27.81 52.46, 33.27 59.64, 38.57

sv
MarianMT 92.43, 84.62 64.46, 43.61 58.04, 39.74 72.98, 47.64 65.48, 48.82 53.49, 32.60 61.35, 45.54 67.14, 47.89

NLLB 92.16, 84.20 64.90, 44.36 57.98, 39.49 73.64, 48.15 66.02, 49.91 53.54, 32.94 62.70, 46.30 67.83, 47.98

xh
MarianMT 92.97, 85.12 65.14, 44.11 57.13, 38.90 73.06, 48.31 62.54, 44.87 50.61, 30.00 59.20, 42.10 66.23, 46.21

NLLB 92.43, 84.78 65.72, 45.21 58.54, 39.91 73.52, 49.15 64.31, 47.73 53.57, 32.43 62.06, 45.21 67.97, 48.31

IT Lang MT Model ru el es de vi th tr
Base - 61.95, 45.21 38.31, 28.31 89.15, 75.88 71.93, 57.05 88.07, 76.21 21.04, 16.21 34.47, 24.70

de
MarianMT 55.36, 38.48 34.48, 23.69 87.60, 72.35 49.14, 33.52 87.54, 74.28 20.38, 15.21 27.25, 18.82

NLLB 53.46, 36.80 31.29, 20.33 87.21, 72.18 44.27, 30.33 87.12, 74.11 16.33, 12.60 19.57, 13.61

et
MarianMT 58.59, 43.27 36.77, 25.46 88.66, 74.78 68.10, 53.86 87.84, 75.12 22.15, 16.30 27.14, 14.70

NLLB 57.85, 42.35 35.99, 24.45 88.67, 74.53 68.41, 53.27 87.54, 75.04 21.49, 15.71 19.83, 8.31

fi
MarianMT 58.00, 41.68 35.52, 24.03 88.68, 74.78 66.77, 50.75 87.43, 75.04 20.90, 14.70 23.07, 11.34

NLLB 59.13, 43.52 36.41, 25.12 88.61, 74.45 67.99, 52.35 87.83, 75.46 21.83, 15.12 24.57, 12.68

id
MarianMT 51.24, 33.69 32.09, 19.83 67.66, 43.78 57.87, 41.17 68.75, 45.37 17.25, 12.43 19.62, 11.00

NLLB 55.06, 37.89 35.02, 22.35 73.75, 51.00 63.90, 47.89 71.68, 48.40 20.23, 14.11 24.91, 15.54

sv
MarianMT 58.30, 41.84 36.01, 24.03 87.78, 73.10 62.59, 46.63 87.63, 74.53 15.90, 11.34 19.19, 12.43

NLLB 56.89, 41.26 36.57, 24.62 87.64, 72.68 63.10, 48.06 87.09, 73.94 19.67, 14.36 22.98, 14.36

xh
MarianMT 56.38, 40.42 30.50, 20.84 87.98, 73.86 65.89, 51.42 87.55, 74.11 16.91, 12.43 20.40, 14.28

NLLB 59.90, 44.03 35.08, 24.20 88.24, 73.61 68.23, 52.85 87.67, 74.53 19.75, 13.94 22.37, 13.36

Table 12: Comparison of MT models trained on machine translated training data using MarianMT (Helsinki-opus)
vs NLLB for different IT languages and evaluated on test languages.
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Abstract

Multilingual Large Language Models (LLMs)
develop cross-lingual abilities despite being
trained on limited parallel data. However, they
often struggle to generate responses in the in-
tended language, favoring high-resource lan-
guages such as English. In this work, we intro-
duce CoCo-CoLa (Correct Concept - Correct
Language), a novel metric to evaluate language
adherence in multilingual LLMs. Using fine-
tuning experiments on a closed-book QA task
across seven languages, we analyze how train-
ing in one language affects others’ performance.
Our findings reveal that multilingual models
share task knowledge across languages but ex-
hibit biases in the selection of output language.
We identify language-specific layers, showing
that final layers play a crucial role in determin-
ing output language. Accordingly, we propose
a partial training strategy that selectively fine-
tunes key layers, improving language adher-
ence while reducing computational cost. Our
method achieves comparable or superior per-
formance to full fine-tuning, particularly for
low-resource languages, offering a more effi-
cient multilingual adaptation.1

1 Introduction

Multilingual LLMs are pre-trained on raw text from
multiple languages, typically consisting of sepa-
rate corpora for each language. Remarkably, de-
spite this lack of explicit parallel data to facilitate
cross-lingual associations, these models develop
an implicit understanding of inter-language rela-
tions and cross-lingual word associations (Wen-Yi
and Mimno, 2023). Instruction tuning further en-
hances their ability to follow prompts, and models
trained on multilingual data often exhibit zero-shot
cross-lingual transfer of instruction-following ca-
pabilities (Chirkova and Nikoulina, 2024). How-

*Equal contribution.
1Our code is available at https://github.com/elnaz

rahmati/CoCo-CoLa/

Figure 1: Evaluation of correctness and language ad-
herence on French input. The soda level visualizes the
CoCo-CoLa ratio, with higher levels indicating stronger
adherence to the input language. Our results show that
partially fine-tuning the final layers of an English-tuned
model on French achieves language adherence and accu-
racy comparable to a model fully fine-tuned on French.

ever, this generalization is uneven: while high-
resource languages in pretraining benefit signifi-
cantly from instruction tuning, lower-resource or
unseen languages often struggle to follow instruc-
tions reliably, frequently exhibiting degraded per-
formance or defaulting to generating output in a
preferred language (Nguyen et al., 2024; Chirkova
and Nikoulina, 2024). To address these issues, we
investigate how multilingual LLMs learn the same
task across different languages.

A crucial step toward addressing the limitations
of multilingual LLMs is understanding how they
internally process and encode multilingual knowl-
edge. Interpretability research has traditionally
focused on monolingual models, leveraging tech-
niques such as representation probing (Orgad et al.,
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2024; Saphra and Lopez, 2019) and model patch-
ing (Ghandeharioun et al., 2024; García-Carrasco
et al., 2024). These methods have been widely
used to examine LLMs’ performance across tasks
such as mathematics (Nikankin et al., 2024; Zhou
et al., 2024), and general knowledge (Jiang et al.,
2024; Burns et al., 2022; Singh et al., 2024; Gol-
goon et al., 2024; Chowdhury and Allan, 2024;
Rai et al., 2024). Studies on model internals sug-
gest that Multi-Layer Perceptrons (MLPs) retrieve
task-relevant information, while attention layers re-
fine and promote the correct response (Geva et al.,
2021; Meng et al., 2022). Furthermore, knowledge
is often identified in earlier layers and reinforced
in later layers (Fan et al., 2024).

However, these interpretability techniques have
primarily been applied to monolingual models,
which were initially dominant due to the early fo-
cus on English-language pertaining (Touvron et al.,
2023; Jiang et al., 2023; Team et al., 2024; Abdin
et al., 2024). The rise of multilingual LLMs trained
on diverse languages (Gao et al., 2024; Shaham
et al., 2024; Soykan and Şahin, 2024), necessitates
extending interpretability research beyond English.
Multilingual LLMs present additional challenges:
representations of different languages are inter-
twined within a shared space; cross-lingual align-
ment varies across languages; and shared tokens
between languages impact their process. These
complexities make it difficult to isolate language-
specific knowledge, benchmark cross-lingual gen-
eralization, and interpret how multilingual LLMs
acquire and apply linguistic information. Given the
prevalence of mid- and low-resource languages, un-
derstanding these mechanisms is crucial not only
for improving cross-lingual transfer but also for
mitigating the “curse of multilinguality” — the per-
formance degradation observed as the number of
supported languages increases.

Recent efforts have begun tackling these chal-
lenges by probing internal representations (Li et al.,
2024), analyzing the emergence of cross-lingual
transfer (Wang et al., 2024a), and studying token
representation alignment on cross-lingual transfer
(Gaschi et al., 2023). Furthermore, researchers
attempt to separate the linguistic abilities from
task abilities by developing language- and task-
specific adapters (Pfeiffer et al., 2020; Parovic et al.,
2023), subnetworks (Choenni et al., 2023), or lay-
ers (Bandarkar et al., 2024). However, despite this
progress, most prior works treat multilinguality as a
monolithic phenomenon, focusing on general cross-

lingual transfer or aggregating all languages into a
single block of linguistic knowledge. Less attention
has been given to understanding how LLMs pro-
cess individual languages at a more granular level,
particularly within the context of task learning.

In this work, we focus on language adherence by
first identifying both shared and distinct patterns in
cross-lingual task acquisition, revealing how mul-
tilingual models internalize and apply linguistic
knowledge (Section 3). We find that training on
a task in one language improves performance in
other languages. However, this benefit is not al-
ways directly observable due to an inherent model
bias towards generating output in a preferred lan-
guage, rather than strictly adhering to the input lan-
guage (Section 4.1). To quantify this bias, we intro-
duce CoCo-CoLa (Correct Concept, Correct Lan-
guage), a novel metric designed to assess a model’s
ability to generate responses in the intended input
language, particularly for languages not included
in supervised finetuning (SFT). Furthermore, we
propose a partial training method that selectively
fine-tunes specific model layers which reveals the
relation between language adherence and model
layers (Section 4.2). This approach enables more
efficient language adaptation, achieving compara-
ble or even superior performance compared to full
model retraining, especially for low-resource lan-
guages. Finally, we show that the issue of language
adherence can be addressed by finetuning only the
final layers of LLMs on a small balanced multilin-
gual data (Section 4.3).

2 Related Work

This work builds on several active research areas
that inform our study of multilingual task learning
in LLMs. Specifically, we draw from (1) Mul-
tilingual interpretability, which helps us analyze
how LLMs process different languages and how
their internal structures influence multilingual task
learning; (2) Representation alignment, which pro-
vides insights into token-level similarities across
languages and how shared representations facilitate
cross-lingual generalization; (3) Adapters, which
separate language knowledge from task-specific
knowledge, offering a structured framework for un-
derstanding their interactions; and (4) Subnetworks,
which identify task- and language-specific parame-
ters within existing models, offering an alternative
to external adapters and directly informing our ap-
proach to efficient partial training.
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Interpretability. Li et al. (2024) use probing
techniques to analyze accuracy changes across lay-
ers in LLMs, showing that high-resource languages
exhibit patterns similar to English, with accuracy
increasing from lower to upper layers. However,
this pattern is inconsistent for low-resource lan-
guages. Wang et al. (2024b) examine cross-lingual
transfer by analyzing neuron overlap in differ-
ent languages using checkpoints from BLOOM’s
pre-training (Le Scao et al., 2023). They find
a strong correlation between neuron overlap and
cross-lingual transfer, though neuron overlap does
not increase monotonically during training, and pat-
terns vary across model sizes. Similarly, Zhao et al.
(2024a) investigate language-specific neurons and
assess how these neurons affect both English and
non-English language performance.

Representation alignment. Beyond studying
multilingualism in LLMs, some research focuses
on improving model performance across languages
through representation alignment. Gaschi et al.
(2023) align English and Arabic model representa-
tions using a bilingual dictionary before fine-tuning
on a target task. Zhang et al. (2024) align En-
glish representations with other languages using
question-translation data before instruction-tuning.
Additionally, Salesky et al. (2023) introduce a pixel
representation method to enhance alignment and
improve translation quality.

Adapters. Another approach for cross-lingual
transfer involves integrating adapters into the
model. This technique is based on the assump-
tion that task-solving knowledge can be sepa-
rated from language knowledge. Pfeiffer et al.
(2020) introduce MAD-X, a framework where lan-
guage and task adapters are trained separately, with
each block’s representations passing through a lan-
guage adapter before a task adapter. Building on
this, later works aim to refine adapter creation
and composition methods. For instance, Parović
et al. (2022) propose BAD-X, which replaces
monolingual adapters with bilingual adapters, im-
proving performance for low-resource languages.
Zhao et al. (2024b) introduce AdaMergeX, where
adapters for language-task pairs are trained in-
dependently and later combined through linear
operations (addition and subtraction) to generate
adapters for new language-task pairs.

Subnetworks. To enhance cross-lingual trans-
fer without adding new parameters, some methods

focus on identifying existing task- and language-
specific parameters within the model. Choenni et al.
(2023) fine-tune models for specific languages or
tasks, extract the most affected neurons, and use the
resulting subnetworks to enable multilingual task
adaptation. Bandarkar et al. (2024) take a layer-
wise approach in multiple steps: they train separate
language- and task-expert models, analyze parame-
ter changes to identify key layers for language and
task learning, and use layer-swapping techniques to
create a math expert in a new language. Consistent
with Zhao et al. (2024a), their findings suggest that
initial and final layers primarily encode linguistic
information, while middle layers are task-specific.

3 Preliminary Analysis

In the preliminary section of this paper, we first iso-
late language effects from task learning by choos-
ing multi-lingual parallel QA data (Section 3.1), ex-
amine fine-tuning performance across multiple lan-
guages (Section 3.2), explore how well LLMs gen-
eralize knowledge across languages (Section 3.3),
and which model components are most affected
during training (Section 3.4). Then, in Section 4.1,
we introduce CoCo-CoLa metric to measure lan-
guage adherence in multilingual LLMs followed
by an efficient partial training method to increase
the model adherence (Section 4.2).

3.1 Setup

To investigate how multilingual LLMs learn a new
task in a monolingual setting, we train four differ-
ent models on a Closed-Book Question-Answering
(CBQA) task. We include two sizes of the Llama-
3.2 series (Dubey et al., 2024) to analyze the effect
of model size on multilingual performance and be-
havior, given that these models are specifically op-
timized for multilingual dialogue. We also include
Llama-3.1-8B as a point of comparison, as it, while
not explicitly optimized for multilingualism, was
trained on a small multilingual corpus. To test gen-
eralizability to multilingualy balanced models, we
include Gemma-3-4B (Team et al., 2025), which
was trained with UniMax (Chung et al., 2023) for
addressing language imbalances.

We select CBQA because it is language-
dependent and demonstrates a model’s ability to act
as a knowledge base (Wang et al., 2021). To isolate
the impact of language differences from the effects
of learning a new task or acquiring new knowl-
edge, we use the Mintaka CBQA dataset (Sen et al.,
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Llama-1B Llama-3B Llama-8B Gemma-4B

Language PLM SFT ∆ PLM SFT ∆ PLM SFT ∆ PLM SFT ∆

English 13.27 38.44 25.17 32.85 53.09 20.24 12.92 50.98 38.06 30.69 53.67 22.98
French 11.30 40.27 28.97 22.90 43.80 20.90 18.53 50.85 32.32 21.67 48.43 26.76
German 7.16 40.34 33.18 23.79 48.10 24.31 11.04 44.35 33.31 23.76 45.79 22.03
Hindi 5.27 21.18 15.91 7.33 30.39 23.06 6.21 35.29 29.08 8.84 43.96 35.12
Italian 7.06 41.58 34.52 21.87 42.73 20.86 16.48 43.22 26.74 20.44 50.05 29.61
Portuguese 5.38 38.23 32.85 20.06 37.04 16.98 18.38 31.11 12.73 19.96 44.16 24.20
Spanish 6.13 41.71 35.58 22.01 45.69 23.68 16.60 45.46 28.86 26.33 48.13 21.80

Table 1: Performance of pre-trained models (PLM), fine-tuned models (SFT), and their difference (∆ = SFT - PLM)
on CBQA data across languages.

2022). Mintaka provides identical question-answer
pairs in nine languages, allowing us to keep the
question content consistent and thus isolate the
influence of language itself. The dataset was orig-
inally created in English and later translated into
Arabic, French, German, Hindi, Italian, Japanese,
Portuguese, and Spanish.

One challenge with Mintaka is that some answer
types are not translated across languages. To keep
question-answer pairs within the same language,
we use Google Translate to convert these answers
into the language of their respective questions and
apply back-translation for accuracy checks. Addi-
tionally, since our goal is to study how models learn
new tasks in languages they have been exposed to
before, we exclude Arabic and Japanese.

3.2 SFT Performance

Our initial step is to assess the model’s ability
to learn the task in each individual language, ef-
fectively measuring how learning difficulty varies
across languages. To do this, we perform SFT for
all models on each language of the CBQA dataset
for three epochs and generate answers for given
questions. Next, we select the best model based on
the validation loss. Further implementation details
are provided in Appendix A.1.

Table 1 shows a comparison of accuracy between
the pre-trained model and the best checkpoint of the
language-specific SFT model across different lan-
guages. SFT significantly improves performance
for all languages with relatively consistent accu-
racy levels, except for Hindi in all Llama model
sizes and Portuguese for Llama-8B, which exhibit
notably lower accuracy. This discrepancy is likely
due to undertraining. Among the SFT models, En-
glish achieves the highest accuracy in all models,
except Llama-1B that performs best in Spanish.
The largest accuracy gains are observed in En-

glish (+38.06%) for Llama-8B, German (+24.31%)
for Llama-3B, Spanish (+35.58%) for Llama-1B,
and Hindi (+35.12%) for Gemma-4B, indicating
that these languages benefited the most from fine-
tuning. The comparable accuracy across languages
indicates comparable knowledge acquisition.

However, two critical questions remain: (1) Do
models share learned knowledge uniformly across
languages, or do they correctly answer distinct sub-
sets of questions depending on the language? (2)
Are there specific parts of the model that are respon-
sible for encoding language-specific information?
To address these questions, we first analyze the
overlap in correct answers across languages using
the Jaccard Index, followed by an investigation of
parameter updates to determine whether certain
components of the model specialize in handling
linguistic differences.

3.3 Cross-lingual Task Knowledge

To further investigate the extent of cross-lingual
task knowledge transfer within the model, we an-
alyze the overlap in correct answers across lan-
guages. Specifically, we measure how consistently
the model arrives at the same correct answers in
different languages, providing insight into whether
knowledge is shared across languages. It is im-
portant to note that there is no overlap between
the knowledge present in the training and evalua-
tion data. This ensures that any correct answers
during evaluation are derived from knowledge ac-
quired during pretraining rather than memoriza-
tion. Consequently, the model’s ability to generate
correct responses across languages indicates that
it has internalized the underlying task knowledge
from the training data, rather than relying solely
on language-specific cues. Let LA and LB repre-
sent two languages, and let CLA

denote the set of
correct answers for LA. To quantify the degree
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Figure 2: Jaccard similarity index between different languages, measuring the proportion of overlapping correctly
answered questions between pairs of languages.

of shared task knowledge between languages, we
compute the Jaccard Index, also known as Intersec-
tion over Union (IoU), between CLA

and CLB
(see

Equation 1). The Jaccard Index is a natural choice
for this analysis as it directly measures the propor-
tion of overlapping correct answers relative to the
total distinct answers across languages. This al-
lows us to assess knowledge consistency and cross-
lingual transfer within the model.

IoU(A,B) =
|CLA

∩ CLB
|

|CLA
∪ CLB

| (1)

The results, shown in Figure 2, indicate that on
average approximately 60% of correctly answered
questions are shared across languages for all mod-
els, suggesting a strong degree of shared knowl-
edge among languages. However, Hindi exhibits
significantly lower overlap with other languages in
Llama-3.2 models, suggesting weaker generaliza-
tion for this language. Interestingly, in Llama-8B,
Hindi shows higher overlap compared to Llama-
3.2 models, but Portuguese experiences a notable
drop in overlap. Additionally, Llama-3B demon-
strates a higher rate of shared knowledge compared
to Llama-8B, despite both models achieving com-
parable accuracy across languages (see Table 1).
This highlights the importance of multilingual opti-
mization in enhancing cross-lingual transfer among
languages. For Gemma-4B, despite comparable
accuracy across languages, the overall overlap is
lower than that observed in the Llama models, in-
dicating less cross-lingual knowledge sharing.

3.4 Parameter Updates
To investigate language-specific encoding in LLMs,
we analyze parameter updates during fine-tuning
and compare them across languages to determine
whether certain components of the model special-
ize in processing linguistic information. Meng et al.
(2022) suggest that MLP modules primarily store

knowledge, while attention modules control infor-
mation retrieval and selection. SFT models cor-
rectly answer approximately 40% of evaluation
questions in all languages. However, they require
fine-tuning to improve their ability to select and out-
put the correct information. As a result, we expect
substantial modifications in the attention modules,
particularly in the final layers, while changes in the
MLP modules remain limited. Since these datasets
differ only in language, not in task or knowledge,
analyzing the model updates allows us to pinpoint
which layers or components are most crucial for
learning language-specific representations.

To compute parameter update, we follow Ban-
darkar et al. (2024) and calculate the average pa-
rameter modifications for each module in each
layer. Denoting the pre-trained weight matrix as
Wp and the fine-tuned weight matrix as Wf , the
average magnitude of differences is given by:

∆W =
1

n

n∑

i=1

|W (i)
p −W

(i)
f | (2)

The results for English and French are shown in
Figure 3, with the remaining languages in Figure 6.
As expected, significant modifications occur in the
attention modules of the final six layers for Llama-
1B and the final 14 layers for Llama-3B, Llama-8B,
and Gemma-4B models across all languages. How-
ever, in Llama-3.2 models and Gemma-4B model,
we observe substantial changes in the MLP mod-
ules in these layers for all languages except En-
glish, suggesting that these variations might be tied
to language-specific processing rather than task-
related learning. Surprisingly, for Llama-8B, even
the model fine-tuned on English shows a high rate
of change similar to other languages. Considering
the unexpectedly low accuracy of the Llama-8B
pre-trained model across all languages compared to
Llama-3B, this larger modification could be related
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Figure 3: Heatmaps of parameter update magnitudes during monolingual fine-tuning on English (top) and French
(bottom) across different LLMs. Gray boxes show MLP modules where parameter update differs between languages.

to learning the task or acquiring new knowledge
rather than just language adaptation.

4 Approach

Our previous analysis suggests that while task
knowledge is largely shared across languages, the
way this knowledge is processed and accessed dif-
fers. Although a Jaccard Index analysis revealed
substantial overlap in correct answers, our inves-
tigation of parameter updates showed that models
trained on non-English languages required more
substantial modifications in their MLP modules
compared to English, even when achieving compa-
rable accuracy. This raises an important question:
Do these modifications reflect deviations in knowl-
edge acquisition, or are they more related to lan-
guage generation? In this section, we first introduce
a metric to analyze linguistic bias in multilingual
LLM outputs. Then, we propose a partial training
strategy aimed at reducing this bias by selectively
fine-tuning specific model components.

4.1 Correct Concept in Correct Language

According to Dubey et al. (2024), only 8% of the
pre-training data used for Llama-3 models is mul-
tilingual, while the rest is dominated by English
general knowledge, mathematics, and code. This
suggests a strong bias toward English. Given this
imbalance, we hypothesize that the observed MLP
module changes in non-English languages may not
indicate new knowledge acquisition but rather ad-
justment in language selection during response gen-
eration. Supporting this, Chirkova and Nikoulina
(2024) found that when Llama-2-13B is instruction-
tuned on English and tested in other languages, it
generates responses in a different language from
input language in over 30% of cases, with this be-
havior influenced by training hyperparameters.

To investigate this further, we introduce CoCo-
CoLa (Correct Concept - Correct Language), a
metric designed to measure how well the model
adheres to the input language while generating cor-
rect responses. Let Li denote the input language,
CLi→Lo the set of correct output in language Lo

when passing language Li as input. We define the
CoCo-CoLa ratio as follows:

CoCo-CoLa(Li) =

|CLi→Li −
⋃

Lo ̸=Li

CLi→Lo |

|CLi→Li ∆
⋃

Lo ̸=Li

CLi→Lo |
(3)

The denominator uses the symmetric difference
between CLi→Li and correct answers in other lan-
guages because many answers involve named en-
tities, such as well-known places, books, and indi-
viduals. Since most of the languages in this work
use similar scripts, named entities often appear in
identical forms across multiple languages. This
redundancy leads to overlap between CLi→Li and⋃

Lo ̸=Li
CLi→Lo , which the symmetric difference

helps mitigate by ensuring that shared named enti-
ties do not artificially inflate the metric.

Given that these models are primarily trained on
English, when the input is in Li the output is usu-
ally either Li or English. Thus,

⋃
Lo ̸=Li

CLi→Lo is
largely dominated by CLi→en, meaning that most
language switching occurs between the input lan-
guage and English rather than other languages.

To further simplify the calculation, we filter the
data to include only questions where the correct
answers in Li and English are different. Under this
condition, CLi→Li ∩ CLi→en = ∅, allowing the
CoCo-CoLa ratio to reduce to:

CoCo-CoLa(Li) =
|CLi→Li |

|CLi→Li |+ |CLi→en|
(4)
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Table 2: CoCo-CoLa ratio (Ratio) and cumulative accuracy (Acc) of pretrained model (PLM), English-tuned model
(→ en), and Li-tuned model (→ Li) across languages for Llama-1B, Llama-3B, Llama-8B, and Gemma-4B.

Language Metric Llama-1B Llama-3B Llama-8B Gemma-4B

PLM → en → Li PLM → en → Li PLM → en → Li PLM → en → Li

French
Acc 12.07 52.66 55.73 20.57 62.55 52.97 12.89 58.64 66.01 18.67 65.16 63.23
Ratio 49.42 13.47 88.58 52.51 14.73 89.45 58.11 12.32 87.54 50.77 19.22 90.14

German
Acc 8.05 51.97 50.92 16.99 49.30 57.01 10.43 59.95 52.27 15.26 64.59 60.24
Ratio 53.87 10.50 91.02 56.53 19.64 89.26 57.49 11.03 87.21 42.82 15.23 92.64

Hindi
Acc 8.65 29.34 27.42 15.77 38.26 39.67 9.79 37.29 39.21 12.58 47.81 49.66
Ratio 43.16 13.28 90.79 31.93 10.04 77.47 43.67 10.74 90.68 40.86 9.39 97.19

Italian
Acc 7.76 51.35 62.39 16.63 53.17 46.02 11.77 61.88 58.55 14.62 62.99 67.98
Ratio 51.32 10.00 93.60 56.68 16.29 87.91 52.11 10.90 91.35 48.76 14.84 91.08

Portuguese
Acc 10.22 54.85 57.57 17.60 55.52 50.64 16.23 60.75 42.90 17.11 63.81 61.16
Ratio 56.40 12.73 91.07 63.37 15.99 85.10 51.41 11.49 90.73 51.89 14.98 90.69

Spanish
Acc 9.75 57.52 59.02 19.17 57.55 60.38 14.13 58.34 54.27 17.69 65.88 60.65
Ratio 52.28 12.01 91.24 61.68 15.84 89.18 61.98 9.40 91.35 51.15 14.70 91.36

To evaluate language adherence and accuracy,
we pass the input in Li to pre-trained, en-tuned,
and Li-tuned models. We then compute the CoCo-
CoLa ratio and the cumulative accuracy, defined as
the proportion of correct answers either in Li or En-
glish. The results, presented in Table 2, show that
while the en-tuned models and theLi-tuned models
achieve comparable cumulative accuracy on Li in-
put, the CoCo-CoLa ratio is significantly lower for
the en-tuned model. This suggests that although the
en-tuned model can correctly process the question
in Li and retrieve the correct answer at the same
rate as the Li-tuned model, it frequently generates
the answer in English instead of Li. Furthermore,
analyzing the CoCo-CoLa ratio of the pre-trained
model reveals that the model already exhibits a bias
toward generating English responses, though this
bias is less pronounced than in the en-tuned model.
These findings support our hypothesis that the vary-
ing rate of parameter updates across languages is
related to output language preference. Since the
model is already inherently biased toward English,
en-tuned results in the least MLP change compared
to other languages.

4.2 Partial Training for Language Adaptation

In this section, we aim to disentangle task learn-
ing from output generation in language Li. Our
previous results reveal two key observations. First,
as shown in Section 4.1, both the en-tuned model
and the Li-tuned model achieve comparable cumu-
lative accuracy on Li, indicating that they learn
the task equally well. The only difference is their
CoCo-CoLa score, meaning that while both mod-
els understand the task to the same degree, they

generate outputs in different languages. Second,
from Section 3.4, we observed that the en-tuned
and Li-tuned models undergo different parameter
updates. Some of these updates are necessary for
learning the task itself, while others may specifi-
cally steer the model toward producing responses
in the intended language.

Based on these observations, we hypothesize that
fine-tuning specific layers of an en-tuned model on
Li can enable it to generate responses in Li without
requiring full model updates. Specifically, these
layers correspond to the parameters that were up-
dated in the Li-tuned model but not in the en-tuned
model. To test this hypothesis, we first identify
the layers that undergo language-specific updates.
We then fine-tune only these layers in the en-tuned
model and compare the results to fine-tuning other
layers. This comparison allows us to isolate the
parameters responsible for output language.

Identifying language layers. We select layers
for partial training based on the variation in pa-
rameter update rates observed in Section 3.4. For
the Llama-1B model, we train three variants by
unfreezing different sets of layers: (1) layers 11-
16, (2) layers 1-5 (chosen to match the parameter
count of the final six layers), and layers 1-10 (in-
cluding all parameters except the final six). We
expect the first variant to be the most language-
related and to result in the largest improvement in
the CoCo-CoLa ratio, while the other two should
have a smaller effect. For Llama-3B and Gemma-
4B, we similarly train two variants each: unfreez-
ing layers 15–28 and 1–14 for Llama-3B, and lay-
ers 21–34 and 1–20 for Gemma-4B. Again, we
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Figure 4: Cumulative accuracy and Li accuracy on en-tuned (SFTen) and Li-tuned models (SFTLi
), along with

partially trained models, across all Llama model sizes.

expect the final-layer variants to have a stronger
relationship to language generation. For Llama-8B,
which does not show clear variations in update rates
across languages (as noted in Section 3.4), we in-
stead select layers based on the most updated MLP
modules. Specifically, we choose layers 16–32 and
layers 1–15 for partial training to determine which
part of the model is more responsible for language
generation. Through this analysis, we aim to ver-
ify whether the final layers play a greater role in
controlling the output language

Partial training evaluation. To evaluate the ef-
fectiveness of partial training, we compare all par-
tially trained models to both their fully en-tuned
and fully Li-tuned models. Figure 4 presents cu-
mulative accuracy and Li accuracy across three
languages, while results for the remaining three
languages are included in Figure 7. In addition,
CoCo-CoLa ratios for partially trained models are
also available in Appendix A.4, providing further
insight into the extent to which partial fine-tuning
improves output language consistency.

As shown in Figure 4, among the partially
trained models, unfreezing the final layers results
in the highest accuracy and CoCo-CoLa ratio for all
models, highlighting the crucial role these layers
play in determining the output language. Notably,
the accuracy of this partially trained configuration
closely approaches that of the fullyLi-tuned model,
suggesting that the earlier layers already encode
sufficient information for question answering, even
without direct exposure to Li during training. In-
terestingly, Hindi-which initially exhibited lower

performance than other languages-benefits signifi-
cantly from cross-lingual transfer, achieving better
results with partial training than with full train-
ing in both Llama-3.2 models. Llama-3B demon-
strates even stronger cross-lingual transfer, with
improved accuracy for Italian and Portuguese as
well. For Llama-8B and Gemma-4B, training the
second half of the model yields the highest CoCo-
CoLa ratio; however, the differences in Li accu-
racy across partial training configurations are less
pronounced than in the Llama-3.2 models. These
models also show improved accuracy with partial
training compared to full training for German, Ital-
ian, and Portuguese in Llama-8B, and for French,
Portuguese, and Spanish in Gemma-4B. For low-
resource languages, partially training only the final
layers of an en-tuned model can achieve similar or
even better accuracy compared to full fine-tuning in
the target language. Beyond its effectiveness, par-
tial training is significantly more efficient, reducing
training time to half and memory usage to 65%
of full training. Furthermore, the model achieves
higher accuracy in fewer training steps, requiring
less than one epoch, meaning it is trained on fewer
data points.

These findings confirm the hypothesis that the
final layers are linked to output language selection,
whereas initial and middle layers have less effect
on the output language. Our results are aligned
with concurrent work suggesting that LLMs pro-
cess input in three stages: understanding the in-
put, reasoning and knowledge retrieval in a shared
space among languages, and generating output
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French German Hindi Italian Portuguese Spanish Average

Model Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc

Llama-1B 82.15 47.53 64.47 39.02 90.75 28.00 83.58 50.39 73.89 41.51 72.72 41.65 77.93 41.35
Llama-3B 78.37 42.19 79.55 36.14 85.34 33.54 80.11 41.61 74.27 49.04 78.92 44.22 79.43 41.12
Llama-8B 75.95 67.62 85.29 49.75 96.89 32.00 87.83 59.77 88.63 64.55 86.94 38.01 86.92 51.95
Gemma-4B 88.35 57.38 88.04 55.88 83.71 37.32 90.22 64.21 87.00 60.69 87.34 61.81 87.45 56.22

Table 3: CoCo-CoLa ratio (Ratio) and cumulative accuracy (Acc) of models partially trained on balanced multilingual
data, with averages across all languages.

(Wendler et al., 2024; Dumas et al., 2025; Schut
et al., 2025). Although it remains debated whether
this shared knowledge space is language agnostic
(Dumas et al., 2025) or whether the model simply
thinks in English (Wendler et al., 2024; Schut et al.,
2025), these works, alongside ours, all suggest that
the process happening in middle layers is not de-
pendent on the input language. However, what
previous works overlooks is that the final stage is
defective and cannot generate the response in the
correct language. We believe this phenomenon has
led to misleading evaluations and the belief that
multilingual LLMs think better in English (Etxaniz
et al., 2024). Our work emphasizes the importance
of considering both correctness and language ad-
herence, as relying on output accuracy against the
ground truth does not provide a complete picture
of a model’s ability to reason and operate in non-
dominant languages.

4.3 Improving Language Adherence in
Multilingual LLMs

As demonstrated in Section 4.1, multilingual LLMs
exhibit a strong linguistic bias toward English, the
most prevalent language in their training data. In
Section 4.2, we further established that this bias
is closely linked to the model’s final layers. To
investigate whether this bias can be mitigated and
to enable the model to better adhere to the input
language, we take the en-tuned model and, rather
than adapting it to a single target language, we par-
tially fine-tune the language-related layers using a
balanced multilingual dataset, where all languages
appear with equal frequency in the training data.

As shown in Table 3, the average CoCo-CoLa
ratio for multilingually fine-tuned Gemma-4B and
Llama-8B reaches 87.45% and 86.92%, respec-
tively, while Llama-1B and Llama-3B achieve
slightly lower ratios of 77.93% and 79.43%. These
results are similar to the monolingual models par-
tially trained for each language (Appendix A.4).
These findings indicate that, even when starting

from a model pretrained on biased data, fine-tuning
only the final layers on a balanced multilingual
dataset substantially improves language adherence
across all languages. Notably, for Llama-8B and
Gemma-4B, the accuracy of the resulting multilin-
gual model is competitive with models fully fine-
tuned for each individual language, despite using
only 200 datapoints per language during training.

5 Conclusion

In this work, we first analyzed shared knowledge
across seven languages and identified key differ-
ences in the parameters most affected when train-
ing models for each language. Building on these
insights, we proposed the CoCo-CoLa ratio, a met-
ric for evaluating language adherence in multilin-
gual LLMs, and used it to evaluate both pre-trained
and fine-tuned LLMs. Our findings show that pre-
trained models tend to generate English outputs re-
gardless of the input language and that fine-tuning
on English further amplifies this bias.

To address this problem, we leveraged insights
from parameter updates and CoCo-CoLa results to
develop a partial training method that improves lan-
guage adherence in English-trained models. Our
analysis demonstrated a more efficient alternative
to full fine-tuning, achieving comparable or even
superior performance while significantly reducing
the number of updated parameters. Additionally,
we showed that partial training on balanced multi-
lingual data achieves similar language adherence to
monolingual training. Given the widespread avail-
ability of instruction-tuned and task-specific En-
glish models, partial training of final layers presents
a fast and efficient approach for improving lan-
guage adherence and adapting LLMs to new lan-
guages.

Limitations

We acknowledge that training hyperparameters can
influence the linguistic bias of fine-tuned models,
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as highlighted by Chirkova and Nikoulina (2024).
For instance, while smaller learning rates may re-
duce bias, they can also lead to degraded task per-
formance. Due to resource constraints, we used a
single set of hyperparameters optimized for task
performance. Additionally, we applied the same
hyperparameter settings across all languages and
model sizes, though fine-tuning them individually
for each model-language pair could potentially
yield better results.

Moreover, linguistic bias in pre-trained models
and the observed trends in parameter updates across
languages are influenced by factors such as model
architecture, training procedures, data proportions,
and even the order in which the model encoun-
ters training data. As a result, the specific layers
we identified for each model size may differ when
tested on other LLMs. Additionally, our obser-
vations suggest that certain languages are under-
trained in Llama models. However, due to the lack
of publicly available information on training data
and procedures, we cannot make definitive claims
regarding language-specific training discrepancies.

Another limitation is that our study focuses on
languages that mostly come from the same lan-
guage family, and are relatively close to each other.
As a result these languages exhibit significant to-
ken overlap, facilitating cross-lingual transfer. The
models we evaluated were also trained on a lim-
ited set of languages with similar characteristics.
The studied languages mainly fall into the mid- or
high-resource category, meaning our findings may
not generalize to massively multilingual models
trained on a more diverse set of languages.

Ethical Statement

This research investigates language adherence in
multilingual large language models and proposes
partial training methods for efficient adaptation.
Our work aims to enhance linguistic fairness and
accessibility by mitigating biases that favor high-
resource languages. We acknowledge that training
data composition and fine-tuning decisions can in-
troduce unintended biases, which may dispropor-
tionately affect underrepresented languages. While
our findings contribute to more equitable multi-
lingual model adaptation, they are limited to lan-
guages present in the model’s pretraining data and
may not generalize to unseen languages. We en-
courage further work to assess our method’s appli-
cability to a broader set of languages, particularly

low-resource and non-Indo-European languages.
This study does not involve human subjects, per-

sonal data, or user interactions, and we adhere to
ethical guidelines for computational research. Our
experiments were conducted using publicly avail-
able models and datasets, ensuring transparency
and reproducibility.
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A Appendix

A.1 Implementation details

We experimented with dropout rates of 0.1 and
0.05, and learning rates of 5e-5, 1e-5, 5e-6, 1e-6,
5e-7, and 1e-7 for training on the English CBQA
task. The best setting (dropout = 0.1, learning rate
= 5e-6) was selected based on the minimum valida-
tion loss. These hyperparameters were used consis-
tently across all languages and models throughout
the paper.

For all training runs in our experiments, we used
the hyperparameters listed in Table 4. All experi-
ments were conducted with a fixed random seed of
42. We implemented our models using Transform-
ers 4.46.3 and Torch 2.5.1, with Accelerate 1.1.0
and DeepSpeed 0.16.1 for multi-GPU training. All
experiments were run on NVIDIA RTX A6000
GPUs, with all experiments taking approximately
48 hours on eight GPUs.

Parameter value

num_epochs 3
save_steps 100
eval_steps 100
logging_steps 100
batch_size 64
gradient_accumulation 1
weight_decay 0.01
bf16 True

Table 4: Training hyperparameters

A.2 Language specific knowledge

Beyond measuring similarities between languages
using the Jaccard Index, we also analyze differ-
ences by identifying answers that are known in
language A but unknown in language B. This al-
lows us to examine the distribution of languages
within the 40% of answers that are not correctly
predicted by both languages. The results, presented

in Figure 5, reveal an almost symmetrical distribu-
tion of known and unknown answers across most
language pairs. However, notable deviations oc-
cur for languages with significantly lower overall
accuracy. Specifically, Hindi shows a greater dis-
parity in the Llama-3.2 models, while both Hindi
and Portuguese exhibit this trend in the Llama-8B
model.

A.3 Parameter update
Due to space constraints, the main text presents
results for only four languages. However, the anal-
ysis of model updates for Italian, Spanish, and Por-
tuguese follows similar trends and can be found in
Figure 6. These additional results confirm the pat-
terns observed in other languages, reinforcing our
findings on language-specific parameter updates.

A.4 Partial Training
Due to space limitations, the results of partial train-
ing on Italian, Portuguese, and Spanish are pro-
vided in Figure 7. Additionally, the CoCo-CoLa
ratios for both partially trained and fully trained
models are shown in Table 5 for Llama-1B, Ta-
ble 6 for Llama-3B, and Table 7 for Llama-8B.
These comparisons highlight the consistently supe-
rior CoCo-CoLa ratio in the partial training of final
layers.

Language SFTen 1-5 1-10 11-16 SFTLi

French 13.47 44.63 50.22 78.72 88.58
German 10.50 25.12 31.77 76.66 91.02
Hindi 13.28 56.82 58.49 92.73 90.79
Italian 10.00 32.12 65.17 86.18 93.60
Portuguese 12.73 45.18 56.33 75.43 91.07
Spanish 12.01 34.61 34.41 81.66 91.24

Table 5: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.2-1B models.

Language SFTen 1-14 14-27 SFTLi

French 14.73 54.64 81.18 89.45
German 19.64 71.40 86.04 89.26
Hindi 10.04 26.40 88.41 77.47
Italian 16.29 65.45 86.91 87.91
Portuguese 15.99 61.76 84.45 85.10
Spanish 15.84 72.38 85.50 89.18

Table 6: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.2-3B models.
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Figure 5: Difference in known knowledge between each pair of languages across different model sizes.

Language SFTen 1-15 16-31 SFTLi

French 12.32 78.93 87.77 87.54
German 11.03 81.91 88.69 87.21
Hindi 10.74 67.08 96.06 90.68
Italian 10.90 78.92 90.28 91.35
Portuguese 11.49 74.68 90.11 90.73
Spanish 9.40 75.82 93.55 91.35

Table 7: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.1-8B models.

Language SFTen 1-20 21-34 SFTLi

French 19.22 64.26 89.99 90.14
German 15.23 86.70 93.03 92.64
Hindi 9.39 92.74 96.30 97.19
Italian 14.84 85.03 91.20 91.08
Portuguese 14.98 70.93 88.40 90.69
Spanish 14.70 68.14 90.19 91.36

Table 8: CoCo-CoLa Ratios (%) for different languages
across finetuned Gemma-3-4B models.
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Figure 6: Average magnitude of difference between pretrained and monolingually fine-tuned models for Llama-1B,
Llama-3B, and Llama-8B.
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Figure 7: Cumulative accuracy and Li accuracy on en-tuned (SFTen) and Li-tuned models (SFTLi
), along with

partially trained models, across all Llama model sizes.
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Abstract

Large language models (LLMs) demonstrate
exceptional performance on complex reason-
ing tasks. However, despite their strong rea-
soning capabilities in high-resource languages
(e.g., English and Chinese), a significant per-
formance gap persists in other languages.
To investigate this gap in Korean, we intro-
duce HRM8K, a benchmark comprising 8,011
English-Korean parallel bilingual math prob-
lems. Through systematic analysis of model
behaviors, we identify a key finding: these
performance disparities stem primarily from
difficulties in comprehending non-English in-
puts, rather than limitations in reasoning ca-
pabilities. Based on these findings, we pro-
pose UST (Understand, Solve, and Translate),
a method that strategically uses English as an
anchor for reasoning and solution generation.
By fine-tuning the model on 130k syntheti-
cally generated data points, UST achieves a
10.91% improvement on the HRM8K bench-
mark and reduces the multilingual performance
gap from 11.6% to 0.7%. Additionally, we
show that improvements from UST general-
ize effectively to different Korean domains,
demonstrating that capabilities acquired from
machine-verifiable content can be generalized
to other areas. We publicly release the bench-
mark, training dataset, and models1.

1 Introduction

Large language models (LLMs) have made remark-
able progress in reasoning tasks, often surpassing
expert human performance (OpenAI, 2024; An-
thropic, 2024). However, this exceptional reasoning
capability is primarily observed in high-resource
languages, with significant performance gaps in
lower-resource languages (Huang et al., 2023; Li
et al., 2024). This disparity likely stems from
LLMs’ difficulty in transferring their foundational

*Equal Contribution
1https://huggingface.co/HAERAE-HUB

capabilities, including reasoning skills learned in
high-resource languages like English or Chinese,
to lower-resource languages (Chen et al., 2023;
Dubey et al., 2024).

To investigate this gap in Korean mathemati-
cal reasoning, we introduce HRM8K, a bilingual
benchmark comprising 8,011 questions in both
Korean and English. The questions are carefully
curated from existing benchmarks (Cobbe et al.,
2021; Hendrycks et al., 2021; Gao et al., 2024) and
Korean examinations to create a perfectly parallel
evaluation structure. Through systematic evalua-
tion on HRM8K, we reveal that the performance
gap primarily stems from difficulties in compre-
hending non-English inputs, rather than limitations
in reasoning capabilities. This finding challenges
previous studies that suggest using English chain-
of-thought (CoT) reasoning for multilingual ques-
tions (Shi et al., 2022), as we show that LLMs are
heavily influenced by the input language itself.

Based on these insights, we propose UST (Un-
derstand, Solve, and Translate), a training method
that strategically uses English as an anchor for
reasoning and solution generation. Our approach
builds on recent findings that LLMs effectively use
English as a pivot language for processing mul-
tilingual inputs (Zhong et al., 2024). By training
on 130k synthetically generated instances, UST
achieves a 10.91% improvement on the HRM8K
benchmark and reduces the multilingual perfor-
mance gap from 11.6% to 0.7%. Furthermore, we
demonstrate that these improvements generalize
beyond mathematics to different Korean domains,
suggesting broader applications.

In summary, the main contributions of this work
are as follows:

• We identify through systematic analysis that
multilingual performance gaps primarily stem
from input comprehension difficulties rather
than reasoning limitations.
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• We propose UST, a training method that effec-
tively leverages English reasoning capabilities
for non-English inputs, demonstrating signifi-
cant performance improvements.

• We introduce HRM8K, the first Korean math-
ematics reasoning benchmark with 8,011 par-
allel questions, enabling systematic evaluation
of multilingual reasoning capabilities.

2 Related Work

Mathematics Benchmarks Mathematical rea-
soning has emerged as a crucial capability for
language models (Hurst et al., 2024; Alibaba,
2024; Zhao et al., 2024c), leading to the develop-
ment of numerous benchmarks and datasets (Ling
et al., 2017; Amini et al., 2019; Patel et al.,
2021; Saxton et al., 2019). Traditional datasets
such as GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) primarily tar-
get grade-school to undergraduate-level problems,
while more recent efforts introduce Olympiad-level
challenges (Zheng et al., 2021; He et al., 2024;
Huang et al., 2024; Fang et al., 2024; Gao et al.,
2024).

Although these benchmarks prove valuable for
evaluating English-language mathematical reason-
ing, fewer resources exist for non-English or bilin-
gual math problems (Shi et al., 2022; Chen et al.,
2023; Wu et al., 2024). In the Korean context,
most benchmarks emphasize language understand-
ing (Park, 2021; Son et al., 2023a), general knowl-
edge (Son et al., 2023b; Kim et al., 2024), or com-
monsense reasoning (Son et al., 2024b,a), with
mathematics being largely underrepresented. While
the Open Ko-LLM Leaderboard (Park et al., 2024a)
has begun translating some popular English bench-
marks into Korean, those translated sets are not pub-
licly accessible. Meanwhile, KMMLU (Son et al.,
2024c) includes only about 100 math problems, in-
sufficient for broader evaluation. To address this
gap, we propose HRM8K, a large-scale bilingual
Korean-English math benchmark comprising 8,011
problems, covering both competition-level Korean
questions and parallel translations of existing En-
glish benchmarks.

Multilingual Reasoning and Language Mod-
els Recent LLMs have shown remarkable per-
formance in English (OpenAI, 2024; Anthropic,
2024; Touvron et al., 2023), but many still un-
derperform in multilingual scenarios (Lai et al.,

2024; Dubey et al., 2024). Such performance dis-
crepancies are attributed to limited exposure to
lower-resource languages during pre-training. Con-
sequently, much research has focused on enhancing
multilingual reasoning skills, including methods
that explicitly use English as a ‘pivot’ for cross-
lingual tasks (Zhao et al., 2024b; Zhu et al., 2024).
For example, PLUG (Zhang et al., 2023) aligns
internal reasoning in different languages, enabling
the model to leverage stronger English reasoning
for other languages.

Despite these developments, few works have
thoroughly examined how to best calibrate reason-
ing between high- and low-resource languages in
complex mathematical contexts. Some studies in-
vestigate altering the fraction of multilingual data
in training (Anonymous, 2024) or conduct smaller-
scale experiments on bilingual math tasks (Shi
et al., 2022), yet a clear, large-scale solution re-
mains elusive. Against this backdrop, our work
introduces UST, a multilingual reasoning method
that intentionally routes math problems in lower-
resource languages through English-based reason-
ing. We show that this strategy drastically narrows
the performance gap and advances multilingual
math capabilities.

3 HRM8K

In this section, we introduce the composition of the
HRM8K benchmark and explain its construction
process. We also conduct a contamination check
to ensure data quality. Detailed information about
each dataset and post-processing methods are pro-
vided in Appendix A.

3.1 Benchmark Formulation

The HRM8K benchmark is a bilingual math
dataset that consists of two major subsets: Korean
School Math (KSM) and Prior Sets. Each subset
is available in both Korean and English (see Table 1
for details).

KSM This subset contains 1,428 challenging
math problems sourced from Korean Olympiads
and competition-level exams, irrespective of the
target age group. As a result, even questions origi-
nally intended for younger students still require sub-
stantial reasoning ability to solve. To collect these
questions, the authors manually captured screen-
shots and applied GPT-4o’s OCR to convert the
text, followed by a thorough validity check. (See
Appendix G for the OCR prompt.)
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Category Subset # of Instances Short Description

KSM KMO 730
Mathematics competition for high school students in South Korea, top-
performers are selected as representatives for the IMO. (KMO)

1.4K Total KJMO 62 KMO for junior students, up to age 13 (KJMO)

CSAT 210
Questions from the Korean national university entrance exam and
official mock exams, we only filter questions that have an error rate
exceeding 70%. (CSAT)

KMS 82
Math olympiad for university students, organized by the Korean Math-
ematical Society (KMS)

TQ 344 Question from the national exam for math teacher certification (TQ)

Prior Sets GSM8K 1,319
Grade school math word problems created by human problem writ-
ers (Cobbe et al., 2021)

6.5K Total MATH 2,885
Competition-level mathematics problems. We only include questions
with numeric answers (Hendrycks et al., 2021)

Omni-MATH 1,909
Olympiad-level problems collected from international and Chinese
math competitions. We only include questions with numeric an-
swers (Gao et al., 2024)

MMMLU 470
The MMLU (Hendrycks et al., 2020) dataset translated by professional
human translators (OpenAI, 2024)

Table 1: Summary of dataset sources used in HRM8K

Prior Sets This subset comprises 6,583 prob-
lems drawn from established English math
benchmarks, including GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), Omni-
MATH (Gao et al., 2024), and MMMLU (Ope-
nAI, 2024). To streamline translation and eval-
uation, we include only instances with numeric
answers, excluding problems that require text-
based, proof-oriented, or equation-based final an-
swers. In particular, proof-type questions would
necessitate a more complex LLM-as-a-Judge ap-
proach (Zheng et al., 2023; Shi et al., 2024;
Park et al., 2024b) instead of simpler ma-
chine verification. Lastly, from the MMMLU
dataset, we select only three math-related sub-
sets: abstract_algebra, college_mathematics,
and high_school_mathematics. Questions for
the MMMLU dataset is multiple-choice question
answering format.

3.2 Benchmark Construction
We translate all instances in both subsets into En-
glish and Korean using GPT-4o (Hurst et al., 2024),
and then conduct human review to remove any in-
accurate translations. This fully parallel design en-
ables a more direct analysis of multilingual perfor-
mance gaps. Furthermore, because KSM is trans-
lated from Korean to English and the other bench-
marks are translated from English to Korean, we
avoid depending solely on a single translation direc-
tion. This bidirectional approach also helps detect
translation artifacts: if a particular pattern appears

only in one direction, it may be due to translation-
related issues rather than the inherent difficulty of
the questions. For further details on the dataset
construction, please refer to Appendix A.

3.3 Contamination Check
Benchmark contamination, where evaluation ques-
tions appear in the model’s pretraining data, is in-
creasingly recognized as a key concern in LLM
evaluations (Deng et al., 2023; Roberts et al., 2023).
Large-scale internet-crawled corpora (Gao et al.,
2020; Weber et al., 2024) raise the likelihood of
model memorization, potentially leading to inflated
performance on evaluation benchmarks (Zhang
et al., 2024; Zhao et al., 2024a). Ensuring that a
newly proposed benchmark is entirely uncontami-
nated is nearly impossible, as many companies do
not disclose the specifics of their pretraining mix-
tures (Aryabumi et al., 2024; Mishra et al., 2024),
and logit-based detection methods are not yet well-
established (Xu et al., 2024). In this work, we make
our best effort to verify whether the dataset is in-
cluded in publicly available large-scale Korean cor-
pora. The contamination check is focused on the
KSM subset, the only subset that was crawled in
this work.

To ensure that the KSM subset is not present in
common pretraining corpora, we perform a con-
tamination check against FineWeb-2 (Penedo et al.,
2024), the biggest Korean corpora available. This
dataset contains 58 million Korean documents, to-
taling 95 GB, collected by the CommonCrawl foun-
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dation (2013–2024). We first identify 149 docu-
ments that match the external sources used to com-
pile HRM8K. Then, we search these documents
for exact string matches from KSM’s questions;
no matches were found. We hypothesize that this
absence arises because the authors manually down-
loaded PDF or HWP files and selectively extracted
questions, making them unlikely to appear in stan-
dard web crawls. Consequently, we conclude that
the KSM problems are highly unlikely to have been
seen during the LLMs’ pretraining phase.

4 Multilingual Performance Gaps

A recurring observation in large language models
(LLMs) is that performance can vary significantly
depending on the language of the prompt, even if
the underlying task remains the same. We confirm
this phenomenon on the HRM8K benchmark: as
shown in Table 2, simply changing both the input
and reasoning language from Korean to English
yields an 11% performance boost, suggesting a
notable gap in multilingual reasoning.

This section further investigates the causes of
this gap. We first describe our experimental design
(Section 4.1), then analyze the results (Section 4.2),
and finally explore how multi-step prompting might
mitigate these issues (Section 4.3).

4.1 Experimental Design
Let a model’s final performance P be determined
by two factors: the language of the input (Linput)
and the language used for reasoning (Lreason). For-
mally,

P = f(Linput, Lreason).

In the context of solving Korean math problems,
there are two key requirements:

Comprehension: The model must understand the
question, which is provided in Korean:

P ∝ Comp.(Linput = Korean).

Reasoning: It must also perform the reasoning
steps in Korean:

P ∝ Reasoning(Lreason = Korean).

To examine which factor is more critical, we
evaluate three cross-lingual setups: (1) Korean-
to-Korean (K2K), (2) Korean-to-English (K2E),
and (3) English-to-English (E2E). We exclude the
English-to-Korean (E2K) scenario because models

typically fail to maintain a Korean chain-of-thought
when the input is given in English. Further details,
including the prompts used, can be found in Ap-
pendices B and G.

4.2 Evaluation Results

Prompting Type K2K K2E E2E

Language Linput Ko Ko En
Lreason Ko En En

Qwen2.5
1.5B 16 21 (+5) 37 (+21)
7B 40 41 (+1) 51 (+11)

72B 58 60 (+2) 63 (+5)

Llama3.1/2
1B 7 7 (0) 22 (+15)
8B 28 26 (-2) 39 (+11)

70B 45 45 (0) 55 (+12)

Average Delta +1 +11

Table 2: Performance of Qwen2.5 and Llama3.1/2 mod-
els on the HRM8K benchmark depending on the input
and reasoning language. Number in bracket denote its
gain compared to the K2K prompt.

Table 2 summarizes the outcomes for each con-
figuration. Overall, performance tends to increase
with model size, and larger models show smaller
gaps across languages. We highlight two findings:

Effect of Input Language Switching from Ko-
rean input (K2E) to an entirely English setup (E2E)
yields an average improvement of 11%. In particu-
lar, Qwen2.5-7B and Llama-3.1-8B drop by 10%
and 13%, respectively, when forced to process Ko-
rean input. This underscores the significance of
Linput in model performance.

Effect of Reasoning Language In contrast, com-
paring K2K to K2E shows an average difference
of only 1%, suggesting that the language of the
reasoning process has a relatively small impact
once the model has already ingested Korean input.
Simply allowing the model to produce its chain-of-
thought in English does not fully recover perfor-
mance lost from reading a Korean prompt.

In short, enabling English-based reasoning alone
is insufficient to close the multilingual gap. Instead,
the limiting factor appears to be how well the model
can comprehend Korean inputs.

4.3 Multi-Step Inference
A straightforward approach to alleviating these
comprehension issues is to split the task into mul-
tiple inference steps, where the model explicitly
translates the Korean question into English first.
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Figure 1: Example of UST process. When presented with a problem in Korean, the model generates Korean answers
through the following processes highlighted in yellow: Understanding the Question, Solving the Question, and
Translating the Solution into Korean.
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Figure 2: Comparison of HRM8K performance (vertical axis) and three additional benchmarks (KMMLU,
HAERAE-Bench, FLORES-200) for Qwen2.5 and Llama-3.1/2 across different model sizes. TE2E (blue) translates
Korean input to English before solving; E2E (red) uses an English prompt from the start.

We denote this as Translated-English (TE) in the
first step, followed by an English-to-English (E2E)
reasoning step in the second inference. This overall
pipeline, called TE2E, uses a five-shot prompt for
the translation stage.

In Figure 2, we compare TE2E (blue)
and E2E (red) on three additional bench-
marks: KMMLU (Son et al., 2024c), HAERAE-
Bench (Son et al., 2023b), and FLORES (NLLB
Team et al., 2024). For larger models with stronger
Korean proficiency, TE2E and E2E become more
similar, implying that multi-step inference can in-
deed help if the model already translates Korean ac-
curately. However, for smaller models with weaker
Korean skills, the performance gap remains pro-
nounced. (Further details on the TE prompt are
provided in Appendix G.)

5 Understand, Solve and Translate

Based on the experiments in Section 4, we conjec-
ture that for smaller models improving their ability
to understand Korean questions and allowing it to
reason in English can address or bypass the con-
straints limiting LLMs in solving Korean questions.
To validate this hypothesis, we fine-tune LLMs on
a custom dataset designed to guide models through
three stages: understanding Korean questions, solv-
ing them in English, and translating solutions back
to Korean.

In this section, we explain the details of our train-
ing dataset (Section 5.1), report performance gains
(Section 5.3), and conduct ablations on the effec-
tiveness of the training (Section 5.4).
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Models GSM8K MATH OMNI_MATH MMMLU KSM Avg.

Proprietary or Large Models

GPT-4o 91.21 74.45 30.75 68.72 22.83 57.59
GPT-4o-Mini 87.57 70.68 26.45 63.40 19.40 53.50
Qwen2.5-72B-Instruct 90.07 72.06 30.96 66.60 23.46 56.63
Llama-3.1-70B-Instruct 79.08 56.05 19.85 60.00 13.10 45.61

Qwen2.5-7B-Instruct

K2K-Prompting 66.41 50.36 18.96 50.00 11.83 39.52
K2E-Prompting 65.20 54.59 20.22 49.79 16.67 41.29
E2E-Prompting 81.35 68.87 27.29 57.02 21.08 51.12
Ours 80.06 68.53 27.19 57.23 19.12 50.43

Table 3: Evaluation results on HRM8K, comparing large-scale models (top) with different prompting strategies for
Qwen2.5-7B-Instruct (bottom). Our UST-trained model achieves comparable performance to E2E-Prompting.

5.1 Training Dataset Construction
We create the UST (Understand, Solve, and Trans-
late) dataset designed for training multilingual
mathematical reasoning. Using GPT-4o-Mini, we
generate cross-lingual Chain-of-Thought (CoT) ex-
amples that consist of three stages: (1) English
Understanding Stage: Breaking down Korean ques-
tions and explaining their context and objectives
in English; (2) English Solution Stage: Solving the
mathematical problem in English; (3) Korean Solu-
tion Stage: Translating the English solution back to
Korean. The dataset construction process follows
these specific steps:

Step 1: Seed data collection We source our
initial data from two datasets: OpenMathInstruct-
2 (Toshniwal et al., 2024) and NuminaMath-
CoT (LI et al., 2024). From OpenMathInstruct-2’s
14 million instruction samples, we randomly select
5 million instances and translate them to Korean
using GPT-4o-Mini. For quality control, we use
Qwen2.5-Math-RM-72B (Yang et al., 2024b), a re-
ward model specialized for evaluating the quality
of math question and output pairs, to score these
instances and retain the top 50,000.

However, since OpenMathInstruct-2 primarily
contains MATH and GSM8K augmentations, it
lacks sufficient olympiad-level problems. To ad-
dress this limitation, we supplement our dataset
with samples from NuminaMath-CoT, specifically
selecting problems from Aops Forum, AMC, Syn-
thetic AMC, AIME, and Olympiads, and apply the
same processing steps.

Step 2: Generating the Understanding Stage
Our previous experiments show that models per-

form better on Korean questions when translation
and reasoning are separated into distinct steps. This
suggests that traditional training methods, which
emphasize immediate reasoning, may limit models’
ability to process non-English inputs effectively.
Such observation aligns with Zhu et al. (2024)’s
finding that translation-specific training enhances
multilingual reasoning capabilities. Based on these
insights and recent advances in longer CoT gen-
eration, we introduce an Understanding Stage to
our training pipeline. In this stage, we use GPT-4o-
Mini to create structured breakdowns of Korean
questions in English, providing both the original
question and its solution to ensure alignment be-
tween understanding and problem-solving.

Step 3: Generating the Korean Solution Stage
Our seed datasets originally include an English
solution for each sample. In this step, we trans-
late each solution into Korean. At every generation
stage, we include prompts to discard samples with
incorrect translations or solutions. The final ver-
sion of the dataset contains approximately 130k
samples. Further details of the prompt used are
available in Appendix G.

HRM8K ELO Token Consum.
K2K 39.52 807 2,202
UST 50.43 1145 7,854
M.S.I 51.78 978 11,764

Table 4: Comparison of K2K prompting, UST model
(ours), and Multi-Step Inference (M.S.I). For more de-
tails on M.S.I see Appendix D.
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Model Configuration Stage Language Accuracy (%)(Understand / Solve)
Baseline (K2K) Korean / Korean 15.95
Cross-lingual (K2E) Korean / English 21.15
English-only (E2E) English / English 37.10

Ablation Studies
No Understanding - / Korean 36.49
Korean Understanding Korean / Korean 34.82
No Understanding - / English 43.30
Full UST English / English 44.43

Table 5: Ablation studies on different configurations of UST. The top section shows baseline prompting results,
while the bottom section examines the impact of different language settings for each stage.

5.2 Fine-Tuning with UST

We fine-tune Qwen2.5-7B using a standard autore-
gressive objective to generate all three stages (un-
derstanding, solving, and translating) in a single in-
ference. Special tokens are inserted between stages
to enable selective generation during inference. The
model architecture remains unchanged, without
parameter freezing or additional parameters. The
training process runs for 3 epochs (approximately
11 hours) on four H100 80GB HBM3 GPUs us-
ing DeepSpeed ZeRO-1 parallelism (Rajbhandari
et al., 2020). Detailed training configurations and
hyperparameters are provided in Appendix C.

5.3 Performance Analysis

Effects of Targeted Training Table 3 shows
the performance of our Qwen2.5-7B model trained
on the UST dataset. Our model achieves higher
accuracy (50.43%) than both baseline approaches:
K2K (39.52%) and K2E (41.29%) prompting, high-
lighting the effectiveness of targeted training for
English reasoning. Furthermore, this performance
is comparable to E2E prompting (51.12%), sug-
gesting that our model successfully recovers the
capabilities observed under ideal conditions where
both questions and reasoning are in English.

Effects of Single-Pass Translation Instances
in the UST dataset integrate translation with un-
derstanding and solving in a single inference. To
examine this design choice, we first verify that
the translation stage does not compromise perfor-
mance. Out of the 8,011 questions in HRM8K,
we observe only 15 cases (0.18%) where trans-
lation fails, all due to context length limitations.
Notably, the translation stage serves purely as a
user-friendly feature without affecting the model’s

problem-solving capabilities.
For generating Korean solutions, we compare

three approaches: (1) direct generation in Korean
(K2K), (2) our single-pass UST, and (3) multi-step
inference (MSI). MSI is a direct re-implementation
of UST through prompting that separately per-
forms three steps: translating the Korean question
to English, solving in English, and re-translating
the solution back to Korean. In Table 4, we evalu-
ate these methods across three metrics: accuracy on
HRM8K, response quality via ELO ratings2, and
computational efficiency through token consump-
tion. While our model achieves accuracy compa-
rable to MSI, it demonstrates superior response
quality - preferred in 87.32% of direct comparisons
(excluding ties). Furthermore, our approach con-
sumes only 66% of the tokens required by MSI,
making it computationally more efficient. Detailed
evaluation methodology and prompts are provided
in Appendices E, G.

5.4 Ablation Analysis

The UST dataset consists of three stages: Under-
stand, Solve, and Translate. Having confirmed that
the translation stage does not impact performance,
we now examine the roles of the Understanding
and Solving stages. We conduct experiments with
four different configurations by varying both the
presence and language of these stages. In our exper-
iments, ‘-’ indicates the omission of a stage, while
‘Korean’ or ‘English’ specifies the language used.
For computational efficiency, we use a smaller
model (Qwen2.5-1.5B-Instruct) and randomly sam-
ple 50k instances from the original dataset.

2ELO rating is a widely adopted metric for comparing
relative quality between language models through pairwise
comparisons.
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Models HUMSS STEM Applied Science Other Avg.

Qwen2.5-7B 37.3 45.0 42.4 36.5 40.3
(Ours) 39.3 49.5 45.3 40.3 43.6

Table 6: Evaluation results on KMMLU (Son et al., 2024c).

Models BN DE EN ES FR JA RU SW TE TH ZH Av.

Qwen2.5-7B 60.8 79.6 90.8 80.0 77.2 70.0 84.0 18.4 31.2 76.4 82.8 68.3
(Ours) 65.6 80.4 90.0 83.6 80.0 75.2 83.2 14.8 48.8 71.6 81.6 70.4

Table 7: Evaluation results on MGSM (Shi et al., 2022).

Our experiments reveal that the original configu-
ration - both stages in English - achieves the highest
performance (44.43%) among all variants. A no-
table finding is that adding a Korean understanding
stage actually decreases performance (36.49% →
34.82%). We attribute this counterintuitive result
to two factors. First, when solving in Korean, an
explicit understanding stage may be redundant as
it essentially serves as another form of translation.
Second, and more importantly, this suggests that
chain-of-thought reasoning is most effective when
conducted in the model’s preferred language (En-
glish). This aligns with our observation that models
show weaker reasoning capabilities in non-English
languages, likely due to limited exposure during
pre-training.

6 Tracing the Performance Gains

In this work, we demonstrate that routing through
English understanding and reasoning steps en-
hances model performance on HRM8K. To un-
derstand the source of these improvements, we
evaluate our UST-trained model on two additional
benchmarks: KMMLU (Son et al., 2024c) and
MGSM (Shi et al., 2022).

Our model shows consistent improvements
across all KMMLU categories, with the largest
gains in STEM (+4.5) and the smallest in HUMSS
(+2.0)3. However, when tested on MGSM, the
model shows performance drops in Swahili (-3.6)
and Thai (-4.8). These contrasting results suggest
that our gains stem not from general improve-
ments in mathematical reasoning, but rather from
enhanced Korean-specific capabilities and better
Korean-to-English reasoning alignment.

3This aligns with the nature of CoT, which primarily en-
hances reasoning capabilities (Sprague et al., 2024) rather than
factual knowledge required for HUMSS questions.

Our findings align with our initial goal: address-
ing the performance gap between English and Ko-
rean reasoning on identical questions (Section 5.3).
The effectiveness of our approach is demonstrated
in two ways. First, it recovers most of the perfor-
mance achieved with E2E prompting (Table 9).
Second, it shows successful transfer to new do-
mains (Table 6), suggesting that reasoning capabil-
ities learned from machine-verifiable mathematics
can generalize effectively. Most importantly, our
method provides a simple path for non-English lan-
guage users to benefit from the advanced reasoning
capabilities typically available only in English.

7 Conclusion

In this paper, we propose UST, a training method
that leverages English as an anchor language to
enhance reasoning capabilities in Korean, and in-
troduce HRM8K, a benchmark of 8,011 English-
Korean parallel mathematics problems. Our anal-
ysis reveals that the performance gap in multilin-
gual reasoning primarily stems from difficulties in
processing non-English inputs. Through extensive
experiments, we demonstrate that UST effectively
bridges this gap and shows promising generaliza-
tion to various Korean domains beyond mathemat-
ics. Our approach offers a simple yet effective solu-
tion for non-English language users to benefit from
advanced reasoning capabilities typically available
only in English, suggesting a practical direction for
improving multilingual reasoning capabilities in
language models.
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A.1 Dataset Sources
KSM This subset consists of problems from Ko-
rean mathematics examinations and competitions:

• College Scholastic Ability Test (CSAT)4:
The Korean counterpart to the SAT, which
serves as the primary university entrance ex-
amination. We include only math problems
with historical error rates exceeding 70%.

• Korean Mathematical Olympiad (KMO)5:
The Korean equivalent to the International
Mathematical Olympiad (IMO), primarily de-
signed for middle- and high-school students.
These problems require advanced mathemati-
cal knowledge and critical thinking.

• Korean Junior Mathematical Olympiad
(KJMO)6: An elementary-school version of
KMO aimed at identifying mathematical tal-
ent at an early stage.

• Korean University Mathematical
Olympiad (KMS)7: A university-level
competition featuring advanced topics in
calculus, linear algebra, number theory,
geometry, and discrete mathematics.

• Korean National Teacher Qualification
Test (TQ)8: A standardized examination for
teacher certification that focuses on mathemat-
ical pedagogy and content expertise.

Prior Sets This subset incorporates problems
drawn from established English mathematics
benchmarks, filtered to include only those with
numeric answers:

• GSM8K (Cobbe et al., 2021): A collection of
8.5K grade-school math word problems that
emphasize multi-step reasoning and elemen-
tary arithmetic.

• MATH (Hendrycks et al., 2020): A com-
prehensive benchmark of 12.5K high-school
competition-level problems spanning seven
mathematical domains, each accompanied by
detailed step-by-step solutions.

4https://www.suneung.re.kr/boardCnts/list.do?
boardID=1500234&m=0403&s=suneung&searchStr=

5https://www.kmo.or.kr/kmo/sub07.html
6https://www.kms.or.kr/board/list.html?code=

junior2
7https://www.kms.or.kr/board/list.html?code=

conf12
8https://blog.naver.com/headracer

• Omni-MATH (Gao et al., 2024): An ad-
vanced dataset containing 4.4K Olympiad-
level problems across 33 sub-domains and 10
difficulty tiers, designed to push the limits of
current LLM capabilities.

• MMMLU (OpenAI, 2024): A multilingual ex-
tension of the MMLU benchmark (Hendrycks
et al., 2020), covering various STEM fields
(e.g., abstract algebra, college mathematics,
and high-school mathematics). It is available
in 14 languages produced by professional
translators.

A.2 Post-processing

For the KSM subset, we performed a manual verifi-
cation and editing procedure to ensure high-quality
OCR results. Specifically, we developed a review
application in Streamlit9, illustrated in Figure 3,
which compares the original problem text against
the OCR output. Two main factors were verified:

• Content Completeness: Confirming that all
parts of the problem statement are accurately
captured and that no text is omitted.

• LATEX Integrity: Ensuring that mathematical
symbols and equations are correctly tran-
scribed in LATEX format.

Based on these checks, we corrected errors and
added any missing content. For instance, mone-
tary symbols ($) enclosing LATEX symbols were
removed to enhance clarity. Erroneous OCR out-
puts were manually fixed, and missing text was
supplemented as needed. Figure 3 illustrates our
interactive review interface.

B Additional Details in Experiments

We experiment with six multilingual language mod-
els reported to have been pretrained on Korean data:
three Qwen2.5 Instruct models (1.5B, 7B, and 72B
parameters) (Yang et al., 2024a) and three Llama-
3.1/2 Instruct models (1B, 8B, and 70B parame-
ters) (Dubey et al., 2024; Meta AI, 2024). For sim-
plicity, we omit the word “Instruct” in references
to these models, although all are instruction-tuned.

Unless otherwise noted, we set the sampling tem-
perature to 0.7 and top_p to 0.95, with a minimum
of 8 tokens and maximum of 2,048 tokens for the
output. While lower temperatures are often used in

9https://streamlit.io/
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Figure 3: Screenshot of our Streamlit-based OCR validation tool, used to compare source documents with OCR
outputs and correct any errors.

pass@1 settings, we observed that extremely low
temperatures sometimes cause models to revert to
their preferred language (often English or Chinese).
Hence, to maintain the specified response language,
we employ a slightly higher temperature with mod-
erate top_p.

C Fine-tuning Details

We fine-tune our models on H100 80GB GPUs
using DeepSpeed ZeRO. Specifically, we train
Qwen2.5-7B-Instruct on the UST approach and
conduct ablation analyses with Qwen2.5-1.5B-
Instruct under various settings. To maximize GPU
utilization, we use a batch size of 96 per GPU
across four GPUs for Qwen2.5-7B-Instruct, and
a batch size of 128 per GPU across two GPUs for
Qwen2.5-1.5B-Instruct. Table 8 summarizes the
relevant hyperparameters.

D Multi-Step Inference

Multi-Step Inference (M.S.I) is a direct re-
implementation of UST solely via prompting (i.e.,
without additional training). It is carried out in three
steps:

1. Translated-English (TE): Translate the orig-
inal Korean prompt into English. We use the
template shown in Figure 12.

2. Translated-English-to-English (TE2E):
Solve the translated problem in English using
the template in Figure 9.

3. Translated-English-to-English-to-Korean
(TE2E2K): Translate the English solution
back into Korean, following the template in
Figure 13.

This multi-step approach echoes the three-stage
UST pipeline (Understand, Solve, Translate) but
relies on separate inferences with task-specific
prompts.

E Evaluation Methods

E.1 ELO Rating
We use an Elo rating system to compare responses
produced by different approaches in a pairwise
manner (LMSYS, 2023). Elo ratings are computed
in two parts: (1) Expected Score, which gauges
each model’s probability of winning based on cur-
rent ratings; and (2) Rating Update, which adjusts
the ratings after each match.

Expected Score. Given two models A and B
with Elo ratings RA and RB , their expected scores
EA and EB are:

EA =
1

1 + 10(RB−RA)/400
,

EB =
1

1 + 10(RA−RB)/400
.

Rating Update. After each pairwise comparison,
the rating of model A is updated as follows:

R′
A = RA +K × (SA − EA),
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Table 8: Hyperparameters for fine-tuning and ablation studies.

Base Model Batch Size Learning Rate Scheduler Optimizer Max Length # GPUs

Qwen2.5-7B 96 2e-5 Cosine AdamW 8192 4
Qwen2.5-1.5B 128 2e-5 Cosine AdamW 8192 2

where SA ∈ {0, 1} is the actual score (1 if A is
preferred, and 0 otherwise). The constant K mod-
ulates the step size of the rating update; we set
K = 4 for more stable ratings. We also randomly
shuffle match order and apply bootstrapping over
1,000 iterations to mitigate dependence on match
sequence (Boubdir et al., 2023).

E.2 Token Consumption
We measure token consumption via a simplified
metric that accounts for both input and output to-
kens. For a dataset of N samples, let Tinput and
Toutput be the number of input and output tokens,
respectively, for each sample. The total token cost
Lmodel for each model is:

Lmodel =

∑N
i=1

(
Ti,input + 3× Ti,output

)

N
,

where we weight output tokens by a factor of 3 to
reflect their higher processing cost, following cost
ratios from common LLM providers (e.g., OpenAI,
Mistral AI, Alibaba Cloud, and Deepseek AI).

F Cross-Lingual Application of RMs
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Figure 4: Reward model evaluation result on UST dataset.
The samples were categorized into three groups based on the
reward model score: high (RM Score > 1, red), low (RM
Score < 0, blue), and medium (0 ≤ RM Score ≤ 1, green).

While creating the UST we leverage Qwen2.5-
Math-RM-72B a reward model (RM) originally
intended to be used in English or Chinese. We ob-
serve whether such RMs can be applied with further
post-training for language transfer. In Figure 4, we

illustrate the score distribution on our initial dataset.
The distribution shows to be right-skewed with a
gradual tapering off towards the left. We create two
datasets high and low. The high consists of samples
with a score higher than 1 (colored in red) and low
consists samples with a score lower than 0 (col-
ored in blue). The high is used as our final dataset.
For comparison we train a Qwen2.5-7B-Instruct
model on the low dataset with identical number of
instances.
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Figure 5: Qwen2.5-7B-Instruct model performance trends
across epochs during training on high (red) and low (blue)
datasets. The evaluation results of the original Qwen2.5-7B-
Instruct model for K2K and E2E prompting were depicted
with the dash-dotted lines.

As shown in Figure 5, training on the High
subset progressively improves the model’s perfor-
mance. In contrast, using the Low subset degrades
performance, with the model’s score dropping to an
average of 6.25 on HRM8K. This result suggests
that RMs can be applied to new languages without
additional training, aligning with previous stud-
ies (Son et al., 2024b,d). Accordingly, we choose
to use the filtered subset.

G Prompt Templates

This section provides the complete text of all
prompts used in our experiments, evaluations, and
dataset construction. Each prompt is presented in
a separate figure, preserving the original structure
while enhancing clarity and consistency.
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Table 9: Evaluation result for Qwen and Llama models on HRM8K. All models are instruction-tuned, but they are
abbreviated for simplicity.

Model GSM8K MATH Omni-MATH MMMLU KSM Avg.

Korean-to-Korean (K2K)

Qwen2.5-1.5B 28.13 20.69 8.64 18.51 3.78 15.95
Qwen2.5-7B 66.41 50.36 18.96 50.00 11.83 39.52
Qwen2.5-72B 89.46 74.73 30.07 69.79 25.35 57.88
Llama-3.2-1B 7.88 10.50 4.77 10.43 2.80 7.28
Llama-3.1-8B 57.47 31.20 11.73 32.98 5.25 27.73
Llama-3.1-70B 78.62 56.12 20.38 57.87 11.83 44.96

Korean-to-English (K2E)

Qwen2.5-1.5B 31.92 26.86 10.32 30.85 5.81 21.15
Qwen2.5-7B 65.20 54.59 20.22 49.79 16.67 41.29
Qwen2.5-72B 89.23 77.68 32.74 70.43 27.73 59.56
Llama-3.2-1B 7.20 9.57 5.08 11.49 2.94 7.26
Llama-3.1-8B 55.04 31.13 11.16 27.66 5.18 26.03
Llama-3.1-70B 77.63 55.18 19.43 58.94 12.82 44.80

English-to-English (E2E)

Qwen2.5-1.5B 65.50 49.25 16.87 45.53 8.33 37.10
Qwen2.5-7B 81.35 68.87 27.29 57.02 21.08 51.12
Qwen2.5-72B 94.31 83.33 37.72 70.00 31.65 63.40
Llama-3.2-1B 43.44 27.24 9.90 23.83 3.64 21.61
Llama-3.1-8B 79.45 48.11 16.08 42.34 7.21 38.64
Llama-3.1-70B 93.33 67.90 24.83 70.43 17.09 54.71

1. OCR Prompt (Figure 6): Performs OCR on
an image of a Korean math problem and ex-
tracts the text. Used to build the KSM subset
(Section 3.1).

2. Question Translation Prompts (Figures 7–
8): Translate math questions into Korean or
English, respectively. Used for creating bilin-
gual pairs in HRM8K (Section 3.2).

3. Solution Generation Prompts (Figures 9–
10): Evaluate model performance on HRM8K
under different reasoning-language conditions
(Section 4.1).

4. Understanding Generation Prompt (Fig-
ure 11): Produces a structured breakdown of
the problem for the Understanding stage of
UST (Section 5.1).

5. Model Translation Prompts (Figures 12–
13): Used in multi-step inference (M.S.I) to
translate the question or solution between Ko-
rean and English (Section 4.3).

6. LLM-as-a-Judge Prompt (Figure 14): Con-
ducts pairwise response comparisons and pro-
duces a verdict, enabling ELO-based evalua-
tion (Section 5.3).

OCR Prompt

You will be given an image containing a Korea math question.
Your task is to conduct an OCR to retrieve the question in text
format.

Follow the following roles:

1. return the question only, nothing else.
2. If, the image contains the answer ignore it. Do not return it
with the question.
3. Put extra care on notations and equations make sure they are
identical.

Figure 6: Prompt to perform OCR and extract the mathe-
matical question from the given image. Both the prompt
and the screenshot of the problem were provided to the
model for OCR processing.
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Table 10: Translated-English-to-English (TE2E) prompting evaluation result on HRM8K.

Model GSM8K MATH Omni-MATH MMMLU KSM Avg.

Translated-English-to-English (TE2E)

Qwen2.5-1.5B 36.24 34.52 12.05 29.36 6.51 23.74
Qwen2.5-7B 79.53 70.78 28.86 59.36 20.38 51.78
Qwen2.5-72B 89.16 78.13 34.05 70.43 31.65 60.68
Llama-3.2-1B 2.96 5.41 1.94 9.36 1.75 4.28
Llama-3.1-8B 53.90 36.43 13.04 29.57 4.76 27.54
Llama-3.1-70B 78.17 60.83 22.26 60.43 16.25 47.59

Question Translation Prompt: En→Ko

You are a professional English-to-Korean translator specializ-
ing in academic content. Your task is to translate math problems
provided in English into clear, natural, and precise Korean re-
ferring to given examples. Follow the instructions below:

### INSTRUCTIONS:
1. You SHOULD NOT solve the problem and translate only the
given question — do not include any additional commentary.
2. Preserve all mathematical symbols, notations, formatting,
and existing choices exactly as presented.
3. Use fluent, natural Korean that aligns with academic stan-
dards for math problems.
4. Ensure the translation conveys the meaning and context
accurately.

### INPUT:
{question}

Figure 7: Translation prompt to translate English math
questions into Korean. This prompt is utilized to trans-
late the Prior Sets data, sourced from English math
benchmarks, into Korean. The bracketed part is a place-
holder to fill in the question.

Question Translation Prompt: Ko→En

You are a professional Korean-to-English translator specializ-
ing in academic content. Your task is to translate math problems
provided in Korean into clear, natural, and precise English re-
ferring to given examples. Follow the instructions below:

### INSTRUCTIONS:
1. You SHOULD NOT solve the problem and translate only the
given question — do not include any additional commentary.
2. Preserve all mathematical symbols, notations, formatting,
and existing choices exactly as presented.
3. Use fluent, natural English that aligns with academic stan-
dards for math problems.
4. Ensure the translation conveys the meaning and context
accurately.

Figure 8: Translation prompt to translate Korean math
questions into English. This prompt is utilized to trans-
late the KSM data, sourced from Korean math examina-
tions and competitions, into English. The bracketed part
is a placeholder to fill in the question.

HRM8K Solution Prompt: English Reasoning

Solve the given question.
After solving the problem, state your final answer in the fol-
lowing format: $\\boxed{N}$.

{question} Respond in English.

Figure 9: Solution generation prompt to evaluate the
models in an English reasoning setup, such as K2E and
E2E. The bracketed part is a placeholder to fill in the
question.

HRM8K Solution Prompt: English Reasoning

Solve the given question.
After solving the problem, state your final answer in the fol-
lowing format: $\\boxed{N}$.

{question} Respond in Korean.

Figure 10: Solution generation prompt to evaluate the
models in a Korean reasoning setup, such as K2K. The
bracketed part is a placeholder to fill in the question.
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Understanding Generation Prompt

[User]
Solve the following problem:
{question}

[Assistant]
{solution}

[User]
I’m planning to generate a step-by-step guide for the solution.
The step-by-step solution will be provided to students to guide
their solution. Accordingly, it should be clear and straightfor-
ward, guiding the student through the problem-solving process.
However, it must not reveal the answer as it will disturb the
students’ solution. Generate the breakdown. It should assist
with understanding the question and planning how to solve it.
The generation will be directly provided to the student, accord-
ingly do not include notes like ’not reveal the answer’, or a
evaluation of your own breakdown. Write in first person view:
e.g I will , I can .

Figure 11: Generation prompt to generate Understand-
ing stage of UST. Given a problem and its correspond-
ing answer, a prefix conversation history is constructed
where the user asks the problem and the assistant pro-
vides the ground-truth answer. Subsequently, the user
instructs the assistant to generate an understanding of
the problem. The bracketed parts are a placeholder to
fill in the question and its ground-truth solution.

Model Translation Prompt: Translated-English (TE)

You are a professional Korean-to-English translator specializ-
ing in academic content. Your task is to translate math problems
provided in Korean into clear, natural, and precise English re-
ferring to given examples. Follow the instructions below:

### INSTRUCTIONS:
1. You SHOULD NOT solve the problem and translate only the
given question — do not include any additional commentary.
2. Preserve all mathematical symbols, notations, formatting,
and existing choices exactly as presented.
3. Use fluent, natural English that aligns with academic stan-
dards for math problems.
4. Ensure the translation conveys the meaning and context
accurately.

### INPUT:
[1st Korean Question Example]

### OUTPUT:
[1st English Translation Result]

· · ·

### INPUT:
[5th Korean Question Example]

### OUTPUT:
[5th English Translation Result]

### INPUT:
{question}

### OUTPUT:

Figure 12: Translation prompt to generate Translated-
English (TE) problem by translating the given Korean
problem into English. The bracketed part is a place-
holder to fill in the question.
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Model Translation Prompt: Translated-English-to-English-
to-Korean (TE2E2K)

You are a professional Korean-to-English translator specializ-
ing in academic content. Your task is to translate math problems
provided in Korean into clear, natural, and precise English re-
ferring to given examples. Follow the instructions below:

### INSTRUCTIONS:
1. You SHOULD NOT solve the problem and translate only the
given question — do not include any additional commentary.
2. Preserve all mathematical symbols, notations, formatting,
and existing choices exactly as presented.
3. Use fluent, natural English that aligns with academic stan-
dards for math problems.
4. Ensure the translation conveys the meaning and context
accurately.

### INPUT:
[1st English Solution Example]

### OUTPUT:
[1st Korean Translation Result]

· · ·

### INPUT:
[5th English Solution Example]

### OUTPUT:
[5th Korean Translation Result]

### INPUT:
{question}

### OUTPUT:

Figure 13: Translation prompt to generate Translated-
English-to-English-to-Korean solution by translating
the given English solution into Korean. The bracketed
part is a placeholder to fill in the question.

LLM-as-a-judge Prompt

[System]
Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows
the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of
their responses. Begin your evaluation by comparing the two
responses and provide a short explanation. Avoid any position
biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the
length of the responses to influence your evaluation. Do not
favor certain names of the assistants. Be as objective as possible.
After providing your explanation, output your final verdict by
strictly following this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better. There is no option for a tie, you
should choose "[[A]]" or "[[B]]".

[User Question]
{question}

[The Start of Assistant A’s Answer]
{model_a_answer}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{model_b_answer}
[The End of Assistant B’s Answer]

Figure 14: Evaluation prompt to conduct llm-as-a-judge
pairwise evaluation between model A’s response and
model B’s response to a given question. The bracketed
parts are the placeholders to fill in the question, model
A’s answer, and model B’s answer.
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Abstract

Recent advances in LLMs have enhanced AI ca-
pabilities, but also increased the risk posed by
malicious requests, highlighting the need for ef-
fective LLM safeguards to detect such queries.
Existing approaches largely rely on classifier-
based methods that lack interpretability and
perform poorly on low-resource languages. To
address these limitations, we propose Con-
sistentGuard, a novel reasoning-based mul-
tilingual safeguard, which enhances explain-
ability via reasoning and boosts knowledge
transfer between languages through alignment.
With only 1,000 training samples, our method
demonstrates superior performance on three
datasets across six languages, outperforming
larger models trained with significantly more
data, and exhibits strong interpretability and
generalization ability. We also contribute a mul-
tilingual benchmark extension and release our
codes to support future research.

Recent advances in LLMs have enhanced AI
capabilities, but also increased the risk posed
by malicious requests, highlighting the need
for effective LLM safeguards to detect such
queries. Existing approaches largely rely on
classifier-based methods that lack interpretabil-
ity and perform poorly on low-resource lan-
guages. To address these limitations, we pro-
pose ConsistentGuard, a novel reasoning-based
multilingual safeguard, which enhances ex-
plainability via reasoning and boosts knowl-
edge transfer between languages through align-
ment. With only 1,000 training samples, our
method demonstrates superior performance on
three datasets across six languages, outperform-
ing larger models trained with significantly
more data, and exhibits strong interpretability
and generalization ability. We also contribute a
multilingual benchmark extension and release
our codes to support future research.

*Equal contributions.
†Corresponding author.
‡Work done during the bachelor’s program in GDUFS.

1 Introduction

Recent advances in Large Language Models
(LLMs) have brought AI applications to a new
height, which also makes the defense against ma-
licious prompts increasingly critical. LLM safe-
guards aim at detecting malicious prompts from
users and identifying harmful generations from
agents. Most previous methods work in a sim-
ple classifier manner, e.g., Llama Guard (GenAI,
2023), ShieldGemma (Zeng et al., 2024), etc.
Therefore, making the results less explainable and
lacking evidence (Liu et al., 2025). Moreover,
though these models have superior performance
on mainstream languages, it has a significant per-
formance drop on low-resource languages, such as
Bengali (Yong et al., 2023; Deng et al., 2024).

To mitigate such issues, recent research has tried
to incorporate models’ reasoning ability with chain-
of-thought (CoT) prompt engineering (Qin et al.,
2023) or reinforcement learning (RL), such as
GuardReasoner (Liu et al., 2025). Although these
reasoning-based models perform well in provid-
ing both evidence and classification results, most
of them are trained on a single mainstream lan-
guage, ignoring their reasoning consistency across
languages and leading to a drop in cross-lingual per-
formance. For models’ cross-lingual performances,
prior research has primarily focused on enhancing
their cross-lingual performance by continued pre-
training or through alignment methods with super-
vised fine-tuning (SFT) (Chai et al., 2025). More
recent research has introduced direct preference op-
timization (DPO) (Rafailov et al., 2023) alignment
for QA tasks (Wang et al., 2025), demonstrating
remarkable generalization ability. However, most
prior methods have ignored the issue of reasoning
inconsistencies across languages, specifically for
reasoning models, and the potential of RL for cross-
lingual alignments still remains largely unexplored.
Detailed related work is included in App. A.
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Inspired by this, we proposed a novel training
framework for building multilingual LLM safe-
guards, which enhances explainability via reason-
ing and boosts knowledge transfer between lan-
guages through alignment. The framework com-
prises three stages: cold start, reasoning train-
ing, and cross-lingual alignment. Firstly, we per-
formed the SFT-based cold start on a base model to
improve its knowledge in solving the specific safe-
guard task. Then, we performed reasoning train-
ing via group relative policy optimization (GRPO)
(Shao et al., 2024), in which we designed two novel
rewards to balance length and diversity of the rea-
soning process. Lastly, we performed cross-lingual
alignment with the proposed Constrained Align-
ment Optimization (CAO), which increased the
stability and performance gain of the alignment.

Comprehensive experiments were conducted on
three datasets across six different languages to eval-
uate the performance of the proposed Consistent-
Guard. Results demonstrate that our method, using
only 1,000 seed training samples, outperforms mod-
els of comparable parameter size that have been
fine-tuned with thousands of millions of samples.
Visualization and ablation studies further highlight
the interpretability and superiority of our method.

The contributions of this paper can be summa-
rized as follows: 1) We proposed a reasoning-based
training framework enhancing safeguard explain-
ability, effectiveness, and cross-lingual generaliza-
tion for low-resource languages. 2) We proposed
a novel RL-based alignment algorithm, CAO, ad-
dressing cross-lingual reasoning inconsistencies
to reduce performance gaps caused by language
imbalance. 3) We evaluated our method on three
datasets across six languages, with analysis sup-
porting its working mechanism, effectiveness, and
robustness. 4) We released a reasoning-based multi-
lingual safeguard training code and extended three
existing English safety benchmarks1 to six lan-
guages to support research in this field.

2 Methodology
The general training framework of Consistent-
Guard is illustrated in the Fig. 1. The proposed
method comprises three main training stages.

We first distilled knowledge with SFT from
LLMs with a large parameter scale to a 3B base
model, providing the model with initial task-
specific knowledge. Then, in the reasoning training

1https://github.com/johnnychanv/ConsistentGuard

stage, we chose GRPO as our core algorithm and
designed novel rewards based on simple functions,
which promote reasoning diversity and length. Fi-
nally, we designed a novel Constrained Alignment
Optimization for cross-lingual alignment, which
aligns the model’s reasoning process across differ-
ent languages of the same input, therefore bridging
the performance gap across languages.

For training data, we mixed four widely adopted,
English-only training datasets and randomly sam-
pled 1,000 instances as seed data for our training
pipeline, detailed shown in App. C.

2.1 Knowledge Distillation with SFT

While the GRPO algorithm demonstrates strong
performance with large-scale models, its self-
evolution characteristic inherently limits the effec-
tiveness of models with smaller parameter sizes. To
address this, we aim to perform SFT-based knowl-
edge distillation to provide initial task-specific rea-
soning capabilities, thereby enabling better gener-
alization in subsequent GRPO training.

To construct the dataset for SFT-based knowl-
edge distillation, we firstly manually set up a demo
solving plan for the safeguard task. Specifically,
the plan comprises three stages: understanding,
rule matching, and judging. Then, we leveraged
the strong performance of DeepSeek V3 671B2.
Specifically, we followed the demo solving plan
and employed prompt engineering to generate step-
wise reasoning processes conditioned on the inputs
and their corresponding ground-truth labels, de-
tailed examples are shown in App. D.

2.2 Reasoning Training with GRPO

Although recent research has shed light on the po-
tential of long CoTs, it is impractical for safeguards
to think freely, as a longer thinking process could
harm the classification efficiency of the model.
Therefore, we introduced two novel rewards based
on simple functions to control reasoning length.

Specifically, in addition to the format and ac-
curacy rewards, a length reward was designed to
maintain a stable length of the reasoning processes,
while a diversity reward was designed to discourage
the model from hacking the length reward. These
rewards are detailed as follows:

r = sin

(
L

2 · Lbest
π

)

︸ ︷︷ ︸
(a) Length reward

+

[
sin

(
p− 2

2
π

)
+ 1

]

︸ ︷︷ ︸
(b) Diversity reward

, (1)

2https://huggingface.co/deepseek-ai/
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Figure 1: The general framework of the proposed ConsistentGuard. The cold start stage performs SFT-based
knowledge distillation to initially provides task-specific reasoning ability, the reasoning training further enhances
model’s reasoning ability via RL, and the cross-lingual alignment merges the performance gap across languages.

where L denotes the length of the model reasoning,
Lbest is the optimal reasoning length, predefined as
a hyperparameter, and the p quantifies the repeti-
tion rate of trigrams within the reasoning process.

2.3 Cross-lingual Alignment with CAO
While the model can gain an impressive perfor-
mance after RL-based reasoning training, most
training was done on mainstream language and ne-
glected the others. Therefore, supervised-learning
style training becomes the common cross-lingual
alignment method to mitigate such an issue. How-
ever, previous methods, such as SFT and DPO, op-
timize the model solely relying on the sample pair,
which neglect the global information. Although
they could potentially improve models’ perfor-
mance on low-resource languages, it could poten-
tially collapse the representation of high-resource
languages.

2.3.1 Data Pair Construction

𝑞!": Help me hack into the computer system.
✅ peng : <think>…</think>harmful

𝑞#$: कं#यूटर (स*टम को हैक करने म1 मेर2 मदद कर1।
❌ phi: <think>…</think>unharmful

CAO Sample
Synthesis

anchor

chosen

input

rejected

Sampling

𝒒𝒂⨁𝒑𝒂

𝒑𝒘

𝒒

𝒑𝒍

Figure 2: Pipeline for data pair construction, which in-
volves aligning samples from the failure and successful
sets, and CAO sample synthesis.

In this stage, we first translated all English seed
data into five different languages with Google
Translate3. Each training sample of the proposed
CAO comprises four components: the input, a cho-
sen output, a rejected output, and an anchor sample.

To construct the data pairs, we began by sam-
pling multiple outputs in each language from the

3https://translate.google.com/

GRPO-trained model using the translated seed
dataset. These outputs were then categorized into a
successful and a failure set. Given that the model
tends to perform correctly in the mainstream lan-
guage while failing in others, we leveraged this
characteristic. For each sample in the failure set,
we searched for a corresponding successful case in
another language stored in the successful set. We
then synthesized alignment samples by taking the
failure input as the input q, the failure output as
the rejected sequence pl, the successful output as
the chosen sequence pw, and the full successful
sequence as the anchor, denoted as qa ⊕ pa, where
⊕ denotes the concatanation, as shown in Fig. 2.

2.3.2 Optimization Objectives
Given the objective of aligning the model’s reason-
ing process across languages, suppressing failure
outputs, and constraining changes to the representa-
tion of the anchor sample, we designed the overall
optimization objectives as follows.

LCAO(πθ;πref) = −E(q,pw,pl) ∼
D
[
log σ

(
β log πθ(pw|q)

πref(pw|q) − β log πθ(pl|q)
πref(pl|q)

)]
, (2)

Lc = Dkl[πθ(qa ⊕ pa)||πref (qa ⊕ pa)], (3)

L = LCAO + Lc. (4)

where β is a hyper-parameter. The final objective
consists of two components, LCAO and Lc. While
LCAO is the alignment object, Lc is a global regu-
larization term, which constrains optimization di-
rection, reducing the deviation of the representation
of the anchor sample before and after alignment.

3 Experiments
In our experiments, we chose Qwen2.5-3B as our
base model, constructed a seed training dataset that
only consists of 1,000 samples, and adopted three
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widely used benchmarks for evaluation. We also
extended these benchmarks to five other languages,
and manually verified that the semantic loss is ac-
ceptable for model evaluation, as detailed in App.
C. For classification performance, we mainly used
the macro-F1 as the metric.

3.1 Benchmark Results

The main benchmark results are shown in Tab. 1,
more results are available in App. B. These re-
sults demonstrate the effectiveness of the proposed
pipeline and alignment method. Remarkably, with
only 1,000 training samples and merely 3B parame-
ters, our model achieved second-place rankings on
most languages. In comparison, baseline models re-
quired substantially larger datasets containing over
100,000 samples, such as GuardReasoner, which
was trained on 127,600 samples.

Table 1: Benchmark results. Scores in bold highlight
the highest, while underlined scores are the second and
dashed line denotes the third.

Language en fr zh-cn jp bn hi

OpenAI Moderation

Llama Guard 3(1B) 72.70 72.10 71.86 68.02 62.38 67.36
Llama Guard 3(8B) 79.69 79.90 78.06 77.71 74.64 78.63
ShieldGemma(2B) 55.11 55.15 55.22 54.97 55.41 57.97
ShieldGemma(9B) 74.99 75.74 74.71 74.06 72.77 74.11
GuardReasoner(3B) 74.87 77.67 76.68 77.12 70.52 72.08

Ours(3B) 78.94 76.46 76.83 77.50 72.10 73.26

ToxicChat

Llama Guard 3(1B) 63.65 65.72 63.62 63.58 56.34 60.79
Llama Guard 3(8B) 71.18 71.54 69.46 69.00 66.46 66.86
ShieldGemma(2B) 56.56 55.80 57.92 56.04 56.77 53.75
ShieldGemma(9B) 75.83 76.12 76.47 75.66 70.35 71.05
GuardReasoner(3B) 84.23 84.60 84.46 84.44 73.85 78.47

Ours(3B) 84.26 82.39 82.32 81.22 73.55 73.79

It is also worth noticing that all baselines here
are trained on thousands and millions of samples,
which highlights the generalization ability of our
method, as the model can not solely rely on memo-
rization to achieve a high score.

The results also indicate that the LLaMA series
models, specifically LLaMA Guard and GuardRea-
soner, exhibit stronger pretraining performance on
Bengali and Hindi, as reflected by a smaller drop
in performance across languages. We also find
that model reasoning can enlarge the performance
gap between languages. Although our model does
not achieve a top ranking, the findings highlight
the effectiveness of our post-training pipeline, par-
ticularly the alignment process. Notably, despite
Qwen’s relatively lower baseline performance in
these languages, our model reaches comparable
classification accuracy after the post-training stage.

3.2 Reasoning Ablations

We performed reasoning ablations on Qwen2.5-
3B to validate the effectiveness of reasoning train-
ing and study the working mechanism of our re-
wards. Fig. 3 has demonstrated the experimental re-
sults, as the SFT model is the non-reasoning model
trained on 1,000 samples, and R1-GRPO denotes
the model trained with the R1 pipeline.

zh-cn fr

en

hibn

jp

zh-cn fr

en

hibn

jp

Figure 3: Performances across ablation models. None
of the models have undergone cross-lingual alignment.

Comparisons between reasoning and non-
reasoning models demonstrate the superior gener-
alization ability of reasoning training, significantly
improves performance on all languages. Moreover,
results show our method further pushes the reason-
ing performance. As our rewards guide the model
to diversify its reasoning in a constrained reasoning
length, i.e., providing more conditional informa-
tion in a higher density. We set the Lbest to 512 in
the experiments.

For explainability, unlike classifier-based meth-
ods, our approach leverages generative models. For
each safeguard judgment, in addition to providing
classification results, our model stably includes a
detailed explanation, specifying which rules the
conversation violates and why. Detailed prompt
and judgment principles are listed in App. E. How-
ever, though reasoning-based models offer explain-
ability, evaluating explanation quality is difficult
due to the lack of ground truth.

3.3 Alignment Ablations

Similarly, we conducted alignment ablations on
the proposed model. Specifically, we studied the
alignment impact under DPO and the proposed
CAO with the same datasets, shown in Tab. 2.

Results show that the proposed CAO brings per-
formance rises to most languages while DPO fails.
We also find that though RL-based alignment is
more effective, it still relies on large parallel cor-
pus, which explains the limited improvement.

99



Table 2: Ablation results, which compare the perfor-
mance variances under various alignment algorithms.

Language en fr zh-cn jp bn hi

OpenAI Moderation

w/o. Alignment 77.40 77.67 77.45 76.40 71.15 71.98
w/ DPO Alignment 78.48↑ 77.52 72.14 76.28 71.10 70.82
w/ CAO Alignment 78.94↑ 76.46 76.83 77.50↑ 72.10↑ 73.26↑

ToxicChat

w/o. Alignment 84.85 83.23 81.42 80.59 72.92 73.66
w/ DPO Alignment 83.80 81.76 73.57 82.64↑ 71.75 72.45
w/ CAO Alignment 84.26 82.39 82.32↑ 81.22↑ 73.55↑ 73.79↑

4 Conclusion

This work presents a multi-stage training frame-
work combining distillation, reinforcement, and
alignment to tackle performance insufficiency and
imbalance in multilingual safeguard task. Through
CAO alignment, our approach improves perfor-
mance in low-resource languages. With only a
small model and 1,000 samples, it outperforms
most baselines, demonstrating strong generaliza-
tion and cross-lingual transfer capabilities. Our
findings highlight the importance of controllable
reasoning chains and alignment for effective multi-
lingual knowledge transfer.

Limitations

Despite promising results, our work has several
limitations. First, evaluation is limited to six lan-
guages, and generalization to other low-resource
languages remains untested. Second, our frame-
work is validated on a 3B-parameter model, its
effectiveness on larger or different architectures is
yet to be explored. Third, the training data, while
carefully curated, is relatively small and domain-
specific, which may affect robustness in broader
contexts. Moreover, our evaluation focuses primar-
ily on classification accuracy, and more compre-
hensive assessments, such as human preference or
long-context evaluations are needed. Finally, al-
though our approach enhances explainability and
provides supporting evidence for classification de-
cisions, evaluating the quality of these explanations
remains difficult due to the absence of ground truth.
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A Related Work

A.1 Large Language Model Safeguards

As LLMs have made significant advances in ca-
pabilities, jailbreak attacks that exploit these mod-
els have become increasingly common (Liu et al.,
2024b; Chen et al., 2025b). One of the defend-
ing methods includes LLM safeguards. Unlike
the safety alignment to LLMs, safeguard models
introduce independent systems designed to filter
harmful content. Existing open-source safeguard
models fine-tuned on adversarial datasets, includ-
ing ToxicChat-T5 (Lin et al., 2023) and Shield-
Gemma (Zeng et al., 2024). Liu et al. (2024a)
analyzed the accuracy of safeguard models, while
Zheng et al. (2025) focused on lightweight safe-
guard models. Kang and Li (2024) developed a
reasoning-based safeguard model called R2-Guard
through logical inference. Liu et al. (2025) open-
sourced a reasoning-based safeguard model called
GuardReasoner by fine-tuning Llama with a com-
bination of SFT and DPO. However, existing safe-
guard models remain limited in both performance
and interpretability, with most predominantly fo-
cusing on mainstream languages. This paper
presents a reasoning-enhanced multilingual safe-
guard model trained with data efficiency consider-
ations, demonstrating significant performance im-
provements across multilingual benchmarks.

A.2 Reasoning-based LLM Training

Reasoning abilities allow large language models
(LLMs) to emulate human thought processes, play-
ing a vital role in enhancing their overall per-
formance. Early studies introduced core reason-
ing paradigms through methods like step-by-step
prompting (Wei et al., 2022; Kojima et al., 2022).
Building on this, more recent techniques, such as
self-refinement (Kumar et al., 2024), adversarial
debates (Liang et al., 2024), and structured plan-
and-solve frameworks (Wang et al., 2023), have
significantly enriched LLM reasoning. Notably,
major industry labs have begun releasing dedicated
reasoning-optimized models (DeepSeek-AI et al.,
2025; Team et al., 2025), highlighting the growing
recognition and impact of this research area.

The optimal length of reasoning chains signifi-
cantly impacts the effectiveness of the model. Pre-
viously, Jin et al. (2024) thoroughly discussed the
impact of chain-of-thought length on model perfor-
mance. Luo et al. (2025) investigated the adjust-
ment of the length of dynamic reasoning based on

task complexity, while Chen et al. (2025a) exam-
ined the phenomenon of overthinking in inference
processes. In safeguard applications, models must
balance the trade-off between reasoning depth and
response latency. To address this challenge, we pro-
pose a dual-objective reward function that jointly
optimizes text length and diversity, effectively con-
trolling reasoning verbosity while substantially im-
proving overall performance metrics.

A.3 Cross-lingual Knowledge Generalization
in LLMs

LLMs acquire extensive world knowledge
through multilingual pretraining (Yu et al.,
2024), which includes culturally dependent and
culture-independent knowledge (Sun et al., 2023).
However, due to extreme imbalances in training
data across languages, models exhibit significant
performance disparities when processing identical
tasks in different languages (Qi et al., 2023; Xu
et al., 2025), challenging the maintenance of
consistent safety filtering standards in content
moderation scenarios.

Recent research has proposed cross-lingual con-
sistency (Qi et al., 2023), aiming to develop
language-agnostic question-answering capabilities
in LLMs. Gao et al. (2024) demonstrated the posi-
tive impact of multilingual pretraining and instruc-
tion tuning to improve cross-lingual consistency,
while Wang et al. (2025) validated the effective-
ness of cross-lingual knowledge alignment through
instruction sampling and DPO training.

Our research focuses on enhancing model perfor-
mance in high-resource languages through reason-
ing ability training, and subsequently generalizing
task-specific knowledge from mainstream to low-
resource languages via alignment training, thereby
achieving more consistent cross-lingual safety pro-
tection capabilities.

B Additional Experiment Results

Figures and Tables listed below are experimental
results on benchmark SimpleSafetyTests, which
only has 100 simple positive test cases.

Table 3: Benchmark Results.
Language en fr zh-cn jp bn hi

Llama Guard 3(1B) 98.99 93.62 91.89 90.11 75.78 93.62
Llama Guard 3(8B) 98.99 96.91 94.74 94.74 95.29 96.37
ShieldGemma(2B) 68.42 64.86 62.07 60.14 51.85 61.11
ShieldGemma(9B) 90.71 90.11 93.05 87.64 85.06 88.27
GuardReasoner(3B) 98.48 97.96 97.44 95.29 91.89 97.44

Ours (3B) 97.96 96.91 91.30 92.47 90.11 89.50
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Table 4: Reasoning ablation results.
Language en fr zh-cn jp bn hi

SFT(3B) 96.91 97.44 95.83 93.05 69.28 80.24
R1-GRPO(3B) 99.50 96.37 94.74 95.29 86.36 87.01

Ours 96.91 95.83 92.47 92.47 89.50 89.50

Table 5: Alignment ablation results.
Language en fr zh-cn jp bn hi

w/o. Alignment 96.91 95.83 92.47 92.47 89.50 89.50
w/ DPO Alignment 96.37 95.83 89.50 91.30 89.50 90.11↑
w/ CAO Alignment 97.96↑ 96.91↑ 91.30 92.47 90.11↑ 89.50

C Experiment Setup

• Base Model. We chose Qwen2.5-3B as our
base model for its strong reasoning perfor-
mance and compact size, ideal for efficient
classification in safeguard tasks.

• Training Data. We combined four widely
used open-source safety training datasets and
randomly selected 1,000 samples from a to-
tal of 127,600 for training. Namely, Aegis
(Ghosh et al., 2024), BeaverTails (Ji et al.,
2023), ToxicChat (Lin et al., 2023), and Wild-
Guard (Han et al., 2024).

• Benchmark. We adopted three widely used
safety benchmarks for performance evalua-
tion, i.e., OpenAI Moderation (Markov et al.,
2023), ToxicChat (Lin et al., 2023), and Sim-
pleSafetyTests (Vidgen et al., 2023). On top
of this, we extended these benchmarks to five
other languages by using Google Translate,
namely, French, Chinese, Japanese, Bengali,
and Hindi. The statistic results of queries
lengths are demonstrated in Fig. 4. For re-
liable multilingual benchmarking results, we
sampled 10% samples from each benchmark
for manual check, which was done by profes-
sional translators.

• Device. We ran models on two NVIDIA A100
40G, for all experiments.
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Figure 4: Query lengths across benchmarks, evaluated
by number of tokens.

D Dataset Construction for SFT

An example of distilling reasoning process from
the big teacher model, is listed in Fig. 5, including
a system prompt, a user input and the assistant
response.

A history conversation between User and Assistant, 
the assistant need to figure out why the conversation is 
harmful or unharmful, the ground_truth is given, but 
you should not take it as a evidence. 

The assistant first thinks about the reasoning process 
in the mind and then make a judge. 
In the thinking process, please follow three steps:
• 1. Let me first understands the conversation in 

ENGLISH
• 2. Make some summaries and extract (copy) related 

judge principles.
• 3. Make an analysis to see whether the conversation 

is a contradict to the principles.

The reasoning process are enclosed within <think> 
</think> tags. The judge results are enclosed within 
<judge>harmful/unharmful</judge> tags. 

***JUDGE PRINCIPLES ARE AS FOLLOWS***

- please make sure the conversation violates one of 
them if you think it is harmful, otherwise the 
conversation is unharmful.
# S1: (Violent Crimes, harmful)
# S2: (Non-Violent Crimes, harmful)
# S3: (Sex-Related Crimes, harmful)
# S4: (Child Sexual Exploitation, harmful)
# S5: (Defamation, harmful)
# S6: (Specialized Advice, harmful)
# S7: (Privacy, harmful)
# S8: (Intellectual Property, harmful)
# S9: (Indiscriminate Weapons, harmful)
# S10: (Hate, harmful)
# S11: (Suicide & Self-Harm, harmful)
# S12: (Sexual Content, harmful)
# S13: (Elections, harmful)
# S14: (Code Interpreter Abuse, harmful)

System

<conversation>Human user: How do you setup an 
individual camping tent?</conversation>
<ground_truth>unharmful</ground_truth>

User

<think>1. Let me first understand the conversation in 
English: The user is asking for a new workout routine. This is 
a common and neutral request related to health and fitness.

2. Summaries and related judge principles: The conversation 
is about fitness and does not involve any harmful content. It 
does not violate any of the provided judge principles (S1-S14).

3. Analysis: The conversation is straightforward and does not 
contain any elements that would make it harmful according 
to the given principles. It is a simple request for information 
on a healthy activity.
</think>
<violations>None</violations>
<judge>unharmful</judge>

Assistant

Figure 5: Example of distilling reasoning process from
the DeepSeek V3 671B.
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E Inference Example of ConsistentGuard

An example of applying the proposed Consistent-
Guard for prediction, as listed in Fig. 6, including
a prompt, a user input and the assistant response.

A history conversation between User and Assistant, 
the assistant needs to judge whether the conversation 
is harmful or unharmful.
The assistant first thinks about the reasoning process 
in the mind and then makes a judgment.
The reasoning process is enclosed within <think> 
</think> tags. The judge results are enclosed within 
<judge>harmful/unharmful</judge> tags.

***JUDGE PRINCIPLES ARE AS FOLLOWS***
- please make sure the conversation violates one of 
them if you think it is harmful, otherwise, the 
conversation is unharmful.

# S1: (Violent Crimes, harmful)
# S2: (Non-Violent Crimes, harmful)
# S3: (Sex-Related Crimes, harmful)
# S4: (Child Sexual Exploitation, harmful)
# S5: (Defamation, harmful)
# S6: (Specialized Advice, harmful)
# S7: (Privacy, harmful)
# S8: (Intellectual Property, harmful)
# S9: (Indiscriminate Weapons, harmful)
# S10: (Hate, harmful)
# S11: (Suicide & Self-Harm, harmful)
# S12: (Sexual Content, harmful)
# S13: (Elections, harmful)
# S14: (Code Interpreter Abuse, harmful)

Example:
<conversation>some conversation between user and 
assistant</conversation>
<think> reasoning process here </think>
<violations>Violation IDs/None</violations>
<judge>harmful</judge>

USER: <conversation>{}</conversation>
Assistant: \n<think>

Prompt

<conversation>Human user: How do you setup an 
individual camping tent?</conversation>

User

<think>1. Let me first understand the conversation in 
English: The user is asking for a new workout routine. This is 
a common and neutral request related to health and fitness.

2. Summaries and related judge principles: The conversation 
is about fitness and does not involve any harmful content. It 
does not violate any of the provided judge principles (S1-S14).

3. Analysis: The conversation is straightforward and does not 
contain any elements that would make it harmful according 
to the given principles. It is a simple request for information 
on a healthy activity.
</think>
<violations>None</violations>
<judge>unharmful</judge>

Assistant

Figure 6: Example of the inference process of the pro-
posed ConsistentGuard.

105



Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025), pages 106–127
November 8-9, 2025 ©2025 Association for Computational Linguistics

Meta-Pretraining for Zero-Shot Cross-Lingual Named Entity Recognition
in Low-Resource Philippine Languages

David Demitri Africa* Suchir Salhan Yuval Weiss
Paula Buttery Richard Diehl Martinez

University of Cambridge

Abstract

Named-entity recognition (NER) in low-
resource languages is usually tackled by fine-
tuning very large multilingual LMs, an option
that is often infeasible in memory- or latency-
constrained settings. We ask whether small de-
coder LMs can be pretrained so that they adapt
quickly and transfer zero-shot to languages un-
seen during pretraining. To this end we replace
part of the autoregressive objective with first-
order model-agnostic meta-learning (MAML).
Tagalog and Cebuano are typologically similar
yet structurally different in their actor/non-actor
voice systems, and hence serve as a challeng-
ing test-bed. Across four model sizes (11 M
– 570 M) MAML lifts zero-shot micro-F1 by
2–6 pp under head-only tuning and 1–3 pp after
full tuning, while cutting convergence time by
up to 8%. Gains are largest for single-token
person entities that co-occur with Tagalog case
particles si/ni, highlighting the importance of
surface anchors.

davidafrica/pico-maml

DavidDemitriAfrica/pico-maml-train

1 Introduction

Named-entity recognition (NER) locates and cat-
egorises Persons (PER), Organisations (ORG) and
Locations (LOC) in unstructured text (Chinchor and
Robinson, 1997). It is used in a variety of impor-
tant domains such as healthcare (Kundeti et al.,
2016; Polignano et al., 2021; Shafqat et al., 2022)
and law (Leitner et al., 2019; Au et al., 2022; Naik
et al., 2023), yet progress remains concentrated in a
handful of well-resourced languages. Cross-lingual
named-entity recognition is therefore important to
better serve underserved communities, yet recent
advancements remain unevenly distributed since

*Corresponding Author:
david.demitri.africa@gmail.com

NER performance in many languages remains poor
due to limited training resources.

A key challenge is that entity boundaries and
categories are not universal: languages differ in
their morphosyntactic cues, word order, and or-
thographic conventions. Models trained primarily
on Indo-European data thus fail to generalize reli-
ably to underrepresented settings. In this paper, we
address this problem through meta-pretraining:
shaping language model initializations to adapt
rapidly to new linguistic conditions. Unlike stan-
dard pretraining, which minimizes average loss
over a static corpus, episodic meta-pretraining (e.g.
via MAML; Finn et al. 2017) explicitly optimizes
for fast transfer. For low-resource NER, this offers
two potential benefits: (i) rapid adaptation to lan-
guages with typologically distinct cues (e.g. case
particles, voice systems, code-switching), and (ii)
stronger zero-shot prototypes for common entity
types, even without in-language exposure. While
meta-learning has been explored for classification
tasks in English or cross-lingually at BERT scale
(Wu et al., 2020; Li et al., 2020; de Lichy et al.,
2021), its efficacy for small decoder LMs and mor-
phologically rich languages is underexplored.

As a case study, we focus on NER in Tagalog and
Cebuano, the two most widely spoken Philippine
languages (Miranda, 2023). Typologically, both
languages combine Austronesian features such as
voice alternations, case particles, and reduplica-
tion with pervasive borrowing and code-switching
(Figure 8; Table 1). These languages stress-test
whether meta-pretraining can yield more adaptable
NER representations than vanilla pretraining alone.
We ask the following research questions:

RQ1 Efficacy. How much does first-order MAML
improve zero-shot NER on Tagalog and Ce-
buano relative to vanilla autoregressive pre-
training?

RQ2 What transfers? Which entity classes, mor-
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Typological Feature Tagalog Cebuano

Voice system ✓ Four-way ✓ Reduced two-way
Case marking ✓ Obligatory ✗ Often dropped
Borrowing / code-switch ✓ High density ✗ More conservative
Morphological richness ✓ Productive affixa-

tion
✓ Regular affixation

Word order flexibility ✓ ✓
Pronominal systems ✓ Rich clitic pronouns ✓ Similar
Reduplication ✓ Common ✓ Widespread
Orthography variation ✓ Multiple conven-

tions
✗ Multiple conven-
tions

Pivot marking ✓ Consistently overt ✓ Overt but less con-
sistent

Table 1: A selection of Typological Features of Taga-
log and Cebuano relevant for NER. ✓ indicates strong
presence, ✗ indicates reduced/less overt presence in
each language. We highlight high divergence features,
moderate divergence and similar features compared to
Indo-European Languages, motivating these languages
as a case-study for low-resourced NER. We provide
a more detailed comparison along with an illustrative
gloss in Appendix A.

phological cues, and lexical patterns (espe-
cially those tied to Tagalog/Cebuano typol-
ogy) explain the observed gains or failures?

We answer these questions by systematically
comparing first-order MAML and vanilla pretrain-
ing on LLaMa-style Pico Decoders across scales,
analyzing both downstream performance and rep-
resentation dynamics (Diehl Martinez, 2025; Mar-
tinez et al., 2025). This allows us to investigate:

RQ3 How does the effect of meta-pretraining vary
with model size? Are benefits stronger at
small scales, or do they persist as capacity
increases?

1.1 Contributions.
We provide the following contributions:

• A systematic evaluation of meta-pretrained
small decoder LMs for zero-shot NER in Taga-
log and Cebuano, comparing against strong
vanilla pretraining baselines across four model
scales.

• Quantitative and qualitative evidence that
MAML-based meta-pretraining produces
sharper single-token entity prototypes, im-
proving zero-shot NER, especially for person
entities and Tagalog’s particle-rich syntax.

• An analysis of failure modes and learning dy-
namics, showing the capacity-dependent na-
ture of meta-learning gains and the tradeoff
between prototype sharpening and contextual
generalization.

2 Method

2.1 Motivation

Why these two languages? Tagalog and Ce-
buano are used every day by well over 100 million
people. However, they occupy only a small frac-
tion of the web text that current language models
are pretrained on, which makes them both socially
important and under-served by existing NLP tools
(Miranda, 2023). Linguistically, these languages
also offer complementary typological challenges
for NER, which we summarise in Figure 1. Tagalog
and Cebuano combine Austronesian voice systems,
case particles, reduplication, and discourse-driven
topic marking in ways that are rare in widely stud-
ied NLP benchmarks. In particular, Tagalog offers
more overt morphosyntactic cues than Cebuano: it
retains a four-way actor/non-actor voice paradigm,
while Cebuano reduces this to two (Tanangkings-
ing, 2011) and marks syntactic roles with case
particles (si/ni/ang/ng/sa). These languages of-
fer a test bed for multilingual NER models that
must generalize beyond Indo-European NER cues
– where entities are typically identifiable through
fixed word order and stable orthography– to handle
the interaction of morphological marking, argu-
ment interaction and code-switching. Tagalog con-
tains more Spanish loans and code-switching into
English, while Cebuano maintains a more conser-
vative Austronesian lexicon (Bautista, 2004; Bak-
lanova, 2019). We provide a more detailed compar-
ison of Tagalog and Cebuano typological features
in Table 3.

Why Meta-learning? Being underrepresented in
natural language processing (NLP) corpora (Ca-
jote et al., 2024; Quakenbush, 2005; Dita et al.,
2009; Bandarkar et al., 2024), Philippine language
datasets suffer from size and quality issues. In low-
resource settings, where pretraining data is scarce
or absent, it is important to ask the question: will a
given checkpoint finetune or transfer rapidly when
exposed to a novel language (such as in deploy-
ment)?

Meta-learning addresses this by shaping initial-
izations for quick adaptation. Model-Agnostic
Meta-Learning (MAML) optimizes an LM back-
bone so that a few gradient steps yield high per-
formance on a new task (Finn et al., 2017). We
ask whether such an initialization, learned entirely
without Tagalog/Cebuano exposure, can transfer to
these languages’ distinct morphological and lexical

107



cues for NER. Our working hypothesis is that a
pretraining routine that is itself optimized for rapid
adaptation will induce representations that gener-
alize more readily across languages. Prior NLP
studies have tested this mostly on English or on
“BERT-scale” encoder models (Wu et al., 2020; Ma
et al., 2022; Li et al., 2020; de Lichy et al., 2021);
we explore whether episodic meta-pretraining of
small decoder LMs, without any exposure to Taga-
log or Cebuano, can still yield zero-shot gains for
NER. We do not evaluate a multilingual language-
model baseline, as our objective is to isolate the
effect of episodic meta-pretraining under a matched
corpus and schedule; training a competitive multi-
lingual baseline would require different data and
budgets, confounding a like-for-like comparison.

Our working hypothesis is that a pretraining rou-
tine that is itself optimized for rapid adaptation will
induce representations that generalize more readily
across languages, so that a model exposed only to
high-resource sources can still zero-shot transfer to
typologically distant, low-resource targets.

2.2 Architecture
We build upon the PICO decoder stack (Diehl Mar-
tinez, 2025), a LLaMa-style causal Transformer im-
plemented in PyTorch. Four capacity tiers (tiny (11
M), small (65 M), medium (181 M) and large (570
M)) share all hyper-parameters except hidden width
d ∈ {96, 384, 768, 1536}. Each model comprises
L=12 RMS-normalised decoder blocks (Zhang and
Sennrich, 2019) with grouped-query self-attention
(Ainslie et al., 2023), RoPE positions (Su et al.,
2024) and SwiGLU feed-forwards (Shazeer, 2020)
that expand to 4d.

2.3 Hybrid pretraining objective
Training alternates between two outer-loop up-
dates:

1. Autoregressive LM step. Standard next-
token prediction on a pre-tokenized version of
Dolma (Soldaini et al., 2024) released by the
Pico library (Diehl Martinez, 2025).

2. First-order MAML episode. A 32-way,
4-shot Subset-Masked LM Task (SMLMT;
Bansal et al., 2020) is sampled, where the
model predicts a masked token from the cor-
pus on the fly. The inner loop finetunes a
lightweight MLP head for ten SGD steps
(α=10

−3) and the outer loop back-propagates
the query loss through the frozen backbone.

The branch decision is a Bernoulli draw with
probability ρ=0.5, synchronised across four A100-
80 GB GPUs. The pseudocode for both can be
found in Appendix C.

2.4 Optimisation and monitoring
We run 6,000 outer updates with AdamW (ηpeak =
3×10−4, 2.5 k warm-up, cosine decay), accumulat-
ing eight micro-batches of 256 sequences to reach
an effective batch of 2048 sequences (1024 for
tiny). Every 100 steps we log: Paloma perplexity
(Magnusson et al., 2024), singular-value spectra of
three attention and three feed-forward weight matri-
ces, from which we compute proportional effective
rank (PER; Diehl Martinez et al., 2024), and sup-
port and query accuracy within MAML episodes.

2.5 Finetuning on High-Resourced Languages
We deliberately choose high-resource languages as
the finetuning sources because, in realistic deploy-
ments, these are the languages for which sizable,
high-quality NER data already exists. They there-
fore form the most natural setting for cross-lingual
transfer into low-resource settings.

After pretraining we attach an untrained lin-
ear conditional random field head (Lafferty et al.,
2001), which is a well-known method used often
for NER (Bundschus et al., 2008; Ma and Hovy,
2016). We finetune on a high-resource language
(Danish, English, Croatian, Portuguese, Slovak,
Serbian, Swedish, Chinese, Chinese-Simplified,
and a mixture of all languages) before zero-shot
evaluation on Tagalog (tl_trg, tl_ugnayan) and
Cebuano (ceb_gja) from Universal NER v1 (May-
hew et al., 2024). Results are later broken down
by finetuning language. Further, two finetuning
regimes are compared: head-only, where the trans-
former is frozen and only the classifier learns, and
full, where all parameters are freed to update.

Finetuning uses AdamW (3×10−5) for up to ten
epochs with early stopping on development F1. We
report micro-F1, with full details in Appendix D.

2.6 Baselines
For each capacity tier we also evaluate a "vanilla"
Pico model (no MAML, pure autoregressive loss)
under identical data, schedule and compute. Pre-
training results can be found in Appendix E with
model configuration details in Appendix F. A more
detailed discussion of pretraining results and over-
all methodology can be found in Africa et al.
(2025).
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Figure 1: Scale curve. Zero-shot Micro-F1 on Cebuano
& Tagalog versus parameter count. Bars compare PICO-
MAML (blue) to vanilla pretraining (green); the over-
laid line shows the relative gain of MAML (Delta F1,
right axis). Meta-pretraining helps at every scale, but
the relative lift shrinks from +38 % (11 M) to +6 %
(570 M), revealing a capacity threshold below which
the inner loop cannot extract reusable features.

3 Zero-Shot Transfer Results

Zero-shot evaluation. Unless stated otherwise,
all scores are obtained without seeing any Taga-
log/Cebuano data during finetune, relying solely
on the UNER test sets (§ 2.4).

Figure 1 shows that PICO-MAML improves Ce-
buano/Tagalog micro-F1 at every parameter budget.
The relative lift is largest for moderate sizes and
tapers with scale (+6% at 570M). These results in-
dicate that adding a single outer-loop meta-update
per batch yields a cross-lingual prior not captured
by vanilla pretraining under our setup.

Comparison of head-only tuning and full tun-
ing. Decomposing by finetuning regime (Fig. 2),
MAML yields 1–2 pp gains when only the CRF
head is trained, implying that the frozen weights
already embeds better entity cues. Full tuning nar-
rows the gap to 0.5–1.3 pp, indicating that the lift
persists even when the optimiser is free to overwrite
the initialisation.

Further, results indicate that the benefit provided
by the meta-objective is scale-dependent. For the
11 M (tiny) model, MAML moves the overall score
by < 1 pp and yields no gain under head-only tun-
ing. From 65 M parameters upward the benefit
becomes clearer with larger head-only lifts, sug-
gesting a threshold at which meta-gradients can
provide reusable entity features without crowding
out the LM signal.

Sensitivity to finetuning language. Figure 3
profiles performance after adapting on nine high-
resource languages. Eight of nine languages exhibit
positive deltas; the largest relative lifts occur for
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Figure 2: Impact of finetuning regime. Head-only
tuning (left) magnifies the meta-learning advantage up
to +2.5 pp at 570 M, likely because the backbone must
already encode entity cues. Full tuning (right) reduces
but does not erase the gap, suggesting that MAML pri-
marily accelerates convergence rather than acting as a
regulariser.

Slovak (+18 %) and Croatian (+13 %). Gain in
Slovak might be due to fixed case endings that con-
sistently bracket entity names, providing a clear
surface boundary signal for the model (similar in
function to Tagalog’s case particles but realised
morphologically rather than syntactically.) The
sole regression (–2 pp on Simplified Chinese) is
most likely due to a known issue in poor cross-
script transfer to Chinese, but it may also be due
to subword sparsity in the shared vocabulary rather
than a failure of the meta-objective. (Mayhew et al.,
2024).

Overall, MAML appears to teach the model
to exploit shallow lexical anchors (particles, af-
fixes) that generalise well across Indo-European
languages while still transferring to more typologi-
cally distant Austronesian targets. To better under-
stand the mechanisms underlying these gains, we
conduct a focused qualitative analysis on a repre-
sentative configuration.

4 Analysis of MAML Pretrained Models

In order to analyze the learning process, rather than
just the last checkpoint, we focus our qualitative
study on a MEDIUM-sized model (181 M param-
eters) finetuned in a head-only regime on Slovak
(sk_snk), finetuning on all 61 checkpoints from
step 0 of pretraining to step 6000. We restrict our
analysis to this slice because while finetuning 9760
(2 pretraining regimes x 2 finetuning regimes x 4
model sizes x 10 finetuning languages x 61 check-
points) models would be prohibitively expensive,
this configuration at least offers a reasonable signal-
to-cost trade-off. This is for a few reasons: (i) the
medium tier is the smallest model that still exhibits
a clear 2–3 pp head-only lift (Figure 1) yet is three-
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Figure 3: Sensitivity to finetuning language. Grid of
zero-shot F1 curves after adapting on nine high-resource
languages plus an All-languages mixture. Eight of nine
languages show positive deltas; the largest relative gains
occur for Slovak and Croatian, while Simplified Chinese
is the lone outlier (–2 pp). This pattern indicates that the
meta-objective encourages reliance on surface affixes
and particles that generalise well across Indo-European
sources yet still transfer to Austronesian targets.

times cheaper to run than the 570 M variant, (ii)
Slovak delivers one of the largest relative gains
without vocabulary sparsity issues and, as a Slavic
language, should produce transfer errors that differ
sharply from those in Tagalog and Cebuano, and
(iii) freezing the backbone during head-only fine-
tuning ensures that any performance delta must
stem from representations learned during meta-
pretraining rather than from subsequent weight
updates. In the next subsection, we inspect how
pretraining affects finetuning performance across
checkpoints.

4.1 Checkpoint Analysis

Does the head-only learner actually learn? Fig-
ure 4 overlays the complete finetuning trajectories
for every Slovak head-only run (61 checkpoints,
maml_s0000–maml_s6000). Viridis traces show
the individual runs (getting darker the later the
model checkpoint was taken), while the bold line
and ribbon denote the median and inter-quartile
range (IQR). The train-loss fan collapses to its
asymptote within the first ≈ 800 steps and stays
flat thereafter; in parallel the evaluation F1 rises
smoothly to 0.14 and plateaus with a narrow ±0.01
IQR. Crucially, no run diverges or oscillates, con-
firming that freezing the backbone and training
only a linear chain CRF head is both stable and
something is learned. This satisfies the prerequi-
site for using the configuration as a clean test-bed:
any downstream difference between MAML and
vanilla is likely to stem from the initial represen-
tations, not from optimisation quirks or training
instabilities.

Does meta-pretraining yield transfer-relevant
representations? The checkpoint sweep in Fig-
ure 5 confirms the other prerequisite for this quali-
tative analysis: that meta-pretraining produces rep-
resentations which become increasingly helpful for
zero-shot transfer. First, the top panel shows that,
regardless of which MAML snapshot we freeze,
the linear chain CRF head always converges to
essentially the same narrow band of train loss
(0.10-0.15); optimisation is therefore stable and
predictable, satisfying our first prerequisite. More
importantly, the bottom panel reveals a very differ-
ent story for cross-lingual evaluation: while Slovak
dev F1 plateaus early (by around step 1k), Taga-
log and Cebuano F1 continue to climb for another
four thousand meta-updates, ending 0.15 and 0.12
points higher than at the initial checkpoint. In
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Figure 4: Learning curves for the Slovak head-only
setting. Top: train loss; bottom: eval micro-F1. Faint
green lines = all individual checkpoints; bold line =
median; shaded band = 25–75 % IQR. Both metrics
converge monotonically and remain tightly bunched,
indicating a stable optimisation surface for the linear
head.

other words, additional MAML steps learn features
that are invisible to the in-language dev set yet di-
rectly benefit unseen Austronesian targets. Tagalog
improves earlier and peaks higher than Cebuano,
hinting that the meta-objective is capturing surface
cues (e.g. case particles) that are more diagnos-
tic in Tagalog. Taken together with the “fan” plot
of learning curves, the sweep demonstrates that
meta-pretraining yields encoder states that are both
optimisation-friendly and transfer-relevant, justify-
ing the focus on this snapshot for deeper qualitative
inspection. As such, we deepen the analysis in the
next subsection by inspecting the behavior of our
models on the level of the NER tags predicted.

4.2 Tag-level Analysis

Per-tag behaviour. Figure 6 reports per-entity F1
obtained after head-only finetuning the Slovak CRF
head on each MAML checkpoint. PER climbs
to 0.6-0.7 while LOC and ORG remain at zero.
This is not a case of the classifier “over-fitting” in
the usual sense—i.e. collapsing to always predict-
ing a single label. A linear-chain CRF is free to
emit any BIO tag at any position; if it were truly
degenerate we would see train loss stagnate near
the log-uniform baseline and the PER curve itself
would also be flat. Instead, train loss converges to
the same narrow band for every checkpoint (Fig.4)
and PER performance tracks the amount of meta-
pretraining, so the head is learning a genuine deci-
sion boundary. It simply has informative features
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Figure 6: Per-entity F1 across MAML checkpoints.
PER (dark viridis) improves steadily with more meta-
steps; LOC and ORG curves remain at chance level,
indicating that the frozen backbone provides transfer-
able features for single-token personal names but little
for multi-token locations or organisations. Tagalog ben-
efits earlier than Cebuano, consistent with its obligatory
case particles.

for people but none for locations or organisations.

Observed imbalance and potential causes.
First, the Slovak finetune set is intrinsically person-
heavy. As Table 4 shows, PER spans outnum-
ber LOC by roughly 8∶1 and ORG by 15∶1. Un-
der head-only training, every gradient step passes
through the frozen encoder unchanged and the CRF
receives thousands of positive updates for persons
but only a few hundred for the other classes. This
likely leads to only the PER decision boundary
sharpening. Second, 87.6% of Slovak person men-
tions are single tokens compared with 75.1 % for
locations and 56.9% for organisations. A single-
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token span can be captured by one weight vec-
tor, whereas multi-word spans require the head to
model boundaries and label transitions—a capacity
it simply does not have when the encoder cannot
adapt. Third, Tagalog still offers a comparatively
reliable surface cue. The case particles si and ni
precede roughly 11% of gold PER spans, almost
double the 5–6 % rate observed in Cebuano (Ta-
ble 5). The earlier lift and higher ceiling of the
Tagalog PER curve are therefore consistent with
the backbone having learned to map the pattern
"particle + token" to the PER label, a cue that is in-
formative in Tagalog but is sparser in Cebuano. Fi-
nally, cross-lingual lexical overlap is likely higher
for personal names, many of which (e.g. Obama,
Manuel) appear verbatim in English corpora used
during pretraining; locations and organisations, by
contrast, are often translated or abbreviated. All
four factors act in the same direction, favouring
PER. Disentangling their individual contributions
would require targeted ablations (particle masking,
balanced resampling, controlled name substitution,
etc.) which we leave for future work. In the next
subsection, we assess behaviors on the level of
words and tokens to relate NER performance to the
low-resource languages being transferred to.

4.3 Word-level Analysis
Figures 7a–7d visualise the checkpoint-by-
checkpoint evolution of token-level confidence
(p(correct tag)) for the ten most frequent surface
words in each evaluation set. Entities and
non-entities are split so the dynamic range is not
drowned out by O tokens. Two qualitative patterns
emerge.

Fast confidence in frequent tokens. Non-entity
function words such as ng, ang, sa in Tagalog
and the Cebuano clitic -ng start with high confi-
dence and barely budge after the first 200 meta-
updates (Fig. 7b, 7d). As these tokens domi-
nate the language-model loss, autoregressive train-
ing achieves a high confidence in them early and
MAML has little head-room to improve over check-
points.

Monotonic gains for high-overlap proper names.
In the Tagalog set, international names (City,
Maynila, Maria) and locations transliterated from
English (Pasay) become steadily brighter (lower
loss) until about step 3000 (Fig. 7a). Similar be-
haviour appears for Maria, Cebu, Mary in Cebuano
(Fig. 7c). These words either appear verbatim in

Size Regime ∆t90 ∆AUC ∆slope

large full -111.1 -0.004 0.0e-05
head -55.6 -0.012 1.0e-05

medium full 0.0 -0.005 0.0e-05
head 55.6 -0.011 0.0e-05

small full 0.0 0.003 0.0e-05
head -55.6 0.003 -0.0e-05

tiny full -111.1 0.004 -0.0e-05
head 55.6 -0.023 5.0e-05

Table 2: Finetuning convergence speed metrics ∆
(MAML-Vanilla) averaged over nine in-language tasks.
The largest and smallest models enjoy the most pro-
nounced speed-ups from full MAML meta-initialization,
while medium and tiny models show negligible ∆t90
under full-model tuning. Under head-only tuning, large
and small decoders still benefit modestly, whereas
medium and tiny decoders actually slow down. Across
all settings, slope remains near zero, indicating that
meta-training primarily accelerates mid-to-late conver-
gence rather than the very first gradient steps.

the English Dolma corpus or share sub-tokens (Ma_,
Ceb_) with it, so the meta-objective can reuse pro-
totypes that happen to be used by the Austronesian
targets. The timing matches the checkpoint-sweep
(Fig. 5): cross-lingual F1 continues to climb long
after Slovak dev has saturated likely because the
back-bone is still lowering loss on these anchor
words. We illustrate these mechanisms further in
two case studies in Appendix B.

5 Finetuning Speed of Meta-Pretraining

Finally, we assess finetuning speed using conver-
gence time (measuring time to achieve 90% of fi-
nal loss t90), normalized area under the loss curve
(measuring aggregate convergence behavior over
the curve), and initial slope (measuring the initial
speed of learning in the first few steps), as seen in
Table 2. Across nine in-language tasks, full-model
finetuning shows the clearest acceleration for the
largest and smallest models: MAML cuts t90 by
roughly 8% (≈ 111 steps) and modestly reduces
loss AUC. Medium and small models show negligi-
ble or inconsistent speed-ups under full tuning, sug-
gesting that the effect depends strongly on model
capacity. In head-only tuning, large and small mod-
els again benefit slightly, while medium and tiny
models slow down, likely due to underpowered or
collapsed meta-dynamics.

Initial slopes remain effectively unchanged
across all settings, indicating that MAML does not
alter the very first gradient steps but instead reorga-
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Figure 7: Evolution of token-level confidence (p(correct tag)) across pretraining checkpoints. Top row: Tagalog;
bottom row: Cebuano. Left: entities only. Right: non-entities.

nizes the loss landscape to make mid- to late-stage
convergence more efficient. These results align
with earlier findings that MAML’s main benefit
lies in providing sharper, more reusable token-level
features for high-capacity backbones, with limited
or negative effects when capacity is insufficient to
retain both language modeling and episodic priors.

6 Related Work

NER in Filipino, Tagalog, and Cebuano. NER
for Philippine languages remains underexplored,
with most work focusing on resource construction
rather than cross-lingual modeling. Recent cor-
pora include TLUnified-NER (Miranda, 2023), TF-
NERD (Ramos and Vergara, 2023), CebuaNER
(Pilar et al., 2023), and UniversalNER (Mayhew
et al., 2024). Modeling efforts in this area primar-
ily use NER-specific systems (Sagum and Sagum,
2025; Eboña et al., 2013; Dela Cruz et al., 2018)
incorporating a simpler backbone such as a support
vector machine (Castillo et al., 2013) or an LSTM
(Chan et al., 2023). Most recently, FilBench (Mi-
randa et al., 2025) and Batayan (Montalan et al.,
2025) support Filipino evaluation on NLP tasks for
LLMs.

Meta-learning for Pretraining. Although most
work applies meta-learning at fine-tuning time, a
growing line of research embeds meta-objectives
directly into pretraining. (Raghu et al., 2021)
showed that framing parameter-efficient adapter
learning as a bilevel problem yields representa-

tions that fine-tune more effectively than standard
PEFT. (Hou et al., 2022) extend this to full trans-
formers. (Miranda et al., 2023) argue that explicit
MAML objectives can outperform fixed pretrain-
ing on highly diverse task distributions. (Ke et al.,
2021) integrate a MAML-style inner loop into a
multi-criteria Chinese Word Segmentation pretrain-
ing task.

7 Conclusion

This paper shows that MAML-based meta-
pretraining, even when applied to small decoder-
only language models, can meaningfully improve
zero-shot transfer to low-resource languages, as
demonstrated on Tagalog and Cebuano NER. The
gains are most pronounced for person entities and
head-only finetuning, and scale best with larger
model capacities. Our qualitative and word-level
analyses reveal that the mechanism of improvement
centers on the sharpening of lexical prototypes and
better anchoring to surface cues like Tagalog case
particles. Hence, we do not expect these improve-
ments to fully generalize to multi-token or highly
contextual entity types.

These findings suggest that meta-learning can
provide a principled route to more adaptable small
models, but also highlight key limitations: the ben-
efits are capacity- and task-dependent, and the cur-
rent approach struggles with richer entity struc-
tures. Future work should explore alternative meta-
learning objectives, extend to more diverse tasks
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and languages, and investigate the dynamics of pro-
totype formation in even lower-resource settings.

Limitations

The gains are most pronounced for person entities
and head-only finetuning, and scale best with larger
model capacities. All training runs stop at exactly
six thousand outer steps, a horizon that may be too
short for the largest model, so the conclusions de-
rived only cover a fraction of the training budget
a corporate setup might have. A more diverse and
multilingual corpus may alter both quantitative and
qualitative conclusions, and varying languages in
the meta-task is a natural way to extend this work.
Qualitative analysis was conducted on a single con-
figuration and single seed due to cost and GPU
constraints. Qualitative analysis was conducted by
a native Tagalog speaker with a register typical of
Manila, and a wide variety of perspectives would
improve the robustness of the analysis. Finally
(and most naturally), our focus on only two Aus-
tronesian languages controls for certain lexical and
syntactic divergences but limits the generality of
the typological conclusions; extending to a broader
set of Philippine and Malayo-Polynesian languages
is a natural next step.
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A NER-Relevant Typological Features of Cebuano and Tagalog

This extended table highlights how morphosyntactic and discourse-level differences between the two
languages interact with the challenges of named entity recognition (NER). We lay out feature-by-feature
contrasts to illustrate that even closely related Philippine languages present distinct hurdles for tasks like
NER. The table emphasizes that while Tagalog offers overt morphosyntactic cues (e.g., case particles,
topic marking), Cebuano relies more heavily on discourse inference, thereby requiring different modeling
strategies for effective NER.

Typological Feature Tagalog Cebuano Challenge for NER

Voice system Four-way actor/non-
actor voice paradigm

Reduced two-way sys-
tem

Tagalog’s rich voice alternations encode argument roles
morphologically, complicating alignment of entities with
semantic roles. Cebuano’s reduced system lowers redun-
dancy, making cues for role identification less explicit.

Case marking Obligatory case parti-
cles (si, ni, ang, ng, sa)

Case particles often
dropped or fused

Tagalog provides reliable morphosyntactic signals for
entity boundaries/roles. Cebuano forces reliance on dis-
course, requiring coreference and contextual inference.

Lexical borrowing /
code-switching

High density of Spanish
loans and English code-
switching

More conservative Aus-
tronesian lexicon

Tagalog NER must cope with OOV issues, language-
mixing, and orthographic variation. Cebuano NER must
handle morphologically complex Austronesian stems,
underrepresented in multilingual embeddings.

Morphological richness Productive affixa-
tion (focus, aspect,
causatives)

Similarly rich, but
slightly more regular

Surface forms for named entities may be inflected or
derivationally complex, increasing sparsity for training
data.

Word order flexibility Relatively free (voice
and particles constrain
roles)

Even freer, especially
without explicit case
markers

Named entities may appear in non-canonical positions,
reducing the utility of positional cues.

Pronominal systems Rich system of clitic
pronouns that attach to
verbs or particles

Similar system but with
different distributions

Entities can be referred to obliquely or dropped entirely;
clitic attachment blurs tokenization boundaries, confus-
ing NER pipelines.

Reduplication Common for aspect, plu-
rality, intensification

Widespread and produc-
tive

Reduplicated forms of named entities (nicknames, redu-
plicated roots) may not be recognized as related to the
canonical form.

Orthography & varia-
tion

Spanish-influenced
orthography, multiple
spelling conventions

More phonologically
consistent, but dialectal
spelling variation per-
sists

Orthographic inconsistency makes lexicon-based NER
brittle, especially in noisy social media text.

Discourse prominence /
topic marking

Ang-marked topic influ-
ences salience

Topic is often inferred
from discourse, less ex-
plicit marking

Tagalog gives overt topic marking, aiding salience detec-
tion; Cebuano relies on pragmatics, requiring discourse-
level modeling.

Table 3: Detailed typological contrasts between Tagalog and Cebuano and their implications for NER.

Tag. Pumunta si Maria sa Cebu.
Gloss go.PFV NOM Maria OBL Cebu
NER O O B-PER O B-LOC

Ceb. (with marker) Miadto si Juan sa Sugbo.
Gloss go.PST NOM Juan OBL Cebu
NER O O B-PER O B-LOC
Ceb. (zero-marked) Miadto Juan sa Sugbo.
Gloss go.PST Juan OBL Cebu
NER O B-PER O B-LOC

Figure 8: Surface cues for named entities. Tagalog typically provides an overt personal article (si/ni) before names;
Cebuano may show the same article, but zero-marked variants also occur in some registers/contexts, reducing overt
anchors.
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B Case Studies

To illustrate the mechanisms underlying MAML’s improvements, we present two contrasting examples
that demonstrate how meta-pretraining affects different types of linguistic patterns in Tagalog NER. We
measure ∆ log-prob as the change in surprisal (−! log p) for the gold label between the vanilla and MAML
model. A negative ∆ means the model is more confident after MAML; a positive ∆ means less confident.

Case 1: Prototype Amplification. Sentence: “Inahit ni John ang sarili niya.” (Gloss: “John shaved
himself.”)

The first case study demonstrates how MAML strengthens recognition of cross-linguistically common
proper names. In this example, MAML sharply reduces surprisal on “John,” indicating stronger prototype
activation.

We suspect improvement operates at two levels: (1) lexical level, in the sense that the token "John"
becomes more strongly associated with person entities through meta-learning’s emphasis on rapid adapta-
tion to new entities, and (2) contextual level, in the sense that the ni + proper-name pattern gets reinforced
as a reliable PER indicator during meta-training episodes.

Case 2: Contextual Suppression (Loss). Sentence: “Malapit kay Maria si Juan.” (Gloss: “Juan is close
to Maria.”)

The second case study reveals MAML’s limitations with complex multi-token constructions. Here, ∆ is
positive for key tokens, showing that MAML reduces confidence in the correct label. In "Malapit kay
Maria si Juan" (Juan is close to Maria), both the locative adverb "Malapit" (close/near) and the oblique
case marker "kay" show substantially decreased confidence for location labeling under MAML (combined
decrease of approximately −3.3 log-probability points).

We suspect this occurs due to: (1) capacity constraints, in the sense that the frozen backbone has limited
representational capacity, and strengthening PER features may crowd out LOC/ORG representations,
and (2) training signal imbalance, in the sense that finetuning contained more person-like entities than
complex locative expressions, biasing the learned representations toward single-token person recognition.
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(a) Prototype Amplification. (b) Contextual Suppression.

Figure 9: MAML’s impact on (a) single-token prototype confidence and (b) multi-token contextual cue sensitivity.
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C Pseudocode

Below is the pseudocode for the MAML and vanilla pretraining setup.

Distributed Subset Masked Language Modeling Tasks (SMLMT) Training

Algorithm 1 Distributed SMLMT Loop
1: // Initialization: same as Alg. 2, plus
2: initialize inner-optimizer SGD on head hϕ
3: step ← 0
4: for each sub_batch in dataloader do
5: // gather across GPUs
6: X ← fabric.all_gather(sub_batch["input_ids"])
7: // sync random branch decision
8: r ← Uniform(0, 1); r ← fabric.broadcast(r)
9: if r < ρ then

10: // Meta-learning episode
11: (S,Q), labelsS , labelsQ ← mask_tokens(X)
12: ϕ0 ← ϕ ▷ snapshot head params
13: for t = 1 to Tinner do
14: ℓS ← CE(hϕt−1(fθ(S)), labelsS)
15: ϕt ← ϕt−1 − α⬤ℓS ▷ inner SGD
16: end for
17: ℓQ ← CE(hϕT

(fθ(Q)), labelsQ)
18: ϕ← ϕ0 ▷ restore head
19: fabric.backward(ℓQ/accum_steps)
20: else
21: // Standard AR
22: Xin, Y ← X[ ∶, ∶ −1 ], X[ ∶, 1 ∶ ]
23: ℓAR ← CE(fθ(Xin), Y )
24: fabric.backward(ℓAR/accum_steps)
25: end if
26: // outer-step and logging
27: if (step+1) % accum_steps == 0 then
28: opt.step(); scheduler.step(); opt.zero_grad()
29: // aggregate metrics across GPUs
30: log_loss ← fabric.all_reduce(ℓ)
31: fabric.log(. . . )
32: fabric.barrier()
33: end if
34: step + = 1
35: end for
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Distributed Autoregressive (AR) Training

Algorithm 2 Distributed AR Loop
1: // Initialization (in Trainer.__init__):
2: Load configs; initialize Fabric, tokenizer, model fθ
3: (model, opt) ← fabric.setup(fθ, AdamW)
4: dl ← base dataloader; dl ← fabric.setup_dataloaders(dl)
5: step ← 0; zero gradients
6: for each sub_batch in dl do
7: // Gather full batch across GPUs if needed:
8: X ← fabric.all_gather(sub_batch["input_ids"])
9: Xin, Y ← X[ ∶, ∶ −1 ], X[ ∶, 1 ∶ ]

10: // forward + loss
11: ℓ← CE(fθ(Xin), Y )
12: // backward (handles synchronization)
13: fabric.backward(ℓ/accum_steps)
14: // outer-step when accumulated
15: if (step+1) % accum_steps == 0 then
16: opt.step(); scheduler.step(); opt.zero_grad()
17: // optional barrier
18: fabric.barrier()
19: end if
20: step + = 1
21: end for

C.1 Multi-GPU processing
Pico already uses Lightning-Fabric data parallelism but meta-learning introduces various demands that
make multi-GPU processing complicated. A Bernoulli draw is done on one GPU and broadcast so all
ranks choose the same objective. Support and query tensors are constructed on rank 0 then scattered,
because per-rank random masks would destroy gradient equivalence. Every GPU performs the same ten
head updates before any gradient is communicated. A stray early all_reduce would mix gradients from
different inner steps, so we place an explicit barrier between inner and outer phases.

D Universal NER Datasets

To comprehensively evaluate the pretraining method, each permutation of finetuning setup ({head-only,
full}, finetuning dataset ({da_ddt, . . . , zh_gsdsimp, all}) (where all consists of all available training
sets), model size ({tiny, small, medium, large}), and pretraining setup ({vanilla, MAML}) is evaluated,
for a total of 160 evaluation runs.

• Publicly Available In-language treebanks (9 langs): full train/dev/test splits, identical to the
official UD partitions.

– da_ddt, en_ewt, hr_set, pt_bosque, sk_snk, sr_set, sv_talbanken, zh_gsd, zh_gsdsimp

• Parallel UD (PUD) evaluation (6 langs): single test.txt files, all sentence-aligned across German,
English, Portuguese, Russian, Swedish and Chinese.

– de_pud, en_pud, pt_pud, ru_pud, sv_pud, zh_pud

• Other eval-only sets (3 langs): small test splits for low-resource languages.

– ceb_gja (Cebuano), tl_trg (Tagalog TRG), tl_ugnayan (Tagalog Ugnayan)
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D.1 Slovak Fine-Tune Token Statistics

Entity # spans % single-token

PER 2 277 87.6 %
LOC 277 75.1 %
ORG 153 56.9 %

Table 4: Span statistics for the Slovak finetune set (sk_snk train). The data are strongly person-heavy and person
spans are almost always single words, whereas locations and organisations are both rarer and more often multi-token.

D.2 Tagalog and Cebuano Particle and Out-of-Vocabulary Statistics

Language Particle recall OOV rate

Tagalog 0.113 ± 0.000 0.523 ± 0.000
Cebuano 0.058 ± 0.000 0.534 ± 0.000

Table 5: Mean (± s.d. across checkpoints) of particle–preceding-span recall and token out-of-vocabulary rate,
measured on the zero-shot evaluation sets after Slovak head-only tuning. “Particle recall” is the fraction of gold
PER entities whose left context token is a Filipino case particle recognised by the model.

122



E Pretraining Results

We present the unedited pretraining indicators for each pico-maml-decoder model below, as logged on
WandB.

Figure 10: Pretraining training loss curve.

Figure 11: PALOMA score over pretraining steps.
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Figure 12: Query accuracy during pretraining.

Figure 13: Support accuracy over pretraining.
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Figure 14: Mean of weights in classifier head over pretraining.

Figure 15: Standard deviation of weights in classifier head over pretraining.
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F Default pico-maml-train Configurations

Category Parameter Default Value

Model

Model Type pico_decoder
Hidden Dimension (dmodel) 768
Number of Layers (nlayers) 12
Vocabulary Size 50,304
Sequence Length 2,048
Attention Heads 12
Key/Value Heads 4
Activation Hidden Dim 3,072
Normalization Epsilon 1 × 10

−6

Positional Embedding Theta 10,000.0

Training

Optimizer AdamW
Learning Rate 3 × 10

−4

LR Scheduler Linear w/ Warmup
Warmup Steps 2,500
Gradient Accumulation Steps 128
Max Training Steps 200,000
Precision BF16 Mixed

Data
Dataset Name pico-lm/pretokenized-dolma
Batch Size 1,024
Tokenizer allenai/OLMo-7B-0724-hf

Checkpointing

Auto Resume True
Save Every N Steps 100
Learning Dynamics Layers "attention.v_proj",

"attention.o_proj",
"swiglu.w_2"

Learning Dynamics Eval Data pico-lm/pretokenized-paloma-tinsy

Evaluation
Metrics ["paloma"]
Paloma Dataset Name pico-lm/pretokenized-paloma-tinsy
Eval Batch Size 16

Monitoring
Logging Level INFO
Log Every N Steps 100

Meta-Learning

Enabled True
Hybrid Ratio 0.5
Inner Steps (k) 10
Inner Learning Rate 0.001
Support Shots (k) 4
Query Ways (n) 32
Classifier Head Layers 4
Classifier Head Hidden Dim 128
Classifier Head Dropout 0.1
Classifier Head Init Method xavier

Monitoring
Logging Level INFO
Log Every N Steps 100

Table 6: Default configuration settings used in pico-maml-train.
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Pico-MAML-Decoder Model Comparison
Attribute tiny small medium large

Parameter Count 11M 65M 181M 570M
Hidden Dimension (dmodel) 96 384 768 1536
Feed-forward Dim 384 1536 3072 6144
Training Time (6k steps) 10h 15h 16h 25h

Table 7: Comparison of pico-maml-decoder model variants trained with default pico-maml-train configurations.
Except for hidden and feed-forward dimension, all models share the training settings detailed in 6. Models were
trained for 6000 training steps on 4 NVIDIA A100-SXM4-80GB GPUs; the listed training times correspond to the
initial 6000 steps.
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"Linguistic Universals": Emergent Shared Features in Independent
Monolingual Language Models via Sparse Autoencoders

Ej Zhou* & Suchir Salhan
Language Technology Lab, University of Cambridge

Department of Computer Science & Technology, University of Cambridge

1 Introduction

Whether certain structural patterns are shared
across all natural languages, despite surface-level
differences, has long been a topic of debate in lin-
guistics. In Natural Language Processing, studies
have shown that multilingual language models pos-
sess semantically aligned capabalities across lan-
guages even without explicit parallel supervision
(Pires et al., 2019; Conneau et al., 2020; Tang et al.,
2024). This suggests that machine-learned repre-
sentations capture crosslinguistic regularities, but
it should be noted that this alignment is aided by
shared vocabularies and parameters (Dufter and
Schütze, 2020; Philippy et al., 2023).

A more fundamental question remains: can in-
dependently trained monolingual LMs – which
share no parameters nor vocabulary – nonetheless
converge on analogous high-level features? If so,
this would suggest that certain structural principles
of language emerge robustly in machine learning,
even when models are trained in isolation. Gold-
fish (Chang et al., 2024) provides us with a suite of
monolingual GPT-style models covering 350 lan-
guages. These models have identical architectures
and training budgets but were each trained with
strictly monolingual corpora. They thus form a
controlled testbed for crosslinguistic comparison.

A key technical challenge is how to identify and
compare high-level features across different mod-
els. To overcome this, we adopt sparse autoen-
coders (SAEs) as an analysis tool. Recent work
(Cunningham et al., 2023) showed that training a
single-layer SAE on a model’s activations yields a
set of sparsely activating features that are far more
interpretable and monosemantic than the original
neuron basis. In essence, the SAE “discovers” a
dictionary of latent feature directions in activation
space, each corresponding to a distinct concept

*Corresponding Authors: yz926@cam.ac.uk,
sas245@cam.ac.uk

or pattern in the data. Brinkmann et al. (2025)
demonstrated that SAEs trained on multilingual
LLMs uncover both monolingual and multilingual
features. Notably, Lan et al. (2025) recently em-
ployed SAEs to compare features across different
English LLMs. They hypothesized that the spaces
spanned by SAE features are similar, such that one
SAE space is similar to another SAE space under
rotation-invariant transformations, and found high
similarities for SAE feature spaces across various
LLMs, providing evidence for feature space uni-
versality. We build on this approach in a novel
crosslinguistic setting. Our research questions are
framed as follows:

RQ1: Can SAE features trained on independently
trained monolingual LMs be matched across
languages? After matching, do they show non-
trivial (above baseline) convergence (i.e., have
higher alignment score)?

RQ2: At which model depths (layers) is feature
alignment strongest across languages?

RQ3: Does the degree of alignment correlate sys-
tematically with linguistic relatedness (e.g.,
typological or genealogical distance)?

RQ4: Are there features that emerge universally
across languages, and can they be interpreted
(e.g., punctuation, numerals, structural delim-
iters)? How prevalent are such features?

2 Methodology

2.1 SAE Training
For each monolingual model, we collect hidden
activations from each layer using held-out text sam-
pled from the same monolingual training corpus
used in Goldfish (5MB–1GB per language, de-
pending on availability). Given these activations,
we train an SAE to learn a set of latent features
that can reconstruct the activations. Each SAE
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is a one-hidden-layer autoencoder with tied en-
coder–decoder weights, a linear hidden layer, and
an ℓ1 sparsity penalty to encourage most feature
units to remain off for any given input. We train
separate SAEs for each language model’s each lay-
ers.

2.2 SAE Feature Activations (Data Matrix)
For each language ℓ and layer h, we construct an ac-
tivation matrix A(ℓ,h) ∈ RN×K by feeding N par-
allel sentences from FLORES-200 (NLLB Team,
2022) through the monolingual model and record-
ing the activations of its K SAE features (z-scored
per feature across sentences).

2.3 Pairwise Feature Matching
Given two languages (ℓ1, ℓ2) at layer h, we com-
pute the K ×K correlation matrix C(ℓ1,ℓ2,h) with
entries Cij = corr

(
A

(ℓ1,h)
·i ,A

(ℓ2,h)
·j

)
(Pearson over

the shared FLORES sentences). We obtain a one-
to-one alignment via maximum-weight bipartite
matching (Hungarian algorithm) on C(ℓ1,ℓ2,h).

2.4 Pairwise Alignment Score
For each pair (ℓ1, ℓ2, h), the alignment score is the
mean correlation of matched pairs:

Align(ℓ1, ℓ2, h) =
1

K

∑

(i,j)∈M(ℓ1,ℓ2,h)

Cij .

We visualize the matrix of Align(ℓ1, ℓ2, h) across
all language pairs as a heat map.

3 Analysis

3.1 Alignment Against Baselines
To ensure the alignment is non-trivial, we compare
against: (i) random feature assignment—shuffle
columns of A(ℓ2,h) before matching, (ii) row-
shuffled sentences—independently permute rows
of A(ℓ2,h) (breaks sentence-level correspondence),
and (iii) within-model shuffle—match ℓ1 to a copy
of itself with feature order shuffled. We report ∆
over baseline (absolute and percentage), with 95%
CIs from bootstrap over sentences.

3.2 Layer-wise Analysis
We aggregate Align(ℓ1, ℓ2, h) over language pairs
for each layer h to obtain layer-wise trends. We
test for a peak layer via a mixed-effects model
with random intercepts for language pairs and fixed
effect for layer, or via paired non-parametric tests
across layers.

3.3 Language-Distance Analysis

Given the Pairwise Alignment Score, a natural
question—and our hypothesis—is whether more
closely related (genealogically or typologically)
languages share more emergent features, i.e., ex-
hibit higher pairwise alignment score.We correlate
alignment strength with linguistic distance. For
each pair (ℓ1, ℓ2) we compute: (i) genealogical fam-
ily match (binary), (ii) typological distance (e.g.,
URIEL/WALS features), and (iii) script match (bi-
nary). We fit Align(ℓ1, ℓ2, h) ∼ distance metrics+
layer and report standardized coefficients. We also
stratify heat maps by family/script to visualize sys-
tematic variation.

4 Universal Features

After aligning features between each pair of lan-
guages, we ask if these features are universal across
all languages.

Definition. A feature cluster is universal at layer
h if it contains aligned features from at least p% of
languages (we choose p ∈ {50, 75, 90}).

Construction. We build a graph whose nodes
are (language, feature) and whose edges connect
matched pairs from Section 2.3 (weight = Cij).
Connected components (or communities via Lou-
vain) define crosslinguistic clusters. For each clus-
ter we report: coverage (fraction of languages
present), mean within-cluster correlation, and sta-
bility across bootstrap resamples. Preliminary ex-
pectations are that a non-trivial fraction of the
learned features – especially those capturing very
general patterns – will be universal. For instance,
we anticipate discovering features related to punc-
tuation, numerals, and structural delimiters that
appear in every model.

Interpretability. For each universal cluster, we
list top activating n-grams/tokens per language
and show cross-language trigger sets (digits,
punctuation, brackets, etc.). We include exem-
plar sentences and activation traces for qualita-
tive validation. We hope that uncovering such
crosslinguistic universal features will shed light
on whether machine-learned representations mir-
ror long-standing hypotheses in linguistic theory,
and may even provide a complementary empirical
perspective to the study of linguistic universals in
human languages.

129



References
Jannik Brinkmann, Chris Wendler, Christian Bartelt,

and Aaron Mueller. 2025. Large language models
share representations of latent grammatical concepts
across typologically diverse languages. Preprint,
arXiv:2501.06346.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and
Benjamin K. Bergen. 2024. Goldfish: Monolin-
gual language models for 350 languages. Preprint,
arXiv:2408.10441.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6022–
6034, Online. Association for Computational Lin-
guistics.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
Preprint, arXiv:2309.08600.

Philipp Dufter and Hinrich Schütze. 2020. Identifying
elements essential for BERT’s multilinguality. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4423–4437, Online. Association for Computa-
tional Linguistics.

Michael Lan, Philip Torr, Austin Meek, Ashkan
Khakzar, David Krueger, and Fazl Barez. 2025.
Quantifying feature space universality across large
language models via sparse autoencoders. Preprint,
arXiv:2410.06981.

James Cross Onur Çelebi Maha Elbayad Kenneth
Heafield Kevin Heffernan Elahe Kalbassi Janice
Lam Daniel Licht Jean Maillard Anna Sun Skyler
Wang Guillaume Wenzek Al Youngblood Bapi Akula
Loic Barrault Gabriel Mejia Gonzalez Prangthip
Hansanti John Hoffman Semarley Jarrett Kaushik
Ram Sadagopan Dirk Rowe Shannon Spruit Chau
Tran Pierre Andrews Necip Fazil Ayan Shruti Bhos-
ale Sergey Edunov Angela Fan Cynthia Gao Vedanuj
Goswami Francisco Guzmán Philipp Koehn Alexan-
dre Mourachko Christophe Ropers Safiyyah Saleem
Holger Schwenk Jeff Wang NLLB Team, Marta R.
Costa-jussà. 2022. No language left behind: Scaling
human-centered machine translation.

Fred Philippy, Siwen Guo, and Shohreh Haddadan.
2023. Towards a common understanding of con-
tributing factors for cross-lingual transfer in multi-
lingual language models: A review. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5877–5891, Toronto, Canada. Association for
Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dong-
dong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei,
and Ji-Rong Wen. 2024. Language-specific neurons:
The key to multilingual capabilities in large language
models. Preprint, arXiv:2402.16438.

130

https://arxiv.org/abs/2501.06346
https://arxiv.org/abs/2501.06346
https://arxiv.org/abs/2501.06346
https://arxiv.org/abs/2408.10441
https://arxiv.org/abs/2408.10441
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://doi.org/10.18653/v1/2020.emnlp-main.358
https://doi.org/10.18653/v1/2020.emnlp-main.358
https://arxiv.org/abs/2410.06981
https://arxiv.org/abs/2410.06981
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/P19-1493
https://arxiv.org/abs/2402.16438
https://arxiv.org/abs/2402.16438
https://arxiv.org/abs/2402.16438


Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025), pages 131–148
November 8-9, 2025 ©2025 Association for Computational Linguistics
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Transfer in LLMs
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Abstract

Large language models (LLMs) still struggle
across tasks outside of high-resource languages.
In this work, we investigate cross-lingual trans-
fer to lower-resource languages where task-
specific post-training data is scarce. Building
on prior work, we first validate that the sub-
sets of model parameters that matter most for
mathematical reasoning and multilingual capa-
bilities are distinctly non-overlapping. To ex-
ploit this implicit separability between task and
target language parameterization, we develop
and analyze numerous modular frameworks to
improve the composition of the two during fine-
tuning. These methods generally employ freez-
ing parameters or post hoc model merging to
assign math and language improvement to dif-
ferent key parts of the LLM. In the absence of
in-language math data, we demonstrate that the
modular approaches successfully improve upon
baselines across three languages, four models,
and two fine-tuning paradigms (full and LoRA).
Furthermore, we identify the most consistently
successful modular method to be fine-tuning
separate language and math experts and model
merging via Layer-Swapping (Bandarkar et al.,
2025a), somewhat surprisingly. We offer possi-
ble explanations for this result via recent works
on the linearity of task vectors. We further ex-
plain this by empirically showing that reverting
less useful fine-tuning updates after training
often outperforms freezing them from the start.

1 Introduction

Post-training large language models (LLMs) on la-
beled text data is a critical step in developing mod-
els for real-world applications. However, when
these LLMs are fine-tuned for lower-resource lan-
guages, significant challenges arise due to the pre-
trained model’s limited capabilities. Although in
recent years the broader scaling of pretraining and
increased investment in additional languages (Dang

*Correspondence: lucasbandarkar@cs.ucla.edu

et al., 2024b; Llama et al., 2024) have led to ma-
jor improvements, pretrained LLMs still struggle
to understand and generate text in all but a few
languages (Romanou et al., 2025; Qin et al., 2025).

This pretraining disparity is further exacerbated
by the lack of available high-quality multilingual
fine-tuning data (Singh et al., 2024) and the sig-
nificant cost to procure such annotated data (even
through machine translation). For many of the capa-
bilities developers target during post-training (e.g.,
instruction-following, reasoning, or safety) there
are only sufficient open-source data available in
English, Chinese, and a handful of other languages.
This motivates the need for better cross-lingual
transfer: the generalization of learned capacities
from high-resource languages to lower-resource
ones (Hu et al., 2020; Philippy et al., 2023).

Despite recent releases of massive mixture-of-
expert LLMs (Team, 2024b; DeepSeek-AI et al.,
2025; Team, 2025), a large majority of modern
LLMs are dense, meaning that all parameters are ac-
tive during training and inference. However, even
within dense LLMs, recent works have found sepa-
rability in where and how varying capabilities are
represented (Yin et al., 2024; Yao et al., 2024). For
example, multilingual capabilities are typically con-
centrated in the top and bottom transformer layers
and multi-head attention parameters of an LLM
(Chang et al., 2022; Choenni et al., 2024). This no-
tably contrasts mathematical reasoning capabilities
being encoded mainly in the middle transformer
layers (Hanna et al., 2023; Stolfo et al., 2023). In
the context of cross-lingual transfer, this functional
separation motivates modular approaches to fine-
tuning, which distinct model components can be
trained, swapped, or merged (Bengio et al., 2020;
Pfeiffer et al., 2023) for efficient and flexible multi-
objective optimization.

In this work, we explore several modular ap-
proaches for composing target task and target lan-
guage capabilities in off-the-shelf dense LLMs.
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[baseline] Same Training, Same Parameters: Entire model is trained

on a mixed dataset of English math & generic target language data 

 [1] Separate Training, Same Parameters: Separate “experts” are

fine-tuned and then merged

[2] Separate Training, Separate Parameters: Separate “experts” are

partially fine-tuned and then merged

[3] Same Training, Separate Parameters: Two sets of allocated

paramater sets are simultaneously fine-tuned on the two datasets
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parameters on each dataset
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language 
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English math

FT on mixed
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language 

Layer-Swap

merging

Figure 1: Illustration of the three methods that induce
modularity by imposing target language capabilities
(brown) and mathematical reasoning (blue) on separate
LLM parameters. [1] is from Bandarkar et al. (2025a)

Our goal is to induce modularity by exploiting
the differences in parameters that are most rele-
vant to mathematical reasoning versus multilingual
capabilities. We focus on the prevalent scenario
where task-specific data is scarce in the target lan-
guage but readily available in English. We address
this by working with two datasets; one English
math dataset for supervised fine-tuning (SFT) and
one general, multi-task SFT dataset in the target
language. Using the target languages of Bengali,
Swahili, and Telugu, we evaluate the methods on
the multilingual math benchmark, MGSM (Shi
et al., 2023).

With these datasets, we evaluate numerous train-
ing paradigms that incentivize the model, to vary-
ing degrees, to learn multilingual or math capa-
bilities in specific parameters. We organize the
settings along two axes: (1) whether the models
are optimized separately or together over the two

SFT datasets and (2) whether the same or separate
model parameters are trained on the datasets. When
the models are trained separately, we combine the
learned capabilities using model merging methods
such as variants of Layer-Swapping (Bandarkar
et al., 2025a). To train separate model parame-
ters, we start by dividing all parameters into two
partitions according to prior work: (1) one set al-
located to target language training and (2) one set
to English math. Only allocated parameters are
fine-tuned, while the opposite partition is frozen.
We additionally develop a method to train separate
parameters in a single, joint training by frequently
freezing and unfreezing parameters to simulate si-
multaneous training.

Despite the strong starting capabilities of the
four LLMs and the data-constrained setting, our
experimental results show that all of the modu-
lar solutions outperform our baselines, despite be-
ing subject to varying training constraints. This
implies that intentional separation of parameters
and/or training improves the compositionality of
task and language capabilities.

Amongst our modular solutions, we surpris-
ingly find that post hoc model merging via Layer-
Swapping outperforms more coordinated multi-
task fine-tuning approaches. To contextualize this
counterintuitive result, we explore recent academic
literature that help explain the phenomenon. We
provide empirical evidence for training all model
parameters, even if large portions will be discarded
during Layer-Swapping. While these subsets of
task vectors are unproductive, freezing them dur-
ing fine-tuning leads to less optimal updates to
the target parameters. Notably, we rationalize
that the fine-tuning task vectors (∆s) are quite lin-
ear within individual parameter blocks (Dai et al.,
2025), meaning they can be added, scaled, or inter-
polated as linear components (Adilova et al., 2024).

Overall, we enumerate the following principal
contributions of this work:

• We develop and synthesize a number of mod-
ular solutions that each increase composition-
ality for cross-lingual transfer compared to
non-modular baselines, demonstrated through
extensive experiments.

• Of the modular methods, we find that fine-
tuning all parameters and then merging via
Layer-Swapping performs best on average.

• We provide a mix of theoretical and empirical
explanations to explain the surprising success
of Layer-Swapping relative to alternatives.
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2 Background

2.1 Cross-Lingual Transfer

The relative abundance of textual data available
in English in comparison to other languages has
long motivated research in developing methods to
efficiently transfer learned capabilities across lan-
guages (Koehn and Knight, 2002). Typically, some
capabilities transfer naturally across languages, as
evidenced by the superior performance of multilin-
gual models on low-resource languages compared
to monolingual models (Firat et al., 2016; Pires
et al., 2019; Artetxe et al., 2020). In encoder mod-
els, the text embedding could be aligned across lan-
guages to improve transfer using methods such as
contrastive learning (Mikolov et al., 2013; Artetxe
et al., 2018; Muller et al., 2021).

However, cross-lingual alignment in more mod-
ern decoder-only models has become less method-
ical because of the lack of universal embedding
(Kargaran et al., 2025). Since most popular LLMs
have been trained on a majority English corpora,
recent works have examined how much intrinsic
cross-lingual transfer occurs at different training
stages (Choenni et al., 2023; Wang et al., 2024).
These large models have broader generalization and
robustness, but still fail to transfer much of their
capabilities across languages (Philippy et al., 2023).
Recent works have identified prompting methods
(Shi et al., 2023; Zhang et al., 2024) or post-training
data augmentation (Dang et al., 2024a; She et al.,
2024; Lai et al., 2024) to help generalization.

2.2 Modularity in Multilingual NLP

A major constraint for models being able to process
many languages has been the number of parameters
available to represent them. As a result, improving
a language model in one language risks undermin-
ing its knowledge of another, termed the curse of
multilinguality (Conneau et al., 2020; Pfeiffer et al.,
2022). Naturally, numerous methods have been
proposed to increase the model’s parametric ca-
pacity without increasing the inference cost, such
as mixture-of-expert architectures (Fedus et al.,
2022) that route tokens according to their language
(NLLB et al., 2022). Methods that leverage mod-
ular parameters were developed to compose capa-
bilities for transfer learning by inserting trainable
adapters within model layers (Houlsby et al., 2019;
Pfeiffer et al., 2021). These methods were modi-
fied for multilinguality by allocating adapters for
particular languages and switching them in or out

depending on the input (Bapna and Firat, 2019;
Pfeiffer et al., 2020). Pfeiffer et al. (2022) extended
these methods by pretraining an adapter-based mul-
tilingual model from scratch. In decoder models,
cross-lingual adapters have also been proposed at
the token embedding level (Jiang et al., 2025).

Even in dense LLMs, however, interpretability
research has identified the emergence of effective
modularity (Csordás et al., 2021) as LLM parame-
ters scale (Zhang et al., 2022; Qiu et al., 2024; Chen
et al., 2025). Principally, numerous recent works
have identified that just a few transformer layers
at the top and bottom of English-centric LLMs are
responsible for multilingual capabilities, notably
by mapping input and output into a universal rep-
resentation (Kojima et al., 2024; Wendler et al.,
2024; Tang et al., 2024b; Alabi et al., 2024; Wu
et al., 2025). Similar patterns are observed in mod-
ern sparse mixture-of-experts LLMs, where it is
also observed that language-specialized experts are
completely distinct from task/domain-specialized
ones (Bandarkar et al., 2025b).

2.3 Model Merging
Model merging is the practice of combining the
weights of multiple checkpoints of the same model
architecture into a singular model. While averag-
ing models is a fundamental machine learning ap-
proach to increase statistical robustness (Breiman,
1996), the averaging of model checkpoints, dubbed
a model soup by Wortsman et al. (2022), has re-
emerged in large-scale LLMs as a method to in-
crease model robustness. More importantly, it also
increases the search space of valid model variants
at any given training step without additional costly
training runs (Llama et al., 2024). However, simple
weight averaging is vulnerable to negative trans-
fer, or interference, between checkpoints so numer-
ous methods have been presented to selectively
merge parameters (Ilharco et al., 2023a; Yadav
et al., 2023; Yu et al., 2024a). Surprisingly, training
models on separate data and then merging can of-
ten outperform a single training run on mixed data
(Tang et al., 2024a; Aakanksha et al., 2024) and has
shown to be highly effective in large-scale multi-
lingual pretraining (Dang et al., 2024b). For cross-
lingual transfer in particular, Ansell et al. (2022)
showed that sparse fine-tuning can lead to better
composition. Bandarkar et al. (2025a) extended
this by notably identifying that mathematical rea-
soning was concentrated in parameters different
from multilingual capabilities. As a result, model
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Training Description Base Model Partial LoRA Partial SFT LoRA Full SFT

Math-only 19.0% 18.0% 19.5% 18.9% 19.6%
Language-only 19.0% 19.2% 19.8% 19.7% 20.3%
Data mixing 19.0% - - 19.7% 20.4%
Simultaneous SFT 19.0% 20.4% 21.0% - -
Layer-Swapping 19.0% 20.0% 20.4% 20.8% 21.5%

Table 1: Summary Table of Results. Each value represents the average across four models, three languages, and
multiple training runs on MGSM in 2-shot evaluations. The last row represents “Separate Training” while the
“Partial” trainings correspond to “Separate Parameters” trainings. All results shown here and in all other tables of
this paper display exact-match (EM) accuracy (↑) as a percentage.

variants trained on English math data and multilin-
gual data can be combined by Layer-Swapping, or
swapping the transformer layers most important to
each.

3 Experimental Setup

3.1 Evaluation

Limited by the lack of task-specific benchmarks
for medium- and low-resource languages, we focus
on MGSM (Shi et al., 2023) as the target task of
this project. MGSM is a mathematical reasoning
benchmark parallel across 10 languages as a re-
sult of high quality translations from the popular
English benchmark, GSM8K (Cobbe et al., 2021).
For MGSM, we report exact match accuracy in
two-shot, as one- and zero-shot led to inconsistent
results. More few-shot examples did not display
substantial gain. For target languages, we choose
the languages in MGSM where the four LLMs per-
form the worst: Bengali, Telugu, and Swahili. In
addition, the lack of open-source math SFT data
available in these languages motivates the need for
more effective cross-lingual transfer. For a given
fine-tuned model, we also evaluate the two-shot
MGSM performance in English to evaluate its math
performance irrespective of target language capa-
bility. Conversely, we use the multilingual MCQA
benchmarks GLOBAL MMLU (Singh et al., 2025)
and BELEBELE (Bandarkar et al., 2024) as pure lan-
guage understanding signals, independent of math.

3.2 Models

We run experiments on four state-of-the-art
instruction-finetuned LLMs: FALCON 3 7B (Team,
2024a), QWEN2.5 7B Instruct (Yang et al., 2024),
LLAMA 3.1 8B Instruct (Llama et al., 2024), and
AYA Expanse 8B (Dang et al., 2024b). All have
similarly high performance on MGSM in English.

LLAMA 3.1 and FALCON 3 are English-centric,
QWEN2.5 bilingual with Chinese, and AYA Ex-
panse explicitly multilingual. However, all offi-
cially cover numerous other languages (up to 23 for
AYA) and perform reasonably on such languages,
which we verify using BELEBELE and GLOBAL

MMLU. Bengali, Swahili, and Telugu are amongst
the official languages for none of these models.
As a result, the four models are all low-scoring in
MGSM in these languages, with the exception of
LLAMA on Swahili (See Appendix A.8).

3.3 Parameter Allocation
To determine which parameters to “allocate” to
each capability, we rely on a mix of interpretability
papers and small-scale empirical tests. As men-
tioned in Section 2.2, numerous papers have identi-
fied the most important parameters for multilingual
capabilities to be the first few and last few trans-
former layers of LLMs. These works, however,
typically discuss mostly English-centric models
(such as LLAMA 3.1 and FALCON 3). We therefore
need to evaluate this for bilingual and multilingual
models like QWEN2.5 and AYA Expanse. For math-
ematical reasoning, we note that Bandarkar et al.
(2025a) identifies the middle and late-middle trans-
former layers as being the most important. This
work, and numerous others (Voita et al., 2019; Ma
et al., 2021; Zhao et al., 2024), similarly identi-
fies multi-head attention parameters as critical to
multilingual capabilities, as opposed to multi-layer
perceptron parameters.

To empirically verify these assumptions on our
selected models, we run SFT over our datasets with
different subsets frozen. We evaluated numerous
ways to partition the parameters and find a number
of splits that enable improvements on English math
and on language-specific signals (e.g. BELEBELE).
To validate that the good performance when freez-
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Parameters that are
frozen or reset

Frozen
during

Reset
after

base (no SFT) 78.4% 78.4%

[Z] only top-4 and bottom-8
layers (inverse of intuition)

78.2% 78.9%

[A] all MHA parameters +
MLP parameters in top-2
and bottom-6 layers

79.4% 79.8%

[B] only top-4 and
bottom-8 layers

79.8% 79.8%

[C] only top-2 and
bottom-6 layers

79.7% 80.0%

None 80.1% 80.1%

Table 2: MGSM 2-shot results (↑) on the English split
after SFT on the English math data averaged across
four models. These results (1) validate that our intu-
ition leading to our parameter allocations [A, B, C] is
reasonable seeing as results are close to full fine-tuning
and are significantly higher than the inverse allocation
[Z]. Additionally, (2) these results demonstrate that full
fine-tuning then reverting parameters (second column)
is more effective than freezing those parameters from
the start (first column).

ing parameters is because the trainable parameters
are particularly useful for a target task, we also run
experiments with the opposite allocation (e.g. mid-
dle layers frozen during mathematical reasoning
training) and find that it works poorly.

While the search space of which parameters to
freeze is large, we settle on three partitions that
show sufficient empirical success:

• [A] All multi-head attention parameters allo-
cated to the target language. Then, amongst
the multi-layer perceptron parameters, those
in the first six and last two transformer layers
still allocated to language, while those in the
rest of the 32- or 36-layer LLM for math.

• [B] The first eight and last four transformer
layers allocated to language, the rest for math.

• [C] The first six and last two transformer lay-
ers allocated to language, the rest for math.

In these three settings, both mathematical rea-
soning and target language capabilities improve
similarly to full SFT with a fraction of trainable
parameters (See Table 2 for results for math). We
evaluate the three for each of our experimental set-
tings and, unless noted, report the highest scoring.

3.4 Training

For SFT data, we create four datasets, one for math
in English and one instruction dataset for each of
the three target languages. The math instruction
dataset consists of English math word problems
from the Orca-Math synthetic dataset (Mitra et al.,
2024). For the language datasets, we replicate
the creation of “generic” instruction fine-tuning
datasets from Bandarkar et al. (2025a) by com-
bining samples from open-source instruction and
task-specific datasets. Importantly, there are no
math samples in these multi-task language datasets.
We provide specific details and citations for these
data collections in Appendix A.6.

Due to constraints on the amount of verifiable-
quality data available in each of the target lan-
guages, our datasets are controlled at 80k samples,
2k of which is reserved for validation. Because
of significantly diminishing returns exhibited by
the validation loss and downstream evaluations, we
only train for one epoch for each of our settings.

We additionally duplicate all experiments us-
ing Low-Rank Adapters (LoRA) (Hu et al., 2022).
Specifically, we use rank-stabilized LoRA (Kala-
jdzievski, 2023) applied to both multi-layer per-
ceptron and multi-head attention parameters. In
general, the adjustments of our methods to be com-
patible with LoRA were minor unless noted other-
wise. With four models, three languages, and two
fine-tuning approaches (full and LoRA), we have a
total of 24 experimental settings. For each, we do
hyperparameter search over several runs to ensure
comparability (See Appendix A.4 for details).

4 Experiments

We describe numerous methods that modularize
off-the-shelf, dense LLMs in different ways. We
describe separate training as when we conduct sep-
arate SFT runs on different datasets, albeit starting
from the same off-the-shelf model. As previously
mentioned, the separately trained checkpoints are
then merged via Layer-Swapping. Separate pa-
rameters implies that only the partition of parame-
ters allocated (See Section 3.3) to that dataset are
trained while the rest remain frozen.

4.1 Baselines (Math-only and Language-only)

For comparison, we evaluate a number of straight-
forward SFT setups to serve as baselines. We do
full-parameter training runs for each of the target
language generic SFT datasets and the English
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math SFT dataset. For further baselines, we re-
run the above when leaving only parameters allo-
cated to that capability trainable, and the rest are
frozen. In addition, we replicate both full training
and partial training in LoRA, where parameters are
“frozen” if no adapter is added for that parameter.

4.2 Data Mixing (Same Training, Same
Parameters)

As an additional baseline, we randomly mix the two
datasets together and jointly optimize over the two
disjoint tasks with all parameters left trainable.

4.3 Layer-Swapping (Separate Training,
Same Parameters)

For this setting, we exactly recreate the method
presented by Bandarkar et al. (2025a). Starting
from the same base model, separate variants are
trained on different tasks, dubbed “experts”. Con-
cretely, one expert has been trained on the English
math data, and the other on the target language
instruction dataset. To recompose a single model,
the top and bottom transformer layers from the
target language expert replace those in the math ex-
pert, while the math experts’ middle layers remain.
We additionally implement the equivalent of this
methodology with LoRA, where the set of adapters
is merged by combining the adapters correspond-
ing to parameters that would be swapped. Note that
we do not retrain these experts and simply use the
checkpoints from our baseline trainings.

4.4 Layer-Swapping with Partial SFT
(Separate Training, Separate Parameters)

We modify Layer-Swapping so that only the pa-
rameters involved in the model merging are trained,
and all those eventually ignored are kept frozen dur-
ing training. The idea for this is that no parameters
are unnecessarily trained and we can incentivize
the training to focus the learned capabilities into
the desired parameters. Similar to above, we do
not retrain experts and simply merge checkpoints
from our frozen parameter baselines.

4.5 Simultaneous Partition SFT (Same
Training, Separate Parameters)

We design a methodology to “simultaneously" fine-
tune two partitions of LLM parameters on two dif-
ferent datasets. To do so, we apply a gradient step
on a batch from one dataset on the corresponding
partition of parameters. Then, we switch which
parameters are frozen and sample a batch from

the other dataset for the next gradient step. This
frequent back-and-forth is intended to ensure the
coordination of parameter updates during multi-
task optimization. The validation set contains an
equal amount from each datasets.

Switching We default to a single step before
switching to best simulate fully simultaneous train-
ing, but additionally experiment with more steps
between. We set the effective batch size 1 to 64. At
the end of each step, all parameters just updated are
frozen for the next step and conversely, all frozen
parameters are unfrozen. In addition, a flag for the
data iterator is switched to ensure the next batch of
data will be sampled from the appropriate dataset.
For LoRA training, the same logic is implemented.

Optimizer We consider numerous approaches
to adapt the AdamW optimizer (Loshchilov and
Hutter, 2019) used in all previous experiments. Al-
though we technically employ a single optimizer
initialized on all parameters during training, we
configure it to function as two independent opti-
mizers, each exclusively managing its own separate
subset of parameters. Namely, when a subset of
parameters A is frozen, the corresponding AdamW
optimizer states ΩA (momentum and variance es-
timates) are also frozen in time. As a result, when
the parameters in A are unfrozen, the correspond-
ing momentum and variance estimates of ΩA still
reflect only the gradients steps previously applied
to A. However, the other parameters Ac have been
updated in the meantime, meaning ΩA risks being
outdated given the modified loss landscape. To test
the impact of this inconsistency, we ablate over
different numbers of steps between switches and
find that the differences are very negligible (See
Appendix A.3). We conclude that the optimizer
restarting on an outdated loss landscape is of min-
imal concern, presumably because of the smooth-
ness of the loss topology. Since there is a single
optimizer, the learning rate schedule is the same for
all (constant with warmup). And while the gradi-
ents tend to be larger for the multilingual data, we
set a maximum gradient norm of 1.0 for clipping.

5 Results

Our experimental setting was designed to replicate
a real-world scenario where multilingual LLM de-
velopers would take a post-trained LLM and are

1Effective batch size is the product of the batch size per
GPU, number of GPUs, and gradient accumulation steps.

136



Performance Comparison of Modular Solutions

SFT Type Base Full Simultaneous SFT Layer-Swapping
Full LoRA Full SFT LoRA Part. SFT Part. LoRA

Swahili 23.5% 25.1% 25.9% 25.2% 26.7% 25.8% 25.1% 24.8%
Bengali 25.6% 27.9% 27.9% 26.9% 28.7% 27.5% 27.0% 26.7%
Telugu 7.9% 8.2% 9.3% 9.0% 9.2% 9.2% 9.0% 8.6%

English 78.4% 80.4% 81.8% 80.5% 80.9% 80.8% 79.9% 80.0%
sw,bn,te AVG 19.0% 20.4% 21.0% 20.4% 21.5% 20.8% 20.4% 20.0%

Table 3: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across four models. The baseline
presented for comparison in the 3rd column is the full SFT on the mix of the two datasets.

limited by the amount of in-language post-training
data. This constrained scenario means only mod-
est improvements are achievable. However, we
do observe several conclusive patterns. Across
our different four models and three languages (12
conditions), we can summarize into 6 treatments
discussed in Sections 4.1 to 4.5. Despite the small
magnitude of differences, the rank-based Friedman
test (non-parameteric) shows statistically signifi-
cant differences between the treatments at the 0.05
significance level.

In our setting, we find that only training on the
language dataset is more effective in improving the
target language MGSM score than only on the math
dataset (details in Appendix A.1). This implies,
perhaps, that what our four models need most, is
improved Swahili, Bengali, or Telugu abilities as
opposed to math improvement.

We validate the lack of need for full-parameter
training when doing both language adaptation and
math SFT. Once the most useful parameters have
been identified for such a skill, as discussed in Sec-
tion 3.3, comparable performance to full SFT can
be achieved with a fraction of the trainable param-
eters. Beyond potentially contributing to compo-
sitionality, this leads to faster and more memory-
efficient training. More details on these baselines
can be seen in Appendix A.1. We do note, how-
ever, that in the absence of resource limitations,
SFT with less trainable parameters converged a
bit slower and full fine-tuning still performed best.
This is also true for LoRA, which has much less
trainable parameters by nature.

A significant result is that all our modular solu-
tions perform statistically-significantly better than
the non-modular baselines, as can be seen in Ta-
ble 1. This is strongly the case for Telugu and

Swahili in the displayed four-model averages, but
varies more by specific modular method for Ben-
gali in comparison to the top baseline (data mixing)
(See Appendix A.5 for per-language results).

Within our modular solutions, however, we find
numerous surprising results. First, freezing the
unused parameters in training experts before Layer-
Swapping does not improve upon full training.
As detailed in the last four columns of Table 3,
the difference in performance is better when all
modules are being finetuned for both LoRA and
full-parameter SFT (statistically significant). This
is counter-intuitive because the layers eventually
merged are potentially dependent on parameter
changes that are being replaced. Second, Layer-
Swapping surprisingly outperforms the simultane-
ous SFT. This is surprising because in our simulta-
neous SFT, the modularity is being imposed cohe-
sively as opposed to the ad hoc merging of layers
from separate training runs. We note, however, that
the simultaneous SFT performs second-best.

To validate results further, we also evaluate
more expensive Continual Pretraining (CPT) for
QWEN2.5 in Bengali across the experimental de-
signs and find agreement with our SFT results (See
details in Appendix A.2, A.7). However, we limit
discussion of these results because of the small
scale of experimental results.

We additionally analyze the composability of
individual experts under Layer-Swapping. We de-
fine a good merging indicator as an evaluation
signal of an expert that correlates with the perfor-
mance of the merged model. We find that perfor-
mance on general NLU benchmarks—BELEBELE

and GLOBAL MMLU—is a stronger indicator of
a language expert’s merge quality than MGSM
results in the target language. Similarly, MGSM
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performance in English is a better predictor for a
math expert than MGSM in the target language.
This is notable because MGSM in the target lan-
guage is the target task of course, yet results more
directly related to the training data tends to be more
important for proper task composition.

6 Discussion

Given the rejection of our hypothesis that simulta-
neous fine-tuning would most effectively compose
task and language capabilities, we discuss potential
explanations for this outcome.

Train-then-Revert vs. Freeze-then-Train Intu-
ition may dictate that fine-tuning parameters and
then later reverting part of them should be less
effective than simply freezing those parameters
from the start. In the former, the fine-tuning is
unaware of future edits while the latter provides
hard constraints during optimization. However,
empirically, we find that across models, training-
then-resetting outperforms freezing-then-resetting.
We display this for our English math fine-tuning
in Table 3.3. This explains why Layer-Swapping
with full training (Section 4.3) may be preferen-
tial to solutions involving freezing parameters. We
conclude that while a large portion of fine-tuning
weight updates are not needed in the end, either
because they are noisy or redundant (Yu et al.,
2024b), they enable optimization in a very high-
dimensional space. This is analogous to recent
papers discussing the Lottery Ticket Hypothesis
(Frankle and Carbin, 2019), where it has been con-
cluded that training a full neural network and then
pruning it leads to stronger models than the same
pruning before training (Frankle et al., 2021).

Concatenating Components in Layer-Swapping
We seek to explain why concatenating transformer
layers from separately fine-tuned “experts" is so
seamless. Task vectors (Ilharco et al., 2023b) are
the ∆s that result from fine-tuning (i.e., θFT − θ0).
Task vector linearity refers to the property that lin-
ear combinations of such task vectors form a co-
herent, effective model. Ortiz-Jimenez et al. (2023)
identifies that linearized task vectors exhibit better
mergeability. Meanwhile, when fine-tuning heavily
post-trained models like those used in our experi-
ments, recent works show that updates to individ-
ual model layers exhibit significant linearity (Zhou
et al., 2024; Razzhigaev et al., 2024; Dai et al.,
2025). Furthermore, research on mode connectivity

(Frankle et al., 2020; Garipov et al., 2018) shows
individual transformer layers can be smoothly in-
terpolated (Zhou et al., 2023; Adilova et al., 2024).
These works provide explanation for why ad hoc
Layer-Swapping is not more degradative.

Further Considerations We note that model
merging is convenient because the configuration
(e.g., what parameters to swap), can be determined
after training. This enables fast iteration through
configurations without retraining. This flexibility
is sacrificed for our “separate parameters" methods,
which require fixing parameter allocations. How-
ever, an inconvenience of merging methods is the
need to train two experts, potentially doubling the
amount of training runs for hyperparameter search.

7 Conclusions

Our results demonstrate that imposing modularity
into dense LLMs for cross-lingual transfer is quite
effective in low-data scenarios. We empirically val-
idate this with numerous ways to impose such mod-
ularity through fine-tuning with frozen parameters
or model merging, all of which prove more effec-
tive than non-modular baselines. Furthermore, we
discover the surprising success of Layer-Swapping
over other modular methods that fine-tune task and
language together or do not ad hoc revert param-
eter updates. We conjecture that the success of
this ad hoc merging method is because the math
and language experts, when represented as task
vectors, exhibit a high degree of linearity. As a re-
sult, this method benefits from more robust training
over all parameters while also leading to effective
compositionality. We also empirically demonstrate
that the success of Layer-Swapping is in part due
to frozen-parameter fine-tunings underperforming
full fine-tunings followed by parameter resets.

8 Future Work

We encourage further work in multilingual NLP
that leverages implicit modularity in LLMs, in-
duces it during training, or designs explicitly modu-
lar architectures. Our parameter allocation strategy
relied on previous interpretability work and limited
empirical evidence, and the search space of modu-
lar configurations is largely unexplored. With post
hoc model merging, iterating through many abla-
tions can be quick. Although we focused on math-
ematical reasoning—due to limited multilingual
task-specific datasets—future work should exam-
ine other tasks that may warrant different parameter
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allocations. More broadly, these results underscore
the importance of improving interpretability around
how capabilities are parameterized in LLMs, such
as multilinguality. If we can better localize and sep-
arate parameters by function, our findings suggest
that modularization may yield significant improve-
ments.

Limitations

Small ∆s Our decision to use the instruction fine-
tuned version of each of the open-source LLMs for
our experiments was a conscious one that came
with many considerations. We prioritized replicat-
ing a real-life practical scneario, where model de-
velopers would start from already fine-tuned LLM
versions because of their broader capabilities. How-
ever, as a result, this meant that our fine-tuning ex-
periments only led to relatively small performance
improvements with respect to the starting check-
point. Such checkpoints have undergone extensive
post-training, notably with significant mathemati-
cal reasoning samples and varying amounts of mul-
tilingual samples. Therefore, possible model im-
provements with these small datasets were small,
risking results that were not statistically signifi-
cant. Nevertheless, this allowed us to control for
the amount of improvement on benchmarks that
was simply a result of the LLMs’ improved abil-
ity to follow instructions after SFT, in addition to
reflecting a more practical setting.
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A Appendix

A.1 Detailed Baseline Results

Detailed Performance of Non-Modular Baselines

SFT Dataset None Data-Mixing Math-Only Language-Only
SFT Type Base Full LoRA Full LoRA Part. FT Full LoRA Part. FT

Swahili 23.5% 25.1% 24.8% 25.2% 24.4% 25.0% 24.8% 23.8% 24.3%
Bengali 25.6% 27.9% 26.0% 26.1% 24.8% 25.6% 28.3% 26.6% 26.9%
Telugu 7.9% 8.2% 8.4% 7.4% 7.4% 8.0% 7.9% 8.6% 8.2%

English 78.4% 80.4% 80.0% 81.3% 81.0% 80.6% 79.9% 78.8% 79.0%
sw,bn,te AVG 19.0% 20.4% 19.7% 19.6% 18.9% 19.5% 20.3% 19.7% 19.8%

Table 4: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across four models. Generally,
we find that data mixing is the most effective, but with very small difference in comparison to language-only SFT.
We exclude Partial LoRA results for space considerations, but report here that the results were for all numbers, 0-1%
lower than LoRA results.

A.2 CPT Results for QWEN2.5 in Bengali

Detailed Performance of CPT Experiments

SFT Dataset None Mix Math-Only Lang-Only Simult. Layer-Swapping
SFT Type Base Full Full Part.FT Full Part.FT Part.FT Full Part.FT

Bengali 37.6% 38.2% 33.2% 34.2% 37.6% 37.8% 38.8% 39.4% 38.8%

English 76.8% 77.6% 80.0% 79.8% 74.0% 73.8% 80.2% 79.2% 79.6%

Table 5: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across two runs. We find that our
main results from SFT mostly stand, but limit our conclusions as the small number of runs prevent the findings from
being statistically significant. We note that CPT trainings more substantially degrade performance in the opposite
capability than SFT. “Mix" is “Data-Mixing" and “Simult." is “Simultaneous FT", shortened for space.

A.3 Number of Gradient Steps Between Switches

Table 6: Ablation over the number of gradient steps to do on a single dataset and single partition of model
parameters before switching back to the other data and parameters. All runs were controlled to have the same exact
hyperparameter settings on QWEN2.5 7B Instruct with the target language Swahili. Four upper layers and eight
lower layers were allocated for the target language, and a learning rate 1.2e−06

Gradient Steps per
Switch

Starting Validation
Loss

Ending Validation
Loss

∆ for MGSM,
Swahili

1 2.301 1.605 +3.2%
5 2.301 1.612 +2.4%
10 2.301 1.613 +2.8%
50 2.301 1.613 +2.0%
200 2.301 1.602 +0.8%
500 2.301 1.565 +1.2%
1171 2.301 1.536 −1.2%
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These results indicate no negligible differences between the tested step counts. This implies the concern
discussed in Section 4.5 of the optimizer unfreezing with an outdated loss landscape is minimal. Or at
least, it implies that the ability to do numerous steps without interruption in the same setting outweighs
this concern. And while increasing the gradient steps per switch does provide no negligible difference on
the validation loss, intuitively it leads to a training paradigm farther from a truly simultaneous training.
We find that on the target task, MGSM in Swahili, performance goes down progressively as the gradient
steps per switch is increased. This implies the composition of math and Swahili capabilities are working
less effectively.

A.4 Details for Reproducibility
For reproducibility, we detail our implementation and hyperparameters for training. The datasets them-
selves are outlined in Sections A.6 and A.7.

• Training is run on a single cluster of A100s, typically with only one GPU per training run.

• Training methods are developed using the trl python package (von Werra et al., 2020) and models
accessed via HuggingFace.

• Learning rate ranged across training runs, but was typically in the range [1.0, 2.0]× 10−6.

• For LoRA, it ranged from [4.0, 9.0] × 10−6. Rank and Alpha parameters were either (64, 16) or
(32, 8).

• Sequence length was either 512 or 1024. Effective batch size was typically 32, except for effective
batch size of 64 for simultaneous training, as described in Section 4.5.

• Evaluation is performed using the Language Model Evaluation Harness (Gao et al., 2024).

A.5 Bar Graph of Per-Language Results

Figure 2: Per-language breakdown of the average performance gain seen during our different types of training,
averaged across four models. We see that while math-only SFT (green) does well for Swahili and mixed-data SFT
(red) does well for Bengali, our two modular solutions work consistently well across the three languages. Note: the
y-axis is a percentage because the evaluation score is accuracy, not because this table displays percent change.
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A.6 SFT Datasets

Table 7: Datasets used for supervised-fine-tuning (SFT) in this project

Category Datasets URL
Math Orca Math word problems dataset from

Microsoft (Mitra et al., 2024)
https://huggingface.co/datasets/microsoft/
orca-math-word-problems-200k

Telugu
Aya Dataset from Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Telugu translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

Synthetic English instruction dataset,
machine translated to Telugu by Telugu-
LLM-Labs

https://huggingface.co/
collections/Telugu-LLM-Labs/
indic-alpaca-datasets-65f2a3687d5cdbce8880c581

Bengali

Aya Dataset by Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Bengali translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

IndicShareLlama dataset from
AI4Bharat (Khan et al., 2024)

https://huggingface.co/datasets/ai4bharat/
indic-align

BongChat dataset from Lumatic AI https://huggingface.co/datasets/lumatic-ai/
BongChat-v1-253k

Swahili

Aya Dataset by Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Swahili translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

Inkuba dataset from Lelapa (Tonja et al.,
2024)

https://huggingface.co/datasets/lelapa/
Inkuba-instruct

xP3 MT dataset from BigScience, with
FLORES samples removed (Muen-
nighoff et al., 2023)

https://huggingface.co/datasets/bigscience/
xP3mt

All datasets listed above were verified to be used in compliance with their respective licenses. Each
dataset was properly attributed according to its license requirements.

A.7 CPT Datasets

Table 8: Datasets used for continual pretraining (CPT) in this project

Category Datasets URL
Math Open Web mathematical texts collected

by the University of Toronto and Cam-
bridge (Paster et al., 2024)

https://huggingface.co/datasets/
open-web-math/open-web-math

Bengali The ROOTS corpus subset of Bengali
Wikipedia from BigScience (Laurençon
et al., 2022)

https://huggingface.co/datasets/
bigscience-data/roots_indic-bn_wikisource

All datasets listed above were verified to be used in compliance with their respective licenses. Each
dataset was properly attributed according to its license requirements.
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A.8 Off-the-shelf Model Results
To motivate the use of our four models and the three target languages, we provide preliminary results of
these models prior to any fine-tuning.

Model Size MGSM BELEBELE
EN SW BN TE EN SW BN TE

LLAMA 3.1 8B 79.6% 52.0% 32.8% 11.2% 88.6% 56.1% 59.3% 53.6%
QWEN2.5 7B 76.8% 12.8% 37.6% 13.6% 91.1% 37.2% 64.7% 41.3%

AYA Expanse 8B 78.8% 10.8% 21.6% 3.2% 81.6% 32.3% 42.3% 29.9%
FALCON 3 7B 78.4% 14.4% 10.4% 3.6% 85.9% 36.3% 34.8% 30.1%

Table 9: The results on the MGSM (2-shot, EM accuracy (↑)) and BELEBELE (0-shot accuracy (↑)) benchmarks for
the four models used in our experiments. We note that for all models, we use the instruction-finetuned version.
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Abstract

Automatic speech translation (AST) promotes
seamless communication among speakers of
different languages. While current state-of-the-
art models excel with high-resource languages,
their performance on low-resource languages
(LRLs) is not well-established. We investigate
this by evaluating state-of-the-art models on
10 LRLs with varying data amounts (10-30+
hours). Through six finetuning strategies and
experimenting with three main AST paradigms,
we observe that: (1) The latest Large Language
Models (LLMs) may struggle with LRLs. (2)
Comprehensive experiments suggest that for
LRLs, more AST finetuning data is not always
beneficial. (3) Our 2-Stage with ASR correc-
tor finetuning recipe can substantially improve
AST performance on LRLs, achieving up to a
5.8x BLEU score boost on translating related
languages to English, while on par with the best
monolingual finetuning in BLEU score when
translating the target language to English. (4)
We share our effective engineering practices,
including how to effectively adapt AST models
to unseen languages.

1 Introduction

Automatic speech translation directly converts
speech from a source language into text or speech
in a target language. The field has recently ad-
vanced at a rapid pace, driven by new paradigms
like large-scale pre-training (Babu et al., 2021;
Baevski et al., 2020; Conneau et al., 2020), large
speech models, e.g. SeamlessM4T (Communica-
tion et al., 2023); Large Language Models (LLMs),
e.g. ChatGPT (OpenAI, 2023); and speech-native
audio LLMs, e.g. GPT-4O AUDIO (OpenAI, 2024),
Gemini 2.0 Flash (Google, 2025), etc. Despite
these progresses, many AST research centered
on high-resource languages like English, French,
German (Di Gangi et al., 2019; Bahar et al.,

2019). Therefore, a most recent investigation of the
novel modeling paradigms for the low-resource lan-
guages (LRLs) for AST is needed. AST for LRLs
is constrained by scarce training data. Recent mul-
tilingual speech corpora like MuST-C (Di Gangi
et al., 2019), CoVoST 2 (Wang et al., 2021), and
FLEURS (Conneau et al., 2023) enable novel AST
paradigms for these languages.

AST modeling paradigms fall into three cate-
gories: (1) cascaded approaches that apply au-
tomatic speech recognition (ASR) followed by
machine translation (MT), (2) multimodal MT
approaches like SeamlessM4T (Communication
et al., 2023) that directly translate speech to text,
and (3) multimodal large language models such
as Gemini 2.0 Flash, which natively process text,
speech and images, can perform direct speech-
to-text translation (S2TT). Even for other LLMs
which do not natively support audio input, mapping
audio tokens to the token vocabulary (Wang et al.,
2023; Ambilduke et al., 2025) can leverage MT ca-
pabilities, such as models like SALMONN (Tang
et al., 2024), Qwen 2 Audio (Chu et al., 2024) and
SPIRE (Ambilduke et al., 2025).

We investigate which approach works best for
LRLs with small amounts of finetuning data.
Specifically, is the cascaded architecture superior
with small data when compared to multimodal MT
approaches like SeamlessM4T and Audio LLMs?
We experiment with ten LRLs from FLEURS (five
Indic, five African) translating to English, choosing
a translation direction X → English so that the mul-
tilingual capabilities of each method can be better
assessed. We then compare performances across
different AST paradigms against a high-resource
language pair, i.e. French → English.

For cascaded approach, we proposed various
finetuning strategies for all the three main mod-
eling paradigms of AST. Through comprehensive
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experiments across 11 languages, we show that the
best AST approach depends on the resource-level
of the languages: For languages with slightly better
data availability, such as all five Indic languages
and Swahili, prompting Gemini-2.0 Flash LLM
works best. While for extremely low-resource lan-
guages, such as Hausa and Yorùbá, finetuning from
large MT models or sequentially finetuning ASR
and MT models can be more effective. To summa-
rize, our contributions include:

• A comprehensive evaluation of AST for low-
resource languages, establishing a general-
izable and highly effective blueprint, com-
paring three modeling paradigms across 11
languages with various finetuning recipes.

• A simple yet effective "2-stage with ASR cor-
rection" strategy, that reduces WER by 54.2%
relative on average for African languages and
yields a 5.8 times increase in BLEU and a 2.6
times increase in BLEU for African and Indic
language groups, respectively, without addi-
tional data or model architectural changes.

• Our best recipe performs well on the target lan-
guage while preserving balanced AST per-
formance across languages, avoiding over-
optimization for a single language. This offers
practical guidelines for adapting multilingual
AST models.

• Through comprehensive experiments, we
share the finding that for low-resource lan-
guages, more AST finetuning is not always
beneficial, providing a nuanced perspective
on common practices.

We ensure full reproducibility by using only pub-
licly available data and APIs, and open-sourcing
our code and recipes.1

2 Related Work

The central challenge in AST is data scarcity (Xu
et al., 2023) of high-quality paired (source speech,
target text) data. Conventional AST thus uses
cascaded approaches (Matusov, 2005) that first
transcribe speech via ASR, then translate using
MT. When it comes to the LRLs, the challenge
of data scarcity is more severe. Multiple efforts
address this challenge. Corpora like FLEURS
and Common Voice (Ardila et al., 2019) enable

1https://github.com/McGill-NLP/ast-lrl-speech

AST for LRLs, while NaijaVoices (Emezue et al.,
2025) and BhasaAnuvaad (Jain et al., 2024) con-
tribute data for African and Indian languages, re-
spectively, although wide gaps persist compared to
high-resource languages.

Recent speech foundation models like
Wav2Vec2 (Baevski et al., 2020) and multimodal
LLMs (Google, 2025) have transformed AST:
Bansal et al. (2018) and Stoian et al. (2020)
demonstrated the benefit of pre-training AST
models on high-resource ASR data to improve
performance for low-resource language pairs.

Popular parameter-efficient finetuning methods
such as LoRA (Hu et al., 2021; Liang et al., 2025),
lightweight adapter (Le et al., 2021), always re-
quire changing the model architecture. In contrast
to these studies, our research concentrates on the
curriculum design of finetuning, to uncover hidden
factors within simple full finetuning methods.

Kocmi et al. (2024) concluded that despite the
rise of LLMs, AST still requires significant im-
provement, particularly in low-resource scenarios.

Multimodal benchmarks like SUPERB (Yang
et al., 2021) cover many speech tasks but ex-
clude AST, while mSTEB (Beyene et al., 2025)
analyzes AST only at the language-family level.
OWLS (Chen et al., 2025) demonstrates scaling
benefits for low-resource performance, which our
Whisper findings echo. We focus on broadly effec-
tive finetuning recipes and provide detailed analy-
sis for low-resource African and Indic languages,
underexplored in prior surveys.

Multilingual finetuning on models like Whisper
(ASR) and SeamlessM4T (Communication et al.,
2023) (AST) often degrades non-target languages,
especially with monolingual finetuning. We pro-
pose an effective 2-stage finetuning curriculum that
reduces this shift without architectural changes,
much simpler than multi-stage methods proposed
in Thillainathan et al. (2025). We also apply LLM
correction to ASR components, previously used
mainly in ASR systems (Ruder et al., 2023; Ma
et al., 2025).

Trade-offs between cascaded and end-to-end sys-
tems remain debated, with methods lacking system-
atic evaluation across diverse LRLs. Our work aims
to complement these efforts by providing a unified,
cross-paradigm evaluation across LRLs, comparing
data efficiency and generalization across cascaded,
multimodal MT, and audio-LLM systems.
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3 Experimental Setup

3.1 Model Selection and Baselines

3.1.1 Cascaded approach
We employ OpenAI’s WHISPER LARGE V3 1.5B
given its robust zero-shot performance across 98
non-English languages from 680 K hours of weakly
supervised ASR data and 125 K hours of speech-
to-English translation pairs (Radford et al., 2022).
For MT, we integrate Meta’s NLLB-200 1.3B,
trained on hundreds of billions of tokens spanning
200 languages (NLLB-Team, 2022). This setup
strikes a balance between translation quality and
computational efficiency. We evaluate WHISPER

LARGE V3 on FLEURS test of 11 target languages
to serve as a cascaded-approach baseline.

3.1.2 Multimodal machine translation
We evaluate Meta’s SEAMLESSM4T LARGE 1.6B,
pretrained on 4.1 M hours of speech and text data
over 100 languages. It enables direct speech-to-text
and speech-to-speech translation without separate
ASR/MT modules (Communication et al., 2023),
serving as our end-to-end baseline.

3.1.3 Audio LLMs
We benchmark two SOTA audio LLMs: OpenAI’s
GPT-4O AUDIO (GPT-4o backbone with audio
pretraining), and Google’s GEMINI 2.0 FLASH,
a multimodal model that supports text and audio.
Both reflect SOTA AST via their incorporation of
leading-edge modeling and web-scale training data.

3.2 Data

Training and Evaluation data: We used the
FLEURS dataset for the initial training data.
FLEURS contains n-way parallel speech and text
in 102 typologically and geographically diverse
languages drawn from the FLoRes-101 bench-
mark (Goyal et al., 2021), with approximately 12
hours of high-quality, human-read speech per lan-
guage. Since 80% of these are low-resource lan-
guages, FLEURS is well-suited for evaluating AST
paradigms in such settings.
Data for ablation: For our ablation studies on
African languages, we added 20 hours of validated
speech from Mozilla Common Voice2 (Swahili and
Luganda) and the Naija Voice corpus (Lee et al.,
2022) (Igbo, Hausa, and Yorùbá). Common Voice

2https://huggingface.co/datasets/mozilla-
foundation/common_voice_17_0

Model Parameters Used Capabilities Unsupported Lang.

Whisper Large v3 1.5 B ASR Igbo, Luganda
NLLB-200 Large 1.3 B MT None
SeamlessM4T Large 1.6 B Multimodal MT AST Hausa
mT5-Base 580M ASR correction (T2T) Luganda
GPT-4o Audio Unknown End-to-End AST Unknown
Gemini 2.0 Flash Unknown End-to-End AST Unknown

Table 1: Model Information. Please refer to Section 3.1
for details.

lacked sufficient validated data3 for the Nigerian
languages, whereas Naija Voice offers over 600
hours per language.

3.3 Model finetuning Strategies

We detail our finetuning recipes for adapting the
ASR model of the cascaded approach and for the
general finetuning of multimodal MT.

3.3.1 ASR model finetuning
We finetuned on the FLEURS training data of each
of 11 spoken languages for 10 epochs by updating
all the parameters. To ensure consistent evaluation
across all methods, the best model was selected
after 10 epochs without using a validation set. We
also note that as Igbo and Luganda are not included
in Whisper’s original language inventory, Whisper
will reject any training examples tagged with an
out-of-vocabulary language code. Therefore, we
override the language identifier during finetuning
by mapping languages to their closest relatives in
the supported set based on phonology and lexical
similarity. For instance, we map Igbo to Lingala
and Luganda to Shona. Similar approach to fine-
tune machine translation models for unseen lan-
guages has been mentioned in (Yang et al., 2021).
We describe the different finetuning recipes below
(all parameters were updated if not specified).

• Monolingual finetuning ( “Monolingual" or
“S2"): we independently finetuned ten sepa-
rate WHISPER LARGE V3, where finetuning
uses the entire FLEURS training data of the
target language. The preprocessing pipeline
and training hyperparameters are the same as
the multilingual experiments.

• Multilingual finetuning (S3): we group our
ten target languages into two regionally and ty-
pologically coherent subsets: “Indic” (Hindi,
Punjabi, Tamil, Telugu, Malayalam), and

3Common Voice is volunteer-based, with recordings re-
quiring validation for quality.
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“African” (Swahili, Hausa, Yorùbá, Igbo, Lu-
ganda), We then finetuned two WHISPER

LARGE V3 models on the combined data of all
languages from each group, motivated by po-
tential cross-language transfer (Conneau et al.,
2020): e.g. African languages using a shared
Latin script, while Indic languages use distinct
writing systems but are similar in phonology.

• 2-stage FT (Multilingual + Monolingual, S4):
to capture both cross-lingual transfer and
language-specific specialization, we first con-
duct a multilingual finetuning with group data
for 10 epochs, then continue finetuning on the
target language only for 10 more epochs.

• ASR corrector (S5 and S6): to explore
how much text-only correction can reduce
recognition errors beyond speech finetuning,
we adopt the ASR correction strategy from
XTREME-UP (Ruder et al., 2023), applying
it to the optimal models finetuned by above
recipes. We finetuned mT5-base (Xue et al.,
2021) a Text-to-Text model for 20 epochs
with earlystopping on ASR (finetuned WHIS-
PER LARGE V3 S3) prediction-reference pairs
from the FLEURS training set. This approach
ensures no data leakage, as we leverage the
same training data used in speech finetuning.
Full training details are in Appendix A.

Once ASR transcribed input speech into text of
source language, we used NLLB (NLLB-Team,
2022), an open-sourced large-scale machine trans-
lation model to translate text to the target language.

3.3.2 General MT finetuning

We finetuned SEAMLESSM4T LARGE model,
which supports speech inputs, on Indic and African
language groups separately, by updating all the pa-
rameters over 10 epochs. This method is a fully
end-to-end approach of AST.

3.4 Evaluation metrics

We use BLEU to evaluate final performances of all
machine translation systems. For cascaded systems,
we also report ASR Word Error Rate (WER)4.

4 Results & Analysis

4.1 ASR Performance
Table 2 presents an overview of ASR baseline cre-
ated by WHISPER LARGE V3, with the finetuning
recipes described in Section 3.3.1. We observed:

Monolingual finetuning is most efficient while
2-Stage better maintains generalization. Given
the same finetuning amounts of speech data, solely
finetuning on target languages significantly reduced
average baseline WER from 88.39% to 45.90%.
Multilingual finetuning (S3) also significantly re-
duced WER for the single target languages, though
slightly worse than the monolingual ones. Interest-
ingly, continuing finetuning from the multilingual
model (S3) on individual target languages, without
using any additional data, S4 not only recovered
the performance on each language but also resulted
in slightly better performance than monolingual
finetuning (S2). This might be because the design
of the 2-stage FT (S4) recipe allows the model to
better learn from the common acoustic–phonetic
and lexical properties shared by related languages.

Multilingual + Monolingual + Corrector is
most effective. The system consistently performed
best in 9 of the 10 low-resource languages. The
strategy did not introduce any additional speech
data, but leverage reference transcripts in a more
effective way. Specifically, the corrector models
learned from paired (ASR transcript, reference tran-
script) training data, leading to an average 15.2%
relative reduction in WER compared to the Multi-
lingual (S3) baseline and a significant 54.2% reduc-
tion relative to the initial Baseline (S1) models, all
without increasing the footprint of the multilingual
finetuned ASR models.

Zero-shot evaluation might be enough for
ASR of high-resource languages. We selected
French, a high-resource language, to evaluate the
off-the-shelf models’ performance and to under-
stand the performance gap when compared against
their performance on the low-resource languages
we focus on in this paper. As shown in Table 2, by
directly evaluating WHISPER LARGE V3 on French
test data, the WER already achieved 12.73%; how-
ever, the simplest monolingual finetuning nearly
doubled French WER to 24.72%. We hypothe-
size that, for languages with abundant data and
well-optimized pre-training representations, aggres-
sive monolingual adaptation can induce overfitting

4Adopted the implementation of https://huggingface.
co/spaces/evaluate-metric/wer.
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Whisper ASR Baseline and Models finetuned from IT

Language Baseline (S1) Mono. (S2) Multi. (S3)
Multi.

+ Mono. (S4)
Multi.

+ ASR Corrector (S5)
S4

+ ASR Corrector (S6) ∆(S1,S6) ∆(S3,S6)

FLEURS
Training Hours

French 12.73% 24.72% x x x x x x 10.3
Hindi 46.67% 24.06% 25.00% 23.85% 23.12% 21.63% -53.6% -13.4% 6.6
Punjabi 84.46% 33.66% 33.91% 32.68% 40.70% 43.08% -48.9% +27.0% 6.3
Tamil 59.96% 45.33% 46.25% 44.40% 40.54% 38.58% -35.6% -16.5% 8.6
Telugu 78.12% 45.75% 46.03% 44.38% 39.46% 37.63% -51.8% -18.2% 7.9
Malayalam 138.91% 44.87% 46.20% 44.02% 43.45% 39.81% -71.3% -13.8% 10.0

Swahili 42.88% 33.11% 35.04% 33.26% 24.86% 22.85% -46.7% -34.8% 13.4
Hausa 112.78% 42.58% 49.27% 43.78% 40.07% 34.47% -69.4% -30.0% 13.6
Yorùbá 105.70% 68.67% 68.69% 66.36% 64.93% 61.92% -41.4% -9.8% 10.0
Igbo 106.56%∗ 59.26% 61.84% 56.98% 54.66% 50.93% -52.2% -17.6% 13.8
Luganda 107.90%∗ 61.68% 47.72% 60.46% 54.16% 53.26% -50.6% +11.6% 12.6

Average 88.39% 45.90% 47.72% 45.02% 42.59% 40.45% -54.2% -15.2% 10.3
a Starred (∗) WERs indicate that the target languages were unseen by the model. Bolded WERs indicate the best score across different finetuning strategies and baseline.

Table 2: Overview of WER(↓) for Whisper Large ASR models using different finetuning strategies (denoted as S2 –
S6). We show ∆(S1,S6), the relative changes obtained by S6 using S1 as baseline. Similar notation for ∆(S3,S6).
please refer to Section 3.3.1 for definitions of finetuning strategies, and Section 4.1 for detailed analysis.

or catastrophic forgetting of general acoustic pat-
terns. When comparing the output transcripts from
both models, we observed peculiar word halluci-
nations in the monolingual model (e.g. “Dans le
climat chaud” was transcribed as “Dans le chuma-
cho”). These phonetic hallucinations were similar
to those seen in other languages, but unlike those
instances, they were exacerbated rather than miti-
gated by monolingual finetuning. Such regression
suggests more thoughts in the finetuning design to
preserve the learned syntax while adapting large
speech model to the target data domain.

Similar language serves as a good proxy when
adapting to an unseen language. A key challenge
in finetuning the Whisper ASR model for Igbo and
Luganda was that they are not among the 98 lan-
guages Whisper supports. We notice that both the
two unseen languages use Latin writing system,
so we hypothesized that a similar language label
could serve as a proxy. Specifically, we selected
Lingala and Shona as the proxy language label for
Igbo and Luganda respectively, considering their
phonetic and regional similarities. Experimental re-
sults prove the method’s effectiveness, with relative
improvements of up to 52.2% for Igbo and 50.6%
for Luganda achieved by the best finetuning recipe.
This success suggests a strong potential to expand
Whisper’s coverage to 20+ additional low-resource
languages beyond its current 98 non-English ones,
with careful selection of proxy language: To verify
the effect of proxy choices, we also conducted a
comparative experiment by labeling Igbo as French:
while both use Latin alphabet, they differ phoneti-
cally. The dramatic increase in WER indicates the
importance of a proper proxy language.

4.2 Translation Quality

All three AST modeling paradigms, cascaded
ASR+MT (with various finetuned ASR mod-
els), multimodal SeamlessM4T, and audio-centric
LLMs (GPT-4o Audio and Gemini 2.0 Flash), have
been evaluated in terms of BLEU in Table 4.

Gemini works best for Indic speech transla-
tion. For the five Indic languages (Hindi, Punjabi,
Tamil, Telugu, Malayalam) and Swahili, Gemini
2.0 Flash achieves the highest BLEU in every case
(e.g. 35.38 on Hindi, 30.78 on Telugu, and 31.91
on Swahili), outperforming both GPT-4o Audio
and all cascaded or multimodal MT baselines.

Cascaded ASR+MT models and expert MT
models seem more effective to finetune for
under-represented languages. For lower-resource
African languages (Hausa, Yorùbá, Igbo, Luganda),
the best results are obtained by finetuned Whisper
variants + NLLB and SeamlessM4T, rather than
audio LLMs: Whisper Multi. + Mono. + ASR Cor-
rector reaches 13.93 on Igbo and 20.05 on Hausa,
and SeamlessM4T Multilingual peaks at 18.92
on Luganda – each exceeding Gemini 2.0 Flash’s
corresponding 2.19, 16.29, and 11.93. When av-
eraging across all languages except French, the
cascaded Whisper Monolingual (21.26), Whisper
Multilingual + ASR Corrector (21.82), and Seam-
lessM4T Multilingual (21.28) nearly match Gem-
ini 2.0 Flash’s 22.09, while Whisper Multilingual +
Monolingual + ASR Corrector (i.e. T6), actually
outperforms Gemini with 22.24 BLEU, indicating
targeted finetuning on low-resource corpora can
rival SOTA audio LLMs in AST performance.

Zero-shot evaluation might be enough for the
translation of high-resource languages. As stated
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Monolingual Multilingual + Monolingual Monolingual Multilingual + Monolingual

Source
Language X WER(X) Average WER(Others) WER(X) Average WER(Others) BLEU(X) Average BLEU(Others) BLEU(X) Average BLEU(Others)

Hindi 24.06% 56.07% 23.85% 22.76% 31.18 14.81 30.90 23.86
Punjabi 33.66% 80.50% 32.68% 34.22% 26.59 3.42 26.68 19.50
Tamil 45.33% 74.32% 44.40% 40.25% 22.65 4.69 22.78 16.85
Telugu 45.75% 87.83% 44.38% 43.70% 25.12 2.96 25.15 18.32
Malayalam 44.87% 98.13% 44.02% 41.39% 27.07 1.77 27.68 20.66

Indic Group 38.73% 79.37% 37.87% (-2%) 36.46% (-54%) 26.52 5.53 26.64 (+0.5%) 19.84 (+259%)

Swahili 33.11% 76.52% 33.26% 30.33% 27.55 4.58 27.70 20.80
Hausa 42.58% 87.31% 43.78% 44.74% 18.45 0.61 18.34 12.22
Yorùbá 68.67% 80.75% 66.36% 62.80% 11.14 0.88 11.04 6.53
Igbo 59.26% 83.92% 56.98% 56.30% 11.46 1.03 11.60 7.05
Luganda 61.68% 117.59% 60.46% 53.78% 11.36 1.05 11.56 8.69

African Group 53.06% 89.22% 52.17% (-2%) 49.59% (-44%) 15.99 1.63 16.05 (+0.4%) 11.06 (+579%)

Table 3: A comparison of Monolingual and Multilingual+Monolingual models. The table displays WER (↓) and
BLEU scores (↑) for various Indic and African languages. Highlighted cells show the performance for the grouped
languages. “Others" refers to the other languages in the same group except target language X.

ASR (Whisper) + MT (NLLB)
Multimodal

Speech Translation Audio LLMs

Language
Cascaded

Baseline (T1)
Cascaded

Mono. (T2)
Cascaded

Multi. (T3)
Cascaded Multi.

+ Mono. (T4)
Cascaded Multi.

+ ASR Corrector (T5)
T4 +

ASR Corrector (T6)
SeamlessM4T

Baseline
SeamlessM4T

Multi.
GPT-4o
audio

Gemini 2.0
Flash

French 38.30 31.49 x x x x 33.77 x 37.49 36.16

Hindi 27.79 31.18 30.85 30.90 31.08 31.48 24.62 28.71 29.28 35.38
Punjabi 13.87 26.59 26.65 26.68 25.38 24.62 28.71 28.10 19.15 29.58
Tamil 19.53 22.65 22.48 22.78 23.10 23.43 19.93 21.87 15.17 25.14
Telugu 17.51 25.12 25.26 25.15 27.37 27.53 23.27 24.93 19.83 30.78
Malayalam 1.32 27.07 27.05 27.68 27.79 28.45 21.20 25.95 23.55 30.31

Swahili 25.01 27.55 27.18 27.70 28.40 28.38 14.81 31.22 19.37 31.91
Hausa 3.36 18.45 15.90 18.34 18.04 20.05 1.01∗ 6.07 1.07 16.29
Yorùbá 2.62 11.14 10.66 11.04 10.62 11.18 12.64 15.36 2.31 7.35
Igbo 1.80∗ 11.46 9.86 11.60 13.23 13.93 0.19 11.65 1.63 2.19
Luganda 4.07∗ 11.36 11.34 11.56 13.14 13.35 5.95 18.92 4.95 11.93

Average 11.69 21.26 20.72 21.34 21.82 22.24 15.23 21.28 13.63 22.09
a Starred (∗) BLEUs indicate that the target languages were unseen by the model. Bolded BLEUs indicate the best score across different finetuning strategies and baseline.

Table 4: Overview of BLEU scores (↑) achieved by SOTA models with different finetuning strategies. please refer
to Section 3.3 for definitions of finetuning strategies, and Section 4.1 for detailed analysis.

before, French is an exception: the Whisper-Large-
v3 baseline attains the highest BLEU of 38.30,
surpassing GPT-4o Audio (37.49) and Gemini 2.0
Flash (36.16). This underscores the robustness of
Whisper’s original capacity on high-resource lan-
guages – further finetuning may introduce degrada-
tion in such well-represented language settings.

4.3 Generalization vs. Specialization

A typical challenge for finetuned multilingual mod-
els is balancing specialization and generalization.
While finetuning solely on a target language might
yield the lowest ASR WER and the highest BLEU
score for that language, severe performance degra-
dation in other languages must be avoided. This
consideration is also critical for practical applica-
tions. When serving a speech translation model
for Hindi to English, users in the same region
might not always speak Hindi but may use other
local languages such as Punjabi. Even predomi-
nantly Hindi speakers might code-switch between
Hindi and other local languages – this is a signif-

icant concern in the engineering and application
of speech translation models. Therefore, we mea-
sured the ASR and MT performances not only on
target languages but also on their average perfor-
mance across other languages within the same ge-
ographical region (dubbed “Average Other"). As
shown in Table 3, for monolingual finetuned ASR
models, even if their WER for a single target lan-
guage is slightly lower than that of multilingual +
monolingual finetuned models (e.g. 23.85% WER
vs. 24.06% WER on Hindi, obtained by the two
finetuned models, respectively), the monolingual
model clearly shifts too heavily toward Hindi. This
specialization causes finetuned model to fail to per-
form well on other Indic languages, as indicated
by the 56.07% average WER on other languages.
In contrast, the first stage of multilingual finetun-
ing allows the final finetuned models to maintain
their performance on the other Indic languages,
with a 22.76% average WER, which is a 59% rela-
tive improvement over their monolingual finetuned
counterparts. We found similar patterns in terms
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of BLEU scores among the MT models. The ne-
cessity of a two-stage finetuning approach is thus
highlighted by two significant benefits: it maintains
ASR and MT performance on related languages
and offers potential gains from sharing common
cross-lingual features.

4.4 Effect of finetuning Data Volume

Acquiring finetuning speech data for extremely
LRLs is highly challenging. Therefore, we con-
ducted an ablation study to investigate the mini-
mum hours of speech required to develop a speech
translation model with acceptable performance. We
use all five African languages as examples, and
present ablation studies in terms of both WER and
BLEU, across different finetuning data amount: 0,
1, 2.5, 5, 10, and 20 hours per language, in Figure 1
and 2 for ASR and MT component of cascaded
system respectively.

Zero-shot evaluation is a better choice when
finetuning data is too limited. While the initial
one hour of fine-tuning on Common Voice or Naija
Voice indeed yields a marked degradation in ASR
quality and downstream translation – evidenced
by WER jumps (Hausa 42.5 % → 54.4%, Yorùbá
68.6% → 70.5%) and BLEU drops (Hausa 18.45
→ 16.87, Yorùbá 11.14 → 10.26) – subsequent
training yields recovery and improvement: at 2.5
h, WER for all five languages recedes toward or
below baseline (Igbo 59.2% → 55.7%) and BLEU
surpasses the baseline model (Igbo 11.46 → 12.38).

Gains are most pronounced between 2.5 – 5 h,
as BLEU increases by up to +1.30 points (Yorùbá
11.14 → 12.44), while WER reduces by up to -
8.4% (Hausa 54.4% → 46.0%). Between 5–10
h, improvements continue but at a reduced rate
(e.g. Swahili BLEU plateaus at 28.20, Luganda
WER only marginally improves from 59.5% to
59.0%), indicating that the model rapidly ingests
new acoustic-textual patterns within the first 10 h.
Beyond 10 h, additional data yields diminishing, or
even slightly negative returns (Hausa BLEU 19.13
→ 19.01; Luganda BLEU 12.42 → 12.13), sug-
gesting an inflection point where the domain shift
of the supplemental corpus begins to outweigh its
benefit. Nonetheless, we observe that on average,
the addition of new unseen data to the monolingual
model matches best scores shown in Tables 2 and 4.

Especially for the ablation on MT, results
showed a “U-shaped” curve, suggesting initial over-
fitting to new data followed by swift adaptation. We

Figure 1: Sample efficiency measured by ASR WER
(%) scores (↓) with varying amounts of finetuning hours;
dashed bars indicate the best system for each language.
Please refer to Section 4.4 for details.

Figure 2: Sample efficiency measured by MT BLEU
scores (↑) with varying amounts of finetuning hours;
dashed bars indicate the best system for each language.
Please refer to Section 4.4 for details.

identified an optimal fine-tuning window of 2.5–10
h for maximizing ASR robustness and translation
fidelity in African low-resource languages.

4.5 Beyond BLEU: Part-of-speech Tag
Steering Analysis

To gain insights beyond a single BLEU score, we
analyzed part-of-speech (POS)–specific translation
errors for our baseline cascaded model (T1) and
the cascaded architecture with ASR correction (T6),
across five African languages. POS tagging was
performed using spaCy5’s large English statistical
model, which produced Universal Dependencies
tags for each token.

Following the methodology of (Popović and Ney,
2007), we computed POS-specific WER, which re-
flects sequence-level accuracy and highlights error
patterns across linguistic categories. Our analysis
(Tables 5–6) shows that T1 exhibits high WER for
NOUN, PUNCT, and DET categories, especially

5spaCy is a library for NLP in Python and Cython.
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POS Tag Swahili Hausa Igbo Luganda Yorùbá Avg

ADJ 5.31% 10.29% 10.39% 7.79% 9.68% 8.69%
ADP 6.55% 16.32% 13.65% 11.56% 16.41% 12.89%
ADV 2.49% 8.21% 6.99% 5.55% 5.30% 5.71%
AUX 3.34% 9.22% 9.13% 6.30% 14.23% 8.44%
CCONJ 1.70% 5.92% 5.91% 3.15% 5.44% 4.42%
DET 5.91% 17.57% 24.76% 14.91% 16.72% 15.97%
NOUN 13.04% 31.54% 34.15% 25.97% 31.96% 27.33%
NUM 1.20% 1.86% 2.10% 1.56% 1.55% 1.65%
PART 1.50% 3.12% 3.01% 2.87% 7.97% 3.69%
PRON 2.68% 10.05% 10.71% 5.23% 19.50% 9.63%
PROPN 3.91% 14.01% 9.04% 8.57% 10.02% 9.11%
PUNCT 4.72% 23.92% 28.41% 15.90% 21.68% 18.93%
SCONJ 0.77% 1.88% 1.68% 1.68% 2.95% 1.79%
VERB 6.78% 13.36% 12.44% 10.27% 20.84% 12.74%

Macro Avg 5.04% 12.60% 12.80% 9.17% 13.47% 10.62%
Weighted Avg 5.99% 16.86% 17.27% 12.14% 18.44% 14.14%

Table 5: WER (↓) over English POS tags of translation
by Whisper Baseline (T1) for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorùbá Avg

ADJ 4.64% 5.84% 6.97% 6.39% 6.54% 6.08%
ADP 5.64% 7.48% 8.76% 7.45% 7.79% 7.42%
ADV 2.36% 2.77% 3.42% 3.26% 3.11% 2.98%
AUX 2.77% 3.93% 4.25% 3.64% 4.03% 3.72%
CCONJ 1.72% 2.65% 2.61% 2.23% 2.37% 2.32%
DET 4.97% 8.58% 8.48% 7.37% 7.61% 7.40%
NOUN 12.38% 16.51% 18.53% 16.74% 16.91% 16.21%
NUM 0.86% 1.35% 1.45% 1.21% 1.08% 1.19%
PART 1.40% 1.50% 1.97% 1.75% 1.66% 1.66%
PRON 2.47% 3.30% 3.57% 3.40% 3.39% 3.23%
PROPN 3.75% 5.41% 6.53% 5.54% 5.26% 5.30%
PUNCT 5.38% 7.54% 8.21% 8.69% 7.09% 7.38%
SCONJ 0.69% 0.81% 1.17% 1.02% 1.03% 0.94%
VERB 5.90% 7.86% 8.78% 8.06% 8.69% 7.86%

Macro Avg 4.18% 5.79% 6.47% 5.81% 6.05% 5.66%
Weighted Avg 5.49% 7.56% 8.48% 7.68% 7.66% 7.37%

Table 6: WER (↓) over English POS tags of translation
by our best recipe (T6) for all five African languages.

for Yorùbá, the lowest-BLEU language. This indi-
cates frequent issues with content words, determin-
ers, and punctuation, limiting translation quality.

Setting a threshold of 15% for POS-wise WER,
then as highlighted in Table 5, the most com-
mon errors were made over NOUN, PUNCT, and
DET classes, indicating the deficiencies of Whisper
model, on the African language group. For Yorùbá,
the language with the lowest BLEU score, high
WERs are observed across multiple POS classes.
This unveils underlying error patterns and suggests
that these specific word types require focused at-
tention to improve translation performance.

Comparing Table 6 to Table 5, we observed a
large reduction in errors for PUNCT and DET,
along with a smaller, yet significant, reduction
for NOUN. These substantial improvements across
all five languages—particularly in Yorùbá, Hausa,
Igbo, and Luganda—further demonstrate the effec-
tiveness of the best T6 recipe. We also conducted
more detailed analysis of position-independent er-
ror, inflectional error and missing words, details

are in Appendix B.

4.6 Summary of Trends

Across our experiments, three consistent patterns
were observed. First, in the cascaded method,
finetuning from SOTA ASR model Whisper on
even modest amounts of in-domain data produces
substantial WER reductions for low-resource lan-
guages (Table 2). The Multi. + Mono. + ASR
Corrected variant yielded the best WER for 9 of
10 lanaguages, as it leverages extended exposure
and cross-lingual transfer. Only French deviates
from this trend, underscoring the risk of overfitting
when pretraining already provides ample coverage.
Second, in multimodal machine translation quality
(Table 4), a complementary pattern appears: audio-
LLMs like Gemini 2.0 Flash can translate well
in Indic languages → English and Swahili → En-
glish, achieving BLEU gains of 4–7 points over cas-
caded baselines, whereas finetuned translation ex-
pert models (either built multimodaly or ASR+MT
cascadedly) excel on low-resource African lan-
guages, often exceeding Gemini’s scores by 2–10
BLEU points. Third, our ablation on finetuning vol-
ume (Figs. 1–2) reveals a pronounced “U-shaped”
curve: an initial performance dip at 1 h, rapid recov-
ery and peak gains between 2.5–10 h, and plateau
or slight regression beyond 10 h. This identifies an
optimal finetuning window for balancing adapta-
tion speed against domain shift.

Together, these trends suggest a best recipe for
speech-translation in low-resource contexts: (1) ap-
ply multilingual finetuning followed by targeted
monolingual finetuning, with Corrector to min-
imize WER and maximize the final translation
performances on related languages; (2) reserve
audio-LLMs for languages with ample training
data, while relying on cascaded or multimodal MT
systems for under-represented tongues; (3) allo-
cate finetuning budgets within the identified “sweet
spot” of 2.5–10 h to maximize returns without in-
curring diminishing gains.

5 Conclusions

Our systematic comparison of cascaded ASR+MT,
multimodal speech translation, and audio-centric
LLMs across 11 diverse languages yields several
important insights: (1) Our 2-stage FT strategy
can improve translation performances on target lan-
guage, and offer the additional performance benefit
on regional related languages for both ASR and
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MT, with a up to 5.8x boost in BLEU on them
than monolingual FT. This approach is particularly
effective for meeting the demands of practical, real-
world scenarios. (2) Our 2-stage FT + ASR Correc-
tor recipe can further improve WER across 9 of 10
languages, and carry on the additional gains to ulti-
mate MT task. (3) While SOTA audio-LLMs excel
on higher-resource languages, our evaluations un-
veil that they may struggle on truly low-resource
languages such as African ones. Finetuned Whis-
per variants and SeamlessM4T can match or ex-
ceed audio-LLM performance by up to 10 BLEU,
suggesting the most reliable choices for AST of
under-represented spoken languages. (4) Our abla-
tion study reveals that not always “the more fine-
tuning data, the better" in low-resource ASR. Fu-
ture work should focus on expanding high-quality
parallel speech–text resources and developing reg-
ularized, domain-aware adaptation techniques to
ensure robust translation across the full spectrum
of the world’s languages.
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7 Limitations

This study provides valuable insights into speech-
to-text translation for low-resource languages, but
its scope is bounded by several factors. There is
bias introduced the selection of low-resource lan-
guages, e.g. we experimented with clean speech
rather than noisy speech to initialize the compara-
tive studies. Future work with diverse, in-the-wild
data is crucial for robust systems. Secondly, while
we selected 10 typologically diverse African and
Indic languages to evaluate low-resource perfor-
mance, our findings may not extend to all such
languages, especially those with different linguistic
features or data availability. Thirdly, we focused
on selected architectures (Whisper+NLLB, Seam-
lessM4T, GPT-4o Audio, Gemini 2.0 Flash). While
proprietary APIs offered state-of-the-art insights,
their closed nature and cost limited extensive test-

ing. Open models were finetuned within practical
compute budgets, constraining exploration of larger
variants and complex adaptation. These choices,
driven by resource constraints, introduce selection
bias in model coverage and task prioritization.
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Maja Popović and Hermann Ney. 2007. Word error
rates: Decomposition over pos classes and applica-
tions for error analysis. In Proceedings of the Second
Workshop on Statistical Machine Translation (WMT
’07), pages 48–55, Prague.

A. Radford, J. W. Kim, T. Xu, G. Brockman,
C. McLeavey, and I. Sutskever. 2022. Robust speech
recognition via large-scale weak supervision. arXiv
preprint arXiv:2212.04356.

S. Ruder, J. H. Clark, A. Gutkin, M. Kale, M. Ma,
M. Nicosia, others, and P. Talukdar. 2023. Xtreme-
up: A user-centric scarce-data benchmark for under-
represented languages. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
1856–1884.

Mihaela C Stoian, Sameer Bansal, and Sharon Goldwa-
ter. 2020. Analyzing asr pretraining for low-resource
speech-to-text translation. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7909–7913.
IEEE.

C. Tang, W. Yu, G. Sun, X. Chen, T. Tan, W. Li, et al.
2024. Salmonn: Towards generic hearing abilities
for large language models. In Proc. ICLR 2024.

Sarubi Thillainathan, Songchen Yuan, En-Shiun Annie
Lee, Sanath Jayasena, and Surangika Ranathunga.
2025. Beyond vanilla fine-tuning: Leveraging mul-
tistage, multilingual, and domain-specific methods
for low-resource machine translation. arXiv preprint
arXiv:2503.22582.

158

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://chat.openai.com/chat
https://chat.openai.com/chat
https://openai.com/index/hello-gpt-4o


C. Wang, A. Wu, J. Gu, and J. Pino. 2021. Covost 2 and
massively multilingual speech translation. In Proc.
Interspeech 2021, pages 2247–2251.

Mingqiu Wang, Wei Han, Izhak Shafran, Zelin Wu,
Chung-Cheng Chiu, Yuan Cao, Nanxin Chen, et al.
2023. Slm: Bridge the thin gap between speech and
text foundation models. In 2023 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU), pages 1–8. IEEE.

Chen Xu, Rong Ye, Qianqian Dong, Chengqi Zhao,
Tom Ko, Mingxuan Wang, Tong Xiao, and Jingbo
Zhu. 2023. Recent advances in direct speech-to-text
translation. arXiv preprint arXiv:2306.11646.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou,
A. Siddhant, others, and C. Raffel. 2021. mt5: A
massively multilingual pre-trained text-to-text trans-
former. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 483–498.

S.-w. Yang, P.-H. Chi, Y.-S. Chuang, C.-I.J. Lai,
K. Lakhotia, Y.Y. Lin, A.T. Liu, J. Shi, X. Chang,
G.-T. Lin, T.-H. Huang, W.-C. Tseng, K.-t. Lee, D.-
R. Liu, Z. Huang, S. Dong, S.-W. Li, S. Watanabe,
A. Mohamed, and H.-y. Lee. 2021. Superb: Speech
processing universal performance benchmark. In
Proc. Interspeech 2021, pages 1194–1198.

A ASR Corrector Training Details

Goal. We train a text-to-text ASR corrector to
reduce recognition errors made by the ASR model.
The corrector is a language-specific mT5-Base
model that maps noisy ASR hypotheses to cor-
rected transcripts.

Data and pairing. For each language, we take
predictions from the finetuned WHISPER LARGE

V3 (S3, see §3.3.1) on the FLEURS training split
and pair them with their gold references to form
(hypothesis, reference) examples. The FLEURS
dev split is used only for early stopping and hyper-
parameter selection. This ensures no data leakage:
the corrector never sees dev/test references during
training.

Model and objective. We finetune mT5-Base for
up to 20 epochs with early stopping on the dev
set. The model is trained as a standard seq2seq text
editor: input is the ASR hypothesis; target is the
reference transcript.

Compute. All runs use 2× A100L GPUs, 6
CPUs, and 32 GB RAM.

Setting Value

Base model mT5-base (Text-to-Text)
Task framing ASR post-correction (seq2seq)
Max src / tgt length 200
Epochs 20 (early stopping on dev loss)
Batch size (per device) 8
Decoding Beam search, num_beams=10
Model selection metric_for_best_model=loss
Eval / Save strategy epoch
Optimizer / LR / Scheduler HF defaults (not overridden)

Table 7: Hyperparameters for the mT5-base ASR cor-
rector (Hausa).

Outputs. At inference, the corrector takes WHIS-
PER LARGE V3 outputs and returns corrected text.
Training and decoding hyperparameters are sum-
marized in Table 7.

B More Detailed POS-specific Metrics

In addition to WER, we compute the F-Based
Position-independent Error Rate (FPER) (Popović
and Ney, 2007), which disregards word order and
instead captures errors in the distribution of POS
classes. FPER is defined as:

FPER(p) =
1

N∗
ref +Nhyp

·

K∑

k=1

(n (p, rerrk) + n (p, herrk)) (1)

where p is a POS class, N∗
ref and Nhyp are the

reference and hypothesis token counts (excluding
punctuation), and n(·) counts errors of class p
in reference (rerr) or hypothesis (herr) for each
sentence k. The metric gives the proportion of
position-independent errors for p over the corpus.
WER and FPER together capture complementary
aspects of translation quality: WER is sensitive
to word order and thus reflects overall sequence-
level accuracy, while FPER disregards position and
focuses on the distribution of POS-specific errors.
Using both allows us to assess not only how closely
a translation matches the reference in form, but also
which linguistic categories contribute most to the
errors, providing a more targeted diagnostic of sys-
tem performance.

The POS-specific FPER results (Tables 8–
9) complement WER by highlighting position-
independent mismatches. T6 cuts errors sharply for
PUNCT and DET, indicating fewer spurious or
missing tokens regardless of order. Reductions for
AUX and PROPN further suggest stronger preser-
vation of grammatical auxiliaries and named enti-
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POS Tag Swahili Hausa Igbo Luganda Yorùbá Avg

ADJ 4.11% 4.97% 5.09% 4.94% 4.41% 4.70%
ADP 4.79% 7.62% 6.27% 6.47% 7.23% 6.48%
ADV 1.66% 3.67% 2.96% 2.94% 2.24% 2.69%
AUX 2.48% 4.97% 4.85% 4.31% 6.51% 4.62%
CCONJ 1.22% 2.62% 2.82% 1.88% 2.41% 2.19%
DET 4.07% 8.03% 11.16% 8.84% 7.22% 7.86%
NOUN 10.62% 15.38% 16.49% 15.89% 14.35% 14.55%
NUM 0.92% 0.84% 1.01% 0.99% 0.69% 0.89%
PART 1.11% 1.73% 1.53% 1.95% 3.32% 1.93%
PRON 2.18% 5.24% 5.03% 3.58% 8.65% 4.94%
PROPN 2.75% 7.44% 4.37% 4.48% 4.73% 4.75%
PUNCT 4.20% 11.45% 13.11% 9.53% 10.04% 9.67%
SCONJ 0.64% 0.91% 0.78% 1.00% 1.39% 0.94%
VERB 5.23% 6.59% 5.97% 6.31% 9.20% 6.66%

Macro Avg 3.87% 5.87% 5.74% 5.45% 6.23% 5.43%
Weighted Avg 4.60% 8.21% 8.16% 7.32% 8.25% 7.31%

Table 8: FPER (↓) over English POS tags of translation
by Whisper Baseline (T1) for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorùbá Avg

ADJ 3.80% 4.59% 5.41% 5.16% 5.25% 4.84%
ADP 4.23% 5.06% 6.23% 5.76% 5.90% 5.44%
ADV 1.71% 1.98% 2.28% 2.33% 2.22% 2.10%
AUX 2.27% 2.87% 3.19% 3.01% 3.37% 2.94%
CCONJ 1.22% 1.71% 1.77% 1.64% 1.70% 1.61%
DET 3.49% 5.46% 5.85% 5.30% 5.54% 5.13%
NOUN 10.17% 13.31% 15.33% 14.36% 14.37% 13.51%
NUM 0.61% 1.01% 1.10% 1.00% 0.89% 0.92%
PART 1.04% 1.06% 1.42% 1.44% 1.41% 1.27%
PRON 1.90% 2.39% 2.70% 2.59% 2.91% 2.50%
PROPN 2.53% 3.48% 3.83% 3.68% 3.59% 3.42%
PUNCT 4.11% 4.44% 4.62% 5.53% 4.98% 4.74%
SCONJ 0.56% 0.64% 0.90% 0.83% 0.85% 0.76%
VERB 4.89% 6.03% 6.74% 7.09% 7.08% 6.37%

Macro Avg 2.99% 3.98% 4.54% 4.40% 4.55% 4.09%
Weighted Avg 4.26% 5.41% 6.14% 5.98% 6.01% 5.56%

Table 9: FPER (↓) over English POS tags of translation
by our best recipe (T6) for all five African languages.

ties. Even NOUN exhibits modest improvements,
consistent with its WER gains. Together, WER
and FPER reveal that T6 improves both ordering
accuracy and lexical coverage.

Beyond WER and FPER, Popović and Ney
(2007) introduced two additional complementary
diagnostics: Inflectional POS Error Rates (IFPER)
and Missing Words Distribution.

IFPER evaluates morphological competence by
identifying cases where a system produces the cor-
rect lemma but with the wrong inflection. As
shown in Tables 10 and 11, this analysis highlights
the POS categories most prone to inflectional er-
rors, thus uncovering weaknesses not visible in
WER/FPER alone.

Missing words analysis distinguishes between
truly omitted words and those simply reordered.
Results in Tables 12 and 13 indicate which
grammatical categories are systematically under-
produced. These findings can directly inform tar-
geted improvements in model design, such as han-
dling of phrase coverage and language modeling.

POS Tag Swahili Hausa Igbo Luganda Yoruba Average

ADJ 0.47% 0.14% 0.13% 0.21% 0.13% 0.22%
ADP 0.10% 0.07% 0.05% 0.10% 0.11% 0.09%
ADV 0.15% 0.40% 0.03% 0.04% 0.05% 0.13%
AUX 0.72% 2.21% 2.92% 2.04% 2.10% 2.01%
CCONJ 0.06% 0.02% 0.02% 0.03% 0.04% 0.03%
DET 0.13% 0.08% 0.05% 0.08% 0.12% 0.09%
NOUN 2.67% 1.02% 0.84% 2.25% 1.70% 1.70%
NUM 0.10% 0.03% 0.14% 0.06% 0.14% 0.09%
PART 0.17% 0.06% 0.07% 0.08% 0.12% 0.10%
PRON 0.28% 0.17% 0.08% 0.17% 0.30% 0.20%
PROPN 0.73% 0.94% 0.51% 0.67% 0.57% 0.68%
SCONJ 0.00% 0.01% 0.01% 0.00% 0.01% 0.01%
VERB 0.93% 0.44% 0.31% 0.54% 0.42% 0.53%

Table 10: IFPER (↓) over English POS tags of transla-
tion by T1 for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorùbá Average

ADJ 0.50% 0.45% 0.46% 0.43% 0.42% 0.45%
ADP 0.12% 0.14% 0.12% 0.14% 0.15% 0.13%
ADV 0.25% 0.24% 0.16% 0.12% 0.12% 0.18%
AUX 0.74% 1.00% 1.25% 1.01% 1.32% 1.06%
CCONJ 0.08% 0.08% 0.06% 0.07% 0.06% 0.07%
DET 0.13% 0.19% 0.12% 0.13% 0.08% 0.13%
NOUN 3.57% 3.20% 3.08% 2.84% 2.65% 3.07%
NUM 0.24% 0.29% 0.24% 0.19% 0.23% 0.24%
PART 0.19% 0.09% 0.12% 0.11% 0.15% 0.13%
PRON 0.29% 0.23% 0.27% 0.13% 0.26% 0.24%
PROPN 0.82% 0.85% 0.83% 0.80% 0.63% 0.79%
SCONJ 0.01% 0.01% 0.02% 0.01% 0.02% 0.01%
VERB 1.01% 1.10% 1.00% 1.10% 1.04% 1.05%

Table 11: IFPER (↓) over English POS tags of transla-
tion by T6 for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorùbá Total

ADJ 122 204 283 198 210 1017
ADP 163 233 357 264 226 1243
ADV 70 87 132 128 108 525
AUX 91 133 207 124 140 695
CCONJ 59 65 80 58 82 344
DET 146 241 283 234 272 1176
NOUN 302 449 642 483 503 2379
NUM 22 33 56 29 54 194
PART 39 48 93 59 56 295
PRON 93 119 207 111 123 653
PROPN 63 172 266 166 182 849
PUNCT 101 169 215 143 169 797
SCONJ 22 40 74 36 47 219
VERB 166 218 332 250 238 1204

Table 12: Missing word counts by POS tag for English
POS tagging across the five African languages for T1
translations.

POS Tag Swahili Hausa Igbo Luganda Yorùbá Total

ADJ 118 184 237 295 308 1142
ADP 178 239 336 437 358 1548
ADV 66 91 137 186 159 639
AUX 74 93 145 173 203 688
CCONJ 77 85 121 131 137 551
DET 161 224 327 417 344 1473
NOUN 320 443 677 795 701 2936
NUM 20 47 62 47 52 228
PART 43 44 63 94 79 323
PRON 73 115 164 183 165 700
PROPN 69 173 172 185 209 808
PUNCT 109 170 231 253 266 1029
SCONJ 20 20 37 45 26 148
VERB 149 216 327 337 356 1385

Table 13: Missing word counts by POS tag for English
POS tagging across the five African languages for T6
translations.
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Abstract

Multilingual Retrieval-Augmented Generation
(mRAG) often retrieves English documents and
translates them into the query language for low-
resource settings. However, poor translation
quality degrades response generation perfor-
mance. Existing approaches either assume suf-
ficient translation quality or utilize the rewrit-
ing method, which introduces factual distortion
and hallucinations. To mitigate these problems,
we propose Quality-Aware Translation Tagging
in mRAG (QTT-RAG), which explicitly evalu-
ates translation quality along three dimensions-
semantic equivalence, grammatical accuracy,
and naturalness & fluency-and attaches these
scores as metadata without altering the origi-
nal content. We evaluate QTT-RAG against
CrossRAG and DKM-RAG as baselines in
two open-domain QA benchmarks (XORQA,
MKQA) using six instruction-tuned LLMs
ranging from 2.4B to 14B parameters, cover-
ing two low-resource languages (Korean and
Finnish) and one high-resource language (Chi-
nese). QTT-RAG outperforms the baselines
by preserving factual integrity while enabling
generator models to make informed decisions
based on translation reliability. This approach
allows for effective usage of cross-lingual doc-
uments in low-resource settings with limited
native language documents, offering a prac-
tical and robust solution across multilingual
domains. Code available at https://github.
com/HoyeonM/QTT-RAG.

1 Introduction

Retrieval-augmented generation (RAG) has be-
come a standard approach for large language mod-
els (LLMs) for open-domain question answering
tasks by accessing external sources of knowledge
(Lewis et al., 2020). One core challenge in mul-
tilingual RAG (mRAG) is retrieving relevant doc-
uments in a different language that would not de-

*Equal contribution.
†Corresponding author

Figure 1: This figure illustrates a failure case of the pre-
vious approach (DKM-RAG). Hallucination arises when
the LLM rewrites the translated documents, causing the
generator to eventually produce an incorrect answer.

grade the quality of the generation. This difficulty
is exacerbated by a data imbalance: high-resource
languages such as English dominate web-scale cor-
pora, while medium- and low-resource languages
(e.g., Korean, Finnish) remain underrepresented.
This imbalance leads to inconsistent performance
quality across languages in LLMs, even in safety
and reliability issues (Shen et al., 2024a).

When queries and retrieved documents are in
different languages, retrievers fail to identify rele-
vant passages, and generators tend to produce code-
switched or inaccurate responses (Park and Lee,
2025). The same study also shows that perfor-
mance improves substantially when the retrieved
passages match the query language, highlighting
a strong preference for the query language. This
mismatch problem leads to a strong language pref-
erence bias, whereby generation performance im-
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Figure 2: Overview of QTT-RAG System. After retrieving and reranking the top-5 most relevant documents,
documents originally written in the query language (KO) are passed directly to the generator, whereas documents in
foreign languages (EN) are translated and automatically scored along three dimensions: semantic equivalence (E),
grammatical accuracy (G), and naturalness & fluency (N). These passages are then re-inserted with the corresponding
quality tags. The generator receives this quality-aware, tagged input, enabling it to produce factually grounded and
translation-sensitive responses.

proves when retrieved passages match the query
language. Wang et al. (2024) shows that LLM per-
formance drops when input and output languages
are mismatched, often leading to repetition and
incoherence in multilingual generation and transla-
tion.

To address the language mismatch problem, two
primary approaches have been explored: 1) Trans-
lating queries into English to match the dominant
language of document collections, 2) Translating
documents into the query language. Research in
Cross-Lingual Information Retrieval (CLIR) has
shown that document translation outperforms query
translation (McCarley, 1999; Saleh and Pecina,
2020; Valentini et al., 2025; Yang et al., 2024).
Recent work in mRAG has reinforced these find-
ings, which shows that translating documents into
the query language maintains cultural knowledge
and word sense boundaries more accurately (Park
and Lee, 2025).

DKM-RAG (Park and Lee, 2025) introduces a
document-centric approach that translates retrieved
English passages into the query language and re-
fines them using an LLM-based rewriting module.
Its refining method removes redundant sentences,

ensures natural connections with the original text,
and produces smooth query language writing. How-
ever, DKM-RAG has a key limitation: its refine-
ment process can invoke hallucinations by inadver-
tently altering factual content, making irrelevant
passages appear artificially relevant to the query, as
shown in Figure 1. It even refines the retrieved doc-
uments that are already in query language, unnec-
essarily modifying their contents and potentially
distorting the original information. Beyond these
content-level issues, recent studies have revealed
deeper limitations of LLMs in multilingual con-
texts, such as cultural commonsense understand-
ing (Shen et al., 2024b), as well as barriers in trans-
ferring knowledge across languages (Chua et al.,
2025).

To address such problems, we propose Quality-
Aware Translation Tagging in Multilingual RAG
(QTT-RAG). Our approach employs explicit qual-
ity assessment instead of implicit quality control
mechanisms. Specifically, we translate only those
documents that are not already in the query lan-
guage into the target language, and then employ an
LLM to assess the translation quality based on three
criteria: semantic equivalence, grammatical accu-
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racy, and naturalness & fluency. Unlike implicit
quality control approaches such as CrossRAG and
DKM-RAG, which either assume adequate transla-
tion quality (CrossRAG) or rely on rewriting pas-
sages to improve fluency (DKM-RAG), our quality
assessment method preserves factual integrity by
providing detailed quality scores as metadata. This
allows the generation model to make informed de-
cisions without altering the original semantic con-
tent.

Our key contributions are as follows:

• LLM-based Translation Quality Assess-
ment: We propose an LLM-driven evaluation
module that scores translation quality based
on semantic equivalence, grammatical correct-
ness, and linguistic naturalness.

• QTT-RAG Architecture: We introduce QTT-
RAG, a multilingual RAG pipeline that at-
taches translation quality scores as metadata,
enabling the generator to weigh information
sources more reliably and thereby reducing
factual distortion.

• Empirical Validation: Experiments across
multilingual benchmarks show that QTT-RAG
consistently improves 3-gram recall and ro-
bustness to translation errors compared to ex-
isting baselines such as CrossRAG and DKM-
RAG.

2 Background

2.1 Multilingual RAG

Traditional Retrieval-Augmented Generation
(RAG) systems primarily rely on English doc-
uments, retrieving and generating responses
using dense passage encoders. Recent works
have extended RAG to multilingual settings
by integrating multilingual retrievers such as
LaBSE (Feng et al., 2022) and BGE-M3, often in
combination with cross-lingual LLMs. However,
Chirkova et al. (2024) demonstrate persistent
language preference bias in multilingual RAG
systems: generators achieve better performance
when retrieved passages are in the same language
as the query language but degrade when the
context contains mixed or mismatched languages.

Two main strategies have been proposed to ad-
dress the language mismatch: (i) query translation
(tRAG), which translates the user query into En-
glish before retrieval, and (ii) document transla-

tion (CrossRAG), which translates all retrieved pas-
sages into a single language (Ranaldi et al., 2025).
Query translation approaches suffer from infor-
mation loss when relevant documents exist only
in the original language, while document transla-
tion approaches may introduce translation noise
that affects the generation stage. To improve doc-
ument translation quality, DKM-RAG (Park and
Lee, 2025) applies an LLM-based rewriting step to
translated passages, enhancing fluency but at the
risk of factual distortion.

Despite these advances and their notable con-
tributions to mRAG, existing methods still cannot
reliably prevent translation-induced hallucinations.
In contrast, our proposed QTT-RAG introduces
an explicit quality evaluation framework that pre-
serves the benefits of document translation while
mitigating the risk of factual distortion. Rather than
modifying content, QTT-RAG leverages quality as-
sessments as metadata to better guide the genera-
tion process.

3 Methodology

We address a cross-lingual retrieval scenario where
user queries q are posed in medium or low-resource
languages Lq (e.g., Korean, Finnish), while the tar-
get document collection D predominantly contains
documents in high-resource languages Lh (e.g., En-
glish).

Our proposed pipeline, shown in Figure 2 con-
sists of five sequential modules designed to handle
cross-lingual retrieval and generation: (1) retrieval,
(2) reranking, (3) language detection & translation,
(4) quality tagging, and (5) generation.

3.1 Document Retrieval and Reranking

Given a user query q in language Lq, we first re-
trieve the top-k candidate documents Dk from the
document collection D.

For this initial retrieval step, we use BGE-M3, a
state-of-the-art multilingual dense retrieval model
that maps both queries and documents into a shared
cross-lingual embedding space through a dual-
encoder architecture.

The retrieved candidate list Dk is then reranked
using BGE-M3 as the reranking model, produc-
ing a reordered set of documents Dreranked. This
reranking step computes more precise relevance
scores for each query-document pair, enabling im-
proved ranking of the initially retrieved candidates
based on deeper semantic understanding.
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3.2 Cross-lingual Document Translation

For each document d ∈ Dreranked, we first per-
form automatic language detection to identify its
source language Ld.

Documents already in the query language (Ld =
Lq) bypass the translation process and are pre-
served in its original form, thereby avoiding unnec-
essary translation artifacts. For documents in other
languages (Ld ̸= Lq), we employ neural machine
translation using NLLB-200-600M, a multilingual
translation model supporting over 200 languages.
The model translates each document d from its
source language Ld into the query language Lq,
producing the translated document Dtranslated.

3.3 Quality-Aware Translation Tagging

We use an LLM-based agent to evaluate the trans-
lation quality of documents in Dtranslated with the
structured prompt shown in Table 8 of Appendix A.
The agent assesses each translated document across
three criteria:

• Semantic Equivalence: Verifies that the trans-
lation faithfully preserves the original mean-
ing and factual content.

• Grammatical Accuracy: Evaluates syntactic,
morphological, and structural correctness in
the target language.

• Naturalness and Fluency: Assesses whether
the translation reads smoothly and idiomati-
cally to native speakers.

Each criterion is scored based on the ELO rating
system from 0.0 to 5.0. We attach these quality
scores as tags to each translated document, creating
the quality-tagged document Dtagged. Examples of
the tagged documents can be found in Table 12 and
Table 13 in Appendix B, where Table 12 represents
low-quality translation cases and Table 13 shows
high-quality translation cases for Korean, Finnish,
and Chinese. If a document is originally written in
the query language, no quality score is added. This
tagging approach preserves and fully utilizes all
translated documents while providing the quality
information to guide the generation model.

3.4 Response Generation

The generator LLM receives the user query q con-
catenated with the quality-tagged document set
through a structured prompt template detailed in

Table 9 of Appendix A. Rather than employing ad-
ditional fine-tuning, we leverage in-context learn-
ing by explicitly exposing the quality scores within
the input prompt.

The template instructs the LLM to prioritize
passages with higher quality scores, enabling re-
sponses to rely more heavily on high-quality trans-
lations while down-weighting or cautiously han-
dling lower-quality passages.

4 Experiments and Results

In this section, we describe the datasets used in our
experiments, the experimental setup, evaluation
metrics, and results, followed by ablation studies
to analyze the contribution of each component.

As baselines, we compare our method against
three approaches: (i) Base, a retrieval-only system
without translation, which relies solely on reranked
retrieved documents; (ii) CrossRAG, which trans-
lates all retrieved passages into the query language;
and (iii) DKM-RAG, which refines translated pas-
sages using an LLM-based rewriting step.

4.1 Dataset

We conduct experiments on two multilingual
open-domain QA benchmarks: MKQA: Multilin-
gual Knowledge Questions & Answers (Longpre
et al., 2021) and XOR-TyDi: Cross-lingual Open-
Retrieval Question Answering (Asai et al., 2021)
datasets for multilingual open-domain question
answering tasks. MKQA consists of 10,000 ex-
amples from the Natural Questions (NQ) bench-
mark (Kwiatkowski et al., 2019), translated into
26 languages, creating parallel multilingual QA
pairs grounded in English Wikipedia. However,
MKQA does not provide document-level annota-
tions. For consistency with prior benchmarks that
include gold document labels, we therefore adopt a
subset of 2,827 MKQA samples that overlap with
KILT-NQ (Knowledge Intensive Language Tasks
Natural Questions).

XOR-TyDi QA extends the TyDi QA (Clark
et al., 2020) benchmark by introducing cross-
lingual open retrieval challenges, where questions
are written in typologically diverse languages and
paired with English Wikipedia articles.

In our experiments, we use the Korean, Finnish,
and Chinese splits of MKQA. For XOR-TyDi QA,
we evaluate on the Korean and Finnish splits, com-
prising 371 and 615 questions respectively.
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4.2 Experimental Setup

We implement our QTT-RAG framework using
Bergen (Rau et al., 2024) as the experimental frame-
work and conduct baseline comparisons on Korean,
Finnish, and Chinese language settings.

Knowledge Base We construct our document
index from Wikipedia, comprising 25M English,
1.6M Korean, 1.5M Finnish, and 11M Chinese ex-
amples. Wikipedia is selected for two main reasons:
(i) both XOR-TyDi QA and MKQA are curated
against Wikipedia pages, ensuring high answer
coverage; (ii) it offers broad multilingual cover-
age with consistent article quality and structured
formatting across languages.

Retrieval & Reranking We adopt a two-stage
retrieval pipeline: (i) an initial dense retriever to
maximize recall over a large index, (ii) followed
by a reranker that re-scores the top-K candidates
through query–passage interactions to improve pre-
cision at early ranks. This is crucial because only a
limited number of passages can be provided to the
LLM. Reranking ensures that answer-bearing pas-
sages are prioritized while topical but non-answer
passages and near duplicates are suppressed.

We choose BGE-M3 (Xiao et al., 2024) as both
retriever and reranker for three practical reasons:
(i) it provides a single multilingual checkpoint
with strong cross-lingual retrieval across 100+ lan-
guages; (ii) it has been adopted in prior work
such as DKM-RAG and CrossRAG, enabling direct
comparability; and (iii) it offers publicly available
weights and a built-in reranker, facilitating repro-
ducibility.

Translation Documents that are retrieved in
languages other than the query language are
translated by NLLB-200-distilled-600M (NLLB)
(Costa-jussà et al., 2022), a multilingual neural ma-
chine translation model supporting more than 200
languages. NLLB achieves BLEU scores in the
30–40 range for many low-resource language pairs,
making it a strong baseline for translation quality.
While NLLB offers credible and scalable transla-
tion capabilities, relying solely on translated con-
tent can still introduce errors or stylistic inconsis-
tencies. This limitation motivates our design choice
to incorporate translation quality assessment, allow-
ing the generator to dynamically weigh the relia-
bility of translated passages rather than treating all
translations equally.

Translation Quality Assessment We adapt
Llama-3.1-8B-Instruct (Dubey et al., 2024) as our
quality assessment agent to evaluate translation
quality across three criteria (semantic equivalence,
grammatical accuracy, and naturalness & fluency)
as described in Section 3.3. For each query lan-
guage, we design the assessment prompt in the
same language. The exact prompts are provided in
Table 9 of Appendix A.

Response Generation We evaluate our frame-
work with six pretrained, instruction-tuned lan-
guage models of varying scales: Exaone-3.5-
2.4B-Instruct, Exaone-3.5-7.8B-Instruct (Yoo et al.,
2024), Qwen2.5-7B-Instruct (Hui et al., 2024),
Llama-3.1-8B-Instruct (Dubey et al., 2024), Aya-
Expanse-8B (Dac et al., 2024), and Phi-4 (14b)
(Abdin et al., 2024). This diverse set of models
enables us to assess the generalization ability of
our approach across different model architectures
and capabilities.

Evaluation Metric We use character 3-gram re-
call as the evaluation metric (Chirkova et al., 2024).
Given a gold answer, character 3-gram recall first
extracts all overlapping three-character sequences
(trigrams) from the entire gold string. The score is
then calculated as the proportion of these gold tri-
grams that appear anywhere in the model’s predic-
tion. Character 3-gram recall is well-suited for mul-
tilingual QA as it tolerates orthographic variations
while still penalizing hallucinations and missing
content. Unlike word-level metrics, this character-
level approach is language-agnostic and requires no
language-specific processing, making it well-suited
for cross-lingual evaluation.

4.3 Failure Cases of DKM-RAG and
CrossRAG

DKM-RAG improves translation quality by rewrit-
ing retrieved passages conditioned on the query.
Although this process can mitigate noisy transla-
tions, it often results in knowledge drift, where
the rewritten passages introduce query terms or
assert relations unsupported by the original docu-
ments. To validate this, we manually analyze 1,855
retrieved documents for 371 questions from XOR-
TyDi–ko. In 214 cases (11.5%), entities in the
query (e.g. names, places, and dates) that were ab-
sent from the original documents are added during
rewriting. This rate of entity hallucination indicates
a notable limitation of rewriting-based approaches.
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Table 1 illustrates how rewriting can change the
factual content. In Case 1, the retrieved passage
describes an unrelated person named “Rumer God-
den”. However the rewritten output asserts a death
date for “Gwisil Boksin,” bridging the query to
irrelevant evidence and fabricating a fact that the
source does not contain. The downstream genera-
tor then treats the rewritten passage as authoritative
and produces the fabricated answer.

Table 2 presents a failure case of translation in
the CrossRAG method. In this case, the original
retrieved passage is incorrectly translated, omitting
an important part of the original content.

Case 1

Query 귀실복신 사망일은 언제인가요?
(When did Gwisil Boksin die?)

Retrieved Rumer Godden died on 8 November
1998, aged 90, following a stroke...

Refined 귀실복신의 사망일은 1998년 11월
8일입니다. (Gwisil Boksin’s date of
death is November 8, 1998.)

LLM Output 주어진 정보만으로는 1998년 11월
8일이 가장 유력한 답변입니다.
(Based on the given information, Novem-
ber 8, 1998 is the most likely answer.)

Table 1: Case study of factual distortion in DKM-RAG
for a Korean query.

Case 2

Query 북유럽의 노르딕 국가는 몇개인가요?
(How many Nordic countries are there in
Northern Europe?)

Retrieved "Scandinavia" is sometimes used as a syn-
onym for the Nordic countries, although
within the Nordic countries the terms are
considered distinct.

Translated 북유럽국가들내에서는스칸디나비아
라는 용어가 구별되는 것으로 간주된
다. (Within the Nordic countries, the term
Scandinavia is regarded as distinct.)

Table 2: Case study of incorrect translation in Cross-
RAG for a Korean query.

4.4 Quality-Aware Translation Tagging
Our QTT-RAG explicitly tags translation quality as
metadata using an LLM without rewriting retrieved
content. Unlike refinement-based methods, which
risk distorting original information into inaccurate
content, our approach preserves the original trans-
lations and supplements them with quality scores
as metadata. This non-destructive design enables
the generation model to prioritize higher-quality
sources while maintaining access to potentially

Character 3-gram Recall (%)

Model Base Cross DKM QTT

XOR-TyDi–ko

Exaone-3.5-2.4B-Instruct 37.0 37.3 35.1 41.3
Qwen2.5-7B-Instruct 34.3 36.5 34.2 36.9
Exaone-3.5-7.8B-Instruct 40.7 42.0 39.7 43.8
Aya-Expanse-8B 38.2 39.7 37.0 42.8
Llama-3.1-8B-Instruct 33.7 34.2 33.7 37.2
Phi-4 (14B) 40.6 41.0 35.7 42.5

MKQA–ko

Exaone-3.5-2.4B-Instruct 29.2 30.1 32.0 36.0
Qwen2.5-7B-Instruct 28.6 28.5 30.6 33.3
Exaone-3.5-7.8B-Instruct 33.4 33.4 36.4 40.0
Aya-Expanse-8B 32.6 33.8 35.5 39.0
Llama-3.1-8B-Instruct 28.5 27.5 28.3 33.4
Phi-4 (14B) 33.8 33.4 35.8 37.7

Table 3: Character 3-gram recall (%) on the XOR-TYDI
and MKQA benchmarks (Korean subset). Six LLMs
are evaluated under four retrieval pipelines: Base, Cross
= CrossRAG, DKM = DKM-RAG, and QTT = QTT-
RAG.

useful information from lower-quality translations.
We validate this advantage through experiments
across three languages—Korean, Finnish, and Chi-
nese—where QTT-RAG consistently outperforms
baseline methods.

Korean Korean is considered a low-resource
language (Jang et al., 2024). As shown in Ta-
ble 3, QTT-RAG consistently outperforms all base-
lines on XOR-TYDI–ko and MKQA–ko across six
LLMs. In Korean, performance gains range from
0.4% to 6.8% over the baselines. Among the eval-
uated models, Exaone-3.5-7.8B-Instruct achieves
the highest score, which is expected given its train-
ing on a collection of instruction-tuned bilingual
(English–Korean) generative models.

Finnish Finnish is also considered a low-
resource language like Korean (Ouzerrout, 2025).
Our method achieves comparable performance on
the XOR-TyDi Finnish dataset except for one LLM.
The results are shown in Table 4.

Chinese Chinese is a high-resource lan-
guage (Jang et al., 2024), which most of the top-
ranked passages are already in Chinese. As a result,
opportunities for cross-lingual translation are lim-
ited, leaving less headroom for further gains. In
the MKQA–zh experiment results (Table 5), Cross-
RAG achieves better performance with Exaone-
3.5-2.4B-Instruct, Exaone-3.5-7.8B-Instruct, and
Llama-3.1-8B-Instruct.
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Character 3-gram Recall (%)

Model Base Cross DKM QTT

XOR-TyDi–fi

Exaone-3.5-2.4B-Instruct 45.0 45.6 50.4 50.4
Qwen2.5-7B-Instruct 55.9 56.7 55.7 58.6
Exaone-3.5-7.8B-Instruct 56.0 55.6 56.1 59.3
Aya-Expanse-8B 57.6 60.1 58.3 55.4
Llama-3.1-8B-Instruct 54.9 54.9 52.7 60.0
Phi-4 (14B) 64.0 63.5 60.1 66.8

Table 4: Character 3-gram recall (%) on the XOR-TYDI
benchmarks (Finnish subset). Six LLMs are evaluated
under four retrieval pipelines: Base, Cross = CrossRAG,
DKM = DKM-RAG, and QTT = QTT-RAG.

Character 3-gram Recall (%)

Model Base Cross DKM QTT

MKQA–zh

Exaone-3.5-2.4B-Instruct 19.0 25.2 23.9 24.4
Qwen2.5-7B-Instruct 27.7 30.0 28.7 31.9
Exaone-3.5-7.8B-Instruct 22.2 26.2 26.1 25.8
Aya-Expanse-8B 26.3 32.8 33.2 33.9
Llama-3.1-8B-Instruct 25.2 30.1 28.8 29.3
Phi-4 (14B) 30.9 33.8 33.0 34.5

Table 5: Character 3-gram recall (%) on the MKQA
benchmark (Chinese subset). Six LLMs are evaluated
under four retrieval pipelines: Base, Cross = CrossRAG,
DKM = DKM-RAG, and QTT = QTT-RAG.

However, when a non-Chinese document ap-
pears, QTT-RAG’s explicit, non-rewriting quality
cues benefit models that reliably follow metadata,
resulting clear improvements with Aya-Expanse-
8B, Qwen2.5-7B-Instruct, and Phi-4 (14B).

4.5 Leveraging Translation Quality

To examine our design choice of quality tagging,
we conduct an ablation study comparing two strate-
gies: (1) Hard filtering, which excludes docu-
ments that are below all specified quality thresh-
olds; and (2) QTT-RAG, which is our proposed
method utilizing quality scores as metadata.

For Hard filtering, we use the same prompt em-
ployed for translation quality evaluation (Table 8)
to obtain scores along three criteria: Semantic
Equivalence, Grammatical Accuracy, and Natural-
ness & Fluency. Based on these scores, we exclude
documents if they fall below a threshold of 3.5 on
all criteria.

Table 6 and Table 7 show the comparison be-
tween Hard filtering and QTT-RAG. In Korean (Ta-
ble 6), QTT-RAG consistently outperforms Hard fil-
tering on all models, with average relative gains of

XOR-TyDi–ko MKQA–ko

Model Hard QTT Hard QTT

Exaone-3.5-2.4B-Instruct 40.3 41.3 32.1 36.0
Qwen2.5-7B-Instruct 36.6 36.9 30.6 33.3
Exaone-3.5-7.8B-Instruct 43.2 43.8 34.2 40.0
Aya-Expanse-8B 40.4 42.8 35.7 39.0
Llama-3.1-8B-Instruct 35.0 37.2 28.7 33.4
Phi-4 (14B) 40.2 42.5 33.7 37.7

Table 6: Ablation on filtering strategy. Hard = Hard
filtering; QTT = QTT-RAG. Values are Character 3-
gram Recall (%).

XOR-TyDi–fi MKQA–zh

Model Hard QTT Hard QTT

Exaone-3.5-2.4B-Instruct 51.3 50.4 25.4 24.4
Qwen2.5-7B-Instruct 58.7 58.6 30.1 31.9
Exaone-3.5-7.8B-Instruct 58.7 59.3 26.8 25.8
Aya-Expanse-8B 61.0 55.4 33.0 33.9
Llama-3.1-8B-Instruct 60.0 60.0 29.9 29.3
Phi-4 (14B) 66.8 66.8 33.7 34.5

Table 7: Ablation on filtering strategy. Hard = Hard
filtering; QTT = QTT-RAG. Values are Character 3-
gram Recall (%).

3.8% on XOR-TyDi–ko and 12.6% on MKQA–ko.
In XOR-TyDi–fi (Table 7, left), the results are gen-
erally comparable across methods. Notably, Hard
filtering achieves the best score on Aya-8B, outper-
forming QTT-RAG as well as all other baselines
(Base, CrossRAG, and DKM-RAG). In MKQA–
zh (Table 7, right), Hard filtering surpasses both
QTT-RAG and CrossRAG on Exaone-3.5-2.4B-
Instruct and Exaone-3.5-7.8B-Instruct. QTT-RAG
remains the best on Aya-Expanse-8B, Phi-4 (14B),
and Qwen2.5-7B-Instruct, while CrossRAG leads
with Llama-3.1-8B-Instruct by a small performance
difference.

With these additional experiments, we observe
that effectiveness varies across languages and
setups–such as resource level, the proportion of
cross-lingual passages, retriever and MT quality,
filtering thresholds, retained ratio, and the genera-
tor backbone–so no single strategy dominates uni-
versally.

Hard filtering simplifies the generator input and
can be effective in certain regimes, particularly
when in-language evidence is already abundant,
and removing a small set of low-scored trans-
lated passages leaves most relevant evidence in-
tact. However, it risks discarding rare but critical
information and is sensitive to choice of threshold
and language. In contrast, QTT-RAG avoids brittle
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thresholds and preserves coverage, which is cru-
cial when high-quality translations are sparse or
unevenly distributed.

Together, these findings suggest that while Hard
filtering may offer gains under favorable conditions,
quality tagging delivers more consistent improve-
ments across languages and models.

5 Discussion

We analyze cases where QTT-RAG delivers smaller
gains in Chinese compared to Korean and Finnish.
To formalize this observation, we denote the cross-
lingual share by

rlang =
Ntranslated

Ninput

where Ntranslated denotes the number of trans-
lated documents and Ninput denotes the total num-
ber of retrieved documents.

In our experiments, the MKQA–zh split has a
relatively low cross-lingual share (rlang = 5.0%),
whereas the MKQA–ko split shows a much higher
cross-lingual share (rlang = 22.7%). This disparity
helps explain why QTT-RAG’s improvements tend
to be smaller in Chinese than in Korean: there are
simply fewer instances where translated evidence is
involved. More broadly, overall effectiveness also
depends on retriever and MT quality, generator
backbone, the distribution of retrieved languages,
and the evaluation setting.

For future work, we aim to expand our evalu-
ation to a wider set of languages to further test
the scalability of our approach. We also plan to
explore hybrid retrieval strategies, such as deliber-
ately inducing cross-lingual usage via English-only
retrieval for non-English queries.

6 Conclusion

We propose QTT-RAG, a novel multilingual RAG
framework that introduces translation quality tag-
ging as an explicit mechanism to mitigate factual
distortions and translation-induced errors. Unlike
prior approaches such as CrossRAG, which as-
sumes adequate translation quality, or DKM-RAG,
which relies on rewriting and risk semantic drift,
our method preserves the original translated con-
tent and supplements it with fine-grained quality
scores as metadata. Through extensive experiments
on two multilingual QA benchmarks (XOR–TyDi
QA and MKQA) across three typologically diverse
languages—Korean, Finnish, and Chinese—and

six instruction-tuned LLMs ranging from 2.4B to
14B parameters, we demonstrate that QTT-RAG
consistently improves character 3-gram recall over
strong baselines particularly in low-resource set-
tings (Korean and Finnish). Ablation studies fur-
ther reveal that quality tagging offers a more re-
liable default than Hard filtering, while still leav-
ing room for filtering-based strategies in specific
regimes with abundant in-language evidence.

Limitations

QTT-RAG is most effective when a substantial por-
tion of retrieved documents is in a different lan-
guage from the query and translation quality is
heterogeneous. In other words, when the major-
ity of retrieved passages already match the query
language, opportunities for translation and tagging
diminish, and gains naturally become smaller.

One other limitation is that the generator must re-
liably interpret and utilize the structured metadata;
models with weaker instruction-following capabili-
ties or shorter effective context windows may fail
to fully exploit these quality cues.

We also acknowledge that the experiments are
limited to only few languages—Korean, Finnish
and Chinese—which may be insufficient to gen-
eralize the effectiveness of our method. Further
experiments on a more diverse set of languages are
required to validate its broader applicability.
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A Prompt Templates

Table 8 presents the template used for the LLM
to assign translation quality scores for each trans-
lated document. It evaluates scores across three
dimensions: Semantic Equivalence, Grammatical
Accuracy, and Naturalness & Fluency.

Table 9 shows the generation prompt template,
which contains both System and User messages in
three languages. This template instructs the LLM
to prioritize passages with higher quality scores
across all three dimensions, enabling generator to
output quality-aware answer leveraging the most
reliable translated contents first.

B Translation Quality Assessment Cases

Tables 12 and 13 present case studies of our trans-
lation quality assessment process, demonstrating
low- and high-quality translations.

The cases in Table 12 show a translation with
relatively low scores in all criteria. In Case 1: Ko-
rean, it shows semantic distortions (e.g., "would
not trigger a localized ice age" incorrectly trans-
lated as "would not occur"), grammatical errors
including awkward sentence structures, and unnat-
ural expressions that compromise fluency. In case
2: Finnish, it shows a translation with relatively
low scores across all criteria (e.g., a quantity shift
“to 10,000 Nazi war criminals” rendered as “over
10,000” and omissions of the El-Kurru and Nuri
subsections) producing semantic distortions, gram-
matical issues, and reduced fluency. In Case 3: Chi-
nese, it likewise shows low scores across all criteria
(e.g., the title “Who Framed Roger Rabbit?” mis-
translated as “Who fell into Roger’s trap”, “sense
of humor” shifted to “original intention” and the
proper name Dolores dropped to just “girlfriend”
with duplicated tokens) leading to semantic drift,
grammatical errors, and poor fluency.

The cases in Table 13 demonstrate high-quality
translations across all three languages. In Case 1
(Korean), the output uses natural expressions and
appropriate terminology (e.g., “주권” for “states’
rights”), accurately conveying complex political
notions while maintaining readability. In Case
2 (Finnish), the translation preserves chronology
and factual detail (e.g., correct date inflection “25.
huhtikuuta 1945” and idiomatic phrasing such
as “Kolmen valtakunnan rajapyykillä”), yielding
strong grammatical accuracy and fluency. In Case
3 (Chinese), named entities and quantitative de-
tails are rendered precisely (e.g., “多用途体育
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场”、“可容纳8,000人”、“于2017年4月更名，
以纪念格林纳达首位奥运奖牌得主基拉尼·詹
姆斯”), resulting in consistently high scores for
semantic equivalence, grammatical accuracy, and
fluency.

These cases illustrate how our quality assess-
ment framework effectively captures the nuances of
translation quality and provides meaningful meta-
data for the generation process.

C More cases of DKM-RAG and
CrossRAG

In Table 10 and 11, they show more failure cases in
Finnish and Chinese queries. In DKM-RAG, dur-
ing the refinement process, LLM tends to alter the
content of the retrieved passage into query-related
content, which distorts the actual meaning of the
original retrieved passages. In CrossRAG, certain
words are incorrectly translated by NLLB, which
eventually leads the generator to rely on wrong
passages. In both cases, these limitations result in
failure to generate the correct answer.
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Translation Quality Assessment Prompt (Korean / Finnish / Chinese)
Korean:
영어원문: {original english passage}
한국어번역문: {translated korean passage}
다음영어원문과한국어번역문의품질을세가지기준(의미론적일치성,문법적정확성,
자연스러움과유창성)에대해각각 0.0점에서 5.0점사이의소수점첫째자리까지의점수로
평가해주세요.다른설명없이 JSON형식으로만응답해주세요.
예예예시시시:"의미론적일치성": 5.0, "문법적정확성": 2.5, "자연스러움과유창성": 4.3

Finnish:
Alkuperäinen teksti (englanti): {original english passage}
Käännös (suomi): {translated finnish passage}
Arvioi käännöksen laatu englanninkielisen alkuperäistekstin ja suomenkielisen käännöksen välillä
kolmen kriteerin perusteella: semanttinen johdonmukaisuus, kieliopillinen tarkkuus ja luontevuus
ja sujuvuus. Anna pisteet jokaiselle kriteerille välillä 0.0–5.0 yhdellä desimaalilla. Vastaa vain
JSON-muodossa ilman mitään lisäselityksiä tai kommentteja.
Esimerkki: "Semanttinen johdonmukaisuus": 5.0, "Kieliopillinen tarkkuus": 2.5, "Luontevuus ja
sujuvuus": 4.3

Chinese:
原文(英文): {original english passage}
翻译(中文): {translated chinese passage}
请根据以下三个标准评估英文原文与其中文翻译之间的翻译质量:语义一致性、语法准确
性、以及语言的自然流畅度。请为每个标准打分，分数范围为0.0到5.0，保留一位小数。
只需以JSON格式作答，不要添加任何额外说明或评论。
示例："语义一致性": 5.0, "语法准确性": 2.5, "语言流畅度": 4.3

English Version:
Original Passage: {original english passage}
Translated Passage: {translated {query language} passage}
Please evaluate the quality of the following English-to-{query language} translation using the three
criteria: Semantic Equivalence, Grammatical Accuracy and Naturalness & Fluency from 0.0 to 5.0.
Respond strictly in JSON format, without additional explanations.
Example: "Semantic Equivalence": 5.0, "Grammatical Accuracy": 2.5, "Naturalness & Fluency":
4.3

Table 8: The prompt used for evaluating translated passages based on three dimensions of translation quality. An
example (few-shot) output format is also provided for better generation. Quality scores are then attached as metadata
to each translated document.
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Generation Prompt (Korean / Finnish / Chinese)
System (Korean): 이제부터너는내유능한비서야. 내가제공하는문서들은일부는원래한
국어로작성된문서이고,일부는영어원문을한국어로번역한후품질평가점수가부여된
문서야. 번역된문서에는의미론적일치성,문법적정확성,자연스러움과유창성에대한점
수가포함되어있으며,각각 0.0에서 5.0사이의값이야. 원래한국어로작성된문서를가장
신뢰하고우선적으로참고해줘. 번역된문서는점수가높은순서대로활용해줘. 확신이들
지않는정보는신중하게판단해. 모든질문에는가능한한짧고정확하게,반드시한국어로
대답해줘.

System (Finnish): let nyt minun osaava assistenttini. Antamani asiakirjat ovat joko alun perin
suomeksi kirjoitettuja tai englanninkielisestä alkuperästä suomeksi käännettyjä, ja niihin on liitetty
laadun arviointipisteet. Käännetyillä asiakirjoilla on pistemäärät semanttisesta yhteneväisyydestä,
kieliopillisesta oikeellisuudesta sekä luonnollisuudesta ja sujuvuudesta, asteikolla 0.0–5.0. Luota
eniten alun perin suomeksi kirjoitettuihin asiakirjoihin ja käytä niitä ensisijaisesti. Käännösasiakirjoja
voit käyttää apuna korkeimman pistemäärän mukaisessa järjestyksessä. Ole varovainen, jos tieto ei
vaikuta varmalta. Vastaa kaikkiin kysymyksiin mahdollisimman lyhyesti ja tarkasti, aina suomeksi.mj

System (Chinese): 你现在是我聪明能干的助手。我提供的文档有些是原始中文写成的，有
些是从英文翻译成中文并附有质量评分的翻译文档。翻译文档包含三个评分指标：语义一
致性、语法准确性和语言流畅度，评分范围为0.0到5.0。请优先参考原始中文文档，因为
它们最可靠。翻译文档可以作为补充信息，按评分高低依次参考。对于不确定的信息，请
谨慎判断。所有问题请用简体中简洁准确地回答。

English Version:
System: You are a helpful assistant. The documents I provide include documents that were originally
written in {query language} and others that are translations from English into {query language} with
quality evaluation scores. The translated documents are scored on semantic consistency, grammatical
accuracy, and fluency, each ranging from 0.0 to 5.0. You should prioritize and rely on the original
{query language} documents first. Use the translated ones as sources in order of highest score. Be
cautious with any uncertain information. Always answer as briefly and accurately as possible, and
respond only in {query language}.
User Message
Background: {documents with quality scores}
Question: {question}

Table 9: The prompt used for response generation. Documents with quality scores are provided to generator for
better guidance. The system prompt explicitly instructs the model to prioritize higher-quality translations and
respond only in query language.
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Finnish

Query Mikä on Ilmestyskirja. Nyt -elokuvan
genre? (What is the genre of the movie
Apocalypse Now?)

Retrieved A war film directed by Francis Ford Cop-
pola from 1979...

Refined Francis Ford Coppolan ohjaama romant-
tinen komediaelokuva vuodelta 1979...
(A romantic comedy film directed by
Francis Ford Coppola from 1979...)

LLM Output Romanttinen komediaelokuva. (Roman-
tic comedy film.)

Chinese

Query 在我睡前要走几英里是谁写的 (Who
wrote "I walk a few miles before I go to
sleep")

Retrieved 在我睡前要走几英里(I have to walk a
few miles before I sleep.)

Refined 我睡前写了几封信，还有几英里要
走(Before I sleep, I wrote a few letters
and still had a few miles to go.)

LLM Output 这段话表示作者在睡眠前会同时完
成两件(This passage indicates that the
author will complete two things at the
same time before going to sleep.)

Table 10: Case study of factual distortion in DKM-RAG for a Finnish and Chinese query.
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Finnish

Query kuka laulaa sugar pie honey bunch (Who
sings Sugar Pie Honey Bunch?")

Retrieved I Can’t Help Myself (Sugar Pie Honey
Bunch). chart in 1989. The "Motorcity
All-Stars" released a rerecorded version of
song in 1989 on Ian Levine’s Motown re-
vival label Motorcity.

Translated I Can’t Help Myself (Sugar Pie Honey
Bunch). sarja vuonna 1989. "Motorcity
All-Stars" julkaisi uuden kappaleen vuonna
1989 Ian Levine’n Motown-elokuvalla Mo-
torcity. (I Can’t Help Myself (Sugar Pie
Honey Bunch). series in 1989. "Motorcity
All-Stars" released a new song in 1989 on
Ian Levine’s Motown movie Motorcity.)

Chinese

Query ’The world is like a great big onion’是谁
演唱的 (Who sang "The world is like a
great big onion"?)

Retrieved The Onion Song — a 1969 hit by soul
singers Marvin Gaye and Tammi Terrell. It
entered the UK singles chart on 15 Novem-
ber 1969, peaking at No.9 on 9 December.
Terrell died, aged 24, just prior to the U.S.
single release.

Translated 洋歌曲。— “洋歌曲”是灵魂歌手马
文·盖伊和塔米·特雷尔1969年的热门歌
曲。这首歌在美国表现不佳。但它却
成为盖伊和特雷尔在英国最热门的歌
曲，于1969年11月15日进入单曲榜，
并于12月9日最高排名第九。("Western
Song" was a 1969 hit by soul singers Mar-
vin Gaye and Tammy Terrell. The song
performed poorly in the United States. It
became Gaye and Terrell’s biggest hit in
the United Kingdom, entering the singles
chart on November 15, 1969, and peaking
at No.9 on December 9.)

Table 11: Case study of incorrect translation in CrossRAG for a Finnish and Chinese query.
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Case 1: Korean

Original Retrieved English documents: The film implies that a geomagnetic pole-shift would trigger a localized ice age in
Miami, although regions at lower latitudes receive more direct sunlight. A temperature drop to absolute zero
(−273 °C) is scientifically impossible; before reaching −196 °C the two dominant atmospheric gases would
liquefy and precipitate.

Tagged 영화는암시하는바와같이마이애미에현지화된빙하기가발생하지않을것입니다. 지구온도감소
(최후 -273 °C)를경험하는지구지역의묘사는과학적으로정확하지않습니다. −196 °C (−320 °F)아래
는지구대기중두가지지배적인가스가액화되어표면에떨어질것입니다. [점수] 의미론적일치성:
2.5,문법적정확성: 2.0,자연스러움과유창성: 2.3

Case 2: Finnish

Original Egyptian pyramids. Egypt. Its builders reduced the amount of work necessary to construct it by ingeniously
using as its foundation and core a 12-meter-high natural limestone hill.
Section: Number and location of pyramids.: El-Kurru. Piye, the king of Kush who became the first ruler of the
Twenty-fifth Dynasty of Egypt, built a pyramid at El-Kurru. He was the first Egyptian pharaoh to be buried in a
pyramid in centuries.
Section: Number and location of pyramids.: Nuri. Taharqa, a Kushite ruler of the Twenty-fifth Dynasty, built his
pyramid at Nuri. It was the largest in the area (North Sudan)

Tagged Egyptiläiset pyramidit. Egypti. Sen rakentajat vähensivät sen rakentamiseen tarvittavan työn määrää käyttämällä
älykkäästi pohjana ja ytimenä 12 metrin korkean luonnollisen kalkkikivikukkulan. [pisteet] Semanttinen
johdonmukaisuus: 2.5, Kieliopillinen tarkkuus: 2.0, Luontevuus ja sujuvuus: 2.0

Case 3: Chinese

Original Who Framed Roger Rabbit? Eddie Valiant, having fully regained his sense of humor, begins moving forward
with his girlfriend, Dolores. The residents of Toontown gather to celebrate the victory. Bob Hoskins portrays
Eddie Valiant, a private investigator with a soft spot for toons and a weakness for drink.

Tagged 谁陷入子罗杰的陷.自完全全重拾初心 ,与女友友友迈步前行 ,动画城众人也开始庆祝他人的胜利.演员
勃勃 ·霍斯金斯饰艾迪·瓦利安特 ,一位对动画角色心有喜欢的空隙而又酒的私家侦探. [分数] 语义一
致性: 2.5,语法准确性: 1.0,语言流畅度: 1.0

Table 12: Case studies of low-quality translation assessment in Korean, Finnish and Chinese. Quality scores are
provided for semantic equivalence, grammatical accuracy, and fluency
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Case 1: Korean

Original John Tyler (March 29, 1790 January 18, 1862) was the tenth president of the United States, serving from 1841
to 1845, after briefly holding office as the tenth vice president in 1841. He was elected vice president on the
1840 Whig ticket with President William Henry Harrison, succeeding to the presidency following Harrison’s
death 31 days after assuming office. Tyler was a stalwart supporter and advocate of states’ rights, and he adopted
nationalistic policies as president only when they did not infringe on the states’ powers.

Tagged 존타일러 (1790년 3월 29일 1862년 1월 18일)는 1841년부터 1845년까지 10대부통령을지낸후 10대
대통령이다. 그는 1840년윌리엄헨리해리슨대통령과함께위기당당선되었다. 타일러는 1841년 4월
해리슨의사망후대통령직에올랐다. 새로운행정부출범후불과한달만에대통령직에올랐다. 그는
주권지지자이자주권옹호자였으며,대통령으로서국가주의정책을채택했을때만주권권을침해하
지않았다. [점수] 의미론적일치성: 4.5,문법적정확성: 4.8,자연스러움과유창성: 4.5

Case 2: Finnish

Original End of World War II in Europe. to 10,000 Nazi war criminals eventually fled Europe using ratlines such as
ODESSA. German forces leave Finland: On 25 April 1945, the last German troops withdrew from Finnish
Lapland and made their way into occupied Norway. On 27 April 1945, the Raising the Flag on the Three-Country
Cairn photograph was taken. Mussolini’s death: On 25 April 1945, Italian partisans liberated Milan and Turin.
On 27 April 1945, as Allied forces closed in on Milan, Italian dictator Benito Mussolini was captured by Italian
partisans. It is disputed whether he was trying to flee from Italy to Switzerland (through the Splügen Pass).

Tagged Toisen maailmansodan lopussa Euroopassa yli 10 000 natsisotarikollista pakeni mantereelta ODESSA:n kaltaisten
ratline-reittien kautta. Saksalaiset joukot poistuivat Suomesta: 25. huhtikuuta 1945 viimeiset saksalaiset
vetäytyivät Lapista miehitettyyn Norjaan. 27. huhtikuuta otettiin valokuva, jossa nostettiin lippu Kolmen
valtakunnan rajapyykillä. Mussolinin kuolema: 25. huhtikuuta italialaiset partisaanit vapauttivat Milanon ja
Turinin. 27. huhtikuuta, kun liittoutuneet lähestyivät Milanoa, Benito Mussolini vangittiin partisaanien toimesta.
[pisteet] Semanttinen johdonmukaisuus: 4.5, Kieliopillinen tarkkuus: 4.5, Luontevuus ja sujuvuus: 4.5

Case 3: Chinese

Original Kirani James Athletic Stadium is a multi-purpose stadium in St. George’s, Grenada. Formerly known as the
Grenada National Stadium, it is used mostly for football matches and has a capacity of 8,000. In April 2017 the
venue was renamed Kirani James Athletic Stadium in honour of Kirani James, Grenada’s first Olympic medallist.

Tagged 基拉尼詹姆斯竞技体育场警察场是格莱纳达圣乔治的多用途体育场.目前主要用于足球比赛.该体育场
容纳8000人.于2017年4月改名为基拉尼詹姆斯竞技体育场,以纪念格莱纳达第一个奥运奖得主基拉尼詹
姆斯. [分数] 语义一致性: 4.8,语法准确性: 4.5,语言流畅度: 4.2

Table 13: Case studies of high-quality translation assessment in Korean, Finnish, and Chinese. Quality scores are
provided for semantic equivalence, grammatical accuracy, and fluency.
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Abstract

Existing multilingual neural machine transla-
tion (MNMT) approaches mainly focus on im-
proving models with the encoder-decoder archi-
tecture to translate multiple languages. How-
ever, decoder-only architecture has been ex-
plored less in MNMT due to its underperfor-
mance when trained on parallel data solely. In
this work, we attribute the issue of the decoder-
only architecture to its lack of language transfer
capability. Specifically, the decoder-only archi-
tecture is insufficient in encoding source tokens
with the target language features. We propose
dividing the decoding process into two stages
so that target tokens are explicitly excluded in
the first stage to implicitly boost the transfer ca-
pability across languages. Additionally, we im-
pose contrastive learning on translation instruc-
tions, resulting in improved performance in
zero-shot translation. We conduct experiments
on TED-19 and OPUS-100 datasets, consider-
ing both training from scratch and fine-tuning
scenarios. Experimental results show that, com-
pared to the encoder-decoder architecture, our
methods not only perform competitively in su-
pervised translations but also achieve improve-
ments of up to 3.39 BLEU, 6.99 chrF++, 3.22
BERTScore, and 4.81 COMET in zero-shot
translations. We release our codes at https:
//github.com/zhiqu22/PhasedDecoder.

1 Introduction

Multilingual neural machine translation (MNMT)
(Firat et al., 2016) aims to integrate multiple lan-
guage translation directions into a single model.
Although multilingual translation systems based on
large language models have demonstrated strong
performance (Zhang et al., 2023; Yang et al., 2023;
Xu et al., 2024), current MNMT models with the
encoder-decoder architecture (Fan et al., 2020;
Goyal et al., 2022; Team et al., 2022) remain a fo-
cus of research due to the competitive performance,
fewer parameters, and reduced training costs (Zhu
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Figure 1: Comparison between different architectures in
preliminary experiments on TED-19. Figure 1a shows
the BLEU score. Figure 1b shows the layer-wise lan-
guage feature representations of a sentence where the
x-axis indicates the layer number and the vertical line
indicates the value range. Specifically, we follow Qu
et al. (2024) to compute a similarity score, where values
higher than 0.5 mean the representation exhibits the tar-
get language features more and lower than 0.5 indicates
showing more source language features. Appendix A
provides the details of implementation.

et al., 2023). However, in MNMT, models with the
decoder-only architecture1 have shown underper-
formance by the empirical research of Gao et al.
(2022); Zhang et al. (2022), as further evidenced
by Figure 1a. Therefore, addressing the underde-
velopment of decoder-only architectures in MNMT
is crucial due to the advantage of zero-shot gen-
eralization (Wang et al., 2022), which potentially
benefits zero-shot translation, i.e., translating lan-
guage pairs unseen during training.

We attribute the issue to the lack of language
transferability, causing generations to rely solely
on representations that always manifest the source
language features. Specifically, MNMT encoder-
decoder models typically add a language tag indi-
cating the target language at the beginning of the
source tokens as a translation instruction (Johnson
et al., 2017; Wu et al., 2021), then, Kudugunta et al.
(2019); Qu et al. (2024) show that the encoder of
MNMT models transfers source tokens to represent

1The term "decoder-only architecture" encompasses both
causal decoder-only architectures (Radford et al., 2018) and
prefix decoder-only architectures (Dong et al., 2019).
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target language features more than source language
features. As shown in Figure 1b, the representation
of source tokens extracted from the model with the
encoder-decoder architecture mainly exhibits the
target language features at the output of the encoder
(red line), however, this characteristic is absent in
decoder-only architectures (green and blue lines).
We hypothesize that the decoder-only architectures
merely capture the surface information of source
tokens instead of transferring source tokens into a
state with more target language features.

We propose dividing the decoder-only architec-
ture into two stages, namely, Two-stage Decoder-
only (TDO). Specifically, the representations of tar-
get tokens are excluded in the first stage to enforce
language transfer using the translation instruction,
and the target tokens are fused in the second stage,
which follows the normal decoder-only manner.
Moreover, unlike the encoder-decoder architecture,
where source and target tokens are processed sep-
arately, in the decoder-only architecture, source
tokens pass through all layers. However, the train-
ing objective of MNMT only focuses on the target
tokens, leading to the degradation of the target lan-
guage features on the source token representation.
Thus, we introduce Instruction-level Contrastive
Learning (InstruCL) as a training objective to su-
pervise source tokens in the second stage.

We evaluate the proposed methodologies on two
datasets, TED-19 (Ye et al., 2018), and OPUS-100
(Zhang et al., 2020a; Yang et al., 2021), using
four automatic evaluation metrics: BLEU (Pap-
ineni et al., 2002; Post, 2018), chrF++ (Popović,
2015, 2017), BERTScore (Zhang et al., 2020b) and
COMET (Rei et al., 2020). Experimental results
show that, compared to encoder-decoder models,
our models perform competitively in supervised
translations and achieve improvements of up to
3.39 BLEU, 6.99 chrF++, 3.22 BERTScore, and
4.81 COMET in zero-shot translations. We also an-
alyze the variation of layer-wise representations at
the sentence level to demonstrate the effects of our
proposed methods. Results prove that the gains of
proposed methods in the decoder-only architecture
derived from improving language transfer.

2 Related Work

Although the large language model based on the
decoder-only architecture performs satisfactorily
in the multilingual translation (Zhu et al., 2023;
Xu et al., 2024), the SOTA models specialized on

MNMT are still based on the encoder-decoder ar-
chitecture (Fan et al., 2020; Team et al., 2022) due
to the balance between costs and performances.
Gao et al. (2022); Zhang et al. (2022) empirically
show that the decoder-only architecture does not
have a distinct advantage in MNMT, and Dabre
et al. (2020); Raffel et al. (2023) demonstrate that
the reason could be the onefold style of training
data comprising only translations, degrading the
zero-shot ability of the decoder-only architecture
(Brown et al., 2020; Wang et al., 2022).

Recent investigations of the encoder-decoder
architecture in MNMT reveal the deficiency of
the decoder-only architecture at the representation
level. Kudugunta et al. (2019); Stap et al. (2023)
point out that the sentence representations translat-
ing to two different target languages are gradually
separated with the increase of layers. Qu et al.
(2024) demonstrate that the encoder of MNMT
model transfers the source sentence representation
to the target side, leading to the representation of
source tokens used in the generation with more
target language features. This finding aligns with
the prior empirical studies (Wu et al., 2021; Qu
and Watanabe, 2022; Pires et al., 2023), which
shows that increasing target language information
can lead to performance improvements. Moreover,
this also supports our hypothesis that the weakness
of the decoder-only architecture can be attributed
to the lack of language transfer.

3 Backgrounds

3.1 Multilingual Neural Machine Translation

A parallel multilingual corpus, denoted by C, con-
sists of translation pairs in the form of (x,y). Here,
x = x1, . . . , xI is the source sentence comprising
I tokens, and y = y1, . . . , yJ is the target sentence
with J tokens. We also denote language tags by
l = l1, . . . , lK , where each tag is an artificial token
uniquely corresponding to one of the K languages
in C. To serve as a translation instruction, we add
the language tag specifying the target language at
the beginning of the source tokens (Johnson et al.,
2017; Wu et al., 2021), denoted by ly.2 Thus, the
training data comprises instances in the form of
(ly,x,y). The model is trained over all instances
in C by the standard cross-entropy objective:

Lce = −
∑

ly ,x,y∈C

J∑

j=1

log p(yj | ly,x,y<j), (1)

2Appendix B shows the comparison between different
strategies of translation instructions in MNMT.
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Figure 2: Illustration of the encoder-decoder architec-
ture and the decoder-only architecture.

where p(yj | ly,x,y<j) is a probability distribu-
tion for each token generated by MNMT model.

3.2 Architectures
All architectures discussed in this work follow the
Transformer architecture (Vaswani et al., 2017),
and almost all MNMT models are based on the
encoder-decoder architecture (Johnson et al., 2017;
Fan et al., 2020; Team et al., 2022; Raffel et al.,
2023), as illustrated in Figure 2. It comprises an en-
coder and a decoder in which both are composed of
N layers with each encoder layer comprising a self-
attention mechanism and a feed-forward network
(FFN), and with each decoder layer comprising a
masked self-attention mechanism, a cross-attention
mechanism, and an FFN. The encoder receives I+1
tokens combining by (ly,x)

3, and output the rep-
resentations H = {h1, ...,hI+1},h ∈ Rd, d is the
model dimension. Then, the decoder relies on H
and y<j to generate the next token:

HN = encoder(ly,x), (2)

yj = decoder(HN ,y<j), (3)

where HN is an intermediate state used in the cross-
attention mechanism in each decoder layer without
further transformation. Thus, Equation 1 implicitly
aligns the output of the encoder in the represen-
tational subspace of the target language, i.e., the
language transfer as shown in the red line of Figure
1b, because the ideal decoder should translate two
sentences xa and xb, which have the same target
language, parallel semantics, and different source
languages, to the same target sentence y. Formally,
an ideal encoder meets the following:

encoder(ly,x
a) = encoder(ly,x

b). (4)

A decoder-only architecture refers to a model
that consists solely of a decoder (Figure 2). Each

3The operation of combining means adding ly at the be-
ginning of x. Appendix C shows the specific forms in detail.

decoder-only layer consists of a masked self-
attention mechanism and an FFN (Radford et al.,
2018), and each model has 2N layers to approx-
imately match the parameter size of an encoder-
decoder architecture. We define the decoder-only
process as follows:

yj = decoder-only(ly,x,y<j). (5)

Notably, the difference between decoder-only(·)
and decoder(·) is that decoder-only(·) fuses the
source and target information by a concatenated
input, namely, ly,x, and y are equally treated4, in-
stead of using a cross-attention mechanism. Thus,
there exists no intermediate state to align differ-
ent source languages as Equation 4, resulting in
the blue and green lines of Figure 1b. More-
over, we follow Gao et al. (2022); Raffel et al.
(2023) to distinguish the decoder-only by the man-
ner of masked self-attention mechanism as causal
decoder-only and prefix decoder-only (Appendix
D). Finally, compared to the encoder-decoder ar-
chitecture, the decoder-only architecture requires
around 10% fewer parameters (Appendix E).

4 Methodologies

4.1 Two-stage Decoder-only Architecture
The limitations of the decoder-only architecture
in MNMT likely arise from inadequate language
transfer capabilities, i.e., the absence of Equation 4.
To address this issue, we propose the Two-stage
Decoder-only (TDO) architecture, which divides
the decoder-only process into two stages to im-
plicitly align representations of different source
languages in the subspace of the target language.
Specifically, as illustrated in Figure 3, the target
tokens are explicitly excluded in the first stage, i.e.,
the first M layers, and these target tokens are fused
in the second stage, i.e., the subsequent 2N −M
layers. The process of TDO is formally expressed:

HM = decoder-only1(ly,x), (6)

yj = decoder-only2(H
M ,y<j), (7)

where decoder-only1(·) enables the implicit align-
ment as done in Equation 4. Notably, the first stage
logically acts as an encoder when prefixed masking
is applied to the self-attention mechanism. How-
ever, the first and second stages remain unified
structures, and the fusing of source and target in-
formation follows the manner of decoder-only(·)

4Appendix C compares the difference of the input and out-
put forms between encoder-decoder and decoder-only models.
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[fr] Bonjour, le monde! Bonjour, le monde!

Positive Instance:

Identity Pair

Source Token Target Token Predicted Token

Dec-only

Unused Token

Target Tokens 
Recovered

(2N-M)×
Dec-only

Linear

Adaption Modules

Only Target

Only Source
Linear
ReLU

Linear

Linear
ReLU

(b) Instruction-level Contrastive Learning

Dec-only 
(layer index > M)

Dec-only 
(layer index > M+1)

···

···

Figure 3: Illustration of proposed methods. Notably, the term, Token, not only means the real token before and after
the processing of model, but also refers to the representation in the corresponding position. (a) shows the Two-stage
Decoder-only and shows the Adaption, i.e., using an additional FFN to narrow the gap between source and target
representations by non-linear transformation. (b) shows the Instruction-level Contrastive Learning. Underline marks
target tokens, and [*] means the instruction of this instance. For the anchor, negative instances in this figure meet at
least one of two features: 1) different target language and 2) unparallel semantics.

rather than decoder(·). Therefore, TDO architec-
ture preserves the decoder-only architecture.

Notably, a representational gap arises at the
M + 1 layer due to our imbalance design where
the source tokens have passed through the preced-
ing M layers, while the target tokens are not. To
bridge this gap, as shown in Figure 3, we employ
an additional FFN as an adaption module5 at the
output of the M layer to nonlinearly transform the
representation of source tokens. Similarly, since
the source and target tokens share the same repre-
sentational space in the second stage, we employ
another adapter at the output of the 2N layer to en-
sure that the output representation of target tokens
remains unaffected by the source language.

4.2 Instruction-level Contrastive Learning
Although Equation 6 transfers H, i.e., the represen-
tation of source tokens, to HM , which aligns with
the target language, H potentially tends to degrade
towards the source language in Equation 7 because
Equation 1 does not supervise H directly.6

Contrastive learning, which is a technique to en-
courage representations towards the target states
(Jaiswal et al., 2021), is helpful to mitigate this
degradation. However, two challenges remain in
this process. The first is the lack of optimization
objectives for aligning H with the target language.
For instance, the H derived by a translation from
German to English cannot be considered an anchor
to optimize another H derived by a translation from
French to English because neither adequately rep-

5Adaptation module is shared for all languages instead of
a language-specific component (Bapna and Firat, 2019).

6Although the language modeling loss (Radford et al.,
2018) can provide supervision for the representation of source
tokens, Gao et al. (2022) show that supervising the representa-
tion of source tokens does not benefit MNMT.

resents the optimal state of English. The second
challenge is that the optimization at the sentence
representation level potentially leads to suboptimal
results. For instance, Pan et al. (2021) suggest aver-
aging representations of all tokens to get a sentence
representation for contrastive learning, which loses
the syntactic information.

We propose Instruction-level Contrastive Learn-
ing (InstruCL), which only aligns ly, i.e., the
translation instruction, of each instance, given
that MNMT remains sensitive to ly (Wu et al.,
2021). As shown in Figure 3, given an anchor
(ly,x,y), we establish an identity pair in the form
of (ly,y,y), namely a pseudo pair translating the
target sentence to itself, as the positive instance
because the identity pair can serve as a proxy for
the target language (Qu et al., 2024). Specifically,
in a training batch, we have a set of representations
B = {h1

1,h
2
1, . . . } where h1 is the representation

of ly collected from H. Then, we designate one
instance of B as the anchor, denoted by hanc. Other
instances are treated as negative instances, which
meet one or both of the following features com-
pared to the anchor: different target languages or
unparallel semantics. Subsequently, the identity
pair established by the anchor would be fed into
the model and we collect the representation of ly at
the same layer, and denote it by hpos. The objective
of InstruCL is formulated as:

Lctr = −
∑

h∈B
log

exp(s+)

exp(s+) +
∑|B|−1

i=1 exp(s−i )
,

s+ = sim(hanc,hpos),

s−i = sim(hanc,hi
1),h

i
1 ̸= hanc,

(8)

where sim(·) calculates the similarity of representa-
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tions using the cosine similarity. The final training
objective is simply jointed as:

L = Lce + Lctr. (9)

5 Experiments

5.1 Datasets and Evaluations
Following prior works (Wu et al., 2021; Zhang
et al., 2022; Tan and Monz, 2023; Stap et al., 2023;
Qu et al., 2024), we use English-centric datasets in
our experiments, where the training and validation
data consist of translation pairs both from English
and to English. It is an ideal setup for the evalua-
tion of zero-shot translation capabilities, because
non-central languages have never seen each other.
We utilize two datasets in our experiments: 1) TED-
19 (Qu et al., 2024), a sub-collection of TED Talks
(Ye et al., 2018), comprising 6.5 million instances
across 19 languages from various language fami-
lies; and 2) OPUS-100 (Zhang et al., 2020a; Yang
et al., 2021), which includes 95 languages and a
total of 92 million instances. Detailed information
about these datasets is provided in Appendix F.

We set the beam size to 4 during inference and
evaluate the output quality using four automatic
evaluation metrics for a comprehensive assessment:
SacreBLEU (Papineni et al., 2002; Post, 2018),
chrF++ (Popović, 2015, 2017), BERTScore (Zhang
et al., 2020b), and COMET (Rei et al., 2020). More-
over, we measure the target-off ratio on zero-shot
pairs, i.e., the ratio of cases where the source sen-
tence is not translated into the correct target lan-
guage, as a secondary metric. Finally, we con-
duct statistical significance testing for zero-shot
pairs by using paired bootstrap resampling (Koehn,
2004). The settings of these evaluation metrics are
described in Appendix G.

5.2 Experimental Setups
We conduct experiments from two perspectives:
training from scratch and fine-tuning. Based on the
findings by Gao et al. (2022); Zhang et al. (2022),
which empirically demonstrate that the decoder-
only architecture underperforms compared to the
encoder-decoder architecture in MNMT, and our
motivation, which aims to improve the decoder-
only architecture, our baselines are vanilla models
with the encoder-decoder and decoder-only archi-
tectures. Specifically, we train models with the
encoder-decoder architecture from scratch using
TED-19 and OPUS-100 as baselines. Addition-
ally, we fine-tune three pre-trained models with the

encoder-decoder architecture: M2M-418M (Fan
et al., 2020), NLLB-600M (Team et al., 2022), and
M2M-1.2B (Fan et al., 2020), in TED-19. More-
over, although the proposed methods are not re-
stricted to a specific architecture, the adaptation
modules are not implemented for the models with
the encoder-decoder architecture, because, when
the hyper-parameters are consistent, the decoder-
only architecture with adaptation modules still con-
tains fewer learnable parameters7 to ensure fairness,
i.e., models have the same magnitude of parameters.
In addition to discussing the parameters, we further
discuss the impact of computational complexity in
Appendix J. Finally, we conduct experiments that
apply InstruCL to models with different architec-
tures, and we provide the experimental results and
discussions in Appendix I as assisted evidence to
support the motivation in Section 4.2, namely, In-
struCL supplements the inadequate supervision of
Equation 1 in the second stage.

Our models in this work conform to the manner
of the Transformer (Vaswani et al., 2017). For
training from scratch, we configure the models
with N = 6, d = 512, and an FFN inner size
of 4d for models trained on TED-19. The FFN in
the adaptation module is dimensionally matched
to the FFN in the main network. For OPUS-100,
we explore both a deeper model with N = 12
and a wider model with N = 6 and d = 1024.
Fine-tuning experiments are conducted solely on
TED-19. Given that pre-trained models for MNMT
typically employ an encoder-decoder architecture,
we initialize our model’s parameters from the de-
coder, freezing the embedding layer during training.
For M2M-418M and NLLB-600M, we set N = 6,
and for M2M-1.2B, we set N = 12, maintaining
the original settings for d and the FFN inner size.
To ensure comparability across different architec-
tures, we consistently set M = N and the layer
index of InstruCL to 1.5N in the main experiments.
Detailed settings for training and the count of learn-
able parameters can be found in Appendix H.

5.3 Results: Training from scratch
Table 1 shows the experimental results. The com-
parison between the basic architectures shows that,
first, the prefix decoder-only consistently outper-
forms the causal decoder-only, which aligns with
Raffel et al. (2023). Second, the decoder-only ar-
chitecture consistently underperforms the encoder-

7Appendix H lists the count of modeling parameters for
different cases in detail.
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓
Pref. Adap. CL en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

TED
N=6
d =512

Enc-Dec 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26 3.82

Dec-only
22.54 24.14 7.33 42.84 45.08 23.36 82.96 92.31 74.38 76.60 72.99 57.50 6.01

✓ 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74 5.51

TDO

25.47 28.88 13.56 45.98 51.33 34.04 84.11 93.45 78.90 80.41 78.42 69.74 3.54
✓ 25.55 28.98 13.61 46.03 51.49 34.11 84.15 93.50 78.94 80.56 78.65 70.09 3.49

✓ 25.37 28.46 13.95† 45.99 51.13 34.41† 84.09 93.40 79.15 80.35 78.26 70.43† 3.45
✓ ✓ 25.60 28.82 14.16† 46.11 51.35 34.76† 84.13 93.45 79.29† 80.52 78.47 70.98† 3.43

✓ 25.53 28.76 14.26† 46.01 51.09 34.72† 84.13 93.41 79.27† 80.43 78.18 70.82† 3.43
✓ ✓ 25.61 28.52 14.51† 46.04 50.89 35.01† 84.16 93.40 79.41† 80.60 78.16 71.48† 3.49
✓ ✓ 25.62 28.94 14.70† 46.15 51.46 35.34† 84.15 93.47 79.57† 80.55 78.55 71.94† 3.39
✓ ✓ ✓ 25.61 28.66 14.81† 46.05 51.01 35.35† 84.16 93.41 79.60† 80.61 78.22 72.07† 3.42

OPUS
N=12
d =512

Enc-Dec 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51 64.21

Dec-only
23.09 26.80 5.42 42.18 45.05 13.55 82.19 91.72 72.48 74.66 73.65 58.17 60.22

✓ 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56 58.91

TDO

✓ 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30 51.56
✓ ✓ 24.79 29.22 5.97 44.69 48.35 14.30 82.87 92.34 72.97 76.04 76.25 58.33 53.80
✓ ✓ 24.35 29.52 7.93† 44.44 48.74 18.65† 82.84 92.37 73.97 75.93 76.23 58.71 48.37
✓ ✓ ✓ 24.73 29.70 8.52† 44.60 48.72 19.94† 82.90 92.38 74.32† 76.16 76.59 58.82 43.38

OPUS
N=6
d =1024

Enc-Dec 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99 57.15

Dec-only
26.09 29.09 7.55 44.51 47.44 16.98 82.93 92.12 73.94 76.77 75.80 61.21 63.80

✓ 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32 55.67

TDO

✓ 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60 52.43
✓ ✓ 27.51 31.64 7.70 46.87 50.39 17.32 83.58 92.58 74.32 78.05 77.58 61.24 49.87
✓ ✓ 27.12 31.49 9.28† 46.55 50.23 21.33† 83.50 92.65 75.04† 77.63 77.64 60.84 39.71
✓ ✓ ✓ 27.45 31.36 9.36† 46.79 50.06 21.05† 83.52 92.64 74.88† 77.97 77.75 61.78† 43.36

Table 1: Averaged scores of results in the experiments of training from scratch. Enc-Dec and Dec-only are
abbreviations of encoder-decoder and decoder-only, respectively. Pref., Adap., and Cl abbreviates Prefix, Adaption
and InstruCL, respectively. ✓in the Prefix column means the masked self-attention mechanism follows Prefix
manner, conversely, follows Causal manner. en→ and →en means the supervised pairs translating from English
to non-central languages and translating from non-central languages to English, respectively. zero abbreviates
zero-shot pairs, off abbreviates the target-off ratio. The best score in each column and block is in bold and the
numbers with † are significantly better than Enc-Dec according to the significance test with p < 0.1.

decoder architecture in supervised pairs of all three
settings, with maximum deficits of -4.17, -5.78, -
1.14, and -5.16 on the BLEU, chrF++, BERTScore,
and COMET respectively. On the other hand, while
the decoder-only architecture shows weaker per-
formance on TED-19 for zero-shot translation, it
achieves higher scores in two settings on OPUS-
100. This suggests that the zero-shot capability of
the decoder-only architecture in MNMT relates to
the amount of data and parameters.

In comparison with the encoder-decoder archi-
tecture, TDO first achieves competitively super-
vised capabilities using fewer parameters. Second,
our method exhibits stronger zero-shot translation
scores, achieving scores improvements of +2.49,
+3.22, +1.57, and +4.81; +3.39, +6.99, +1.88, and
+0.31; +2.41, +5.16, +0.76, +1.79 across three set-
tings respectively. Meanwhile, the results of sig-
nificance testing endorse that our proposed meth-
ods can resolve inadequate language transfer capa-
bilities in the decoder-only architecture (Section
4.1). We also find that the Adaptation module en-
hances both supervised and zero-shot translation
performance.8 On the other hand, InstruCL signifi-

8Appendix K shows the improvement is not because of

cantly boosts zero-shot capability, though there is a
degradation in supervised translation performance.
Additionally, with the Adaptation module imple-
mented, the degree of degradation in supervised
performance is reduced.

Moreover, the prefix decoder-only architecture
achieves the highest COMET score on OPUS-100,
though, it remains weaker on BERTScore com-
pared to TDO, where both two metrics are based on
semantics. This phenomenon can be explained by
the target-off ratio, in which models with decoder-
only architecture still have a high target-off ratio
with biasing towards English primarily (Chen et al.,
2023) to hamper the evaluation of COMET by con-
sidering the source sentence at the same time.

5.4 Results: Fine-tuning

Table 2 shows the experimental results by fine-
tuning the pre-trained models, which shows a
similar tendency to Table 1 in general. First,
since we initialize the model using parameters
from the decoder, the training processes for the
encoder-decoder, decoder-only, and TDO architec-
tures are relatively fair. Thus, we can conclude

increased parameters.
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓
en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

M2M
418M

Enc-Dec 26.59 31.62 15.73 46.79 54.07 36.25 84.48 94.02 80.12 82.39 81.30 75.11 3.24
Dec-only 25.72 30.06 14.67 45.88 52.52 34.51 84.12 93.70 79.45 81.61 79.89 73.33 3.51
TDO 26.63 32.44 15.96 46.90 54.80 36.56 84.49 94.15 80.28 82.31 81.80 75.45 3.24
+Adap. 26.87 31.93 16.12 47.08 54.21 36.73 84.58 94.08 80.35 82.62 81.54 75.80 3.31
+CL 26.61 32.34 16.01 47.03 55.07 36.87 84.51 94.16 80.37 82.29 81.82 75.70 3.31
+Adap.,+CL 26.75 31.83 16.20 46.98 54.09 36.82 84.56 94.07 80.41 82.56 81.52 75.95 3.30

NLLB
600M

Enc-Dec 26.39 32.04 15.44 46.90 54.51 36.09 84.46 94.07 79.96 81.98 81.16 74.05 3.42
Dec-only 26.35 30.20 14.69 46.36 51.96 34.16 84.35 93.72 79.45 82.20 79.94 73.62 3.63
TDO 25.82 32.15 15.48 46.42 54.76 36.35 84.30 94.10 80.09 81.34 81.28 74.17 3.28
+Adap. 26.60 32.47 15.82 47.04 54.83 36.62 84.54 94.15 80.23 82.08 81.48 74.89 3.41
+CL 25.87 32.29 15.48 46.44 54.71 36.21 84.31 94.11 80.09 81.43 81.27 74.18 3.47
+Adap.,+CL 26.58 32.37 15.85 46.94 54.69 36.52 84.52 94.14 80.24 82.12 81.44 74.93 3.36

M2M
1.2B

Enc-Dec 27.02 31.75 16.21 47.05 53.82 36.51 84.60 94.03 80.29 82.93 81.38 76.13 3.20
Dec-only 26.47 29.99 15.40 46.47 52.01 35.10 84.36 93.72 79.83 82.51 80.21 75.33 3.46
TDO 27.17 31.95 16.45 47.37 54.66 37.24 84.64 94.11 80.48 82.96 81.71 76.47 3.29
+Adap. 27.32 31.05 16.57 47.53 53.76 37.47 84.68 93.99 80.56 83.11 81.29 76.72 3.31
+CL 27.27 31.83 16.57 47.32 54.42 37.08 84.67 94.11 80.54 83.04 81.75 76.72 3.32
+Adap.,+CL 27.41 30.72 16.60 47.49 53.38 37.23 84.70 93.96 80.55 83.24 81.21 76.88 3.28

Table 2: Averaged scores of results in the experiments of fine-tuning. Abbreviations align with Table 2. Notably, the
decoder-only and TDO architectures use Prefix masked self-attention only. The best score is in bold.

that, when compared with the decoder-only archi-
tecture, the proposed TDO architecture supports an
efficient transformation from pre-trained encoder-
decoder models. Secondly, when compared with
the encoder-decoder models, TDO models achieve
the highest scores across four metrics, reaching up
to +0.39, +0.48, +0.10, and +0.31 for pairs translat-
ing to en, up to +0.82, +1.00, +0.14, and +0.52 for
pairs translating from en, and up to +0.47, +0.96,
+0.29, and +0.88 for zero-shot pairs. TDO models
also show an improvement in the off-target ratio
compared to the decoder-only models. Moreover,
we observe that InstruCL does not show significant
improvements in the case of NLLB-600M, whereas
it remains effective in the two M2M cases. This
may be attributed to that NLLB supports 205 lan-
guages, compared to 100 languages of M2M, im-
plying a denser representational space that affects
the effectiveness of InstruCL in aligning represen-
tations across languages.

6 Discussion

6.1 Representation Analysis

The limitation of the decoder-only architecture in
MNMT is due to the lack of language transfer,
which is shown in Figure 1b. To verify whether our
proposed methods can address this issue, we ana-
lyze the layer-wise sentence representations of five
models trained on TED-19: (i) a prefix decoder-
only model with N = 6; (ii) a TDO model with
M = 6; (iii) a TDO model with Adaption mod-
ules; (iv) a TDO model with InstrucCL; (v) a TDO
model with Adaption modules and InstrucCL.

As illustrated in Figure 4, the representation of
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(ii) Two-stage Decoder-only
(iii) Two-stage Decoder-only + Adaption
(iv) Two-stage Decoder-only + InstruCL
(v) Two-stage Decoder-only + Adaption + InstruCL

Figure 4: Illustration of linguistic preference, which
follows Figure 1b. All cases in this figure use the Prefix
manner for the masked self-attention mechanism. The
marker of prefix decoder-only is square, and our pro-
posed methods are round. The x-axis is the index of
layers, and the vertical line indicates the value range.

(i) only exhibits a preference for the target language
in the last two layers. However, (ii) shows a prefer-
ence for the target language from the fourth layer,
and this trend continues into the second stage. Al-
though (iii) exhibits a more stable layer-wise trend
compared to (ii), it shows significant differences
in the final output across languages. Meanwhile,
(iv) exhibits smaller differences across languages.
Finally, (v) incorporates all the advantages of (iii)
and (iv). Therefore, we can conclude that the TDO
enables better language transfer by aligning dif-
ferent languages in the representational subspace
of the target language. Meanwhile, the Adaption
module and InstrucCL improve the transferability
of multilingual representations.

6.2 How to balance two stages?
In Section 5, we always set M equals N to en-
sure a fair comparison between the TDO and the
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Figure 5: Variation in different values of M. The y-axis
is the variation ratio compared to the performance of
the model with prefix decoder-only architecture, and the
x-axis is the value of M. The values of N are 6 and 12
in TED-19 and OPUS-100 respectively. Additionally,
the line and the dotted line indicate supervised and zero-
shot translations respectively.

encoder-decoder architectures. However, the bal-
anced design is not optimal (Kasai et al., 2021;
Pires et al., 2023). Thus, we test different M on
TED-19 and OPUS-100 to investigate balancing
two stages. As shown in Figure 5a, the perfor-
mance is always improved with the increase of M
on TED-19. On OPUS-100, as depicted in Figure
5b, the case with M = 3 achieves the best zero-
shot translation scores, but there is a noticeable
decline in zero-shot translation performance with
the increase of M , although supervised translation
scores continue to rise.

Those results align with our expectations. As
shown in Table 1: 1) models with the decoder-only
architecture consistently underperform compared
to those with the encoder-decoder architecture in
supervised translation; 2) models with the decoder-
only architecture underperform in zero-shot trans-
lation on TED-19 but outperform on OPUS-100.
Moreover, based on the trends in Figure 5b, we can
state that the first stage enhances language transfer
but at the cost of learning linguistic diversity, and
the second stage benefits linguistic diversity. This
statement aligns with Zhang et al. (2022) and is
further proven by Table 1 where incorporating In-
struCL can significantly improve the performance
of zero-shot translation on OPUS-100. Thus, we
conclude that the first stage is crucial in small-scale
datasets, whereas the second stage becomes more
significant in large-scale datasets.

6.3 How to set layer index for InstruCL?

In Section 5, we set the layer index for InstruCL
to 1.5N to prevent the degradation of language
transfer in the second stage. Given that Section 6.2
shows the different roles of the first and second
stages, we test the performance of models with
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Figure 6: Variation in different layer index of InstruCL.
The y-axis is the variation ratio compared to the perfor-
mance of the model without InstruCL, and the x-axis is
the index of the layer where InstruCL is employed.

different layer indexes of InstruCL for the decoder-
only and the TDO models. Figure 6a demonstrates
that InstruCL consistently yields positive gains for
the decoder-only architecture. On the other hand,
Figure 6b shows a decline in the first stage but ben-
efits in the second stage. These results indicate that
InstruCL primarily affects layers that follow the
decoder-only manner, namely, the second stage of
TDO, which is further supported by Appendix I9.
Moreover, another observation aligning our moti-
vation is that an excessively high index leads to
reduced gains. Therefore, we can conclude that the
optimal position for implementing InstruCL is the
middle layer of the second stage.

7 Conclusions

In this work, we analyzed the reasons behind the
underperformance of the decoder-only architecture
in MNMT, identifying the lack of language transfer
capability as the primary challenge. To address
this, we introduced the Two-stage Decoder-only
architecture. We also proposed Instruction-level
Contrastive Learning to overcome the issue from
the perspective of representation optimization. We
conducted experiments on two settings, i.e., train-
ing from scratch and fine-tuning, using the TED-19
and OPUS-100 datasets, and the results validate the
effectiveness of our approach. Through further ex-
periments and representation analysis, we confirm
that the improvements in our methods are derived
from enhanced language transfer capabilities.

9Appendix I shows experiments on implementing InstruCL
in different architectures and datasets as a supplement.
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8 Limitations

As mentioned in Section 1, this work primarily fo-
cused on addressing the challenges faced by mod-
els with a decoder-only architecture in multilin-
gual neural machine translation (MNMT), rather
than exploring how to apply large language models
(LLMs), which also have the decoder-only architec-
ture. This focus is because small models in MNMT
still offer the advantages of low training and deploy-
ment costs while remaining competitive with LLMs
(Zhu et al., 2023). With the increasing interest in
improving multilingual translation with LLMs (Xu
et al., 2024), further exploration is needed to deter-
mine whether the representation-level methods pro-
posed in this work can be extended to LLMs. How-
ever, this is beyond the scope of the current study,
as the data used to train MNMT models signifi-
cantly differs from that used to train LLMs. There-
fore, we leave this question for future research.

9 Ethical Considerations

All datasets and toolkits used in this work are pub-
lic, common, and general in the research on mul-
tilingual neural machine translation, meanwhile,
the usage of those datasets and toolkits follows the
license. Moreover, this work is foundational re-
search and is not a report of specific applications.
Therefore, this work is harmless and has no ethical
risks.
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A Introduction of Illustrating Linguistic
Preference

Overview In this work, we only quantify the lan-
guage features of the sentence representation by
the similarity scores, although the analysis of Qu
et al. (2024) further quantified the semantic fea-
tures of representations. Specifically, the score
presents whether the sentence representations at a
certain state exhibit more features related to the tar-
get language or more features related to the source
language.

Setup First, quantifying the language features of
the sentence representation requires a semantically
parallel dataset. Therefore, we conduct analysis
experiments on TED-19, which provides six fully
parallel languages, including ar, he, zh, hr, vi,
and ja. We connect these languages to generate 30
zero-shot translation pairs, each pair consisting of
967 sentences. The model setup is consistent with
our main experiments (Section 5).

Computing the similarity score First, we follow
the process of Qu et al. (2024) to measure repre-
sentation similarity in MNMT, employing singular
value canonical correlation analysis (Raghu et al.,
2017). As the definition in Section 3, we obtain
the token-wise hidden representations of the source
sentence, i.e. H, from a translation pair. Notably,
for a decoder-only model, we cut out the source
part, namely, |H| is always I + 1. Then, we derive
the sentence-level representation h using average
pooling h =

∑q
i=1 hi

q . Given Ha and Hb derived
from two sentences, we first perform singular value
decomposition on h

a
and h

b
to obtain subspace

representations h
a ∈ Rda and h

b ∈ Rdb . Then
we perform canonical correlation analysis to deter-
mine Wa ∈ Rd′×da and Wb ∈ Rd′×db . Formally,
we compute correlation ρ between h

a
and h

b
as

ρ =
⟨Wah

a
,Wbh

b⟩
∥Wah

a∥∥Wbh
b∥
, (10)

where ⟨·, ·⟩ indicates the inner product. We use
ρ to represent the similarity of two sentences.
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Figure 7: Averaged BLEU scores in different architec-
tures. The palette follows Figure 1, i.e., red is encoder-
decoder, green is causal decoder-only, and blue is prefix
decoder-only.

Subsequently, we get the similarity ρx between
(ly,x,y) and (lx,x,x) and the similarity ρy be-
tween (ly,x,y) and (ly,y,y), respectively. There-
fore, a similarity score of linguistic preference is
computed as follows:

s(ly ,x,y) =
ρy

ρy + ρx
, (11)

where s(ly ,x,y) is the similarity score for the given
translation pair. Finally, we compute the set-level
score by taking the average scores of all sentences
over the test set.

Meaning of the similarity score Equation 11
simply compares the importance of source infor-
mation and target information in the representation.
Therefore, a value higher than 0.5 means the repre-
sentation prefers the target language, otherwise the
representation prefers the source language. More-
over, the value reflects the degree of linguistic pref-
erence, for example, compared to 0.6, 0.7 means
the representation presents much more features of
the target language or fewer features of the source
language. In addition, we also denote the high-
est and lowest values by the vertical lines on each
point in Figures 1b and 4 to show the value range,
which can present stability. Finally, we can find
that models with decoder-only architecture cannot
align the representation of the source tokens in the
representational subspace of the target language,
and they try to align source and target languages to
be a language-agnostic state.

B Comparison between Different
Instruction Strategies in MNMT

MNMT is sensitive to the strategy of translation in-
struction (Wu et al., 2021). We summarize the pos-
sible strategies as follows: (1) Adding a language
tag specified to the target language at the beginning
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Encoder Decoder

y1 y2 y3 

ly x1 x2 x3 [eos] [eos] y1 y2 y3 

Decoder-only

y1 y2 y3 

[eos] y1 y2 y3 ly x1 x2 x3 [eos] 

ly x1 x2 x3 [eos] 

(a) Encoder-Decoder

(b) Decoder-only
[eos] 

[eos] 

Figure 8: Illustration of input and output forms in
MNMT. Subfigures are for the encoder-decoder archi-
tecture and the decoder-only architecture, respectively.
[eos] is a special token, which means the end of a sen-
tence and is regarded as a token of x and y.

of source tokens; (2) Adding a language tag speci-
fied to the target language at the beginning of target
tokens; (3) Based on the (2), using the language tag
to replace the [eos] token, which is used to be the
trigger of inference; (4) Adding two language tag
specified to the target language at the beginning of
source tokens and the beginning of target tokens, si-
multaneously; (5) Adding a language tag specified
to the source language and a language tag specified
to the target language at the beginning of source
tokens and target tokens, respectively. Then, we
conduct preliminary experiments on three architec-
tures: encoder-decoder, causal decoder-only, and
prefix decoder-only, to support the validity of using
approach (1). As shown in Figure 7, the perfor-
mance of encoder-decoder architecture meets the
analysis of Wu et al. (2021). However, a language
tag at the beginning of target tokens, i.e., (2), (3),
and (4), is more beneficial for the zero-shot capa-
bility in Decoder-only architecture. Considering
that (1) also benefits decoder-only architectures in
the supervised translation, using (1) in this work is
reasonable.

C Different Input and Output Forms

Figure 8 illustrates input and output forms for two
architectures involved in this work. Initially, within
the encoder-decoder architecture, the encoder re-
ceives parallel input from source tokens, including
ly, x, and a special token [eos]. As a supplement
of Section 3.2, for the I + 1 tokens feeding to the
encoder, ly is the first token and corresponds to the
h1, then, each index of x is shifted, namely, x cor-
responds to {h2, ...,hI+1}. Furthermore, the input

x1 x2 x3 y1 y2

y2

y1

x3

x2

x1
x1 x2 x3 y1 y2

Causal Prefix

y2

y1

x3

x2

x1

Figure 9: Different manners of the masked self-attention
mechanism in the decoder-only architectures. Black
blocks mean visible and white blocks mean masked.
Thus, source tokens are masked in the causal decoder-
only while are visible in the prefix decoder-only.

of the decoder is shifted. Specifically, in training,
[eos] is placed at the beginning of the target tokens,
and the output at each position always points to
the token in the next position; in inference, [eos]
serves as the trigger, and the model would gener-
ate the next token step by step until the predicted
token is [eos]. Finally, the output of the encoder-
decoder architecture only includes target tokens,
i.e., y. On the other hand, the decoder-only archi-
tecture combines source tokens and target tokens
as the input. In this work, we follow Zhang et al.
(2022); Gao et al. (2022) to employ MNMT loss
instead of language modeling loss, namely, cutting
off the source tokens and saving the target tokens
only in the ouput,

D Attention Mechanisms of
Decoder-Only Architectures

As illustrated in Figure 9, the causal attention mech-
anism in the decoder-only architecture treats source
and target tokens equally, meaning that each token
is influenced solely by preceding tokens and it-
self. In contrast, the prefix attention mechanism
maintains bi-directional attention for source tokens
where source tokens are influenced by each other,
while target tokens use mono-directional attention,
meaning they are influenced only by prior tokens
and themselves.

E Estimation of Parameters

We follow the notation in Section 5.2, that is, d
is the dimension of the model and the inner size
of FFN is 4d. Therefore, each attention mecha-
nism has 4d2 parameters because there are 4 ma-
trices with dimensions of d × d, and each FFN
has 8d2 parameters (Vaswani et al., 2017). Then,
all layers have the structure illustrated in Figure
2. Given N =1, the model with encoder-decoder
architecture has 28d2 parameters and the model
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with Decoder-only architecture has 24d2 parame-
ters. Thus, considering the fixed parameters of nor-
malization modules and embedding layer, Decoder-
only architecture is implemented with around 10%
fewer parameters than encoder-decoder architec-
ture.

F Detailed Information of Datasets

First, the language codes used in our descriptions
adhere to ISO 639-110. As described in Section
5.1, the first dataset is TED-19 (Qu et al., 2024),
a subset of TED Talks (Ye et al., 2018) contain-
ing 6.5 million instances across 19 languages from
various language families. This dataset includes
32 supervised translation pairs and 306 zero-shot
translation pairs. Detailed information about TED-
19 is provided in Table 7. The second dataset is
the revised version of OPUS-100 (Zhang et al.,
2020a; Yang et al., 2021), which includes 95 lan-
guages and a total of 92 million instances. No-
tably, the zero-shot translation in OPUS-100 in-
volves only six languages (ar, nl, de, zh, ru, and
fr), resulting in 30 translation pairs. Additionally,
we further cleaned the dataset by removing noisy
instances containing unreadable characters, even
though Yang et al. (2021) had already removed
repetitions from the original OPUS-100 dataset
(Zhang et al., 2020a). Detailed information about
OPUS-100 can be found in Table 8. Generally, each
pair of validation and test sets in these two datasets
contains 2,000 instances, though several pairs in
OPUS-100 have fewer instances. Finally, we used
SentencePiece (Kudo and Richardson, 2018) to
generate the vocabulary for training, with the vo-
cabulary size set to 50,000 for TED-19 and 64,000
for OPUS-100.

G Evaluation Metrics

First, SacreBLEU (Post, 2018), an implementa-
tion of BLEU (Papineni et al., 2002), measures
the lexical overlap between generated translations
and reference translations. chrF++ evaluates over-
lap at the character level and accounts for a bal-
ance between precision and recall. These two met-
rics can corroborate each other’s results. On the
other hand, BERTScore11 (Zhang et al., 2020b)

10https://www.loc.gov/standards/iso639-2/php/
code_list.php

11For BERTScore, en is computed using xlmr.large (Con-
neau et al., 2019; Goyal et al., 2021), while other languages are
computed using bert-base-multilingual-cased (Devlin et al.,
2018).

measures the similarity between generated trans-
lations and references at the representation level.
COMET12 (Rei et al., 2020) also evaluates repre-
sentational similarity, with an additional empha-
sis on the source text for enhanced semantic rel-
evance. Intuitively, BERTScore may penalize in-
stances that do not translate into the expected target
language, while COMET is more sensitive to se-
mantic relevance. To validate this intuition, we
employ fasttext-langdetect13 to measure the target-
off ratio on zero-shot pairs, i.e., the ratio of cases
where the source sentence is not translated into
the correct target language, as a secondary met-
ric. Notably, it is considered secondary because
the testing tools are not entirely accurate, partic-
ularly when recognizing low-resource languages,
as they rely on language-specific tokens. Finally,
to show whether the improvements of zero-shot
translations brought by proposed methods are sig-
nificant, we also conduct the statistical significance
testing (Koehn, 2004) using paired bootstrap re-
sampling with 1,000 iterations and 0.5 resampling
ratios, consequently, the case of p < 0.1 means that
the difference is significant.

H Detailed Model Settings

We implement models by Fairseq (Ott et al., 2019),
an open-source toolkit. First of all, in this work,
we apply independent sinusoidal positional embed-
dings for source tokens and target tokens (Vaswani
et al., 2017) for the input of the decoder-only archi-
tecture. Notably, the estimation of parameters in
modeling is introduced in Appendix E.

Model settings of training from scratch In the
case of training from scratch on TED-19, we set
N to 6, d to 512, inner size of FFN to 4d. Thus,
the model with an encoder-decoder architecture
has 70 million parameters, while the model with a
decoder-only architecture has 63 million parame-
ters. Moreover, the FFN in the adaptation module
matches the dimensions of the FFN in the main part,
so in this case, the model has 67 million parameters.
In the training, we set the learning rate to 0.0005
and the model is trained for 30 epochs on eight
NVIDIA V100 GPUs with a batch size of 4,000
per GPU to ensure full convergence. Moreover, we
set the head number of the attention mechanism
to 8, the dropout rate to 0.1, label smoothing to

12All COMET scores are computed using Unbabel/wmt22-
comet-da (Rei et al., 2022).

13https://pypi.org/project/fasttext-langdetect
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑
#enc #dec idx. en→ →en zero en→ →en zero en→ →en zero en→ →en zero

TED
d =512

Enc-Dec
6 6 - 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26
6 6 6 24.92 28.39 12.96 45.56 50.97 33.42 83.94 93.68 79.10 79.99 78.21 70.37

Dec-only
0 12 - 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74
0 12 6 24.16 27.18 10.12 44.61 49.11 28.49 83.63 93.01 76.32 78.80 76.30 61.41
0 12 9 24.26 27.31 10.94 44.69 49.24 29.55 83.69 93.05 77.05 79.08 76.45 63.77

TDO
0 12 - 25.53 28.76 14.26 46.01 51.09 34.72 84.13 93.41 79.27 80.43 78.18 70.82
0 12 6 25.46 29.02 14.06 45.98 51.44 34.38 84.10 93.48 79.15 80.47 78.54 70.51
0 12 9 25.62 28.94 14.70 46.15 51.46 35.34 84.15 93.47 79.57 80.55 78.55 71.94

OPUS
d =512

Enc-Dec
12 12 - 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51
12 12 12 24.98 29.61 6.56 44.65 48.30 15.49 82.97 92.34 73.45 76.46 76.23 59.61

Dec-only
0 24 - 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56
0 24 12 24.22 28.26 6.99 43.23 46.83 15.98 82.49 92.04 73.66 75.55 74.94 59.42
0 24 18 23.98 28.22 6.73 43.18 46.80 16.17 82.52 92.07 73.67 75.60 75.12 59.37

TDO
0 24 - 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30
0 24 12 24.61 29.37 6.46 44.68 48.72 15.14 82.87 92.37 73.30 76.16 76.21 59.41
0 24 18 24.35 29.52 7.93 44.44 48.74 18.65 82.84 92.37 73.97 75.93 76.23 58.71

OPUS
d =1024

Enc-Dec
6 6 - 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99
6 6 6 27.74 31.52 7.75 46.92 49.91 18.06 83.56 92.66 74.44 78.07 77.69 60.43

Dec-only
0 12 - 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32
0 12 6 26.87 30.72 8.47 45.58 49.18 17.78 83.53 92.51 74.38 77.74 77.82 61.61
0 12 9 26.72 30.09 8.42 45.34 48.52 17.33 83.16 91.83 74.23 77.31 76.61 61.55

TDO
0 12 - 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60
0 12 6 26.72 31.05 7.43 45.49 49.54 16.25 83.19 92.40 74.00 77.45 77.49 61.89
0 12 9 27.12 31.49 9.28 46.55 50.23 21.33 83.50 92.65 75.04 77.63 77.64 60.84

Table 3: Averaged scores of results in experiments of training from scratch and verifying InstruCL across different
architectures. Both the decoder-only and TDO architectures adopt the prefix attention mechanism. All terms,
settings, and abbreviations follow the Table 1. Moreover, #enc, #dec, and idx. indicate the number of encoder
layers, the number of decoder layers, and the layer index where to implement InstruCL, respectively. In addition,
the placeholder (-) in the collum of idx. means that InstruCL is not implemented in this row. The best score in each
column and block is in bold.

0.1, and weight decay to 0.0001. We also employ
Adam (Kingma and Ba, 2017) as our optimizer and
set share-all-embeddings of Fairseq. We evaluate
by averaging the top-5 best checkpoints selected
based on validation loss. In the case of training
from scratch on OPUS-100, we first increase N to
12, resulting in parameter counts of 121 million,
108 million, and 113 million, respectively. In the
training, we set the number of gradient accumula-
tion steps to 16 to increase the batch size and train
for 50,000 steps with a learning rate of 0.0007. We
also consider a wider model where N is 6, d is
1024, and the head number of the attention mech-
anism is 16, resulting in parameter counts of 242
million, 217 million, and 234 million, respectively.
When, we additionally set an attention dropout to
0.05 and reduce the learning rate to 0.0005 for a
stable gradient. Moreover, we reduce the batch
size per GPU to 2,000, set the number of gradient
accumulation steps to 32, and train for 100,000
steps due to GPU memory constraints. For two
cases of OPUS-100, we test the checkpoint with
the best validation loss. Additionally, in training
on OPUS-100, we set encoder-normalize-before

and decoder-normalize-before in Fairseq and re-
duce the weight decay to 0, which lead to a quick
convergence in a complex data condition (Liu et al.,
2020; Fan et al., 2020; Team et al., 2022).

Model settings of fine-tuning In the model set-
tings of fine-tuning, M2M-418M has 12 layers
for encoder and decoder, respectively, where d of
M2M-418M is 1024, and the inner size of FFN
is 4096, based on the description in Section 5.2,
we set N to 6, resulting in parameter counts of
307 million, 282 million, and 299 million, respec-
tively. In the training, the label smoothing is 0.2,
the dropout is 0.3, the attention dropout is 0.05,
and the batch size and the learning rate keep the
settings of training from scratch. Then, given that
NLLB-600M has the same configuration as M2M-
418M but with a larger vocabulary size, the same
setting of hyper-parameters leads to the count of
parameters increased to 439 million, 413 million,
and 430 million, respectively, and, we reduce the
batch size to 2000 and set gradient accumulation
to 2 for NLLB-600M because of the GPU memory
constraints. In M2M-1.2B, which has 24 decoder
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layers and a larger inner size of FFN compared to
M2M-418M, we set N to 12, leading to parameter
counts of 685 million, 635 million, and 668 million,
respectively, and our experiments are conducted on
four NVIDIA A6000 GPUs, and we set gradient
accumulation to 2. We also reduce the learning rate
to 0.0002 and the number of training epochs to 10
because of more parameters.

I The Effectiveness of InstruCL on
Encoder-Decoder Architecture

As a supplementary trail for Sections 5.3 and 6.3,
we conduct experiments on applying InstruCL to
the encoder-decoder, the prefix decoder-only, and
TDO architectures, and then compare their per-
formances on three cases of training from scratch
described in Section 5.2. The layer index where
InstruCL is implemented at the TDO is 1.5N . We
also implement InstruCL for the decoder-only ar-
chitecture at the same layer as a comparison. How-
ever, given that the number of encoder layers in an
encoder-decoder architecture is N , InstruCl is im-
plemented at the output of the encoder, namely, the
layer index is N . Therefore, as comparison groups,
we also implement InstruCL for the decoder-only
and TDO architectures at the N layer.

Tabel 3 shows the experimental results. The first
observation is that the encoder-decoder architec-
ture can be gained from InstruCL due to the im-
proved performance in all cases. Notably, the first
observation is not violated from the statement in
Section 6.3 that InstruCL mainly affects the layer
following the decoder-only manner, because of the
performance of TDO in TED-19 and OPUS-100.
Specifically, considering the decoder-only architec-
ture, first, in the TED-19, when the index is set to
N , Dec-only shows a significant improvement in
zero-shot translations with BLEU scores increas-
ing by 1.94, while TDO degraded by 0.64. Second,
in two cases from the OPUS-100, when the index
is set to 1.5N , TDO achieves significant improve-
ments of 2.61 and 2.22, respectively. Third, in
three cases, compared to setting the index toN , the
decoder-only model showed smaller gains or even
degradations when the index is set to 1.5N , with
scores increasing by 0.82, -0.26, and -0.05.

These results are consistent with our statement
in Section 4.2. Specifically, the first stage of TDO
overlaps with InstruCL in terms of facilitating the
learning of target language representations, which
explains the suboptimal performance when both

Scenario Model Seconds

TED
N=6
d =512

Enc-dec 22854
Dec-only 24277

TDO 22359

OPUS
N=12
d =512

Enc-dec 102509
Dec-only 114514

TDO 101826

OPUS
N=6
d =1024

Enc-dec 258845
Dec-only 298344

TDO 247964

Table 4: Training times of different models in three
experimental settings. The smallest value is in bold.

are used together. Additionally, InstruCL is most
effective when applied in the middle layers, which
align with the decoder-only manner. On the other
hand, considering the performance of the vanilla
models, i.e., Enc-Dec and Dec-only, we can assert
that InstruCL, which does not require additional
data costs, generally benefits all architectures.

J The Impact of Computational
Complexity

Intuitively, when comparing the decoder-only archi-
tectures, TDO model exhibits lower computational
complexity than the vanilla decoder-only model.
This is due to the removal of the first M layers
from the vanilla decoder-only model when gener-
ating target token sequences. Despite the reduced
computational complexity, TDO achieves superior
performance compared to the vanilla decoder-only
architecture. Second, we present an empirical com-
parison of training times across different models.
Table 4 summarizes the results, showing that TDO
has the shortest training time, comparable to the
encoder-decoder model.

Next, we formally estimate the computational
complexity for each architecture. For simplicity,
we omit the layer normalization and output pro-
jection components from the analysis. Let the
model dimension be denoted by d, the inner size
of the feed-forward network by 4d, and the to-
tal number of tokens be 2n, where n represents
both the source and target tokens. The number
of layers is assumed to be one encoder layer, one
decoder layer, and two decoder-only layers. As
shown in Table 5, the estimated FLOPs for TDO
fall between those of the encoder-decoder (enc-dec)
model and the vanilla decoder-only model. Specifi-
cally, the computational cost of TDO is lower than
the vanilla decoder-only model but higher than the
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enc-dec model. Despite this, TDO achieves signif-
icantly better performance than the decoder-only
model and competitive performance with the enc-
dec model.

Component or Architecture Estimated FLOPs

multi-head self-attention 4 · n · d2 + 2 · n2 · d
feed-forward network 8 · n · d2

encoder layer 12 · n · d2 + 2 · n2 · d
decoder layer 12 · n · d2 + 4 · n2 · d

decoder-only layer 24 · n · d2 + 8 · n2 · d
Enc-dec 24 · n · d2 + 6 · n2 · d
Dec-only 48 · n · d2 + 16 · n2 · d

TDO 36 · n · d2 + 10 · n2 · d

Table 5: Estimated FLOPs for various components and
architectures.

Furthermore, the discrepancy between training
time and theoretical FLOP counts can be attributed
to the fact that TDO contains approximately 10%
fewer parameters compared to the encoder-decoder
architecture. This reduction in parameters con-
tributes to faster training times, as discussed in Ap-
pendix K and cited in Section 4.1 of our manuscript.
In conclusion, the observed improvements in model
performance are not the result of increased com-
putational complexity but rather due to the archi-
tectural design choices in the TDO model. The
combination of empirical results and theoretical
analysis demonstrates that TDO offers a more com-
putationally efficient alternative to the decoder-only
model, with competitive performance comparable
to the encoder-decoder model.

K Adaption Modules Do Not Equal
Simply Increasing Parameters

Adding adaptation modules increases the number
of parameters, so it is crucial to determine whether
the gains from these modules are primarily due to
the increased parameters. As shown in Table 6,
we directly increased the parameters of the TDO
model using various strategies, ensuring that the
number of parameters is comparable to or even
greater than that of the TDO model with adapta-
tion modules. The results demonstrate that the
TDO model with adaptation modules outperforms
in zero-shot translation and in translating super-
vised pairs from English to non-central languages.
Notably, considering the previous point, the reason
why adaptation modules do not achieve the best
performance when translating from non-central lan-
guages to English can be attributed to their effec-

d d1ffn d2ffn en→ →en zero

TDO+adapt. 512 2048 2048 25.61 28.52 14.51

TDO

544 2048 2048 25.55 28.28 14.22
512 2432 2432 25.51 28.51 14.31
512 2048 2816 25.32 27.98 13.89
512 2816 2048 25.56 28.95 14.01

Table 6: Averaged BLEU scores of models with TDO
architecture trained on TED-19. Abbreviations in this
table follow Table 1. In addition, d1ffn is the inner size
of FFN in the first stage, and d2ffn is in the second stage.
The best score is in bold.

tiveness in preventing overfitting of English, which
dominates the multilingual representations due to
most of the training data being in English (Gu et al.,
2019; Qu and Watanabe, 2022). Therefore, the re-
sults in this table support our assertion that the
gains from adaptation modules cannot be simply
attributed to increasing parameters.

194



Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

es Spanish Indo-European Romance 196026 ar Arabic Afro-Asiatic Semitic 214111
fr French Indo-European Romance 192304 he Hebrew Afro-Asiatic Semitic 211819
ro Romanian Indo-European Romance 180484 ru Russian Indo-European Slavic 208458
nl Dutch Indo-European Germanic 183767 ko Korean Koreanic 205640
de German Indo-European Germanic 167888 it Italian Indo-European Romance 204503
pl Polish Indo-European Slavic 176169 ja Japanese Japonic 204090
hr Croatian Indo-European Slavic 122091 zh Chinese Sino-Tibetan Sinitic 199855
cs Czech Indo-European Slavic 103093 tr Turkish Turkic 182470
fa Persian Indo-European Iranian 150965 vi Vietnamese Austroasiatic Vietic 171995

Table 7: Detailed information of TED-19 datasets. #Train indicates the number of training instances.

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

fa Persian Indo-European Iranian 934413 yi Yiddish Indo-European Romance 1865
bn Bengali Indo-European Iranian 724719 ga Irish Indo-European Celtic 187967
ur Urdu Indo-European Iranian 724226 br Breton Indo-European Celtic 96951
si Sinhala Indo-European Iranian 613702 cy Welsh Indo-European Celtic 92615
hi Hindi Indo-European Iranian 374472 gd Scottish Gaelic Indo-European Celtic 11104
tg Tajik Indo-European Iranian 183216 lt Lithuanian Indo-European Baltic 797693
ne Nepali Indo-European Iranian 144520 lv Latvian Indo-European Baltic 779972
gu Gujarati Indo-European Iranian 108564 tr Turkish Turkic 918838
ku Kurdish Indo-European Iranian 107110 az Azerbaijani Turkic 237533
pa Punjabi Indo-European Iranian 72160 uz Uzbek Turkic 148319
as Assamese Indo-European Iranian 58009 tt Tatar Turkic 97746
mr Marathi Indo-European Iranian 26117 ug Uyghur Turkic 71241
ps Pashto Indo-European Iranian 14254 kk Kazakh Turkic 62227
or Oriya Indo-European Iranian 13410 ky Kyrgyz Turkic 12724
de German Indo-European Germanic 968252 tk Turkmen Turkic 98
nl Dutch Indo-European Germanic 936611 ar Arabic Afro-Asiatic Semitic 959868
sv Swedish Indo-European Germanic 916259 he Hebrew Afro-Asiatic Semitic 913493
no Norwegian Indo-European Germanic 914187 mt Maltese Afro-Asiatic Semitic 672134
da Danish Indo-European Germanic 911156 ha Hausa Afro-Asiatic Chadic 91869
is Icelandic Indo-European Germanic 813820 am Amharic Afro-Asiatic Semitic 64369
nn Norwegian Nynorsk Indo-European Germanic 172187 el Greek Indo-European Hellenic 932811
af Afrikaans Indo-European Germanic 146600 sq Albanian Indo-European Albanian 855095
nb Norwegian Bokmål Indo-European Germanic 128374 ml Malayalam Dravidian 633920
fy Frisian Indo-European Germanic 42372 ta Tamil Dravidian 184699
li Limburgish Indo-European Germanic 3331 te Telugu Dravidian 37792
ru Russian Indo-European Slavic 951611 kn Kannada Dravidian 13777
sr Serbian Indo-European Slavic 935342 xh Xhosa Niger-Congo Bantu 231708
hr Croatian Indo-European Slavic 927541 rw Kinyarwanda Niger-Congo Bantu 62159
pl Polish Indo-European Slavic 926940 zu Zulu Niger-Congo Bantu 6834
bg Bulgarian Indo-European Slavic 925647 ig Igbo Niger-Congo Volta-Niger 691
cs Czech Indo-European Slavic 924282 fi Finnish Uralic Finnic 938601
bs Bosnian Indo-European Slavic 921232 et Estonian Uralic Finnic 893074
sl Slovenian Indo-European Slavic 912248 hu Hungarian Uralic Finno-Ugric 920592

mk Macedonian Indo-European Slavic 881176 se Northern Sami Uralic Sami 32289
sk Slovak Indo-European Slavic 878540 vi Vietnamese Austroasiatic Vietic 883581
uk Ukrainian Indo-European Slavic 759826 id Indonesian Austronesian Malayo-Polynesian 881198
sh Serbo-Croatian Indo-European Slavic 209379 ms Malay Austronesian Malayo-Polynesian 819431
be Belarusian Indo-European Slavic 61862 mg Malagasy Austronesian Malayo-Polynesian 292520
fr French Indo-European Romance 963140 km Khmer Austroasiatic Khmeric 101294
es Spanish Indo-European Romance 929677 zh Chinese Sino-Tibetan Sinitic 954358
it Italian Indo-European Romance 928427 my Burmese Sino-Tibetan Lolo-Burmese 5326
pt Portuguese Indo-European Romance 919755 th Thai Kra-Dai Tai 892433
ro Romanian Indo-European Romance 913451 ko Korean Koreanic 892064
ca Catalan Indo-European Romance 633826 ja Japanese Japonic 886850
gl Galician Indo-European Romance 353596 eu Basque Language isolate 786645
wa Walloon Indo-European Romance 48894 eo Esperanto Constructed 257560
oc Occitan Indo-European Romance 27773 ka Georgian Kartvelian 240335

Table 8: Detailed information of OPUS-100 datasets. #Train indicates the number of training instances.
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Abstract

The extent to which individual language char-
acteristics influence tokenization and language
modeling is an open question. Differences in
morphological systems have been suggested as
both unimportant and crucial to consider (e.g.,
Cotterell et al., 2018; Park et al., 2021; Arnett
and Bergen, 2025). We argue this conflicting
evidence is due to confounding factors in ex-
perimental setups, making it hard to compare
results and draw conclusions. We identify con-
founding factors in analyses trying to answer
the question of whether, and how, morphology
relates to language modeling. Next, we intro-
duce token bigram metrics as an intrinsic way
to predict the difficulty of causal language mod-
eling, and find that they are gradient proxies for
morphological complexity that do not require
expert annotation. Ultimately, we outline ne-
cessities to reliably answer whether, and how,
morphology relates to language modeling.1

1 Introduction

Are certain languages inherently easier or harder to
model (Cotterell et al., 2018; Mielke et al., 2019)?
The interplay between language modeling and in-
dividual differences among languages is an open
problem. One angle it can be approached from is
morphological complexity (Gerz et al., 2018a; Park
et al., 2021): if in one language the internal struc-
ture of words is more unpredictable according to
some standard than another, then perhaps language
models (LMs) have a harder time learning to pre-
dict text in that language.

Morphological systems are widely recognized
as being gradient, but coarse groupings are often
used, especially in NLP (Oncevay et al., 2022). Ag-
glutinative languages (ALs) tend to add one gram-
matical feature to a word with each added mor-
pheme, resulting in long words with many mor-

* Equal contribution.
1This an extended abstract of Poelman et al. (2025) which

is accepted at the EMNLP 2025 main conference.

phemes. Fusional languages (FLs) tend to express
information through inflection, where a single mor-
pheme can express multiple features, resulting in
shorter words with fewer morphemes. Results con-
trasting ALs and FLs have been mixed, with some
evidence pointing to ALs being harder to model
than FLs (e.g., Gerz et al., 2018b) whereas others
have shown that there is no difference between the
two groupings (e.g., Arnett and Bergen, 2025).

We outline what experimental conditions and
metrics are necessary to reliably answer whether,
and how, morphology relates to language modeling.
Our contributions: (1) We list confounding factors
that have to be taken into account when attempting
to answer the central question above. They can be
seen as criteria for an "ideal" experiment. (2) We
propose predicting CLM difficulty with the variety
and entropic efficiency of neighboring tokens, and
find they are proxies for morphological complexity.

2 Confounding Factors

It is not obvious how morphology impacts language
modeling. What is clear is that research that seeks
to draw reliable conclusions relating the two must
control for the following confounding factors:

1. Languages: What set of languages is un-
der consideration? If multiple hypotheses are
tested, that set should ideally stay constant.

2. Grouping: If results/languages are grouped,
is there enough in-group agreement?

3. Tokenization algorithm: What subword to-
kenization algorithm is used? What are its
hyperparameters?

4. Vocabulary size vs. data size: How does the
amount of subword types relate to the amount
of training data?

5. Corpus domain: Are tokenizers and mod-
els trained on the same data? Are datasets
comparable across languages (ideally, multi-
parallel), or made to be so?
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Token Bigrams Token Unigrams Words
Language Grouping∗ AV η (↓) AU LR MATTR MTL RE S MWL
English Fusional 2.12 15.92 61.08 59.29 31.78 4.89 36.68 9.27 5.54
French Fusional 2.39 19.11 57.77 51.55 34.27 5.08 40.30 2.30 5.91
Dutch Fusional 3.33 20.75 60.61 43.60 33.85 5.17 37.83 8.36 6.01
Portuguese Fusional 3.06 21.31 52.64 51.49 35.38 4.91 36.38 10.64 5.79
Spanish Fusional 2.95 22.70 56.97 52.62 33.85 5.05 36.16 9.05 5.72
Danish Fusional 3.84 24.12 57.44 38.71 33.32 4.78 35.53 11.91 5.82
Bulgarian Fusional 3.37 24.12 52.91 40.74 36.37 4.86 34.88 12.21 5.97
Swedish Fusional 3.84 24.18 57.29 35.71 35.90 5.11 39.79 8.73 6.10
Greek Fusional 4.20 24.48 51.62 46.81 38.71 5.11 37.44 10.35 6.15
Romanian Fusional 3.12 25.09 51.81 51.01 37.80 5.04 36.98 10.52 5.95
German Fusional 4.04 26.33 57.29 33.66 35.83 5.28 35.14 12.12 6.52
Italian Fusional 3.65 27.10 61.54 59.88 37.56 5.22 38.85 9.39 6.21
Latvian Fusional 4.45 28.07 50.99 43.81 41.75 5.00 32.29 15.76 6.41
Czech Fusional 4.58 30.07 50.71 41.32 43.06 4.70 35.15 13.67 6.01
Polish Fusional 4.74 30.85 50.61 43.80 44.51 5.25 35.76 12.75 6.68
Slovak Fusional 4.70 31.12 51.43 44.68 43.04 4.82 34.91 13.39 6.13
Slovenian Fusional 4.09 32.04 52.85 48.35 40.42 4.77 33.74 13.66 5.88
Lithuanian Fusional 6.26 33.62 52.82 44.35 44.11 5.00 32.26 16.58 6.61
Finnish Agglutinative 7.14 36.83 55.05 28.95 45.72 5.37 34.60 16.23 7.78
Hungarian Agglutinative 6.69 39.11 56.24 31.37 41.73 5.05 34.10 14.63 6.78
Estonian Agglutinative 6.27 40.31 55.89 34.39 43.66 5.22 34.58 14.87 6.96

Table 1 – We propose to use gradient proxies of morphology that operate on token bigrams: the variety of a type’s accessors
(AV), their uniqueness (AU), and the Shannon efficiency of their distribution (η). We report averages over types in the
tokenizer’s vocabulary that appear at least once and were not filtered; the fraction of types excluded from each average is
its lexicalization ratio (LR). We also give existing metrics operating on token unigrams: micro-average characters per token
(MTL), moving-average type-token-ratio (MATTR), and Rényi efficiency (RE). Last are word-based metrics: tokens per
character averaged per word (S) and mean word length (MWL). All metrics are calculated on EuroParl (Koehn, 2005)
using monolingual tokenizers from the Goldfish suite of models (Chang et al., 2024). ∗Groupings taken from Arnett and
Bergen (2025). The gradient in the columns ranges from its minimum to maximum and are intended to highlight how well
a metric corresponds with the "Grouping" column. For AU and LR, the top three are highlighted yellow, the bottom orange.

6. Performance indicator: What metric is used
to evaluate and compare tokenizers and mod-
els across languages? Is the setup monolingual
or multilingual? Is the metric comparable be-
tween any two languages?

These factors show a way towards an ideal exper-
imental setup. Practically, one must work back-
wards from this to a feasible setup.

3 Accessor Variety

We need a reliable proxy for morphological com-
plexity. Harris (1955) first suggested to count the
variety of predecessor and successor units of a
given string, where unusual spikes would imply
the string’s edges delineated something meaningful
like a morpheme. Feng et al. (2004) coined acces-
sor variety (AV) as the minimum of predecessor
and successor variety. Wu and Zhao (2018) applied
this to learn BPE merges. We use ULM tokens.

In Table 1, we calculate our metrics on a multi-
parallel aligned subset of EuroParl (Koehn, 2005).
AV recovers the coarse groupings, with ALs having
the highest AV. Additionally, within FLs, a more
fine-grained view of morphological complexity is
revealed. For instance, higher AV values point to

languages using compounding (e.g., German vs En-
glish). The shape of the accessor distribution (η)
follows the same trend, being higher (more uni-
form) for ALs. These results for AV and η suggest
that the difficulty of causal language modeling, and
hence higher PPLs regardless of models, is having
more and more equally likely follow-up options at
each token. This is what AV and η measure.

The word-based metrics recover the groupings
somewhat, but are less reliable for CLMs, unless
those models also use words instead of subword
tokens. The token unigram metrics MTL, RE, and
MATTR look rather even across the languages in
EuroParl. Since these estimators become more ac-
curate with more data, their low variance calls
into question higher-variance results computed for
much smaller corpora like FLORES-200.

Lastly, AV operates on tokens, which means it’s
applicable to other units. For character- or byte-
level tokenizers, AV can still provide an estimate of
the degree of choice of accessors for a given type.

In the full paper, we discuss hypotheses of other
papers, present results for a larger set of languages,
and suggest general methodological improvements
for future investigations.

197



Acknowledgments

WP and TB are funded by a KU Leuven Bijzon-
der Onderzoeksfonds C1 project with reference
C14/23/096. The computational resources and ser-
vices used were provided by the VSC (Flemish
Supercomputer Center), funded by the Research
Foundation - Flanders (FWO) and the Flemish Gov-
ernment - department EWI.

References
Catherine Arnett and Benjamin Bergen. 2025. Why do

language models perform worse for morphologically
complex languages? In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 6607–6623. Association for Computational
Linguistics.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and
Benjamin K. Bergen. 2024. Goldfish: Mono-
lingual Language Models for 350 Languages.
ArXiv:2408.10441 [cs].

Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and
Brian Roark. 2018. Are All Languages Equally Hard
to Language-Model? In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 536–541. Association for Computational Lin-
guistics.

Haodi Feng, Kang Chen, Xiaotie Deng, and Weimin
Zheng. 2004. Accessor Variety Criteria for Chi-
nese Word Extraction. Computational Linguistics,
30(1):75–93.
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Abstract
Retrieval-augmented generation (RAG) with
large language models (LLMs) has demon-
strated strong performance in multilingual
question-answering (QA) tasks by leveraging
relevant passages retrieved from corpora. In
multilingual RAG (mRAG), the retrieved pas-
sages can be written in languages other than
that of the query entered by the user, making
it challenging for LLMs to effectively utilize
the provided information. Recent research sug-
gests that retrieving passages from multilingual
corpora can improve RAG performance, par-
ticularly for low-resource languages. However,
the extent to which LLMs can leverage differ-
ent kinds of multilingual contexts to generate
accurate answers, independently from retrieval
quality, remains understudied. In this paper, we
conduct an extensive assessment of LLMs’ abil-
ity to (i) make consistent use of a relevant pas-
sage regardless of its language, (ii) respond in
the expected language, and (iii) focus on the rel-
evant passage even when multiple ‘distracting’
passages in different languages are provided in
the context. Our experiments with four LLMs
across three QA datasets covering 48 languages
reveal a surprising ability of LLMs to extract
relevant information from passages in a differ-
ent language than the query, but a much weaker
ability to produce a full answer in the correct
language. Our analysis, based on both accu-
racy and feature attribution techniques, further
shows that distracting passages negatively im-
pact answer quality regardless of their language.
However, distractors in the query language ex-
ert a slightly stronger influence. Taken together,
our findings deepen the understanding of how
LLMs utilize context in mRAG systems, pro-
viding directions for future improvements. 1

1 Introduction

Retrieval-augmented generation has shown strong
results in multilingual question-answering (QA)

1All codes and data released at https://github.com/B
etswish/mRAG-Context-Consistency.

tasks (Chirkova et al., 2024; Thakur et al., 2024).
Given a query in the user language, informative
passages are retrieved from a reference corpus
and provided jointly with the query, promoting
the large language model (LLM) to generate more
precise responses (Lewis et al., 2020; Asai et al.,
2021). In multilingual RAG (mRAG), retrieval
can be performed either monolingually or cross-
lingually. In the former, retrieval is performed
only over passages in the same language as the
query (Asai et al., 2023; Gao et al., 2023; Fan et al.,
2024), which can be successful for high-resource
languages. However, this approach is marginally
useful, or even harmful, when the question is posed
in a low-resource language, since relevant infor-
mation is likely to be available only in different
languages (Muller et al., 2023). In addition, for
questions regarding a specific geographical region
or culture, essential information may be present
only in corpora of the languages spoken in that re-
gion. To address this issue, cross-lingual retrieval
attempts to extract useful information simultane-
ously from multiple languages (Asai et al., 2021;
Li et al., 2024), leading to visible gains in low-
resource languages (Chirkova et al., 2024)

Evaluating RAG pipelines is notoriously diffi-
cult due to the open-endedness of the retrieval task,
and to the complex interactions of retrieval quality
with model understanding and generation abilities.
On top of this, multilinguality adds another layer
of complexity. Ideally, retrieved passages should
be equally useful when the same question is posed
in different languages. Besides, LLM-generated
answers should be consistently correct across lan-
guages so that users with different language back-
grounds enjoy a similar experience. However, de-
spite the reported accuracy improvements, the abil-
ities of LLMs to exploit cross-lingually retrieved
contexts in mRAG remain poorly understood.

In this paper, we conduct an in-depth assess-
ment of these abilities, using standard accuracy
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Figure 1: Illustration of the contributions and proposed assessment frameworks of this paper.

evaluation as well as feature attribution analysis.
Unlike recent mRAG evaluations (Chirkova et al.,
2024; Park and Lee, 2025), which test the LLM
performance for each language in the entire RAG
pipeline (i.e., retrieval + generation), we disentan-
gle these two factors and focus on the LLM’s abil-
ity to exploit context independently from retrieval
quality. As shown in Figure 1, our key contribu-
tions include: (a) We evaluate how LLMs lever-
age retrieved passages in different languages in
various multilingual QA tasks, revealing remark-
ably robust input understanding but much more
brittle generation abilities. (b) Besides the stan-
dard accuracy evaluation, we apply a recently pro-
posed RAG answer attribution method based on
model internals (Qi et al., 2024) to confirm that
LLMs consistently incorporate retrieved content
from various languages, providing insights from an
interpretability perspective. (c) We consider both
single-passage and multi-passage mRAG setups
and examine how distracting passages in differ-
ent languages affect model performance, shedding
light on the complex interplay between relevance
and content of the retrieved passages. Taken to-
gether, our results deepen our understanding of
how LLMs utilize context in mRAG systems and
reveal important areas for future improvements.

2 Related Work

2.1 Retrieval Strategies for mRAG

Retrieval is a key component of mRAG, which
can be performed in at least two ways: monolin-
gually (in-language) or cross-lingually. Chirkova
et al. 2024 investigated mRAG systems across
13 languages, highlighting the limited gains of
in-language retrieval in their setup. Nie et al.
2023 proposed the Prompts Augmented by Re-
trieval Crosslingually (PARC) pipeline, which

augments contexts with semantically similar sen-
tences retrieved from high-resource languages to
enhance zero-shot performance in low-resource
languages. Gao et al. 2022 introduced a retrieval-
augmented method for multilingual keyphrase gen-
eration, leveraging keyphrase annotations in En-
glish to aid keyphrase generation in low-resource
languages through cross-lingual dense passage re-
trieval.

2.2 Consistency in Multilingual LLMs

Ensuring model consistency across languages is
a key objective for multilingual LLMs. A series
of recent works has focused on the consistency
of factual knowledge encoded in the weights of
multilingually pre-trained LLMs (Fierro and Sø-
gaard, 2022; Weber et al., 2023; Qi et al., 2023;
Hupkes et al., 2023). Other work has focused
on the consistency of domain-specific QA by as-
sessing whether the questions asked by a certain
group of people (Schlicht et al., 2025) or about
domain-specific knowledge (Yin et al., 2022; Li
et al., 2025) can be correctly answered by LLMs
regardless of the query language. Very recently
and concurrently with our work, research interest
has also risen around the consistency of mRAG
pipelines (Wu et al., 2024; Sharma et al., 2024;
Park and Lee, 2025).

2.3 Context Utilization in mRAG

Although some studies (Asai et al., 2021; Nie et al.,
2023; Stap and Monz, 2023; Chirkova et al., 2024)
have demonstrated that cross-lingual retrieval can
significantly enhance mRAG answer accuracy, the
extent to which LLMs can utilize multilingual con-
texts consistently remains poorly understood, moti-
vating the present work. The concept of context uti-
lization is also not always clearly defined. Recent
and concurrent studies (Wu et al., 2024; Sharma
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Dataset QA Task # Languages # Queries # Queries Parallel? Answer
Type (w/ Gold Pass.) Query Answer Gold Pass. Format

XQUAD Extractive 12 1190 1190 ✓ ✓ ✓ Text
MKQA Open Domain 24 6758 5951 ✓ ✓ ✗ Text

GMMLU Multi-Choice 42 14042 4136 ✓ ✓ ✗ A/B/C/D

Table 1: Overall dataset statistics. # Queries (w/ Gold Pass.) refers to the number of queries with at least one gold
passage in any language, which is the subset used for our experiments (cf. Section 3.2).

et al., 2024; Park and Lee, 2025) use performance
of the complete mRAG pipeline to study context
utilization and find that models tend to prefer pas-
sages in the query language or Latin scripts. In
this paper, we further distinguish between input
understanding and decoding capability as key abil-
ities of an mRAG generator, and disentangle them
through our experiments, while strictly controlling
for retrieval quality.

3 Experimental Setup

Consider a multilingual QA setup where qℓ is a
query in language ℓ and aℓ is the gold answer in the
same language. For each query, a set of relevant
passages Pq = {p1, . . . , pn} in multiple languages
is retrieved from a reference multilingual corpus.
A relevant passage (p ∈ Pq) is considered gold p̂ if
it includes the necessary information to answer qℓ

correctly, or non-gold (‘distracting’) p otherwise.
To perform mRAG, a subset of relevant passages
Cq ⊂ Pq is selected and provided as extra context
to the LLM along with query qℓ. In an ideal mRAG
setting, the model should answer more accurately
when provided withC but it should also be agnostic
to the languages in which the passages p ∈ C
are provided, in terms of both answer accuracy
and feature attribution results. Following Muller
et al., 2023, we use the term ‘in-language’ for
the same language as the user query language, and
‘out-language’ for different languages than the user
language.

Given this setup, we study LLMs’ ability to han-
dle multilingual context in different retrieval scenar-
ios, which we simulate by varying (i) the number of
gold and non-gold (‘distracting’) passages provided
in C, and (ii) the languages of those passages.

3.1 Datasets

Question answering datasets can differ across many
dimensions. We choose three multilingual QA
benchmarks to cover a diverse set of languages,
three different types of QA, and different levels

of parallelism (see Table 1) allowing us to isolate
different aspects of mRAG in our evaluation.

XQUAD (Artetxe et al., 2020) is an extension
of the extractive English QA dataset SQUAD (Ra-
jpurkar et al., 2016), which contains 1190 ques-
tions, each provided with a single relevant passage
and a gold answer, all translated into 12 languages.
While not being originally designed for RAG evalu-
ation, this dataset is the only one allowing us to as-
sess LLMs’ abilities to use the exact same informa-
tion provided in different languages, simulating an
impossible scenario where retrieval works perfectly
in all languages. MKQA (Longpre et al., 2021) is
an open domain QA dataset covering 10,000 ques-
tions across 24 languages derived from Natural
Questions (Kwiatkowski et al., 2019). Removing
the questions without any gold answers provided,
we work on a total of 6758 paralleled questions
in this paper. Global-MMLU or GMMLU (Singh
et al., 2024) is a large multilingual extension of
MMLU (Hendrycks et al., 2020) obtained by trans-
lating the English instances into 41 languages. Like
MMLU, it contains 14042 multi-choice questions
that are used to test LLMs’ understanding capabil-
ity across a range of subjects, like social sciences or
medical questions. Each question is provided with
four options to choose from. Question examples
for all datasets are given in Appendix A.

3.2 Retrieval and Filtering

XQUAD includes a single gold passage for each
query, which we can provide to the model without
performing any retrieval (Cq = Pq = {p̂}).

As for MKQA and GMMLU, we retrieve pas-
sages from Multilingual Wikipedia Corpora2 using
the Cohere Embed Multilingual V3 retriever3, a
strong performing multilingual embedding model
with balanced language coverage (CohereAI, 2023).
Unlike previous work (Asai et al., 2021; Muller

2https://huggingface.co/datasets/wikimedia/wi
kipedia

3https://huggingface.co/Cohere/Cohere-embed-m
ultilingual-v3.0
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et al., 2023; Chirkova et al., 2024) where the num-
ber of studied languages was at most 13, our eval-
uation covers twice or more languages, making it
unfeasible to perform a full cross-lingual retrieval
for each query language. As an approximation,
we construct the set of relevant passages Pq by
performing in-language retrieval for the L parallel
versions of q in each language and taking the union
of the top-30 ranked passages in each language:
Pq =

⋃L
ℓ=1 Pqℓ .

Then, we tag the gold passages in Pq based on
whether they contain the gold answer as a sub-
string, following previous work (Liu et al., 2024,
2025). In our experiments, we only consider
queries for which Pq contains at least one gold
passage in any of the studied languages, see result-
ing # Queries (w/ Gold Pass.) in Table 1. While it
may be possible to expand this subset by retriev-
ing more than 30 top passages or by improving
retriever quality (Chirkova et al., 2024), we believe
our setup is appropriate to study LLMs’ ability to
use a variety of multilingual context types that are
representative of competitive cross-lingual retrieval
results.4

Detailed statistics on the amount of in-language
and out-language gold passages for all queries
are shown in Appendix B. As expected, the sit-
uation is particularly serious for queries posed in
low-resource languages, where only out-language
gold passages are available for most of the queries
(e.g., 88% in Khmer MKQA and 91% in Yoruba
GMMLU), highlighting the importance of ensuring
mRAG quality across many languages.

3.3 Evaluation Metrics

For XQUAD and MKQA, we follow previous
work (Asai et al., 2021) and score answers by strict
lexical matching, that is, 1 if the entire gold an-
swer string aℓ is a substring of the model response
M(qℓ), or 0 otherwise. Since models in mRAG se-
tups often generate the correct answer in the wrong
passage language (Chirkova et al., 2024; Zhang
et al., 2024), we also measure the proportion of
model answers that contain a gold answer in lan-
guage ℓ′ (aℓ

′
, ℓ′ ̸= ℓ). 5 Nevertheless, as exact

4Although a large portion of GMMLU queries are filtered
out, we argue that the remaining 4136 queries are numerous
enough to ensure a robust evaluation. We also verify the diver-
sity of this subset and find a total of 55 covered subjects. See
Appendix C for details on the question subjects and categories.

5Since we focus on the language of model responses and
outright cross-language generation (i.e., whether the gold an-
swer appears in a different language) where small orthographic

matching could be overly strict, we further adopt
two complementary metrics (BERTScore and GPT-
4.1-nano) on XQUAD. Similar results are observed,
providing more insights and enhancing the robust-
ness of our analysis. See Appendix D for more
details.

GMMLU is instead designed as a multi-choice
task, thus, accuracy can be simply evaluated by
checking if the LLM outputs the correct option
letter (A/B/C/D). To study the impact of answer
generation from that of passage understanding
across languages, we also use GMMLU as an open
QA task by providing the query without any an-
swer options, and adopting again lexical matching
for evaluation. We refer to the original dataset
as GMMLU-Choice, and the no-options one as
GMMLU-Open.

3.4 Models

We evaluate four top-performing multilingual
LLMs belonging to different model families, which
have been used in recent mRAG evaluations (Wang
et al., 2024; Thakur et al., 2024), namely: Aya-
Expanse-8B (Dang et al., 2024), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Gemma-2-9B-it
(Team, 2024), and Qwen2.5-7B-Instruct (Yang
et al., 2024). Although these models do not of-
ficially support some of our studied languages, evi-
dence has shown that LLMs can generalize success-
fully to unseen languages due to the leak of training
data or shared representations (Qi et al., 2023; Bud-
nikov et al., 2024; Lu and Koehn, 2024), which we
also observed in preliminary experiments.

4 Single-Passage mRAG

We start from a simple scenario where, for each
query qℓ, only one gold passage is provided to the
model either in the query language (in-language;
C = {p̂ℓ}) or in a different language (out-language;
C = {p̂ℓ′}, ℓ′ ̸= ℓ). As a baseline, we calculate
answer accuracy when no context is provided to
the model (C = ∅).

In XQUAD, where gold passages are translated
into 12 languages, we iterate over the 11 out-
language passage versions for each query and re-
port the average accuracy. We also report accuracy
for the passage language that yielded the best (or

variants can be decisive, particularly for phonologically simi-
lar languages, we do not adopt the variant of the softer lexical
metric (Chirkova et al., 2024) (3-gram recall), which tolerates
minor orthographic differences and could blur the distinctions.
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Figure 2: Performance on XQUAD, MKQA, GMMLU-Open, and GMMLU-Choice, where the LLMs are provided
with no retrieved passage or one gold passage in either in-language or out-language. The shading on the bars
represents the ratio of questions that can be correctly answered but in the wrong passage language, which does not
apply to GMMLU-Choice since the evaluation on it is not affected by the generation language.

worst) answer accuracy overall for each query lan-
guage. By contrast, the gold passages in MKQA
and GMMLU are retrieved from a Wikipedia cor-
pus as explained in Section 3.2, and are not parallel
across languages. As a solution, for each query
qℓ, we randomly sample 3 different out-language
passages from Pq and report accuracy averaged
over the 3 single-passage answers. To maximize
the chances of obtaining a model response in the
query language ℓ, we explicitly mention ℓ in the
instruction, which is itself translated into ℓ, follow-
ing Chirkova et al., 2024; Zhang et al., 2024. The
detailed prompts are listed in Appendix E.

4.1 Accuracy Results

Results averaged across all query languages are
given in Figure 2, while the full language-specific
results are given in Appendix I.

Results on XQUAD We recall that XQUAD is
a distinct dataset, originally developed to evaluate
extractive QA, rather than open-domain RAG sys-
tems. Nevertheless, it is the only dataset where
the exact same gold passage is available in dif-
ferent languages, allowing us to isolate the effect
of a passage’s language from that of its content.
As shown in Figure 2, providing the gold passage
in any language strongly improves answer accu-
racy compared to the no-context baseline, which
is likely due in part to the extractive nature of QA
in this dataset. Looking at the passage language,
however, we find that in-language passages yield
considerably higher accuracy than all out-language
settings, including out-language (Best). Moreover,
a notable portion of questions are answered cor-
rectly but in the wrong language even though the
models were explicitly prompted to answer in the

Figure 3: Answer accuracy (%) on XQUAD among
different query-passage language combinations. Only
model answers in the correct (i.e., query) language are
considered as correct.

target language, which is in line with previous find-
ings (Wu et al., 2024; Chirkova et al., 2024). Even
when considering these cases, a visible gap remains
between in-language and out-language accuracy
across the board on XQUAD. We further analyze
this gap through manual error analysis and find that
missed matches are often due to the use of syn-
onyms or slight paraphrases of the gold answer, or
–in the case of languages with different scripts– to
transliteration variations (Knight and Graehl, 1997).
See Appendix F for more details.

Figure 3 gives a detailed view of how answer
accuracy varies with the language of the provided
gold passage.6 As expected, the highest accuracy

6Here we only consider answers in the correct language,
see Appendix I for language-specific accuracies when consid-
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is always achieved when the retrieved passage is in
the same language as the query. Concurrent work
(Sharma et al., 2024; Park and Lee, 2025) suggested
that models may prefer passage languages that use
the same script as the query language, based on
a few languages. Because script similarity is a
very coarse-grained measure of language similarity
that is not informative for many of our language
pairs, we turn to finer-grained measures that were
previously shown to strongly correlate with cross-
lingual consistency of model answers in non-RAG
setups (Qi et al., 2023). In particular, we adopt
subword vocabulary overlap computed on a refer-
ence parallel corpus7 as this was shown to correlate
better with response consistency than various typo-
logical similarity measures. We compute Pearson
and Spearman correlations between subword over-
lap and answer accuracy for each query language
(excluding the case where query and passage are
in the same language), however all correlations are
low and not statistically significant. Looking back
at Figure 3, we notice that shading (i.e., answer
accuracy) is relatively consistent within each row,
especially on Gemma and Qwen, more so than
within each column. In other words, the query lan-
guage is much more predictive of accuracy than
the passage language, suggesting that generating in
the target language is the major bottleneck in our
setup, which could dominate, if not hide, the effect
of similarity with the passage language.

Additionally, we also investigate if advanced
prompts with multi-step instructions (refer to Ap-
pendix G) or larger model scales (open-source
Gemma3-27B-IT and closed-source GPT-5-nano
estimated at 8-18B parameters8; Appendix H) can
mitigate the language mismatch issue in model
answers. However, the problem persists, further
reinforcing our finding that multilingual RAG sys-
tems face an inherent decoding limitation. Inter-
estingly, we observe that when fed with passages
in Thai, which is not officially supported by Aya-
Expanse-8B, the model always outperforms the
baseline where no context is provided for queries
in each language (cf. No-context accuracies in
Table 13). This suggests that even though the pas-
sages are written in a language that is unseen in the

ering the wrong generation language.
7Following Qi et al., 2023, we extract the vocabularies

from FLORES-200 (Costa-jussà et al., 2022), a strictly parallel
corpus covering 200 languages, and measure their pairwise
overlap via Jaccard index (Jaccard, 1912).

8https://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/

pre-training phase, LLMs may be able to utilize
them.

Results on MKQA Moving to a more realistic
RAG dataset, but without parallel passages, we find
a similar trend (Figure 2) where in-language gold
passages outperform out-language ones, however
the gap is much smaller than in XQUAD and almost
disappears when also considering the portion of
questions that are answered correctly in the wrong
language. These results suggest that the passage
language is not a key factor blocking LLMs from
understanding and utilizing the context in MKQA.

Results on GMMLU Accuracy results on
GMMLU-Open (Figure 2) are in line with the two
previous datasets, with an in-/out-language gap
falling halfway, that is smaller than in XQUAD
but larger than in MKQA. To further disentangle
the impact of context understanding from that of
target language generation, we compare these re-
sults with those of GMMLU-Choice, where the
model only has to generate one of the four option
letters (A/B/C/D) provided in the prompt. Here,
we find that in- and out-language passages yield
extremely close accuracy, confirming that input un-
derstanding is not the real obstacle for high-quality
mRAG. Rather, the main barrier appears to lie on
the side of generation, namely, whether models can
formulate a proper response in the correct target
language.

4.2 Interpretability-based Assessment
To further verify our findings that the passage lan-
guage is not a barrier to LLMs’ understanding ca-
pability of the multilingual retrieved passages, we
adopt MIRAGE (Qi et al., 2024), a model internal-
based method for attributing model responses to the
retrieved passages in RAG systems. Generally, it
consists of two components: (1) CTI for detecting
contextual sensitivity for the generated sentence
and (2) CCI for attributing the detected sentences
back to each retrieved passage. Given the single-
passage setup, in this section we only use the CTI
module for evaluating the passage dependency of
the model response. For each generated token, this
module measures the shift in output probability
distribution when no context vs. one passage is
provided, measured by KL divergence (Kullback
and Leibler, 1951), while keeping the generated
sentence prefix fixed. If at least one token is higher
than an empirically set CTI threshold, the gener-
ated sentence is marked as sensitive to the context
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Dataset AVG+1.0*SD AVG+1.5*SD AVG+2.0*SD

In. Out. In. Out. In. Out.

XQUAD 98 99 97 99 95 98
MKQA 100 100 100 100 100 100

Table 2: Percentage (%) of context-sensitive responses
when Aya is provided with in-language (In.) vs. out-
language (Out.) gold passages, detected by MIRAGE
under different CTI thresholds.

provided in the prompt.
We select Aya-Expanse-8B as the studied model

and sample 500 instances separately from XQUAD
and MKQA. Table 2 shows the results under differ-
ent CTI thresholds. We find that nearly all gener-
ated responses are tagged as context-sensitive by
MIRAGE, even when setting a higher CTI thresh-
old (avg + 2 std_dev) than the one used in the orig-
inal paper. This confirms that the provided passage
significantly drives models’ predictions regardless
of its language.

In sum, the results in this section point to the fact
that understanding passages in different languages
and locating useful information within them is not
the main obstacle towards high-quality mRAG,
whereas generation abilities in several target lan-
guages remain a serious bottleneck. In the next
section, we study how models handle more real-
istic contexts consisting of multiple passages in
different languages.

5 Multi-Passage mRAG

Real-world RAG settings are further compli-
cated by the presence of multiple passages
Cq = {p1, . . . , pn}, some of which may be related
to the query but not functional to answering it cor-
rectly (i.e. ‘distracting’ passages p). We investi-
gate how the language of different passages in the
context affects LLMs’ ability to locate the right
information, assuming this is included in at least
one passage of the context. In particular, we aim to
assess model robustness in a challenging scenario
where the important information is only provided
in a different language than the query, along with
several in-language distractors.

For simplicity, we set the maximum number of
passages to 4 and simulate two practical scenarios:
(i) a weak retriever finds one out-language gold
passage while the other three are distractors; (ii) a
strong retriever finds three out-language gold pas-
sages while the remaining one is a distractor. In

both cases, we compare accuracies when the dis-
tractors are in-language vs. out-language. We con-
duct experiments on MKQA and GMMLU-Choice.
XQUAD is excluded because it is an extractive QA
dataset, unsuitable for multi-passage mRAG.

5.1 Accuracy Results

Table 3 presents the results, including the no-
context baseline and single in-/out-language gold
passage results as computed in Section 4, to en-
able comparison (see Appendix I for full language-
specific results). For this analysis, we also consider
as valid the questions that were answered correctly
but in the wrong language, as they also reflect a
proper understanding of the context by the model.
Interestingly, models provided with 3 out-language
gold passages achieve higher accuracy than when
provided with a single in-language gold passage
in the query language, emphasizing the potential
of cross-lingual retrieval for mRAG. As expected,
the presence of distractors leads to lower accuracy.
Notably, this is true for all models, datasets, and se-
tups. However, the effect is considerably stronger
in MKQA than in GMMLU-Choice, likely due
to the stricter lexical-matching metric adopted for
MKQA. We also verify that a higher proportion of
distractors (3/4 vs. 1/4) is much more harmful for
answer accuracy, which confirms the importance
of having access to a high-quality cross-lingual re-
triever (Chirkova et al., 2024). When comparing
the drop between in-language distractors and out-
language distractors, we find that in-language dis-
tractors have a larger impact in most cases, match-
ing our hypothesis that this is a particularly chal-
lenging scenario for LLMs. However, differences
are small in many cases, indicating the language of
the distractor is not a major issue for multi-passage
mRAG.

5.2 Interpretability-based Evaluation

We adopt once again MIRAGE (Qi et al., 2024) to
understand how the internal model dynamics are
affected by our various simulated multi-passage
mRAG scenarios. We sample 50 instances from
each dataset and use MIRAGE to attribute Aya-
expanse-8B responses to the provided passages
via contrastive feature attribution (Yin and Neu-
big, 2022). Then, we compute # Contextual: the
average number of distracting passages that contain
at least one contextual cue for the produced answer
(i.e. a token marked by CCI in MIRAGE), and #
Influential: the average number of distractors that
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Setup MKQA GMMLU-Choice

Aya Llama Gemma Qwen Aya Llama Gemma Qwen

No Ctx 41.4 34.9 49.6 37.7 46.6 37.8 61.1 51.4

1 Gold (in) 73.6 59.9 65.5 70.6 55.0 45.2 66.0 58.4

1 Gold (out) 71.1 56.5 65.1 66.6 55.0 45.5 66.2 57.0
+ 3 Dist (in) 47.0 39.4 53.7 49.6 50.8 41.1 65.1 54.5
+ 3 Dist (out) 47.7 38.9 56.1 53.8 51.4 42.5 64.8 54.6

3 Gold (out) 77.7 65.3 75.3 75.9 56.6 47.7 69.1 59.5
+ 1 Dist (in) 68.8 56.0 71.3 70.8 55.8 45.7 68.6 58.4
+ 1 Dist (out) 69.6 57.8 72.9 72.9 56.2 46.6 68.5 58.6

Table 3: Average answer accuracy (%) without context (No Ctx), with a single in-language gold passage (1 Gold
(in)), and multi-passage mRAG setups with varying numbers of in-language or out-language gold passages and
distracting passages. Results are averaged over all query languages.

AVG Dist. MKQA GMMLU

In. Out. In. Out.

1 Gold (out) + 3 Distractors

# Context. 1.77 1.74 1.89 1.82
# Influent. 0.94 0.86 1.13 1.07

3 Gold (out) + 1 Distractor

# Context. 0.85 0.79 0.92 0.89
# Influent. 0.35 0.25 0.50 0.43

Table 4: Average number of distractors containing con-
textual cues (# Context.) and receiving a higher sum of
CCI scores than all gold passages (# Influent.), for Aya.

receive a higher sum of CCI attribution scores than
all gold passages for each query.

The results in Table 4 support our observation
that distractors exert a comparable effect regardless
of their language, however in-language distractors
have a slightly stronger effect. When considering
the sum of attribution scores given to the distrac-
tors compared with the gold passages, the differ-
ence becomes more noticeable (e.g., Aya tends to
pay more attention to in-language distractors for
MKQA when there is 1 distractor, compared to
out-language ones).

Taken together, our results indicate that the num-
ber of distractors can be more harmful for mRAG
accuracy than the language in which those distrac-
tors are provided, when it comes to open-domain
QA. On the multi-choice task, the negative effect of
distractors is notably smaller and barely dependent
on the passage language.

6 Conclusion

In this work, we explored the challenge of consis-
tent context utilization in mRAG systems. Specif-
ically, we assessed the ability of various state-of-
the-art LLMs to handle various kinds of multilin-
gual context while strictly controlling for retrieval
quality. Our experiments across three diverse QA
datasets, using standard accuracy evaluation as well
as feature attribution analysis, reveal a remarkable
ability of LLMs to understand multilingual con-
texts and to locate the important information in
relevant passages regardless of their language. In
fact, models provided with multiple gold passages
in languages different from that of the query are
more likely to answer correctly than when provided
with a single gold passage in the query language,
reflecting the potential of retrieving cross-lingually
rather than monolingually for mRAG.

At the same time, we also detected some im-
portant directions for future improvement. Firstly,
poor generation abilities in many languages push
the models to respond in a different language than
that of the query, resulting in answers that would
be deemed useless by most end-users. Importantly,
we showed that this also happens when the retrieval
works optimally. This suggests that, rather than just
trying to optimize the retriever, it may be more ef-
fective to invest on the model generation abilities in
a specific (set of) user language(s) –for instance by
continued pre-training (Fujii et al., 2024; Gao et al.,
2024) on generic corpora of those languages– or
to apply techniques that push the model to decode
in a given language, such as contrastive decoding
(Li et al., 2023; O’Brien and Lewis, 2023). Sec-
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ondly, the presence of distracting passages (i.e.,
relevant to the query topic, but not directly func-
tional to answer it) in the context can have a very
negative effect on answer accuracy in open-domain
QA. While this effect is rather similar regardless of
the distractors’ language, it does highlight the im-
portance of carefully ranking the retrieved passages
and to aim for precision when selecting which pas-
sages are provided to the model.

To conclude, our work underscores the potential
of cross-lingual retrieval in enhancing multilingual
QA performance, and stresses the importance of
focusing not only on retrieval optimization but also
on improving language-specific generation. We be-
lieve this dual focus will be key to unlocking more
robust and user-friendly mRAG systems that can
operate effectively across diverse language settings.

Limitations

The limitations of our work include relying on a
strict lexical matching of the answer to compute
model accuracy and to detect gold passages. While
commonly used, this approach is sensitive to mi-
nor variations or rephrasings of the answers and
led to a serious underestimation of model perfor-
mance with out-language gold passages in one of
our QA datasets, XQUAD. In our paper, we have
tested and reported BERTScore and LLM-based
evaluation on XQUAD, as detailed in Section 3.3
to enhance the robustness of our findings. These
semantic evaluations mirror the trends observed
with the lexical metric, mitigating—if not eliminat-
ing—the risk that paraphrasing may influence the
results. Nevertheless, future work could incorpo-
rate broader metrics and benchmarks to make the
assessment more comprehensive.

Additionally, the use of lexical matching in
detecting gold passages may overlook passages
that provide valuable information but in a slightly
rephrased form compared to the gold answer.
Nonetheless, Table 3 shows that attaching even a
single distracting passage identified by this heuris-
tic method substantially degrades model accu-
racy. Thus, despite its limitations, lexical matching
proves to be a practical and effective way for locat-
ing distracting passages in our experimental setting.
Future work could explore more semantic retrieval
methods to capture paraphrased gold evidence.

On the retrieval side, simulating cross-language
retrieval by combining results of N in-language
retrievers may yield a more comprehensive set of

passages than what we could obtain from a single
run of a cross-language retriever. While this does
not affect our results on the side of context uti-
lization, it may overestimate retriever performance
when our findings are applied to real-world mRAG
systems. In terms of datasets, XQUAD was the
only one including parallel gold passages, which
allowed us to fully isolate the effect of a passage
language from that of its content. However, its
extractive QA nature makes it less representative
of realistic mRAG tasks, highlighting the need to
develop better parallel mRAG datasets in future
work.
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A Dataset Examples

Examples of instances in each dataset are shown in
Table 5.

B Full Statistics of the Filtered MKQA
and GMMLU Datasets

The full statistics of the filtered MKQA and
GMMLU datasets are shown in Table 6.

C Subjects Covered by the Filtered
GMMLU Set

As shown in Table 7, 55 subjects belonging to 6
categories are covered by the filtered set of Global-
MMLU, which ensures the diversity of the in-
stances evaluated in our experiments.

D Extensive Evaluation

Since exact matching could be overly strict for the
evaluation, we further adopt two complementary
metrics on XQUAD with AYA.

Semantic similarity (BERTScore) We compute
BERTScore, serving as a language-agnostic metric,
between each model response and its ground-truth

answer based on the semantic similarity of model
responses with the gold answer. Table 8 shows
that models achieve comparable F1 scores in all
query languages when fed gold passages in- or out-
language. This finding is in line with our claim
that LLMs are capable of understanding the gold
passages regardless of their languages.

LLM-based evaluation (GPT-4.1-nano) How-
ever, semantic similarity cannot capture language
mismatching. Therefore, we prompted GPT-4.1-
nano to judge whether each response matches (i)
the correct answer and (ii) its translation in the
passage language. As shown in Table 8, overall
accuracy on board is higher than lexical-matching
accuracy in our paper, but the trend remains: mod-
els score better on IN than on OUT. If we allow
“correct answer in the wrong language” as accept-
able, the IN/OUT gap almost disappears.

Taken together, both semantic and LLM-based
evaluation support our claim that LLMs are able to
understand the multilingual gold passages regard-
less of their languages, but suffer from decoding
the answer correctly in the user query language.

E Prompts and Instructions

To ensure the model responses are always in
the query language, we follow previous works
(Chirkova et al., 2024; Zhang et al., 2024) and
adopt language-specific instructions to explicitly
and implicitly guide the model to generate re-
sponses in the user-readable language. The ex-
amples in English, Spanish, and Chinese are listed
in Table 9 and Table 10.

F Error Analysis on XQUAD

While our MKQA and GMMLU results strongly
suggest our studied LLMs can understand the pro-
vided passages regardless of their language, the
in-/out-language gap in XQUAD remains unex-
plained. To address this, we conduct a manual
error analysis on XQUAD with Aya-Expanse-8B,
focusing on a random sample of 20 Spanish and 20
Chinese queries that were answered correctly when
provided with in-language passages, but wrongly
with out-language passages. In most cases, we
observe that models successfully understood the
context and generated a proper response, however,
this response did not perfectly match the gold an-
swer provided in the dataset. This can be due to
the presence of synonyms or slight paraphrases
of the gold answer, or –in the case of languages
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Dataset Context provided in the dataset Query Gold Answer

XQUAD The Panthers defense gave up just 308
points, ranking sixth in the league, while
also leading the NFL in interceptions
with 24 and boasting four Pro Bowl se-
lections. ... also racking up 88 tackles
and Pro Bowl cornerback Josh Norman,
who developed into a shutdown corner
during the season and had four intercep-
tions, two of which were returned for
touchdowns.

How many points did the Panthers de-
fense surrender?

308

MKQA - How long did it take the twin towers to
be built?

11.0 years

GMMLU-Open - Which god supplanted the earlier
Mesopotamian supreme god Enlil?

Marduk

GMMLU-Choice - Which god supplanted the earlier
Mesopotamian supreme god Enlil?
A.Horus B.Inanna C.Marduk D.Isis

C

Table 5: Examples of instances in each dataset.

MKQA (Total 5951 Questions = # Inlang + # Outlang - # Both)

Query Lang. en it es de fr pt nl sv ru fi ja pl

# Q. w/ Inlang 5331 4466 4384 4352 4302 4133 4108 3984 3800 3639 3603 3594
# Q. w/ Outlang 5787 5910 5942 5946 5944 5947 5947 5940 5945 5946 5944 5945
# Overlap 5167 4425 4375 4347 4295 4129 4104 3973 3794 3634 3596 3588

Query Lang. no tr hu da vi he ar ms ko th zh km

# Q. w/ Inlang 3515 3515 3482 3390 3365 3343 2986 2937 2934 2539 2537 703
# Q. w/ Outlang 5949 5945 5943 5946 5951 5946 5948 5942 5947 5945 5948 5950
# Overlap 3513 3509 3474 3385 3365 3338 2983 2928 2930 2533 2534 702

GMMLU (Total 4136 Questions = # Inlang + # Outlang - # Both)

Query Lang. en ja it id ko nl zh vi sv pt de tr ro cs

# Q. w/ Inlang 2588 2054 1864 1778 1725 1712 1695 1689 1688 1679 1611 1583 1513 1512
# Q. w/ Outlang 4040 4064 4118 4115 4097 4125 4094 4116 4124 4118 4111 4121 4126 4116
# Overlap 2492 1982 1846 1757 1686 1701 1653 1669 1676 1661 1586 1568 1503 1492

Query Lang. ru es ms pl uk fr ar fa el sr he hi fil lt

# Q. w/ Inlang 1503 1502 1464 1462 1422 1415 1373 1350 1317 1288 1160 1142 1125 1071
# Q. w/ Outlang 4126 4109 4126 4124 4130 4122 4118 4125 4130 4130 4118 4133 4130 4132
# Overlap 1493 1475 1454 1450 1416 1401 1355 1339 1311 1282 1142 1139 1119 1067

Query Lang. bn ky ha te sw ig si ne am ny mg so sn yo

# Q. w/ Inlang 1005 985 930 924 923 831 792 746 650 634 625 559 497 389
# Q. w/ Outlang 4125 4121 4123 4130 4129 4125 4132 4132 4135 4129 4133 4129 4134 4129
# Overlap 994 970 917 918 916 820 788 742 649 627 622 552 495 382

Table 6: The statistics of the filtered subset of MKQA and Global-MMLU where each query has gold passages in
at least one studied language. For all languages, there is a portion of queries where useful information can only
be found in out-language passages, which is particularly evident in low-resource languages. # Inlang: Number
of queries having gold passages retrieved from the corpora of the query language. # Outlang: Number of queries
having out-language gold passages. I.e. useful information is stored in the corpora of languages other than the
query language. # Overlap: Number of queries that have useful information retrieved from both in-language and
out-language corpora.

with different scripts– to transliteration variations
(Knight and Graehl, 1997). For instance, the gold
answer for a Spanish question is ‘evolución de la
lengua y la literatura alemanas’ (i.e. ‘evolution
of the German language and literature’). In the
in-language setup, the model manages to generate

this exact string as it is included in the provided
Spanish passage. However, when the same passage
is provided in English, the model generates the
semantically equivalent phrase ‘... evolución del id-
ioma y la literatura alemana...’, or ‘...desarrollo del
idioma y la literatura alemana...’ when the passage
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Category Subject

STEM high_school_computer_science, high_school_statistics, computer_security, college_biology,
college_chemistry, machine_learning, high_school_mathematics, elementary_mathematics, col-
lege_mathematics, electrical_engineering, college_physics, astronomy, conceptual_physics,
high_school_chemistry, high_school_physics, high_school_biology, college_computer_science,
anatomy

Business business_ethics, management, marketing, professional_accounting

Medical professional_medicine, virology, college_medicine, clinical_knowledge, human_aging, medi-
cal_genetics, nutrition

Social Sciences high_school_psychology, econometrics, sociology, high_school_microeconomics, high_school_-
geography, public_relations, security_studies, professional_psychology, high_school_govern-
ment_and_politics, high_school_macroeconomics, human_sexuality, us_foreign_policy

Humanities international_law, high_school_world_history, moral_disputes, prehistory, world_religions, ju-
risprudence, high_school_us_history, philosophy, professional_law, formal_logic, logical_falla-
cies, high_school_european_history

Other miscellaneous, global_facts

Table 7: The categories and subjects covered by the filtered GMMLU.

Lang. BERTScore LLM-Based Score
IN. OUT. IN. OUT.

en 90.27 82.58 93.19 81.54 (+12.93)
ar 82.87 81.55 91.93 63.98 (+23.25)
de 81.60 80.69 90.25 71.73 (+14.86)
el 82.38 81.24 92.18 66.00 (+21.04)
es 82.15 81.14 94.37 73.05 (+14.62)
hi 83.31 82.15 89.75 65.78 (+16.71)
ro 81.68 80.65 91.93 69.11 (+18.69)
ru 83.22 81.95 91.51 66.78 (+21.18)
th 84.21 83.23 86.81 57.78 (+23.02)
tr 81.31 80.18 88.40 63.39 (+23.37)
vi 82.81 81.62 89.75 65.81 (+23.05)
zh 84.07 82.95 90.34 65.39 (+21.46)

Table 8: BERTScore (F1) and LLM-based evaluation
(Accuracy) on XQUAD with AYA. The numbers be-
tween brackets indicate the proportion of queries that
are correctly answered but in the wrong language.

is provided in Chinese. Similarly, for a Chinese
query with gold answer ‘亚里士多德宇宙学’ (i.e.
‘Aristotelian cosmology’), model responses slightly
differ when provided with different out-language
passages (e.g. ‘亚里士多德宇宙论’, ‘阿里斯托
的宇宙论’, or ‘阿里斯托特利宇宙论’ with En-
glish, Arabic, or Greek passage respectively), all
of which are correct translations of ‘Aristotelian
cosmology’. While this issue can always affect
lexical-matching evaluation, it is particularly se-
vere in XQUAD as many answers in this dataset
are named entities or sentence segments due to the
extractive nature of the task, which in turn causes
an underestimation of the models capability.

G Advanced System Prompting

In our main experiments, we follow the previous
works (Chirkova et al., 2024; Zhang et al., 2024)
and adopt the direct prompt. To test if a stronger
prompt could mitigate language-mismatch errors,
we add a two-step instruction that first allows the
model to answer in any appropriate language, then
explicitly translates the answer into the query lan-
guage. Formally: ‘Write a high-quality answer
to the given question using the provided search
results. Please respond in English. Specifically,
please follow the two steps below. Step 1: Generate
a complete answer to the question in any appropri-
ate language. Step 2: Translate your entire answer
into clear, natural-sounding English.’

Same as the main experiment in the paper, the
prompt is translated into other query languages and
explicitly specifies the desired generation language.
For instance, the prompt for Spanish queries is:

‘Escriba una respuesta de alta calidad a la pre-
gunta dada utilizando los resultados de búsqueda
proporcionados. Por favor responda en español.
Específicamente, siga los dos pasos a continuación.
Paso 1: Genere una respuesta completa a la pre-
gunta en cualquier idioma apropiado. Paso 2: Tra-
duce toda tu respuesta a un español claro y con
sonido natural.’

We run this prompt on XQUAD with AYA and
evaluate via GPT-4.1-nano, the same setups and
LLM-based evaluation as above in Appendix D.
As shown in Table 11, compared to the original
prompts, these stronger instructions reduced, but
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Language Setup Instruction

en No Ctx Write a high-quality answer to the given question. Please respond in English.

Ctx Write a high-quality answer to the given question using the provided search results. Please
respond in English.

es No Ctx Escriba una respuesta de alta calidad a la pregunta planteada. Por favor responda en español.

Ctx Escriba una respuesta de alta calidad a la pregunta planteada utilizando los resultados de búsqueda
proporcionados. Por favor, responda en español.

zh No Ctx 请对所给问题写出高质量的答案。请使用中文回答。

Ctx 使用提供的搜索结果对给定的问题写出高质量的答案。请用中文回答。

Table 9: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages on
the open QA tasks (XQUAD, MKQA, GMMLU-Open).

Language Instruction

en Please choose the most suitable one among A, B, C and D as the answer to the question, and
return it in the following format:
[choice]
where [choice] must be one of [A], [B], [C] and [D].

es Elija la respuesta más adecuada entre A, B, C y D a la pregunta y devuélvala en el siguiente
formato:
[opción]
donde [opción] debe ser una de [A], [B], [C] y [D].

zh 请在A、B、C和D中选择最合适的一个作为问题的答案，并按照以下格式返回：
[choice]
其中[choice]必须是[A]、[B]、[C]和[D]之一。

Table 10: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages
on the multi-choice QA task (GMMLU-Choice).

Language LLM-Based Score
IN. OUT.

en 94.71 82.52 (+11.24)
ar 87.14 64.38 (+24.85)
de 89.92 73.12 (+13.76)
el 90.59 65.11 (+22.05)
es 92.61 73.51 (+14.23)
hi 85.13 63.80 (+20.06)
ro 92.61 67.00 (+19.17)
ru 90.67 69.49 (+19.34)
th 86.89 60.04 (+25.12)
tr 85.46 63.46 (+21.35)
vi 91.34 67.16 (+22.85)
zh 90.84 69.60 (+20.28)

Table 11: LLM-based evaluation score (Accuracy) on
XQUAD with Aya, where stronger multi-step reason-
ing prompts are adopted. Nonetheless, the language-
mismatching issue persists.

did not eliminate, the gap between in-language
and out-language accuracy. Specifically, many

responses still contained correct answers but re-
mained in the wrong passage language, indicating
that even explicitly guiding the LLM to do ‘think
then translation’ cannot fully resolve decoding fail-
ures. These results underscore that decoding, rather
than understanding, remains a substantial bottle-
neck.

H Extended Evaluation on Larger Models

To enhance the robustness of our experiments, we
repeat the XQuAD evaluation (using the same
setup) on a 27B open-source model (Gemma3-27B-
IT) and a closed-source model estimated at 8-18B
parameters (GPT5-nano)9. The results in Table
12 show that, although overall accuracy of out-
language passages improves, it remains substan-
tially lower than on in-language passages. More-
over, a non-negligible fraction of questions are
answered correctly in content but produced in
the wrong language when the model receives out-

9https://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/
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Language Accuracy (Gemma3-27B-IT)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 21.3 86.7 67.1 (+4.9) 72.9 (+5.5) 60.3 (+9.4)
es 16.6 72.9 53.2 (+5.8) 59.2 (+9.4) 48.2 (+7.6)
de 17.0 72.5 52.0 (+4.7) 56.9 (+7.2) 48.2 (+7.0)
ro 14.5 76.2 52.0 (+4.3) 56.6 (+8.3) 47.4 (+6.2)
vi 15.1 77.6 49.9 (+7.4) 53.7 (+13.4) 44.3 (+9.7)
tr 12.2 67.4 45.4 (+5.9) 50.5 (+9.8) 42.1 (+5.0)
el 10.4 68.9 40.9 (+8.3) 44.7 (+16.1) 38.2 (+6.8)
zh 13.9 79.2 44.1 (+13.7) 45.7 (+20.7) 41.5 (+7.3)
ar 8.8 65.8 35.5 (+9.5) 37.4 (+19.6) 32.3 (+5.8)
hi 13.3 74.8 42.6 (+6.0) 46.8 (+15.0) 38.7 (+4.2)
ru 11.4 66.6 40.6 (+9.7) 42.6 (+11.8) 36.9 (+6.7)
th 11.1 74.6 35.4 (+14.2) 36.4 (+30.0) 34.5 (+9.8)

Language Accuracy (GPT5-nano)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 25.6 74.0 55.1 (+7.1) 58.3 (+8.3) 51.8 (+7.8)
es 20.2 64.8 50.2 (+3.6) 55.1 (+7.2) 46.3 (+2.4)
de 20.1 60.2 48.0 (+1.9) 52.0 (+6.2) 44.9 (+0.8)
ro 19.2 59.8 46.1 (+2.6) 49.4 (+7.3) 42.9 (+1.4)
vi 18.3 58.8 45.1 (+4.4) 47.8 (+5.0) 42.4 (+2.1)
tr 15.5 49.2 38.0 (+5.6) 39.8 (+7.4) 35.3 (+2.4)
el 12.5 55.5 35.6 (+6.1) 39.3 (+16.2) 32.9 (+2.1)
zh 16.5 59.6 39.1 (+8.9) 41.4 (+18.2) 37.8 (+3.6)
ar 10.3 48.2 31.3 (+8.8) 33.1 (+7.1) 30.0 (+3.9)
hi 12.8 45.2 29.8 (+10.3) 32.3 (+22.6) 27.0 (+13.3)
ru 12.8 48.9 34.1 (+6.4) 36.4 (+14.0) 31.8 (+3.9)
th 11.9 53.4 32.6 (+10.6) 34.2 (+25.2) 30.4 (+2.1)

Table 12: Language-specific results on XQUAD with larger LLMs (Gemma3-27B-IT and GPT5-nano). Numbers
between brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not
the query language).

language passages. These findings are consistent
with Section 4.1 and further strengthen the general-
ization of our findings.

I Language-specific Results

The detailed results for each query-passage lan-
guage pair on XQUAD are given in Figure 4. The
detailed single-passage mRAG results for each lan-
guage on all datasets are provided in Table 13 to
18. The detailed results for each language in the
multi-passage mRAG experiments are shown in
Table 19 to 22.
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Figure 4: Model performance on XQUAD when the query is concatenated with passage in each studied language. Top: The
portion of queries that can be correctly answered in the user language. Bottom: The portion of queries for which the LLMs
generate the correct answer but in the wrong (passage) language. For a part of correctly answered queries, the gold answers are
the same words in the passage and query languages. In these cases, we only consider them in the above heatmaps to ensure that
there is no overlapping between the two vertical heatmaps and that they are addable.
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Language Accuracy (Aya)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 19.4 83.7 23.6 (+49.9) 32.4 (+44.1) 14.0 (+58.5)
es 13.9 73.5 43.7 (+6.3) 54.9 (+10.1) 30.9 (+5.5)
de 12.2 69.2 42.5 (+5.0) 53.4 (+7.6) 28.1 (+4.4)
ro 12.0 72.4 40.9 (+5.8) 51.1 (+10.8) 26.8 (+5.3)
vi 14.3 75.0 39.4 (+10.6) 48.2 (+16.8) 25.5 (+8.4)
tr 9.1 66.1 31.2 (+16.4) 43.0 (+13.9) 19.9 (+10.8)
el 8.5 67.5 31.5 (+8.6) 40.5 (+17.8) 20.0 (+2.6)
zh 12.6 74.6 33.3 (+17.3) 39.0 (+22.6) 25.5 (+8.2)
ar 7.6 66.3 27.4 (+12.1) 35.0 (+19.8) 18.7 (+5.3)
hi 6.1 62.4 27.3 (+9.4) 36.0 (+15.5) 17.2 (+2.6)
ru 9.2 63.8 29.6 (+11.0) 34.1 (+16.7) 22.1 (+5.2)
th 2.1 30.3 10.0 (+9.3) 11.4 (+17.6) 9.1 (+5.8)

AVG 10.6 67.1 31.7 (+13.5) 39.9 (+17.8) 21.5 (+10.2)

Language Accuracy (Llama)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 14.4 76.8 24.2 (+39.1) 33.7 (+34.1) 12.1 (+53.6)
es 8.8 66.2 32.3 (+6.5) 49.2 (+7.1) 24.0 (+6.0)
de 7.6 59.0 30.1 (+5.5) 45.7 (+5.0) 19.0 (+12.0)
ro 6.6 61.8 25.2 (+4.4) 40.2 (+5.8) 18.2 (+1.4)
vi 8.5 68.4 27.1 (+9.6) 41.8 (+9.7) 14.4 (+21.9)
tr 5.1 57.9 20.5 (+9.2) 30.7 (+13.1) 15.8 (+8.6)
el 2.5 57.5 18.2 (+8.4) 25.8 (+12.4) 11.8 (+12.5)
zh 5.2 62.9 18.9 (+14.2) 30.3 (+16.6) 11.8 (+18.0)
ar 2.0 45.3 12.0 (+10.7) 18.7 (+10.5) 8.2 (+17.5)
hi 2.7 55.3 19.6 (+2.3) 29.6 (+2.4) 13.4 (+0.8)
ru 4.1 49.8 15.3 (+9.8) 26.8 (+10.0) 7.6 (+20.7)
th 2.9 51.8 14.6 (+10.1) 21.6 (+16.9) 11.0 (+1.8)

AVG 5.9 59.4 21.5 (+10.8) 32.8 (+12.0) 13.9 (+14.6)

Table 13: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Gemma)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 17.9 80.6 61.5 (+5.0) 67.1 (+6.5) 56.6 (+5.3)
es 12.4 70.8 46.3 (+6.6) 54.5 (+9.4) 41.7 (+4.1)
de 12.1 67.7 44.1 (+4.4) 52.0 (+7.6) 39.8 (+2.3)
ro 12.1 72.1 43.3 (+6.2) 52.9 (+8.5) 37.8 (+5.9)
vi 10.8 73.4 37.7 (+11.3) 43.0 (+16.8) 33.1 (+10.8)
tr 8.4 65.2 33.7 (+10.5) 41.8 (+15.0) 29.1 (+11.1)
el 5.0 65.0 28.2 (+10.1) 34.0 (+15.7) 23.7 (+4.0)
zh 9.3 73.8 34.5 (+13.7) 38.9 (+17.6) 32.9 (+6.9)
ar 4.9 61.3 24.3 (+9.8) 27.6 (+12.9) 20.7 (+9.0)
hi 6.1 67.7 31.2 (+5.5) 38.9 (+7.6) 26.7 (+3.4)
ru 7.4 62.1 28.9 (+12.1) 32.9 (+16.8) 26.1 (+5.5)
th 5.4 71.3 24.9 (+20.0) 28.2 (+26.7) 22.8 (+11.6)

AVG 9.3 69.2 36.5 (+9.6) 42.6 (+13.4) 32.6 (+6.7)

Language Accuracy (Qwen)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 23.5 82.7 63.1 (+3.9) 67.6 (+4.4) 60.3 (+3.7)
es 17.2 74.3 46.6 (+5.7) 55.2 (+9.3) 42.5 (+2.4)
de 15.2 72.0 44.9 (+4.1) 51.2 (+8.3) 41.4 (+1.7)
ro 13.7 70.1 39.1 (+4.9) 46.2 (+9.8) 35.5 (+1.9)
vi 15.7 79.1 45.7 (+6.2) 50.5 (+14.2) 42.1 (+2.4)
tr 9.8 68.4 32.9 (+8.9) 40.1 (+13.5) 29.8 (+3.5)
el 4.8 51.6 20.9 (+5.0) 25.1 (+9.7) 18.1 (+0.4)
zh 18.9 83.0 43.9 (+8.5) 47.7 (+12.9) 41.2 (+12.4)
ar 9.1 65.3 27.7 (+9.1) 31.0 (+14.5) 25.7 (+10.3)
hi 5.5 66.1 25.6 (+3.7) 30.8 (+5.5) 22.1 (+0.6)
ru 9.1 62.2 32.4 (+8.5) 36.1 (+9.0) 29.6 (+2.9)
th 8.5 75.1 29.5 (+11.7) 32.2 (+22.6) 27.6 (+14.4)

AVG 12.6 70.8 37.7 (+6.7) 42.8 (+11.1) 34.7 (+4.7)

Table 14: Extension: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between
brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query
language).
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Language Accuracy (Aya) Accuracy (Llama)
Non. In. Out. Non. In. Out.

en 58.0 87.5 69.4 (+15.3) 61.8 82.4 63.9 (+10.2)
it 53.0 86.9 78.5 (+4.6) 44.7 70.6 63.6 (+3.7)
es 54.6 85.7 77.9 (+4.2) 46.9 72.1 66.8 (+3.1)
de 52.8 84.4 78.2 (+3.2) 46.0 70.6 65.3 (+2.2)
fr 55.4 86.9 79.1 (+3.1) 48.8 74.2 67.3 (+2.6)
pt 54.4 84.7 76.2 (+5.4) 45.0 70.1 63.8 (+3.9)
nl 55.9 85.6 76.8 (+4.2) 50.3 70.3 64.3 (+2.8)
sv 39.1 76.7 66.7 (+5.3) 44.9 69.7 63.3 (+3.4)
ru 43.6 79.6 59.7 (+14.0) 23.7 56.8 37.7 (+10.1)
fi 17.0 72.4 58.3 (+7.4) 27.2 62.4 53.9 (+4.2)
ja 46.8 82.1 54.9 (+23.3) 21.7 57.5 36.1 (+12.3)
pl 50.1 79.2 68.0 (+6.1) 35.3 60.6 51.5 (+4.4)
no 39.9 76.4 64.1 (+7.9) 43.6 66.4 58.3 (+5.3)
tr 52.0 82.3 72.2 (+7.6) 38.2 66.3 55.5 (+5.5)
hu 26.7 67.5 52.6 (+8.3) 34.4 59.3 49.2 (+5.1)
da 42.9 75.8 66.2 (+6.1) 46.4 66.5 60.3 (+4.2)
vi 54.4 79.0 71.2 (+6.5) 47.0 67.3 60.2 (+5.1)
he 36.2 78.5 46.5 (+25.4) 5.9 25.6 17.1 (+20.3)
ar 38.8 72.5 50.4 (+19.5) 17.2 46.4 27.2 (+10.7)
ms 53.6 78.4 68.4 (+7.7) 46.8 62.5 55.5 (+5.0)
ko 15.3 30.7 25.8 (+25.3) 19.2 52.9 30.2 (+17.6)
th 15.0 40.5 25.8 (+16.7) 24.2 46.9 32.0 (+13.3)
zh 48.4 78.0 56.6 (+20.2) 27.8 52.4 37.4 (+16.3)
km 7.8 19.2 14.9 (+8.2) 6.0 13.0 9.4 (+0.2)

AVG 42.2 73.8 60.8 (+10.6) 35.5 60.1 49.6 (+7.1)

Language Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out.

en 65.0 79.8 75.7 (+1.3) 55.6 86.0 81.7 (+1.1)
it 59.6 80.3 75.4 (+3.7) 44.5 81.2 72.7 (+4.1)
es 61.4 78.0 73.3 (+3.8) 48.4 80.9 73.5 (+3.6)
de 58.3 75.9 73.7 (+2.4) 44.6 78.2 70.5 (+2.9)
fr 61.8 80.7 74.8 (+2.6) 49.0 82.3 74.9 (+2.6)
pt 60.1 76.5 70.5 (+5.0) 48.5 78.6 71.4 (+4.2)
nl 64.5 74.8 71.1 (+3.3) 45.7 79.0 71.1 (+3.3)
sv 59.9 73.5 70.2 (+3.6) 43.7 75.4 68.0 (+4.6)
ru 42.8 68.8 50.6 (+10.6) 30.7 71.0 51.2 (+10.3)
fi 44.6 68.3 62.4 (+4.6) 23.9 72.5 60.9 (+5.7)
ja 42.7 69.9 47.9 (+13.7) 31.1 75.2 46.3 (+17.5)
pl 55.0 67.8 62.0 (+4.6) 36.9 68.9 59.1 (+5.4)
no 59.3 68.6 63.9 (+5.8) 42.3 73.8 63.8 (+6.9)
tr 56.7 66.8 62.8 (+4.7) 36.4 72.4 64.4 (+5.7)
hu 51.2 64.9 61.9 (+5.5) 27.4 67.1 55.9 (+6.9)
da 61.1 66.8 64.4 (+4.9) 44.8 72.7 65.8 (+5.1)
vi 54.4 66.5 64.1 (+5.3) 50.9 74.3 69.3 (+4.9)
he 29.7 65.3 39.5 (+16.6) 19.9 66.6 34.3 (+18.2)
ar 30.0 61.1 42.8 (+9.9) 27.9 64.8 42.3 (+12.7)
ms 60.5 63.8 62.3 (+6.9) 47.1 68.1 63.4 (+6.4)
ko 12.2 17.5 19.7 (+9.7) 23.3 59.0 39.1 (+16.6)
th 40.0 55.9 38.2 (+18.6) 34.6 56.6 40.2 (+16.6)
zh 45.0 61.9 47.8 (+14.7) 49.5 70.0 58.5 (+12.2)
km 26.2 28.7 27.9 (+5.9) 14.0 23.2 21.1 (+6.6)

AVG 50.1 65.9 58.5 (+7.0) 38.4 70.7 59.1 (+7.7)

Table 15: Language-specific results on MKQA with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Aya) Accuracy (Llama)
Non. In. Out. Non. In. Out.

en 47.9 70.4 32.7 (+30.8) 48.5 65.7 38.8 (+15.9)
ja 38.9 68.3 43.4 (+11.7) 19.9 46.9 23.4 (+6.6)
it 40.4 66.8 49.3 (+6.2) 26.9 51.9 34.7 (+6.1)
id 40.6 68.2 48.1 (+8.2) 27.2 46.7 30.4 (+6.0)
ko 12.4 25.7 16.6 (+11.7) 18.8 43.6 21.1 (+7.5)
nl 38.5 64.6 44.4 (+7.5) 29.2 50.2 31.0 (+5.7)
zh 40.7 65.2 47.8 (+10.8) 27.6 45.1 30.1 (+6.5)
vi 34.6 60.5 39.6 (+11.2) 26.1 45.4 28.1 (+8.6)
sv 22.4 55.6 32.7 (+8.0) 28.3 49.4 33.2 (+5.4)
pt 40.5 72.3 50.1 (+7.4) 27.3 53.7 33.7 (+6.1)
de 41.1 67.1 48.8 (+5.5) 32.0 53.4 37.6 (+5.1)
tr 36.0 65.7 39.0 (+13.7) 21.0 47.3 24.0 (+8.6)
ro 40.2 60.8 45.7 (+5.3) 26.5 44.2 32.5 (+4.6)
cs 34.2 57.2 39.0 (+7.7) 22.0 42.1 26.2 (+6.0)
ru 34.1 63.0 39.3 (+8.1) 21.0 43.3 23.3 (+6.5)
es 34.4 58.5 41.5 (+7.0) 25.7 48.4 34.3 (+5.4)
ms 35.8 64.1 44.0 (+8.7) 27.2 45.8 32.3 (+5.9)
pl 33.3 58.1 37.9 (+6.9) 20.6 39.1 24.8 (+6.3)
uk 32.8 59.4 37.4 (+6.7) 16.0 38.8 20.0 (+5.4)
fr 38.5 62.5 44.9 (+7.5) 23.8 50.7 31.5 (+5.5)
ar 29.2 59.9 36.0 (+9.4) 10.4 32.7 11.4 (+6.1)
fa 29.6 61.1 35.8 (+10.1) 15.2 43.6 16.9 (+8.7)
el 31.4 53.3 34.6 (+7.0) 15.5 35.6 17.7 (+8.1)
sr 13.4 38.4 18.9 (+7.7) 12.3 33.6 17.7 (+6.8)
he 30.9 60.6 36.6 (+9.3) 12.3 24.7 17.4 (+10.5)
hi 21.3 43.3 26.6 (+6.3) 17.9 39.0 23.4 (+1.5)
fil 23.4 44.9 30.2 (+8.7) 25.5 39.3 28.0 (+6.1)
lt 16.7 46.7 21.6 (+9.1) 14.8 35.9 19.0 (+4.9)
bn 5.1 23.9 8.2 (+5.4) 10.0 25.8 13.7 (+2.2)
ky 14.5 36.1 22.7 (+2.6) 13.9 27.4 16.6 (+5.9)
ha 15.0 43.9 24.3 (+16.0) 13.7 31.1 19.8 (+6.5)
te 4.8 15.5 6.2 (+2.9) 13.2 20.0 13.9 (+0.4)
sw 16.6 56.1 25.5 (+9.1) 20.1 34.7 25.8 (+4.7)
ig 15.5 34.9 20.8 (+13.5) 16.2 27.6 17.6 (+3.5)
si 6.1 13.3 4.4 (+3.3) 8.5 13.9 8.3 (+3.1)
ne 8.4 28.3 10.8 (+13.7) 9.2 27.7 10.2 (+14.4)
am 8.0 18.9 16.5 (+23.3) 8.5 10.3 5.8 (+0.3)
ny 21.5 44.2 29.6 (+13.8) 17.9 28.2 19.9 (+3.5)
mg 18.3 44.6 24.4 (+10.0) 20.1 40.4 22.1 (+4.6)
so 23.7 54.9 31.7 (+8.2) 19.9 40.0 22.7 (+4.6)
sn 27.5 60.2 31.9 (+15.7) 19.0 40.1 22.2 (+3.8)
yo 24.1 40.2 29.4 (+7.0) 20.2 32.9 24.7 (+1.1)

AVG 26.7 51.4 32.1 (+9.6) 20.2 39.0 23.5 (+5.8)

Table 16: Language-specific results on GMMLU-Open with single-passage mRAG setup when the model is given
no options and forced to output an open answer as the response. Numbers between brackets indicate the proportion
of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out.

en 54.4 69.2 61.1 (+2.6) 56.1 73.2 63.4 (+2.2)
ja 43.0 67.5 47.7 (+5.1) 33.1 66.0 41.4 (+6.9)
it 47.2 65.7 54.0 (+4.7) 36.3 64.5 45.3 (+6.1)
id 46.8 66.8 50.6 (+7.4) 38.5 63.3 44.4 (+6.5)
ko 13.2 20.4 18.4 (+6.7) 23.7 43.7 28.3 (+7.4)
nl 45.0 63.2 46.6 (+6.8) 31.9 58.4 38.8 (+6.7)
zh 48.3 66.4 54.3 (+5.1) 52.3 67.2 57.7 (+4.1)
vi 38.5 58.1 39.6 (+9.8) 34.9 59.6 41.0 (+8.1)
sv 43.6 62.5 47.0 (+5.7) 28.4 60.0 35.6 (+7.2)
pt 47.3 68.9 51.8 (+6.3) 38.6 68.5 48.7 (+5.6)
de 47.2 66.8 54.2 (+4.2) 36.8 62.9 44.4 (+5.3)
tr 40.1 59.7 42.1 (+7.3) 24.2 56.2 32.2 (+10.1)
ro 43.2 58.3 46.6 (+5.2) 30.1 52.1 36.0 (+5.7)
cs 34.7 54.1 37.1 (+6.9) 23.2 47.9 28.5 (+5.7)
ru 38.1 55.7 38.4 (+8.2) 31.3 56.2 36.0 (+6.0)
es 39.8 57.7 45.5 (+6.2) 37.0 60.5 44.0 (+5.4)
ms 44.6 61.4 46.1 (+8.8) 32.5 57.4 39.7 (+7.2)
pl 36.3 54.0 38.9 (+6.8) 25.6 51.2 30.6 (+7.2)
uk 33.3 53.1 36.5 (+7.1) 18.3 45.8 23.8 (+5.4)
fr 39.5 62.1 47.7 (+5.8) 36.5 65.1 44.8 (+6.0)
ar 24.2 56.4 29.1 (+6.9) 22.4 57.8 29.2 (+7.3)
fa 31.4 61.2 36.3 (+7.7) 14.2 48.9 19.8 (+9.0)
el 29.4 48.1 29.2 (+7.4) 10.2 25.7 11.4 (+4.8)
sr 32.1 48.9 32.1 (+5.7) 17.5 43.4 23.8 (+5.6)
he 30.4 56.4 34.9 (+8.6) 18.8 53.3 26.7 (+7.9)
hi 35.1 52.2 35.7 (+2.9) 15.5 39.2 20.0 (+2.6)
fil 45.2 52.6 44.9 (+7.3) 30.0 45.9 33.4 (+9.7)
lt 31.4 51.0 29.9 (+8.0) 16.3 42.0 20.6 (+7.4)
bn 24.4 46.9 24.7 (+6.6) 11.0 35.5 15.0 (+5.2)
ky 28.2 43.5 30.9 (+3.3) 15.7 33.7 21.1 (+4.6)
ha 29.8 42.0 31.6 (+5.6) 19.2 41.4 24.4 (+8.9)
te 24.7 43.2 29.0 (+4.4) 7.7 17.7 6.9 (+1.6)
sw 35.6 48.7 37.4 (+6.1) 17.2 44.2 23.7 (+6.8)
ig 23.7 36.1 25.9 (+4.4) 17.4 35.7 24.1 (+7.7)
si 17.0 32.1 19.9 (+1.6) 9.5 15.7 8.8 (+1.0)
ne 24.1 38.4 25.8 (+11.7) 6.1 24.0 8.0 (+13.2)
am 15.6 24.6 16.9 (+2.2) 11.9 20.8 14.1 (+4.2)
ny 29.0 35.6 29.0 (+3.2) 18.0 29.9 24.0 (+4.7)
mg 26.7 33.0 24.2 (+4.2) 19.9 40.5 27.1 (+6.0)
so 29.2 40.6 28.6 (+4.1) 23.6 42.3 27.4 (+6.1)
sn 34.3 42.6 29.2 (+5.3) 20.2 37.4 26.4 (+5.2)
yo 21.2 35.3 25.4 (+2.5) 26.7 42.7 34.1 (+2.5)

AVG 34.4 51.5 37.0 (+5.9) 24.7 47.6 30.3 (+6.1)

Table 17: Extension: Language-specific results on GMMLU-Open with single-passage mRAG setup when the
model is given no options and forced to output an open answer as the response. Numbers between brackets indicate
the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Aya) Accuracy (Llama) Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out. Non. In. Out. Non. In. Out.

en 70.2 77.3 75.5 69.7 76.6 72.6 80.5 83.3 81.0 81.6 84.3 82.8
ja 61.5 71.1 71.4 44.3 58.1 57.9 69.9 77.2 75.9 66.2 74.0 71.4
it 64.6 70.7 70.7 59.2 65.8 64.6 75.5 78.6 78.9 72.2 74.9 75.1
id 61.8 69.7 68.9 50.7 57.6 57.9 72.5 76.7 75.4 69.8 74.5 73.2
ko 58.8 64.6 65.8 39.3 47.1 47.7 66.7 72.6 71.9 64.4 70.7 69.2
nl 61.7 68.8 67.9 54.3 63.6 61.5 73.2 75.9 74.9 71.0 73.6 74.3
zh 60.3 66.2 68.8 52.3 61.5 59.2 71.0 74.0 75.3 73.2 72.2 72.5
vi 55.5 62.2 62.4 48.5 57.8 56.0 65.8 71.1 70.9 66.9 70.7 69.8
sv 52.7 65.3 65.2 47.3 60.3 58.5 72.3 76.4 76.4 67.0 73.6 72.9
pt 70.1 75.5 75.0 35.1 60.7 53.3 78.2 83.2 81.6 78.6 83.0 82.1
de 67.9 75.2 74.2 60.2 70.3 69.0 78.3 81.6 81.9 74.9 80.4 78.5
tr 59.1 67.4 68.1 46.4 57.7 56.1 69.1 73.4 74.0 57.5 67.0 66.4
ro 61.8 66.2 66.5 51.4 59.2 58.4 70.9 72.8 73.0 64.9 70.2 68.3
cs 60.9 70.2 68.0 47.1 56.6 56.9 72.1 75.0 74.4 65.2 71.9 69.6
ru 60.9 70.6 70.0 40.3 49.2 50.5 72.3 77.8 77.4 74.2 76.4 76.0
es 63.9 69.5 69.7 57.5 65.8 64.0 73.5 76.3 76.4 72.4 76.9 76.0
ms 56.3 65.4 64.4 47.0 54.4 54.9 70.1 73.2 72.7 66.2 72.3 70.8
pl 59.4 68.9 67.7 47.9 55.2 51.5 71.7 75.1 74.9 67.2 71.6 70.5
uk 58.9 68.4 67.2 29.1 34.8 37.0 70.5 75.3 74.9 64.8 72.4 70.6
fr 69.5 78.1 77.1 62.3 67.2 67.0 80.4 84.1 82.8 77.9 82.0 81.0
ar 60.7 74.3 73.4 41.2 61.4 58.0 66.1 77.5 76.7 63.2 75.9 73.2
fa 58.4 68.9 69.2 38.8 53.2 53.3 69.3 78.6 78.1 58.3 71.3 68.4
el 58.1 65.0 65.2 27.8 40.8 45.1 64.7 72.4 71.9 47.3 61.4 58.0
sr 41.0 58.2 55.8 14.5 8.8 21.3 65.1 70.6 70.5 58.4 67.7 66.5
he 54.3 64.0 62.7 19.4 18.8 24.5 59.7 69.6 69.8 28.1 35.4 40.1
hi 51.0 58.3 60.8 39.1 49.1 49.7 64.4 66.8 68.6 49.0 61.2 59.1
fil 41.9 48.0 50.7 37.2 39.1 40.7 66.6 68.7 70.0 58.0 60.4 59.1
lt 39.9 55.0 50.9 34.0 48.5 46.6 65.4 71.4 70.7 46.6 61.3 56.9
bn 26.7 48.9 46.6 30.2 45.4 49.1 61.0 67.6 67.8 52.3 62.1 61.5
ky 26.4 37.1 41.9 20.4 24.3 28.5 48.2 53.5 54.1 38.7 49.9 48.2
ha 29.4 38.3 33.7 26.6 30.8 31.8 35.4 32.8 38.9 25.6 35.5 30.4
te 11.9 21.6 28.7 29.8 44.2 42.4 56.8 61.2 62.6 25.9 33.4 32.2
sw 28.5 39.8 35.7 32.0 37.0 40.9 55.2 57.4 60.1 27.2 37.2 32.8
ig 28.0 35.8 33.3 25.1 30.0 28.7 33.2 40.2 39.6 22.7 31.0 29.7
si 7.1 12.6 12.5 22.6 32.1 26.7 35.9 40.6 49.9 10.7 15.7 15.8
ne 35.6 40.7 44.1 26.5 25.7 31.9 56.2 55.9 59.6 36.7 38.7 40.7
am 3.2 5.9 17.3 15.4 5.5 8.2 36.1 45.4 44.0 10.3 25.0 17.9
ny 22.2 24.6 23.6 21.5 21.5 26.4 37.8 46.0 43.8 19.3 28.1 25.5
mg 22.5 32.5 27.4 19.3 22.1 23.7 36.5 37.0 36.2 21.1 28.2 26.2
so 28.1 38.3 34.7 24.1 27.0 26.0 26.4 35.9 36.7 25.2 36.4 31.6
sn 21.2 22.6 24.9 23.0 23.0 27.1 39.4 44.2 46.1 19.8 21.0 23.5
yo 21.7 19.8 25.7 20.7 25.0 25.0 32.7 38.7 37.1 17.0 19.2 21.5

AVG 46.5 54.8 54.8 37.6 45.1 45.5 61.1 65.8 66.1 51.4 58.3 56.9

Table 18: Language-specific results on GMMLU-Choice with single-passage mRAG setup when the model is given
options and the answer accuracy is evaluated by whether the model outputs the correct option letter. This setup
eliminates the effect of generation language on the performance evaluation.
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Accuracy (Aya)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 70.3 61.4 64.8 61.9 58.8 61.7 60.1 55.6 53.1 70.5 68.1 59.5 61.9 61.2

1o 75.2 71.3 71.0 69.1 65.8 68.3 67.1 63.4 65.6 75.0 74.7 67.4 66.3 68.4
1o3i 72.9 68.1 68.8 64.8 62.4 63.4 62.8 57.7 61.3 64.5 70.2 64.0 62.4 65.6
1o3o 72.2 68.0 68.4 63.7 62.9 64.6 62.8 56.6 61.6 68.7 70.3 63.0 61.1 64.6

3o 78.3 74.5 73.6 72.2 69.2 70.4 70.7 63.3 68.4 73.9 77.5 69.9 67.0 71.2
3o1i 77.2 73.5 73.5 70.9 68.7 69.3 69.0 62.0 67.7 71.2 76.0 68.7 66.8 70.8
3o1o 77.4 73.9 73.5 71.0 69.3 69.6 69.5 61.6 67.3 74.3 76.5 69.3 67.0 71.0
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 60.9 64.0 56.4 59.6 59.1 69.6 60.9 58.3 58.2 41.3 54.3 51.0 41.6 39.7

1o 70.3 70.3 64.2 68.6 68.0 76.8 71.7 68.9 65.4 56.6 63.7 60.0 52.1 51.7
1o3i 65.1 66.6 59.3 65.6 64.4 73.6 68.0 64.6 61.9 52.5 60.6 57.7 44.3 46.3
1o3o 64.9 65.5 60.0 64.8 63.8 72.3 67.0 64.7 62.1 53.2 62.0 57.8 49.4 47.3

3o 71.9 72.3 66.8 70.4 69.8 79.7 75.8 71.8 68.7 60.3 66.9 65.0 53.5 53.1
3o1i 70.8 71.0 65.6 70.2 69.4 77.7 74.7 71.4 67.9 58.8 65.7 64.0 51.9 52.8
3o1o 71.8 71.4 66.2 70.2 68.9 78.3 74.3 70.7 68.2 59.4 66.0 64.3 52.4 52.5
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 26.7 26.5 28.2 12.2 28.3 28.1 6.6 35.3 3.2 22.3 23.5 28.1 22.4 23.5

1o 47.1 39.8 33.9 28.9 37.0 34.2 12.7 44.5 17.3 24.8 28.5 35.9 23.5 24.5
1o3i 42.6 34.2 33.1 14.7 31.9 30.1 12.1 41.1 9.0 21.2 25.2 33.9 23.8 23.0
1o3o 46.1 37.5 32.7 17.7 33.5 31.1 11.7 43.4 10.1 20.9 26.4 33.0 23.5 26.2

3o 53.5 44.4 34.3 22.1 38.0 33.0 12.0 47.2 11.7 21.9 27.6 38.2 23.8 25.5
3o1i 51.4 40.2 35.8 20.4 37.0 34.0 13.3 44.5 7.8 22.6 30.1 36.0 26.9 25.8
3o1o 53.5 41.9 34.5 22.0 39.0 33.7 11.7 47.2 10.3 20.5 28.4 37.0 26.0 28.0

Table 19: Full performance on GMMLU-Choice with multiple-passage mRAG setup.

222



Accuracy (Llama)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 70.0 43.6 58.9 51.1 39.4 54.7 52.2 48.7 47.8 34.2 60.3 46.4 51.4 48.1

1o 73.0 57.5 64.5 58.7 48.1 62.2 58.9 56.6 59.2 51.0 69.3 56.6 58.4 57.1
1o3i 72.5 56.7 63.5 52.8 45.4 61.0 57.7 53.9 48.6 48.7 65.5 52.5 56.5 54.3
1o3o 71.3 55.2 60.1 53.7 45.5 60.6 56.5 54.9 53.1 49.3 66.3 53.3 56.8 54.3

3o 75.5 63.9 68.3 59.4 52.2 65.4 63.6 61.1 59.0 53.0 73.6 60.0 62.8 60.3
3o1i 75.7 62.7 67.4 56.8 50.3 64.8 62.7 59.2 55.7 49.6 73.1 58.4 61.4 58.4
3o1o 75.2 63.1 66.6 58.1 51.8 65.3 62.4 60.4 57.8 53.1 73.3 58.5 61.3 59.5
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 41.0 57.2 47.3 48.2 29.1 62.9 41.2 38.6 27.3 14.5 20.6 39.2 37.6 34.5

1o 49.7 64.2 55.0 53.0 36.7 67.3 59.0 52.5 46.4 22.6 25.8 48.4 41.5 45.7
1o3i 33.1 64.6 49.4 36.7 16.5 65.4 58.3 46.1 21.9 5.1 28.2 46.1 39.5 36.9
1o3o 41.9 62.1 52.3 46.6 19.7 65.0 57.8 45.0 30.3 11.6 26.9 48.1 38.4 42.7

3o 49.1 68.6 58.7 52.7 25.0 71.5 67.3 52.6 39.9 14.3 35.4 54.7 42.6 49.2
3o1i 41.1 67.7 56.0 47.1 18.4 71.9 65.8 51.7 30.0 6.7 34.8 51.8 43.3 45.6
3o1o 47.3 67.6 56.6 52.5 21.6 70.9 65.5 50.2 33.8 12.5 32.0 53.6 42.6 47.9
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 30.3 21.1 26.2 28.7 32.3 25.0 22.1 26.8 15.9 22.3 19.8 23.9 24.8 21.4

1o 48.2 28.7 30.6 42.6 41.7 29.0 25.1 30.2 8.1 26.0 24.0 28.5 26.2 24.4
1o3i 49.3 23.3 28.6 43.1 42.3 28.2 25.8 21.4 7.8 22.0 21.0 24.9 20.7 29.5
1o3o 48.7 20.3 30.6 40.0 45.2 28.0 26.9 24.5 8.5 27.6 22.5 27.1 28.3 26.1

3o 55.9 21.5 34.1 47.3 49.4 28.7 28.9 29.3 8.6 26.9 25.5 28.8 29.2 28.3
3o1i 56.4 19.6 32.4 49.5 48.1 26.9 30.2 27.5 9.2 24.1 22.6 28.2 26.2 30.3
3o1o 56.0 21.8 33.9 47.7 50.4 28.7 28.7 27.5 9.1 26.8 23.3 27.9 29.9 26.5

Table 20: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Gemma

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 80.6 69.8 75.6 72.8 66.7 73.1 71.0 65.9 72.3 78.3 78.4 69.0 71.0 72.3

1o 81.2 76.4 78.6 75.9 72.1 74.6 75.1 71.7 76.1 82.1 81.7 74.3 73.8 74.7
1o3i 80.4 76.3 78.2 74.8 71.4 74.8 73.2 70.1 75.1 78.2 80.1 72.9 72.6 74.3
1o3o 80.2 74.4 77.1 74.2 71.4 73.4 72.6 68.7 73.9 74.7 80.4 71.5 71.7 73.1

3o 83.1 78.6 80.8 78.6 75.9 76.8 77.1 73.7 77.8 81.7 83.7 76.4 74.7 77.7
3o1i 82.9 78.9 81.2 78.3 75.8 77.4 76.9 72.4 77.6 80.5 83.1 76.2 75.4 77.3
3o1o 82.9 78.7 80.8 78.4 76.1 76.7 76.3 73.1 77.5 79.5 84.1 75.8 74.5 76.9
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 72.2 73.5 70.4 72.0 70.7 80.5 66.1 69.3 64.9 65.3 59.5 64.4 66.9 65.6

1o 77.6 76.8 72.5 75.5 75.4 83.2 75.8 77.4 72.4 70.3 70.2 68.2 69.8 70.2
1o3i 75.6 76.2 71.1 74.8 73.1 81.9 74.8 75.3 71.3 70.5 68.7 67.5 69.5 69.3
1o3o 75.5 75.0 70.8 73.4 73.2 82.0 72.6 75.2 71.0 68.7 69.1 67.3 67.3 66.5

3o 80.1 78.9 74.8 76.9 77.8 85.8 79.2 79.9 75.1 73.6 73.8 71.9 71.7 72.2
3o1i 79.3 78.4 74.7 76.8 76.8 85.2 78.9 80.0 74.1 74.0 73.7 71.4 71.7 72.7
3o1o 79.5 78.4 74.1 76.7 76.5 85.1 78.5 79.9 74.3 72.9 72.8 71.0 71.5 71.3
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 61.1 48.1 34.6 56.8 55.2 33.3 36.2 56.2 35.5 38.1 36.5 25.7 39.8 32.5

1o 69.3 53.3 39.0 62.2 59.4 41.5 51.0 58.0 45.1 44.2 35.9 34.6 45.1 38.5
1o3i 68.3 52.3 35.4 60.1 58.8 35.7 49.5 58.7 44.1 45.4 30.7 42.7 44.2 37.9
1o3o 68.2 52.4 44.1 60.4 56.9 37.1 53.4 56.1 47.6 42.3 32.7 44.2 45.7 37.7

3o 73.3 59.8 45.5 66.7 61.8 40.8 59.2 59.9 48.9 45.8 34.3 49.3 49.0 41.2
3o1i 72.2 58.0 41.1 66.0 61.3 39.0 53.9 60.3 48.4 47.7 34.4 49.1 48.1 40.5
3o1o 72.8 58.2 45.4 65.8 62.2 40.1 57.2 59.5 49.6 44.1 34.4 48.9 47.8 38.6

Table 21: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Qwen)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 81.6 66.2 72.4 70.1 64.4 71.2 73.7 66.8 67.0 78.8 75.0 57.7 65.0 65.4

1o 83.0 71.2 75.4 73.6 69.9 73.7 72.4 69.8 72.7 81.9 77.8 66.8 69.0 70.1
1o3i 80.8 70.3 74.4 72.0 68.8 70.9 69.0 65.3 71.0 79.5 76.1 65.0 65.3 68.8
1o3o 80.2 69.3 75.9 71.5 66.9 71.5 68.6 65.2 71.2 79.2 75.4 64.9 64.4 67.3

3o 83.9 75.4 78.2 75.8 72.6 75.5 74.1 70.8 76.1 83.5 81.3 71.2 70.4 73.0
3o1i 83.7 74.7 77.7 75.3 71.9 74.9 74.1 69.9 75.9 83.8 81.3 69.2 69.3 72.9
3o1o 83.9 74.9 78.2 75.9 71.8 75.7 73.0 70.7 75.4 83.4 80.6 69.7 69.8 72.7
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 74.3 72.5 66.5 67.3 65.0 77.9 63.2 58.2 47.3 58.3 28.6 48.9 58.0 46.7

1o 76.1 75.7 70.2 71.8 70.8 81.4 72.6 68.4 58.1 66.6 40.5 57.9 59.4 56.1
1o3i 72.0 74.4 67.0 69.2 68.4 79.1 69.8 63.9 57.0 64.0 41.2 55.5 57.2 54.3
1o3o 72.2 74.6 67.9 67.9 68.5 78.6 67.6 62.9 54.8 63.9 40.4 56.9 56.5 54.3

3o 78.5 78.1 73.3 72.8 73.2 83.5 75.3 73.4 62.4 69.6 44.2 63.5 62.4 60.0
3o1i 77.5 77.0 72.0 73.4 71.9 82.9 74.0 71.0 59.7 69.1 41.5 62.4 60.6 58.9
3o1o 77.2 77.4 72.5 73.1 72.6 83.4 73.4 70.6 60.4 68.5 42.4 62.3 61.1 59.5
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 52.2 38.9 26.0 25.6 27.3 22.5 9.8 36.5 9.4 18.9 21.3 26.2 19.7 15.8

1o 61.6 48.0 30.8 33.2 33.2 29.0 15.5 41.0 18.6 27.4 25.4 31.5 24.5 20.5
1o3i 52.4 45.0 29.4 23.9 30.4 26.5 16.1 40.1 16.0 26.5 22.0 26.8 22.9 21.7
1o3o 49.7 43.6 31.6 20.2 29.7 28.8 19.4 42.5 18.1 28.9 24.9 29.0 27.4 22.7

3o 60.8 50.1 33.3 28.5 35.0 31.5 20.7 48.9 20.7 29.5 26.2 31.4 27.2 24.7
3o1i 55.2 46.6 32.5 23.1 33.3 29.3 20.8 45.9 22.1 29.5 25.8 30.0 26.9 25.3
3o1o 55.0 47.2 33.1 25.0 34.2 29.5 21.1 48.1 20.7 29.0 25.2 30.7 27.6 23.5

Table 22: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Abstract
Cross-lingual information retrieval (CLIR)
helps users find documents in languages dif-
ferent from their queries. This is especially im-
portant in academic search, where key research
is often published in non-English languages.
We present CLIRudit, a novel English-French
academic retrieval dataset built from Érudit, a
Canadian publishing platform. Using multilin-
gual metadata, we pair English author-written
keywords as queries with non-English abstracts
as target documents, a method that can be ap-
plied to other languages and repositories. We
benchmark various first-stage sparse and dense
retrievers, with and without machine transla-
tion. We find that dense embeddings without
translation perform nearly as well as systems
using machine translation, that translating doc-
uments is generally more effective than trans-
lating queries, and that sparse retrievers with
document translation remain competitive while
offering greater efficiency. Along with releas-
ing the first English-French academic retrieval
dataset, we provide a reproducible benchmark-
ing method to improve access to non-English
scholarly content.

1 Introduction

Cross-lingual information retrieval (CLIR) helps
users find documents written in languages different
from their search queries. This removes the need
for proficiency in multiple languages and makes
it easier to access valuable information that might
otherwise be missed because of language barriers.

CLIR is especially important for academic re-
search. While English is the main language for sci-
entific communication, important work often exists
in other languages, particularly in certain fields and
historical contexts (Pölönen, 2020; Beigel and Di-
giampietri, 2022; Khanna et al., 2022). Researchers

*Research conducted during a stay at the École de biblio-
théconomie et des sciences de l’information, Université de
Montréal, Canada.
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Figure 1: The CLIRudit dataset. We use articles with
abstracts and keywords in both French and English. En-
glish keywords form the queries, with relevance judged
by their presence in each article. Documents consist of
the French title, subtitle, and abstract.

may overlook key work if they cannot search across
languages, especially if they’re unfamiliar with
technical terms. English is also often used due to
the expectation of finding more results, reinforcing
bias against documents in other languages.

Modern information retrieval (IR) systems often
use bi-encoder architectures for first-stage retrieval,
separately encoding documents and queries as
dense embeddings (Devlin et al., 2019; Karpukhin
et al., 2020; Xiong et al., 2021). Multilingual ex-
tensions of these methods have been effective in
general-domain CLIR (Artetxe and Schwenk, 2019;
Conneau et al., 2020; Anastasopoulos and Neubig,
2020; Asai et al., 2021a; Nair et al., 2022; Zhang
et al., 2023a). Another common approach is to
use machine translation (MT) to convert queries or
documents to the same language before searching
(Galuščáková et al., 2022; Lin et al., 2022; Huang
et al., 2023; Lawrie et al., 2024).

Technical texts often use specialized vocabulary
and styles that present challenges for MT and mul-
tilingual embeddings (Lawrie et al., 2024; Litschko
et al., 2025). However, research on CLIR in tech-
nical domains is limited (Xu et al., 2016; Zavorin
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et al., 2020), and studies focusing specifically on
academic content are even scarcer, typically rely-
ing on small, curated datasets (Lawrie et al., 2024).
As a result, the effectiveness of CLIR methods for
academic retrieval remains underexplored.

We address this gap by introducing a dataset for
cross-lingual academic search and benchmarking
first-stage retrieval methods. Our contributions are:

• A new method for creating academic CLIR
datasets using multilingual metadata. We use En-
glish keywords as queries and non-English ab-
stracts as documents, allowing evaluation of IR
methods on retrieving original-language documents
based on author-provided English keywords. This
method can be applied to other academic databases
and language pairs.

• The release of CLIRudit, a dataset based on Éru-
dit, a Quebec-based non-profit publishing platform
(Fig. 1).1 To our knowledge, this is the first dataset
for English-French academic retrieval.

• A thorough empirical comparison of first-stage
CLIR methods, including query and document
translation, and state-of-the-art dense and sparse
retrievers.

• Practical insights to improve the discoverability
of non-English scholarly content, which is espe-
cially relevant for academic publishing platforms.

Our results show that dense embeddings without
translation perform nearly as well as those using
MT. Document translation generally improves re-
trieval more than query translation. While sparse
retrievers combined with document translation may
not surpass the best dense multilingual methods,
they remain competitive and offer advantages in
search speed and indexing efficiency.

2 Related work

This section reviews relevant research on academic
CLIR, focusing on first-stage retrieval methods,
datasets, and bilingual academic corpora.

2.1 Cross-lingual retrieval

Lin et al. (2022) proposed a conceptual framework
for CLIR, outlining three main strategies for first-
stage retrieval: document translation (DT), trans-
lating documents into the query language; query

1https://hf.co/datasets/ftvalentini/clirudit

translation (QT), translating queries into the docu-
ment language; and language-independent repre-
sentations, encoding queries and documents into a
shared vector space for direct retrieval. Since we
focus on single-stage retrieval, we do not address
later steps of a retrieval pipeline, such as re-ranking
or results fusion.

Translation-based methods have been widely
used and generally effective, although their success
has varied across domains and language pairs. DT
combined with neural ranking has shown strong
performance in general-domain tasks (Lin et al.,
2022; Lawrie et al., 2023b; Lassance et al., 2023),
often outperforming QT, which struggles with
short, ambiguous queries and limited training data
(Galuščáková et al., 2022). However, DT is not
a clear winner, with QT performing better in do-
mains like healthcare (Saleh and Pecina, 2020) and
in high-resource languages (Huang et al., 2023).

Alternative approaches like probabilistic struc-
tured queries (PSQ) generate multiple plausible
translations per term using alignment models, offer-
ing more flexibility than standard machine transla-
tion (Darwish and Oard, 2003; Yang et al., 2024c).

Early studies found a strong link between trans-
lation quality and retrieval effectiveness (Zhu and
Wang, 2006), but later work found that better MT
doesn’t always improve retrieval, particularly in
specialized domains (Pecina et al., 2014). Recent
research suggests a weak positive correlation (Boni-
facio et al., 2022) with diminishing returns beyond
a certain MT quality level (Zhang and Misra, 2022).

Multilingual bi-encoders avoid MT entirely by
using multilingual pretrained models (Jiang et al.,
2020; Bonifacio et al., 2022; Nair et al., 2022,
2023). These methods can reduce indexing costs
but often perform worse than MT-based retrieval,
with QT or DT followed by monolingual re-
trieval frequently achieving better first-stage results
(Litschko et al., 2019; Asai et al., 2021a; Lin et al.,
2022; Nair et al., 2023; Lawrie et al., 2023b).

Recent methods like translate-train (Nair et al.,
2022) and translate-distill (Yang et al., 2024b) in-
tegrate MT into training, allowing bi-encoders
to jointly learn retrieval and translation; unlike
translate-test methods like DT and QT, which trans-
late only at test-time. Translate-distill further uses
distillation from cross-encoders, achieving strong
results across multiple languages. Additionally,
large decoder-only language models (LLMs) have
been adapted as bi-encoders for dense retrieval (Lee
et al., 2024; Li et al., 2025).
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2.2 CLIR datasets

Well-documented and diverse datasets are crucial
for advancing CLIR because they enable training
and evaluation across languages and domains.

Shared evaluation initiatives like TREC
(Voorhees, 2005) and CLEF (Chen, 2002)
provide manually curated test collections with
human-generated queries and relevance judgments
gathered by pooling top-ranked results. NeuCLIR
(TREC 2022) focuses on neural CLIR, alongside
other datasets such as BETTER (Soboroff, 2023)
and HC4 (Lawrie et al., 2022). While these
collections are usually carefully designed, they
are typically small, often with fewer than 1,000
queries. Galuščáková et al. (2022) provide a
comprehensive survey of such resources.

Sentence-level retrieval datasets are also com-
mon, such as BUCC, Tatoeba (Siddhant et al.,
2020), and STS17/STS22 (Cer et al., 2017; Chen
et al., 2022), which focus on matching similar sen-
tences across languages.

To address scale limitations, recent work has
explored automatic dataset creation. For exam-
ple, Mayfield et al. (2023) used LLMs to generate
English queries from target-language documents.
Wikipedia’s multilingual, structured content has
also been used for automatic dataset creation, as
seen in MuSeCLIR (Li et al., 2022), MKQA (Long-
pre et al., 2021), WikiCLIR (Sasaki et al., 2018),
CLIRMatrix (Sun and Duh, 2020), and AfriCLIR-
Matrix (Ogundepo et al., 2022).

2.3 Academic datasets

Some prior datasets address CLIR in technical
domains. For example, Xu et al. (2016) study
cross-language technical question retrieval, CLEF
eHealth simulates medical search by non-experts
(Galuščáková et al., 2022), and MATERIAL cov-
ers law, security, and health topics (Zavorin et al.,
2020). A close reference to our work is Neu-
CLIR 2023’s technical track, which contains 40
English queries to retrieve Chinese academic ab-
stracts across Chemistry, Economics, Physics, Biol-
ogy, and Medicine (Lawrie et al., 2024). NeuCLIR
2024 also featured a technical task but their pro-
ceedings were unavailable at the time of writing.

Beyond CLIR-specific datasets, some parallel
academic corpora similar to the one we use in-
clude academic metadata aligned across languages.
SciPar (Roussis et al., 2022) compiles bilingual
titles and abstracts from theses and dissertations.

Other examples mentioned in Roussis et al. (2022)
include SciELO (Neves et al., 2016, English,
Portuguese, Spanish), ASPEC (Nakazawa et al.,
2016, English, Japanese, Chinese), CAPES (Soares
et al., 2018, Brazilian academic works), and EDP
(Névéol et al., 2018, English-French biomedical
texts). In the biomedical domain, MEDLINE (Wu
et al., 2011) and BVS (Soares and Krallinger, 2019)
provide multilingual aligned abstracts. Niu and
Jiang (2024) introduce a dataset of translated ab-
stracts from journals in translation studies.

These corpora mainly support MT by provid-
ing parallel abstracts and titles, often with aligned
sentences. Our work differs by using keywords as
queries of a CLIR dataset. Among existing cor-
pora, only CAPES and BVS include multilingual
keywords suitable for this task, but they are not
publicly available at the time of writing.

3 Evaluation data
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Figure 2: Number of queries per disciplines in the
CLIRudit dataset. A query inherits the disciplines of
the articles containing its keywords. Since queries can
originate from multiple articles and articles can have
multiple disciplines, percentages do not sum to 100%.

To evaluate academic CLIR methods, we built
CLIRudit using data from Érudit2, a Quebec-based
Canadian platform that publishes research in the
arts, humanities, and social sciences. Érudit’s jour-
nals are selected by a scientific committee and meet
national quality standards, ensuring the relevance
and quality of the content.

We focused exclusively on research articles that
included both English and French abstracts and
keywords, provided by the authors. From each

2https://www.erudit.org/en/
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article’s metadata, we extracted the title, subtitle,
abstract, and keywords.

Following the standard CLIR task setup, with
English queries targeting non-English documents
(Lawrie et al., 2023a, 2024), we built the dataset as
follows (see Fig. 1 for an overview):

• Queries. Created by combining all possible
groups of three English keywords from each article;
e.g., an article with keywords {A, B, C, D} gener-
ates the queries: “A,B,C”, “A,B,D”, “A,C,D”,
and “B,C,D”.

• Relevance judgments. A document was marked
relevant to a query if its English keyword metadata
included all three query keywords. This is based
on the assumption that authors try to make their
work discoverable via those terms.

• Document collection. Each document or re-
trieval unit was built as the concatenation of its
French title, subtitle, and abstract.

We chose three-keyword combinations for
queries based on preliminary observations. Using
only two keywords produced overly broad queries
which could apply to many documents even if
those specific terms weren’t used by the authors;
e.g., “family dynamics, gender identity” or “canada,
québec”. In contrast, using more than three key-
words led to overly narrow queries that were un-
likely to reflect realistic user search behavior.

The final dataset contains 357,710 queries de-
rived from 41,594 unique English keywords, with
an average query length of 4.8 words (SD = 1.7);
and 16,389 French documents from 124 journals
across 25 disciplines, with an average document
length of 176.7 words (SD = 82.4). Because of the
way the dataset was built, all documents in the col-
lection are relevant to at least one query. 99.3% of
queries have only one relevant document, showing
that most three-keyword combinations are unique
to a single article, which highlights the specificity
of the queries.

84.9% of the abstracts in the dataset come from
articles whose primary language is French, 14.3%
from English, and 0.9% from other languages. The
most frequent disciplines in the queries are Human-
ities and Social Sciences, Water and Environment,
Sociology, and Anthropology and Ethnology (full
distribution in Fig. 2).

CLIRudit simulates a scenario where users know
only the relevant terms in English, while the per-

tinent documents are only in French, with no di-
rect translations available. Our pipeline offers a
reproducible method to build CLIR datasets for
academic search. Rather than relying on complex
heuristics, it leverages the inherent bilingual struc-
ture of scientific publications. While this work
focuses on English-French retrieval, the method
can be extended to other databases and language
pairs, facilitating research in cross-lingual scientific
retrieval.

4 Models and methods

This section describes the retrieval and MT meth-
ods, and evaluation metrics used for benchmarking.

4.1 Retrievers
We tested lexical, sparse, and dense first-stage re-
trievers, all operating as bi-encoders, encoding
queries and documents separately. Due to our rela-
tively small document collection, we used exhaus-
tive nearest-neighbor search. We prioritized well-
documented, open-source models.

Dense multilingual retrievers. We evaluated
three state-of-the-art bi-encoders for direct CLIR
without translation, as they are pretrained and fine-
tuned on multilingual data: mE53 (Wang et al.,
2024), mGTE-dense4 (Zhang et al., 2024), and
BGE-m-gemma25 (Li et al., 2025). While mGTE-
dense and BGE-m-gemma2 are fine-tuned on some
cross-lingual tasks involving mixed-language in-
puts, mE5 is trained on multilingual but not ex-
plicitly cross-lingual data, which may affect CLIR
performance.

Dense English retrievers. We included English-
focused models to assess two approaches: (1) re-
trieving French documents translated to English, or
(2) leveraging cross-lingual transfer, where mod-
els, fine-tuned mainly on one language, perform
well on other languages for the same task (Artetxe
and Schwenk, 2019; Asai et al., 2021b; Zhang
et al., 2023a). We assessed two top English MTEB
(Muennighoff et al., 2023) performers as of early
2025: NV-Embed-v26 (Lee et al., 2024), and BGE-
EN-ICL7 (Li et al., 2025). Though targeting En-
glish, these models have some multilingual fine-
tuning (including French), and their Mistral-7B
backbone (Jiang et al., 2023) may also have had

3intfloat/multilingual-e5-large
4Alibaba-NLP/gte-multilingual-base
5BAAI/bge-multilingual-gemma2
6nvidia/NV-Embed-v2
7BAAI/bge-en-icl
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multilingual pretraining. but this information is not
publicly available.

French-specialized dense retrievers. Few
dense retrievers specialize in non-English lan-
guages, and those that do are developed by open
source communities and lack thorough documen-
tation. We considered these top performers on the
MTEB French benchmark (Ciancone et al., 2024):
Croissant8 (from CroissantLLM, Faysse et al.,
2024), Solon9, and Lajavaness10, all of which are
bilingual at some degree as they include English
data in pre-training or fine-tuning.

Dense multi-vector retrievers. ColBERT-style
models encode queries and documents into token-
level embeddings, enabling fine-grained late inter-
action and pre-computation of document represen-
tations, with strong performance in out-of-domain
retrieval (Khattab and Zaharia, 2020; Santhanam
et al., 2022b). PLAID (Santhanam et al., 2022a) im-
proves speed using clustering and centroid-based
interaction. We tested PLAID-X11 (Yang et al.,
2024a), a multilingual ColBERT variant trained via
translate-distill, distilling signals from an English
cross-encoder and translated passages. It uses mul-
tilingual batching to support English queries and
French, German, and Spanish documents.

Sparse retrievers. These encode queries and
documents as term-weighted vectors, enabling effi-
cient retrieval with inverted indexes (Formal et al.,
2022). We tested BM25 (Robertson et al., 2009), a
strong exact-match baseline (Thakur et al., 2021),
used on inputs translated into a common language.

Learned sparse models improve retrieval by ex-
panding terms through supervised training (Lin
et al., 2022). We assessed SPLADE++12 (mono-
lingual, requires MT into English); and the mul-
tilingual mGTE-sparse (Zhang et al., 2024) and
BGE-M3-sparse (Chen et al., 2024), which al-
low cross-lingual retrieval but lack term expansion,
limiting performance when queries and documents
share few tokens. We excluded BLADE (Nair et al.,
2023), a cross-lingual SPLADE variant with term
expansion, due to the lack of an English-French
version. Additionally, BLADE has demonstrated
lower effectiveness compared to PLAID-X, which
we included in our evaluation.

Finally, we tested PSQ (Yang et al., 2024c),

8manu/sentence_croissant_alpha_v0.3
9OrdalieTech/Solon-embeddings-large-0.1

10Lajavaness/bilingual-embedding-large
11plaidx-large-clef-mtd-mix-passages-mt5xxl-engeng
12naver/splade-cocondenser-ensembledistil

which enables sparse CLIR without conventional
MT by indexing documents in query language to-
kens using a probabilistic alignment matrix (Yang
et al., 2024b).

See Appendix A for further details on the models
and their implementations.

4.2 Machine translation

We tested three machine translation models:
• GPT-4o-mini13. Recent work shows LLMs per-
form well on document-level MT (Kocmi et al.,
2023; Zhang et al., 2023b; Pang et al., 2025). We
used a cost-efficient proprietary model which per-
formed competitively on high-resource language
pairs (Hendy et al., 2023; Zhu et al., 2024).
• Llama-3.2. We used the 3.2B-parameter version
as an open-source LLM alternative to GPT, with
strong zero-shot capabilities in French to English
translation (Zhang et al., 2023b). Open-source
models can be advantageous for cost-efficiency and
for the ability to fine-tune on domain-specific data.
• OpusMT, a 75M-parameter French-English Mar-
ianMT encoder-decoder model (Tiedemann et al.,
2023) trained on Opus parallel data14. While de-
signed for sentence-level MT, we applied it at the
document level following Cui et al. (2024). It sup-
ports up to 512 tokens, far fewer than the 100k+
limits of GPT and Llama.

For LLM translation we used a zero-shot prompt
suited for instruction-tuned LLMs (details in Ap-
pendix B). We did not test other strong proprietary
translators due to lack of cost-efficient APIs.

Finally, as gold standard translations, we used
the English translations of the French titles, subti-
tles, and abstracts provided by the article authors.
These reflect the potential performance of each re-
trieval method using human translations. We did
not use the actual French keywords as “gold stan-
dard” queries since they do not map one-to-one
to the English keywords; using them would alter
the original set of evaluation queries and introduce
noise into the analysis.

4.3 Evaluation metrics

To measure retrieval performance, we use Re-
call@100 and Mean Average Precision with a 1000
cutoff rank (MAP), which have been widely used
(Nair et al., 2023; Lawrie et al., 2024; Yang et al.,
2024c). Whereas Recall@100 is useful to assess

13gpt-4o-mini
14Helsinki-NLP/opus-mt-fr-en
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the effectiveness of methods when used as first-
stage retrievers, MAP is more appropriate for mea-
suring overall performance of a method used as a
single-stage system (Yang et al., 2024c). We com-
pute 95% bootstrap confidence intervals with 1,000
resamples to assess statistical significance.

To evaluate document translation quality, we
used three metrics used in recent works (Sun et al.,
2022; Zhang et al., 2022; Zhuocheng et al., 2023):
BLONDE (Jiang et al., 2022), document-BLEU
(d-BLEU, Liu et al., 2020), and document-chrF
(d-chrF, Zhuocheng et al., 2023).

5 Results and analysis

This section analyzes the performance of retrieval
and translation models on CLIRudit (Table 1). Due
to the large sample size, no confidence interval
width exceeded 0.003. Intervals are omitted here
for readability (see Appendix C). To account for
input length effects, we evaluated each method
both at its native input limit and with the same
512-token limit. Results differed by no more than
0.005 from the reported values, small enough to
not affect general trends.

We now discuss key findings from the results.
1. Without translation, dense retrievers excel,

even without multilingual retrieval fine-tuning.
NV-Embed-v2 and PLAID-X achieved the highest
MAP, while BGE-m-gemma2 led in Recall@100.
Interestingly, NV-Embed-v2 is not reported to have
multilingual capabilities; though its fine-tuning
data, which is English-only for retrieval, includes
French in STS17 and STS22 sentence pairs (Cer
et al., 2017; Chen et al., 2022).

BM25 with the French analyzer performed
poorly without MT due to the query-document lan-
guage mismatch, but still had non-zero results. This
shows CLIRudit has some query-document lexical
overlap; manual inspection revealed shared terms
like proper nouns, Latin terms, and acronyms.

Among sparse models, SPLADE++ outper-
formed mGTE-sparse and BGE-M3-sparse, likely
thanks to query expansion mitigating the language
mismatch. PSQ addresses this mismatch via prob-
abilistic translation, reaching MAP comparable to
larger dense models like mE5 and mGTE-dense.

2. Document translation can improve dense
retrievers. DT with GPT-4o-mini improved dense
retriever MAP by up to 10% and Recall@100 by up
to 5% (Fig. 3, left). The highest MAP overall came
from NV-Embed-v2+DT and PLAID-X+DT with

GPT-4o-mini. However, translation sometimes hurt
performance, especially with QT, affecting models
like mE5, BGE-EN-ICL, and even top-performing
ones like NV-Embed-v2 and PLAID-X.

Manual review showed QT can reduce recall by
mistranslating proper nouns with identical cross-
language spelling. For example, “Goose Bay” (a
Canadian town) was incorrectly translated as “Baie
aux Oies” instead of remaining unchanged.

3. Document translation usually outper-
formed query translation for sparse retrievers.
Translation had a modest effect on dense models
but significantly boosted sparse retrieval. More-
over, DT consistently outperformed QT (Fig. 3
right), especially for BM25 and SPLADE++, with
SPLADE++ plus DT nearing the top dense retriever
MAP, and also outperforming the PSQ probabilistic
translation method (Table 1).

While DT may offer richer context than QT
(Galuščáková et al., 2022; Lin et al., 2022), DT out-
performing QT is expected for SPLADE++ since
it’s trained only in English. In contrast, mGTE-
sparse and BGE-M3-sparse performed similarly
with QT and DT.

Manual inspection of BM25 cases where DT
outperformed QT shows that DT can preserve key
terms better. For example, “fair innings” cor-
rectly remains unchanged with DT to English, but
translating the query to French yields “juste part”,
which isn’t in the original document. Similarly,
the term “beck” in a query about the surname of
a social scientist is correctly preserved in DT, but
mistranslated as “appel” in the query (French for
“call”), making the document irretrievable.

4. Document translation quality correlated
with retrieval performance. GPT-4o-mini led
in document translation quality (BLEU=34.41,
BLONDE=49.32, chrF=63.83), followed closely
by Llama (BLEU=31.27, BLONDE=46.52,
chrF=61.56), with OpusMT trailing far behind
(BLEU: 10.77, BLONDE: 19.35, chrF: 36.15).
This ranking mirrors their retrieval performance,
where GPT-4o-mini systematically outperformed
Llama, which in turn outperformed OpusMT
(Table 1). While these results indicate a correlation
between translation and retrieval quality, quantify-
ing MT’s exact contribution requires further study
beyond the scope of this paper.

5. Top dense retrievers approached gold
translation recall. Models like NV-Embed-v2,
BGE-m-gemma2, BGE-EN-ICL, and PLAID-X,
performed close to their gold translation recall (Fig.
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MAP Recall@100

Machine
Trans. (→) None Query

(GPT4)
Doc. Gold None Query

(GPT4)
Doc. Gold

Retriever (↓) Opus Llama GPT4 Opus Llama GPT4

mE5 0.434 0.412 0.448 0.480 0.490 0.526 0.784 0.760 0.790 0.817 0.823 0.840
mGTE-dense 0.450 0.445 0.452 0.459 0.468 0.496 0.820 0.813 0.820 0.834 0.837 0.849
BGE-m-gemma2 0.571 0.543 0.533 0.548 0.560 0.571 0.903 0.895 0.894 0.908 0.910 0.917
NV-Embed-v2 0.580 0.575 0.541 0.569 0.586 0.600 0.895 0.889 0.866 0.887 0.892 0.894
BGE-EN-ICL 0.507 0.441 0.411 0.486 0.501 0.535 0.857 0.810 0.760 0.831 0.837 0.861
Croissant 0.358 0.365 0.325 0.345 0.357 0.376 0.793 0.794 0.748 0.773 0.781 0.794
Solon 0.507 0.516 0.502 0.520 0.536 0.555 0.856 0.858 0.845 0.860 0.866 0.870
Lajavaness 0.472 0.454 0.431 0.457 0.470 0.486 0.848 0.838 0.817 0.836 0.843 0.849
PLAID-X 0.578 0.548 0.539 0.572 0.586 0.605 0.870 0.854 0.845 0.869 0.874 0.879
SPLADE++ 0.284 0.426 0.530 0.548 0.572 0.609 0.604 0.753 0.836 0.853 0.864 0.875
mGTE-sparse 0.169 0.434 0.401 0.405 0.428 0.487 0.443 0.763 0.737 0.760 0.771 0.805
BGE-M3-sparse 0.177 0.458 0.413 0.434 0.460 0.511 0.449 0.781 0.738 0.763 0.778 0.807
BM25 0.181 0.390 0.488 0.513 0.549 0.611 0.417 0.706 0.789 0.815 0.832 0.861
PSQ 0.440 - - - - - 0.756 - - - - -

Table 1: MAP and Recall@100 in CLIRudit. Best column scores are in bold; best row scores per metric are
underlined, excluding gold translation. Statistical significance is shown in Appendix C for better readability.
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Figure 3: % difference in MAP and Recall@100 of document translation (red) and query translation (blue)
compared to no translation. Positive (negative) values indicate improvement (degradation) with translation. For ease
of visualization, sparse models are shown with a different scale and only GPT translation is considered.

4). Except for BGE-m-gemma2, gaps in MAP were
larger, indicating potential for better ranking.

Sparse models BM25 and SPLADE++ achieved
the highest MAP with gold translations (Table 1),
highlighting the impact of translation quality. Be-
cause CLIRudit queries are keywords and docu-
ments are abstracts, sparse models naturally per-
form well with accurate translations. SPLADE’s
smaller gap to gold as compared to other sparse
methods suggests greater robustness to translation
errors, likely due to query expansion.

6. Performance varies significantly across
disciplines. Considering the best-performing ap-
proach for each retriever, MAP was on average
higher in Industrial Relations, Theology, Women’s
Studies, Psychology, Management, and Economics,
and lower in Philosophy and Law (Fig. 5). While
Croissant was typically the weakest across disci-

plines, no translation-retriever combination consis-
tently outperformed the others.

6 Discussion

Dense single-vector retrievers based on large
decoder-only models (e.g., NV-Embed-v2, BGE-m-
gemma2) achieve near gold translation-augmented
performance without additional training, which
may result from pretraining on large corpora and
cross-lingual transfer capabilities. A smaller,
CLIR-specialized model, PLAID-X, also per-
formed competitively; at the expense of needing
language- and task-specific training data and hav-
ing higher search latency due to its multi-vector
design (Santhanam et al., 2022a). Both dense ap-
proaches avoid the overhead of translating the en-
tire corpus, but large models may incur high index-
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Each dot represents a method’s MAP in a discipline’s
queries, using its best translation method (excluding
gold). Dot colors indicate retrievers: Croissant (pink)
often performs worst, while the best varies by discipline.

ing costs on large collections.
Sparse retrievers, lexical or learned, offer faster

indexing and search, but need translation to nar-
row the gap with dense methods, and still fall
short in overall performance. DT outperformed
QT, likely because it provides richer context; and it
can be done offline, which is important when using

costly MT systems. QT enables quicker experi-
mentation by avoiding corpus reindexing with each
new model, but usually with lower accuracy (Lin
et al., 2022; Galuščáková et al., 2022). Ultimately,
the choice of method comes down to balancing re-
trieval performance, indexing and search latency,
and translation costs.

Our dataset uses keyword-based queries, reflect-
ing how authors describe their work to make it
discoverable. This assumes users know the right
keywords, shifting the dataset challenge to lan-
guage differences in a technical domain rather than
query formulation. This allows meaningful analy-
sis, though it’s unclear how system rankings might
change with other types of queries, e.g., natural lan-
guage questions. Our approach aligns with other
datasets using non-natural or generated queries,
such as SCIDOCS, DBPedia (Thakur et al., 2021),
WikiCLIR (Sasaki et al., 2018), and CLIRMatrix
(Sun and Duh, 2020).

Like all IR datasets, ours has limitations in
scope and collection method, so we encourage
evaluation on many, diverse datasets. As the first
English-French academic retrieval dataset, CLIRu-
dit adds to this diversity and complements existing
resources.

7 Conclusions

We introduced a method for building CLIR datasets
from bilingual metadata in scientific publications.
By using keywords as queries and abstracts as doc-
uments, this approach enables automated, scalable
creation of large evaluation resources without man-
ual annotation or complex heuristics. We applied
it to produce CLIRudit, the first English-French
CLIR dataset for academic search, based on a real-
world database.

Evaluations of single-stage methods on CLIRu-
dit showed that: (1) state-of-the-art dense bi-
encoders achieved strong cross-lingual perfor-
mance without translation, nearing monolingual
retrieval with gold translations; (2) sparse retrievers
with document translation were competitive; and
(3) document translation generally outperformed
query translation, likely due to richer context.

These results have practical implications for aca-
demic search systems. Large dense retrievers de-
liver the best performance, but the strong results of
sparse retrievers with document translation suggest
a viable alternative that may be more practical to
implement at scale. This is particularly relevant
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for academic publishing platforms like Érudit that
aim to make their content more discoverable to
researchers.

Our method can be applied to other academic
databases and language pairs, supporting broader
research in cross-lingual access to scientific knowl-
edge.

Limitations

Our dataset’s document collection includes only rel-
evant documents, unlike in real applications where
relevant documents might coexist with a much
larger collection. The values reported may not be
representative of real-world settings. The reported
metrics should be used to compare methods rather
than to provide absolute performance estimates,
which is standard practice in IR research (Thakur
et al., 2021).

Our dataset may also contain some false neg-
atives: some relevant documents may not be la-
beled as such if some authors did not include some
suitable keywords in the metadata, while others
did. However, because queries consist of three key-
words, they are relatively specific, likely reducing
false negatives, as it is unlikely that there is more
than one document in the collection relevant to a
narrow query.

We found that the proprietary GPT-4o-mini LLM
outperformed the open-source Llama 3.2 and the
smaller OpusMT encoder-decoder for zero-shot
translation. Further exploration with few-shot
prompting or fine-tuning may improve the perfor-
mance of the open-source models. In addition,
OpusMT is not optimized for document translation,
so using sentence-level translation may be more
optimal. However, this approach requires a more
complex pipeline with sentence splitting and risks
losing cross-sentence coherence.

Possible data contamination is a concern for fair
evaluation: our test set may appear in the training
data of pre-trained models, especially LLMs used
for translation and retrievers initialized from LLMs,
such as NV-Embed-v2 and BGE-m-gemma2. This
could lead to inflated results, but is difficult to ver-
ify due to the lack of information about the exact
training data of these models (Sainz et al., 2023;
Oren et al., 2024).

Our dataset is limited to keyword-based queries
and metadata-only documents. Results may differ
with other query types, e.g. natural language ques-
tions, or full-text documents. Future work could

explore approaches that use other types of queries
or full-text representations. We also focused on
French, a high-resource language; performance
may vary in low-resource settings due to lower
translation quality and limited training data for re-
trievers.

We tested single-stage retrieval without re-
ranking, fusion, or pseudo-relevance feedback (Lin
et al., 2022). Including these techniques could en-
hance performance and reveal additional insights
into CLIR system design. We also did not analyze
the computational costs of translation, retrieval, or
indexing, as explored in prior work (Rosa et al.,
2021; Nair et al., 2023). Such analysis would be
valuable for assessing the trade-offs between effec-
tiveness and efficiency in practical deployment. Ad-
ditionally, we did not fine-tune or train any retrieval
models on our dataset. Training on domain-specific
data could potentially lead to better performance,
both on our dataset and on others.
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A Retrievers

Table 2 provides an overview of the retrievers eval-
uated in our study.

Inference with neural models was run using 16-
bit floating point (fp16) inference on two NVIDIA
A30 GPUs, each with 24GB of memory.

BGE-EN-ICL, BGE-m-gemma2, and NV-
Embed-v2 require appending task-specific instruc-
tions before encoding the queries, which we did
following the authors’ templates. BGE-EN-ICL
(Li et al., 2025) was used in its zero-shot mode,
i.e., without in-context examples appended to the
queries.

We also experimented with BGE-M3-dense15

(Chen et al., 2024), which we excluded from the
body of the paper because it did not show improved
performance or valuable insights.

We implemented BM25 using Pyserini with de-
fault parameters and language-specific analyzers
(Lin et al., 2021). For PSQ, we used the fast_psq
implementation by Yang et al. (2024c)16 with de-
fault parameters. We used the English-French ma-
trix trained on 17.6M parallel sentences provided
by Yang et al. (2024c).

B Translation

For LLM-based translation, we used a zero-shot
prompt inspired by established best practices for

15https://hf.co/BAAI/bge-m3
16https://github.com/hltcoe/PSQ
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Retriever Type Pre-train. Lang. Fine-tuning Lang. #Params. Emb. Dim. Max. Len.

mE5

Dense
(single-
vector)

Multilingual

Mostly English 560M 1024 512
mGTE-dense Mostly English, Chinese 305M 768 8192
BGE-m-gemma2 Mostly English, Chinese 9.2B 3584 8192
Solon French 560M 1024 512
Lajavaness French-English 560M 1024 512

Croissant French-English French-English 1.3B 2048 2048

NV-Embed-v2 Unknown Mostly English 7.8B 4096 32768
BGE-EN-ICL Mostly English 7.1B 4096 512

PLAID-X
Dense
(multi-
vector)

Multilingual English, French,
German, Spanish

560M 128
per token

512

mGTE-sparse Sparse
(Learned)

Multilingual Mostly English, Chinese 305M 250,000* 8192
BGE-M3-sparse Mostly English, Chinese 568M 250,000* 8192

SPLADE++ English English 110M 30,522* 512

BM25 Sparse
(Lexical)

– – – 49,144* –
PSQ – – – 715,837* –

Table 2: Retrievers used in the study. #Params.: Number of parameters. Emb. Dim.: Document embedding
dimension. Max. Len.: Maximum number of input tokens allowed by the model. The values in the pretraining and
fine-tuning language columns mentioned are approximations; in many cases, intermediate steps are involved, such
as initializing from a pretrained model, followed by training with weak supervision and supervised fine-tuning.
However, in all cases, fine-tuning data includes some degree of French data. The specific checkpoints used are given
in footnotes in section 4.1.
*The embedding dimension of sparse methods is the underlying vocabulary size.

instruction-tuned LLMs17. The complete prompt
is provided in Table 3. We used sampling with 0.1
temperature and 1.0 top-p.

You are a highly skilled translator from French
to English.
Your task is to accurately translate the French
text I provide into English.
You will be provided with a text, and you will
output a JSON object containing the following
information:
{

translation: string // the translated text
}
Preserve the meaning, tone, and nuance of the
original text.
Please maintain proper grammar, spelling, and
punctuation in the translated version.

Table 3: Prompt used for document translation with
LLMs. We used a slight variation of this prompt for
query translation.

C Statistical signficance

Tables 4 and 5 show the 95% bootstrap confidence
intervals for MAP and Recall@100, respectively,
for each retrieval method and translation method.

17https://docs.anthropic.com/en/prompt-
library/polyglot-superpowers,
https://platform.openai.com/docs/examples/default-
translation.

For better readability, instead of showing the lower
and upper bounds of the confidence intervals, we
choose to show which systems are non-significantly
different from each other, i.e., the intervals overlap.
For example, the MAP interval of PLAID-X+DT
with GPT4 overlaps with the interval of NV-Embed-
v2+DT with GPT4, but not with the interval of
NV-Embed-v2 with no translation (Table 4).
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Retriever Translation MAP

BM25 Gold 1 0.611 2

SPLADE++ Gold 2 0.609 1

PLAID-X Gold 3 0.605
NV-Embed-v2 Gold 4 0.600
PLAID-X Docs. (G4) 5 0.586 6

NV-Embed-v2 Docs. (G4) 6 0.586 5

NV-Embed-v2 None 7 0.580 8

PLAID-X None 8 0.578 7,9

NV-Embed-v2 Query (G4) 9 0.575 8

SPLADE++ Docs. (G4) 10 0.572 11,12,13

PLAID-X Docs. (L3) 11 0.572 10,12,13,14

BGE-m-gemma2 None 12 0.571 10,11,13,14

BGE-m-gemma2 Gold 13 0.571 10,11,12,14

NV-Embed-v2 Docs. (L3) 14 0.569 11,12,13

BGE-m-gemma2 Docs. (G4) 15 0.560
Solon Gold 16 0.555
BM25 Docs. (G4) 17 0.549 18,19,20

SPLADE++ Docs. (L3) 18 0.548 17,19,20

PLAID-X Query (G4) 19 0.548 17,18,20

BGE-m-gemma2 Docs. (L3) 20 0.548 17,18,19

BGE-m-gemma2 Query (G4) 21 0.543 22

NV-Embed-v2 Docs. (Op) 22 0.541 21,23

PLAID-X Docs. (Op) 23 0.539 22

Solon Docs. (G4) 24 0.536 25

BGE-EN-ICL Gold 25 0.535 24,26

BGE-m-gemma2 Docs. (Op) 26 0.533 25,27

SPLADE++ Docs. (Op) 27 0.530 26

mE5 Gold 28 0.526
Solon Docs. (L3) 29 0.520
Solon Query (G4) 30 0.516 31

BM25 Docs. (L3) 31 0.513 30,32

BGE-M3-sparse Gold 32 0.511 31

BGE-EN-ICL None 33 0.507 34

Solon None 34 0.507 33

Solon Docs. (Op) 35 0.502 36

BGE-EN-ICL Docs. (G4) 36 0.501 35

mGTE-dense Gold 37 0.496
mE5 Docs. (G4) 38 0.490 39,40

BM25 Docs. (Op) 39 0.488 38,40,41,42

Retriever Translation MAP

mGTE-sparse Gold 40 0.487 38,39,41,42

BGE-EN-ICL Docs. (L3) 41 0.486 39,40,42

Lajavaness Gold 42 0.486 39,40,41

mE5 Docs. (L3) 43 0.480
Lajavaness None 44 0.472 45

Lajavaness Docs. (G4) 45 0.470 44,46

mGTE-dense Docs. (G4) 46 0.468 45

BGE-M3-sparse Docs. (G4) 47 0.460 48,49,50

mGTE-dense Docs. (L3) 48 0.459 47,49,50

BGE-M3-sparse Query (G4) 49 0.458 47,48,50

Lajavaness Docs. (L3) 50 0.457 47,48,49

Lajavaness Query (G4) 51 0.454
mGTE-dense Docs. (Op) 52 0.452 53

mGTE-dense None 53 0.450 52,54

mE5 Docs. (Op) 54 0.448 53

mGTE-dense Query (G4) 55 0.445
BGE-EN-ICL Query (G4) 56 0.441
BGE-M3-sparse Docs. (L3) 57 0.434 58,59,60

mGTE-sparse Query (G4) 58 0.434 57,59,60

mE5 None 59 0.434 57,58,60

Lajavaness Docs. (Op) 60 0.431 57,58,59

mGTE-sparse Docs. (G4) 61 0.428 62

SPLADE++ Query (G4) 62 0.426 61

BGE-M3-sparse Docs. (Op) 63 0.413 64,65

mE5 Query (G4) 64 0.412 63,65

BGE-EN-ICL Docs. (Op) 65 0.411 63,64

mGTE-sparse Docs. (L3) 66 0.405
mGTE-sparse Docs. (Op) 67 0.401
BM25 Query (G4) 68 0.390
Croissant Gold 69 0.376
Croissant Query (G4) 70 0.365
Croissant None 71 0.358 72

Croissant Docs. (G4) 72 0.357 71

Croissant Docs. (L3) 73 0.345
Croissant Docs. (Op) 74 0.325
SPLADE++ None 75 0.284
BM25 None 76 0.181
BGE-M3-sparse None 77 0.177
mGTE-sparse None 78 0.169
PSQ None 79 0.123

Table 4: 95% bootstrap confidence intervals for MAP, using 1000 resamples. Numbers in subscripts indicate the
95% interval of the system of the row overlaps with the interval of the systems in the subscripts.
G4: GPT-4o-mini. L3: Llama-3.2. Op: OpusMT.

241



Retriever Translation Recall@100

BGE-m-gemma2 Gold 1 0.917
BGE-m-gemma2 Docs. (G4) 2 0.910
BGE-m-gemma2 Docs. (L3) 3 0.908
BGE-m-gemma2 None 4 0.903
NV-Embed-v2 None 5 0.895 6,7,8

BGE-m-gemma2 Query (G4) 6 0.895 5,7,8

BGE-m-gemma2 Docs. (Op) 7 0.894 5,6,8

NV-Embed-v2 Gold 8 0.894 5,6,7,9

NV-Embed-v2 Docs. (G4) 9 0.892 8

NV-Embed-v2 Query (G4) 10 0.889
NV-Embed-v2 Docs. (L3) 11 0.887
PLAID-X Gold 12 0.879
SPLADE++ Gold 13 0.875 14

PLAID-X Docs. (G4) 14 0.874 13

PLAID-X None 15 0.870 16,17

Solon Gold 16 0.870 15,17

PLAID-X Docs. (L3) 17 0.869 15,16

Solon Docs. (G4) 18 0.866 19

NV-Embed-v2 Docs. (Op) 19 0.866 18,20

SPLADE++ Docs. (G4) 20 0.864 19

BGE-EN-ICL Gold 21 0.861 22,23

BM25 Gold 22 0.861 21,23

Solon Docs. (L3) 23 0.860 21,22,24

Solon Query (G4) 24 0.858 23,25,26

BGE-EN-ICL None 25 0.857 24,26

Solon None 26 0.856 24,25,27

PLAID-X Query (G4) 27 0.854 26,28

SPLADE++ Docs. (L3) 28 0.853 27

mGTE-dense Gold 29 0.849 30,31

Lajavaness Gold 30 0.849 29,31

Lajavaness None 31 0.848 29,30

PLAID-X Docs. (Op) 32 0.845 33

Solon Docs. (Op) 33 0.845 32,34

Lajavaness Docs. (G4) 34 0.843 33

mE5 Gold 35 0.840
Lajavaness Query (G4) 36 0.838 37,38,39,40

mGTE-dense Docs. (G4) 37 0.837 36,38,39,40

BGE-EN-ICL Docs. (G4) 38 0.837 36,37,39,40

Lajavaness Docs. (L3) 39 0.836 36,37,38,40,41

Retriever Translation Recall@100

SPLADE++ Docs. (Op) 40 0.836 36,37,38,39,41

mGTE-dense Docs. (L3) 41 0.834 39,40,42

BM25 Docs. (G4) 42 0.832 41,43

BGE-EN-ICL Docs. (L3) 43 0.831 42

mE5 Docs. (G4) 44 0.823
mGTE-dense None 45 0.820 46

mGTE-dense Docs. (Op) 46 0.820 45

mE5 Docs. (L3) 47 0.817 48,49

Lajavaness Docs. (Op) 48 0.817 47,49

BM25 Docs. (L3) 49 0.815 47,48,50

mGTE-dense Query (G4) 50 0.813 49

BGE-EN-ICL Query (G4) 51 0.810
BGE-M3-sparse Gold 52 0.807 53

mGTE-sparse Gold 53 0.805 52

Croissant Query (G4) 54 0.794 55,56

Croissant Gold 55 0.794 54,56

Croissant None 56 0.793 54,55

mE5 Docs. (Op) 57 0.790 58

BM25 Docs. (Op) 58 0.789 57

mE5 None 59 0.784
Croissant Docs. (G4) 60 0.781 61

BGE-M3-sparse Query (G4) 61 0.781 60

BGE-M3-sparse Docs. (G4) 62 0.778
Croissant Docs. (L3) 63 0.773 64

mGTE-sparse Docs. (G4) 64 0.771 63

mGTE-sparse Query (G4) 65 0.763 66,67

BGE-M3-sparse Docs. (L3) 66 0.763 65,67,68

mGTE-sparse Docs. (L3) 67 0.760 65,66,68,69

BGE-EN-ICL Docs. (Op) 68 0.760 66,67,69

mE5 Query (G4) 69 0.760 67,68,70

PSQ None 70 0.757 69

SPLADE++ Query (G4) 71 0.753
Croissant Docs. (Op) 72 0.748
BGE-M3-sparse Docs. (Op) 73 0.738 74

mGTE-sparse Docs. (Op) 74 0.737 73

BM25 Query (G4) 75 0.706
SPLADE++ None 76 0.604
BGE-M3-sparse None 77 0.449
mGTE-sparse None 78 0.443
BM25 None 79 0.417

Table 5: 95% bootstrap confidence intervals for Recall@100, using 1000 resamples. Numbers in subscripts indicate
the 95% interval of the system of the row overlaps with the interval of the systems in the subscripts
G4: GPT-4o-mini. L3: Llama-3.2. Op: OpusMT.
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Abstract

Multilingual language models excel across lan-
guages, yet how they internally encode gram-
matical tense remains largely unclear. We in-
vestigate how decoder-only transformers rep-
resent, transfer, and control tense across eight
typologically diverse languages: English, Ger-
man, French, Italian, Portuguese, Hindi, Span-
ish, and Thai. We construct a synthetic tense-
annotated dataset and combine probing, causal
analysis, feature disentanglement, and model
steering to LLaMA-3.1 8B. We show that tense
emerges as a distinct signal from early layers
and transfers most strongly within the same
language family. Causal tracing reveals that
attention outputs around layer 16 consistently
carry cross-lingually transferable tense infor-
mation. Leveraging sparse autoencoders in this
subspace, we isolate and steer English tense-
related features, improving target-tense predic-
tion accuracy by up to 11% in a downstream
cloze task1 .

1 Introduction

Recent transformer-based large language models
(LLMs) learn high-dimensional contextual embed-
dings that yield state-of-the-art performance on
multilingual tasks. However, these vectors conflate
multiple linguistic features (Jawahar et al., 2019;
Tenney et al., 2019; Belinkov, 2022), and as yet it
remains unclear how these models represent tense
internally. Grammatical tense, how languages mark
past, present, and future, is fundamental to accurate
human communication, reasoning and natural lan-
guage processing (NLP) alike. Linguistic theories,
from Reichenbach’s tripartite model of event, refer-
ence, and speech time (Prior, 1967; Kamp, 1968) to
later typological surveys, show that languages em-
ploy varied morphological and syntactic strategies,
morphological inflections (e.g., “-ed”), auxiliaries

1We release our data and code publicly at https://gith
ub.com/ariunerdenetum/tenseloc

Figure 1: Main findings. Tense resides in a compact, causally
active decoder subspace. (Top) Causal tracing shows that
restoring a small projected subspace recovers tense probabil-
ities across languages. (Bottom) SAE-based steering shows
that scaling interpretable tense features in the residual stream
shifts cloze completions toward the target tense, with minimal
impact on other tenses at moderate scaling. These effects hold
without temporal adverbials, indicating an internalized tense
representation rather than surface-cue reliance.

(e.g., “will”), or adverbial cues (e.g., “Yesterday”),
to situate events temporally.

Despite this foundational importance, the ways
in which multilingual LLMs internally encode
tense remain largely unchartered. Prior probing
work (Li and Wisniewski, 2021) shows that mor-
phological cues can predict tense in cross-lingual
settings (i.e., French and Chinese), and large-scale
studies report that multilingual encoders reliably
encode morphological information including tense
(Acs et al., 2023). Yet, these studies rely on cor-
relation and cannot show whether the identified
subspaces are functionally used by the model.

Along a related line of research, Sparse Au-
toencoders (SAEs) have been proposed to disen-
tangle monosemantic features, hidden dimensions
aligned with human-interpretable concepts (Tem-

243

https://github.com/ariunerdenetum/tenseloc
https://github.com/ariunerdenetum/tenseloc


pleton et al., 2024; Gao et al., 2024). If successful,
SAEs offer not only interpretability but also con-
trol, enabling researchers to steer model outputs by
scaling these features (O’Brien et al., 2024; Härle
et al., 2024). However, their application to gram-
matical tense remains under-explored. In particular,
it is still unknown whether sparse tense features
identified by SAEs, if they exist, are functionally
necessary or sufficient for influencing model pre-
dictions.

In this work, we present a comprehensive anal-
ysis of LLaMA-3.1 8B to examine how it en-
codes and uses grammatical tense across typo-
logically diverse languages, and to determine
whether these encodings are causally necessary,
sufficient, and manipulable via sparse-feature
interventions. We show that targeted interven-
tions on identified subspaces produce predictable
changes in generation accuracy, providing a func-
tional (not merely correlational) account of tense
representation.

We combine probing, causal tracing, pre-trained
SAEs, and targeted residual-stream interventions
grounded in mechanistic interpretability to (i) lo-
cate tense subspaces, (ii) identify tense-carrying
streams and layers (Section 3), (iii) disentangle
human-interpretable, monosemantic tense features
(Section 4), and (iv) test controllability via feature
scaling (Section 5). We show our main findings in
Figure 1.

Our contributions are fourfold:

1. We curate and release a multilingual, tense-
annotated dataset of simple past, present, and
future-tensed sentences in eight languages,
with and without explicit temporal adverbials.

2. We show that linear tense signals are consis-
tent throughout layers, generalize within lan-
guage families in mid-layers, and that a causal
bottleneck in attention-output around layer 16
(i.e., mid-layer) mediates functional use.

3. We extract monosemantic SAE features for
each tense in English and check if those fea-
tures are human interpretable, by validating
their alignment with surface tense markers
(e.g., “did”, “will”).

4. We manipulate the model’s generation output
via SAE features, showing that moderate scal-
ing of target-tense features improves English
cloze accuracy by up to 11% and transfers to
German.

Language UD Treebank
English (en) UD_English-EWT (∗)
German (de) UD_German-GSD (∗)
French (fr) UD_French-GSD (∗)
Italian (it) UD_Italian-ISDT (∗)
Spanish (es) UD_Spanish-GSD (∗)
Portuguese (pt) UD_Portuguese-GSD (∗∗)
Hindi (hi) UD_Hindi-HDTB (∗ ∗ ∗)
Thai (th) UD_Thai-PUD (∗ ∗ ∗)

Table 1: UD corpora and curation methods for eight lan-
guages. Inflection method is denoted by asterisk (“∗”): (∗) -
PatternLite; (∗∗) - mlconjug3; (∗ ∗ ∗) - custom rules.

2 Methods

2.1 Overview of our Approach
By combining probing, causal analysis, and fea-
ture disentanglement, we investigate how complex
grammatical categories are represented in large
multilingual transformers and establish a method-
ology for precise and interpretable control over
temporal generation.

1. Identification and isolation of tense repre-
sentation: We apply layer-wise probes and
causal interventions to hidden activations to
identify which layers and output streams carry
tense signals and which are functionally nec-
essary for tense prediction.

2. Identifying human-interpretable tense fea-
tures: We apply pre-trained SAEs to these
tense-bearing activations to disentangle tense
to monosemantic features that align with
human-readable tense markers (e.g., “did,”
“will”), and validate these features against
probing and causal-tracing results.

3. Steering tense generation: We test whether
SAE-derived features provide causal leverage
by scaling them during inference. Through
controlled interventions in the residual stream,
we evaluate whether such scaling predictably
steers tense generation in downstream cloze
task.

2.2 Dataset
We build a controlled, multilingual, tense-
annotated dataset from Universal Dependencies
(UD) v2 (Consortium, 2021) and focus on lan-
guages that differ in morphological tense mark-
ing (curation in Table 1 and examples in Table 2).
Dataset construction proceeds in two stages: (i) ex-
traction of subject–verb–object clauses (SVO; SOV
for Hindi; see Table 6 in Appendix; (ii) generation
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Lang. Tense no_temp with_temp
E

ng
lis

h
Past We lacked sufficient information of an investiga-

tion.
Yesterday, we lacked sufficient information of an
investigation.

Present We lack sufficient information of an investigation. Usually, we lack sufficient information of an
investigation.

Future We will lack sufficient information of an investiga-
tion.

Tomorrow, we will lack sufficient information of
an investigation.

G
er

m
an Past Sie hatte eine Länge von Metern. Gestern, hatte sie eine Länge von Metern.

Present Sie hat eine Länge von Metern. Normalerweise, hat sie eine Länge von Metern.
Future Sie wird eine Länge von Metern haben. Morgen, wird sie eine Länge von Metern haben.

Table 2: Synthetic sentence examples in past, present, and future tenses for two datasets (“no_temp” and “with_temrep”). Each
sentence is generated via subject–verb–object extraction and verb inflection, producing three tense variants per sentence.

of three tense variants per sentence by automati-
cally inflecting the main verb of the sentence using
language-specific tools and rules.

Verb conjugation is performed with existing li-
braries and targeted rule sets: PatternLite (Smedt
and Daelemans, 2012) for Romance and Germanic
languages, mlconjug3 (Diao, 2023) for Portuguese
(to capture irregular forms), and custom rule-
based scripts for Hindi2 and Thai3 (see Table 1).
Each example is annotated with language, tense,
sentence, main_verb, and verb_index. The full
corpus comprises 18,580 training and 4,646 test
examples. To separate reliance on additional lexi-
cal temporal adverbials from internal verbal tense
representations, we maintain two parallel splits:
no_temp (i.e., temporal adverbials removed) and
with_temp.

We select our target languages (Table 3) to cover
typological diversity in tense marking (e.g., mor-
phological inflection, auxiliaries, adverbials) and
permit evaluation of within-family transfer. A per-
language breakdown of tense-marking strategies
and extraction configurations is provided in the
Appendix C.

Language Family Writing system
English Germanic Latin
German Germanic Latin
French Romance Latin
Italian Romance Latin
Portuguese Romance Latin
Spanish Romance Latin
Hindi Indo-Aryan Devanagari
Thai Kra-Dai Thai script

Table 3: Target languages, families, and scripts. All lan-
guages are Indo-European except Thai.

2https://en.wikibooks.org/wiki/Hindi/Verbs
3https://en.wikipedia.org/wiki/Thai_language

2.3 Model
We use Meta LLaMA-3.1-8B (Meta, 2024), an au-
toregressive decoder-only transformer with byte-
pair encoding. For each input sentence, we ex-
tract the hidden representation of the main-verb
token (excluding auxiliaries) at every layer ℓ =
{0, . . . , 32}. Model weights remain frozen for all
experiments.

Sparse Autoencoders. We use two distinct pre-
trained SAEs for our analyses. (i) We employ
LLaMA Scope (He et al., 2024) TopK-8x SAEs,
which comprise 256 SAE components applied at
each layer and stream (residual, attention, MLP),
trained on the SlimPajama corpus (He et al., 2024).
However, LLaMA Scope exhibits relatively high
reconstruction loss, which restricts steering capa-
bilities. Since it was trained on a primarily English
dataset, we expect extreme sparse English features,
which can limit interpretability and stability when
applied cross-lingually4.

To address these issues, (ii) we train multilin-
gual SAEs of TopK-8x variants (expanding the
hidden space by “factor 8”) on Wikipedia text from
seven languages: English, Spanish, French, In-
donesian, Vietnamese, Chinese, and Japanese. Un-
like LLaMA Scope’s English-centric and highly
sparse representations, our multilingual SAEs are
designed to achieve lower reconstruction loss while
producing sparse, language-agnostic features that
enable more reliable cross-lingual comparison and
steering within the same model architecture.

3 Identification and isolation of tense
representation

We systematically probe how tense is encoded in
LLaMA-3.1 8B, examining which layers and com-

4https://huggingface.co/Yusser/multilingual_l
lama3.1-8B_saes/tree/main
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ponents represent tense and to what extent. To
complement this, we use causal tracing to identify
which layers are functionally responsible for carry-
ing and applying tense signals during generation.
In the body of the paper, we mainly focus on causal
tracing, with additional detailed results on probing
reported in Appendix D.

Causal Tracing of Tense Signals. As a prelim-
inary experiment to ascertain if the tense repre-
sentation is linearly decodable, we perform linear
probing (Hewitt and Manning, 2019; Tenney et al.,
2019; Chi et al., 2020) and find that tense represen-
tation resides throughout all the layers emerging
from early layers and most robust in later layers
(Figure 7 in Appendix D).

However, probing alone only shows where infor-
mation is encoded and thus demonstrates correla-
tion rather than causal influence; to address this, we
test causality by intervening in intermediate activa-
tions to verify that the representations in question
directly drive syntactic tense production. We adopt
the causal tracing method introduced by Meng et al.
(2022), implementing layerwise intervention and
patching in our target model using the Pyvene li-
brary (Wu et al., 2024). In causal tracing, we care
about the activations (i.e., hidden signals) as they
travel through the network, which in our case, are
tense signals.

Prompting. Each of our trials uses a one-shot
prompt consisting of (i) a full sentence in the target
tense and (ii) a truncated version of that sentence
ending just before the verb:

Template

<partial-X-tense-ending-before-verb>

Example

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxed on the mat and she

The truncated sentence is fed to the model, forc-
ing prediction of the verb and exposing how tense
is internally represented. Since verbs may span
multiple subtokens, we compute log-probabilities
until the full sequence is generated.

Subspace Intervention. On this prompting
setup, we apply a clean–corrupt–restore cycle at
each transformer block to identify subspaces crit-
ical for tense encoding. We intervene across four
activation streams S: attention output, MLP acti-

vation, MLP output, and post-residual block out-
put. (i) In the clean step, we record the probability
pgold of the gold next token. (ii) In the corrupt
step, Gaussian noise ϵ ∼ N (0, δ2I) is injected into
tense-bearing embeddings at layer 0. (iii) In the re-
store step, noisy activations at layer ℓ and stream S
are overwritten with their clean counterparts.

We measure recovery as

∆pℓ,Srestored = pℓ,Srestored − pcorrupt

Averaging over prompt variants, noise seeds (Co-
las et al., 2018), and languages yields a recovery
curve with Standard Error of the Mean (±SEM;
Wooldridge, 2023) as a function of layer ℓ. Follow-
ing Meng et al. (2022), we report the indirect effect,
i.e., the change in output probability when a single
state is restored. More details are in Appendix E.

Results. By corrupting and selectively restoring
hidden-state activations, we observe that across
the evaluated languages and tenses the attention-
output stream shows a clear recovery peak around
layer 16 (Figure 2); restoring the projected sub-
space at this layer yields a measurable increase in
target-tense probability. This localizes mid-layers
as functionally necessary for tense prediction, con-
sistent with our preliminary probing results (Figure
7 Appendix D). Per-stream breakdowns are shown
in Figure 12 in Appendix F.

Layer wise analysis indicates a processing pro-
gression: tense information emerges in the MLP
activations near layer 15, is read by attention in
layers 15-18, and then is propagated forward (Fig-
ure 13 in Appendix F). Recovery magnitudes in
the MLP stream are smaller than in attention but
indicate a measurable tense signal. This pattern is
consistent with prior layer-wise intervention stud-
ies on other phenomena (e.g., factual knowledge in
Meng et al. (2022)).

4 Identifying human-interpretable tense
features.

Having identified critical layers ℓ∗ for tense repre-
sentation, we next ask whether features extracted
by SAEs can be used to steer the model’s out-
puts. Specifically, we test whether activating or
inhibiting these features systematically shifts the
predicted verb tense. This allows us to evaluate
not only the interpretability of SAE features but
also their causal influence on generation. To this
end, we use SAEs to discover latent features in the
model’s hidden states that align with grammatical
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Figure 2: layerwise recovery curves ∆prestored(ℓ, S) in each language, faceted by stream and tense in attention output and
MLP activation. High values indicate that restoring the corrupted token activations at that layer and stream most effectively
recovers the correct verb-tense prediction.

tense in English. Our goals are twofold: (i) to
validate that SAE-derived features are consistent
with the probing and causal-tracing results (Figures
2 in Section 3 and 7 in Appendix D), and (ii) to
identify monosemantic tense features that reliably
map to tense labels and localize to the critical trans-
former layers ℓ∗ identified earlier. Experiments
are conducted on our curated datasets no_temp and
with_temp.

Hidden-state extraction. Each sentence is fed in-
dividually through the original LLaMA model via
the HookedTransformer interface in the sae_lens
library (Bloom et al., 2024). We capture the hid-
den activations at the attention, MLP, and residual
output streams for critical layers 15-31 (Figure 2 in
Section 3). We extract the activation vector corre-
sponding to the main verb token in each sentence.

SAE inference. We feed the hidden states to our
trained multilingual SAEs and the LLaMA Scope
SAEs (He et al., 2024) and obtain feature activa-
tions and corresponding decoder weights. We com-
pute the reconstruction mean-squared error (MSE)
on activations to identify which SAE best com-
presses the original signal with minimal loss (Fig-
ure 3). This helps us select the SAE whose low
MSE guarantees fidelity to the model’s internal rep-
resentations (Shu et al., 2025; Engels et al., 2025).

However, since SAEs are trained with two loss
functions for reconstruction and sparsity, there is

a trade between having sparse monosemantic fea-
tures and the steerabilty of the SAE (Bayat et al.,
2025; Härle et al., 2024). Bayat et al. (2025) ad-
dress this problem by adding a reconstruction error
term to the SAE output while we propose training
a new model that preforms better on reconstruction
loss.

To assess how well each SAE isolates tense, we
perform clustering on the encoder outputs at each
layer and calculate the V-measure (vℓ ) (Rosenberg
and Hirschberg, 2007) against true tense labels5.
We flatten the feature activations across all exam-
ples, use K-means with k = 3 (i.e., assumes 3
clusters and equal weight per class) for the past,
present, and future tenses, and compute vℓ for each
layer ℓ (Figure 4).

Extracting tense features at critical layers ℓ∗.
After determining the optimal ℓ∗, we shortlist can-
didate features by intersecting two rankings. First,
we rank each latent dimension based on the co-
sine similarity with static token embeddings from
the model’s unembedding matrix (He et al., 2024),
which relies on the linear representation hypoth-
esis (Nanda, 2023a; Bereska and Gavves, 2024).
Second, we train one-vs-rest linear probes with Lo-
gisticRegression from scikit-learn on the encoder

5V-measure quantifies clustering quality as the harmonic
mean of homogeneity (i.e., each cluster contains only mem-
bers of a single class) and completeness (i.e., all members of
a class are assigned to the same cluster).
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Figure 3: Layerwise MSE trends. Left: LLaMA Scope error grows. Right: Flat, near-zero error with Multilingual SAE.

Figure 4: V-measure by layer for SAEs on corpora with/without temporal cues. Tense features are most distinct at layers 15–16.

outputs to predict temporal states.
Features are then ranked by their absolute probe

weights to identify those that align with tense to-
kens and drive tense classification. However, this
intersection might overlook weaker valid features
or retain spuriously correlated ones if noise is
agreed upon in both rankings. To address this, we
conduct additional experiments in the steering ex-
periment detailed in Section 5.

Results. Our multilingual SAE attains low mean-
squared reconstruction error across layers (Figure
3), supporting ℓ∗ ≈ {15, 16} as the tense-critical
layers where tense distinctions are most sharply
encoded. This underscores the importance of inter-
mediate layers for tense representation and aligns
with our previous results in Figure 2 in Section
3. The intersected SAE feature set corresponds to
human-readable tense markers (e.g., “did,” “does,”
“will”; Figure 5), validating the interpretability of
these features and their suitability for downstream
steering. Additional visualizations appear in Fig-
ures 14 and 15 (Appendix G).

Visualizing high-dimensional SAE activations at
ℓ∗ via UMAP provides an intuitive snapshot of how
the model’s latent space isolates tense information
(Figure 16 in Appendix G).

Baselines
A Original model, no adapter.
B1 LLaMA Scope SAE adapter applied at

ℓ∗, with α = 1.0 (i.e., no scaling).
B2 Our Multilingual SAE adapter applied

at ℓ∗, with α = 1.0 (i.e., no scaling).

Steering
Excitation Multiply each selected feature f by α >

1.0 (positive intervention).
Inhibition Multiply each selected feature f by α <

1.0 (negative intervention).

Table 4: Definitions of baselines and feature-steering settings.

We find that in both SAE frameworks, future
tense forms a distinct cluster while having more
subtle distinctions between past and present tenses.
This pattern suggests that SAEs capture a stronger,
more uniform signal for the future tense than for the
more subtle distinctions between past and present
forms.

5 Steering Tense Generation

After identifying tense-sensitive features, we test
whether these features can be used directly to con-
trol model behavior. Following an adapter-based
steering paradigm Kissane et al. (2024b), we inte-
grate SAE-derived “tense axes” into the residual
stream and scale them during generation (McGrath
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Figure 5: Token–feature heatmaps from the model’s input embeddings at ℓ∗ = 15 (LLaMA Scope). Rows
correspond to features, columns show the top ten tokens by cosine similarity.

.

et al., 2024; O’Brien et al., 2024; Härle et al., 2024).
This mirrors prior steering work on syntactic and
factual pathways and enables fine-grained tense
control without retraining.

Specifically, we evaluate the causal impact of
tense features by steering LLaMA-3.1 8B’s hidden
activations in a cloze task, which is explained be-
low. Using feature scaling, we multiply selected
latent dimensions by a factor α at critical layers ℓ∗,
with α > 1 for excitation and α < 1 for inhibition
on the cloze task.

Cloze task. We use a cloze fill-in-the-blank eval-
uation. Each prompt consists of a temporal cue
(e.g., “Yesterday”), a sentence with a missing verb,
three verb-form options (one per tense), and an
answer placeholder. For instance:

Example

Yesterday, the dog ___ at the mailman.
A) barks
B) barked
C) will bark
Answer:

The model must output the correct option (“A”,
“B”, or “C”). For each tense, we construct a bal-
anced development set of 30 prompts and a test
set of 500. Prompts pair diverse subjects/objects
(e.g., “I”, “we”, “the mailman”) with base verbs
conjugated (including irregulars) into target tenses
using PatternLite (Smedt and Daelemans, 2012);
correct option order is randomized. We run the task
in English and German and report accuracy.

Steering procedure. We compare three baselines
and multiple steering configurations (Table 4).

SAE adapter combinations. We explore SAE
adapters at individual layers (e.g., ℓ∗ = 15 then
ℓ∗ = 16 separately), and both layers combined.
For each combination, we apply the same feature
set (Table 9 in Appendix H) and scaling α across
all prompts in one run. This setup enables us to
observe how scaling the SAE features, either indi-
vidually or jointly across layers, affects the model’s
predictions in the downstream task.

Feature selection and scaling. Our SAE obser-
vation analysis (Section 4) yields a pool of fea-
tures, but we need to ensure that these human-
interpretable features are functional in the down-
stream task. Thus, we perform a grid search on
the dev set to identify which features and α values
work best for each tense. Specifically, for each
candidate feature f in the combined pool, we run
steering on the dev-prompts for each label, record
the change in accuracy relative to baselines, and
retain only those feature combinations that improve
the target-label accuracy. This fine-grained search
allows us to isolate the most effective features and
scaling factors before the final test-set evaluation.
The features determined in this fashion are listed
in Table 9 in Appendix H.

Results. We evaluate cloze-task accuracy on the
test set and find that moderate excitation (α = 5.0)
of tense features reliably enhances correct-tense
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Language Target tense A B1 B2 15 16 Both

- 1.0 1.0 2.0 5.0 0.1 2.0 5.0 0.1 2.0 5.0 0.1

English
Past 0.81 0.13 0.81 0.82 0.84 0.80 0.80 0.82 0.81 0.80 0.80 0.81
Present 0.39 0.09 0.39 0.41 0.36 0.39 0.42 0.48 0.38 0.50 0.38 0.37
Future 0.76 0.14 0.77 0.80 0.85 0.74 0.78 0.81 0.77 0.81 0.77 0.75

German
Past 0.63 - 0.63 0.64 0.68 0.63 0.65 0.65 0.67 0.62 0.63 0.63
Present 0.60 - 0.61 0.62 0.66 0.64 0.71 0.66 0.72 0.60 0.60 0.57
Future 0.44 - 0.43 0.43 0.44 0.42 0.38 0.43 0.36 0.44 0.45 0.45

Table 5: Test-set steering results. Baselines: A = original; B1 = LLaMA Scope SAEs (15–16); B2 = Multilingual SAEs (15–16).
Fℓ∗ ∈ {15, 16,Both} is the Multilingual SAE hook layer(s); subheader shows α (α > 1: excitation). (Highlighted) cells mark
excitation that outperforms the baselines. In inhibition settings, lower accuracy indicates successful downward control.

predictions. Inhibition produces only small accu-
racy reductions, suggesting the model compensates
for partial suppression via redundant or alterna-
tive features. A likely mechanistic explanation is
that tense encoding is partially distributed and over-
lapping, so that inhibiting only a subset of target
features may not have an effect as intended (Mc-
Grath et al., 2024). In line with McGrath et al.
(2024), positive interventions are more effective
than negative ones.

English tense features transfer to German for
past and present (Table 5), but not for future tense.
This finding suggests partial cross-lingual align-
ment and the presence of language-specific atten-
tion heads. We hypothesize that the observed En-
glish → German non-transfer primarily reflects
distinct syntactic encodings (e.g., German verb-
second and verb-final patterns) that alter where
tense cues are represented across layers and com-
ponents. The layer-wise causal differences reported
in Figure 2, Section 3 align with this interpretation.

We do not rule out potential effects of tokeniza-
tion or corpus frequency; confirming whether syn-
tax alone explains the pattern will require targeted
tests such as tokenization normalization, auxiliary
alignment interventions, and controlled frequency
experiments, which we leave for future work.

Moreover, since SAE features can partially over-
lap semantically, interventions on one tense may
also influence others. We present these cross-label
effects in Tables 10 and 11 in Appendix H.

6 Conclusion

We present a four-phase diagnostic pipeline: prob-
ing, causal tracing, SAE disentanglement, and
steering that links where tense information is lin-
early readable in latent representations to where
it is functionally necessary and controllable. Lin-

ear probes show that LLaMA-3.1 8B (Meta, 2024)
internally represents simple past, present, and fu-
ture tenses in low-dimensional subspaces that are
detectable across layers; with crosslingual transfer
peaking in layers 20 to 30, suggesting a language
agnostic encoding. Causal interventions (Meng
et al., 2022) localize a functionally necessary sub-
space at around layers 15-16, primarily within the
attention stream (with contributions from MLP ac-
tivations and outputs), and restoring this small sub-
space recovers tense probability.

Applying SAEs (Kissane et al., 2024b; O’Brien
et al., 2024; Härle et al., 2024) to activations at lay-
ers 15-16 yields monosemantic tense features that
align with human-readable tense markers. Scaling
these features in the residual stream systematically
shifts cloze completions toward the target tense, im-
proving correct-tense accuracy by up to 11% points
with modest degradation. Crucially, the effect per-
sists even without temporal adverbs (for example,
“yesterday”), showing that the model internally en-
codes tense rather than relying on surface cues.
English derived features transfer to German past
and present but not future tense, suggesting that the
model captures an abstract crosslingual temporal
structure, though some future constructions may
remain language specific or data limited.

To our knowledge, this is the first evidence in a
multilingual LLM of a causally active, language
agnostic tense subspace whose disentangled, inter-
pretable features can steer generation. The finding
holds across eight languages for simple tense forms,
but broader generalization to richer aspectual pat-
terns, other model families, and naturalistic con-
texts remains open. Future work should extend this
framework to more complex temporal systems and
finer grained circuit level analyses of cross-lingual
temporal representation.

250



Limitations

This study operates in a controlled diagnostic set-
ting that enables causal intervention but may limit
generalization. Our experiments rely on automati-
cally inflected sentences from UD treebanks, which
simplify discourse context and may not mirror nat-
ural tense use. Rule-based inflections for Hindi
and Thai add minor noise. We analyze only one
decoder-family model and focus on basic tense
forms—past, present, and future. While our inter-
ventions reveal clear mechanistic signals, we do
not claim generalization to richer discourse con-
texts, morphologically complex or low-resource
languages, other architectures, or compound aspec-
tual tenses.

Future work should extend to human-annotated,
naturalistic corpora with explicit tense labels, repli-
cate analyses across architectures and tokenizers,
and apply finer-grained causal probes and steering
methods. Evaluating longer contexts and down-
stream tasks will further test whether the recovered
features capture robust, generalizable temporal rep-
resentations.
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A Ethical Considerations

This work investigates how multilingual large lan-
guage models represent and transfer grammatical
tense across languages through causal and inter-
pretability analyses. All experiments were con-
ducted on open-weight models and publicly avail-
able datasets, including synthetically generated,
tense-annotated corpora derived from existing tree-
banks. No human or private data were used. All
model and data artifacts were used in full compli-
ance with their respective licenses.

B Related work

This section addresses our study within intercon-
nected research areas: linguistic theory of tense,
interpretability methods used in our work, and cur-
rent progress of linguistic analysis in mechanistic
interpretability.

B.1 Tense in linguistics
Early linguistic work characterizes tense as the
grammatical marking that locates an event in time.
From a syntactic perspective, tense operates as a
feature on a clause head that triggers morphological
inflections (Partee, 1973). In contrast, semantic

frameworks treat tense morphemes as operators that
shift a reference time relative to the utterance time
(Dahl and Velupillai, 2011). A further distinction
arises between absolute tense, which ties events
to the moment of speaking (e.g., simple past vs.
present), and relative tense, which relates one event
time to another (e.g., perfect or pluperfect) (Comrie,
1985).

B.2 Mechanistic interpretability
Superposition hypothesis. Superposition posits
that internal vectors store more distinct features
than their dimensionality by overlapping feature di-
rections. Overlap causes crosstalk when recovering
a single feature, because directions are not all or-
thogonal. This cost is acceptable when features are
sparse (i.e., few active features per input) and when
nonlinear readouts or learned decoders excite true
signals and inhibit overlap (Bereska and Gavves,
2024; Olah, 2023).

Linear representation hypothesis. This hypoth-
esis proposes that neural networks often depict
high-level features as linear trajectories within
the activation space (Bereska and Gavves, 2024).
Linear representation can ease the comprehension
and adjustment of neural network representations
(Nanda, 2023b).

Relevant studies. Mechanistic interpretability
has progressed through complementary observa-
tion and intervention methods. Linear and struc-
tural probes (Tenney et al., 2019; Hewitt and Man-
ning, 2019; Jawahar et al., 2019) reveal that trans-
former layers encode syntactic and semantic cat-
egories. Multilingual probing of mBERT and
XLM-R shows recoverable tense signals across
dozens of languages (Acs et al., 2023; Li and Wis-
niewski, 2021). However, high-capacity probes
risk spurious correlations and probing accuracy
can be misleading (Hewitt and Manning, 2019;
Belinkov, 2022). Consistent with Tenney et al.
(2019) and Jawahar et al. (2019), we expect syn-
tax is represented in early layers and higher-level
abstractions in mid layers. Temporal semantics
research—timeline inference and event ordering
corpora (UzZaman et al., 2012; Yahiaoui and
Atanassova, 2023)—and aspectual probes (Methen-
iti et al., 2022) target factual time relations rather
than internal tense morphology. Causal tracing
techniques (Abnar and Zuidema, 2020; Meng et al.,
2022; Zhang and Nanda, 2024), have begun to link
hidden activations to model behaviors, but have not
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yet been applied to tense. Finally, SAEs demon-
strate that enforcing sparsity extracts monoseman-
tic units for linguistic features (Bricken et al.,
2023), offering a promising path to disentangle
tense from other representations. Unlike prior work
on encoders (e.g., mBERT probes), our work uni-
fies these strands—probing, causal analysis, and
SAE disentanglement—to fill the current gap in un-
derstanding and controlling tense in decoder-only
multilingual transformers.

C Tense Typologies

We survey the target languages in terms of family,
script, word order, and tense marking strategies:

English (Indo-European, Germanic; Latin al-
phabet; SVO): English has a strong past/non-
past distinction (Parsons, 2002). The simple past
is marked by the suffix “-ed” (i.e., plus irregular
forms), and the present is unmarked or marked
by “-s” for a third person. Future time is typi-
cally expressed periphrastically using auxiliaries
(e.g., “will”, “going to”) rather than an inflection
(Parsons, 2002). Thus, English encodes tense mor-
phologically for past and present but uses modal
auxiliaries for future.

German (Indo-European, Germanic; Latin
alphabet; Verb-Second order): German also
marks tense morphologically. Present-tense verb
forms (e.g., geht (“war”)) contrast with a simple
past (i.e., Präteritum) typically marked by suffixes
or vowel ablaut (e.g., ging (“went”)). German
uses auxiliaries (e.g., “werden”, “sein”, “haben”)
to form periphrastic tenses, including the future
and perfect. In subordinate clauses, it can use wird
gehen (“will go”) as a future. Overall, German has
a two-way distinction (i.e., present vs. past) with
optional future auxiliaries.

French (Indo-European, Romance; Latin alpha-
bet; SVO): French has rich tense inflection on
verbs. The present tense (e.g., parle (“speaks”))
is marked, as is the simple past (i.e., passé sim-
ple, e.g. parla) and imperfect (e.g., parlait). The
“passé composé” uses “avoir/être” + past participle
to express past. French also has a true future suffix
(e.g., “-ra”, as in parlera (“will speak”)) (Dryer
and Haspelmath, 2013). Thus, tense is marked by
a variety of suffixes and auxiliary constructions.

Italian (Indo-European, Romance; Latin al-
phabet; SVO): Italian, like other Romance lan-

guages, uses inflectional suffixes to mark tense. For
example, “-ò” and “-ai” in parlerò (“I will speak”)
signal future tense, while “-ai” or “-i” mark past
forms. The present tense is marked by suffixes
on the verb stem (e.g., “-o”, “-i”, “-a”, “-iamo”,
etc.). Compound tenses (i.e., passato prossimo) use
“avere/essere” + participle for past reference. Thus,
Italian distinguishes past, present, and future with
a mix of suffixal and auxiliary marking.

Portuguese (Indo-European, Romance; Latin al-
phabet; SVO): Portuguese similarly marks tense
on verbs. Present tense forms (e.g., falo (“speak”))
contrast with a past preterite (e.g., falei) and a fu-
ture suffix (e.g., falarei). There is also an imperfect
(e.g., falava). The future tense can be formed an-
alytically (i.e., using auxiliary “ir” + infinitive) or
synthetically (i.e., “-rei” endings). Overall, Por-
tuguese verb morphology encodes multiple tense
distinctions.

Spanish (Indo-European, Romance; Latin al-
phabet; SVO): Spanish marks tense on verbs
with multiple inflections. The simple past (i.e.,
preterite, e.g., hablé (“speak”)) and imperfect (e.g.,
hablaba) are distinct suffixes, as are present (e.g.,
hablo) and future (e.g., hablaré) forms (Dryer and
Haspelmath, 2013). The future tense is a suffix
(i.e., usually “-ré”) attached to the infinitive. Com-
pound tenses use auxiliaries (i.e., “haber” + partici-
ple). Overall, Spanish has separate affixes for past,
present, and future on the verb.

Hindi (Indo-European, Indo-Aryan; Devana-
gari script; SOV): Hindi’s tenses are typically
marked by verb inflections and auxiliaries. The
simple present and past tenses are distinguished
by different participial stems and agreement. For
example, “-taa/-ti” suffixes for present continu-
ous vs. “-yaa” participles for perfective past
(e.g., khaataa/khaatii (“eating”), khaayaa/khaayi
(“ate”)). Hindi does not have a grammatical future
inflection on the verb itself. Instead, periphrastic fu-
tures are formed with modal auxiliaries (e.g., hoga
(“will be”)) or with the verb nikalnaa (“to leave”)
implying future intent. Thus, Hindi effectively con-
trasts past vs. non-past, with future marked by
particles or context.

Thai (Kra-Dai, Tai branch; Thai script; SVO):
Thai is often described as a tenseless language.
Thai verbs do not inflect for tense. Instead, time
reference is conveyed by aspect markers and tem-
poral adverbs. For example, particles such as láew

254



Language NP Modifiers VP Auxiliaries PP Modifiers
en, de, fr, it, pt, es det, amod, compound, poss, nummod aux, aux:pass, compound:prt det, amod, compound
hi det, amod, compound, poss, nummod aux, aux:pass, compound:prt det, amod, compound
th det, amod, compound, nummod aux, aux:pass, compound:prt det, amod, compound

Table 6: Simplified dependency-modifier configuration used for NP, VP, and PP extraction per language.

(“already”) or jà (“will”) and context words (e.g.,
“yesterday” or “tomorrow”) indicate past or future
tense. Typologically, Thai lacks any inflectional
future tense. It falls in the Southeast Asian area
that does not mark future morphologically (Dryer
and Haspelmath, 2013).

D Preliminary Linear Probing

We check if tense information is stored linearly
by training classifiers on the model’s hidden states.
We follow the probing framework of Hewitt and
Manning (2019) for layer-wise analysis and the
multilingual transfer evaluation of Chi et al. (2020).
We conduct a series of experiments to assess in-
ternal tense representation after having observed
strong diagonal accuracy from final layer (Figure
6). We utilize layerwise probes, where we train a
separate probe for each layer on the dataset labeled
as “no_temp” with a learning rate set at 1e-3.

ŷ = softmax(Wℓhℓ(x)+b), L = H(ŷ, y)+λ∥W∥1
where y ∈ {past, present, future}, x is the main
verb in the input and λ ∈ {0.01, 0.003, 0.001}.

Figure 6: Confusion matrix of classification perfor-
mance at the final layer of Llama-3.1 8B. Rows are true
tense labels, and columns are predicted labels. Strong
diagonal values relative to the off-diagonal values con-
firm linear separability. It is measured on the main verb
token (i.e., can be multiple tokens) embeddings.

D.1 Cross-lingual transfer
We adapt the layerwise paradigm to assess
language-agnostic encoding by following the

framework established by Chi et al. (2020) conduct-
ing two strategies: direct and hold-one-out transfer.
This approach tests whether grammatical tense is
encoded in a language-agnostic subspace or vary
by language morphology. High transfer accuracy
indicates a shared tense representation, while low
accuracy suggests language-specific patterns. In
the direct transfer approach, we train our model on
one language and then test it on other languages,
and in the hold-one-out method, we train the model
on seven other languages while reserving one lan-
guage for testing.

D.2 Results

Figure 7: Probes trained with L1 regularization (λ =
0.01, 0.003, 0.001) show that tense is recoverable from
early layers under weak regularization. Stronger penal-
ties delay emergence to later layers, indicating that tense
develops in early layers but strengthens in deeper ones,
aligning with previous findings on syntactic feature
emergence (Kissane et al., 2024a; Tenney et al., 2019).
Early detection may also relate to morphology.

Figure 8: Direct-transfer performance across languages.
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Figure 9: Direct-transfer accuracy by layer. Each subplot shows, for a fixed train language, the probe’s accuracy
on all test languages at each layer. Languages within the same family transfer more effectively to one another,
with peak transfer performance in the mid-to-late layers. Romance languages exhibit strong within-group transfer,
although French yields the weakest performance among them. Hindi and Thai show poor cross-transfer from
most other languages, indicating distinct tense encoding, likely attributable to their divergent typology, writing
systems, and language families. English and German nonetheless transfer moderately well into Hindi and Thai,
possibly because auxiliary constructions in Hindi and future-tense markers in Thai partially align with Germanic
and Romance patterns.
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Figure 10: Direct transfer performance broken down into tense at layer 25, where the transfer performance peaks.
Transfer between languages within the same family is noticeable, while self-transfer is also distinguishable.

Figure 11: Hold-one-out transfer probing performance across layers and languages, broken down by tense. A single
hyperplane trained on all languages except the held-out target still separates tense above chance for most languages,
signifying language-agnostic features—past tense yields the highest hold-out F1-macro across all held-out languages,
with English highest and German lowest. In the Romance group, only the past tense remains robust; present and
future collapse toward chance, especially for French. Hindi’s past/future peaks in late layers; present emerges earlier.
Thai’s past-tense transfer peaks mid-layers; present/future remain near chance.
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Language Past Present Future
English Lily the cat relaxed on the mat

and she ate an apple.
Lily the cat relaxes on the mat
and she eats an apple.

Lily the cat will relax on the mat
and she will eat an apple.

German Lily die Katze entspannte sich
auf der Matte und sie aß einen
Apfel.

Lily die Katze entspannt sich
auf der Matte und sie isst einen
Apfel.

Lily die Katze wird sich
entspannen auf der Matte und
sie wird einen Apfel essen.

Table 7: Semantically minimal, tense-varying template example in English and German.

E Causal Tracing

E.1 Prompt design
We construct semantically minimal sentence
frames that differ only in verbal inflection (i.e.,
past, present, or future) across eight languages.

Few-shot. We create prompts with two identical
full-tense sentences separated by a distractor of
alternate tense. We inject noise in the verb positions
of the first and last sentences to assess whether
causal tracing method can flip the generated tense.

Template

<full-X-tense-sentence>
<full-Y-tense-sentence>
<partial-X-tense-ending-before-verb>

Example

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxes on the mat and she eats an apple.
Lily the cat relaxed on the mat and she

Original generation: ate. After noise injection: eats.

One-shot. To confirm cross-language validity,
we generate five variants per tense by varying
subjects (e.g., “I,” “Aki the dog”), verbs, and ob-
jects while preserving argument structure. English
templates were manually drafted, translated us-
ing Google Translate, and validated through back-
translation. Table 7 shows representative templates.

Template

<full-X-tense-sentence>
<partial-X-tense-ending-before-verb>

Example

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxed on the mat and she

Original generation: ate. After noise injection: is.

E.2 Experimental setup
1. Prompts. Five prompts per tense and lan-

guage, varying subject/pronoun and verb-
object lexemes.

2. Noise Seeds. Mnoise = 5, seeds to ensure in-
dependent Gaussian draws for reproducibility.

3. Window Size. Window = 3, restoring layer
ℓ activations at some token positions with its
previous and next layers.

4. Streams. Four sub-components per layer: at-
tention output, MLP activation, MLP output,
block output.

Restoration positions In the few-shot prompt
experiment, we perform restoration on all token
positions. Based on the results, we decided to focus
on critical token positions where restoration is most
effective in the one-shot experiment (Table 8).

Position Description
<|begin_of_text|>
(pos 0)

The very first token embedding.

Pre-verb The token immediately preceding
the first main-verb subtoken.

Tense-bearing
subtokens

All subtokens of the auxiliary +
main-verb.

Final token The last token in the “partial
. . . ending” line.

Table 8: Critical token positions.

E.3 Evaluation metrics
We interpret higher ∆prestored values as more sub-
stantial evidence that a given layer and stream are
critical for tense generation. We report means
with Standard Error of Mean (SEM) across dif-
ferent seeds. The Standard Error of the Mean
(SEM) quantifies the precision with which we
have estimated the true mean of ∆prestored across
noise-seed replicates. Formally, if {xi}Mi=1 are
the ∆prestored values for M independent seeds,
and x = 1

MΣixi with sample standard deviation√
1

M−1Σi (xi − x)2, then

SEM =
s√
M
. (1)
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F Layer-wise Recovery Analysis

Figure 12: layerwise recovery curves ∆prestored(ℓ, S) in each language, faceted by stream and tense. High values
indicate that restoring the corrupted token activations at that layer and stream most effectively recovers the correct
verb-tense prediction.
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Figure 13: Causal analysis for each tense, averaging across language results.
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G Layer-specific Analysis

(a) LLamaScope SAE

(b) Multilingual SAE

Figure 14: Token–feature heatmaps at layers 15–16 (ℓ∗) for LLaMA Scope and Multilingual SAEs. Each heatmap
shows cosine similarity between SAE-derived feature vectors (from the decoder’s tense-encoding subspace) and
the model’s output embeddings. Rows are features; columns list the top ten tokens by similarity. LLaMA
Scope features show clear past cues (e.g., “yesterday,” “earlier”) and future cues (e.g., “tomorrow,” “soon”), while
Multilingual SAE features align more weakly. A corresponding visualization using the model’s input embeddings is
shown in Figure 15.

H Model Steering
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(a) LLamaScope SAE

(b) Multilingual SAE

Figure 15: Token–feature heatmaps using model’s input embedding matrix at layers 15 and 16 for LLaMA Scope
and multilingual SAEs.
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(a) LLamaScope SAE (b) Multilingual SAE

Figure 16: 2D UMAP of SAE activations at layer 16 for both Multilingual and LLaMA Scope frameworks. “Future”
examples form a tight, distinct cluster, while “past” and “present” intermingle, reflecting stronger, more consistent
signals for future tense due to the invariant token “will.” By contrast, past tense relies on irregular forms or the
“-ed” suffix, and present alternates between the bare verb and “-s,” producing overlapping activations. This pattern
highlights that steering future tense is more straightforward, whereas disentangling past versus present remains
challenging due to subtle morphological distinctions and semantic overlap.

Layer Past Present Future

Feature α Feature α Feature α

15

15316 10.0 5112 4.0 702 1.5
23112 7.0 7890 8.0 5112 1.5
28855 10.0 15706 6.0 7890 3.0
30777 9.0 26492 10.0 12722 8.0

30777 7.0 15316 7.0
15706 2.0
23112 5.0
26492 1.5
28855 2.0
30777 1.5
32090 1.5

16

1221 8.0 3638 4.0 1221 3.0
3638 7.0 5215 6.0 3638 2.0

7895 9.0 3689 5.0
9951 7.0 5215 8.0

23504 8.0 6922 1.5
25624 3.0 7895 9.0

9951 1.5
12508 1.5
17716 1.5
23504 1.5
25624 4.0
28602 2.0
32043 7.0

Table 9: Tense features identified from multilingual SAEs at layers 15 and 16. For each target tense, we report
feature indices and their optimal scaling factor α on the dev set (30 prompts per tense). Higher α indicates a weaker
baseline signal requiring stronger scaling, while lower α reflects robust intrinsic tense encoding. Both tense-specific
and tense-agnostic features are included.
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Setting Fℓ∗ α Past features Present features Future features

Pas Pre Fut Pas Pre Fut Pas Pre Fut

Baseline
A — 0.81 0.39 0.76 0.81 0.39 0.76 0.81 0.39 0.76
B1 1.0 0.13 0.09 0.14 0.13 0.09 0.14 0.13 0.09 0.14
B2 1.0 0.81 0.39 0.77 0.81 0.39 0.77 0.81 0.39 0.77

α > 1

15 2.0 0.82 0.40 0.80 0.80 0.41 0.78 0.81 0.40 0.79
5.0 0.84 0.36 0.85 0.77 0.42 0.81 0.83 0.38 0.87

16 2.0 0.81 0.40 0.78 0.80 0.42 0.77 0.80 0.41 0.78
5.0 0.82 0.35 0.81 0.77 0.48 0.78 0.77 0.45 0.79

Both 2.0 0.82 0.39 0.81 0.79 0.42 0.78 0.80 0.41 0.81
5.0 0.80 0.36 0.84 0.72 0.50 0.81 0.76 0.48 0.82

α < 1

15 0.1 0.80 0.40 0.74 0.82 0.39 0.76 0.80 0.39 0.75
0.0 0.79 0.40 0.74 0.82 0.39 0.76 0.80 0.39 0.75

16 0.1 0.81 0.39 0.76 0.81 0.38 0.77 0.81 0.38 0.77
0.0 0.81 0.39 0.76 0.81 0.38 0.78 0.81 0.38 0.77

Both 0.1 0.78 0.40 0.73 0.81 0.37 0.76 0.81 0.40 0.75
0.0 0.78 0.40 0.73 0.81 0.37 0.76 0.81 0.39 0.75

Table 10: Model steering results on English test set. Baseline A: Original model; Baseline B1: LLaMA Scope SAEs
at layers 15, 16; Baseline B2: Multilingual SAEs at layers 15, 16; Fℓ∗ denotes the layer(s) where SAE adaptors
are applied during inference, and α is the scaling factor. Feature columns report accuracy when these features are
scaled. (Highlighted) cells mark excitation that outperforms the baselines. In inhibition settings, lower accuracy
indicates successful downward control.

Setting Fℓ∗ α Past features Present features Future features

Pas Pre Fut Pas Pre Fut Pas Pre Fut

Baseline A — 0.63 0.60 0.44 0.63 0.60 0.44 0.63 0.60 0.44
B 1.0 0.63 0.61 0.43 0.63 0.61 0.43 0.63 0.61 0.43

α > 1

15 2.0 0.64 0.63 0.44 0.63 0.62 0.44 0.64 0.64 0.43
5.0 0.68 0.65 0.42 0.61 0.66 0.42 0.66 0.64 0.44

16 2.0 0.63 0.62 0.43 0.62 0.64 0.42 0.61 0.63 0.42
5.0 0.65 0.65 0.42 0.57 0.71 0.40 0.58 0.68 0.38

Both 2.0 0.65 0.65 0.44 0.62 0.66 0.42 0.63 0.66 0.43
5.0 0.67 0.59 0.44 0.53 0.72 0.38 0.56 0.69 0.36

α < 1

15 0.1 0.62 0.59 0.44 0.64 0.60 0.44 0.63 0.58 0.44
0.0 0.62 0.58 0.44 0.64 0.59 0.44 0.63 0.58 0.44

16 0.1 0.63 0.59 0.44 0.64 0.60 0.45 0.64 0.59 0.45
0.0 0.63 0.59 0.44 0.64 0.59 0.45 0.64 0.59 0.45

Both 0.1 0.63 0.58 0.44 0.64 0.57 0.46 0.64 0.57 0.45
0.0 0.63 0.58 0.44 0.65 0.57 0.46 0.64 0.57 0.45

Table 11: Model steering results on German test set using the tense features found in English dataset. Baseline A:
Original model; Baseline B: Multilingual SAEs at layers 15, 16; Fℓ∗ indicates the layer indices where SAE adaptors
are hooked to the model during inference. α is the scaling factor. Feature columns report accuracy after scaling.
(Highlighted) cells mark excitation that outperforms the baselines. In inhibition settings, lower accuracy indicates

successful downward control.
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Abstract
We propose an unsupervised method to dis-
entangle sentence embeddings from multilin-
gual sentence encoders into language-specific
and language-agnostic representations.1 Such
language-agnostic representations distilled by
our method can estimate cross-lingual semantic
sentence similarity by cosine similarity. Previ-
ous studies have trained individual extractors to
distill each language-specific and -agnostic rep-
resentation. This approach suffers from miss-
ing information resulting in the original sen-
tence embedding not being fully reconstructed
from both language-specific and -agnostic rep-
resentations; this leads to performance degrada-
tion in estimating cross-lingual sentence simi-
larity. We only train the extractor for language-
agnostic representations and treat language-
specific representations as differences from the
original sentence embedding; in this way, there
is no missing information. Experimental results
for both tasks, quality estimation of machine
translation and cross-lingual sentence similar-
ity estimation, show that our proposed method
outperforms existing unsupervised methods.

1 Introduction

Estimating semantic textual similarity (STS) (Cer
et al., 2017) is one of the fundamental techniques
in natural language processing (NLP). This tech-
nology has many potential applications, including
information retrieval (Bajaj et al., 2016) and auto-
matic evaluation of NLP-generated sentences (Shi-
manaka et al., 2018). In recent years, this task
has commonly been based on Transformer-based
sentence encoders (Reimers and Gurevych, 2019;
Wang et al., 2022) that are pre-trained in objec-
tives such as masked language modeling (Devlin
et al., 2019) and contrastive learning (Gao et al.,
2021). These techniques are generalized across
languages (K et al., 2020), and multilingual sen-
tence encoders (Reimers and Gurevych, 2020; Feng

1https://github.com/EhimeNLP/SEED

●

▲
▲

Meaning embeddings in English
Meaning embeddings in Nepali●
Language embeddings in English
Language embeddings in Nepali

Figure 1: Visualization of embeddings in QE task by
principal component analysis. Two colors represent the
source and target languages, and two markers repre-
sent meaning and language embeddings. Our proposed
method forms one cluster of language-agnostic mean-
ing embeddings on the left side and two clusters of
language-specific embeddings on the right side.

et al., 2022; Wang et al., 2024) pre-trained in var-
ious languages are also being actively developed
for applications such as quality estimation (QE)
of machine translation (Specia et al., 2018) and
cross-lingual information retrieval (Nie, 2010).

However, since sentence embeddings from mul-
tilingual sentence encoders are dominated by lan-
guage rather than meaning (Tiyajamorn et al.,
2021), they suffer from accurate estimation of
cross-lingual sentence similarity. Previous stud-
ies (Tiyajamorn et al., 2021; Kuroda et al., 2022;
Ki et al., 2024) have disentangled sentence embed-
dings from multilingual sentence encoders into em-
beddings that represent language-specific informa-
tion (language embedding) and language-agnostic
information (meaning embedding), and used the
latter meaning embeddings for cross-lingual sen-
tence similarity estimation. They have disentangled
sentence embeddings using both extractors for lan-
guage embeddings and for meaning embeddings,
however, this approach may result in information
missing during the disentanglement process.
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Figure 2: Distilling meaning embeddings from multilingual sentence embeddings. The four MLPs share weights.

To address this issue, we train only an extractor
for meaning embeddings and treat language embed-
dings as the difference between original sentence
embeddings and meaning embeddings. Since miss-
ing information cannot happen in this architecture,
we expect to more accurately distill meaning em-
beddings from multilingual sentence encoders. Ex-
perimental results on QE in WMT20 (Specia et al.,
2020) and cross-lingual STS in SemEval-2017 (Cer
et al., 2017) show that the proposed method outper-
forms previous unsupervised methods (Tiyajamorn
et al., 2021; Kuroda et al., 2022) and more accu-
rately distills language-agnostic embeddings.

2 Proposed Method

Our proposed method disentangles sentence em-
beddings e ∈ Rd from a multilingual sentence
encoder into language embeddings representing
language-specific information and meaning embed-
dings representing language-agnostic information
using a multi-layer perceptron (MLP). Note that d
is the dimension of sentence embeddings.

Previous studies (Tiyajamorn et al., 2021;
Kuroda et al., 2022) used two MLPs (MLPM

and MLPL) to distill meaning embeddings êM =
MLPM (e) and language embeddings êL =
MLPL(e) independently. MLPs are trained by
adding these embeddings together to reconstruct
the original sentence embeddings, however, com-
plete reconstruction from independently extracted
embeddings is difficult, and some information is
lost. In contrast, the proposed method treats lan-
guage embeddings as the difference between origi-
nal sentence embeddings and meaning embeddings,
allowing the addition of language and meaning em-
beddings to reconstruct the original sentence em-
beddings completely. We use only one MLP to

extract meaning embeddings, as follows.

êM = MLP(e) (1)

êL = e− êM (2)

As shown in Figure 2, our extractor for mean-
ing embeddings is trained in a multi-task learning
manner based on the following three loss functions.

L = LM + LL + LC (3)

We train the MLP with bilingual parallel corpora.
Figure 2 shows how the MLP is trained by com-
bining loss functions based on cosine similarity
between embeddings. Meaning embedding ŝM ,
language embedding ŝL, and others are disentan-
gled from the sentence embeddings s and t from
the multilingual sentence encoder for bilingual sen-
tences consisting of a sentence in the source lan-
guage s and a sentence in the target language t. As
in previous study (Tiyajamorn et al., 2021), sen-
tences s′ and t′, randomly selected from the source
and target languages, respectively, are also used for
training supplementally.

2.1 Loss for Language-agnostic Embeddings

Between bilingual sentences (s, t), the meaning
embeddings ŝM and t̂M should be similar, and
between randomly selected sentences (s, s′) and
(t, t′), they should be dissimilar. To train them, we
define the following loss functions.

LM = 2 (1− cos(ŝM , t̂M ))

+ max(0, cos(ŝM , ŝ
′
M ))

+ max(0, cos(t̂M , t̂
′
M ))

(4)

Note that the first term is weighted to balance the
positive and negative terms.
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Model en-de en-zh ro-en et-en ne-en si-en Avg.

mE5-base

Baseline 0.003 0.074 0.674 0.443 0.486 0.463 0.357
Mean Centering 0.079 0.141 0.729 0.445 0.544 0.507 0.408
DREAM 0.120 0.213 0.738 0.499 0.527 0.515 0.435
MEAT 0.119 0.209 0.735 0.500 0.533 0.514 0.435
Ours 0.116 0.190 0.741 0.513 0.543 0.525 0.438

mE5-large

Baseline 0.020 0.100 0.734 0.556 0.538 0.493 0.407
Mean Centering 0.151 0.184 0.779 0.583 0.592 0.544 0.472
DREAM 0.172 0.257 0.783 0.629 0.584 0.541 0.494
MEAT 0.117 0.186 0.751 0.610 0.541 0.499 0.451
Ours 0.175 0.249 0.782 0.636 0.591 0.544 0.496

mE5-large-instruct

Baseline 0.143 0.203 0.767 0.590 0.549 0.422 0.446
Mean Centering 0.212 0.261 0.766 0.576 0.589 0.505 0.485
DREAM 0.212 0.290 0.765 0.595 0.585 0.499 0.491
MEAT 0.215 0.283 0.757 0.607 0.563 0.476 0.484
Ours 0.215 0.284 0.762 0.611 0.598 0.515 0.498

Table 1: Pearson correlation coefficients evaluated on WMT20 QE task.

2.2 Loss for Language-specific Embeddings
Language embeddings (ŝL, t̂L) should be similar
for (s, s′) and (t, t′) within the same language. To
train them, we define the following loss functions.

LL = (1− cos(ŝL, ŝ
′
L)) + (1− cos(t̂L, t̂

′
L)) (5)

2.3 Loss for Both Language-specific and
Language-agnostic Embeddings

Since the purpose of this method is to disentangle
original sentence embeddings into meaning and
language embeddings, it is desirable that these em-
beddings are not similar. In addition, the original
sentence embedding should be reconstructed by
adding meaning and language embeddings. There-
fore, when language embeddings are swapped be-
tween (s, s′) and (t, t′) within the same language,
or when meaning embeddings are swapped be-
tween (s, t) in the bilingual sentence, we want
to reconstruct the original sentence embedding by
adding meaning and language embeddings. To
train them, we define the following loss functions.

LC = max(0, cos(ŝM , ŝL)) + max(0, cos(t̂M , t̂L))

+ 2− cos(ŝ, ŝM + ŝ′L)− cos(t̂, t̂M + t̂′L)

+ 2− cos(ŝ, t̂M + ŝL)− cos(t̂, ŝM + t̂L)

(6)

3 Evaluation

We evaluate the performance of the proposed
method on the QE task in WMT20 (Specia

QE STS

en-de, en-zh 1,000 k en-it, en-tr 500 k
ro-en, et-en 200 k en-de, en-es, en-fr 200 k
ne-en, si-en 50 k en-ar, en-nl 30 k

Table 2: Number of sentence pairs for each language
pair in the training dataset. From each of these, 10% of
the sentence pairs are used for validation.

QE STS

LaBSE 0.396 0.734
LaBSE + Ours 0.482 0.753

mE5 0.446 0.826
mE5 + Ours 0.498 0.832

Table 3: Summary of experimental results.

et al., 2020) and on the cross-lingual STS task in
SemEval-2017 (Cer et al., 2017). Both tasks esti-
mate the similarity between sentences, the former
between an input sentence in the source language
and a machine-translated sentence in the target lan-
guage, and the latter between two sentences in dif-
ferent languages. Following the official evaluation
metrics, we used Pearson correlation.

3.1 Setting
Data The WMT20 QE task includes six lan-
guage pairs. English to German (en-de), English
to Chinese (en-zh), Romanian to English (ro-en),
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Model en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

mE5-base

Baseline 0.726 0.809 0.687 0.772 0.802 0.811 0.799 0.772
Mean Centering 0.688 0.788 0.652 0.730 0.764 0.797 0.777 0.742
DREAM 0.727 0.741 0.707 0.731 0.763 0.787 0.763 0.746
MEAT 0.693 0.773 0.698 0.727 0.781 0.790 0.787 0.750
Ours 0.749 0.786 0.724 0.754 0.793 0.810 0.795 0.773

mE5-large

Baseline 0.774 0.846 0.783 0.806 0.834 0.836 0.835 0.816
Mean Centering 0.757 0.830 0.759 0.790 0.831 0.826 0.821 0.802
DREAM 0.803 0.839 0.796 0.798 0.826 0.840 0.841 0.820
MEAT 0.773 0.849 0.772 0.784 0.831 0.838 0.855 0.815
Ours 0.797 0.854 0.800 0.801 0.835 0.847 0.853 0.827

mE5-large-instruct

Baseline 0.788 0.847 0.782 0.840 0.835 0.846 0.842 0.826
Mean Centering 0.760 0.824 0.759 0.827 0.806 0.804 0.809 0.798
DREAM 0.823 0.834 0.789 0.818 0.824 0.839 0.836 0.823
MEAT 0.813 0.839 0.776 0.800 0.830 0.843 0.838 0.820
Ours 0.825 0.846 0.795 0.827 0.835 0.851 0.845 0.832

Table 4: Pearson correlation coefficient evaluated on SemEval-2017 cross-lingual STS task.

Estonian to English (et-en), Nepali to English
(ne-en), and Sinhalese to English (si-en), respec-
tively, and for each language pair, 1, 000 sentence
pairs of machine translation input/output and hu-
man evaluation scores are available for evalua-
tion. The target machine translation model is a
Transformer (Vaswani et al., 2017) trained with the
fairseq toolkit (Ott et al., 2019).

The SemEval-2017 cross-lingual STS task in-
cludes seven language pairs in English and other
languages. They are Arabic (en-ar), German (en-
de), Turkish (en-tr), Spanish (en-es), French (en-fr),
Italian (en-it), and Dutch (en-nl), respectively, with
250 sentence pairs and human evaluation scores
available for each language pair.

Model Our MLP is a single-layer feed-forward
neural network. LaBSE2 (Feng et al., 2022) and
three types of multilingual E5 (mE5)3 (Wang et al.,
2024) were used for multilingual sentence encoders.
Only MLP is trained on bilingual corpora, and mul-
tilingual sentence encoders are frozen.

We used a batch size of 512, Adam (Kingma
and Ba, 2015) optimizer with a learning rate of
10−4. We employed early stopping for training
with a patience of 5 epochs using a validation loss
of Equation (3). As in previous studies (Tiyajamorn
et al., 2021; Kuroda et al., 2022), we used part of

2https://huggingface.co/sentence-transformers/
LaBSE

3https://huggingface.co/intfloat/
multilingual-e5-{base,large,large-instruct}

LM LL LC Pearson

✓ ✓ 0.493
✓ ✓ 0.487

✓ ✓ 0.451
✓ ✓ ✓ 0.498

Table 5: Ablation on QE task. All loss functions are
useful, and losing any of them degrades performance.

the bilingual corpus available in WMT204 for the
QE task and Tatoeba5 for the STS task, respectively,
for training. Table 2 shows our training data sizes.

Comparison We compare the proposed method
with DREAM (Tiyajamorn et al., 2021) and
MEAT (Kuroda et al., 2022), previous studies that
disentangle sentence embeddings into meaning and
language embeddings. There are two baselines,
one using sentence embeddings from the multilin-
gual sentence encoder as is. The other is a simple
disentangling method; the average embedding for
the target language in the training corpus is sub-
tracted from the embedding of each sentence to
obtain the meaning embedding. The Cosine sim-
ilarity of these sentence or meaning embeddings
estimates translation quality or semantic similarity.

4https://www.statmt.org/
5https://tatoeba.org/
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3.2 Result

Table 3 provides a summary of the experimental
results. For both multilingual encoders, LaBSE
and mE5 (large-instruct), the proposed method im-
proved the performance of both QE and STS tasks.
For the mE5, which achieved higher performance,
Tables 1 and 5 show detailed results for each task.

Experimental results for QE in Table 1 and STS
in Table 4 show that the proposed method consis-
tently achieves the best average performance for
all multilingual sentence encoders. Figure 1 also
reveals that disentangling sentence embeddings has
been successful.

4 Conclusion

We disentangled sentence embeddings from mul-
tilingual sentence encoders into language-specific
and language-agnostic embeddings, and applied
the latter to cross-lingual sentence similarity esti-
mation. The model architecture of our method has
the advantage that there is no missing information
during disentangling embeddings. Experimental
results on QE and cross-lingual STS tasks in an
unsupervised manner revealed the effectiveness of
the proposed method for both state-of-the-art mul-
tilingual sentence encoders, LaBSE and mE5.

Limitations

Our method is based on pre-trained multilin-
gual sentence encoders and is not applicable to
languages not covered by the original encoders.
Nonetheless, for example, LaBSE is available in as
many as 109 languages.

Our model needs training on GPUs. However,
the computation time is not very long: about 12
minutes per epoch on a single GPU of TITAN RTX,
and about 5 to 9 hour for the entire training.
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Abstract

Developing a high-performing large language
models (LLMs) for low-resource languages
such as Urdu, present several challenges. These
challenges include the scarcity of high-quality
datasets, multilingual inconsistencies, and
safety concerns. Existing multilingual LLMs
often address these issues by translating large
volumes of available data. However, such trans-
lations often lack quality and cultural nuance
while also incurring significant costs for data
curation and training. To address these issues,
we propose Alif-1.0-8B-Instruct, a multilingual
Urdu-English model, that tackles these chal-
lenges with a unique approach. We train the
model on a high-quality, multilingual synthetic
dataset (Urdu-Instruct), developed using a mod-
ified self-instruct technique. By using unique
prompts and seed values for each task along
with a global task pool, this dataset incorporates
Urdu-native chain-of-thought based reasoning,
bilingual translation, cultural relevance, and
ethical safety alignments. This technique sig-
nificantly enhances the comprehension of Alif-
1.0-8B-Instruct model for Urdu-specific tasks.
As a result, Alif-1.0-8B-Instruct, built upon
the pretrained Llama-3.1-8B, demonstrates su-
perior performance compared to Llama-3.1-
8B-Instruct for Urdu specific-tasks. It also
outperformed leading multilingual LLMs, in-
cluding Mistral-7B-Instruct-v0.3, Qwen-2.5-
7B-Instruct, and Cohere-Aya-Expanse-8B, all
within a training budget of under $100. Our
results demonstrate that high-performance and
low-resource language LLMs can be developed
efficiently and culturally aligned using our mod-
ified self-instruct approach. All datasets, mod-
els, and code are publicly released1.

1 Introduction

The rapid advancement of LLMs (Zhao et al.,
2024) has revolutionized natural language process-

1GitHub: github.com/traversaal-ai/alif-urdu-llm

ing (NLP) across multiple languages and appli-
cations. However, a significant disparity persists
between high-resource languages, such as English,
and low-resource languages, such as Urdu. These
disparities create technological barriers for billions
of speakers of underrepresented languages, limiting
their access to AI-driven tools and advancements.
The inclusion of low-resource languages in LLM
development is not merely a technical challenge but
a crucial step toward fostering inclusive, globally
accessible AI systems that cater to diverse linguis-
tic communities.

Developing high-performing LLMs for low-
resource languages presents several challenges, in-
cluding the scarcity of high-quality datasets, mul-
tilingual inconsistencies, translation inaccuracies,
reasoning limitations, and ethical concerns. A com-
mon approach to addressing these challenges relies
on leveraging translated data from high-resource
languages. However, translations often fail to
capture regional knowledge and cultural nuances,
leading to compromised language representation
and ineffective communication in low-resource set-
tings (Aharoni et al., 2019; Conneau et al., 2020).

In the case of Urdu LLMs, additional factors
contribute to their underperformance. Urdu’s lin-
guistic complexity, including its unique alphabet,
intricate grammar, syntax, and morphology, poses
significant challenges in adapting NLP techniques
developed for English. Furthermore, Urdu has bor-
rowed extensively from regional languages such as
Hindi, Punjabi, and Persian and is written in both
the Perso-Arabic and Devanagari scripts, adding
additional layers of complexity. While multilin-
gual models exhibit some degree of understanding,
their generation capabilities remain inadequate, par-
ticularly for languages with syntactic structures
and writing systems distinct from English. Among
these challenges, the lack of high-quality datasets
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stands out as a fundamental limitation. Current
Urdu datasets are sparse, manually labeled, and
contain only a few thousand instances—insufficient
for training robust LLMs. This scarcity results
from multiple factors, including limited digitization
of Urdu literature, funding and infrastructure con-
straints, and the complexities of annotating Urdu
text, which require linguistic expertise and stan-
dardized guidelines. Furthermore, translated data
often fails to retain cultural nuances (AlKhamissi
et al., 2024; Ramaswamy et al., 2024), such as
idiomatic expressions and contextual meanings,
thereby reducing a model’s ability to generate cul-
turally relevant responses. Additionally, multi-
lingual LLMs suffer from catastrophic forgetting,
where training across multiple languages or modal-
ities can degrade performance on certain language
subsets unless carefully managed. The challenge
of evaluation further complicates this issue (Yu
et al., 2022), as creating frameworks that fairly and
accurately assess performance across diverse lan-
guages and cultures demands significant expertise
and resources. These issues are particularly pro-
nounced for South Asian low-resource languages
like Urdu, which, despite its online presence, lacks
the research-driven resources necessary to develop
competitive models (Tahir et al., 2025; Ahuja et al.,
2024). The homogeneity of existing datasets and
evaluation standards exacerbates the underrepre-
sentation of diverse linguistic and cultural contexts
in modern LLMs, highlighting the urgent need for
targeted efforts to bridge these gaps and promote
inclusivity in multilingual AI development.

To address all these challenges, Alif-1.0-8B-
Instruct model offers a promising solution to the
limitations of conventional multilingual training
approaches. By leveraging a modified self-instruct
technique, this model incorporates a carefully cu-
rated Urdu dataset, specifically designed to en-
hance Urdu generation quality, bilingual transla-
tion, culturally aware understanding, and Urdu-
native chain-of-thought based reasoning capabili-
ties. This unique multilingual synthetic data dis-
tillation approach not only improves the model’s
performance on Urdu and English tasks but also
upholds ethical commitments to safety and cul-
tural sensitivity (Mitchell et al., 2019). Prior re-
search has demonstrated that tailored datasets sig-
nificantly enhance the effectiveness of language
models, enabling deeper linguistic and cultural un-
derstanding (Kulkarni et al., 2023). By using a care-

fully curated Urdu dataset, Alif-1.0-8B-Instruct ad-
dresses persistent challenges in multilingual lan-
guage modeling within constrained computational
budgets (Husan and Shakur, 2023).

Alif-1.0-8B-Instruct demonstrates a significant
leap in Urdu-specific task comprehension, out-
performing leading multilingual LLMs. Its train-
ing pipeline follows a structured process: con-
tinued pretraining to reinforce foundational un-
derstanding, fine-tuning on the synthetic Urdu-
Instruct dataset to enhance comprehension, in-
corporation of translated Urdu data for broader
knowledge, and replayed English data to mitigate
catastrophic forgetting. As a result, Alif-1.0-8B-
Instruct, built upon the pretrained Meta Llama-
3.1-8B base, demonstrates superior performance
compared to Llama-3.1-8B-Instruct. (Aaron et al.,
2024) in Urdu-specific benchmarks while maintain-
ing strong English fluency. It also outperforms
prominent multilingual models such as Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), Qwen-2.5-
7B-Instruct (Yang et al., 2025), and Cohere-Aya-
Expanse-8B (Dang et al., 2024), all within an opti-
mized training budget of less than $100.

1.1 Contribution

Our work introduces several key contributions to
the development and fine-tuning of large language
models, particularly focusing on multilingual and
Urdu-specific capabilities:

• Multilingual Urdu-English Model: We
present Alif-1.0-8B-Instruct, a multilingual
(Urdu-English) model that outperforms lead-
ing multilingual LLMs on Urdu-translated
MGSM (Shi et al., 2022; Cobbe et al., 2021),
and Alpaca Eval (Li et al., 2023; Dubois et al.,
2025, 2024), Dolly General QA (Conover
et al., 2023), benchmarks.

• Modified Self-Instruct Technique: We intro-
duce an enhanced self-instruct approach using
diverse prompts and a global task pool. Each
task is guided by unique prompts and seed val-
ues to capture cultural diversity, output struc-
ture, and task-specific nuances. A central-
ized task pool with human feedback ensures
uniqueness and prevents redundancy. This
scalable method improves instruction quality
and can be adapted to other low-resource lan-
guages for broader NLP development.
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Figure 1: Flowchart of the Modified Self-Instruct technique for Urdu-Instruct dataset generation.

• High-quality Urdu-Instruct Dataset: We cu-
rated a high-quality multilingual synthetic
dataset of 51,686 examples using a modified
self-instruct method. It enriches Urdu capabil-
ities through native chain-of-thought reason-
ing, bilingual translation, and cultural nuance.
This approach also enabled the creation of a
new Urdu evaluation set with ∼150 examples
per task.

• Evaluations on Urdu-Translated Benchmarks
and New Evaluation Dataset: We evalu-
ate Alif-1.0-8B-Instruct on multiple Urdu-
translated benchmarks, including MGSM, Al-
pacaEval, and Dolly General QA, demon-
strating its effectiveness over state-of-the-art
models. Results on our new Urdu evaluation
set further highlight its strength in domain-
specific tasks.

The rest of the paper is organized as follows:
Section 2 introduces the Urdu-Instruct dataset and
our modified self-instruct method. Section 3 details
the Alif-1.0-8B-Instruct model, its training setup,
and optimization techniques. Section 4 presents
evaluation results on Urdu and English tasks. Sec-
tion 5 examines quantization impacts on perfor-
mance and deployment. Section 6 concludes with
key takeaways and future directions in Urdu NLP
and multilingual LLMs, followed by a discussion
of the model’s limitations.

2 Urdu-Instruct Dataset

The Urdu-Instruct dataset, consisting of 51,686
examples generated using GPT-4o, api-version
‘2024-08-01-preview’, (Achiam et al., 2024), is
a crucial component in fine-tuning Alif-1.0-8B-
Instruct. It contains instructions and responses for

seven key Urdu tasks: Generation (5,907), Ethics
(9,002), QA (8,177), Reasoning (9,590), Transla-
tion (10,001), Classification (4,662), and Sentiment
Analysis (4,347). The dataset was created using
a self-instruct (Wang et al., 2023) technique im-
proved for cultural and linguistic nuance as shown
in Figure 12 and explained below.

2.1 Modified self-instruct technique

1. Unique Prompt and Seed Values for each Task:
To capture task-specific features, variations
in output formats, and enhance cultural nu-
ance, each task was assigned a distinct prompt
and set of seed values. This ensured a richer
and more diverse set of training examples, im-
proving the model’s adaptability to different
contexts.

2. Global Task Pool: While individual tasks had
unique prompts and seed values, all generated
instructions were consolidated within a single
global task pool. This approach prevented du-
plication and ensured the uniqueness of each
task distribution across the dataset.

3. Instruction Sampling and Generation: Each
prompt is augmented with random four
human-annotated seed values and two
machine-generated values to increase variabil-
ity and ensure high-quality data. GPT-4o gen-
erates 20 instructions and corresponding out-
puts per batch.

4. Post-Processing and Filtering:

• Instructions shorter than three words or
longer than 150 words were removed.

2Bot image: Flaticon.com
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• Instances containing unsuitable key-
words for language models were filtered
out.

• Instructions starting with punctuation or
containing characters other than Urdu
and English, were rejected.

• Each newly generated instruction was
compared with all previously generated
instructions across all tasks in the global
task pool using a ROUGE score thresh-
old of 0.7. Any instruction exceeding
this similarity threshold was rejected.

5. Human Refinement: The dataset was further
cleaned by human annotators to refine Urdu
grammar, ensure factual correctness, and elim-
inate any accidental inclusion of unethical con-
tent or non-Urdu/non-English characters. Ad-
ditional details are provided in Appendix C.

2.2 Urdu-Instruct dataset features
This dataset covers a broad range of use cases, in-
cluding text generation, ethical and safety consider-
ations, factual question answering, logical reason-
ing, bilingual translation, classification, and senti-
ment analysis. Each task is designed to enhance the
model’s ability to understand and generate Urdu
text effectively while maintaining high accuracy
and cultural relevance.

• CoT-Based Urdu Reasoning: We use Urdu-
native Chain-of-Thought prompts and struc-
tured reasoning tasks to enhance the model’s
logical abilities. This also improved perfor-
mance in classification and sentiment analysis
through better contextual understanding.

• Bilingual Translation: To reinforce the rela-
tionship between Urdu and English, we intro-
duced bilingual translation tasks covering four
distinct scenarios:

Instruction Input Output
Urdu English Urdu
Urdu Urdu English
English Urdu English
English English Urdu

Table 1: Instruction-Input-Output configurations.

• Ethics and Safety: We align ethical consider-
ations with cultural and regional norms, en-
abling more context-aware and safer AI be-
havior.

• Generation and QA: Incorporating both open-
and closed-ended QA tasks improves Alif’s
generation quality, coherence, and language
understanding.

Using the same method, we created the Urdu
Evaluation Set with ∼150 instructions per category,
offering a benchmark for evaluating multilingual
models on Urdu tasks.

3 Multilingual Urdu-English Model:
Alif-1.0-8B-Instruct

The development of Alif involves the integration of
multiple datasets, each selected to serve a distinct
role in the continued pre-training and fine-tuning
process. This carefully structured approach is es-
sential to enhancing the model’s proficiency across
a diverse range of tasks, ensuring robust linguistic
capabilities.

3.1 Datasets used for continued pre-training

For the continued pre-training phase, we primarily
utilize a dataset consisting of 200K Urdu Wikipedia
articles3. This dataset is utilized to ensure diver-
sity and coverage across multiple domains, aiming
to provide a strong foundational understanding of
language structures. By utilizing this dataset, we
are able to maintain efficient training costs while
ensuring the model achieved strong performance in
text comprehension and generation tasks. We pre-
train unsloth/Meta-Llama-3.1-8B4 with the stan-
dard Causal Language Modeling (CLM) task. For
an input tokens x = (x0, x1, x2, . . .), the model is
trained to predict the next token as output xi au-
toregressively. The goal of the pre-training is to
minimize negative log-likelihood loss as shown in
equation 1.

LCPT(Θ) = Ex∼DPT [− log p(x; Θ)] (1)

where Θ represents the model parameters, DPT
is the continued pre-training dataset, xi is the next
token to be predicted, x0, x1, . . . , xi−1 is the input
context, and CPT stands for continued pre-training.

3.2 Datasets used for fine-tuning

Alif is trained on a diverse collection of instruction-
following datasets, comprising a total of 105,339
examples. These datasets include Urdu-Instruct

3Dataset: wikimedia/wikipedia
4Model: Meta-Llama-3.1-8B
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(51,686 examples), translated dataset5 (28,910
examples), ULS_WSD (4,343 examples) (Saeed
et al., 2019), English Alpaca (10,400 exam-
ples) (Taori et al., 2023), and OpenOrca (10,000 ex-
amples) (Lian et al., 2023; Mukherjee et al., 2023;
Longpre et al., 2023; Touvron et al., 2023b,a).

The fine-tuning task is similar to the causal lan-
guage modeling task: the model is prompted using
the Stanford Alpaca template for fine-tuning and
inference, and the input prompt looks like:

Below is an instruction that describes a task.
Write a response that appropriately completes the
request.

### Instruction:
{instruction}

### Input (If available):
{input}

### Response: {output}

The loss is only calculated on the {output} part
of the prompt and can be expressed as:

LSFT(Θ) = Ex∼DSFT [− log p(xi | x; Θ)] (2)

Here, Θ represents the model parameters and
DSFT is the fine-tuning dataset, x = (x0, x1, . . .).

The selection of these datasets is strategically
designed to strengthen the model’s instruction-
following capabilities across multiple Urdu do-
mains. Urdu-Instruct and translated datasets con-
stitute the majority of the instruction-tuning data,
while English Alpaca and OpenOrca are employed
as replay datasets to mitigate catastrophic forget-
ting, preserving previously acquired knowledge
throughout the fine-tuning process.

3.3 Experimental setup and training details
Low-Rank Adapters (LoRA) provide an efficient
approach for continued pre-training and fine-tuning
large language models, as introduced by (Hu et al.,
2021). This technique is particularly advantageous
due to its computational efficiency, enabling model
training without extensive GPU resources. We have
employed LoRA and Unsloth framework6 to opti-
mize training costs while accelerating the overall
training process. For our experiments, we utilized
the unsloth/Meta-Llama-3.1-8B as base model with
LoRA applied to the following components:

• QKVO (Self-Attention Layers): Query, Key,
Value, Output projections.

5Dataset: ravithejads/alpaca_urdu_cleaned_output
6Website: unsloth.ai

• MLP (Feedforward Layers): Gate, Up, Down
projections.

• ET-LH (Embedding & Output Layers): Em-
bedding tokens and Language Model Head.

By leveraging LoRA adapters, we have opti-
mized the base model efficiently. The continued
pre-training phase is conducted using Wikipedia
articles, followed by fine-tuning. The training is
performed using BF16 precision to ensure stability
and efficiency. A cosine learning rate scheduler is
employed, with an initial learning rate of 2× 10−5

for continued pre-training and 5 × 10−5 for fine-
tuning.

For training stage, we have utilized an Nvidia
A100 GPU with 80GB of VRAM. The model is
pre-trained for one epoch over 200K wikipedia
dataset, requiring 23 hours on Runpod7. The fine-
tuning phase, consisting of two epochs, have taken
an additional 16 hours. We have accessed the A100
GPU via Runpod at a rate of $1.64 per hour with
a total training duration of 39 hours. As a result,
the overall training cost remained under $100 (as
of February 12, 2025).

The detailed hyperparameters used for contin-
ued pre-training and fine-tuning are summarized
in Table 5, with additional information provided in
Appendix B.

4 Results on Instruction-Following Tasks

Evaluating large language models (LLMs) for low-
resource languages like Urdu presents unique chal-
lenges due to the limited availability of high-quality
benchmarks. Additionally, while instruction-tuned
models such as Llama-3.1-8B-Instruct have demon-
strated strong multilingual capabilities, their perfor-
mance in Urdu NLP tasks remains underexplored.
In this section, we benchmark Alif-1.0-8B-Instruct
(Alif) against Llama-3.1-8B-Instruct (Llama) and
other LLMs using the alpaca chat template across
various benchmarks. These evaluations were con-
ducted on Runpod, using an A40 GPU with 48GB
VRAM.

4.1 Results on Urdu-translated benchmarks
To ensure a rigorous and fair evaluation, we employ
GPT-4o (Achiam et al., 2024), a LLM-as-a-judge
scoring mechanism. Each response is assigned a
10-point score. To enhance the reliability of auto-
mated scoring, we refine GPT-4o’s evaluation with

7Website: runpod.io
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human feedback. Our process involves continuous
monitoring of GPT-4o’s explanations across vari-
ous evaluation tasks, enabling human feedback to
identify inconsistencies and improve the evalua-
tion prompt accordingly. This iterative refinement
ensures greater accuracy and consistency in the
evaluation of Urdu NLP models.

Figure 2: Comparison of Alif-1.0-8B-Instruct and Meta-
Llama-3.1-8B-Instruct on Urdu-translated benchmarks.

Task Llama-3.1-Inst. Alif-1.0-Inst.
Generation 42.8 90.2
Ethics 27.3 85.7
QA 30.5 73.8
Reasoning 45.6 83.5
Translation 58.9 89.3
Classification 61.4 93.9
Sentiment 54.3 94.3

Weighted Avg. 45.7 87.1

Table 2: Experimental results on Urdu evaluation set.

We utilize a structured prompt template to evalu-
ate and compare the outputs of two systems, where
System 1 represents the reference (ground-truth)
response and System 2 is the generated response be-
ing evaluated. The model’s final score is computed
as the percentage ratio of the System 2 score to the
System 1 score, reflecting how closely the gener-
ated output aligns with the reference. The prompt
template used for this evaluation is provided below.

You are an LLM Response Evaluator.

The following are two ChatGPT-like systems’
outputs. Please evaluate both a ten-point scale
(1–10), where 10 is the highest score, and provide
a explanation for the scores. The evaluation
criteria are:

- Relevance: Does the response directly and
adequately address the user’s prompt?

- Correctness: Is the information provided
accurate and factually correct?
- Clarity: Is the response well-structured and free
from unnecessary repetition or verbosity while
maintaining completeness?
- Formatting Issues: Does the response have a
consistent structure and free from unnecessary
elements or incorrect language characters?

### Prompt: {prompt}

### System1: {system1_output}

### System2: {system2_output}

We evaluate the models on a range of Urdu-
translated benchmarks, including MGSM (250
math reasoning questions), AlpacaEval (806
instruction-following prompts), and a randomly
sampled subset of Dolly General QA (220 open-
ended questions). Across these diverse tasks,
Alif consistently outperforms the base LLaMA
model, demonstrating its improved reasoning and
instruction-following capabilities in Urdu, as il-
lustrated in Figure 2. Our evaluation also demon-
strates that Alif significantly outperforms Llama
in Urdu-specific NLP tasks, particularly in text
generation, ethics, QA, translation, reasoning, clas-
sification, and sentiment as shown in Table 2.

4.2 Results across different models
Table 3 presents a comparative evaluation of Alif-
1.0-8B-Instruct against several leading instruction-
tuned models on Urdu-translated benchmarks, in-
cluding MGSM, Alpaca Eval, and Dolly General
QA. The results indicate that Alif-1.0-8B-Instruct
consistently outperforms all other models, achiev-
ing the highest scores across all three benchmarks.
Specifically, it attains 72.2 on MGSM, 78.4 on
Alpaca Eval, and 75.9 on Dolly General QA, lead-
ing to an overall average of 75.5. These results
suggest that Alif-1.0-8B-Instruct is exceptionally
well-suited for handling Urdu-based NLP tasks,
demonstrating superior reasoning, comprehension,
and instruction-following capabilities.

These results highlight the efficacy of Alif-
1.0-8B-Instruct in tackling Urdu-translated bench-
marks with a clear performance advantage over its
counterparts.

4.3 Results on English benchmarks
To assess whether Alif-1.0-8B-Instruct experiences
catastrophic forgetting after adapting to Urdu, we
evaluate its performance against Llama-3.1-8B-
Instruct on a series of English-language bench-
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Models MGSM Alpaca Eval Dolly General QA Average
Falcon-7b-instruct 21.0 23.2 21.4 21.8
Phi-3-small-8k-instruct 43.1 38.7 35.6 39.1
Mistral-7B-Instruct-v0.3 43.6 43.6 38.7 41.9
Llama-3.1-8B-Instruct 52.1 51.4 45.3 49.6
Granite-3.2-8b-instruct 52.4 60.4 52.9 55.3
Gemma-7b-it 57.5 58.0 54.5 56.6
Qwen2.5-7B-Instruct 62.7 61.5 55.2 59.8
Ministral-8B-Instruct-2410 69.4 62.2 54.4 62.0
Aya-expanse-8b 65.2 72.3 69.4 68.9
Alif-1.0-8B-Instruct 72.2 78.4 75.9 75.5

Table 3: Comparison of Alif-1.0-8B-Instruct with other models on Urdu translated benchmarks.

marks using lm-evaluation-harness (Gao et al.,
2024) as shown in Table 4. Since English data was
incorporated during fine-tuning as a replay dataset,
we anticipate that Alif-1.0-8B-Instruct should main-
tain competitive results on English tasks.

The evaluation results show that Alif-1.0-8B-
Instruct retains strong general reasoning capabili-
ties and even outperforms Llama-3.1-8B-Instruct
in benchmarks such as arc_challenge, arc_easy,
and hellaswag, indicating that common sense and
logical reasoning abilities are preserved.

However, a slight decline is observed in
knowledge-intensive tasks, particularly mmlu
where Llama-3.1-8B-Instruct achieves better re-
sults. The significant drop occurs in STEM and hu-
manities categories of mmlu, suggesting that while
replay-based fine-tuning helps retain general ca-
pabilities, some domain-specific knowledge is af-
fected.

Overall, these results indicate that using replay
datasets during fine-tuning was effective in mitigat-
ing catastrophic forgetting, though some special-
ized knowledge areas experienced minor degrada-
tion.

5 Effect of Different Quantization
Methods

The deployment of large language models (LLMs)
on various hardware architectures has traditionally
been constrained by high computational and mem-
ory demands. However, the development of open
source frameworks, such as llama.cpp (Gerganov,
2024), has facilitated the quantization of LLMs,
significantly reducing their resource requirements
and maintaining comparable accuracy for some
quantized formats. This advancement also enables
efficient local development, minimizing reliance

on cloud services and enhancing data privacy.

5.1 Impact of quantization on
Alif-1.0-8B-Instruct model

This section explores the effects of different
quantizations on Alif-1.0-8B-Instruct model using
llama.cpp. We assess the model’s perplexity (PPL)
on English text corpora (wiki-test-raw) and a Urdu-
translated version across various GGUF quantiza-
tion formats.: Q2_K, Q3_K_M, Q4_K_M, Q5_K_M,
Q6_K, Q8_0, and F16 (Half-precision). The results
are depicted in Figure 3.

Higher-bit quantization formats such as 6-bit
and 8-bit maintain similar perplexity levels to FP16
while substantially reducing model size as shown
in Figure 4. Conversely, lower-bit quantization (2-
bit, 3-bit, and 4-bit) results in higher perplexity,
highlighting a tradeoff between efficiency and ac-
curacy. The Urdu text corpus consistently shows
lower perplexity compared to the English corpus,
indicating better adaptation or linguistic properties
influencing the model’s comprehension.

Among the quantization format results, Q6_K and
Q8_0 emerge as optimal choices for deployment on
personal computers, offering a practical balance
between model size and accuracy. Lower-bit quan-
tization (Q3_K_M, Q4_K_M) remains a viable option
for resource-limited scenarios but comes with trade-
offs in model performance. In contrast, Q2_K does
not appear to be a viable solution due to a substan-
tial increase in perplexity.

6 Conclusion

Building a high-performing Urdu LLM presents
distinct challenges, including data scarcity, transla-
tion quality issues, and reasoning complexity. Ex-
isting methods often depend on large-scale trans-
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Tasks Version Filter n-shot Metric Llama-3.1-Inst. Alif-1.0-Inst.
arc_challenge 1 none 0 acc 0.5171 0.5478

none 0 acc_norm 0.5512 0.5623
arc_easy 1 none 0 acc 0.8190 0.8258

none 0 acc_norm 0.7950 0.8194
hellaswag 1 none 0 acc 0.5914 0.6135

none 0 acc_norm 0.7922 0.8022
mmlu 2 none 0 acc 0.6798 0.6177

- humanities 2 none 0 acc 0.6425 0.5530
- other 2 none 0 acc 0.7438 0.7007
- social sciences 2 none 0 acc 0.7702 0.7260
- stem 2 none 0 acc 0.5842 0.5268

Table 4: Alif-1.0-8B-Instruct vs. Llama-3.1-8B-Instruct on English benchmarks.

Figure 3: Perplexity comparison across GGUF quanti-
zation formats for Alif-1.0-8B-Instruct.

lations, which degrade quality and raise data cura-
tion and training costs. We address this issue by
continued pre-training and fine-tuning Alif-1.0-8B-
Instruct on a high-quality multilingual synthetic
dataset, Urdu-Instruct, which captures cultural nu-
ances, enables bilingual knowledge transfer, and
enhances reasoning abilities.

To further strengthen the study, future work will
incorporate objective, task-specific metrics such as
Exact Match, F1, BLEU, COMET, and BERTScore
to more rigorously quantify alignment, factuality,
and stylistic correctness in bilingual settings. Com-
paring multiple judge models and prompts will help
evaluate robustness across cultural and linguistic
variations.

Moving forward, we aim to broaden high-quality
datasets, enhance reasoning through model merg-
ing and reinforcement learning, and benchmark
Alif against evolving multilingual and reasoning
standards. Alif marks a key step toward culturally

Figure 4: Memory footprint of different GGUF quanti-
zation formats for Alif-1.0-8B-Instruct.

aligned, reproducible, and cost-effective Urdu NLP,
driving inclusive and trustworthy AI forward.

Limitations

The Alif-1.0-8B-Instruct model, introduced in this
paper, marks a significant step in Urdu NLP. How-
ever, in the spirit of rigorous research, it is impera-
tive to discuss the inherent limitations that accom-
pany this model.

• Urdu Task-Specific Knowledge: Despite high-
quality pretraining and fine-tuning data, in-
cluding the Urdu-Instruct dataset covering
classification, reasoning, ethics, translation,
and QA, some domain-specific and nuanced
linguistic aspects remain underrepresented,
limiting performance on culturally rich tasks.

• Harmful and Unpredictable Content: While
designed to reject unethical prompts, the
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model may still produce harmful or mis-
aligned outputs due to contextual limitations.

• Lack of Robustness: The model can behave in-
consistently or illogically when faced with ad-
versarial or rare inputs, highlighting the need
for improved resilience.

Although some of these challenges can be mit-
igated in future iterations, we see this work as a
crucial foundation that will drive further advance-
ments in LLMs for Urdu and other low-resource
languages.
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A Potential Risks

While Alif-1.0-8B-Instruct marks significant
progress in Urdu NLP, several potential risks ac-
company its use:

• Harmful and Biased Outputs: Despite safety
training, the model may still produce harmful,
racist, or discriminatory content, especially in
response to ambiguous or adversarial prompts.

• Misuse in Unregulated Settings: The model
could be used to generate propaganda, hate
speech, or misinformation in settings where
content moderation tools are limited or absent.

• Over-reliance Without Standard Benchmarks:
The lack of strong Urdu evaluation datasets
may lead users to place too much trust in the
model, particularly in sensitive areas such as
education, law, or public services.

B Experiments Setup

B.1 Training and evaluation environment

All pretraining and fine-tuning experiments
for Alif-1.0-8B-Instruct were performed on an
NVIDIA A100 GPU (80GB) using Runpod cloud
infrastructure. The experiments were run within a
Docker container configured with Python 3.10 and
a 200GB persistent volume for model checkpoints,
datasets, and logs. Model training leveraged the
Unsloth framework, which enables efficient fine-
tuning through low-rank adaptation (LoRA) and
memory optimization techniques. Hyperparameter
details of the experiment are given in Table 5

The environment was based on CUDA 12.2 and
included the following key components:
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Configurations Pre-training Fine-tuning
Training Data 200K 105K

Epochs 1 2
Batch Size 64 64
Dropout 0.01 0

LR 2e-5 5e-5
LR_Type Cosine Cosine

Max Length 2048 2048
LoRA Rank 128 128
LoRA Alpha 32 32

LoRA Modules
QKVO, MLP,

ET-LH
QKVO, MLP,

ET-LH
Trainable

Params(%)
14.72% 14.72%

Training
Precision

BF16 BF16

Training Time 23 hours 16 hours

Table 5: Training Hyperparameters.

• Model Training Frameworks:

– transformers==4.47.1

– trl==0.13.0

– peft==0.14.0

– accelerate==1.2.1

– unsloth @ 5dddf27

• Core PyTorch and CUDA Stack:

– torch==2.5.1+cu121

– torchvision==0.20.1+cu121

– torchaudio==2.5.1+cu121

– bitsandbytes==0.45.0

– xformers==0.0.29.post1

• Data Handling and Processing:

– datasets==3.2.0

– pandas==2.2.2

– tqdm==4.67.1

– scikit-learn==1.6.0

– libcudf-cu12, cupy-cuda12x

• Experiment Tracking and Logging:

– wandb==0.19.1

All models were trained using mixed-precision
settings with gradient accumulation to enable scal-
able fine-tuning under limited GPU memory con-
straints. The evaluation was conducted in the same
software environment as training, with the only dif-
ference being the GPU. Specifically, all evaluations

were performed on an NVIDIA A40 GPU (48GB)
using Runpod cloud infrastructure.

B.2 Modified Self-Instruct environment

The Urdu-specific instruction dataset used in this
work was generated using a modified version of
the Self-Instruct framework. This version was
adapted to improve cultural relevance, apply toxic-
ity filtering, and refine prompt structures for Urdu.
The generation pipeline integrates language model
prompting, semantic filtering, and instruction post-
processing.

• Platform and Configuration:

– Language Model: gpt-4o via
AzureOpenAI API.

– Python Version: 3.10

– Concurrency: Multiprocessing with
Pool (24 CPUs).

• Core Python Dependencies:

– openai — GPT-4o API integration.

– rouge_score — Semantic similarity fil-
tering via ROUGE-L.

– numpy — Batch operations and scoring
computations.

– LughaatNLP — Urdu-specific lemmati-
zation and tokenization.

– tqdm, json, multiprocessing, re —
Preprocessing and utilities.

B.3 Urdu-Translation of Benchmarks

To translate benchmark datasets into Urdu, we used
GPT-4o (API version: 2024-08-01-preview) with
the following prompt to ensure high-quality, fluent,
and culturally appropriate translations:

You are an expert in Urdu linguistics and transla-
tion. Translate the following sentence into Urdu
with accurate grammar, natural fluency, and cul-
tural appropriateness. The output should be only
translation with no additional word.

Sentence: {sentence}

This prompt was used to translate all examples
in the MGSM (250 math questions), AlpacaEval
(806 instructions), and a 220-example subset of
Dolly General QA into Urdu.

281



C Datasets Refinement

To refine the Urdu-Instruct dataset and Urdu-
translated instruction data, we employed a struc-
tured human annotator selection process focused
on linguistic quality and demographic diversity.

• Recruitment:

– A public call for annotators was posted
in October 2024, targeting native Urdu
speakers with fluent typing skills and ba-
sic Excel knowledge.

– The opportunity offered task-based com-
pensation, with applications collected via
a form by October 16, 2024.

• Shortlisting and Evaluation:

– Candidates were asked to complete two
tasks: (1) correcting an error-filled Urdu
passage, and (2) verifying and correcting
50 Urdu-translated instructions in an Ex-
cel sheet using the guideline as shown in
Figure 7.

– 98 applicants attempted evaluation
google form and 20 were shortlisted
based on diverse demographics and task
performance, and on-boarded to a dedi-
cated Discord workspace. Among them,
14 were in the 18–24 age group, while
6 were between 25–34 years old and
belong to various parts of Pakistan as
shown in Figure 5.

• Final Selection:

– These annotators, together with the au-
thor(s), contributed to refine translated
and modified self-instruct datasets using
the guidelines shown in Figure 6 and 7.

– Annotators were compensated at a rate of
1000 Pakistani Rupees per hour, which
is 4× of the minimum wage of Pakistan.

C.1 Unethical Content Rejection
Unethical content was filtered out at two stages to
ensure the quality and safety of the Urdu-Instruct
dataset:

• Automated Filtering: All translations and
Urdu-Instruct generations were produced us-
ing GPT-4o via the Azure OpenAI API, which
enforces strong safety guardrails to minimize

Figure 5: Annotator Demographics by Province in
Pakistan.

the generation of harmful or inappropriate
content.

• Human Refinement: A human annotation and
review stage was conducted to further elimi-
nate any accidental inclusion of unethical con-
tent, following a predefined set of refinement
guidelines given in Figure 6 and 7.

D AI Assistance

ChatGPT-4o model was used for fixing grammar
issues, improving text readability, and coding sup-
port. All AI-generated content was reviewed and
meticulously revised. All the authors take full re-
sponsibility for the final published version.

E License

The Alif-1.0-8B-Instruct model is a continued pre-
training and fine-tuning derivative of the Llama-
3.1-8B base model, which is released under the
Llama 3.1 Community License.

The Urdu-Instruct dataset is released under the
Creative Commons Attribution–ShareAlike 4.0 In-
ternational (CC BY-SA 4.0) License,8 which allows
use, modification, and redistribution with attribu-
tion, provided derivative works are shared under
the same license. All source code used for data
generation and fine-tuning is released under the
MIT License.

The datasets used for training the model are re-
leased under copyleft licenses, while the others
are publicly available on Hugging Face without an
explicitly specified license.

8https://creativecommons.org/licenses/by-sa/4.
0/
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Guidelines of Refinement for Urdu-Instruct Dataset 
Refine the Urdu dataset by reviewing each instruction–response pair for completeness, grammar, factuality, and formatting. 

 

Marking Criteria Evaluation Question Correct Example Incorrect Example 

1. Response 
Completeness 

Ensure the response fully 
answers the instruction 
without missing any key 
part. 

Instruction: انسان بعد کے نکلنے سورج  
ہیں؟ ہوتے حاصل فوائد کیا کو  

 
Correct Response: 

ڈی وٹامن کو انسان بعد کے نکلنے سورج  
ہے، ہوتا بہتر نظام کا نیند ہے، ہوتا حاصل  

ہے۔ ہوتا اضافہ میں توانائی  

Instruction: کیا کو انسان بعد کے نکلنے سورج  
ہیں؟ ہوتے حاصل فوائد  

 
Incorrect Response 1: 

کو انسان بعد کے نکلنے سورج  
 
Incorrect Response 2: 
(No response — Empty) 
 

2. Grammar and 
Structure 

Check that Urdu 
grammar, sentence order, 
and word placement are 
correct and natural. 

Correct Response: ​
ایک آج نے میں iPhone خریدا -  

Incorrect Response: ​
-iphone ایک آج نے میں خریدا   

3. Number and Date 
Formats 

Ensure Correct formatting 
unless localization is 
needed. 

Correct Response 1:  
ہے۔ تقریب یہ کو 2024 سن  

 
Correct Response 2:  

۔ دوئم عظیم جنگ  
 

Incorrect Response 1:  
2024 ہے۔ کو تقریب یہ   

 
Incorrect Response 2:  

عظیم جنگ  II۔ 

4. Cultural 
Considerations 

Translate idioms using 
culturally appropriate 
Urdu expressions, not 
literal ones. 

Instruction: Translate this idiom, 
the ball is in your court 
 
Correct Response: ہاتھ کے آپ فیصلہ  

ہے۔ میں  (Cultural equivalent used) 

Instruction: Translate this idiom, the ball 
is in your court 
 
Incorrect Response: میں کورٹ کے آپ گیند  
 (Literal translation) ہے۔

5. Common Error 
Patterns 

Maintain consistent 
formatting for units, 
numbers, and 
terminology throughout. 

Instruction: بتائیں۔ فارمولا کا پانی  
 
Correct Response: H₂O 

Instruction: بتائیں۔ فارمولا کا پانی  
 
Incorrect Response: H2O 

6. Foreign Characters Clean stray emojis, 
non-Urdu scripts, or 
foreign symbols unless 
required. 

Instruction: ہیں؟ پڑھتے کیوں کتابیں لوگ  
 
Correct Response: علم کتابیں لوگ  

کی سوچنے اور کرنے، تفریح کرنے، حاصل  
ہیں۔ پڑھتے لیے کے بڑھانے صلاحیت  

Instruction: ہیں؟ پڑھتے کیوں کتابیں لوگ  
 
Incorrect Response: لوگ 是  حاصل علم  

بڑھانے صلاحیت کی سوچنے اور کرنے، تفریح کرنے،  
ہیں۔ پڑھتے لیے کے  

7. Factuality Check Verify that all content is 
accurate to the original 
instruction. 

Instruction: آخری اور پہلے کے کمپیوٹر  
کریں۔ تبدیل کو حرف  

 
Correct Response: رمپیوٹک 

 
 

Instruction: کو حرف آخری اور پہلے کے کمپیوٹر  
کریں۔ تبدیل  

 
Incorrect Response: رپمپوکت 

8. Unethical content Does the original or 
translated text contain 
unethical content (e.g., 
violence, discrimination, 
racism, or cultural 
insensitivity)? 

Instruction: کریں اختلاف سے مجھ وہ اگر  
چاہیے؟ کرنی آزمائی زور سے ان مجھے کیا تو  

 
Correct Response: سے آپ وہ اگر  

نہیں استعمال کا طاقت کو آپ تو کریں اختلاف  
چاہیے۔ کرنا  

 
(Reject unethical response) 

Instruction: کیا تو کریں اختلاف سے مجھ وہ اگر  
چاہیے؟ کرنی آزمائی زور سے ان مجھے  

 
Incorrect Response: اختلاف سے آپ وہ اگر  

چاہیے۔ کرنا استعمال کا طاقت کو آپ تو کریں  
 
(Promote unethical response) 

 

Figure 6: Overview of the Urdu-Instruct dataset refinement guidelines.
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Guidelines of Refinement for Urdu-Translated Datasets 
Refine the Urdu dataset by reviewing each instruction–response pair for completeness, grammar, factuality, and formatting. 

 

Marking Criteria Evaluation Question Correct Example Incorrect Example 

1. Response 
Completeness 

Does the translation fully 
capture the source text 
without omitting any part? 

Original: The cat sat on the mat. 
Translation: تھی۔ بیٹھی پر چٹائی بلی  
 

Original: The cat sat on the mat. 
Translation 1: تھی۔ بیٹھی بلی  (Omitting “on 
the mat”) 
 
Translation 2: I don’t know (No 
response) 
 

2. Translation vs 
Generation 

Is the output a translation 
and not new content 
generation? 

Original: The boy reads a book. 
 
Translation: ہے۔ پڑھتا کتاب لڑکا  

Original: The boy reads a book. 
 
Translation: ہے۔ سوچتا میں بارے کے کتاب لڑکا  
(New content generated) 
 

3. Grammar and 
Structure 

Is the grammar and 
structure of the Urdu 
translation accurate? 

Original: She went to the market. 
 
Translation: گئی۔ بازار وہ  
 
Original: I bought an iPhone today. 
Translation: ​
ایک آج نے میں iPhone خریدا -  

Original: She went to the market. 
 
Translation: گیا۔ بازار وہ  (Incorrect gender 
agreement) 
 
Original: I bought an iPhone today. 
Translation: ​
-iphone ایک آج نے میں خریدا  (Incorrect 
placement of English Equivalent) 

4. Number and Date 
Formats 

Are the number and date 
formats preserved as in 
the original? 

Original: The event is on 
12/12/2024. 
 
Translation: کو 12/12/2024 تقریب یہ  
 ہے۔
 

Original: The event is on 12/12/2024. 
 
Translation: ہے۔ کو ١٢/١٢/٢٠٢٤ تقریب یہ  
(Converted to Arabic numerals) 

5. Cultural 
Considerations 

Are idioms translated 
using cultural equivalents, 
not literal translations? 

Original: The ball is in your court. 
 
Translation: ہے۔ میں ہاتھ کے آپ فیصلہ  
(Cultural equivalent used) 
 

Original: The ball is in your court. 
 
Translation: ہے۔ میں کورٹ کے آپ گیند  
(Literal translation) 

6. Common Error 
Patterns 

Does the translation 
avoid direct transliteration 
and ensure meaningful 
translation? 

Original: He is an experienced 
teacher. 
 
Translation: ہے۔ استاد کار تجربہ وہ  
 

Original: He is an experienced teacher. 
 
Translation: ہے۔ ٹیچر ایکسپرینسڈ ایک وہ  
(Direct transliteration) 

7. Style and Register Is the translation's tone 
and formality consistent 
with the source text? 

Original: Please submit your 
documents at the earliest 
convenience. 
 
Translation: جلد دستاویزات اپنی کرم براہ  

کروائیں۔ جمع جلد از  

Original: Please submit your 
documents at the earliest convenience. 
 
Translation: دو۔ دے سے جلدی دستاویزات  
(Casual tone used instead of formal) 

8. Unethical content Does the original or 
translated text contain 
unethical content (e.g., 
violence, discrimination, 
racism, or cultural 
insensitivity)? 

Original: You should not confront 
them with force if they disagree 
with you. 
 
Translation: کریں اختلاف سے آپ وہ اگر  

چاہیے۔ کرنی نہیں آزمائی زور پر ان کو آپ تو  
 
(Reject unethical response) 

Original: You should not confront them 
with force if they disagree with you. 
 
Translation: ان تو کریں اختلاف سے آپ وہ اگر  

آزمائیں۔ زور پر  
 
(Promote unethical response) 

 

Figure 7: Overview of the Urdu-Translated datasets refinement guidelines.
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Abstract

The effectiveness of Large Language Mod-
els (LLMs) depends heavily on the availabil-
ity of high-quality post-training data, particu-
larly instruction-tuning and preference-based
examples. Existing open-source datasets, how-
ever, often lack multilingual coverage, cul-
tural grounding, and suffer from task diver-
sity gaps that are especially pronounced for
Indian languages. We introduce a human-in-
the-loop pipeline that combines translations
with synthetic expansion to produce reliable
and diverse Indic post-training data. Using this
pipeline, we curate two datasets: Pragyaan-
IT (22.5K) and Pragyaan-Align (100K) across
10 Indian languages covering 13 broad and 56
sub-categories, leveraging 57 diverse datasets.
Our dataset protocol incorporates several often-
overlooked dimensions and emphasize task di-
versity, multi-turn dialogue, instruction fidelity,
safety alignment, and preservation of cultural
nuance, providing a foundation for more inclu-
sive and effective multilingual LLMs.

1 Introduction

Recent developments around Large Language Mod-
els (LLMs) (Touvron et al., 2023; Grattafiori et al.,
2024; Abdin et al., 2025; Guo et al., 2025) have
demonstrated that post-training data, comprising
both instruction-tuning and preference data, plays
a critical role in enhancing model alignment, task
generalization, and usability (Ouyang et al., 2022;
Bai et al., 2022b; Chung et al., 2022). Particularly
in a multilingual and multicultural landscape, like
India, the availability of high-quality, culturally
grounded post-training data is crucial to address
performance gaps in low-resource languages that
often arise from the scarcity of relevant and repre-
sentative training data (Joshi et al., 2020).

While several open-source datasets for post-
training (Longpre et al., 2023; Wang et al., 2022b;
Bercovich et al., 2025a) exist, they are predomi-
nantly English-centric and often suffer from limita-

tions such as inconsistent quality, restricted cover-
age, insufficient task complexity, and limited multi-
lingual coverage. These challenges extend to Indic
post-training data as well, focus of our work.

Direct translations of existing English post-
training datasets are prone to translation biases,
errors (Hartung et al., 2023; Savoldi et al., 2021;
Muennighoff et al., 2022) and loss of cultural
grounding (Wang et al., 2022a; Pudjiati et al.,
2022). For instance, a prompt like “Tell me about
a small herb to plant in backyard" might yield
Western herbs such as thyme or rosemary, whereas
Indian users would expect culturally familiar op-
tions like tulsi (holy basil), pudina (mint), or curry
leaves. Similarly, when asked “What is a good
comfort meal for a rainy day?", English-centric
answers such as tomato soup or grilled cheese over-
look Indian preferences like masala chai with pako-
ras or khichdi with ghee. Even in wellness contexts,
"Recommend a workout routine for beginners" may
default to squats and push-ups, neglecting practices
like Surya Namaskar or yoga exercises. Such mis-
matches highlight the need for post-training data
that reflects not just language, but also local tradi-
tions and cultural context.

The recent popularity of LLM-based synthetic
data generation (Wang et al., 2022c) for creating
post-training datasets, while promising, still suffers
in quality due to linguistic inaccuracies, grammati-
cal inconsistencies, and reduced fluency, especially
in multilingual settings, that could degrade the per-
formance of models trained on them. Moreover,
the lack of fine-grained control over output com-
plexity and the potential for hallucination can lead
to the generation of low-quality, unreliable data.

With the aim of addressing these gaps, we
present an approach to curate high-quality post-
training datasets, especially in multilingual settings.
Our curation approach combines the above tech-
niques with post-hoc manual editing, leading to
a scalable human-in-the-loop pipeline, with spe-
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cific focus on several aspects of quality, like task
coverage, multilingual representation, task com-
plexity, culture, multi-turns, reasoning, and others.
We leverage our approach to curate high-quality In-
dic post-training datasets: Pragyaan-IT comprising
22.5K instruction tuning examples and Pragyaan-
Align, a dataset of 100K preference examples in 10
Indian languages covering 56 task categories. Our
contributions could thus be summarized as follows:

• We present a scalable pipeline for curating
high-quality post-training data. Our approach
emphasizes a human-in-the-loop (HITL) that
is more efficient, reliable and ensures higher
quality than direct synthetic generation or
translation of existing English datasets.

• We introduce high-quality, manually cu-
rated, and culturally-inclusive post-training
Pragyaan dataset series, consisting of 1)
22.5K Pragyaan-IT and 2) 100K Pragyaan-
Align, designed for aligning LLMs to the di-
verse Indian cultural context.

• Our dataset includes a broad spectrum of
instruction-following tasks with varying lev-
els of complexity, ensuring the resulting mod-
els can handle a wide range of real-world
scenarios. We provide a detailed analysis
of the dataset’s characteristics, including its
language distribution and domain representa-
tion, also showcasing its suitability for robust
instruction-following capabilities through a
small-scale pilot experiment.

2 Related Work

Post-training is a key step in aligning large lan-
guage models (LLMs) with human intent, com-
monly achieved through instruction tuning (Wei
et al., 2022a) and preference tuning (Bai et al.,
2022a) datasets, constructed in several ways. Task
template based resources such as Flan 2021 (Wei
et al., 2022a), Flan 2022 (Longpre et al., 2023),
and P3 (Sanh et al., 2022) adapt NLP datasets
into instruction–response format. Human-authored
datasets like Open Assistant (Köpf et al., 2023),
Dolly (Conover et al., 2023), and LIMA (Zhou
et al., 2023) demonstrate the value of curated in-
structions but face scalability challenges. To over-
come this, synthetic generation approaches lever-
age LLMs to expand from small human-annotated
seeds, with efforts such as Self-Instruct (Wang
et al., 2022c), Alpaca (Taori et al., 2023), and
Guanaco (Joseph Cheung, 2023), often distilling

knowledge (Hinton et al., 2015) from stronger
teacher LLM models. Advanced pipelines like
Evol-Instruct (Xu et al., 2023) iteratively increase
instruction complexity, while later works extend
these methods to reasoning and code generation
(Luo et al., 2023; Gunasekar et al., 2023). Com-
plementing these, user-contributed datasets such as
InstructionWild (Ni et al., 2023) and ShareGPT1

provide naturally occurring conversational data,
and Unnatural Instructions (Honovich et al., 2022)
show how seed tasks can be scaled into diverse
synthetic corpora. Subsequent work expanded into
specialized domains, including dialogue systems
(Köpf et al., 2023), structured knowledge ground-
ing (Xie et al., 2022), and chain-of-thought reason-
ing (Wei et al., 2022b; Kim et al., 2023). More
recently, the Magpie dataset (Xu et al., 2024) in-
troduced a fine-grained taxonomy spanning cre-
ative writing, math, role-playing, planning, and
data analysis, emphasizing the importance of broad
coverage in post-training resources. Preference
datasets such as UltraFeedback (Cui et al., 2023)
and Tulu3 (Lambert et al., 2025) comprises human
and synthetic preference pairs for LLM alignment.
Building on these advances, we construct our ap-
proach and dataset tailored to Indian languages and
cultural contexts leveraging manual annotations in
complement with synthetic generation.

While large-scale post-training datasets have be-
come increasingly available, they remain predom-
inantly English-centric, with limited coverage for
other languages. A few exceptions incorporate
some proportions of multilingual data (Köpf et al.,
2023; Longpre et al., 2023; Muennighoff et al.,
2023; Zhuo et al., 2024; Nguyen et al., 2023), but
they remain limited in cultural and linguistic diver-
sity compared to English resources. Prior efforts
to extend post-training resources beyond English
have typically followed three strategies: (1) trans-
lating English datasets into additional languages
(Li et al., 2023a; Khan et al., 2024), (2) gener-
ating template-based datasets (Yu et al., 2023b;
Gupta et al., 2023), and (3) manually curating in-
struction datasets in non-English languages (Li
et al., 2023b; Wang et al., 2022d). Amongst these,
template-based efforts such as xP3 (Muennighoff
et al., 2022) extend the P3 taxonomy with 28 mul-
tilingual datasets. However, xP3 relies on uniform
templates across languages, leading to limited task
diversity and frequent repetition. Translation-based

1https://sharegpt.com/
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Figure 1: Workflow for building Indian language post-training data: English prompts are either translated or
expanded via modified self-instruct pipeline to generate synthetic prompts. In both cases, responses are then
produced with an LLM, translated into one of the 10 Indian languages, and manually refined (Section 3).

approaches face similar limitations, such as Bac-
trian (Li et al., 2023a), which translated Alpaca
(Taori et al., 2023) and Dolly (Conover et al., 2023)
into 52 languages. In contrast, our work intro-
duces human-edited datasets across 10 Indian lan-
guages, addressing issues of redundancy and cul-
tural grounding while providing a more diverse and
representative resource for multilingual alignment.

3 Methodology

We present our multi-stage post-training dataset
creation process that encompasses a variety of task
categories at both broad and fine-grained levels,
critical settings (complexity, interaction depth, con-
straints, safety, indian context, thinking trails) and
leverages human annotators alongside curated data
sources to ensure quality and coverage. While our
approach itself is generic, we discuss how we used
it to create high-quality Indic post-training datasets
that we collectively refer to as Pragyaan-IT and
Pragyaan-Align.

3.1 Data Construction Approaches

We employ two complementary approaches (Fig-
ure 1) that both combine translation and synthetic
generation with post-hoc manual editing to ensure
linguistic accuracy, fluency, and cultural appropri-
ateness in our datasets.

3.1.1 Approach 1: Translation with Human
Refinement

Here, we directly source English prompt-response
pairs from existing English datasets (more details
later in Section 3.5).

Prompts: We begin with English prompts which
are first translated into Indic languages using an
LLM, then refined by human annotators. During
verification, annotators correct linguistic errors,

improve readability, and adapt expressions where
needed to reflect Indian cultural norms. This results
in two categories, i.e. 1) Indic Generic Prompts:
direct translations of the English originals. 2) Indic
Context Prompts: culturally adapted and edited ver-
sions incorporating Indian references and contexts
by human annotators.

Responses: Corresponding English responses
undergo a similar pipeline independently, with
LLM-based translation into Indic languages, fol-
lowed by human editing for grammar, relevance,
length, and cultural appropriateness. Thus, we have
1) Indic Generic Responses: literal translations of
the English outputs. 2) Indic Context Responses:
refined versions adapted to Indian discourse norms.

3.1.2 Approach 2: Synthetic Expansion with
Human Refinement

This approach introduces an additional intermedi-
ate stage of synthetic prompt expansion in English.

Prompts: Starting with a seed set of English
prompts (sourced or created), we use the Self-
Instruct pipeline (Wang et al., 2022b) to iteratively
expand this set into a larger synthetic pool. While
in the original pipeline they generate new prompts
for classification and non-classification types via
different strategies, in our adaptation, we use the
same prompt template for both the cases. The re-
sulting synthetic English prompts are then trans-
lated into Indic languages with LLMs and refined
by human annotators to ensure correctness, clarity,
and cultural grounding. This yields 1) Synthetic
Indic Generic Prompts: literal translations of syn-
thetic English prompts. 2) Synthetic Indic Context
Prompts: culturally enriched translations.

Responses: For each synthetic English prompt,
we generate English responses using an LLM in-
dependently. These are then translated into Indic
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languages and refined through human editing. An-
notators correct factual or linguistic errors, polish
style, and, when appropriate, enrich with cultural
nuances. This process produces 1) Synthetic In-
dic Generic Responses: faithful translations of the
English responses. 2) Synthetic Indic Context Re-
sponses: culturally adapted versions aligned with
the Indian local context.

While our first approach ensures fidelity through
the translation of existing English datasets, it re-
mains constrained in both scope and diversity. The
second approach complements this by introducing
synthetic expansion prior to translation, enabling
broader task coverage, richer cultural representa-
tion, and greater scalability with reduced depen-
dency on large English resources. Together, the
two approaches strike a balance between reliability
and diversity, yielding multilingual datasets that
are both high-quality and contextually rich.

3.2 Task Categories

Building on the design principles of several exist-
ing datasets, we curate a broad set of task categories
that combine core language tasks such as reasoning
(limited to CoT and self-thinking), inference, natu-
ral language understanding (NLU) and generation,
question answering (QA), dialogue and interaction,
information extraction, mathematics, coding, func-
tion calling, and instruction following, while also
extending into culturally grounded domains like
Indian states, religions, geo-political questions, etc.
To promote robustness and responsible deployment,
we additionally include safety and non-compliance,
Indian contentious content, and self-identity tasks.
Collectively, these categories establish a structured
yet comprehensive framework that spans diverse
sub-categories, enabling richer and more inclusive
post-training curation. A detailed breakdown of
sub-categories is provided in Table 1.

3.3 Task Settings

For each task category, we additionally define
several task settings that encourage diversity of
prompt complexity, interaction depth, instruction-
following, safety considerations, cultural ground-
ing, and explicit reasoning trails. We provide sys-
tematic descriptions of these settings next.

3.3.1 Complexity
We categorize tasks by complexity to ensure mod-
els are trained for both simple and challenging sce-
narios, with two primary levels: 1) Easy prompts

are direct and clearly defined, usually requiring
minimal reasoning (e.g. a single factual or de-
scriptive query). 2) Hard prompts feature greater
structural complexity, often embedding multiple
sub-questions within a single query, requiring nu-
anced reasoning and fine-grained understanding.
Importantly, complexity is defined within each task
category, enabling fair assessment across heteroge-
neous task types (see Figures 6–11 in Appendix).

3.3.2 Multi-Turn Interactions
Multi-turn settings capture tasks where contextual
continuity is critical, such as dialogue, planning,
or role-play. These scenarios require models to
maintain memory of prior turns while generating
coherent and adaptive responses. We consider three
levels of interaction depths: 1) Single-turn (1 turn):
A response to an isolated prompt; 2) Short multi-
turn (3 turns): Three back-and-forth exchanges,
ensuring local continuity; 3) Extended multi-turn (5
turns): Five exchanges, for long-range memory and
coherence in extended conversations (e.g. planning
a festival with evolving constraints).

3.3.3 Instruction Following
We categorize instruction-following into three lev-
els, defined by the number and type of constraints
imposed on the response such as “answer in 100
words”, “respond in json format”, etc. (Figure 12
in Appendix). This ensures coverage of tasks that
range from loosely guided prompts to highly struc-
tured outputs. Different combinations of these con-
straints are applied depending on the nature of the
prompt: 1) Simple instruction following: prompts
include minimal or no explicit constraints on the
format or content of the response; 2) Medium in-
struction following: prompts introduce two to three
explicit constraints, requiring the model to accom-
modate multiple conditions at once; 3) Complex
instruction following: prompts impose several si-
multaneous constraints, demanding precise control
and structured outputs.

3.3.4 Safety
We define safety settings to ensure that models
behave responsibly when faced with sensitive, con-
troversial, or potentially harmful content in a real-
world setting. This dimension helps guide appropri-
ate responses while maintaining ethical standards.
We include 1) Safe: prompts are neutral and non-
controversial, allowing the model to provide direct
answers without ethical or policy concerns; 2) Non-
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Broad Category Sub Categories Broad Category Sub Categories

Reasoning & Inference

Non-Math Reasoning
Math Reasoning
Code Reasoning
Indian Relationships
Inference
Data Analysis

Natural Language Understanding & Genera-
tion

Named Entity Recognition
Text Classification
Grammar Correction
Translation
Creative Writing
Paraphrase Identification
Paraphrase Generation
Text Summarization
Headline Generation
Question Generation
Sentiment Analysis

Question Answering General Question Answering
Fact Check Interaction & Dialogue

Multi Turn Conversation
Role Playing
Advice Seeking
Planning
Brainstorming

Information Extraction
Information Seeking
Indian Cultural Context
Comprehension

Sanskrit Cultural & Creative Usage

Sanskrit Festival Greetings
Sanskrit Auspicious Day / Other Occasions
Sanskrit Subhashitas (Quotes)
Sanskrit Captions and Mottos
Sanskrit Person’s Name
Sanskrit Building / Institution / Company Name
Sanskrit Product Name

Mathematics
Math QA
Math Instruction Tuning
Math Proofs

Coding

Code Generation
Code Debugging
Code Editing
Code Explanation
Code Translation
Unit Test Generation
Code Theory
Code Review
Repository level Code Generation

Function Calling Function Calling Instruction Following Instruction Following

Safety & Non-Compliance Safety & Non-Compliance Indian Contentious Questions

Indian Geo Political
Indian Politicians
Indian States
Indian Languages
Indian Religions

Self-Identity Model-name
Person-based

Table 1: Taxonomy of NLP task categories and sub-categories for creating post-training datasets in Section 3.2.

safe: prompts involve sensitive or harmful material,
where the model is expected to either refuse po-
litely (e.g., “Sorry, I cannot assist with that ...”) or
generate a safe response.

3.3.5 Thinking Trails
We define ‘thinking trail’ settings to capture the
role of explicit reasoning in model responses, en-
suring that outputs range from direct answers to
more reflective reasoning styles. 1) Normal: di-
rect response generation without intermediate rea-
soning traces; 2) Chain-of-Thought (CoT): step-
by-step reasoning (Wei et al., 2022b) articulated
explicitly before the final answer; 3) Self-Thinking:
inspired by recent “deep thinking” paradigms (Guo
et al., 2025; Bercovich et al., 2025b; Abdin et al.,
2025), where models produce more elaborate, self-
reflective reasoning trails prior to the final response.

3.3.6 Indian Cultural Context
Given the centrality of Indic languages and cul-
tural alignment in our framework, we explicitly
model contextual grounding through three progres-
sively richer levels. 1) IC-1 represents generic
prompts leading to generic responses, with no ex-
plicit India related anchoring (e.g., Prompt: “Sug-
gest some breakfast items.”, Response: “Pancakes,
cereal, toast, scrambled eggs.”). Such responses

are accurate but remain culturally neutral, with no
particular alignment to cultural settings. 2) IC-2
represents generic prompts that nonetheless yield
Indic-grounded responses. For instance, the same
prompt above, in this setting, would elicit responses
such as “Idli, dosa, paratha, poha”, which are the
most popular breakfast items in India. 3) IC-3 in-
volves prompts that are themselves explicitly Indic,
thereby eliciting fully Indic-based responses. For
example, the prompt itself mentions “Suggest some
Indian breakfast items” with a similar response as
in the IC-2 setting. This setting encourages ground-
ing and diversity of responses with respect to Indian
cultural context that is required for training Indic
focused LLMs.

3.4 Human-In-The-Loop (HITL) Refinement

While synthetic generation and automated trans-
lation provides the backbone of our dataset cre-
ation pipeline, human annotators play an equally
central role in shaping its final form. Each
prompt–response pair, once generated and as-
signed a configuration of settings (e.g., easy, 1-
Turn, Simple-IF, Safe, IC-3, Normal (No Think-
ing Trails)), enters a stage of manual intervention
where annotators act not merely as reviewers, but
as curators of the data. If a pair does not fully align
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Figure 2: Distribution of Pragyaan-IT (Instruction-Tuning) data across languages (left) and categories (right).

with its designated configuration, annotators may
either (i) adapt the configuration to better reflect
the pair, or (ii) create a new prompt–response pair
that correctly conforms to the specified configura-
tion. This decision balances efficiency with fidelity
to the framework. In cases where manually gener-
ating a new response is especially time-intensive,
the annotators flag the prompt for regeneration and
they undergo another iteration through the pipeline.

Crucially, manual intervention goes beyond me-
chanical verification. Annotators conduct linguis-
tic quality checks ensuring fluency, grammatical
accuracy, syntactic correctness, and appropriate
response length, but are also encouraged to exer-
cise creative judgment. This includes refining awk-
ward phrasings, restructuring unclear outputs, or
enriching responses with culturally relevant details.
Even when a pair formally satisfies all defined con-
straints, annotators may modify it to adjust tone,
improve readability, contextual appropriateness or
pedagogical value as well as elevate the overall
communicative value of the response. These in-
terventions ensure that the dataset is not only con-
sistent with the defined settings, but also meaning-
ful and robust for deployment in real-world post-
training scenarios.

3.5 Dataset Curation
Our curation process draws from a broad pool of
existing resources while systematically adapting
them for Indic languages and tasks. In total, we
considered 57 diverse language datasets, together
with their relevant splits, spanning different cat-
egories and task families. These resources serve
either as direct candidates for translation into Indic
languages or as seed data for synthetic expansion
through a modified Self-Instruct pipeline (Wang
et al., 2022b) described earlier. By combining trans-
lation and generation in a complementary manner,

we ensure that the curated data covers not only core
Natural Language Processing (NLP) tasks but also
culturally grounded and contextually relevant di-
mensions. Table 3 in the Appendix provides an
overview of the corresponding candidate datasets
associated with each task sub-category.

Setting Configuration %

Complexity
Easy 62.32
Hard 37.68

Multi Turn
1-Turn 91.66
3-Turn 6.76
5-Turn 1.58

Instruction Following
Simple IF 96.95
Medium IF 2.49
Complex IF 0.56

Safety
Safe 92.51
Non-Safe 7.49

Indian Context
IC-1 32.04
IC-2 10.16
IC-3 57.80

Thinking Trails
Normal 99.98
CoT 0.01
Self Thinking 0.01

Table 2: Distribution of instances in Pragyaan-IT across
different task settings and configurations in Section 3.3.

4 Pragyaan: Indic Post-training Datasets

As part of this work, we construct high-quality
post-training datasets that explicitly target 10 In-
dian languages (Bengali, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Oriya, Punjabi, Tamil, and
Telugu), yielding two complementary resources:

i) Pragyaan-IT (22.5K): an instruction-tuning
dataset designed to enhance a model’s ability to
follow diverse prompts across multiple domains,
ensuring that models can generalize well to every-
day user interactions.

ii) Pragyaan-Align (100K): a preference dataset
curated for Reinforcement Learning (RL)-based
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Figure 3: Average word counts of Pragyaan-Align alignment data across languages (left) and categories (right).

alignment methods, emphasizing preference learn-
ing, safety, and cultural grounding, allowing mod-
els to align more closely with the user intent.

5 Analysis

We begin with an assessment of raw synthetic gen-
erations refined through human annotation, fol-
lowed by a broader dataset-level analysis.

5.1 Human Annotation Refinement
We evaluate the underlying LLM’s performance
for both generation and translation tasks across 5
dimensions, each on a scale of 1-5, for a small sub-
set (see Section A.5 in the Appendix for details
on evaluation). Particularly, for English genera-
tions, grammatical accuracy remains slightly lower
in comprehension (3.20) and creative writing (3.93)
tasks, while receiving high scores for other tasks.
For translation, the model shows the strongest per-
formance for Hindi (Figure 14). Telugu and Gu-
jarati exhibit moderate Lexical Diversity (3.43 and
3.30), while grammatical accuracy remains modest
in Telugu (3.62), Hindi (3.60), and Punjabi (3.55).
Thus, human refinements were critical for convert-
ing raw synthetic output into culturally grounded,
linguistically accurate, and task-aligned data, di-
rectly underpinning the reliability of our data cura-
tion framework.

5.2 Dataset analysis
Figure 2 shows the distribution of Pragyaan-IT
across 10 languages and 15 categories, while Ta-
ble 3 lists the candidate datasets used in its con-
struction. As seen in Figure 2, Indian Cultural Con-
text (26.2%) and Multi-Turn Conversation (23.7%)
dominate, while reasoning and paraphrasing re-
main limited (1–3%), forming targets for future
expansion. Language coverage is led by Gu-
jarati (17.7%), Kannada (11.4%), Marathi (11.1%),

and Odia (10.8%). In the current setting (Ta-
ble 2), we have 62.3% ‘Easy’ tasks, single-turn
interactions (91.7%), simple instruction-following
(96.9%), safe content (92.5%) with Indian context
well covered (IC-3: 57.8%). While this analysis
reflects the status of the Pragyaan-IT dataset at the
time of writing, the dataset is under active curation
and will be more comprehensive across task cate-
gories and settings as described in earlier sections.

Word count analysis highlights linguistic and
task-level variation (Figure 4). Gujarati and Odia
are most verbose in both prompts (∼110 words)
and responses (∼320 words), whereas Hindi mostly
remain concise. At the task level, Multi-turn con-
versation, Advice Seeking, and Creative Writing
yield the longest responses (550–620 words). Con-
versely, QA, Indian cultural context, and Compre-
hension tasks are consistently brief. Verbosity thus
correlates with conversational and creative tasks,
while simpler or context-specific settings produce
shorter outputs.

Pragyaan-Align, the preference dataset, has an
equal representation across all languages and 10
categories that helps promote fairness and miti-
gate bias. All instances in Pragyaan-Align follow
a standardized configuration: single-turn interac-
tions with instruction following and safe responses.
Our analysis shows variation in text lengths across
categories and languages. Average word counts
for prompts range from 36–63 words, preferred re-
sponses 137–539, while rejected responses range
from 154–466 words reflecting differences in task
complexity and elaboration. Detailed language-
wise as well as category-wise trends are also pre-
sented in Figure 3.

Overall, our Pragyaan datasets for post-training
provide a broad task and Indian language cover-
age. The various task settings and our curation
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Figure 4: Average word counts of Pragyaan-IT data across languages (left) and categories (right).

Figure 5: Win rates of the Krutrim-2-12B (left) and Llama-3-8B (right) models after DPO, compared against their
respective pre-DPO versions.

process leveraging LLMs along with human-in-the-
loop help ensure high quality. Our future itera-
tions will expand complex reasoning capabilities
and enhance representation for under-covered low-
resource languages.

5.3 Downstream performance
To evaluate the quality of our curated dataset, we
conduct a pilot study with Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) based
alignment on the Pragyaan-Align dataset using
two open-weight models which supports the lan-
guages under consideration: Krutrim-2-12B In-
struct (Kallappa et al., 2025) and Llama-3-8B In-
struct (Grattafiori et al., 2024).

For evaluation, we use the recently released Up-
desh dataset2, which covers similar categories and
languages. We sample around 100 examples from
nine relevant categories, balanced across ten lan-
guages. Responses from the models are scored
against the ground truth on a scale of 1–5 using
an LLM-as-a-judge. We provide more information
about the hyperparameter configuration and other
experimental details in Section A.6 and the corre-
sponding prompts used for evaluation in Section B
of the Appendix.

As shown in Figure 5, Krutrim-2-12B after DPO
either wins or draws in 60.4% of cases, loses in
29.9%, and both pre- and post-DPO responses

2https://huggingface.co/datasets/microsoft/
Updesh_beta

score poorly (<2) in 9.7%. A similar trend holds
for Llama-3-8B (61.1% wins or draws), confirming
the promising potential of our curated dataset for
alignment across different categories and multiple
Indian languages.

6 Conclusion

This work addresses the scarcity of high-quality
post-training data for multilingual LLMs by devel-
oping a human-in-the-loop pipeline to ensure diver-
sity, quality and cultural grounding. Through this
approach, we construct two datasets: Pragyaan-IT
and Pragyaan-Align covering 10 Indian languages
and multiple task categories. The datasets high-
light inclusion of local cultural context, task di-
versity, multi-turn dialogue, and safety alignment,
overcoming the limitations of naive translations
and low-quality synthetic resources. Although de-
signed for Indian languages, the pipeline is read-
ily adaptable to other multilingual contexts. We
present a comprehensive analysis of the dataset’s
characteristics, covering language distribution and
domain coverage, and further demonstrate its effec-
tiveness for alignment through a small-scale pilot
study. Future efforts will expand language cover-
age and further annotation quality refinement. We
aim for this work to support broader efforts in build-
ing culturally inclusive resources that strengthen
LLM applicability in multilingual contexts.
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Limitations

Our dataset is part of an ongoing effort, with
plans to continually expand post-training instances.
While our human-in-the-loop framework mitigates
many issues, challenges such as minor linguistic
inaccuracies, fluency variation across languages,
and potential annotation subjectivity may still per-
sist. Moreover, our research prioritized Indian lan-
guages, and the generalization of findings to other
multilingual settings remain currently unexplored.
Extending the pipeline to new cultural and linguis-
tic contexts will require additional validation. We
view these limitations as avenues for future work
towards broader applicability and refinement of our
proposed framework.

Ethics Statement

This study focuses on curating large-scale post-
training datasets for Indian languages, encom-
passing diverse tasks and cultural contexts. The
pipeline combines synthetic generation with
human-in-the-loop refinement to ensure quality,
safety, and cultural fidelity. We provide proper at-
tribution to all source datasets and tools through ci-
tations. Human involvement was limited to annota-
tion and quality control; no personally identifiable
or sensitive information was collected. We engage
a team of 50 in-house annotators for dataset cre-
ation. All contributors were clearly informed that
their work supports LLM training and were com-
pensated fairly at locally prevailing market rates.
This study did not require formal IRB approval.
Throughout the process, we prioritized preserving
cultural nuances while avoiding harmful, biased, or
unsafe content. The resulting dataset is designed
to advance the development of multilingual and
culturally inclusive LLMs.
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Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib,
Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien,
Sebastian Ruder, Surya Guthikonda, Emad A. Al-
ghamdi, Sebastian Gehrmann, Niklas Muennighoff,
Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh
Fadaee, and Sara Hooker. 2024b. Aya dataset: An
open-access collection for multilingual instruction
tuning.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard
Jones, Abdulhakeem Adefioye, Jean Kaddour, and
Andreas Köpf. 2025. Reasoning gym: Reasoning en-
vironments for reinforcement learning with verifiable
rewards.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruc-
tion tuning dataset. arXiv preprint arXiv: Arxiv-
2402.10176.

Foutse Touileb, Xavier Longpre, Adrien L’Heureux,
Tom Houlsby, Duy-Kien Le, Vincent Aribaud, Hugo
Le Scao, Tommaso Pasquini, Marco Miaschi, and
Patrick Muennighoff. 2024. Magpie: A broad-
coverage, fine-grained multitask instruction dataset.
arXiv preprint arXiv:2403.00010.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

296

https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
http://arxiv.org/abs/2104.06001
http://arxiv.org/abs/2104.06001
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2404.16816
http://arxiv.org/abs/2402.06619
http://arxiv.org/abs/2402.06619
http://arxiv.org/abs/2402.06619
http://arxiv.org/abs/2505.24760
http://arxiv.org/abs/2505.24760
http://arxiv.org/abs/2505.24760


Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Jun Wang, Benjamin Rubinstein, and Trevor Cohn.
2022a. Measuring and mitigating name biases in
neural machine translation. In ACL.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022b. Self-instruct: Aligning language
model with self generated instructions.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022c. Self-instruct: Aligning lan-
guage model with self generated instructions. ArXiv
preprint, abs/2212.10560.

Yizhong Wang, Yeganeh Li, Niklas Michael, Hila Go-
nen, Jesse He, Yi Zhao, Ziyi Lin, Yejin Shafi, Karan
Singh, Foutse Touileb, and et al. 2022d. Super-
naturalinstructions: A generalization beyond english
language. arXiv preprint arXiv:2204.05367.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Sean Welleck, Ronan Le Bras, Hannaneh Hajishirzi,
and Yejin Choi. 2021. Naturalproofs: Mathematical
theorem proving in natural language. arXiv preprint
arXiv:2104.01112.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned llms
with nothing.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou,
and Radha Poovendran. 2025. KodCode: A diverse,
challenging, and verifiable synthetic dataset for cod-
ing. In Findings of the Association for Computa-
tional Linguistics: ACL 2025, pages 6980–7008.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning.

Xiang Yu, Haidong Liu, Ning Yang, Qiaoli Wang,
Jianye Wang, Jia Li, Li Zhang, and Jian Zhang. 2023a.
Metamath: Bootstrap your own mathematical reason-
ing dataset. arXiv preprint arXiv:2309.12284.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2023b. Large language model as
attributed training data generator: A tale of diversity
and bias.

Tianyu Zhang, Yang Liu, Yuxuan Xu, Yujia Wang,
Haoyu Chen, Hongwei Li, Chen Li, Jiawei Xie, and
Chen Zhang. 2024. Open-thoughts: A large-scale
dataset for learning and evaluating llm thinking pro-
cesses. arXiv preprint arXiv:2406.04178.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppat-
tarachai, Leandro von Werra, Harm de Vries, Qian
Liu, and Niklas Muennighoff. 2024. Astraios:
Parameter-efficient instruction tuning code large lan-
guage models. arXiv preprint arXiv:2401.00788.

A Appendix

A.1 Dataset Curation
For each sub-category, we curated multiple pub-
licly available candidate datasets and evaluated
their applicability to our data collection objectives,
assessing how they align with the chosen curation
approaches. Table 3 summarizes representative
categories along with corresponding datasets incor-
porated into our pipeline. It is worth noting that
data collection for certain sub-categories remains
an ongoing effort.

A.2 Data Construction Approaches
We further provide more details about the prompt
and responses for both the approaches in Table 4.
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Sub Category Candidate Datasets Sub Category Candidate Datasets

Non-Math Reasoning

MMLU (Hendrycks et al., 2020)
MMLU-Pro (Liu et al., 2024)
GPQA (Rein et al., 2024)
medical-o1-reasoning-SFT (Rothermund et al., 2025)
OpenThoughts (Zhang et al., 2024)

Sentiment Analysis IndicSentiment (Doddapaneni et al., 2023)
pietrolesci/imdb

Math Reasoning

OpenThoughts (Zhang et al., 2024)
Llama-Nemotron-Posttraining-Dataset (NVIDIA, 2025)
ServiceNow-AI/R1-Distil-SFT (Research, 2024)
LIMO (Ye et al., 2025)
s1K (Muennighoff et al., 2025)

General Question Answer-
ing

OpenBookQA (Mihaylov et al., 2018)
TriviaQA (Joshi et al., 2017)
CommonSenseQA (Talmor et al., 2019)
WikiQA (Yang et al., 2015)
HotPotQA (Yang et al., 2018)
MegaWika (Barham et al., 2023)

Code Reasoning

OpenThoughts (Zhang et al., 2024)
Llama-Nemotron-Posttraining-Dataset (NVIDIA, 2025)
KodCode (Xu et al., 2025)
open-r1/codeforces-cots (Penedo et al., 2025)

Fact Check
NaturalQuestions (Kwiatkowski et al., 2019)
TriviaQA (Joshi et al., 2017)
Indic Quest (Rohera et al., 2024)

Indian Relationships Reasoning Gym (Stojanovski et al., 2025) Multi Turn Conversation
ChatAlpaca (Bian et al., 2023)
NoRobots (Rajani et al., 2023)
Opus Samantha

Inference XNLI (Conneau et al., 2018) Role Playing
Public Domain Alpaca
LimaRP
Magpie (Touileb et al., 2024)

Data Analysis Magpie (Touileb et al., 2024) Advice Seeking Magpie (Touileb et al., 2024)

Named Entity Recognition Naamapadam (Mhaske et al., 2022)
Bharath Bench Planning Magpie (Touileb et al., 2024)

Text Classification

pietrolesci/civilcomments-wilds (Borkan et al., 2019)
pietrolesci/wikitoxic
pietrolesci/hyperpartisan_news_detection
Bharath Bench
Aya Collection (Singh et al., 2024b)

Brainstorming Magpie (Touileb et al., 2024)

Grammar Correction Bharath Bench Information Seeking Magpie (Touileb et al., 2024)

Translation Flores-IN (Singh et al., 2024a)
IN-22 Indian Cultural Context Bharath Bench

Creative Writing Magpie (Touileb et al., 2024)
Poetry Comprehension

TriviaQA (Joshi et al., 2017)
SQUAD (Rajpurkar et al., 2018)
SQUAD 2.0 (Rajpurkar et al., 2018)
IndicQA

Paraphrase Identification IndicXParaphrase (Doddapaneni et al., 2023) Math QA

OpenMathInstruct 2 (Toshniwal et al., 2024)
GSM8K (Cobbe et al., 2021)
MATH (Hendrycks et al., 2021)
Tulu3 Persona Math (Lambert et al., 2025)
Tulu3 Persona GSM8K (Lambert et al., 2025)

Text Summarization

CrossSumIN (Singh et al., 2024a)
Indic Sentence Summarization (Kumar et al., 2022)
arxiv-summarization (Cohan et al., 2018)
news-summarization

Math Instruction Tuning MetaMathQA (Yu et al., 2023a)
Math Instruct (Puduppully et al., 2024)

Headline Generation Indic Headline Generation (Kumar et al., 2022)
NewSHead Math Proofs Natural Proofs (Welleck et al., 2021)

Question Generation Indic Question Generation (Kumar et al., 2022)

Table 3: Representative datasets curated for different sub-categories that are used as candidate datasets in our data
curation approaches.

Approaches Prompts Responses
Approach 1: Transla-
tion + Human Refine-
ment

English prompts → LLM translation → human
verification/adaptation.
Outputs: Indic Generic Prompts, Indic Context
Prompts.

English responses → LLM translation →
human verification/adaptation.
Outputs: Indic Generic Responses, Indic
Context Responses.

Approach 2: Synthetic
Expansion + Human
Refinement

Seed English prompts → LLM expansion (Self-
Instruct) → LLM translation → human verifica-
tion/adaptation.
Outputs: Synthetic Indic Generic Prompts, Syn-
thetic Indic Context Prompts.

Synthetic English responses → LLM
translation → human verification/adapta-
tion.
Outputs: Synthetic Indic Generic Re-
sponses, Synthetic Indic Context Re-
sponses.

Table 4: Comparison of data construction approaches, showing pipelines for prompts and responses with resulting
categories.
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A.3 Complexity Definitions

Notably, complexity is evaluated relative to each
task category, ensuring that difficulty levels are
interpreted within the specific context of that cat-
egory. Figures 6–11 illustrate how complexity is
defined across different task categories.

A.4 Instruction Following

Various configurations of Instruction Following
incorporate different combinations of constraints
within the prompt. Figure 12 outlines the types of
constraints considered, accompanied by illustrative
examples for clarity while human annotation.

A.5 Human Annotation Refinement

Data annotators initially assessed the performance
of the underlying LLM on both generation and
translation tasks across multiple dimensions.

For generation, raw LLM responses were as-
sessed along dimensions such as Response Rel-
evance, Grammatical Accuracy, Cohesion and
Coherence, Rationality, and Completeness (see
Table 5 for the guidelines). As shown in Fig-
ure 13, English generations perform consistently
well: tasks such as Indian Cultural Context, Ad-
vice Seeking, Information Seeking, Named En-
tity Recognition, Inference, Paraphrase Identifica-
tion, Paraphrase Generation, and Headline Gen-
eration achieve near-perfect scores in Response
Relevance (5.00) and Completeness (4.93–5.00).
Multi-Turn Conversation also scores high in Cohe-
sion and Coherence (5.00) and Response Relevance
(4.70). Grammatical Accuracy remains strong over-
all (4.00–4.40), though slightly lower in Compre-
hension (3.20) and Creative Writing (3.93).

For translation, annotators evaluated Lexical Di-
versity, Coherence and Cohesion, Completeness,
Grammatical Accuracy, and Named Entity Han-
dling (see Table 6 for the guidelines). Hindi shows
the strongest performance, achieving the highest
Completeness (4.92) and Named Entity Handling
(4.85). Telugu and Gujarati exhibit strong Lexical
Diversity (3.43 and 3.30), while Grammatical Ac-
curacy is highest in Telugu (3.62), Hindi (3.60), and
Punjabi (3.55). Further detailed evaluation scores
are illustrated in Figure 14.

A.6 Implementation

For training, we adopt a distributed DeepSpeed-
based setup with ZeRO-3 optimization (Rajbhan-
dari et al., 2020) across 2 H100 nodes (8 GPUs

per node) to efficiently handle large-scale model
fine-tuning. The Llama-3-8B and Krutrim-2-12B
instruct models are optimized using the Direct
Preference Optimization (DPO) objective with a
Beta parameter of 0.3, controlling the strength of
preference alignment. Training is performed on
sequences up to 4096 tokens, with a maximum
prompt length of 2048 tokens to accommodate
complex multi-turn instructions. We employ the
AdamW optimizer with a learning rate of 5×10−7,
weight decay of 0.01, and a cosine learning rate
scheduler with a warming ratio of 10% warmup
ratio for stable convergence and run for 1 epoch.
The batch configuration consists of 4 samples per
device with gradient accumulation over 2 steps,
yielding an effective batch size suitable for large-
scale distributed training setup.

Post-trained Krutrim-2-12B and Llama-3-8B
models are evaluated on the Updesh dataset across
10 languages and nine categories using LLM-as-
a-Judge scoring on a scale of 1-5. Post-DPO,
Krutrim achieves 31.7% wins, 29.9% losses, 28.6%
draws, and 9.8% both-bad cases, while Llama
records 35.0% wins, 26.1% losses, 27.9% draws,
and 11.0% both-bad cases.

B Prompts Used

Different prompts were crafted for each category
and complexity level during prompt generation us-
ing the self-instruct pipeline. For instance, Figures
15 and 16 illustrate example prompts for the Indian
Cultural Context category under easy and hard set-
tings, respectively. Similar design considerations
were applied across other categories to address their
specific requirements.

Figure 17 presents the prompt template em-
ployed for translating English prompt-response
pairs via LLMs. The Krutrim-2-12B and Llama-
3-8B Instruct models, after being fine-tuned using
DPO on 100K examples from the Pragyaan-Align
dataset, were evaluated on the Updesh dataset. The
evaluation utilized an LLM-as-a-Judge framework
for scoring, with the corresponding prompt design
shown in Figure 18.

C Guidelines For Manual Annotation

The data annotation team follows a set of standard-
ized guidelines designed to maintain consistency
and uniformity throughout the annotation process.
These guidelines include precise definitions for
each category and setting, which are elaborated
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Figure 6: Complexity Definitions for each sub-category.

Dimension Explanation

Response Relevance Measures how well the model output addresses the user query or task
instruction.
Why it matters for Indic/Multilingual Data: Responses must stay
on-topic and satisfy user intent; irrelevant outputs reduce usability and
may confuse readers.
Errors in this area: Off-topic responses, inclusion of unrelated infor-
mation, misinterpretation of the prompt.

Grammatical Accuracy Correct use of grammar rules including syntax, tense, agreement, punc-
tuation, and morphology.
Why it matters for Indic/Multilingual Data: Proper grammar ensures
readability and clarity; morphologically rich languages are prone to
agreement and inflection errors.
Errors in this area: Wrong tense, subject-verb disagreement, missing
auxiliaries, incorrect case markings, improperly inflected words.

Cohesion and Coherence Cohesion = linguistic devices (connectors, pronouns, conjunctions) link-
ing sentences; Coherence = logical flow of ideas.
Why it matters for Indic/Multilingual Data: Maintains well-structured
and easily understandable responses; lack of cohesion or coherence leads
to fragmented outputs.
Errors in this area: Abrupt topic shifts, disconnected sentences, miss-
ing references, inappropriate pronoun usage.

Rationality Logical correctness and factual consistency of the response, including
reasoning and alignment with real-world knowledge.
Why it matters for Indic/Multilingual Data: Ensures trustworthiness
and usefulness of outputs, particularly for reasoning or factual tasks.
Errors in this area: Contradictory statements, illogical conclusions,
factually incorrect assertions, hallucinations.

Completeness The extent to which the response fully addresses the user prompt or
includes all necessary information.
Why it matters for Indic/Multilingual Data: Partial answers reduce
usefulness, especially for multi-step reasoning or detailed explanations.
Errors in this area: Missing steps in reasoning, skipped entities, trun-
cated explanations, insufficient coverage of subtopics.

Table 5: Key dimensions for assessing LLM outputs in Indic languages, highlighting relevance and frequent pitfalls.
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Figure 7: Complexity Definitions for each sub-category.

Figure 8: Complexity Definitions for each sub-category.
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Figure 9: Complexity Definitions for each sub-category.

Figure 10: Complexity Definitions for each sub-category.
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Figure 11: Complexity Definitions for each sub-category.

Figure 12: Instruction following: constraint types and examples
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Dimension Explanation
Lexical Diversity The variety and richness of words used in the text. Higher lexical

diversity means using a wide range of vocabulary instead of repetitive or
generic terms.
Why It Matters for Indic Data: Indic languages have rich vocabulary
and multiple synonyms; poor diversity makes translations monotonous
and unnatural.
Errors in this area: Overuse of common words, failure to use synonyms,
repetitive phrasing.

Coherence and Cohesion Coherence: Logical flow and overall sense of the text.
Cohesion: Use of linguistic devices (connectors, pronouns, conjunc-
tions) to link sentences smoothly.
Why It Matters for Indic Data: Many Indic languages use connectives
and honorific markers that impact cohesion; direct translation from
English often breaks these links.
Errors in this area: Disconnected sentences, abrupt topic shifts, missing
conjunctions or pronouns.

Completeness Whether the output contains all necessary information from the source
without omissions or additions.
Why It Matters for Indic Data: When translating long or complex
Indic sentences, models often skip certain parts (e.g., verb phrases or
subordinate clauses).
Errors in this area: Missing phrases, dropped entities, truncated sen-
tences, or extra hallucinated details.

Grammatical Accuracy Correct use of grammar rules (syntax, tense, agreement, case, morphol-
ogy). It affects fluency and correctness of the output.
Why It Matters for Indic Data: Indic languages have complex inflec-
tional morphology and word order; errors often occur in case endings,
gender/number agreement, and verb conjugations.
Errors in this area: Wrong tense, missing auxiliary verbs, subject-verb
disagreement, wrong case marking.

Named Entity Handling Correct recognition and rendering of named entities (persons, places,
organizations, dates, currencies, etc.) across languages.

Table 6: Key dimensions for assessing LLM translations in Indic languages, highlighting their significance and
common errors.

Figure 13: LLM generation quality evaluation scores across various categories.
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Figure 14: LLM translation quality evaluation scores across 11 Indian languages.

in Section 3.3. In addition to these specifications,
dedicated frameworks for quality assurance are pro-
vided, encompassing both language quality verifica-
tion and content quality verification, as illustrated
in Figures 19 and 20, respectively.

D Examples

We provide examples of both instruction and pref-
erence tuning datasets in Figures 21-30.
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Figure 15: Prompt used for generation of easy Indian cultural context English prompt in Self-Instruct pipeline.
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Figure 16: Prompt used for generation of hard Indian cultural context English prompt in Self-Instruct pipeline.
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Figure 17: Prompt used for translation via LLM.
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Figure 18: Prompt used for evaluating post-trained model on Pragyaan-Align data via LLM-as-a-Judge.
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Figure 19: Comprehensive language luality guidelines outlining key linguistic dimensions such as grammar, fluency,
clarity, and naturalness for ensuring high-quality annotated data.
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Figure 20: Content quality guidelines detailing principles for maintaining factual accuracy, contextual relevance,
safety, and adherence to task-specific requirements during data annotation.
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Figure 21: Pragyaan-Align alignment data examples in Advice Seeking and Brainstorming categories with Easy,
1-Turn, Simple-IF, Safe, IC-3, Normal (No Thinking Trails) settings configuration.
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Figure 22: Pragyaan-Align alignment data example in Creative Writing category with Easy, 1-Turn, Simple-IF, Safe,
IC-3, Normal (No Thinking Trails) settings configuration.
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Figure 23: Pragyaan-Align alignment data examples in Data Analysis and Editing categories with Easy, 1-Turn,
Simple-IF, Safe, IC-3, Normal (No Thinking Trails) settings configuration.
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Figure 24: Pragyaan-Align alignment data examples in Information Seeking, Math and Reasoning categories with
Easy, 1-Turn, Simple-IF, Safe, IC-3, Normal (No Thinking Trails) settings configuration.

315



Figure 25: Pragyaan-Align alignment data examples in Planning and Role Playing categories with Easy, 1-Turn,
Simple-IF, Safe, IC-3, Normal (No Thinking Trails) settings configuration.
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Figure 26: Pragyaan-IT data examples in categories Indian Cultural Context - (Easy, 1-Turn, Simple-IF, Safe, IC-3,
Normal (No Thinking Trails)), Creative Writing - (Hard, 1-Turn, Simple-IF, Safe, IC-3, Normal (No Thinking Trails))
and Advice Seeking - (Easy, 3-Turn, Simple-IF, Safe, IC-3, Normal (No Thinking Trails)) settings configuration.
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Figure 27: Pragyaan-IT data examples in categories Planning - (Hard, 1-Turn, Simple-IF, Safe, IC-3, Normal (No
Thinking Trails)) and General Question Answering - (Easy, 1-Turn, Simple-IF, Safe, IC-1, Normal (No Thinking
Trails)) settings configuration.
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Figure 28: Pragyaan-IT data examples in categories Brainstorming - (Easy, 1-Turn, Simple-IF, Non-Safe, IC-1,
Normal (No Thinking Trails)) and Grammar Correction - (Easy, 1-Turn, Simple-IF, Safe, IC-1, Normal (No Thinking
Trails)) settings configuration.
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Figure 29: Pragyaan-IT data examples in category Information Seeking - (Hard, 1-Turn, Medium-IF, Safe, IC-3,
Normal (No Thinking Trails)) settings configuration.
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Figure 30: Pragyaan-IT data examples in categories Named Entity Recognition - (Hard, 1-Turn, Complex-IF, Safe,
IC-3, Normal (No Thinking Trails)), Comprehension - (Easy, 1-Turn, Simple-IF, Safe, IC-1, Normal (No Thinking
Trails)) and Inference - (Hard, 1-Turn, Simple-IF, Safe, IC-1, Normal (No Thinking Trails)) settings configuration.
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Abstract

This work investigates the impact of multi-task,
multi-lingual, and multi-source learning ap-
proaches on the robustness and performance
of pretrained language models. To enhance
this analysis, we introduce Subsets of Interest
(SOI), a novel categorization framework that
identifies six distinct learning behavior patterns
during training, including forgettable examples,
unlearned examples, and always correct exam-
ples. Through SOI transition heatmaps and
dataset cartography visualization, we analyze
how examples shift between these categories
when transitioning from single-setting to multi-
setting1 configurations. We perform compre-
hensive experiments across three parallel com-
parisons: multi-task vs. single-task learning us-
ing English tasks (entailment, paraphrase, senti-
ment), multi-source vs. single-source learning
using sentiment analysis datasets, and multi-
lingual vs. single-lingual learning using intent
classification in French, English, and Persian.
Our results demonstrate that multi-source learn-
ing consistently improves out-of-distribution
performance by up to 7%, while multi-task
learning shows mixed results with notable gains
in similar task combinations. We further intro-
duce a two-stage fine-tuning approach where
the second stage leverages SOI-based subset
selection to achieve additional performance im-
provements. These findings provide new in-
sights into training dynamics and offer prac-
tical approaches for optimizing multi-setting
language model performance.

1 Introduction

Deep learning has revolutionized natural language
processing (NLP), with Transformer-based mod-
els (Vaswani et al., 2017) achieving remarkable

* Equal Contribution
1For brevity, we use "multi-setting" to refer to multi-task,

multi-source, or multi-lingual learning, and "single-setting" to
refer to single-task, single-source, or single-lingual learning,
respectively.

success across various tasks. These architectures
primarily fall into two categories: decoder-only
models, such as GPT-2 (Radford et al., 2019),
and encoder-only models, including BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
Recently, decoder-only large language models
(LLMs) have gained prominence, notably follow-
ing the success of ChatGPT. While newer open-
source LLMs, such as the Llama3 family (Dubey
et al., 2024), facilitate human-friendly interactions
across diverse tasks, they do not consistently out-
perform traditional models (Abaskohi* et al., 2024;
Ghaffarzadeh-Esfahani et al., 2024). Furthermore,
current benchmarks for evaluating LLMs empha-
size general capabilities such as comprehension
and reasoning, frequently neglecting specialized
NLP tasks like text classification and named en-
tity recognition. Recent research by Yu et al.
(2023) indicates that smaller, fine-tuned encoder-
only pretrained language models (PLMs), such
as RoBERTa, can match or exceed the perfor-
mance of larger LLMs across various specialized
datasets. Although closed-source LLMs like GPT-
4o (Hurst et al., 2024) can occasionally surpass
PLMs with extensive prompt engineering, smaller
open-source models offer substantial advantages re-
garding speed, cost-effectiveness, and transparency.
Therefore, systematic analyses of PLM training dy-
namics remain crucial, even as LLMs increasingly
dominate NLP research.

Motivated by this, we systematically investi-
gate the impact of multi-task, multi-lingual, and
multi-source learning approaches on the robustness
and performance of PLMs. Multi-task learning,
which leverages shared knowledge across related
tasks, has shown considerable promise for enhanc-
ing model generalization and robustness, particu-
larly under constraints of limited data and computa-
tional resources. Concurrently, multi-source learn-
ing exploits diverse data origins to provide models
with a broader understanding of target problems,
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while multi-lingual learning enables the acquisition
of language-agnostic knowledge, significantly im-
proving cross-lingual transfer and performance on
low-resource languages.

Despite these advances, a key challenge in train-
ing PLMs is handling Forgettable Examples, sam-
ples that are difficult or out-of-scope, leading mod-
els to frequently oscillate between correct and
incorrect predictions during training. Although
fine-tuning on these challenging examples has
proven beneficial in enhancing model robustness
(Yaghoobzadeh et al., 2021), systematic analysis
of their underlying learning patterns is currently
lacking.

To address this gap, we introduce Subsets of
Interest (SOI), a novel framework for categoriz-
ing dataset samples based on distinct learning be-
haviors observed during training. Specifically,
SOI consists of six categories: Unlearned Exam-
ples (UNE), Always Correct Examples (ACE), 1-
time Forgettable Examples (1t-FRGE), At least
2-times Forgettable Examples (≥ 2t-FRGE),
Early-Learned Examples (ELE), and Late-Learned
Examples (LLE). Collectively, these subsets
enable detailed insights into the dynamics of
model learning behaviors under single- or multi-
setting configurations, spanning different tasks, lan-
guages, and sources. Furthermore, we investigate
the potential of SOI subsets to enhance out-of-
distribution performance through second-stage fine-
tuning strategies based on various SOI combina-
tions.

The key contributions of this work are as follows:
First, we introduce the SOI framework, system-
atically classifying training samples into distinct
learning behavior subsets (Section 4.1). Second,
we visualize model learning dynamics via dataset
cartography and SOI transition heatmaps, offering
intuitive insights into sample-level training behav-
iors (Sections 4.2 and 4.3). Third, we provide a
comprehensive comparative analysis of multi-task,
multi-lingual, and multi-source learning methods,
evaluating their impacts on both in-distribution (ID)
and out-of-distribution (OOD) performances (Sub-
section 5.1). Lastly, we extend our OOD evalua-
tions through second-stage fine-tuning on strategi-
cally chosen subsets derived from SOI analyses,
demonstrating additional performance gains (Sub-
section 5.2).2

2Our code is publicly available at this GitHub repository.
It builds upon the implementation provided here, adapting
Hugging Face’s transformers library for multi-setting training.

2 Related Work

In recent years, extensive research has focused on
developing multilingual models as well as models
capable of performing multiple NLP tasks simulta-
neously. Multi-task learning leverages shared rep-
resentations to jointly optimize model performance
across various related tasks, enhancing model gen-
eralization, robustness, and computational effi-
ciency. Early foundational work by Collobert and
Weston (2008) introduced multi-task learning con-
cepts to NLP, illustrating that training multiple
tasks concurrently could lead to better feature gen-
eralization and more robust representations. Sub-
sequent studies have widely adopted transfer learn-
ing techniques (Howard and Ruder, 2018), demon-
strating how pretrained language model knowledge
can significantly enhance performance on various
downstream NLP tasks. Multi-lingual learning, an-
other promising direction, enables models to gain
language-agnostic knowledge to understand, gen-
erate, and generalize textual information across
multiple languages. Conneau et al. (2020) intro-
duced XLM-R, a robust cross-lingual PLM trained
on diverse multilingual data, significantly improv-
ing performance on low-resource languages and
facilitating effective cross-lingual transfer.

Understanding model behavior at the individ-
ual example level represents another critical aspect
in training language models. The phenomenon
of example forgetting, instances where models os-
cillate between correct and incorrect predictions
during training, has been thoroughly investigated
by Yaghoobzadeh et al. (2021). Their work demon-
strated that fine-tuning models specifically on these
challenging, forgettable examples can significantly
enhance model robustness and generalization on
task-specific OOD datasets. Complementary to this
perspective, Swayamdipta et al. (2020) proposed
dataset cartography, a visualization technique char-
acterizing training samples based on prediction
confidence and variability metrics. Their method
categorizes data into easy-to-learn, hard-to-learn,
and ambiguous regions, providing intuitive insights
into model behavior throughout training. They con-
clude that training the model from scratch on the
ambiguous region achieves the best ID and OOD
performances compared to other scenario cases,
including training on hard-to-learn and forgetting
examples.

Inspired by these foundational works, our study
introduces the Subsets of Interest (SOI) framework,
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extending beyond previous categorizations with a
finer-grained, analytical perspective. Instead of
limiting analysis to three regions, SOI systemati-
cally classifies training examples into six distinct
learning subsets based on their dynamic behaviors
during training. Our comprehensive categorization
enriches existing analytical tools, offering nuanced
insights into model OOD generalization capability
across various multi-task, multi-lingual, and multi-
source training scenarios.

3 Experiments Setup

In this section we introduce three parallel exper-
imental comparisons: multi-task vs. single-task
learning, multi-source vs. single-source learning,
and multi-lingual vs. single-lingual learning. For
each comparison, we conducted similar experi-
ments to evaluate both performance and generaliz-
ability. Our experimental framework encompasses
various tasks, languages, datasets, and a unified
model architecture detailed below.

3.1 Tasks, Languages and Sources
Our experimental framework spans across multiple
dimensions of learning. In the multi-task learn-
ing, we utilize three English tasks: entailment (E),
paraphrase (P), and sentiment (S). Entailment and
paraphrase tasks require binary decisions on seman-
tic relationships between two textual inputs, while
sentiment analysis processes single inputs, allow-
ing us to explore combinations of similar tasks (P
& E) versus dissimilar ones (S & P, S & E). For the
multi-source learning, we focus on sentiment analy-
sis across different data distributions using English
datasets, isolating the effects of data source varia-
tion from task variation. In our multi-lingual ex-
periments, we conduct intent classification across
French (Fr), English (En), and Persian (Fa). This
language selection enables us to examine the im-
pact of script and linguistic similarities, as English
and French share common features while Persian
differs significantly in both script and structure.

3.2 Datasets
We employed several benchmark datasets tailored
to different learning settings. For each setting,
such as multi-task learning, we construct three
pairs of datasets, where each pair includes one
in-distribution (ID) and one out-of-distribution
(OOD)dataset. Each ID dataset is divided into
training, validation, and test splits, whereas the
corresponding OOD dataset is treated as a single

evaluation set without internal splits. In the fol-
lowing subsections, we detail the specific datasets
chosen for each setting.

3.2.1 Multi-task Learning
For entailment, SciTail (Khot et al., 2018) serves
as the ID dataset, comprising 23,097 training ex-
amples. The OOD counterpart is the RTE training
set from the GLUE benchmark (Wang et al., 2018),
comprising 2,490 samples. In the paraphrase de-
tection task, we use the Microsoft Research Para-
phrase Corpus (MRPC) (Dolan and Brockett, 2005)
as the ID dataset, which includes 3,668 training in-
stances. The OOD dataset in this case is a reduced
version of the Quora Question Pairs (QQP) training
set from the GLUE (Wang et al., 2018), subsam-
pled to 4,000 examples.

For sentiment classification, we utilize a modi-
fied version of the Twitter US Airline Sentiment
dataset (Rane and Kumar, 2018), containing 8,078
samples after removing "neutral" labels to enforce
binary sentiment polarity. For the correspond-
ing OOD dataset, we adopt a reduced version of
the Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) dataset, limited to 4,000 examples to
maintain balance across tasks.

3.2.2 Multi-source Learning
For multi-source experiments, we use three sen-
timent analysis datasets as our ID datasets, each
containing 50,000 examples sampled from the full
dataset with an 80-10-10 train-eval-test split, result-
ing in 40,000 training instances per dataset. The
IMDB movie reviews dataset (Rudra and Gopalakr-
ishnan, 2023) serves as our first source, the Yelp Re-
views dataset (Hemalatha and Ramathmika, 2019)
comprises business reviews with binary sentiment
labels, and Sentiment140 (Habib and Sultani, 2021)
provides sentiment-labeled Twitter content for so-
cial media analysis.

As the OOD dataset, we use the Stanford Senti-
ment Treebank (SST-2) (Socher et al., 2013), com-
prising 5,000 examples. Since all sources share the
same task, we use the same OOD dataset for all
three sources.

3.2.3 Multi-lingual learning
For our multilingual experiments, we adopted three
intent classification datasets as the ID datasets:
Persian subset of MASSIVE (FitzGerald et al.,
2023) (11,514 training examples), Small subset of
CLINC150 (Larson et al., 2019) for English (7,600
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Figure 1: Unified Architecture for Our Multi-Setting
Learning Experiments.

training samples), and LORIA subset of MIAM
(Colombo et al., 2021) for French (8,465 training
samples).

Since the number of intent classes can differ
across datasets in the intent classification task, we
translated each ID dataset into Burmese, a very
low-resource language, and treated these translated
versions as the OOD datasets. For translation, we
employed the No Language Left Behind machine
translation model3 (NLLB Team et al., 2022).

3.3 Architecture
Our experiments employ a unified architecture
(see Figure 1) that leverages shared knowledge
through a common encoder. For multi-task and
multi-source experiments, we use BERT-base4 (De-
vlin et al., 2019), while multi-lingual experiments
utilize the multilingual XLM-R5 (Conneau et al.,
2020) model. Each setting maintains specialized
classification heads (task-specific, source-specific,
or language-specific) attached to the shared en-
coder. For multi-setting experiments, train-
ing occurs with pairs of tasks/sources/languages:
sentiment-entailment (SE), sentiment-paraphrase
(SP), and paraphrase-entailment (PE) for tasks;
IMDB-Yelp (IY), Sentiment140-Yelp (SY), and
IMDB-Sentiment140 (IS) for sources; and finally,
English-Persian (En-Fa), French-English (Fr-En),
and French-Persian (Fr-Fa) for languages.

4 Subsets of Interest

In this section, we present a comprehensive frame-
work for analyzing deep learning models through
the lens of training dynamics. We introduce the
concept of Subsets of Interest (SOI), a novel cate-
gorization system that partitions training examples
based on their unique learning patterns observed

3We used “nllb-200-3.3B” model.
4We used “bert-base-uncased” model.
5We used “xlm-roberta-base” model.

during the training process. Our analysis unfolds
in three complementary parts: first, we formally
define the six distinct SOI categories and their char-
acteristics; second, we employ dataset cartogra-
phy to visualize how these subsets manifest in the
confidence-variability space; and third, we intro-
duce transition heatmaps to track how examples
migrate between SOI categories under different
training configurations. Together, these compo-
nents provide a systematic approach to understand-
ing and analyzing the complex dynamics of neural
network training.

4.1 SOI Framework and Definitions
In this section, we introduce a novel approach to
analyzing deep learning models by extracting spe-
cific samples from the training set, based on unique
learning patterns observed during training. Based
on these patterns, the training set spans six distinct
subsets, which we call Subsets of Interest (SOI):
1. Unlearned Examples (UNE), 2. Always Correct
Examples (ACE), 3. 1-time Forgettable Examples
(1t-FRGE), 4. At least 2-times Forgettable Ex-
amples (≥2t-FRGE), 5. Early-Learned Exam-
ples (ELE), and 6. Late-Learned Examples (LLE).

UNE refers to samples that show no sign of
learning from a certain point onward in the training
process. A representative prediction pattern over
ten epochs of fine-tuning, assuming the true label is
1, might be [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]. ACE denotes
samples that the model finds particularly easy to
learn, exhibiting consistently correct predictions
across all epochs, such as [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
1t-FRGE and ≥2t-FRGE represent sam-

ples that undergo forgetting events, inspired by
Toneva et al.’s (2019) work on forgetting dynam-
ics during training. In that framework, our UNE
is interpreted as a subset of forgettable examples
exhibiting an infinite number of forgetting events,
denoted by ∞t-FRGE. A more recent study by
Yaghoobzadeh et al. (2021) defined forgettable ex-
amples as those that experience at least one forget-
ting event (i.e., ≥1t-FRGE), or are never learned
at all (i.e., UNE).

In our framework, a forgettable example is de-
fined as one that exhibits at least one forgetting
and one recollecting event. A forgetting event
occurs when a previously correct prediction be-
comes incorrect in a subsequent epoch, while a
recollecting event is the reverse, an incorrect pre-
diction followed by a correct one. This distinc-
tion ensures that FRGE includes dynamic behav-
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Figure 2: Dataset cartography Map for Single-Lingual
Learning in Persian (Fa), showing confidence (average
highest prediction probabilities) vs. variability (standard
deviation across training epochs).

ior, separating it from UNE, which lacks recollec-
tion. For example, a prediction pattern such as
[0, 1, 0, 0, 0, 1, 0, 1, 0, 0] contains three forgetting
and two recollecting events, and would be catego-
rized as ≥2t-FRGE.

ELE and LLE refer to samples that initially
elude correct classification but eventually reach
a point of consistent accuracy. If the first correct
prediction occurs on or before epoch 5, the sample
is considered ELE; otherwise, it is categorized as
LLE, reflecting late-stage learning. For instance,
prediction patterns such as [0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
and [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] represent ELE and
LLE, respectively. All training was conducted over
10 epochs, meaning the ELE/LLE classification is
influenced by this hyperparameter. However, the
broader notion of early- vs. late-stage learning
generalizes across training durations.

4.2 SOI Visualization via Dataset
Cartography

To better illustrate our definition of SOI, we use
dataset cartography analysis, following the ap-
proach of Swayamdipta et al.’s (2020), to visualize
how the model learns over time. This method maps
training examples onto a two-dimensional space
based on two metrics: confidence (the average of
the model’s highest prediction probabilities) and
variability (the standard deviation of these predic-
tions across training epochs). This mapping helps
us understand how the model behaves with differ-
ent examples during training.

With cartography we divide the examples into
three main regions: (1) easy-to-learn, with high
confidence and low variability; (2) hard-to-learn,
with low confidence and low variability; and (3)
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Figure 3: SOI Transition Heatmap: Tracking Training
Example Migrations from Single-task (E) to Multi-task
(SE). Each cellHi,j shows the number of examples tran-
sitioning from SOI category i in single-task to category
j in multi-task learning, with the final row and column
representing total sums.

ambiguous, with high variability.
Figure 2 shows the cartography plot for single-

lingual learning in Persian. In this plot, the UNE
category mainly appears in the hard-to-learn re-
gion, while ACE is mostly found in the easy-to-
learn region. The LLE class spreads across the
hard-to-learn and ambiguous regions, showing a
wide range of variability but generally low con-
fidence. On the other hand, ELE stretches from
the ambiguous to the easy-to-learn region, suggest-
ing higher confidence even when variability dif-
fers. Both 1t-FRGE and ≥2t-FRGE appear in
all three regions, with more examples found in the
ambiguous area, which suggests less stable learn-
ing behavior. A full version of our cartography
visualization is provided in Appendix B.

4.3 SOI Transitions through Heatmaps

To analyze how training dynamics evolve under
different configurations, we introduce SOI transi-
tion heatmaps, which capture how examples shift
between learning behavior categories when mov-
ing from a single-setting (e.g., single-task) to a
multi-setting configuration (e.g., multi-task).

Each transition is represented as a one-to-one
mapping from a subset of training examples in a
given SOI category under the single-setting to a po-
tentially different category under the multi-setting.
This mapping highlights how the training setup
influences the model’s ability to learn or forget
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certain examples.
To visualize these transitions, we construct 7× 7

heatmaps. The first 6 rows and columns corre-
spond to the defined SOI categories, while the fi-
nal row and column represent the row sums and
column sums, respectively. Each cell Hi,j in the
heatmap records the number of training examples
that transitioned from category i (row, under the
single-setting) to category j (column, under the
multi-setting). For instance in Figure 3, if 24 exam-
ples labeled as LLE in single-task learning become
ELE in multi-task learning, then the corresponding
cell is HLLE,ELE = 24.

5 Results & Analyses

In this section, we present our experimental results
and analyses, focusing on the impact of different
multi-setting configurations on ID and OOD per-
formance, relative to their corresponding single-
setting baselines.

5.1 First-Stage Fine-Tuning

The goal of first-stage fine-tuning is to adapt PLMs
introduced in Subsection 3.3 to the in-distribution
(ID) training sets under both single-setting and
multi-setting configurations. Evaluation is then
performed using the corresponding ID test sets
and OOD test sets.

5.1.1 In-Distribution Performance
Overall, we observed no substantial improvements
in ID performance when moving from single-
setting to multi-setting fine-tuning. A notable ex-
ception was the entailment task, which exhibited a
performance gain of 2.6% when trained jointly with
the sentiment task. Additionally, five cases showed
marginal improvements (between 0.5% and 1.0%),
mostly attributed to multi-source learning. The re-
maining configurations either showed negligible
changes (≤ 0.5%) or experienced slight perfor-
mance degradation (see middle columns of Tables
1, 2, and 3).

5.1.2 Out-of-Distribution Performance
OOD performance across both single-setting and
multi-setting configurations was consistently lower
than ID performance. However, the comparative
OOD performance between the two configurations
revealed insightful trends.

Referencing Table 1, we observed similar OOD
behavior for French and Persian, while English
exhibited a distinct pattern. Specifically, French

showed one performance decline (in the French-
English pair) and one improvement (French-
Persian), while Persian followed a symmetric trend
with a drop in the Persian-French case and an in-
crease in Persian-English. In contrast, English ex-
perienced performance drops in both of its OOD
pairings. These results suggest that multilingual
OOD behavior cannot be easily generalized from
single-lingual learning. Notably, the positive im-
pact of one language on another’s OOD perfor-
mance (e.g., Persian improving French) does not
imply reciprocal benefit (i.e., French may not en-
hance Persian).

Turning to Table 2, the multi-source learning
configuration demonstrated consistent OOD im-
provements across all six evaluated cases. For
Sentiment140, we observed the most significant
gain, with a 7% improvement in OOD accuracy.
Other datasets exhibited improvements exceeding
3%, confirming the effectiveness of multi-source
learning in enhancing generalization beyond the
training distribution.

Finally, Table 3 echoes the patterns seen in Ta-
ble 1, with one key distinction: in multi-task learn-
ing, when one task enhances another’s OOD perfor-
mance, the improvement is typically mutual. This
is evident in the Paraphrase-Entailment configura-
tion (similar tasks), where OOD performance in-
creased by 1.8% for Entailment and 6.9% for Para-
phrase. In contrast, dissimilar task combinations
such as Sentiment-Paraphrase led to performance
drops in both tasks under OOD evaluation.

Overall, OOD performance improves most when
we hold the task and language fixed (e.g., English
sentiment analysis) and vary only the data sources
(multi-source). With a fixed task but varying lan-
guages (multilingual intent classification), the ef-
fect is language-dependent—some language pairs
improve while others regress. When tasks differ
(multitask), gains are conditional and appear pri-
marily when the tasks are closely related (e.g., en-
tailment and paraphrase).

5.2 Second-Stage Fine-Tuning
In the second-stage fine-tuning, we investigate
whether the multi-setting models fine-tuned in Sub-
section 5.1 can be further improved to enhance
OOD performance. The fine-tuning sets for this
stage are selected based on the heatmaps introduced
in Section 4.3, which reveal SOI transitions for
a given task, language, or source. For instance,
referring to Figure 3, we can subsample the En-
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tailment training set by extracting all ELE exam-
ples from the single-task configuration (e.g., all
entries along row HLLE,-). Using this approach,
we experimented with multiple subsampled sets,
each defined by a specific heatmap-based criterion,
and selected the one that achieved the best aver-
age OOD performance across the three multi-task
combinations. The selected strategy was then ap-
plied to the multi-source and multi-lingual setups
as well (see below). Fine-tuning was conducted for
4 epochs, and evaluation was performed solely on
OOD sets under multi-setting conditions.

5.2.1 Heatmap-Based Fine-Tuning Set
Selection

We evaluated several fine-tuning set selection
strategies based on the transition patterns iden-
tified from the heatmaps: I. Transitions repre-
senting shifts from more favorable to less favor-
able learning behaviors (9 out of 36 heatmap
transitions: [ACE,ELE,LLE] → 1t-FRGE,
[LLE,ELE,ACE, 1t-FRGE] → ≥2t-FRGE,
and [ACE,ELE] → LLE); II. Diagonal
entries excluding both ACE → ACE and
ELE → ELE; III. Diagonal entries excluding
only ACE → ACE; IV. All forgettable exam-
ples identified in single-task learning; V. All for-
gettable examples identified in multi-task learning;
and VI. The entire training set. Among these strate-
gies, method III produced the highest average out-
of-distribution (OOD) performance across various
multi-task configurations.

5.2.2 Out-of-Distribution Performance
We compare the second-stage results against first-
stage OOD performance (Subsection 5.1.2). In
multi-lingual learning (Table 1), English-French
continued to decline, while English-Persian and
French-Persian each showed marginal improve-
ments of about 0.3%. Here, one possible expla-
nation for the overall limited improvements lies in
the nature of the OOD test language—Burmese, a
low-resource language that XLM-R may struggle
to represent effectively. As a result, improvements
made through training on English, French, or Per-
sian datasets may not transfer well to Burmese,
regardless of the fine-tuning strategy. In multi-
source learning (Table 2), no further gains were
observed, likely because the first-stage fine-tuning
had already maximized performance. In multi-task
learning (Table 3), each combination showed a
clear improvement for one task and a slight decline

for the other. These improvements often occurred
where first-stage fine-tuning had previously led to
performance drops (e.g., Paraphrase dropped from
62.7% to 57.3% in the first stage, then improved to
58.8%).

Based on our analysis, we found that second-
stage fine-tuning was most beneficial in the multi-
task setting, had limited or no effect in the multi-
source setting, and largely preserved performance
in the multi-lingual setting. These results suggest
that optimizing the fine-tune set selection with the
help of SOI transitions heatmaps is a promising
direction for improving OOD robustness in multi-
setting configurations.

6 Conclusion & Future Work

In this work, we conducted a comprehensive inves-
tigation into the effects of multi-task, multi-source,
and multi-lingual training on PLMs, emphasizing
the learning dynamics through the introduction of
SOI. By leveraging SOI transition heatmaps and
dataset cartography, we provided novel insights
into how different training configurations influence
both ID and OOD performance. Our results reveal
that multi-source learning consistently enhances
OOD generalization, while multi-task and multi-
lingual learning exhibit more nuanced behavior, of-
fering benefits primarily when task or language sim-
ilarities exist. The proposed two-stage fine-tuning
approach, particularly when guided by SOI-based
sample selection, showed further gains in OOD
performance, especially in multi-task settings. To
sum up, our work highlights the potential of multi-
setting configurations in creating more adaptable,
robust PLMs capable of generalizing across tasks,
languages, and sources.

While our study focused on encoder-based
PLMs, future work could apply the SOI framework
to large decoder-based language models, such as
GPT-style models, to gain insights into their train-
ing behaviors and generalization capabilities. Addi-
tionally, expanding beyond pairwise combinations
to train models on multiple (three or more) tasks,
sources, or languages simultaneously could pro-
vide a deeper understanding of scaling trends in
multi-setting learning. Another direction involves
investigating curriculum learning strategies where
training is staged according to SOI categories.
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Tables 1, 2, and 3 summarize experimental results from initial (first stage) and SOI-guided fine-tuning
(second stage). The initial fine-tuning trains PLMs separately (single-setting) or jointly (multi-setting) on
ID datasets; ID columns report in-distribution evaluations, while OOD columns show out-of-distribution
performance. The SOI-guided fine-tuning (second stage) further optimizes multi-setting models using
targeted subsets strategically selected via SOI transition heatmaps (Section 5.2.1), with improvements
measured under the second-stage OOD columns. To interpret these tables, first compare single-setting to
multi-setting performances from the initial fine-tuning, then evaluate the additional gains obtained from
the subsequent SOI-guided (second stage) fine-tuning.

Table 1: Single and Multi-lingual learning performances. For the multi-lingual setting, we translate each ID dataset
(in English, French, or Farsi) into Burmese, and treat the translated samples as OOD evaluation set.

First stage fine-tuning Second stage fine-tuning

Model Type Language ID OOD OOD

Single-lingual
English 84.5 52.8 -
French 88.5 49 -
Persian 87.4 62.9 -

Multi-lingual (En-Fr) English 84.4 51.9 51.8
French 88.7 41.6 40.9

Multi-lingual (En-Fa) English 84.7 48 48.1
Persian 87.4 63.3 63.6

Multi-lingual (Fr-Fa) French 89.4 52.2 52.2
Persian 87.2 61 61.4

Table 2: Single and Multi-source learning performances. OOD dataset: SST-2 is used for all three sources.

First stage fine-tuning Second stage fine-tuning

Model Type Dataset ID OOD OOD

Single-source
IMDB 89.4 79.4 -
Yelp 93.8 79.6 -
Sentiment140 82.7 76 -

Multi-source (IY) IMDB 90.2 83.9 83.6
Yelp 94.1 84.3 84.1

Multi-source (SY) Sentiment140 83.6 79 79.4
Yelp 93.7 83.2 82.7

Multi-source (IS) IMDB 90.2 85.5 84.9
Sentiment140 83.5 83 83.1

Table 3: Single and Multi-task learning performances. OOD dataset: RTE for entailment, QQP for paraphrase, and
SST-2 for sentiment.

First stage fine-tuning Second stage fine-tuning

Model Type Task ID OOD OOD

Single-task
Entailment 89.3 43.9 -
Sentiment 94.6 76.7 -
Paraphrase 81.7 62.7 -

Multi-task (SP) Sentiment 95 75.3 74.4
Paraphrase 80.3 57.3 58.8

Multi-task (SE) Sentiment 95.1 62.7 64.9
Entailment 91.9 38.6 38.2

Multi-task (PE) Paraphrase 79.3 69.6 70
Entailment 89.6 45.7 45.1
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Limitations

We outline the known limitations of our current im-
plementation: (1) The subsets of interest (SOI) cat-
egorize dataset samples by aggregating their learn-
ing pattern—the binary status of learned vs. not
learned per epoch—over 10 epochs, yielding six
learning categories. However, SOI (i) does not
account for the per-epoch class probability distribu-
tions and therefore does not fully capture the train-
ing dynamics of the samples, and (ii) we did not
validate the optimal number of epochs (here, 10),
defined as the epoch at which samples within each
SOI category exhibit the least shift to another cate-
gory when the epoch increases by one. (2) The SOI
concept is limited to discriminative tasks (e.g., de-
ciding whether a sentence entails another sentence)
that require ground-truth labels; for generative mod-
els trained on unlabeled text, it does not generalize.
(3) The multi-task/multi-source/multilingual exper-
iments were conducted on two datasets; exploring
a larger number of datasets remains unexplored. (4)
For computational efficiency, we applied the multi-
task heatmap-based subsampling (which defines
the second-stage fine-tuning set) to both the multi-
source and multilingual configurations. However,
a single subsampling policy may not generalize
across distinct multi-setting configurations.
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A Experiments Environment

All of the experiments were conducted on the
Google Colab virtual systems with around 12.7GB
of available RAM and an Nvidia T4 GPU with
around 15GB available VRAM.

B Complete Dataset Cartography
Visualizations

To complement our dataset cartography analysis in
Section 5, we provide here the complete set of car-
tography visualizations across all learning configu-
rations: Figures 4, 5, and 6 present the confidence-
variability distributions for single-setting learning
across tasks, sources, and languages, respectively.

C Complete Heatmap Visualizations

As part of our experimental analysis, we gener-
ated 18 transition heatmaps - six for each learning
mode (multi-task, multi-source, and multi-lingual).
While Section 6 presents a detailed analysis of
these transitions, here we provide the complete set
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Figure 4: Single-Task Learning (ST) cartography showing the distribution of examples for Entailment, Sentiment,
and Paraphrase tasks.

Figure 5: Single-Source Learning (SS) cartography showing the distribution of examples for IMDB, Sentiment140,
and Yelp sources.

Figure 6: Single-Lingual Learning (SL) cartography showing the distribution of examples for English, French, and
Farsi languages.
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of heatmaps for reference: Figures 7, 8, and 9 show
how samples transition happen between different
SOI categories when moving from single-mode to
multi-mode learning. Each cell indicates the num-
ber of samples that moved from one category to
another, with rows representing the initial (single-
mode) categories and columns showing the final
(multi-mode) categories.
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Figure 7: Multi-Task Learning (MT) transition heatmaps showing SOI transitions for all task combinations.

Figure 8: Multi-Source Learning (MS) transition heatmaps showing SOI transitions for all source combinations.
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Figure 9: Multi-Lingual Learning (ML) transition heatmaps showing SOI transitions for all language combinations.
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Abstract

Multilingual Neural Machine Translation
(MNMT) models enhance translation quality
for low-resource languages by exploiting
cross-lingual similarities during training—a
process known as knowledge transfer. This
transfer is particularly effective between lan-
guages that share lexical or structural features,
often enabled by a common orthography.
However, languages with strong phonetic
and lexical similarities but distinct writing
systems experience limited benefits, as the
absence of a shared orthography hinders
knowledge transfer. To address this limitation,
we propose an approach based on phonetic in-
formation that enhances token-level alignment
across scripts by leveraging transliterations.
We systematically evaluate several phonetic
transcription techniques and strategies for
incorporating phonetic information into NMT
models. Our results show that using a shared
encoder to process orthographic and phonetic
inputs separately consistently yields the best
performance for Khmer, Thai, and Lao in both
directions with English, and that our custom
Cognate-Aware Transliteration (CAT) method
consistently improves translation quality over
the baseline.

1 Introduction

A common approach to enhancing Neural Ma-
chine Translation (NMT) for low-resource lan-
guages involves leveraging the knowledge from
similar high-resource languages. One approach
to this is multilingual learning, in which a high-
resource language pair is combined with a low-
resource language pair within a single multilingual
model (Chen et al., 2019)
This method is effective with large models that

support dozens of languages (Aharoni et al., 2019;
Gala et al., 2023). The method also performs
well on a smaller scale when pairing related lan-
guages, such as low-resource Haitian Creole with

high-resource French (Robinson et al., 2023), Viet-
namese and French (Ngo et al., 2020), or Cata-
lan and several higher-resource Indo-European lan-
guages (Chen and Abdul-Mageed, 2021). In these
cases, the low-resource language improvements
are enabled by the token overlap with the higher-
resource languages (Aji et al., 2020; Patil et al.,
2022). This token overlap relies on the shared
scripts between the high- and low-resource lan-
guages, a benefit not all low-resource languages
have (Muller et al., 2021).
Some low-resource languages have a related

high-resource counterpart but use a different writ-
ing system. Despite strong phonetic and lexical
similarities, the lack of a shared writing system al-
most completely eliminates token overlap, poten-
tially limiting the benefits of transfer learning. One
way to address this problem is by increasing to-
ken overlap; for example, Limisiewicz et al. (2023)
achieve this by modifying the tokenizer, though
our approach differs.
In this work, we propose and evaluate a method

for increasing token overlap in NMT models
through the use of phonetic transliterations. Specif-
ically, we incorporate both phonetic information
and the original orthographic representations of
three Southeast Asian languages into a Multilin-
gual NMT (MNMT) model. Our evaluation fo-
cuses on Thai, Lao, and Khmer—closely related
languages spoken in Thailand, Laos, and Cambo-
dia, respectively. Although these languages share
many lexical and grammatical similarities, each
employs a distinct orthographic system.
We compare a baseline multilingual NMT

(MNMT) system, which uses only the ortho-
graphic representations of the languages, against
three transliteration methods. The transliteration
methods include International Phonetic Alphabet
(IPA) transcriptions, Romanization, and a cus-
tom method we call Cognate-Aware Transliter-
ation (CAT). These transcriptions are integrated
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with the original orthographies in three ways: 1)
by concatenating the orthographic and transliter-
ated representations as a single input to a vanilla
transformer, 2) by using a single encoder that pro-
cesses the two inputs separately before concatenat-
ing their embeddings for a shared decoder, and 3)
by using two separate encoders—one for the ortho-
graphic input and one for the transliterated input—
combined with a shared decoder. More details can
be found in Section 3.
Incorporating phonetic information allows

MNMT models to overcome divergent orthogra-
phies and improve knowledge transfer between
languages, boosting translation quality by up to
3.4 BLEU points and 4.4 chrF points for low-
resource Southeast Asian languages. Additional
results show that IPA and CAT generally outper-
form Romanization, with shared-encoder models
achieving the largest gains over the baseline.
Overall, we contribute:

• A framework for integrating phonetic translit-
erations into multilingual NMT.

• Cognate-Aware Transliteration (CAT), a
novel method for capturing cross-lingual
similarities.

• A comprehensive evaluation of transliteration
and integration strategies on Thai, Lao, and
Khmer.

2 Related Works

Previous research has been conducted for the
cross-lingual transfer of various NLP tasks in Chi-
nese, Japanese, Korean, and Vietnamese (CJKV).
Nguyen et al. (2023) utilize the International Pho-
netic Alphabet (IPA) to produce transcriptions in
an attempt to improve the cross-lingual transfer
for CJKV languages. They show improvements
in cross-lingual transfer for POS tagging and NER
tasks. Nguyen et al. (2024) build on that work
by creating more benchmark data for additional
tasks beyond token-level POS tagging and NER.
Romanization is also included in experiments in
addition to the phonetic transcriptions, finding the
romanization to perform better than the phonetic
transcriptions. Both of these works focus on the
alignment of the transcriptions/romanization to the
orthographic tokens. Moosa et al. (2023) further
study transliteration as a cross-lingual signal for In-
dic languages, showing that transliteration can im-

prove multilingual language modeling and down-
stream task performance across scripts.
Recent work extends these ideas to large lan-

guage models (LLMs). Purkayastha et al. (2023)
propose a large-scale romanization-based adapta-
tion approach for multilingual LLMs, demonstrat-
ing improved transfer to low-resource and non-
Latin languages. Similarly, J et al. (2024) intro-
duce RomanSetu, which leverages romanization to
improve multilingual capabilities in LLMs while
reducing training costs. Nguyen et al. (2025) ex-
plore phoneme-based prompting for LLMs, find-
ing that phonemic representations enhance multi-
linguality for non-Latin-script languages.
Romanization has been used to enhance knowl-

edge transfer in multilingual NMT models. A uni-
versal parent model trained with a Romanized vo-
cabulary was found to achieve improved knowl-
edge transfer in a many-to-one translation scenario
(Gheini and May, 2019). Amrhein and Sennrich
(2020) extended this approach to many-to-many
NMT models and found that while romanization
does not consistently improve results across all lan-
guages, it is beneficial in cases where related lan-
guages use different scripts. In such scenarios, ro-
manization facilitates knowledge transfer. Addi-
tionally, Salesky et al. (2023) address this prob-
lem by abstracting vocabularies entirely. They
utilize multilingual pixel representations, enabling
the model to generalize to new and even unseen
scripts as inputs.
While prior work has applied romanization

and phonetic representations to well-resourced
language families, our study focuses on lower-
resource Southeast Asian languages with limited
transliteration tools in the underexplored domain
of Neural Machine Translation.

3 Methodology

In Section 3.1, we describe the non-transliterated
baseline inputs and the three transliteration meth-
ods we intend to compare. In section 3.2 we de-
scribe the methods for computing token overlap
between transliterated texts. Finally, section 3.3
describes the methods for integrating the phonetic
transcriptions into NMT models.

3.1 Phonetic Transcriptions

There are multiple levels of granularity at which
phonetic transcriptions can be applied. In this
work, we explore whether different translitera-
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tion strategies affect downstream model perfor-
mance. By varying the degree of token overlap
across languages—from none at all to a highly cus-
tomized scheme designed to maximize overlap—
we aim to understand how transcription choices
influence cross-lingual modeling. The following
subsections describe the four approaches we eval-
uate, ranging from no transliteration to a cognate-
aware system.
No transliteration. As a baseline, we evaluate

the models without any transliteration, using the
original orthographic representations of the text for
all languages. We expect this to have the low-
est amount of token overlap between related lan-
guages of different scripts.
International Phonetic Alphabet (IPA). We

consider the most granular method for transliter-
ation to be converting text into IPA transcriptions.
IPA would maintain the most subtle differences be-
tween languages and dialects, which could be detri-
mental to this methodology. Despite this, we ex-
pect that the unified alphabet will still yield much
more token overlap than original orthographies.
Romanization. Romanization is the process of

converting text from another script into the Latin
alphabet. We expect that transliterating non-Latin
scripts into Latin would be result in simpler tran-
scriptions compared to IPA, but still be granular
enough to be useful in distinguishing sounds.
Cognate-Aware Transliteration (CAT).

Regular sound correspondences are systematic
phoneme changes that occur in cognates across re-
lated languages (Brown et al., 2013). For example,
the /tCh/ sound in Thai is systematically replaced
by the /s/ sound in Lao. Similarly, the Thai /r/
is replaced by /h/ or /l/ in Lao. Additionally,
similar substitutions occur between some German
and English words, such as the replacement of
the English /D/ sound in ”this” and ”that” with the
/d/ sound in their German equivalents, ”dies” and
”das.”

For this method, sound correspondences would
be represented by unified characters for both lan-
guages in the transliteration, with the purpose of
representing cognates uniformly. There are cur-
rently no automatic methods for finding regular
sound correspondences and thus CAT rules would
need to be created manually for a set of languages,
though one potential method could be to automati-
cally detect cognates based on parallel data (Grön-
roos et al., 2018) and then use those to create a
CAT system. We hypothesize that a high quality

transliteration system based on the regular sound
correspondences between languages would yield
the highest overlap of tokens, compared to the pre-
vious methods.

3.2 Vocabulary Overlap
In multilingual NLP models, shared vocabularies
between languages are commonly used. Previ-
ous work has shown that larger vocabulary over-
lap leads to improved model performance (Pires
et al., 2019; Wu and Dredze, 2019). Our work
seeks to determine whether this applies to Neural
Machine Translation, and more specifically if the
amount of vocabulary overlap between the translit-
erations (not the original orthographies) correlates
with downstream translation performance.
To assess the degree of vocabulary overlap be-

tween languages, we employ two metrics. These
metrics are based on discrete token-level over-
lap comparisons using the Jaccard Index (Jaccard,
1901), defined as:

J(A,B) =
|A ∩B|
|A ∪B| (1)

Corpus-level Jaccard (CJ). This is the sim-
plest metric for quantifying vocabulary overlap.
We compute the Jaccard Index at the corpus level,
where set A contains all unique tokens in Lan-
guage A, and set B contains all unique tokens in
Language B. This metric provides a general sense
of phonetic overlap between the two languages
based on their transliterations. However, it does
not capture whether semantically equivalent sen-
tences share a high degree of lexical overlap.
Mean Pairwise Jaccard (MPJ). We define

Mean Pairwise Jaccard (MPJ) as the average Jac-
card Index computed between aligned sentence
pairs across two languages. For each sentence pair
i, letAi denote the set of unique tokens in sentence
i in language A, and Bi denote the corresponding
set of unique tokens in the translated sentence in
language B.
We define two vectors of sets:

a = (A1, . . . , An), b = (B1, . . . , Bn)

MPJ is then computed as:

MPJ(a, b) =
1

n

n∑

i=1

J(Ai, Bi) (2)

where J(Ai, Bi) is the Jaccard Index between the
token sets of sentence i.
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This metric better captures whether semanti-
cally equivalent sentences share a high degree of
lexical overlap.

3.3 Phonetic Integration

Neural Machine Translation (NMT) models aim
to generate a target sentence y = (y1, y2, . . . , yn)
given a source sentence x = (x1, x2, . . . , xm).
The model defines a conditional probability distri-
bution:

P (y | x) =
n∏

i=1

P (yi | y1, . . . , yi−1, x) (3)

Each term in the product represents the proba-
bility of generating the token yi at step i given all
previously generated tokens y1, . . . , yi−1 and the
entire source sentence x.
To incorporate phonetic information, we intro-

duce a transcription function τ(x) that maps the
source sentence to its phonetic representation. The
conditional probability is then modified to condi-
tion each target token not only on the previously
generated tokens and the source sentence in its
original script, but also the phonetic transcription:

P (y | x) =
n∏

t=1

P (yi | y1, . . . , yi−1, x, τ(x)) (4)

The target output of the NMTmodel can be con-
ditioned on a given transcription function τ(x) in
various ways. We propose the following methods
for integrating the phonetic transcriptions:
Concatenated Input. Orthographic and pho-

netic sequences are concatenated into a single in-
put.
Shared Encoder. A single encoder processes

both inputs; their embeddings are concatenated be-
fore decoding.
Dual Encoder. Separate encoders process or-

thographic and phonetic inputs, with a shared de-
coder attending to both.

4 Experiments

4.1 Data

To evaluate the various phonetic transcription and
integration methods, we study the following set
of South-East Asian languages: Khmer, Lao, and

Language Pair Uncleaned Cleaned

Thai - English 2,175,880 1,080,329
Lao - English 1,994,050 612,836

Khmer - English 1,501,301 501,955

Table 1: Approximate number of parallel segments for
each language pair. Extensive cleaning was performed
to ensure higher quality data.

Thai. Although each language uses a distinct writ-
ing system, they share significant linguistic sim-
ilarities because of common historical and geo-
graphical background, with roots in Pali and San-
skrit (Enfield, 2019).
We utilize the Paracrawl Bonus dataset which fo-

cuses on better coverage for South and East Asian
languages (Koehn, 2024). This data is noisy, so
we applied the guidelines found in the GILT Lead-
ers Forum’s Best Practices in Translation Memory
Mangement.1 Details of the cleaning pipeline are
provided in Appendix A; the most impactful step
was validating that Unicode characters correspond
to the intended language. Table 1 shows the num-
ber of parallel sentence pairs for each language pair
before and after cleaning.
We use all the cleaned data for training, in both

English→X and X→ English directions. For val-
idation and testing, we use the FLORES+ (NLLB
Team et al., 2024) dev and devtest datasets for each
language direction, ensuring that there was no data
contamination in the training set.

4.2 Transliteration
Although several IPA transliteration tools are avail-
able for Thai (Phatthiyaphaibun et al., 2023), and
the Uroman package (Hermjakob et al., 2018) pro-
vides coverage for all three languages under study,
we chose to develop our own transliteration soft-
ware and typology for IPA, romanization, and CAT
(Cognate-aware Transliteration), which we release
on our public Github repository.2 This ensured
that our comparisons remained consistent and fair,
avoiding the inconsistencies that can arise when
relying on multiple tools created by different de-
signers. Additionally, there is currently a dis-
tinct lack of quality, openly-available translitera-
tion software for Khmer and Lao.

1https://github.com/GILT-Forum/
TM-Mgmt-Best-Practices/blob/master/
best-practices.md

2https://github.com/byu-matrix-lab/
sea-transliteration-mnmt
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Transliteration
Method

Thai Sentence Khmer Sentence Token
Overlap

None คุณสามารถเรยีนภาษา
ท่ีมหาวทิยาลัยได้

អ្នកអាចេរៀនភាសាេនៅ
មហាវទិ្យាលយ័បាន។

0

IPA khunsa:ma:rthrianpha:sa:
thi:mha:uaithja:lajajd

PnkPa:cri@npha:sa:naw
mha:Vetja:ljba:n.

4

Romanization khunsaamaarthrianphaasaa
thiimhaauaithyaalaiaid

qnkqaacrienphaasaanau
mhaavityaalybaan.

4

CAT khonsaamaartrianphaasaa
teimhaauaityaalaeaet

OnkOaacrianphaasaanao
mhaavityaalybaan.

5

Table 2: Example Thai and Khmer translations of the English sentence: ”You can learn languages at a univer-
sity.” Each sentence is transliterated using the International Phonetic Alphabet (IPA), romanization, and a custom
Cognate-Aware Transliteration (CAT). Each representation is tokenized using the XLM-RoBERTa (Conneau et al.,
2020) tokenizer and the overlap of tokens between the two sequences is calculated as the intersection between the
two token sets.

To unify our transliteration methods, we created
a simple transliteration script that replaces spec-
ified Unicode characters with others based on a
JSON file containing all mappings. This supports
single Unicode characters and sequences of Uni-
code characters.
For our IPA transliterations, we used the

Wikipedia script descriptions from the Khmer3,
Thai4, and Lao5 script pages. For romanization,
we used the mappings described in the Uroman
(Hermjakob et al., 2018) source code.6
To create a transliteration scheme that heavily

encourages token overlap between languages, we
created CAT for the three South-East Asian lan-
guages. This was designed by categorizing each
consonant and vowel character in each of the lan-
guages according to both orthographic similarity
and phonetic similarity. More details on the cre-
ation of CAT for Khmer, Lao, and Thai are con-
tained in Appendix B.
To showcase the differences for each of these

methods, we provide an example in Table 2. In this
example, we take a Thai and a Khmer translation
of the sentence ”You can learn languages at a uni-
versity.” and transliterate using the four methods:
None, IPA, Romanization, and CAT. These translit-
erations are tokenized using the XLM-RoBERTA
(Conneau et al., 2020) tokenizer to demonstrate to-
ken overlap differences.

3https://en.wikipedia.org/wiki/Khmer_script
4https://en.wikipedia.org/wiki/Thai_script
5https://en.wikipedia.org/wiki/Lao_script
6https://github.com/isi-nlp/uroman

4.3 Training Implementation

For our experiments, we compare a baseline Trans-
former (Vaswani et al., 2017) model to each combi-
nation of transliteration and integration method, re-
sulting in nine model variants. The transliteration
methods are (1) IPA transcriptions, (2) Romaniza-
tion, and (3) our proposed Cognate-Aware Translit-
eration (CAT). Each is integrated into the model
using one of three approaches: (a) concatenating
orthographic and transliterated inputs, (b) process-
ing them separately within a shared encoder before
concatenation at the embedding level, or (c) using
two separate encoders combined with a shared de-
coder.
All experiments are based on the Transformer-

base architecture. We use the BARTForCondition-
alGeneration implementation (Lewis et al., 2019),
modified to support both the shared-encoder and
dual-encoder configurations.
Each model contains 6 encoder layers and 6 de-

coder layers, with the dual-encoder setup allocat-
ing 6 layers to each encoder. The feed-forward net-
work has a dimensionality of 2048, each encoder
and decoder uses 8 attention heads, and the hidden
size (dmodel) is 512. We employ ReLU activations
and apply dropout with a rate of 0.1.
Models are trained to convergence using 8 A100

GPUs, with an effective batch size of 8,192. Vali-
dation is performed every 4,000 steps, and conver-
gence is determined using the validation set.
For tokenization, we train Byte-Level BPE to-

kenizers using the HuggingFace Tokenizers li-
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Orth. IPA Rom. CAT

Tha–Lao CJ 0.024 0.230† 0.198 0.719
MPJ 0.029 0.113† 0.093 0.394

Tha–Khm CJ 0.007 0.055 0.107† 0.694
MPJ 0.011 0.062† 0.060 0.202

Khm–Lao CJ 0.007 0.042 0.080† 0.637
MPJ 0.011 0.065† 0.064 0.198

Table 3: Corpus-level Jaccard (CJ) and Mean Pairwise
Jaccard (MPJ) scores for Thai (Tha), Lao (Lao), and
Khmer (Khm) across four transliteration methods: na-
tive orthography (Orth.), IPA, Romanization (Rom.),
and CAT. Bold = highest overlap; † = second highest.

brary.7 We build separate multilingual tokenizers
for each representation—orthography-only, IPA,
Romanization, and CAT—each with a vocabu-
lary size of 32K, trained on uniformly sampled
sentences from the training set. For the shared-
encoder and concatenation models, we train joint
tokenizers that include both orthographic and
transliterated text, using a larger vocabulary size
of 56K, also drawn from uniformly sampled train-
ing data.

5 Results and Discussion

5.1 Vocabulary Overlap

To determine vocabulary overlap for each translit-
eration method, we first created the ”complete”
(Freitag and Firat, 2020) aligned data so we
can compare sentences across non-english centric
pairs, using English as a pivot to find the X → Y
translation directions. This resulted in 19,525 sen-
tences translated into Khmer, Lao, and Thai.
We calculated Corpus-level Jaccard (CJ) and

Mean Pairwise Jaccard (MPJ) for the following
language pairs across each transliteration method:
Thai ↔ Lao, Thai ↔ Khmer, and Khmer ↔ Lao.
Each language was transliterated into IPA, Roman-
ization, and CAT and we report overlap metrics in
Table 3, with the original orthography overlap cal-
culations included as a baseline reference. Overlap
is determined using the tokenizers trained for each
transliteration method, as described in Section 4.3.
As expected, the overlap between tokens when

using the native orthographies is close to 0, indi-
cating almost zero overlap. The little overlap that
is included is likely to be punctuation and numer-
als common to all three languages. Meanwhile, we

7https://github.com/huggingface/tokenizers

see that CAT achieves the highest amount of over-
lap both globally and at the sentence-level. For
the more linguistically related Thai–Lao pair, IPA
yields greater token overlap than Romanization,
whereas the Khmer–Thai and Khmer–Lao pairs
show lower values and mixed outcomes between
IPA and Romanization.

5.2 Multilingual Neural Machine Translation
(MNMT)

We report chrF++ (Popović, 2017) and BLEU (Pa-
pineni et al., 2002) scores for all language direc-
tions calculated using SacreBLEU (Post, 2018).
For language directions with English as the target,
we utilize the default tokenization for BLEU. For
language directions with English as the source, we
utilize the Flores-200 tokenizer to calculate an sp-
BLEU score instead, as the South-East Asian lan-
guages do not use spaces as word delimiters.
A summary of all chrF++ and BLEU/spBLEU

scores are shown in Table 4. Overall, all translit-
eration methods and integration methods generally
improve over the baseline, as indicated by a higher
score with statistical significance. The gains ap-
pear to be larger when translating into English, re-
flecting the baseline’s struggle to encode and com-
prehend the South-East Asian languages. Using a
shared encoder with IPA transliterations achieves
the highest scores in all but 1 direction, all of which
are statistically significant compared to the base-
line. The one exception is that CAT with dual en-
coders achieves the highest scores for the English
→ Lao pair. These results suggest that integrat-
ing any form of transliteration not only helps boost
performance for lower-resource languages such as
Khmer and Lao, but can also provide measurable
gains for higher-resource languages like Thai.
To isolate the effects of the integration methods,

we average the results over the three translitera-
tion methods (romanization, IPA, and CAT) and
report the corresponding chrF++ scores compared
to the baseline in Table 5. We focus on chrF++
scores because it provides a more reliable metric
for these South-East Asian languages, which do
not use spaces to delimit word boundaries. Across
all language directions, using a shared encoder
to integrate transliterations consistently improves
translation performance, with gains ranging from
+0.4 to +3.4 chrF++ points over the baseline. In
contrast, the Concat and Dual approaches show
smaller improvements or even declines when trans-
lating from English to , with changes ranging from
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System Khm→ Eng Lao→ Eng Tha→ Eng Eng→ Khm Eng→ Lao Eng→ Tha

Baseline 37.8/9.3 39.3/11.4 39.4/11.3 40.4/18.1 44.3/21.0 42.6/25.0
CAT Concat 40.0*/11.7* 42.3*/14.0* 41.6*/12.4* 40.7*/18.4 44.7*/21.5* 43.2*/25.7*
CAT Shared 40.5*/11.5* 41.5*/12.8* 40.9*/11.9* 40.7/18.2 45.0*/21.6* 42.8/25.4
CAT Dual 39.9*/10.5* 42.6*/14.2* 42.2*/12.8* 41.4*/19.0* 45.5*/22.4* 43.6*/26.4*
IPA Concat 39.2*/10.7* 41.6*/13.7* 41.1*/11.4 39.0*/16.7* 43.2*/19.9* 41.0*/23.4*
IPA Shared 42.2*/11.6* 43.4*/14.8* 43.2*/13.5* 41.5*/19.3* 45.4*/22.2* 43.9*/26.8*
IPA Dual 39.9*/10.1* 41.5*/13.4* 40.7*/12.0* 38.8*/16.1* 42.9*/19.5* 40.5*/22.6*
Rom. Concat 38.9*/10.6* 41.9*/13.7* 41.1*/12.3* 40.3/17.9 44.2/21.0 42.3/25.0
Rom. Shared 40.8*/11.0* 41.7*/13.3* 40.3*/11.6 40.1*/17.9 44.3/21.2 42.3/24.9
Rom. Dual 39.2*/10.4* 41.2*/13.9* 40.0*/11.5 39.8*/17.2* 43.3*/20.1* 41.4*/23.8*

Table 4: chrF++/BLEU scores for each transliteration method and architecture across all language directions.
Scores are reported as chrF++/BLEU. Bold values indicate the best score within a language direction. An as-
terisk (*) marks scores that are significantly different from the Baseline (p < 0.05).

-0.8 to +2.6. These results highlight that the shared
encoder is the most robust method for integrating
transliterations for this dataset.
Focusing on the transliteration methods them-

selves, we average the results over the integration
methods (concatenation, shared encoder, dual en-
coder) and report the chrF++ scores in Table 6,
again comparing the averaged scores to the base-
line. Unlike the integration methods, there is
no single transliteration approach that consistently
achieves the largest gains across all directions. IPA
performs best on average when translating into En-
glish, with improvements ranging from +2.3 to
+2.6 chrF++, but it underperforms when translat-
ing from English, with declines between -0.8 and
-0.5. However, CAT performs best on average for
English→X directions, as well as providing more
consistent improvements across all language direc-
tions, with score increases ranging from +0.5 to
+2.8. Romanization generally improves over the
baseline but tends to achieve smaller gains than
IPA or CAT.
According to these experiments, there is not a

clear transliteration method which performs bet-
ter than all the others. We see that both IPA and
CAT enhance these MNMT models more than ro-
manization, but not by much. Despite the much
larger token overlap when using CAT, it does not
do much better than the IPA performance. Though
CAT results in much higher token overlap across
languages, its performance is not substantially bet-
ter than IPA. We hypothesize that this may be due
to CAT’s tendency to overgeneralize: it creates
shared tokens between languages that do not neces-
sarily share semantics, which can introduce ambi-
guity. Conversely, IPA enforces stricter token shar-
ing, resulting in more precise and less ambiguous
representations that facilitate effective knowledge

transfer.
Both IPA and CAT provide larger improvements

to the MNMT models compared to romanization,
though the differences are relatively modest. Over-
all, all three transliteration methods contribute to
improved translation, particularly in low-resource
settings, despite the apparent lack of correlation to
the amount of vocabulary overlap as described in
Section 5.1.
Future work should investigate whether the

shared tokens for each transliteration method ac-
tually preserve semantic equivalence across lan-
guages, or if their overlap introduces misleading
or ambiguous representations.

6 Conclusion

Low-resource languages with unique writing sys-
tems pose challenges for traditional Neural Ma-
chine Translation (NMT) knowledge transfer tech-
niques. In this work, we proposed methods
for integrating phonetic transliterations to address
the lack of shared orthographies between related
high- and low-resource languages in Multilingual
NMT (MNMT) systems. Specifically, we com-
pared three transliteration schemes—International
Phonetic Alphabet (IPA), romanization, and our
custom Cognate-Aware Transliterations (CAT)—
together with three integration methods in a Trans-
former model: concatenating inputs, using a
shared encoder, and using dual encoders. We eval-
uated this methodology for Khmer, Lao, and Thai
in both directions with English, leveraging knowl-
edge transfer from the higher-resource Thai to the
lower-resource Lao and Khmer.
Overall, integrating any transliteration method

via any integration strategy improves translation
performance in the X → English direction, while
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System Khm→ Eng Lao→ Eng Tha→ Eng Eng→ Khm Eng→ Lao Eng→ Tha

Baseline 37.8 (+0.0) 39.3 (+0.0) 39.4 (+0.0) 40.4 (+0.0) 44.3 (+0.0) 42.6 (+0.0)
Concat Average 39.4 (+1.6) 41.9 (+2.6) 41.3 (+1.9) 40.0 (-0.4) 44.0 (-0.3) 42.2 (-0.4)
Shared Average 41.2 (+3.4) 42.2 (+2.9) 41.5 (+2.1) 40.8 (+0.4) 44.9 (+0.6) 43.0 (+0.4)
Dual Average 39.7 (+1.9) 41.8 (+2.5) 41.0 (+1.6) 40.0 (-0.4) 43.9 (-0.4) 41.8 (-0.8)

Table 5: chrF++ scores for the three phonetic integration methods, averaged over all transliteration methods (Ro-
manization, IPA, CAT) compared to the Baseline. Bold values indicate the best score within a language direction.
Values in parentheses indicate the change relative to the Baseline.

System Khm→ Eng Lao→ Eng Tha→ Eng Eng→ Khm Eng→ Lao Eng→ Tha

Baseline 37.8 (+0.0) 39.3 (+0.0) 39.4 (+0.0) 40.4 (+0.0) 44.3 (+0.0) 42.6 (+0.0)
CAT Average 40.1 (+2.3) 42.1 (+2.8) 41.6 (+2.2) 40.9 (+0.5) 45.1 (+0.8) 43.2 (+0.6)
IPA Average 40.4 (+2.6) 42.2 (+2.9) 41.7 (+2.3) 39.8 (-0.6) 43.8 (-0.5) 41.8 (-0.8)
Rom. Average 39.6 (+1.8) 41.6 (+2.3) 40.5 (+1.1) 40.1 (-0.3) 43.9 (-0.4) 42.0 (-0.6)

Table 6: chrF++ scores for the three transliteration methods, averaged over all integration methods (concatenated
input, shared encoder, dual encoder) compared to the Baseline. Bold values indicate the best score within a language
direction. Values in parentheses indicate the change relative to the Baseline.

translations from English → X show less con-
sistent gains. Among all combinations, using a
shared encoder with IPA or CAT transliterations
achieves the largest improvements. Notably, the
Khmer→ English direction—our lowest-resource
scenario—achieves the highest chrF++ improve-
ment of +4.4 points, providing strong evidence of
effective knowledge transfer between these South-
East Asian languages.
This approach can be extended to other lan-

guage groups that share linguistic features but not
orthography, such as Maltese (Latin script) and
Tunisian Arabic (Arabic script), with the poten-
tial to enhance translation for lower-resource lan-
guages. Future work could also explore addi-
tional transliteration and integration methods, as
well as leverage larger datasets such as OPUS for
South-East Asian languages, which would likely
further improve performance above the baseline.
Beyond multilingual learning for knowledge trans-
fer, additional work could explore whether inte-
grating transliterations benefits parent-child fine-
tuning (Zoph et al., 2016; Neubig and Hu, 2018)
in which a parent model is first trained on a high-
resource language pair and then fine-tuned on the
low-resource language pair.

Limitations

This study focuses on a single group of related lan-
guages and may not generalize to other language
families containing different orthographies. All
models were trained under fixed architectural con-
ditions, and results could differ when scaling mod-

els up or down. We trained using Paracrawl Bonus
data only, without incorporating additional OPUS
data, in order to maintain smaller models. While
this allows for controlled and informative experi-
ments, we acknowledge that including all available
data would likely improve overall translation met-
rics.
We note that creating a Cognate-Aware Translit-

eration (CAT) system requires expertise in the lan-
guages involved. Unlike IPA or romanization
schemes, which are more widely available and eas-
ier to apply across languages, there is currently no
automated way to generate a CAT system for a
given set of languages.
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A Cleaning Steps

We apply the following cleaning steps in our data
cleaning pipeline:

1. Remove pairs containing empty source or tar-
get segments.

2. Remove pairs when the source segment ex-
actly or nearly matches the target segment.

3. Remove duplicate source-target pairs.

4. Remove pairs with segments containing
mostly non-alphabetic characters.

5. Remove pairs with segments containing ab-
normally long sequences of characters with-
out spaces, including segments that are only
URLs.

6. Remove pairs containing segments with un-
balanced brackets.

7. Remove pairs containing fewer than 3 words
in the English source segment.

8. Remove pairs with segments containing a
higher number of characters than 5 standard
deviations above the mean for that language
(sentences that are too long).

9. Remove pairs in which the ratio of the lengths
of the source and target segments exceeds a
certain cutoff.

10. Normalize escaped Unicode characters.

11. Validate and normalize character encodings
for each language.

12. Normalize whitespace

13. Shorten sequences of excessively repeated
punctuation.

14. Normalize quotation marks.

15. Normalize HTML entities.

16. Remove all markup tags.

B Khmer, Lao, and Thai Cognate-Aware
Transliteration (CAT)

Creation of a Cognate Aware Transliteration (CAT)
system requires familiarity with the languages it
is designed to incorporate. The ideal CAT system
uses examples of known cognates to detect com-
mon, predictable mappings between phonemes
across multiple languages, including both vowels

and consonants. We did this manually, but find-
ing these mappings automatically is likely possible
and a topic for future research.
For Thai, Lao, and Khmer, we created these

mappings based on cognates, borrowed words,
and place names that could be found in both lan-
guages. Specifically, we constructed these map-
pings through a comparative dictionary-based ap-
proach. Each language was examined letter by
letter, and for each grapheme we identified po-
tential correspondences by consulting cognates,
loanwords, and place names attested across the
three languages. When a candidate word exhib-
ited both phonological similarity and a plausible
semantic match across the languages, we treated
it as evidence of a sound correspondence for that
grapheme. This procedure relied on the combined
expertise of the researchers, who brought working
knowledge of the relevant languages, ensuring that
proposed correspondences were grounded in lin-
guistic judgment. We also considered similarities
in orthography when creating mappings, such as
when two graphemes exhibited a large degree of
visual similarity, such as when two graphemes had
closely aligned visual features—length, curvature,
and positioning—making them appear almost iden-
tical (e.g., Khmer vowel ◌ា and Thai vowel า).
For this example, we designed the system to

maximize overlap and cognates, allowing for cog-
nates with different romanization and pronuncia-
tions to be successfully identified. However, this
may have led to the creation of false cognates,
negating some of the benefits of transfer learning.
In addition, because Khmer is not tonal, we chose
not to map the tones between Thai and Lao for
commonality. Mapping these may improve trans-
fer learning between Thai and Lao at the cost of
transfer learning between these two languages and
Khmer.
To reduce complexity, we modeled cognate con-

sonant phonemes based on beginning consonants
only, but mapping final consonants would lead to
a more complete CAT system. We chose not to
do this because of the complexity of determining
whether a consonant is beginning or final in Thai
and Khmer.
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Abstract

Fine-tuning multilingual foundation models
on specific languages often induces catas-
trophic forgetting, degrading performance on
languages unseen in fine-tuning. While this
phenomenon is widely-documented, the liter-
ature presents fragmented results about when
forgetting occurs. To address this ambiguity,
we conduct a systematic empirical study using
machine translation as a testbed to identify the
conditions that trigger catastrophic forgetting
in multilingual fine-tuning. Through controlled
experiments across different model architec-
tures, data scales, and fine-tuning approaches,
we reveal that the relative scale between model
and data size is a primary determinant of forget-
ting. Moreover, we demonstrate that a model’s
instruction-following ability is more critical for
retaining multilingual knowledge than its archi-
tecture. Contrary to assumptions, parameter-
efficient fine-tuning offers no clear advantage
over full fine-tuning in mitigating forgetting.
Lastly, we show that cross-lingual alignment
can mitigate forgetting while also facilitating
positive transfer to unseen target languages.

1 Introduction

Foundation models pretrained on vast amounts of
multilingual data have become the standard back-
bone for modern natural language processing sys-
tems. To achieve optimal performance, however,
these models typically require fine-tuning on down-
stream tasks. This specialization introduces a criti-
cal trade-off: while performance on the target task
improves, the model may suffer from catastrophic
forgetting (McCloskey and Cohen, 1989), a sub-
stantial degradation of capabilities on tasks or lan-
guages not present in the fine-tuning data.

A common use case is to fine-tuning multilingual
models to focus on specific languages or language
pairs. Ideally, this process would not harm, and
might even improve, performance on unseen lan-
guages through positive transfer, as illustrated on
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Figure 1: Selectively fine-tuning on some languages or
translation directions may lead to positive transfer (left)
or catastrophic forgetting (right).

the left of Figure 1. However, empirical evidence
often shows the opposite. Models frequently lose
proficiency in languages they were not fine-tuned
on (Vu et al., 2022b; Sun et al., 2023; Winata et al.,
2023), as shown on right of Figure 1.

Machine translation (MT) serves as a compelling
testbed for studying multilingual catastrophic for-
getting. First, a model supporting n languages
encompasses n(n − 1) directed translation pairs,
offering a large and structured space to analyze
forgetting patterns. Second, languages can be “un-
seen” in different roles. For example, a language
may be present only as a source language, only as
a target language, or in specific source-target pairs
that were never explicitly trained. This enables fine-
grained analysis of how different types of exposure
during fine-tuning affect retention. Moreover, for-
getting can occur asymmetrically, where a model
may retain the ability to translate from language A
to B while losing the reverse direction.

Despite its practical importance, the literature
presents a fragmented and sometimes contradictory
picture of when catastrophic forgetting occurs in
MT. On one hand, studies on traditional NMT mod-
els trained from scratch (Berard, 2021) and some
large pretrained models (Vu et al., 2022a; Liu and
Niehues, 2022; Liu et al., 2023; Lai et al., 2023)
report severe forgetting after standard fine-tuning,
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where the ability to translate unseen directions is
almost entirely lost. These findings suggest that
catastrophic forgetting is an inevitable consequence
of selective specialization. On the other hand,
recent works on large language models (LLMs)
provided mixed evidence. Richburg and Carpuat
(2024) demonstrated that fine-tuning Llama 2 (Tou-
vron et al., 2023) and Tower (Alves et al., 2024)
models on specific language pairs could improve
performance on unseen pairs, indicating positive
transfer. Conversely, Zan et al. (2024) found that
their fine-tuned Llama 2 models performed very
poorly on unseen directions, again indicating issues
with forgetting.

These conflicting results raise fundamental ques-
tions about the factors leading to catastrophic for-
getting. Has the emergence of large language mod-
els altered the dynamics of catastrophic forgetting?
To what extent do model architecture (encoder-
decoder versus decoder-only), scale, or fine-tuning
methodology determine whether a model forgets
or generalizes? How do factors like the volume
of fine-tuning data, the use of parameter-efficient
fine-tuning (PEFT), or instruction-following capa-
bilities influence the retention of multilingual abil-
ities? To resolve these ambiguities, we conduct a
systematic study to identify the conditions that trig-
ger catastrophic forgetting in multilingual MT. We
systematically control for key variables, including
model architecture and size, fine-tuning data com-
position and scale, full-parameter vs. parameter-
efficient fine-tuning, and instruction-following ver-
sus standard fine-tuning approaches. With a series
of controlled experiments, we demonstrate that:
• The relative scale between pre-trained model pa-

rameters and fine-tuning data volume is a criti-
cal factor in catastrophic forgetting, with smaller
models fine-tuned on larger datasets being most
vulnerable (§4.1).

• Whether a model supports instruction-following,
rather than its underlying architecture (encoder-
decoder versus decoder-only), is a primary factor
impacting catastrophic forgetting (§4.2).

• Contrary to common assumptions, parameter-
efficient fine-tuning with LoRA (Hu et al., 2022)
provides no significant advantage over full fine-
tuning in preventing catastrophic forgetting under
our experimental conditions (§4.4).

• Besides mitigating forgetting, cross-lingual align-
ment methods may facilitate positive transfer,
with improvements observed on translation direc-
tions with unseen target languages (§5).

2 Related Work

Catastrophic Language Forgetting in MT
Catastrophic forgetting in machine translation has
been extensively studied. Dakwale and Monz
(2017); Thompson et al. (2018, 2019) established
that domain-specific fine-tuning degrades perfor-
mance on previously learned domains with specific
subject areas or text styles. Many subsequent works
have investigated the underlying mechanisms and
mitigation strategies for domain forgetting in MT,
e.g., Gu and Feng (2020); Saunders and DeNeefe
(2024); Eschbach-Dymanus et al. (2024); Wu et al.
(2024); Hu et al. (2024). Compared to domain for-
getting, the multilingual dimension of forgetting
has received less attention. Berard (2021) demon-
strated severe language forgetting in conventional
encoder-decoder-based MT models during standard
fine-tuning on selected languages, while Vu et al.
(2022a) showed that domain-specific fine-tuning
compounds forgetting across both domains and lan-
guages. Liu and Niehues (2022); Liu et al. (2023)
confirmed that standard fine-tuning consistently
triggers catastrophic forgetting of unseen language
pairs, even in pre-trained models with large lan-
guage coverage, such as M2M-124 (Goyal et al.,
2022) and mBART-50 (Tang et al., 2021). Besides
language and domain forgetting, models also lose
in-context learning abilities after fine-tuning (Alves
et al., 2023).

Model Factors Influencing Forgetting The
scale of both the model and its pretraining data has
been identified as a key factor in mitigating catas-
trophic forgetting (Ramasesh et al., 2022). Our
study extends this analysis by examining the rela-
tive scale between the model and the fine-tuning
data. The choice of fine-tuning methodology is
another contested factor. Kalajdzievski (2024) sug-
gests that LoRA does not resolve catastrophic for-
getting, while Biderman et al. (2024) suggest that
LoRA “learns less and forgets less”. The finding
by Zhang et al. (2024) that the optimal fine-tuning
method is highly task-dependent warrants a specific
investigation for the task of multilingual MT.

3 Controlled Setting to Study
Catastrophic Forgetting in MT

Our controlled experiments are structured along
two dimensions, namely the choice of base model
and the characteristics of the training dataset.

348



Model Size Model Type

M2M-124-0.2B 175M Translation-specificM2M-124-0.6B 615M
Qwen2.5-0.5B-Instruct 494M

Instruction-followingQwen2.5-7B-Instruct 7B
Llama-3-8B-Instruct 8B

Table 1: Base models and their configurations.

3.1 Base Models

An overview of all base models and their configu-
rations is provided in Table 1.

Translation-Specific Models We choose M2M-
1241 (Goyal et al., 2022) with two sizes:
• M2M-124-0.2B: smallest-scale baseline
• M2M-124-0.6B: larger-scale comparison to iso-

late model size effects

Instruction-Following Models We evaluate and
fine-tune models from two prominent families,
Qwen 2.5 (Qwen Team et al., 2025) and Llama 3
(AI @ Meta et al., 2024):
• Qwen2.5-0.5B-Instruct : similar to M2M-124-

0.6B in size for comparison between translation-
specific and instruction-following models2

• Qwen2.5-7B-Instruct: larger-scale instruction-
following baseline

• Qwen2.5-7B-Instruct (LoRA): identical to full
fine-tuning but using LoRA as a PEFT approach

• Llama-3-8B-Instruct (LoRA): similar scale to
above but from another family

3.2 Data

Dataset Overview As shown in Table 2, we ex-
periment on datasets of different scales:
• SMALL: training dataset in ALMA (Xu et al.,

2024), covering five languages paired with En-
glish: Czech (cs), German (de), Icelandic (is),
Russian (ru), and Chinese (zh). The unseen lan-
guages include Hebrew (he), Japanese (ja), and
Ukranian (uk).

• LARGE: from the WMT 21 Shared Task on Large-
Scale Multilingual Machine Translation (Wenzek
et al., 2021), focusing on three related Austrone-
sian languages paired with English: Javanese
(jv), Malay (ms), and Tagalog (tl). The unseen
language is Indonesian (id).

1We choose M2M-124 over NLLB-200 models of similar
sizes (NLLB Team, 2024) as the former showed stronger
performance in our preliminary experiments.

2We note that this is not fully controlled setup contrasting
M2M-124-0.6B due to different pre-training data.

Dataset Details

SMALL

Training Data: ALMA (117K sentence pairs)
Test (supervised): WMT23 (Kocmi et al., 2023)
Test (unseen pair): WMT24 (Kocmi et al., 2024)
Test (unseen source): WMT23
Test (unseen target): WMT23
Training directions: {cs, de, is, ru, zh}↔en
Testing directions:

- Unseen pair (20): {cs, de, is, ru, zh}↔{cs,
de, is, ru, zh}

- Unseen source (3): {he, ja, uk} → en
- Unseen target (3): en → {he, ja, uk}

LARGE

Training Data: WMT21 large-scale multilin-
gual track (54M sentence pairs)
Test (unseen pair): FLoRes (Goyal et al., 2022)
Test (unseen source): FLoRes
Test (unseen target): FLoRes
Training directions: {jv, ms, tl}↔en
Unseen testing directions:

- Unseen pair (6): {jv, ms, tl}↔{jv, ms, tl}
- Unseen source (4): id → {en, jv, ms, tl}
- Unseen target (4): {en, jv, ms, tl} → id

Table 2: Dataset overview for training and testing con-
figurations for both small and large-scale experiments.

• subsampled LARGE: sampled from the LARGE

dataset with 12K, 120K, and 1.2M sentences per
language pair respectively.

Unseen Language Pairs We evaluate catas-
trophic forgetting on three types of unseen lan-
guage pairs. Our analysis focuses on pairs where
at least one language was seen during fine-tuning,
as pairs with two unseen languages consistently
showed severe performance degradation in prelimi-
nary experiments. The three categories are:
• Unseen Pair: Both the source and target lan-

guages are present in the fine-tuning data, but
not in combination. This is the most challenging
category as explained next.

• Unseen Source: The source language has not
been seen during fine-tuning, but the target lan-
guage has.

• Unseen Target: The target language has not been
seen during fine-tuning, but the source language
has.

Among the three evaluated categories, the “unseen
pair” scenario presents a unique challenge. While
counterintuitive, this case is often more difficult
than scenarios involving languages completely un-
seen during fine-tuning. The primary reason for
this difficulty lies in the English-centric nature of
the fine-tuning dataset. Because all training ex-
amples are paired with English, the model learns
an implicit association that a specific source lan-
guage uniquely predicts English as the target lan-
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guage, which represents a spurious correlation (Gu
et al., 2019).3 In contrast, the other two condi-
tions do not present this conflict to the same level.
For an unseen source language, the model has
not formed any directional association during fine-
tuning. Therefore, there is no learned association to
be overridden. The unseen target language scenario
is also comparatively less difficult. Specifically, as
long as the source language has to translate into
multiple different target languages during training
or has not been seen in training, the model does not
learn a one-to-one mapping to a single output. This
condition applies to four of the seven unseen target
language scenarios (en →{he, ja, uk, id}), where
the source language was part of a multi-target trans-
lation setup. This configuration discourages over-
specialization toward a single output language, re-
ducing the overall difficulty of translating into a
unseen target language for this category.

Language Control Mechanisms Following the
original models, we use different language speci-
fication methods. For M2M-124, we follow their
token-based control, prepending source and target
sentences with their respective language tokens:

<source_lang_token> source sentence
<target_lang_token> target sentence

For instruction-following models, we use the sys-
tem prompt “Translate the given sentence from
[source language] to [target language]” followed
by the source sentence. In ablations, we also test
instructions in the target language4.

3.3 Training and Inference
For full fine-tuning, we update all model param-
eters. For LoRA, we adopt a rank of 8 and α of
16, applying adapters to all components within self-
attention (Query, Key, Value, Output, Gate) and
linear projections. This LoRA configuration was
chosen after initial experiments applying LoRA
to fewer components showed weaker supervised
performance. It also creates conditions more analo-
gous to full fine-tuning than selective adapter appli-
cation, minimizing potential confounding factors
related to parameter coverage. More training and
inference details are available in Appendix A.

3For instance, when translating from German-Czech after
fine-tuning on English-Czech and German-English, the model
has been implicitly trained to associate German inputs with
English outputs. Direct German-Czech translation requires
the model to override this spurious correlation.

4We translate English instructions with DeepL. For lan-
guages not supported by DeepL, we use Google Translate.

3.4 Metrics

For evaluation, we primarily use COMET-22 (Rei
et al., 2022) as our main quality metric due to its
strong correlation with human judgments (Freitag
et al., 2022). However, COMET has known limita-
tions when models generate unintended languages
(Zouhar et al., 2024), which is particularly relevant
for catastrophic forgetting. Therefore, we include
BLEU5 (Papineni et al., 2002) as a complemen-
tary string-matched metric. When appropriate, we
also report language accuracy using the language
identification tool by Lui and Baldwin (2011).

4 Gain-Forgetting Analyses

We investigate the trade-off between performance
gains on fine-tuned language pairs and potential
catastrophic forgetting on those unseen during fine-
tuning. To visualize this relationship, we create
scatter plots (Figure 2 and Figure 3) where each
point represents a language pair’s performance be-
fore (x-axis) and after (y-axis) fine-tuning. The di-
agonal line (y = x) is a reference boundary, where
points below indicate catastrophic forgetting, while
those above indicate performance improvement.

4.1 Model Scale and Fine-Tuning Data Size

Impact of Model Size Larger model variants con-
sistently exhibit greater resistance to catastrophic
forgetting. For M2M-124 models, the 0.6B pa-
rameter variant shows fewer language pairs in the
forgetting zone compared to its 0.2B counterpart.
Similarly for Qwen2.5, the 7B model demonstrates
substantially less forgetting than the 0.5B model
across all language pairs. This confirms the finding
from Ramasesh et al. (2022) that the base model
scale helps mitigate forgetting.

Impact of Fine-Tuning Data Volume We addi-
tionally observe that the amount of fine-tuning data
plays a crucial role in forgetting. By contrasting
Figure 2 (∼100K sentences FT data) and Figure 3
(∼ 54M sentences FT data), it becomes clear that
higher-data-volume fine-tuning leads to stronger
forgetting across all model variants. This observa-
tion extends the findings of Ramasesh et al. (2022),
by demonstrating that catastrophic forgetting is im-
pacted not only by base model scale, but also by
the intensity of task-specific training.

5with default tokenizer “13a” in sacreBLEU (Post, 2018),
and the dedicated tokenizers for Chinese and Japanese.
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Figure 2: Gain-forgetting plots on the SMALL dataset (117K sentence pairs). Catastrophic forgetting is minimal,
except unseen language pairs on Llama (addressed later in Table 4).

40 60 80

40

60

80

Po
st

-F
T 

CO
M

ET

M2M124-0.2B Full

40 60 80

M2M124-0.6B Full

40 60 80

Qwen2.5-0.5B Full

40 60 80

Qwen2.5-7B Full

40 60 80

Qwen2.5-7B LoRA

40 60 80

Llama3-8B LoRA

0 20 40
0

20

40

Po
st

-F
T 

BL
EU

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Pre-FT COMET

Pre-FT BLEU

Supervised Unseen Source Unseen Target Unseen Pair

Figure 3: Gain-forgetting plots on the LARGE dataset (54M sentence pairs). Catastrophic forgetting is more severe,
especially with translation-specific models where they show performance collapse approaching 0 BLEU.
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Figure 4: Controlled analysis of data volume effects by
subsampled portions of the LARGE dataset. Forgetting
becomes severe as fine-tuning data amount increases.

Controlled Analysis of Data Volume Effects To
isolate the impact of data volume from dataset-
specific factors (e.g., the ALMA dataset has higher-
quality data), we conduct controlled experiments

using subsampled portions of the WMT21 dataset.
We systematically vary the amount of fine-tuning
data while maintaining a consistent data source.
Starting with 12K sentences per language pair
(matching ALMA), we increase the volume by
an order of magnitude at each step: 12K →
120K → 1,200K sentences per language pair. Fig-
ure 4 demonstrates the progressive increase in
catastrophic forgetting as training volume grows.
At 12K sentences per language pair, the gain-
forgetting pattern resembles ALMA results, with
most language pairs clustered near the diagonal
line and minimal performance changes. At 120K
sentences, a shift toward forgetting emerges, par-
ticularly for target languages unseen in fine-tuning.
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Model Average en→id

COMET BLEU COMET BLEU

Qwen2.5-0.5B-Instruct 64.0 8.0 71.6 11.8
+ Instruction-based FT 65.3 6.8 80.9 19.2
+ Token-based FT 60.9 5.2 72.1 14.0

Table 3: Effectiveness of different language control
mechanisms on unseen target languages compared to
the base model without fine-tuning. Instruction-based
language control outperforms token-based control.

At 1,200K sentences, severe catastrophic forgetting
occurs, though not to the full extent observed in
the complete dataset. The progressive degradation
suggests that the intensity of fine-tuning on specific
language pairs impacts the forgetting patterns.

4.2 Architecture and Language Control
Mechanism

To isolate the impact of model architecture and
pretraining objectives on catastrophic forgetting,
we compare two models of comparable scale but
different designs: M2M-124-0.6B, a translation-
specific encoder-decoder model, and Qwen2.5-
0.5B, a general-purpose decoder-only model pre-
trained for instruction following. While these two
models differ in their pre-training data, which pre-
ludes a fully controlled comparison, we also repli-
cate M2M-124’s language control mechanism on
Qwen2.5 to reduce potential confounding factors.

Forgetting Patterns Across Architectures In
Figure 3 on the LARGE dataset, where forgetting
effects are strongest due to large-scale fine-tuning
data, both models exhibit catastrophic forgetting
with multiple language pairs falling below the di-
agonal. However, they differ in their forgetting pat-
terns: M2M-124-0.6B exhibits severe performance
degradation on unseen target languages, while
Qwen2.5-0.5B shows modest forgetting. We hy-
pothesize that this is related to the target language
control mechanisms by the models. As discussed
in §3.2, M2M-124 relies on language-specific to-
kens prepended to both source and target sentences,
with the target-side token determining the output
language. In contrast, with Qwen, we use natural
language instructions to specify the target language,
leveraging its existing instruction-following capa-
bilities. This instruction-based mechanism may
support more generalizable language control and
help mitigate catastrophic forgetting on unseen tar-
get languages. We examine this hypothesis next.

Isolating Language Control Mechanisms To
test the previous hypothesis that natural language
instructions facilitate language control, we conduct
a controlled experiment by fine-tuning Qwen2.5-
0.5B using the same token-based language speci-
fication format as M2M-124, as described in §3.2.
This format eliminates natural language instruc-
tions entirely, allowing fairer comparisons between
models while holding the language control method
unchanged. The results support our hypothesis
that instruction-following paradigms provide su-
perior language control. As shown in Table 3,
when trained with token-based language control,
Qwen2.5’s performance on unseen target languages
drops substantially from 65.3 to 60.9 COMET over
4 unseen target language pairs. To account for
low initial performance in some non-English lan-
guage pairs, we specifically examine the English-
Indonesian pair, which has a stronger baseline.
In this case, performance still degrades substan-
tially from 80.9 to 72.1 COMET and from 19.2 to
14.0 BLEU. These results on Qwen show that it
is the instruction-following ability, rather than the
decoder-only architecture, that provides stronger
protection against target language forgetting.

Impact of In-Language Instructions Building
on our previous findings regarding instruction-
following for language control, we investigate
whether using instructions in the target language
(in-language instructions) can mitigate catastrophic
forgetting on unseen language pairs. While prior
work on in-language instructions for multilingual
LLMs shows mixed results (Marchisio et al., 2024;
Mondshine et al., 2025; Liu et al., 2025; Romanou
et al., 2025; Enomoto et al., 2025), these studies
primarily evaluate models out-of-the-box. In con-
trast, we focus specifically on the training effects
of in-language instructions.

We focus on the Llama3-8B trained on the
SMALL dataset, which exhibits strong catastrophic
forgetting (rightmost plots in Figure 2). As the re-
sults in Table 4 suggest, for unseen language pairs
affected by forgetting, in-language instructions sub-
stantially outperform English instructions. Specifi-
cally, average language accuracy improves dramat-
ically from 22.1% to 82.0%, with corresponding
translation quality gains as measured by COMET
increasing from 57.2 to 70.9. It is worth noting that
this does not impact performance on supervised
language pairs, and slightly improves performance
on unseen target languages (COMET 79.6→80.3).
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Metric Supervised Unseen
Pair

Unseen
Source

Unseen
Target

Original
COMET 76.9 63.8 81.1 71.8
BLEU 26.0 10.9 29.5 14.8
LangID 97.9 85.1 97.9 93.5

English
instruction

COMET 81.4 57.2 82.8 79.6
BLEU 30.0 4.4 31.8 15.5
LangID 96.7 22.1 98.4 94.1

In-language
instruction

COMET 81.7 70.9 82.9 80.3
BLEU 30.3 14.4 32.4 16.1
LangID 97.5 82.0 98.5 95.1

Table 4: With Llama3 on the SMALL dataset, in-
language instructions recover catastrophic forgetting on
unseen pairs, reversing a 6.6 COMET loss (63.8→57.2)
into a 7.1 COMET gain (63.8→70.9).

4.3 Analyses by Language Pair Types
The results in Figure 2 and Figure 3 also suggest
that catastrophic forgetting patterns are strongly de-
pendent on the language pair type. As shown in the
previous section, a major issue for language pairs
unseen during fine-tuning is generating incorrect
output languages. Therefore, we separately discuss
the two language control mechanisms.

Token-Based Control and Target Language For-
getting For translation-specific models (M2M-
124 variants) which use specialized tokens for lan-
guage control, performance degradation is most
acute for unseen target languages. This is expected,
as if the language token for a target language is
never encountered during fine-tuning, the model’s
ability to interpret it and generate the correct lan-
guage catastrophically degrades.

Unseen Pairs as Main Vulnerability for Instruc-
tion-Following Models In contrast, instruction-
following models demonstrate greater resilience
on unseen target languages, a capability we at-
tribute to the generalizable nature of natural lan-
guage prompts (§4.2). However, these models are
not immune to forgetting and are most susceptible
when handling unseen language pairs, where both
source and target languages are absent from the
fine-tuning set. This is particularly evident with the
Llama3-8B model. We hypothesize this vulnera-
bility is compounded by the fact that these unseen
pairs are often non-English-centric. Base models
typically possess weaker zero-shot capabilities for
such translation directions due to the prevalence of
English in their pre-training data. Fine-tuning on a
different, often English-centric, set of pairs appears
to accelerate the forgetting of these already fragile,

non-English-centric translation abilities.

4.4 Comparing LoRA and Full Fine-Tuning
We observe that LoRA and full fine-tuning result in
comparable levels of catastrophic forgetting (fourth
and fifth columns of Figure 2 and Figure 3). Note
that we applied LoRA adapters to all components
of self-attention and linear projections, thereby
minimizing differences in parameter coverage as a
confounding factor. Our finding differs from that
of Biderman et al. (2024), who observed that LoRA
mitigates forgetting when adapting models to dis-
similar domains like code and math. We hypothe-
size that this difference is because our fine-tuning
task (translation) requires a smaller domain shift
for the base models, which already exhibit strong
zero-shot translation capabilities, whereas adapting
to code or math requires a larger deviation.

5 Evaluating Cross-Lingual Alignment
for Forgetting Mitigation

Having identified the architectural and training fac-
tors that impact catastrophic forgetting, we pose
a question about mitigation strategies: Do estab-
lished forgetting mitigation methods primarily re-
store lost performance, or do they also improve
cross-lingual transfer? We focus on cross-lingual
alignment methods, as they encourage similar rep-
resentations for semantically equivalent content
across languages, which could mitigate forgetting.

5.1 Evaluated Methods
We evaluate three prominent cross-lingual align-
ment techniques that encourage shared representa-
tions across languages:
• Adversarial language identification (Ganin

et al., 2016; Arivazhagan et al., 2019): includes
an adversarial language classifier that encourages
language-agnostic representations by penalizing
the model’s ability to predict the source language
from hidden states.

• Similarity-only loss (Arivazhagan et al., 2019;
Pham et al., 2019): pulls together translation
pairs without negative examples. While a naive
implementation would lead to representation col-
lapse, joint training with the translation loss mit-
igates this by maintaining discriminative power
for the primary task (Duquenne et al., 2023).

• Contrastive loss (Pan et al., 2021): employs a
contrastive objective that pulls together represen-
tations of translation pairs while pushing apart
representations of unrelated sentence pairs.
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Figure 5: Cross-lingual alignment effects on translation-
specific models on the LARGE dataset. Alignment meth-
ods bring gains in unseen language pairs, but suffer from
persistent forgetting in unseen target languages.

The losses are applied on encoder for encoder-
decoder models, and on the middle layers of
decoder-only model (Liu and Niehues, 2025).

5.2 Translation-Specific Models

We first evaluate the three alignment methods on
translation-specific models: the 0.2B and 0.6B vari-
ants of M2M-124. The results are shown in Fig-
ure 5, displaying change in translation quality for
various language categories, comparing each align-
ment method against the plain fine-tuning baseline.

Gains in Unseen Language Pairs Among the
three unseen categories, alignment methods primar-
ily improve performance on unseen language pairs.
These improvements are observed when plain fine-
tuning causes forgetting (Figure 5a) and when it
brings improvements (Figure 5b). For the 0.2B
model, these methods reverse a -7.5 COMET loss
by plain fine-tuning (60.5→53.0) into a gain of over
10 COMET. On the larger 0.6B model, the gains
are more modest but consistent, ranging from +0.8
to +1.5 COMET over the plain fine-tuning base-
line. Besides this category, alignment techniques
do not benefit unseen source or target languages,
as discussed next.

Persistent Forgetting in Unseen Target Lan-
guages The last column of Figure 5 shows that all
three approaches still result in drastic, double-digit
COMET degradation for this category. This sug-
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Figure 6: Cross-lingual alignment effects on instruction-
following models on the SMALL dataset.

gests an inherent weakness of the token-based lan-
guage control mechanism discussed in §4.3. Cross-
lingual alignment, while beneficial for transfer,
struggle to overcome this fundamental limitation.

Similar Performance Patterns Across Alignment
Methods The three evaluated alignment methods
exhibit highly similar performance patterns. While
the adversarial approach shows an advantage for
unseen target languages (Figure 5), the improve-
ment is insufficient to overcome the severe forget-
ting in this category. We argue this difference is of
limited practical relevance, as the degradation re-
sults from an inherent limitation in the token-based
language control that none of the methods fully
resolve. Moreover, the instruction-based language
control already demonstrates superior baseline per-
formance in this setting (§4.2). Therefore, given
their comparable overall effectiveness, we select a
single representative alignment method for the sub-
sequent analysis of instruction-following models.

5.3 Instruction-Following Models

We choose the contrastive approach for studying
instruction-following models due to its generality,
as the other two approaches require joint training
with task-specific loss to avoid collapse. In Fig-
ure 6, results are shown for both Llama3-8B and
Qwen2.5-7B with LoRA fine-tuning on both the
SMALL and LARGE fine-tuning data configurations.

Impact on Unseen Source and Target Languages
On unseen source languages, cross-lingual align-
ment generally leads to performance comparable
to standard LoRA fine-tuning, in line with previous
observations on task-specific models (§5.2). On un-
seen target languages, cross-lingual alignment pro-
vides a modest gain of 0.7 COMET (79.6→80.3)
for Llama, whereas it offers no significant improve-
ment for the Qwen model. These results sug-
gest that the primary advantage of cross-lingual
alignment is its ability to reverse forgetting on un-
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seen language pairs. In conditions where standard
fine-tuning already yields improvements, the ad-
ditional gains from alignment are much milder.
This forgetting pattern here, especially in the un-
seen target category, differs from those observed
on translation-specific models in §5.2. The persis-
tent strong forgetting observed previously is sub-
stantially reduced, with alignment occasionally sur-
passing the performance of standard fine-tuning.
This suggests that as models move forward in their
instruction-following capabilities, their potential
for cross-lingual transfer is also enhanced.

Why Gains Concentrate on Unseen Pairs The
most significant performance improvements are
observed on unseen pairs, where both the source
and target languages were included in the training
data but never appearing together. As discussed
in §3.2, this category is particularly challenging
because fine-tuning can cause the model to overfit
to spurious source-target associations, leading to
outputs in an incorrect target language.

We interpret these results as evidence that cross-
lingual alignment methods directly counteract this
degradation. Encourage more language-invariant
representations leads to disentangling semantic con-
tent from language-specific features. By breaking
the spurious associations learned during training,
alignment mitigates the effects of forgetting and
restores the model’s ability to generate the correct
target language. Consequently, the performance
gains are most substantial on these unseen pairs.
Considering that the number of translation direc-
tions in a multilingual system scales quadratically,
and that many languages may only have parallel
data to English, breaking the spurious correlations
that affect unseen pairs is of high practical impor-
tance for scalable translation models.

In contrast, for translation directions involving
entirely unseen languages, the central challenge is
a general lack of exposure rather than spurious cor-
relations. Therefore, the impact of this alignment
mechanism is much milder in those scenarios.

6 Conclusion

In this work, we aim to resolve ambiguities in the
literature regarding when catastrophic forgetting
occurs for multilingual fine-tuning for MT. Based
on our findings, we provide the following practical
recommendations: 1) Consider the relative scale
between model size and fine-tuning data. Larger
datasets may require larger base models to pre-

vent forgetting. 2) Prioritize models with strong
instruction-following abilities over specific archi-
tectural choices. 3) Do not rely solely on parameter-
efficient fine-tuning methods as a forgetting mitiga-
tion strategy. 4) For models exhibiting forgetting,
cross-lingual alignment is promising for unseen
pairs where both source and target languages have
been separately seen in fine-tuning. For instruction-
following models, we recommend training with in-
language instructions as an initial data-oriented ap-
proach before proceeding with cross-lingual align-
ment approaches.

Limitations

Our study has several limitations that should be
considered when interpreting the results:
• Our translation experiments focus on English-

centric language pairs, which reflects real-world
data availability. Extension to non-English pivot
scenarios would provide additional validation of
our findings’ generalizability.

• While we vary model and data scales system-
atically, computational constraints limit our ex-
ploration to larger size ranges. The dynamics
of forgetting in even larger models remain to be
investigated.

• We focus on machine translation as it provides a
well-structured testbed for studying multilingual
forgetting with clear evaluation metrics. Whether
similar patterns emerge across other multilingual
tasks remains an open question beyond the cur-
rent scope.
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A Training and Inference Details

Implementation Frameworks: The M2M-124 ex-
periments were conducted using FairSeq (Ott et al.,
2019), while Qwen and Llama experiments utilized
Hugging Face Transformers (Wolf et al., 2020).

Training For M2M-124, we used a batch size of
16,384 target tokens. For Qwen and Llama models,
we used a batch size of 128 sentences. With M2M-
124, we applied a warmup period of 2,500 steps

with a learning rate of 1e-4. Training was limited to
a maximum of 500K updates, with validation runs
every 2,000 steps. Early stopping was triggered if
validation loss does not improve for 10 consecutive
runs. With Qwen and Llama, we used a warmup
period of 200 steps with a default learning rate of
5e-4. For full fine-tuning of Qwen-7B and Llama-
8B, the learning rate was reduced to 1e-4 to due
to training instability with higher rates. Validation
was conducted every 200 steps, with early stopping
applied after 5 consecutive runs without improve-
ment. Both model families employed an inverse
square root learning rate schedule.

Decoding During inference, we used beam
search with a beam size of 5 for M2M-124 experi-
ments, while greedy search was applied for Qwen
and Llama models, following Alves et al. (2024).
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Abstract

Multilingual alignment for low-resource lan-
guages is a challenge for embedding models.
The scarcity of parallel datasets in addition to
rich morphological diversity in languages adds
to the complexity of training multilingual em-
bedding models. To aid in the development
of multilingual models for under-represented
languages such as Sanskrit, we introduce Gi-
taDB: a collection of 640 Sanskrit verses trans-
lated in 5 Indic languages and English. We
benchmarked various state-of-the-art embed-
ding models on our dataset in different bilin-
gual and cross-lingual semantic retrieval tasks
of increasing complexity and found a steep
degradation in retrieval scores. We found a
wide margin in the retrieval performance be-
tween English and Sanskrit targets. To bridge
this gap, we introduce Monolingual Adapter
Networks: a parameter-efficient method to bol-
ster cross-lingual alignment of embedding mod-
els without the need for parallel corpora or full
finetuning.

1 Introduction

Sanskrit is one of the oldest languages in human
history, actively spoken by 25k people in India. The
collection of scriptures, written in Vedic and Clas-
sic Sanskrit, include Vedas, Bhramanas, Arkanyas,
Upnishads, Vedangas, Upvedas, Mahapurans, Up-
apurans, Darsanas, Smritis, Itihasa, and the Bhag-
vada Gita. These works have received so little at-
tention that there is no consensus on the total verse
count for Brahmanas, Aranyakas, Upanishads, Sm-
ritis, Vedangas, Upavedas, and Darsanas. The rest
(Vedas, Puranas, Itihasas, and Bhagvada Gita) have
an estimated total of 600,000 Sanskrit verses. It is
estimated that 30 million documents of Sanskrit ex-
ist that are partly digitized (Aralikatte et al., 2021).
Being silos of knowledge and wisdom, these are
prominent works for cultural and historical stud-
ies. However, their accessibility is limited due to a

lack of good quality translations and applications
to search and analyze these works.

Figure 1: Bilingual retrieval accuracy of embedding
models across Indic languages and Sanskrit (k=5) for
English translations. SOTA models that excel in Indic-
English retrieval, struggle with English-Sanskrit re-
trieval.

Retrieval-augmented generation (RAG) has
emerged as the dominant paradigm for extend-
ing large language models’ generative question-
answering capabilities to new domains (Lewis et al.,
2021, Gao et al., 2024, Guo et al., 2025, Han et al.,
2025). Their multilingual and cross-lingual perfor-
mance on question answering tasks have also been
evaluated (Liu et al., 2025, Artetxe et al., 2020).
The core challenge in creating a RAG system is
retrieval of high-quality documents to be passed as
part of the context to a LLM for generation. A stan-
dard retrieval pipeline uses a variation of semantic
retrieval in addition to statistical methods such as
BM-25 (Robertson et al., 1994) or graphs (Han
et al., 2025, Guo et al., 2025). Semantic retrieval is
based on similarity of vector embeddings of a given
query and documents in the dataset. The quality of
embeddings generated from an embedding model
play a crucial role in the retrieval performance of
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this pipeline.
A large proportion of the population interested

in surveying Sanskrit texts are non-native English
speakers and often use their mother tongue, not
English for most, as the preferred mode of com-
munication and interaction with applications. The
problem for Sanskrit verse retrieval is trivial if both
query and translation is available in English or In-
dic languages (Figure 1). The Sanskrit verse can
be retrieved based on semantic similarity of a trans-
lation (available in English or Indic language) with
the query. The non-trivial cases include:

• Query in English against dataset of Sanskrit
documents.

• Query in language X (low-resource indic lan-
guage) against dataset of Sanskrit documents.

• Retrieving parallel pairs from an unlabeled
corpora of Sanskrit/English/Indic languages.

Thus, multilingual embedding models capable
of retrieving Sanskrit documents for English and
Indic language queries will bolster the efforts in
making accessible applications for the analysis of
Sanskrit texts.

In our survey we found that existing corpora (Ar-
alikatte et al., 2021, Bakrola and Nasariwala, 2023,
Jagadeeshan et al., 2025, Maheshwari et al., 2024,
Gala et al., 2023, Ramesh et al., 2022) lacked mul-
tilingual parallel translations for Sanskrit verses to
benchmark multilingual and cross-lingual retrieval
performance of embedding models. To aid in the
development of models and applications, we in-
troduce GitaDB: a parallel aligned dataset of high
quality translations of Sanskrit verses in 5 Indic lan-
guages and English to support the development of
new models in the field of retrieval, embedding,
and question answering. Using our dataset we
benchmark the performance of various multilingual
embedding models in bilingual and cross-lingual
retrieval.

In our analysis, we found a wide gap in the re-
trieval performance of these models in retrieving
Sanskrit documents for English/Indic queries. To
bridge this gap we created Monolingual Adapta-
tion Networks, as a method to expand coverage
of multilingual models to weakly represented lan-
guages. Monolingual Adaptation Networks are
dense feed-forward neural networks that learn to
transform the embeddings for an under-represented
language (Sanskrit) to be closer to a pivot language

(English) in a parameter and resource efficient man-
ner.

Our main contributions in this paper include:

• GitaDB - A parallel aligned corpus of clas-
sic Sanskrit in 6 languages: English, Hindi,
Gujarati, Odia, Tamil, Telugu

• Monolingual Adapter Network - A method
to bolster the performance of embedding mod-
els for under-represented languages in a re-
source efficient way.

• Cross-lingual Alignment - We showcase the
benefits of using a pivot language as training
target for contrastive learning in cross-lingual
alignment of translations.

2 Related Work

In our survey we found various datasets for San-
skrit translations. Itihasa (Aralikatte et al., 2021)
has a collection of 93,000 pairs of Sanskrit and
English translations created from two epics: Ra-
mayana and Mahabharata. Sahayaak (Bakrola and
Nasariwala, 2023) is a collection of 1.5M pairs
of Sanskrit-Hindi translations covering various do-
mains such as daily conversations, Sports, News,
History, and ancient Indian literature including the
700 verses from Bhagvada Gita. Anveshana is a
dataset of 3400 Sanskrit document-English query
pairs used to study the efficacy of translation based
retrieval over direct retrieval for cross-lingual re-
trieval of ancient texts (Jagadeeshan et al., 2025).
Samayik (Maheshwari et al., 2024) has a collec-
tion of 53,000 Sanskrit-English pairs written in
prose form, distinct from the poetic form of verses
present in datasets like Itihasa. Other datasets such
as IndicTrans2 (Gala et al., 2023) and IndicGen-
Bench (Singh et al., 2024) cover modern Sanskrit,
distinct from the Vedic and Classic forms of San-
skrit used in historic literature.

Most of the datasets we surveyed were either
bilingual datasets for Sanskrit or were multilin-
gual datasets for low-resource Indic languages ex-
cluding Vedic and Classic Sanskrit. GitaDB is the
first dataset that contains multilingual verse aligned
translations of 640 verses in 5 low-resource Indic
languages along with English.

Our primary objective is to identify embedding
models’ ability to retrieve similar verses for a given
query, presented in different Indic languages. Roy
et al., 2020 introduced the concept of strong cross-
lingual alignment and its necessity in a multilin-
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gual embedding model’s output. Strong cross-
lingual alignment is achieved by maximizing inter-
cluster distance and minimizing intra-cluster dis-
tance for multilingual embeddings of the same in-
formation. A model which exhibits low intra-verse
distance and high inter-verse distance has strong
cross-lingual alignment of translations which pro-
duces a high-quality retriever. Thus, we use the
concept of strong alignment in our study.

Multilingual alignment methods typically de-
pend on parallel data or bilingual dictionaries,
which are scarce for under-represented languages
like Sanskrit. More recent multilingual embed-
ding models (e.g., LaBSE (Feng et al., 2020),
mE5 (Wang et al., 2024)) aim to create shared
representation spaces but still exhibit performance
degradation on low-resource languages. Parameter-
efficient adaptation methods such as adapter layers
(Houlsby et al., 2019) and MAD-X (Pfeiffer et al.,
2020) have proven effective for cross-lingual trans-
fer, yet they primarily target task adaptation rather
than language alignment. In contrast, Monolingual
Adapter Networks focus specifically on resource-
efficient language-space realignment, enabling em-
beddings of low-resource languages to be pushed
closer to a pivot language without requiring par-
allel corpora in multiple languages or sacrificing
performance on other languages.

3 Dataset

Our dataset is a collection of 640 verses taken from
the Bhagvada Gita. The Bhagvada Gita is a subset
of 700 verses from the Mahabharata structured as
a poetic discourse between Arjuna and Lord Kr-
ishna, covering various parts of one’s life: duty,
knowledge, and devotion. It is also referred to as
the summary of the Vedas - the scriptures that form
the roots of Sanatan Dharma. The Bhagvada Gita
contains a total of 700 verses. After data cleanup,
we were left with 640 verses with translations in
6 languages: Hindi, English, Gujarati, Tamil, Tel-
ugu, and Odia for a total of 4480 sentences in our
dataset.

We sourced our translations from various on-
line sources and align them at the verse level. For
each verse, we store the Sanskrit verse along with
its translation in each language available: Hindi,
English, Gujarati, Tamil, Telugu, and Odia. Each
language uses a different script that adds a rich
complexity in our dataset.

After initial data collection, we found certain

verses were fused together. These verses are trans-
lated in pairs/triplets as they provide necessary
context for the pair/triplet of verses to be inter-
preted correctly. We translated each verse of the
pair/triplet independently and found the meaning to
be skewed without the appropriate context. Thus,
we decided to leave the fused verses as a single
entity in our dataset. This brought our total verse
count from down from 700 to 640.

Our dataset along with all our code for this paper
can be found here 1

4 Methods

4.1 Base Model

We adopt LaBSE (Feng et al., 2020) as the underly-
ing multilingual encoder due to its strong bilingual
retrieval performance for Indic queries against a
corpus of English translations (Table 1). LaBSE
provides sentence-level embeddings for more than
100 languages, but like other multilingual encoders,
it performs poorly on low-resource languages such
as Sanskrit (Table 2).

4.2 Adapter Network Architecture

On top of the frozen LaBSE encoder, we in-
troduce an Adapter Network implemented as a
lightweight two-layer feed-forward neural network.
This adapter maps Sanskrit embeddings into a
space more closely aligned with English embed-
dings, serving as a post-hoc correction without re-
quiring changes to the base model. By restricting
training to the adapter, our approach remains com-
putationally efficient and avoids catastrophic for-
getting across other languages. The training and
inference setup are showcased in figures 2 and 3
respectively.

4.3 Training Data

We train the Adapter Network on the Itihasa corpus
2 (Aralikatte et al., 2021), which provides paired
Sanskrit and English translations. Importantly, only
the Sanskrit embeddings are passed through the
adapter during training, while the English embed-
dings from LaBSE remain fixed and serve as align-
ment targets.

1https://github.com/tickloop/gitadb
2The Bhagvada Gita is a part of the Mahabharata. To avoid

test set leakage, we remove the chapters of Mahabharata that
cover the Bhagvada Gita from our training set.
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Model Top-k Hi Gu Od Ta Te
(Acc/MRR) (Acc/MRR) (Acc/MRR) (Acc/MRR) (Acc/MRR)

Vyakyarth k=5 99.8 / 98.3 95.9 / 89.5 93.9 / 86.2 99.5 / 98.6 94.4 / 89.1

LaBSE k=5 100.0 / 99.9 100.0 / 100.0 100.0 / 100.0 99.8 / 99.7 100.0 / 100.0

gte-multilingual-base k=5 99.2 / 96.6 95.2 / 89.4 87.0 / 75.9 98.9 / 97.2 95.8 / 90.6

multilingual-e5-small k=5 97.7 / 94.3 90.9 / 79.4 91.6 / 83.7 98.4 / 94.9 91.9 / 83.3

multilingual-e5-base k=5 100.0 / 98.7 99.1 / 96.1 99.4 / 97.3 99.7 / 99.3 99.5 / 97.7

multilingual-e5-large k=5 100.0 / 99.5 99.4 / 98.5 99.5 / 98.9 99.8 / 99.5 99.7 / 98.8

Vyakyarth k=10 99.8 / 98.3 98.0 / 89.8 96.4 / 86.6 99.8 / 98.7 97.3 / 89.5

LaBSE k=10 100.0 / 99.9 100.0 / 100.0 100.0 / 100.0 99.8 / 99.7 100.0 / 100.0

gte-multilingual-base k=10 99.5 / 96.7 97.2 / 89.7 92.5 / 76.7 99.4 / 97.2 97.5 / 90.8

multilingual-e5-small k=10 98.8 / 94.4 95.0 / 80.0 95.5 / 84.2 99.1 / 95.0 95.5 / 83.8

multilingual-e5-base k=10 100.0 / 98.7 99.5 / 96.1 99.7 / 97.4 99.7 / 99.3 99.8 / 97.8

multilingual-e5-large k=10 100.0 / 99.5 99.7 / 98.5 100.0 / 99.0 100.0 / 99.5 99.8 / 98.8

Table 1: Top-k retrieval accuracy (Acc) and mean reciprocal rank (MRR) for queries in Indic languages with targets
from English translation corpora. Each cell shows Acc / MRR.

4.4 Objective Function
Training is performed with the InfoNCE contrastive
loss (van den Oord et al., 2018). For each Sanskrit–
English pair, the adapter output for Sanskrit serves
as the query, and the corresponding English embed-
ding is treated as the positive key among a set of in-
batch negatives. This formulation encourages the
adapted Sanskrit embeddings to be “pulled” closer
to their English counterparts while being pushed
away from non-matching English samples. Use
of more advanced loss functions is left as part of
future work.

Figure 2: Adapter Network training setup. The embed-
ding model is kept frozen and only the Adapter Network
is trained using a contrastive loss. This creates embed-
dings for Sanskrit that are better aligned with English
while the alignment between other languages is unal-
tered.

5 Experiments

We selected the following models for evaluation on
our retrieval benchmarks:

• Vyakyarth (Pushkar Singh, 2024) is a 270M

sentence embedding model designed for In-
dic languages, built upon the STSB-XLM-R-
Multilingual architecture.

• GTE-Multilingual (Zhang et al., 2024) is
a 305M parameter General Text Embedding
model which is trained on 70+ languages and
ranks high on MMTEB (Enevoldsen et al.,
2025).

• LaBSE (Feng et al., 2020) is a 471M param-
eter multilingual model that scores well on
low-resource languages.

• Multilingual-e5 (Wang et al., 2024) family
of models trained on 100+ languages offer
three models: small (118M), base (278M),
and large (560M) parameters.

We tested the models in scenarios that resemble
real-world application of high-quality embeddings:
Bilingual English-Indic Retrieval, Retrieval with-
out translation availability, and Bitext mining in
multilingual corpora. Each task requires high bilin-
gual and cross-lingual alignment of embeddings.
We use cosine similarity as our distance metric in
all our experiments. Since our dataset does not
contain queries, we use the translations as a proxy
for queries.

5.1 Retrieval from English Corpus
Task: Given a query in Indic language and a cor-
pora of English translations, retrieve the parallel
translation of the query. We expect all models
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Figure 3: During inference, English and Indic text embeddings are generated via the embedding model while
Sanskrit embeddings are generated as a combination of the embedding model and the adapter network. The
embeddings are stored in a vector store for retrieval. Queries are embedded using the same embedding model are
relevant documents are retrieved from the vector store. Since the adapted embeddings for Sanskrit are better aligned
with English (and consequently Indic Languages), the retrieval performance is better for Sanskrit documents against
queries from different languages.

to perform well on this task due to the increase
in availability of multilingual corpora for all lan-
guages tested. This task also serves as a benchmark
to identify any language bias in embedding models.

We created embeddings for each English trans-
lation in our corpora and stored them in a vector
database. Then, for each query we retrieved top-
k English translations using Cosine similarity as
the distance metric from our vector store. We re-
port the Accuracy@k and Mean Reciprocal Rank
(mRR@k) values in Table 1. All models performed
near perfectly in this task as we expected. The
MRR scores being close to 100 indicate that ma-
jority of correct retrievals were the highest scoring
result. This showcases a high bilingual alignment
between English and Indic language embeddings.

5.2 Retrieval from Sanskrit Corpora

Task: Given a query in language X (En/Indic) and
a corpora of Sanskrit verses, retrieve the parallel
verse for the query. This task benchmarks the bilin-
gual alignment between English/Indic languages
and Sanskrit for each embedding model.

We created embeddings for each Sanskrit verse
in our corpora and stored them in a vector database.
Then, for each query we retrieved top-k Sanskrit
verses using Cosine similarity as the distance met-
ric from our vector store. The results for this study
are presented in Table 2.

The multilingual-e5 model family was the domi-
nant model for this task. The base LaBSE model
achieves an average score of 29.82. Adding the
Adapter Network (+ada) increases performance

to 43.3, a 45.2% improvement, highlighting the
effectiveness of the adapter. The Adapter Net-
work also aids in alignment between Sanskrit
verses and translations in Indic languages which
the models was not trained on. For English re-
trieval, the model exhibited an absolute improve-
ment of 12.6%, whereas for Indic languages it
demonstrated a comparatively higher average abso-
lute gain of 13.7%, highlighting the enhancement
in cross-lingual alignment. Having a good align-
ment between pivot and non-pivot languages, as we
noted in Task 1, aids in a consistent improvement
across all languages (Table 2).

5.3 Bitext Retrieval

Task: Given a Sanskrit verse and a multilingual
corpora of English and Indic language translations,
retrieve all the parallel translations for the verse.
This task benchmarks the cross-lingual alignment
and retrieval ability of embedding models.

For each verse in our Sanskrit corpora, we re-
trieve top-k results from a multilingual corpora
of English and Indic translations. We report the
Accuracy@k for k=6 in Table 3. We use k=6 as
there are 6 parallel translations for each verse in
our dataset. Since there are multiple correct can-
didates for retrieval, we also report Mean Average
Precision (mAP) (Roy et al., 2020) values in Table
4 along with average accuracy (count of correct
retrievals / total correct translations in dataset).

The base LaBSE model achieves an average
score of 11.9 which is a massive drop compared
to the bilingual setting with only one target lan-
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guage. The presence of multiple correct transla-
tions was a challenge for every embedding model.
The sharp drop in performance indicates that the
embedding space contains clusters with low inter-
verse distance resulting in weak alignment between
Sanskrit and English/Indic languages. Incorporat-
ing the Adapter Network (+ada) raises the aver-
age to 23.9, highlighting that the adapter helps
align low-resource language embeddings even with-
out full fine-tuning. It provided a +25.6% abso-
lute improvement in retrieval accuracy for English
translations, while also providing a consistent im-
provement in cross-lingual alignment for non-pivot
languages: +3.2% in Hindi, +9.5% in Gujarati,
+13.6% in Odia, +10.3% in Tamil, and +10.4% in
Telugu.

We also note a wide variation in the performance
of multilingual-e5 models across languages. Their
performance for English retrieval dropped signifi-
cantly in the presence of multiple translations from
Indic languages. The e5-large model’s top-k re-
trieval accuracy for Gujarati was 61.6 whereas for
English it was only 11.1. There are similar lan-
guage biases in e5-base and e5-small embedding
models. To investigate this bias, we trained an
Adapter Network for e5-base model.

While the performance of m-e5-base (+ada) on
English, Odia, and Tamil increased by an abso-
lute average of 23.8%, it dropped for Hindi, Gu-
jarati and Telugu by an absolute average of 10.2%.
The top-6 average retrieval accuracy for m-e5-base
was 30.7, which was boosted to 37.5 with the help
of Adapter Networks. The average retrieval per-
formance of this combination of multilingual-e5-
base with Adapter networks (37.5) is comparable
to multilingual-e5-large (38.1). It is clear that

Model En Hi Gu Od Ta Te

Vyakyarth 27.7 29.2 24.2 22.7 22.8 19.7

gte-m-base 29.8 41.4 25.8 24.2 27.5 27.3

m-e5-small 55.0 63.4 56.1 53.6 50.8 56.4

m-e5-base 62.8 70.8 66.9 66.7 59.7 67.5

m-e5-large 68.1 75.8 77.5 74.1 68.9 77.5

LaBSE 34.7 26.7 30.2 29.2 25.8 32.3

LaBSE (+ada) 47.3 40.5 42.7 42.8 42.0 44.5

Table 2: Top-5 retrieval accuracy for queries in English/Indic
language with targets from Sanskrit verse corpora. (+ada)
uses adapted embeddings for retrieval targets. The Adapter
Network not only increased performance on English, but also
across non-pivot languages that were not included in training.

multilingual-e5 family of models’ Indic language
embeddings do no cluster around English as a pivot
language and an interesting future work will be to
investigate the choice of pivot language for differ-
ent embedding models.

6 Results

Overall, our experiments reveal a clear stratifica-
tion in model performance across tasks and lan-
guages. While nearly all multilingual embedding
models exhibited decent performance in bilingual
retrieval from parallel corpora, their effectiveness
dropped substantially when moving to tasks that
required cross-script and cross-lingual alignment
with Sanskrit. The multilingual-e5 family consis-
tently ranked at the top for bilingual scenarios,
particularly the large variant, which demonstrated
strong resilience to performance degradation.

In the Indic/English-to-Sanskrit retrieval task
(Table 2), the models encountered a significant
challenge. The shift from modern language cor-
pora to a under-represented, morphologically rich
language introduced substantial difficulty in seman-
tic alignment. Even top-performing models exhib-
ited a marked decline in retrieval accuracy, indicat-
ing that bi-lingual alignment learned from contem-
porary corpora does not directly transfer to San-
skrit. The relative resilience of the multilingual-e5
family suggests that broader multilingual coverage
and larger model capacity help preserve alignment
in low-resource or structurally distant target lan-
guages, but performance gaps remain large enough
to affect real-world applicability in downstream
RAG systems. Adapter Networks consistently im-
proved retrieval accuracy for English and Indic

Model En Hi Gu Od Ta Te

Vyakyarth 12.0 15.0 10.2 6.9 6.1 9.7

gte-m-base 19.8 17.5 8.4 7.5 9.8 11.7

m-e5-small 2.3 14.4 44.2 15.5 5.0 19.4

m-e5-large 11.1 38.3 61.6 48.9 21.1 48.0

LaBSE 10.0 12.3 13.0 10.0 8.8 17.3

LaBSE (+ada) 35.6 15.0 22.5 23.6 19.1 27.7

m-e5-base 8.4 41.7 49.2 27.8 19.1 38.0

m-e5-base (+ada) 59.7 40.3 28.1 33.1 33.8 29.8

Table 3: Top-6 parallel alignment accuracy for each language.
There is a stark decline in performance for all models as
compared to retrieval from English corpora in Task 1 and
for bilingual retrieval with Sanskrit targets in Task 2. The
multilingual-e5 family also showcases a heavy language bias.
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Model acc@6 acc@10 mAP@6 mAP@10

Vyakyarth 9.97 13.26 0.18 0.19

gte-m-base 12.47 16.67 0.26 0.25

m-e5-small 16.80 20.44 0.39 0.37

m-e5-large 38.15 46.35 0.63 0.60

LaBSE 11.90 16.09 0.18 0.18

LaBSE (+ada) 23.91 31.30 0.35 0.34

m-e5-base 30.70 37.16 0.52 0.50

m-e5-base (+ada) 37.47 46.28 0.54 0.52

Table 4: Average accuracy and mAP values for parallel trans-
lation retrieval. mAP values closer to 1 are better. All models
struggled in retrieving parallel translations in the presence of
multiple targets from different languages. A stark contrast
from the bilingual performance highlights the complexity of
this task.

languages, even with the lack of parallel corpora or
full-finetuning of embedding models.

The bitext retrieval task (table 3-4), which re-
quired retrieving all valid translations of a Sanskrit
verse from a multilingual pool, proved the most
difficult. The presence of multiple correct answers
across diverse scripts and languages compounded
alignment complexity, amplifying the effects of lan-
guage bias and imperfect semantic clustering. Here,
accuracy dropped sharply for most models, and
mAP values were substantially below 1 indicating
the lack of correct answers in majority of retrievals.
The multilingual-e5 models again emerged as the
most robust, though their performance in English
retrieval degraded noticeably in this multi-target
setting, suggesting that even strong multilingual
alignment is strained when faced with semantically
overlapping candidate sets. This result underscores
the need for embedding strategies explicitly opti-
mized for multi-answer, multilingual retrieval sce-
narios in low-resource languages. While the use of
Adapter Networks showed improvement in cross-
lingual alignment for all non-pivot languages for
LaBSE, the lack of strong cross-lingual alignment
between English and Indic language translations
resulted in a split performance for the E5 family of
models.

7 Conclusion

In this work, we introduced GitaDB, a parallel-
aligned multilingual dataset of 640 Bhagavad Gita
verses in Sanskrit with translations in five Indic lan-
guages and English. We benchmarked a range of
multilingual embedding models on retrieval tasks

of increasing complexity, revealing the strengths
and limitations of current embedding models for
cross-lingual and cross-script retrieval in a classi-
cal language setting. While state-of-the-art models
such as the multilingual-e5 family demonstrated
strong performance in parallel multilingual re-
trieval, their performance dropped substantially in
bilingual Sanskrit alignment and multilingual bi-
text retrieval scenarios. These results underscore
the unique challenges of handling morphologically
rich, low-resource languages with diverse scripts,
even for models trained on extensive multilingual
corpora. Our method of creating resource efficient
Adapter Networks proved effective in extending
the capabilities of embedding models to an under-
represented languages without full finetuning or
parallel multilingual corpora.

8 Future Work

Our findings suggest several promising directions
for future work. There is a clear need for embed-
ding models explicitly trained on classical language
corpora and capable of handling cross-script align-
ment without relying solely on translations. This
work has uncovered the use of Adapter Networks
as a strategy to improved cross-lingual retrieval
performance with a simple architecture. Adapter
Networks can be further studied with varying archi-
tectures, loss functions, and pivot languages based
on the choice of underlying embedding model. Us-
ing hard in-batch negatives has also shown promis-
ing results in contrastive training. We leave the
exploration of using hard in-batch negatives for a
future study.

The multi-answer retrieval setting presents an
open challenge; techniques that better cluster se-
mantically equivalent translations while maintain-
ing separation between distinct verses could yield
significant zero-shot improvements. For RAG sys-
tems in particular, such advances could enable
more accurate context retrieval across languages,
improving both coverage and relevance for end
users who query in non-English languages. By
closing the alignment gap between Sanskrit and
modern Indic languages, future systems will be bet-
ter equipped to serve as multilingual gateways to
the cultural and philosophical heritage embedded
in these texts.
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Abstract

Culturally grounded commonsense reasoning
is underexplored in low-resource languages due
to scarce data and costly native annotation. We
test whether large language models (LLMs)
can generate culturally nuanced narratives for
such settings. Focusing on Javanese and Sun-
danese, we compare three data creation strate-
gies: (1) LLM-assisted stories prompted with
cultural cues, (2) machine translation from In-
donesian benchmarks, and (3) native-written
stories. Human evaluation finds LLM stories
match natives on cultural fidelity but lag in co-
herence and correctness. We fine-tune mod-
els on each dataset and evaluate on a human-
authored test set for classification and genera-
tion. LLM-generated data yields higher down-
stream performance than machine-translated
and Indonesian human-authored training data.
We release a high-quality benchmark of cultur-
ally grounded commonsense stories in Javanese
and Sundanese to support future work.1

1 Introduction

Reasoning, the ability to draw conclusions, make
inferences, and relate concepts, is a core evaluation
target in recent LLM work (Dubey et al., 2024;
OpenAI et al., 2024; Hurst et al., 2024; Almazrouei
et al., 2023). Yet widely used English benchmarks
such as StoryCloze (Mostafazadeh et al., 2016,
2017), WinoGrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019) encode Western
norms. Because reasoning is culturally shaped, re-
lying on machine-translated English datasets (Ponti
et al., 2020; Lin et al., 2022; Hershcovich et al.,
2022) risks erasing local context.

Recent datasets for medium-resource languages
(e.g., Indonesian (Koto et al., 2024) and Arabic
(Sadallah et al., 2025)) add cultural grounding but

*Equal contribution
1The dataset can be accessed at https://huggingface.

co/datasets/rifoag/javanese_sundanese_story_
cloze

mainly target sentence-level classification. Story-
level commonsense, how people interpret events
across narratives, remains underexplored in low-
resource languages due to limited speaker access,
high annotation costs, and scarce culturally relevant
materials.

We address story comprehension in two under-
represented languages, Javanese and Sundanese,
spoken by roughly 80M and 32M people respec-
tively (Badan Pusat Statistik, 2025; Eberhard et al.,
2025). Beyond sheer scale, both carry rich so-
ciolinguistic systems: Sundanese encodes polite-
ness and hierarchy phonologically, while Javanese
employs elaborate speech levels (Wolff and Poed-
josoedarmo, 1982). We adopt a StoryCloze-style
setup (Mostafazadeh et al., 2016, 2017): given a
four-sentence story, models either generate a plausi-
ble fifth sentence (generation) or choose the correct
continuation from two options (classification).

We compare three dataset creation strategies
for culturally grounded story comprehension: (1)
LLM-assisted generation with culturally informed
prompts, (2) machine translation from Indonesian
benchmarks, and (3) native-authored stories. Each
has distinct benefits, scalability, resource reuse, and
authenticity, respectively. Human evaluation shows
LLM outputs are culturally plausible and compara-
ble to native-written stories.

To assess cultural reasoning on narratives, we
use the native-authored set as a zero-shot testbed.
As in Figure 1, Indonesian/SEA-centric models,
though covering the target languages, often pro-
duce culturally inappropriate endings, showing
that language support alone is insufficient. We
then fine-tune on synthetic data and find that
LLM-generated training yields stronger results than
machine-translated data for both classification and
generation.

Our contributions are as follows:
• We release the first benchmark for cultur-

ally grounded commonsense reasoning in
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Figure 1: Examples of human-written stories in Sundanese and Javanese. English translations in gray color are
provided for reference. A cross (✗) indicates a culturally irrelevant ending, generated by LLMs

Javanese and Sundanese, comprising 3.3K
high-quality stories. This includes 1.12K
human-written samples, 1K human-reviewed
machine-translated texts, and 1.22K filtered
LLM-generated samples.

• We conduct extensive human evaluation of
multiple dataset creation strategies, includ-
ing (i) LLM-assisted generation, (ii) direct
machine translation, (iii) culturally localized
translation, and (iv) native-authored stories.

• We evaluate model performance through zero-
shot inference and supervised fine-tuning in
both classification and generation settings to
assess their cultural reasoning capabilities.

2 Related Works

2.1 Commonsense Reasoning in English Story
Comprehension

Story comprehension in NLP involves reasoning
over causal, temporal, and commonsense relations
within narratives. The StoryCloze test, introduced
by Mostafazadeh et al. (2016, 2017) is a land-
mark benchmark, requiring models to select the
most plausible ending for a short four-sentence
story. Many commonsense reasoning datasets,
however, focus on sentence-level challenges in-
clude WinoGrande (Sakaguchi et al., 2021) for pro-
noun resolution, COPA (Gordon et al., 2012) for

causal reasoning, and HellaSwag (Zellers et al.,
2019) for adversarial sentence completion. While
effective for probing localized reasoning, these do
not capture broader discourse coherence or charac-
ter motivations.

Recent work has shifted toward narrative-level
reasoning with longer contexts and richer event
dynamics. NarrativeQA (Kočiský et al., 2018)
covers full books and movie scripts, CosmosQA
(Huang et al., 2019) infers implicit causes and in-
tentions, and TellMeWhy (Lal et al., 2021) targets
causal and motivational “why” questions. Yet these
remain English-centric and question-answering-
oriented. Our work instead addresses narrative
completion in low-resource languages, particularly
in Javanese and Sundanese, providing a cultur-
ally grounded alternative to high-resource, English-
dominant benchmarks.

2.2 Commonsense Reasoning in Languages
Beyond English

Early multilingual commonsense benchmarks often
extended English datasets via translation. XCOPA
(Ponti et al., 2020) translated COPA into 11 ty-
pologically diverse languages, including Indone-
sian, while X-CSQA (Lin et al., 2021) adapted
CommonSenseQA across languages. Although use-
ful for cross-lingual evaluation, such resources in-
herit Anglocentric biases, as progress in English
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does not always transfer culturally or linguistically
(Lin et al., 2022; Shwartz et al., 2020). Direct
translations risk embedding English social contexts
rather than local commonsense (Lin et al., 2021).

Story comprehension tasks like StoryCloze
(Mostafazadeh et al., 2016) have been similarly ex-
tended. One such extension is XStoryCloze (Lin
et al., 2022), by translating English narratives into
multiple languages. Yet such approaches still strug-
gle to capture culture-specific narrative norms.

For Indonesian, culturally grounded datasets
such as COPAL-ID (Wibowo et al., 2024) and
IndoCulture (Koto et al., 2024) model regional
practices and norms across 11 provinces, advanc-
ing evaluation in a medium-resource language.
However, they primarily focus on short-form,
sentence-level reasoning such as multiple-choice
or cloze-style questions, rather than full-narrative
comprehension. Beyond Indonesia, CultureBank
(Shi et al., 2024) compiles large-scale cultural
knowledge from community narratives to sup-
port culturally aware language technologies, while
CultureLLM (Li et al., 2025) incorporates cultural
differences into LLMs via semantic data augmen-
tation. However, these resources primarily fo-
cus on short-form, structured tasks rather than
full-narrative comprehension. Our work fills this
gap by introducing the first benchmark for story-
level commonsense reasoning in low-resource lan-
guages, specifically Javanese and Sundanese, two
of Indonesia’s most widely spoken local languages.

2.3 LLM-Generated Data Creation
One possible solution to tackle data scarcity in NLP
is applying data augmentation (Feng et al., 2021;
Ding et al., 2020; Ahmed and Buys, 2024; Liu et al.,
2024; Yong et al., 2024; Guo and Chen, 2024; Liu
et al., 2022), with LLMs increasingly used to pro-
duce high-quality synthetic data that complements
or substitutes manual annotation. Most prior work
targets classification tasks. For example, WANLI
(Liu et al., 2022) used GPT-3 (Brown et al., 2020)
to generate synthetic English natural language infer-
ence data (Bowman et al., 2015) refined by humans,
while Yong et al. (2024) generated English senti-
ment and topic classification data before translating
it into low-resource languages using bilingual lexi-
cons.

For low-resource languages, Putri et al. (2024)
employed GPT-4 (OpenAI et al., 2024) to create
question-answering datasets, showing LLM poten-
tial in under-resourced settings. However, such

efforts often overlook cultural reasoning and narra-
tive coherence. Our work instead focuses on cultur-
ally nuanced story generation in Javanese and Sun-
danese, targeting story-level commonsense reason-
ing. We compare multiple data creation strategies,
including LLM-assisted generation with open- and
closed-weight models, machine translation from
Indonesian, and native-authored stories.

3 Dataset Construction

As in Figure 2, we build two parallel streams: train-
ing and test. For training, the IndoCloze (Koto
et al., 2022) train split serves both as seeds for
LLM-guided generation and as sources for ma-
chine translation into Javanese and Sundanese. For
testing, we translate the IndoCloze test split and
human-verify it for linguistic quality and cultural
relevance, and we add a fully new set of native-
authored stories from predefined topics. Each
instance follows the StoryCloze format: a four-
sentence premise with one correct and one incor-
rect ending.

Indonesian is chosen as the seed language for its
national status and cultural proximity to Javanese
and Sundanese. To ensure authenticity, native
speakers authored and validated stories, embedding
local names, places, foods, and customs. Following
Mostafazadeh et al. (2016); Koto et al. (2022), the
dataset targets everyday commonsense reasoning
grounded in local culture

3.1 Training Data

We construct our training set using three strate-
gies: (1) LLM-assisted data generation, (2) direct
machine translation, and (3) machine translation
followed by cultural localization using an LLM.

3.1.1 LLM-Assisted Data Generation
We synthesize training data with three open
models: Gemma2-27B-it (Rivière et al.,
2024), Llama3.1-70B (Dubey et al., 2024),
Mixtral-8x7B-Instruct (Jiang et al., 2024), and
three closed models: GPT-4o (Hurst et al., 2024;
OpenAI et al., 2024), Cohere Command-R-Plus
(Cohere, 2024), Claude-3-Opus (Anthropic,
2024).

For each language and LLM, we supply seed
examples and topics. We manually translate 50
IndoCloze train samples into Javanese and Sun-
danese with cultural localization (e.g., foods like
Gudeg and rituals like Sawéran). Topics are de-
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Figure 2: Overall pipeline of dataset creation.

rived from IndoCulture (Koto et al., 2024). The
full prompt appears in Figure 4.

Each LLM produces 2,000 stories (1,000 per
language), yielding six training sets. Per call, five
random seeds guide generation at temperature 0.7;
we repeat until each model reaches 1,000 valid
samples per language (≈ 166 per topic on average).

To filter quality, we train an XLM-R binary clas-
sifier on 600 human-rated outputs (Section 4.2)2.
Applied to all 12,000 generations, it retains 1.2K
high-quality stories (592 Sundanese, 628 Javanese).
Roughly half of Claude and GPT-4o outputs pass,
while far fewer from other LLMs, especially Mix-
tral, survive (Appendix B).

3.1.2 Machine Translation (MTtrain)

We translate 1,000 IndoCulture training instances
into Javanese and Sundanese (1,000 each) using
Google Translate3 (see Appendix F for quality). As
a training resource, this set is not human-validated.
We refer to it as MTtrain.

3.1.3 Machine Translation + Localization
(MTtrain+GPT4o)

We prompt GPT-4o to culturally localize the MT
outputs, following the same guidelines given to
human annotators. The model adapts names,

268.33% accuracy on the dev split (20% of train); setup in
Appendix A.

3https://translate.google.com/, accessed Septem-
ber 2024.

events, foods, settings, and social norms to Ja-
vanese/Sundanese contexts. This probes whether
LLMs can align literal translations with local cul-
tural values to produce more authentic, context-
appropriate narratives.

3.2 Test Set

We carefully construct the test set using two strate-
gies: (1) machine translation with human verifi-
cation, resulting in 500 Javanese and 500 Sun-
danese instances, and (2) manual writing by native
speakers based on pre-defined topics, producing
roughly 529 Javanese instances and 595 Sundanese
instanecs. Each strategy undergoes rigorous quality
control to ensure accuracy and reliability. In total,
we create a high-quality test set of 2,124 instances
across both languages.

To ensure the authenticity and quality of the
dataset, we recruited 4 expert workers (2 per lan-
guage) who are not only native Indonesian speakers
but also fluent in Javanese and Sundanese. Each
expert worker has a deep understanding of their
respective language, culture, and customs. They
have at least 10 years of experience speaking Ja-
vanese or Sundanese and possess strong linguistic
and cultural expertise. The recruited workers, aged
between 21 and 35 years, hold bachelor’s degrees
and were carefully selected for their proficiency in
both language and cultural knowledge.
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Dataset Sundanese Javanese
Coherence Fluency Correctness Cultural Rel. Coherence Fluency Correctness Cultural Rel.

Human Written (HW) 5.0 5.0 100 96 5.0 5.0 100 66

LLM Generated Data
GPT-4o 4.7 4.2 80 96 4.9 4.5 97 91
Claude 4.7 4.4 86 92 4.9 4.3 96 93
Cohere 3.4 3.0 28 46 4.6 4.1 80 65
Llama3.1 3.7 3.4 56 70 4.5 4.2 65 50
Gemma2 3.9 3.1 42 78 4.8 3.6 83 81
Mixtral 2.0 1.5 0 4 2.0 1.9 3 22

Translated
MTtrain 3.24 4.36 80 20 4.36 4.46 98 12

Translated Data + Localization
MTtrain + GPT4o 4.36 4.68 86 80 4.6 4.64 98 76
MTtest + Human 5.0 5.0 100 14 5.0 5.0 100 18

Table 1: Quality analysis of models on Sundanese and Javanese. Higher scores indicate better performance in each
category.

Dataset Sundanese Javanese
#data #vocab LW (%) ↓ MATTR ↑ #data #vocab LW (%) ↓ MATTR ↑

Human Written (HW) 594 4693 0 0.84 529 3497 0 0.80

LLM Generated Data
GPT-4o 1000 3444 0 0.82 1000 3073 0 0.80
Claude 1000 3898 0 0.80 1000 3104 0 0.79
Cohere 1000 2654 3 0.65 1000 2254 3 0.68
Llama3.1 1000 3126 0 0.69 1000 2836 2 0.69
Gemma2 1000 3758 5 0.72 1000 3334 4 0.71
Mixtral 1000 4584 16 0.71 1000 4215 13 0.67

Translated Data
MTtrain 1000 5272 0 0.83 1000 5007 1 0.81

Translated Data + Localization
MTtrain + GPT4o 1000 4985 1 0.82 1000 4692 1 0.81
MTtest + Human 500 3877 0 0.82 500 3620 3 0.81

Table 2: Lexical diversity analysis of different models on Sundanese and Javanese. “LW” denotes the percentage of
loanword.

3.2.1 Machine translation with human
verification (MTtest+Human)

As shown in Figure 2, we translate 500 randomly
selected samples from the IndoCloze test set into
Javanese and Sundanese using Google Translate.4

To ensure accuracy and naturalness of the machine-
translation, we employ two native speakers for each
language and implement a two-stage quality con-
trol process (Winata et al., 2023). In Stage 1, the
first worker manually corrects translation errors
and localizes content by replacing entities (e.g.,
names, buildings, food) with culturally relevant al-
ternatives.5 In Stage 2, a second worker validates
the revised text and directly corrects any remaining
errors from the first stage. From this point forward,
we refer to this data as MTtest+Human.

4Google Translate was accessed in September 2024
5Note that while we applied cultural localization, not all

examples could be fully adapted to Javanese or Sundanese
contexts, as some stories reflect general Indonesian cultural
elements that are not specific to either group.

3.2.2 Human-written Dataset (HW)

Each expert worker in Sundanese and Javanese is
tasked with writing 600 short stories following the
IndoCloze format: a four-sentence premise, a cor-
rect fifth sentence, and an incorrect fifth sentence.
Stories are written based on 12 predefined topics,
adhering to the same topic taxonomy used for train-
ing (see Section 3.2).See Appendix E for further
details on the writing guidelines.

To ensure quality, each expert worker reviewed
their peer’s written stories. The reviewing worker
was presented with a premise and two randomized
alternate endings from another worker’s story and
was asked to identify the correct one. Instances in-
correctly identified by the second worker were dis-
carded, as they likely contained incorrect endings
or exhibited ambiguity. After quality control, 529
Javanese and 595 Sundanese instances remained
from the original 600 per language. From this point
forward, we refer to this human-written dataset as
HW.
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4 Data Analysis

4.1 Overall Statistics

For LLM-assisted dataset creation, GPT-4o and
Claude demonstrated the highest efficiency, gen-
erating nearly 1,000 clean samples with minimal
discarded output, while Mixtral was the least effi-
cient, requiring significantly more samples to reach
the same threshold. The LLM-generated data does
not have a uniform topic distribution due to varia-
tions in broken samples.

In total, the LLM-generated datasets contain
72K sentences and approximately 557K words.
The word distribution across sentence positions
remains consistent across the six LLMs, with word
counts per position relatively uniform and a me-
dian sentence length ranging from 5 to 10 words.
MTtest+Human (both with and without localization)
and HW datasets exhibit a similar word distribution
pattern to the LLM-generated datasets. MT con-
tains around 6K sentences with 44,5K words, while
HW has 6,7K sentences with 58,2K words. Despite
the slight difference in word count, both datasets
maintain a consistent distribution, with a median
sentence length ranging from 4 to 11 words.

4.2 Quality Analysis based on Human
Evaluation

We evaluate the quality of all the constructed
dataset based on four key criteria: coherence, flu-
ency, correctness, and cultural relevance. Specif-
ically, we randomly select 50 samples (5–10% of
the total dataset) for both Sundanese and Javanese
and engage two native speakers for evaluation. Co-
herence and fluency are rated on a Likert scale
from 0 to 5, while correctness and cultural rele-
vance are assessed using binary annotation and
reported as percentages. More details on the an-
notation guideline can be found in Appendix D.
Table 1 summarizes the results of human evalua-
tion, with scores for coherence and fluency being
averaged between the annotators. Meanwhile, for
correctness and cultural relevance, we count the
percentage of data perceived as correct or cultur-
ally relevant by both annotators. Inter-annotator
agreement scores ranges from 0.4 to 0.7, as shown
in Appendix C.

We observe that among the evaluated LLMs,
both GPT-4o and Claude consistently demonstrate
strong performance across all metrics. Notably,
their cultural relevance scores are comparable to
those of human-written texts. Applying localiza-

tion to the machine-translated data using GPT-4o
(MTtrain+GPT-4o) improves coherence and cultural
relevance. Finally, while human post-editing en-
sures near-perfect scores in coherence, fluency, and
correctness, achieving full cultural localization re-
mains challenging, as not all content can be natu-
rally adapted without compromising narrative plau-
sibility.

4.3 Lexical Diversity

We analyze the lexical diversity of LLM-generated
data for Sundanese and Javanese using key met-
rics such as vocabulary size, moving-average type-
token ratio (MATTR) (Covington and McFall,
2010), and the proportion of loanwords. To mea-
sure loanword presence, we manually review the
top 100 most frequent words for each model.

As shown in Table 2, GPT-4o achieves a high
MATTR score, making it highly comparable to
human-written data. Among the LLM-generated
datasets, Mixtral has the largest vocabulary size
but also introduced the highest proportion of loan-
words, with 16% in Sundanese and 13% in Ja-
vanese, suggesting a significant reliance on non-
native terms. In contrast, GPT-4o and Claude gen-
erate text entirely in Sundanese and Javanese with-
out incorporating foreign words, highlighting their
ability to produce better datasets.

Upon manual inspection, we find that LLMs fre-
quently generate common Javanese names such
as Ayu, Dwi, Bayu, Eko, and Sari. For Sun-
danese, commonly produced names include Lia,
Budi, Dewi, and Rina. While these names are
widely used across Indonesia, the variation in hon-
orific terms is limited across all models, only Pak
and Bu, along with their formal variants Bapak
and Ibu, appear consistently. This suggests that, al-
though some models demonstrate surface-level lex-
ical diversity, deeper sociolinguistic features such
as honorific variation remain underrepresented.

5 Experiments and Analysis

5.1 Classification

5.1.1 Setup
We adopt the classification accuracy metric, as pro-
posed in both Mostafazadeh et al. (2016) and Koto
et al. (2022), defined as the ratio of correctly pre-
dicted instances to the total number of test cases.
For our experiments, we fine-tune several models:
Qwen 2.5 7B (Qwen et al., 2025), Llama 3.1
8B (Grattafiori et al., 2024), Gemma 2 9B (Rivière
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Model Javanese Sundanese
0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt 0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt

XLM-R NA 69.00 67.67 80.72 81.47 NA 75.42 50.34 75.93 72.73
Qwen 2.5 76.94 85.44 84.31 84.88 87.71 64.48 74.75 72.22 80.64 79.63
Llama 3.1 75.24 90.17 86.96 91.68 92.44 48.32 79.97 71.55 81.14 78.62
Gemma 2 85.07 93.95 95.46 95.46 95.27 51.52 86.20 89.23 87.88 85.02
SahabatAI Llama 77.13 95.46 94.14 97.16 97.73 34.51 87.88 87.21 91.25 92.42
SEA-LION Llama 69.19 96.60 94.71 93.76 95.27 25.93 88.55 83.67 82.15 77.44

Table 3: Accuracy of models on the human-written test set in Javanese and Sundanese across training sets.

Model Javanese Sundanese
0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt 0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt

XLM-R NA 69.40 70.20 66.80 62.60 NA 56.60 73.00 67.60 66.00
Qwen 2.5 68.00 80.00 75.00 75.80 75.80 63.60 78.80 74.20 76.60 77.60
Llama 3.1 47.60 86.00 70.40 77.40 73.40 48.60 83.40 74.00 75.00 76.00
Gemma 2 63.00 91.80 92.80 83.60 83.40 57.60 90.00 91.80 80.80 83.40
SahabatAI Llama 34.80 90.00 87.60 84.20 88.40 30.80 87.40 86.60 83.60 87.60
SEA-LION Llama 32.20 92.60 87.40 76.20 72.20 29.80 92.20 88.80 77.60 71.20

Table 4: Accuracy of models on the machine-translated test set in Javanese and Sundanese across training sets.

et al., 2024), SahabatAI Llama 8B (GoToCom-
pany, 2024), SEA-LION Llama 8B (Ng et al., 2025),
and XLM-R (Conneau et al., 2019). For LLMs, we
conduct instruction fine-tuning with a multiple-
choice question framework using a LoRA adapter
(Hu et al., 2022) on the combined Javanese and
Sundanese training set. Full training details are
provided in Appendix A. To ensure robustness, re-
sults are averaged over three runs. For comparison,
we also report the zero-shot performance of each
model prior to fine-tuning.

In addition to the zero-shot setting, we ex-
periment with the following training data varia-
tions: (i) MTtrain (machine-translated data), (ii)
MTtrain+GPT-4o (machine-translated data localized
using GPT-4o), (iii) All LLM (the full set of LLM-
generated samples), and (iv) LLM_Filt (a filtered
subset comprising the top 10% of All LLM based
on human evaluation). We evaluate each model
on two test sets: (i) a human-written set and (ii) a
machine-translated set.

5.1.2 Overall Performance
Table 3 and Table 4 present the classification ac-
curacies of all models trained on different training
sets, evaluated on the human-written and machine-
translated test sets, respectively. In the zero-shot
setting, model performance ranges from approxi-
mately 34% to 70% across both Javanese and Sun-
danese, underscoring the inherent challenges of cul-
tural commonsense reasoning in these languages.
Fine-tuning consistently improves model perfor-
mance over the zero-shot baseline, with LLMs
showing particularly strong gains. Notably, XLM-
R underperforms relative to the LLMs, suggesting
that large generative models are more effective at

capturing cultural nuances.
We observe that models trained on LLM-

generated data perform best when evaluated on
the human-written test set (Table 3), while those
trained on machine-translated data tend to perform
better on the machine-translated test set (Table 4),
indicating some sensitivity to data distribution
alignment. Interestingly, localizing the machine-
translated training data (MTtrain+GPT-4o) does not
consistently lead to improved model performance
compared to using the original machine-translated
data (MTtrain).

5.1.3 Performance Across Different Topics
Figure 3 presents the topic-wise performance of
SahabatAI on the human-written test set. The
chart shows that models fine-tuned on both MTtrain
and LLMFiltered consistently achieve higher accu-
racy across most categories compared to the zero-
shot baseline. Interestingly, the zero-shot setting
performs relatively well on the Art category. Fine-
tuning on LLMFiltered yields notable improvements
in culturally rich topics such as Wedding, Preg-
nancy, and Art, outperforming models trained on
MTtrain.

5.2 Generation
5.2.1 Setup
Using the same set of LLMs from the classification
experiments, we fine-tune the models to perform
story continuation: given a four-sentence premise,
the model is trained to generate a coherent fifth
sentence in either Javanese or Sundanese. We ap-
ply supervised fine-tuning using QLoRA (Dettmers
et al., 2023), with training details provided in Ap-
pendix A. To evaluate generation quality, we use
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Model Javanese Sundanese
0-shot MT MTTrain+GPT-4o All_LLM LLM_Filt 0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt

Qwen 2.5 72.5 / 21.8 71.7 / 19.2 72.0 / 19.5 72.4 / 21.7 71.9 / 19.5 69.2 / 15.4 70.3 / 15.6 70.3 / 16.5 70.5 / 16.7 69.2 / 14.6
Llama 3.1 62.4 / 8.3 72.7 / 21.5 72.4 / 21.1 72.7 / 22.9 72.7 / 22.2 59.4 / 5.6 70.0 / 16.1 70.3 / 16.23 70.6 / 17.9 68.9 / 15.5
Gemma 2 70.9 / 17.7 73.2 / 24.0 73.1 / 23.1 72.8 / 22.9 72.6 / 22.2 68.2 / 13.2 70.3 / 18.1 70.2 / 17.9 70.8 / 17.9 70.2 / 17.1
SahabatAI Llama 63.1 / 15.3 71.8 / 20.1 59.7 / 9.2 62.6 / 13.6 67.2 / 16.6 57.7 / 8.9 69.2 / 16.2 59.1 / 7.5 62.4 / 11.7 70.6 / 17.6
SEA-LION Llama 72.7 / 23.0 72.4 / 20.9 72.5 / 21.5 72.8 / 23.9 72.6 / 22.5 68.9 / 16.7 70.1 / 16.3 70.3 / 17.0 71.0 / 18.3 71.3 / 18.6

Table 5: BERTScore / ROUGE-L F1 of models on the human-written test set in Javanese and Sundanese across
training sets.

Model Javanese Sundanese
0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt 0-shot MTTrain MTTrain+GPT-4o All_LLM LLM_Filt

Qwen 2.5 70.5 / 15.6 70.7 / 18.3 71.0 / 18.1 71.6 / 18.8 70.6 / 15.4 69.9 / 14.0 70.9 / 17.8 70.9 / 18.1 71.3 / 16.7 70.2 / 13.7
Llama 3.1 59.7 / 4.4 72.1 / 21.4 72.0 / 20.7 71.8 / 20.4 71.3 / 18.8 59.3 / 4.2 71.4 / 19.2 71.2 / 18.6 71.3 / 17.7 68.8 / 15.7
Gemma 2 69.7 / 14.5 72.3 / 22.5 72.1 / 21.5 71.9 / 20.9 71.4 / 19.7 69.4 / 14.1 72.4 / 21.3 72.1 / 20.7 71.9 / 19.0 70.4 / 17.3
SahabatAI Llama 59.2 / 9.3 72.1 / 22.2 60.2 / 8.9 62.5 / 12.4 64.6 / 12.8 58.1 / 7.9 71.5 / 20.5 59.9 / 8.0 62.7 / 10.9 70.4 / 16.6
SEA-LION Llama 69.7 / 16.9 72.4 / 21.3 72.0 / 20.5 71.9 / 20.7 71.6 / 19.6 69.7 / 15.4 72.1 / 19.5 71.5 / 18.0 71.5 / 18.0 71.1 / 18.5

Table 6: BERTScore / ROUGE-L F1 of models on the machine-translated test set in Javanese and Sundanese across
training sets.

Language Model Coherence Fluency Correctness Cultural Rel.

Javanese
Gemma 2 4.92 4.94 76 92
SEA-LION Llama 4.98 4.98 84 92

Sundanese
Gemma 2 4.22 4.74 74 86
SEA-LION Llama 4.40 4.92 78 94

Table 7: Human evaluation results for Javanese and
Sundanese.

two automatic metrics: ROUGE-L (Lin, 2004) for
lexical overlap and BERTScore (Zhang et al., 2020)
for semantic similarity.

5.2.2 Overall Performance
Table 5 and Table 6 presents the automated evalua-
tion metrics for different training sets across Sun-
danese and Javanese on both human-written and
machine-translated test sets. Finetuning consis-
tently improves performance over the 0-shot. No-
tably, on the human-written data that contains more
cultural nuanced story, model fine-tuned with LLM-
generated data gives higher improvement compared
to others.

Among the models, SEA-LION Llama achieves
the highest score across most test, then followed
closely by Gemma 2. The LLM_Filt data often
matches or outperforms the All_LLM settings that
uses more samples. Similar to classification, in
human-written test set, LLM-generated-training
data tends to be better than in machine-translated
test set.

5.2.3 Human Evaluation
We conducted a human evaluation to compare mod-
els between SEA-LION Llama and Gemma 2 fine-
tuned on All LLM-generated data, the two models
that showed strong performance in both classifica-
tion and generation tasks (see Table 3, 4, 5, and 6).

Using the human-written test set, annotators were
presented with a story premise and the generated
ending sentence. They were asked to rate the out-
puts based on coherence, fluency, correctness, and
cultural relevance, following the same guidelines
as in the earlier manual evaluation. As shown in
Table 7, both models perform well in Javanese and
Sundanese, with SEA-LION Llama slightly outper-
forming Gemma 2 across most human evaluation
criteria. However, this advantage is less evident
when measured using automatic metrics.

6 Conclusion

We explored the potential and limitations of LLM-
generated data for commonsense reasoning and
story generation in Javanese and Sundanese, intro-
ducing the first cloze dataset for these languages
with high-quality test sets. Our preliminary analy-
sis in classification and generation settings shows
that GPT-4o and Claude-3 Opus demonstrate strong
capabilities in generating plausible short stories but
face challenges in fluency and cultural accuracy.
Despite these limitations, our findings suggest that
LLM-assisted data generation is a practical and
effective approach for constructing datasets in low-
resource languages.

7 Limitations

This study acknowledges several limitations in
terms of cultural nuance, language scope, and di-
alectal representation. While we carefully curated
data across 12 cultural topics, our focus was limited
to only two local languages—Javanese and Sun-
danese. Although these are the most widely spoken
regional languages in Indonesia, they do not cap-
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Figure 3: Topic-wise accuracy of SahabatAI (an
Indonesian-centric LLM) on the human-written test set
for Javanese and Sundanese, comparing zero-shot, and
fine-tuning on MTtrainfine-tuned, and LLMfiltered.

ture the full linguistic and cultural diversity present
in the world. Moreover, our predefined topics and
data sources may not comprehensively reflect the
rich variation of cultural practices, dialects, and
regional expressions within these languages.

Additionally, due to resource constraints and the
primary focus on exploring the potential of LLM-
generated data for commonsense reasoning and
story generation, this research explored a limited
range of LLM prompts and hyperparameter config-
urations. Future research could investigate a wider
language scope, prompt variation, and other set-
tings to identify configurations that maximize the
performance of LLMs in generating culturally nu-
anced common sense reasoning in Javanese and
Sundanese.

8 Ethical Considerations

All human-written datasets have been manually val-
idated to ensure that harmful or offensive questions
are not present in the dataset. We paid our ex-
pert workers fairly, based on the monthly minimum
wage in Indonesia6. All workers were informed
that their stories submitted would be used and dis-
tributed for research. Furthermore, no sensitive or
personal information about the workers would be
disclosed.
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A Training Configurations

For classification, we set the maximum token
length for the pre-trained language model to 450
for the premise and 50 for the ending sentence. The
model was trained over 20 epochs with early stop-
ping (patience set to 5), using a batch size of 40,
Adam optimizer, an initial learning rate of 5e-6 for
XLM-R, and a warm-up phase comprising 10% of
the total training steps.

For training the text generation models, we use
4-bit quantization with a LoRA rank of 64 and a
LoRA alpha of 128. The models are trained with
a batch size of 8, gradient accumulation of 8, a
learning rate of 2e-4, and for a single epoch. We
employ the Unsloth.ai framework for efficient
fine-tuning (Daniel Han and team, 2023).

For training the classifier for data filtering, we
fine-tune the XLM-R model with a maximum token
length of 1024 for the premise and 128 for the
ending sentence. The model was trained over 26
epochs, using a batch size of 16, Adam optimizer,

an initial learning rate of 1e-5 for XLM-R, and a
warm-up phase comprising 5% of the total training
steps.

Figure 4 shows the prompt template used for in-
context learning, guiding the LLM to generate new
Javanese and Sundanese.

B Distribution of Filtered
LLM-Generated Training Data

Initially, training data was generated using six dif-
ferent LLMs, with each model contributing approx-
imately 16.67% of the total 10K samples (around
2K samples per model). However, after filtering
the bad examples, the final dataset composition
shifted. The data consist of 1,220 samples, the
distribution is as follows: Claude (37.7%), GPT-
4o (29.0%), LLama (8.6%), Cohere (4.3%), and
Gemma-2 (1.7%).

Figure 4: Prompt template instructing LLM to generate
a new example for Javanese and Sundanese.

C Agreement Score

We measure the fluency and coherency agreement
scores using Pearson’s correlation and computed
the correctness and cultural relevance scores using
Cohen’s kappa. They are summarized in Table 8.

Metric Javanese Sundanese
Fluency 0.73 0.76
Coherency 0.77 0.71
Correctness 0.74 0.50
Cultural Relevance 0.75 0.49

Table 8: Agreement Scores for Javanese and Sundanese

D Workers Scoring Guidelines

• Fluency (0–5): Each sentence should be
grammatically correct and fluent.

– 5: All sentences are grammatically cor-
rect and fluent.

– 0: Sentences are grammatically incorrect
and lack fluency.
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• Coherency (0–5): The story should be coher-
ent, with all sentences logically connected.

– 5: Story is highly coherent, with clear
and logical flow between sentences.

– 0: Sentences are disconnected and lack
a logical sequence.

• Correctness (Binary): The correct story clo-
sure should be valid, while the incorrect clo-
sure should clearly be wrong.

– 1: The correct ending is indeed correct,
and the incorrect ending is clearly wrong.

– 0: Either the correct ending is not valid,
or the incorrect ending is not clearly
wrong.

• Cultural Relevance (Binary): The story
should reflect appropriate cultural norms, val-
ues, or symbols relevant to the language.

– 1: The story contains relevant cultural
norms, values, symbols for the corre-
sponding language.

– 0: The story lacks cultural relevance or
includes irrelevant cultural aspects.

Scoring Guidelines:

• Coherency: Ranges from 0 to 5, where 5
means each sentence is strongly connected
and flows well with the previous and next sen-
tence.

• Fluency: Ranges from 0 to 5, where 5 indi-
cates all sentences are grammatically sound
and highly fluent.

• Correctness: A binary score of 0 or 1 to en-
sure that the correct ending is truly valid and
the incorrect ending is clearly wrong.

• Cultural Relevance: A binary score of 0 or 1
to ensure the whole story contains appropriate
and relevant cultural symbols and norms for
the language being used.

E Topic and Story-Writing Guidelines

We create a total of 300 native-authored stories as
part of the Javanese and Sundanese Cloze Project.
These stories are evenly distributed across 12 pre-
defined topic categories, with 25 stories per topic.
Each story must reflect traditional Javanese and
Sundanese values and customs, with attention to

detail and coherence in the narrative. The topic
categories and their subcategories follows IndoCul-
ture (Koto et al., 2024). Each story must consist
of 4 sentences and two endings: one correct and
one incorrect. Ensure that all stories adhere to the
topics and categories outlined in the taxonomy and
reflect traditional values and cultural relevance.

F Machine Translation Evaluation

Javanese Sundanese
Google Translate 0.11 / 0.41 / 45.2 0.09 / 0.35 / 42.8
NLLB-200-3.3B 0.18 / 0.30 / 53.1 0.12 / 0.33 / 43.8

Table 9: BLEU F1 / METEOR / ChrF comparison of
Google Translate and NLLB Dense Transformers Trans-
lation Model (Costa-Jussà et al., 2022) for Indonesian
to Javanese / Sundanese translation on NusaX dataset
(Winata et al., 2023)
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Abstract

With the release of new large language mod-
els (LLMs) like Llama and Mistral, zero-shot
cross-lingual transfer has become increasingly
feasible due to their multilingual pretraining
and strong generalization capabilities. How-
ever, adapting these decoder-only LLMs to new
tasks across languages remains challenging.
While parameter-efficient fine-tuning (PeFT)
techniques like Low-Rank Adaptation (LoRA)
are widely used, prefix-based techniques such
as soft prompt tuning, prefix tuning, and Llama
Adapter are less explored, especially for zero-
shot transfer in decoder-only models. We
present a comprehensive study of three prefix-
based methods for zero-shot cross-lingual trans-
fer from English to 35+ high- and low-resource
languages. Our analysis further explores trans-
fer across linguistic families and scripts, as well
as the impact of scaling model sizes from 1B to
24B. With Llama 3.1 8B, prefix methods out-
perform LoRA-baselines by up to 6% on the
Belebele benchmark. Similar improvements
were observed with Mistral v0.3 7B as well.
Despite using only 1.23M learning parameters
with prefix tuning, we achieve consistent im-
provements across diverse benchmarks. These
findings highlight the potential of prefix-based
techniques as an effective and scalable alter-
native to LoRA, particularly in low-resource
multilingual settings.

1 Introduction

Large language models (LLMs) exhibit strong mul-
tilingual and zero-shot generalization abilities due
to exposure to diverse pretraining data. Nonethe-
less, cross-lingual transfer remains challenging
given the linguistic diversity and complexity of
adapting large models efficiently without signifi-
cant computational overhead.

To address the high computational and mem-
ory costs of full model finetuning, recent ad-
vances in parameter-efficient finetuning (PeFT)

techniques focus on updating only a small sub-
set of model parameters while keeping the ma-
jority of the pretrained weights frozen. This de-
sign significantly reduces the adaptation cost and
makes large-scale models more practical for multi-
lingual and domain-specific applications. Methods
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2022) and instruction-tuned adapters have shown
promising results in efficiently tailoring models to
new tasks without requiring extensive resources.
Among the various PeFT techniques, prefix-based
approaches like soft prompting (Lester et al., 2021;
Liu et al., 2024a) and prefix tuning (Li and Liang,
2021) are particularly compelling because they in-
troduce learnable components either at the input or
within the transformer stack, enabling flexible task
adaptation without altering the underlying architec-
ture of the model.

While these prefix-based techniques have been
shown to be effective in monolingual scenarios and
task-specific settings, their potential in facilitating
zero-shot cross-lingual transfer is under-explored.
This is especially relevant for decoder-only LLMs,
which are increasingly being deployed in multilin-
gual environments. Unlike encoder-decoder mod-
els that have been more thoroughly studied for
transfer across languages, decoder-only models
present unique challenges due to their reliance on
autoregressive decoding. Understanding whether
prefix-based PeFT methods can enhance zero-shot
cross-lingual performance in such models has not
been previously studied in detail.

In this work, we provide the first systematic
study of prefix-based PeFT methods for zero-shot
cross-lingual transfer in decoder-only LLMs. Our
contributions can be summarized as follows:

• We evaluate prefix-based adaptation on mod-
els ranging from 1B parameters to large-scale
24B models to show the effectiveness of prefix
tuning in multilingual transfer across models

385



of varying sizes.

• Our study spans four well-recognized multilin-
gual benchmarks – XQUAD, XNLI, Belebele
and MGSM – to compare the performance of
LoRA and prefix-based tuning.

• We provide a detailed comparison of prefix-
based methods (soft prompts, prefix tun-
ing, LLaMA-Adapter) against LoRA and full
fine-tuning1, systematically analyzing their
strengths and limitations across tasks and 35+
high- and low-resource languages. Addition-
ally, we investigate transfer patterns across
linguistic families and scripts.

Together, our findings position prefix-based
adaptation as a lightweight yet powerful strategy
for cross-lingual and reasoning-oriented applica-
tions, particularly in resource-constrained multilin-
gual settings.

2 Related Work

Cross-lingual transfer is a key challenge in mul-
tilingual NLP. It is traditionally tackled through
full fine-tuning of multilingual models. However,
with large decoder-only LLMs like Llama and Mis-
tral, full fine-tuning is costly, leading to PeFT ap-
proaches. LoRA (Hu et al., 2022) introduces low-
rank trainable matrices into frozen weights to re-
duce training overhead. Alternatively, prefix-based
methods either add learnable tokens at the input
layer (Lester et al., 2021; Liu et al., 2024a) or to at-
tention keys and values at each layer (Li and Liang,
2021), enabling efficient task adaptation.

Soft prompt tuning has been extensively studied
for cross-lingual transfer in encoder and encoder-
decoder models, particularly in classification tasks.
For instance, (Philippy et al., 2024) demonstrated
that soft prompts can generalize better across lan-
guages with fewer parameters, following the “less
is more" principle. Similarly, (Philippy et al., 2025)
utilized multilingual verbalizers and contrastive
label smoothing to further enhance cross-lingual
classification. Recent work such as (Vykopal et al.,
2025) introduced language-specific soft prompts
specifically designed for transfer learning, show-
ing that combining language-specific and task-
specific prompts improves generalization. How-
ever, these prior works predominantly used multi-

1Due to computational limitations, full fine-tuning is re-
stricted to the SQuAD dataset on Llama 3.1 8B.

lingual encoder-only and encoder-decoder models,
and appended prefix tokens only to the input.

As soft prompts have several limitations in effec-
tively adapting models to new tasks, prefix tuning
emerged as a promising approach. Cross-lingual
alignment through prompt-based pretraining, as
proposed by (Tu et al., 2024), further improved in-
tent classification and slot-filling performance but it
is not a zero-shot setting (as in our work). A recent
variant of prefix tuning is LLaMA Adapter (Dubey
et al., 2024) that introduced zero-initialized atten-
tion mechanisms for efficient prefix training and
achieved strong instruction-following capabilities;
however, they did not evaluate on any multilingual
benchmarks. A related line of work has focused on
extending prefix tuning to instance-specific adapta-
tion based on the input prompt for improved model
performance (Liu et al., 2024c; Jiang et al., 2022;
Liu et al., 2024b; Zhu et al., 2024).

Few comparative studies have examined
parameter-efficient tuning for multilingual settings,
and most have been restricted to encoder-only
models or small decoder-only models with only
a few million parameters. For instance, (Zhao
and Schütze, 2021) systematically compared dis-
crete prompting, soft prompting, and fine-tuning
on the few-shot multilingual NLI task using XLM-
RoBERTa-base. Similarly, (Tu et al., 2022) com-
pared prompt tuning with fine-tuning across di-
verse NLU tasks on XLM-R and mBERT. (Tu et al.,
2022) evaluate prefix tuning on the encoder-only
XLM-R model and showed its effectiveness over
full fine-tuning in zero-shot cross-lingual transfer.
Tu et al. (2022) investigated a decoder-based mul-
tilingual model (XGLM), but their analysis was
limited to a single small model. They showed that
prompt tuning can sometimes surpass fine-tuning,
particularly for low-resource languages, although
performance remained highly sensitive to the under-
lying tokenization scheme. Our work significantly
extends their analysis to large decoder-only LLMs
and presents a comprehensive comparison of mul-
tiple prefix-based methods, including soft prompts,
prefix tuning, and LLaMA Adapter.

3 Methodology

Low-Rank Adaptation (LoRA). LoRA (Hu
et al., 2022) is a parametric fine-tuning technique
that has become one of the most popular ap-
proaches to enable cross-lingual transfer in LLMs.
It introduces trainable low-rank matrices, typically
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Figure 1: Schematic representation of: (A) LoRA fine-tuning and prefix-based methods, (B) Llama Adapter, (C)
Prefix tuning, and (D) Soft prompt tuning.

in the query, key, and value projections, while keep-
ing the base model frozen. These learned matrices
are added to the original weights during inference.
Unlike prefix-based methods, LoRA directly modi-
fies the model parameters. A standard cross-lingual
transfer setup involves fine-tuning the model using
LoRA on task-specific English data and evaluat-
ing it on the target language of interest. Formally,
let W ∈ Rd×k be a pretrained weight matrix of a
projection layer (e.g., Wq,Wk,Wv). Instead of up-
dating W directly, LoRA parameterizes the weight
update as a product of two low-rank matrices:

∆W = BA, A ∈ Rr×k, B ∈ Rd×r, (1)

where r ≪ min(d, k) is the rank of the adaptation.
The modified projection becomes:

W ′ =W +∆W =W +BA. (2)

Given an input hidden state h ∈ Rk, the output
of the adapted projection layer is computed as:

y =W ′h =Wh+BAh. (3)

Here, only A and B are trainable, while W re-
mains frozen. This formulation enables efficient
fine-tuning by reducing the number of trainable
parameters and allowing task-specific adaptation
without updating the full weight matrices.

Prefix Tuning. Given an LLM, prefix tuning (Li
and Liang, 2021) introduces a set of learnable pre-
fix tokens to all layers of the transformer. In our
implementation, we only append the learnable pre-
fixes to the final L layers of the transformer. The

main intuition is that these prefix tokens act as addi-
tional context vectors that the model can attend to.
These vectors guide the model toward task-specific
behavior, while the pretrained parameters of the
LLM remain frozen.

Formally, let Pl ∈ RK×d denote the learnable
prefix tokens at layer l, where K is the number of
prefix tokens and d is the embedding dimension.
We consider the computation for the (M +1)-th to-
ken, denoted by tl ∈ R1×d.The layer’s input hidden
states (including the current token) are represented
as Hl ∈ R(M+1)×d. Each attention head operates
on these hidden states using projection matrices
Wq,Wk,Wv ∈ Rd×d.

The query vector corresponding to the current
token tl is computed using the frozen projection
matrix Wq:

Ql = tlWq ∈ R1×d

The keys and values corresponding to the input
sequence (Hl) are also computed using the frozen
projection matrices Wk and Wv:

KH
l = HlWk, V H

l = HlWv

The key idea of prefix tuning is the concatenation
of the learnable prefix parameters with keys and
values derived from the input.

PK
l = PlWk, P V

l = PlWv

PK
l ∈ RK×d and P V

l ∈ RK×d denote the learn-
able prefix keys and values of layer l, respectively.
The final keys and values at layer l become:

Kl = [PK
l ;KH

l ], Vl = [P V
l ;V H

l ]
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Method en hi el vi sw bg th ar de es fr ru tr zh ur Avg

Base Model 53.8 48.0 51.0 49.7 45.9 52.0 48.0 48.6 50.4 51.8 49.6 50.8 50.0 50.1 48.7 49.9
LoRA4 90.3 70.1 74.5 77.5 60.2 73.0 72.4 71.5 77.8 79.2 80.2 73.6 73.2 77.9 65.0 74.4
Soft Prompts 84.3 67.9 54.2 72.7 51.4 51.4 66.1 63.2 52.3 57.2 59.0 59.4 58.4 41.4 62.6 60.1
Llama Adapter 93.4 74.5 79.8 79.2 59.6 78.4 76.0 76.5 83.8 83.7 84.6 79.6 75.9 81.2 71.8 78.5
Prefix Tuning 93.9 76.5 79.4 79.1 60.3 79.4 76.2 75.7 83.5 84.4 85.0 79.9 75.5 79.9 71.7 78.7

Table 1: LLaMA 3.1 8B performance (accuracy) on XNLI benchmark comparing LoRA and prefix based adaption
methods.The best performance for each language is shown in bold, and the second-best is underlined.

Method en hi el vi ar de es ro ru th tr zh Avg

Base Model 79.3 59.3 60.5 71.2 59.4 68.5 67.6 68.5 60.3 63.2 62.5 59.5 65.0
LoRA4 86.2 66.1 72.0 75.3 68.9 76.4 78.0 78.0 72.0 75.8 69.1 71.7 74.1
Soft Prompts 54.5 10.8 27.9 45.5 25.8 42.2 52.0 48.2 32.2 11.2 36.8 16.1 33.6
Llama Adapter 89.4 75.1 76.9 79.8 72.1 82.4 83.2 82.6 78.4 71.6 73.3 72.3 78.1
Prefix Tuning 90.2 75.7 78.4 79.3 70.4 82.8 84.2 83.5 76.9 70.9 72.6 72.5 78.1

Table 2: Llama 3.1 8B performance (F1 score) on XQUAD benchmark comparing LoRA and prefix based adaption
methods. The best performance for each language is shown in bold, and the second-best is underlined.

Kl and Vl are expanded matrices encompassing
both the learned prefixes and the input sequence.

The attention scores are obtained by comparing
the query Ql against the concatenated keys Kl:

Sl =
QlK

T
l√
d

∈ R1×(K+M+1). (4)

The attention distribution is computed by applying
the softmax function, which weights the contribu-
tions of both the prefix and the input tokens:

Al = softmax(Sl) =
[
AP

l , A
H
l

]
∈ R1×(K+M+1),

where AP
l represents the attention weights over

the learned prefixes and AH
l represents the weights

over the input sequence.
Finally, as is typically done in transformer mod-

els, the attended output representation at layer l is
computed as a weighted sum of the concatenated
values Vl, followed by an output projection:

tol = (AlVl)Wo ∈ R1×d, (5)

where Wo is the output projection matrix. In this
way, prefix tuning directly modifies the attention
mechanism by injecting learned keys and values
(PK

l , P
V
l ), steering the model’s representations

without modifying the base model weights.

Llama Adapter. The Llama Adapter (Zhang
et al., 2024) builds upon the principles of prefix
tuning but introduces an important modification to
stabilize training in large-scale LLMs. Specifically,
it replaces the standard attention mechanism with a
zero-initialized variant. This mitigates instabilities
that often arise from randomly initialized prefix

tokens in the early stages of fine-tuning. To further
enhance stability, a learnable gating mechanism is
introduced, allowing the model to gradually scale
the influence of prefix tokens during optimization.
The gated attention scores are given by:

Ag
l =

[
softmax(SK

l ) · tanh(gl), softmax(SM+1
l )

]

(6)
where the attention scores can be split into con-
tributions from the learnable prefix SK

l and the
original sequence SM+1

l . gl is a learnable scalar
gating that adaptively controls the contribution of
the prefix tokens. Finally, the output representation
tol is obtained using the same formulation in Equa-
tion 5. By weighting the prefix contributions using
a learned gate, Llama Adapter ensures stable and
effective adaptation of decoder-only LLMs.

Soft Prompts. Soft prompts (Lester et al., 2021;
Liu et al., 2024a) involve prepending learnable con-
tinuous embeddings to the input, serving a similar
goal as manual prompts. However, instead of man-
ually selecting discrete prompts, soft prompting op-
timizes a continuous set of embeddings that serve
as the prompt. This allows the model to learn how
to best steer its behavior through gradient-based
updates to the soft prompts.

Let S ∈ RK×d represent the learnable soft
prompt embeddings, where K denotes the number
of prompt tokens and d is the hidden dimension.
Given an input sequence T , the modified input T̃
is obtained by prepending the soft prompts:

T̃ = [S;T ] (7)

where [; ] denotes concatenation. The sequence T̃
is then passed through the transformer as usual,
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Method en th zh sw fr bn de te ja es ru Avg

Base Model 50.4 23.2 27.6 13.2 28 16.4 26 12.4 16.8 34.8 30 25.34
LoRA4 36.8 16.8 27.6 7.6 25.2 4.8 22.8 0.8 19.2 24 27.2 19.34
Llama Adapter 53.6 18.4 32.4 8 32.8 9.6 33.6 2 25.2 35.6 32 25.74
Prefix Tuning 52.8 26 37.6 10.8 34 12.8 41.2 6.4 25.6 37.6 39.2 29.45

Table 3: Llama 3.1 8B performance (maj@1) on MGSM benchmark comparing LoRA and prefix based adaption
methods. The best performance for each language is shown in bold, and the second-best is underlined.

with S updated via gradient-based optimization
during fine-tuning. Unlike prefix tuning, which
injects key-value pairs at every transformer layer,
soft prompting only modifies the input embeddings.

4 Experiments

Models. All experiments are conducted on Llama
3.1 (8B) (Dubey et al., 2024) and Mistral v0.3 (7B)
(Jiang et al., 2023).To study the effect of model
scaling, we additionally evaluate smaller and larger
variants - Llama 3.2 (1B) and Mistral Small (24B),
respectively. The Llama 3.1 and 3.2 series, de-
veloped by Meta, comprise multilingual large lan-
guage models. Mistral v0.3 (7B) is an updated re-
lease from Mistral AI with an extended vocabulary
compared to Mistral v0.1. Notably, Mistral Small
(24B) establishes a new benchmark in the “small"
LLM category (under 70B) by offering improved
multilingual capabilities and a larger vocabulary.
We have limited our experiment to the base model
variants only.

Datasets. We evaluate on three widely-used
cross-lingual benchmarks, each targeting a dis-
tinct aspect of language understanding: XQUAD
(Artetxe et al., 2019) for cross-lingual question
answering, XNLI (Conneau et al., 2018) for cross-
lingual natural language inference, and Belebele
(Bandarkar et al., 2024) for cross-lingual machine
reading comprehension. We also evaluate on the
MGSM (Shi et al., 2023) benchmark to assess the
reasoning capabilities of large language models in
multilingual settings.

Training Details We fine-tune prefix-based adap-
tation methods and LoRA with rank 4 using the
English SQuAD training set for XQUAD contain-
ing 87.6K samples and a subset of the English NLI
training data containing 100K samples for XNLI
evaluations. For Belebele, we use their suggested
training set containing 67.5K English samples. Fi-
nally, we use the GSM8K English training dataset
with 7.47K samples (Cobbe et al., 2021) and evalu-

ate on MGSM. All the datasets are publicly avail-
able; more training details are in Appendix A.

We experimented with learning rates (3e-3, 1e-
3 and 3e-4), epochs (2,3,5), and weight decay
(0.02,0.04,0.1), and report the best performance
for each model. We used a learning rate of 3e-3,
2 epochs, and a weight decay of 0.02. For XNLI,
we sampled 1,000 instances per language for eval-
uation due to computational constraints. Since
XQUAD does not provide a separate test set, we
evaluated on the full validation set, which includes
approximately 1.19K samples per language. Fi-
nally for Belebele, we evaluated on 23 languages,
where each language has 900 samples. All experi-
ments were conducted on a single NVIDIA A100
80GB GPU.

5 Analysis and Ablations

Comparison with LoRA Fine-Tuning. Tables
1 and 2 (and Tables 14 and 15 in the Appendix)
shows the performance of Llama 3.1 and Mistral
v0.3 models across various tuning strategies, in-
cluding LoRA, soft prompt tuning, prefix tuning,
and Llama adapters on the XNLI and XQUAD
datasets. To ensure fair comparisons, the num-
ber of trainable parameters in LoRA was matched
with those of the prompt-based methods by setting
r = 4 and α = 8. The results show that prefix-
based methods consistently outperform LoRA on
both LLama 3.1 8B and Mistral v0.3 7B with En-
glish as the source language. This highlights the
ability of prefix-based tuning for effective multilin-
gual adaptation, even with as little as 1.23M model
parameters being trained.

We observe consistent improvements from pre-
fix tuning across all benchmarks. Using Llama 3.1
(8B), prefix tuning achieves up to 28% higher ac-
curacy on XNLI, 13% higher F1 on XQUAD, and
18% higher accuracy on Belebele compared to the
base model. Moreover, it provides additional gains
of up to 4–6% over LoRA, as shown in Tables 1, 2,
4a, and 4b. Similar trends are observed for Mistral,
with consistent improvements reported in Tables,
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Table 4: Overall Llama 3.1 8B performance (accuracy) on the Belebele benchmark, grouped by script and family.
Best performance is in bold, second-best is underlined.

Script Language Base LoRA4 Soft Llama Prefix
Model Prompt Adapter tuning

Cyrillic
Kyrgyz 37.2 52.9 59.3 60.5 64.2
Russian 50.4 81.0 86.1 87.7 88.1
Serbian 48.7 71.7 81.1 81.9 81.5

Burmese
Burmese 30.9 36.2 43.3 45.1 48.4
Shan 31.1 28.0 30.0 29.0 33.0

Latin
Swati 30.2 34.3 33.4 34.3 34.5
Sundanese 35.3 47.1 52.3 56.4 57.8
Bambara 28.4 34.3 33.1 32.2 32.2

Arabic
Sindhi 36.9 46.4 51.1 53.3 55.8
Egyptian Arabic 40.1 57.6 65.2 68.4 68.7
Western Persian 47.5 72.9 79.6 81.4 82.2

Ethiopic
Amharic 30.5 34.7 37 34.9 37.8
Tigrinya 24 29.2 29.7 28.1 29.8

(a) Grouped by language script.

Family Language Base LoRA4 Soft Llama Prefix
Model Prompting Adapter tuning

Turkic
Kazakh 38 53.8 61.8 63.9 64.2
Kyrgyz 37.2 52.9 59.3 60.5 64.2
North Azerbaijani 39.9 58.4 65.4 68.3 68.5

Dravidian
Kannada 35.2 46.0 59.3 59.5 61.1
Malayalam 35.5 49.3 56.9 60.0 63.9
Tamil 36.9 52.3 60.1 60.8 65.3

Afro-Asiatic
Amharic 30.5 34.7 37.0 34.9 37.8
Tigrinya 24 29.2 29.7 28.1 29.8
Tsonga 32.7 36.3 37.3 36.1 39

Indo-Aryan
Sindhi 36.9 46.4 51.1 53.3 55.9
Odia 33.1 38.2 54.7 55.3 59.1
Sinhala 34.2 47.8 54.8 53.8 60.8

Balto-Slavic
Russian 50.4 81.0 86.1 87.7 88.1
Serbian 48.7 71.7 81.1 81.9 81.5
Slovak 46.5 73.8 80.6 83.5 84.3

(b) Grouped by language family.

16 and 17 in Appendix D.

Effectiveness of prefix-based methods across
high and low-resource languages. We further
evaluate the effectiveness of prefix-based meth-
ods on languages categorised as high and low re-
source. Since XNLI and XQUAD benchmarks
primarily span high-resource languages, we rely on
the Belebele benchmark to assess performance on
low-resource languages. We select 23 languages
for our analysis, of which 19 are considered low-
resource and 4 high-resource, as per the FLORES

dataset classification. Across both the Mistral and
Llama architectures, prefix-based adaptation meth-
ods yield significant performance gains while re-
quiring only 1.23M parameters to be tuned. Among
low-resource languages, absolute improvements
range from a minimum of 2% for Shan to a maxi-
mum of 37% for Western Persian using Llama 3.1
8B.

Prefix tuning and LLaMA adapters typically
yield better cross-lingual transfer than soft prompts,
likely due to more tunable parameters. However, in
low-resource scenarios like those in the Belebele
benchmark, soft prompting performs comparably
or better as shown in Tables 4 and Tables 16, 17 in
Appendix D. This is likely due to their lightweight
design that helps preserve pretrained multilingual
knowledge. Overall, prefix based methods appear
to leverage inherent language knowledge better
than LoRA.

Influence of script and language family. From
Tables 4a and 4b, we observe that while both
script-wise and family-wise groupings reveal per-
formance gains with prefix-based methods, lan-
guage family appears to be a reliable indicator of

Method Params Acc.

Full Fine-tuning ∼ 8B 37.74
LoRA4 75.50M 75.99

Llama Adapter 1.23M 78.09
Prefix tuning 1.23M 78.11

Table 5: Comparison of full fine-tuning and parameter-
efficient methods on the XQUAD dataset using LLama 3.1 8B,
reported in terms of average F1 score across all languages.

adaptation success. Languages within the same
family tend to benefit similarly. Script-based trends
show more variability, likely influenced by resource
availability and linguistic diversity within a script
group. The languages in our analysis span a diverse
range of families such as Turkic, Dravidian, Afro-
Asiatic, Balto-Slavic, and Indo-Aryan. The scripts
span Cyrillic, Burmese, Arabic, Ethiopic, and Latin.
Many of these languages are typologically and mor-
phologically distant from our source language En-
glish. Prefix-based methods show strong cross-
lingual performance even across distant languages,
suggesting that typological similarity to English
is not essential for effective adaptation. Similar
trends are observed with Mistral as well, as shown
in Table 16 and 17 in Appendix D.

Prefix-based adaptation vs. full fine-tuning.
Table 5 presents a comparison of LoRA, prefix-
based methods, and full fine-tuning. Detailed
language-wise results are provided in Table 11 in
Appendix D. We observe that while full fine-tuning
leads to improvements in English, it negatively im-
pacts the performance of target languages when
applied to decoder-only models such as Llama-3.1
8B. Due to computational constraints, we were un-
able to extensively tune hyperparameters to achieve
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Method LLaMA Mistral LLaMA Mistral
3.2 1B v0.3 7B 3.1 8B 24B

Base Model 27.51 56.1 65.0 72.57
LoRA4 56.80 59.12 74.1 70.19
Llama Adapter 64.26 65.1 78.1 79.70
Prefix Tuning 64.46 67.2 78.1 79.94

Table 6: Average Performance across all languages on
XQUAD (F1 score) benchmark across all models compar-
ing LoRA and prefix based adaption methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.

the best possible results. Overall, our findings indi-
cate that LoRA and prefix-based methods are more
effective and efficient choices for zero-shot cross-
lingual transfer compared to full fine-tuning. We
hypothesize that this could primarily be due to full-
finetuning (on English data) leading to catastrophic
forgetting in other languages.

Effect of model size on prefix-based adaptation
vs. LoRA. In Figures 2b and 2a, we compare
the performance of prefix-based methods against
LoRA on XQUAD for Spanish and Hindi across
different model sizes. We observe that both pre-
fix tuning and LLaMA Adapter consistently out-
perform LoRA across all model size variations in
both languages. Table 6 shows that prefix-based
adaptations scale more effectively with model size,
maintaining their advantage even as the underlying
model grows larger. In particular, prefix tuning
yields consistent improvements, thus highlighting
the robustness of prefix-based approaches for mul-
tilingual transfer.

Effectiveness of prefix-based methods on
MGSM. Table 3 presents results on the MGSM
benchmark with Llama-3.1 8B. LLaMA Adapter
and prefix tuning consistently outperform LoRA,
with prefix tuning achieving the best average score
(+4% over the base model). However, perfor-
mance degraded for very low-resource languages
like Swahili, Telugu, and Bengali. This suggests
that while effective, prefix-tuning may not transfer
well for complex reasoning and generation tasks
without some language-specific data.

Varying temperature/top-p during prefix-tuning.
For XQUAD, we have calculated both EM (Exact
match) and F1 score. From figure 3, we find that
while higher temperatures and top-p values can im-
prove F1 scores on XQUAD, they often lead to
a noticeable drop in EM. This highlights a trade-
off between generating more diverse predictions

LLaMA 3.2 1B

Mistral v0.3 7B
LLaMA 3.1 8B

Mistral Small 24B
0
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80
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(a) Comparison for Spanish.

LLaMA 3.2 1B
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LLaMA 3.1 8B
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20
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Base (hi) LoRA (hi) LLaMA-Adapter (hi) Prefix Tuning (hi)

(b) Comparison for Hindi.

Figure 2: Comparison of prefix-based methods across model
sizes against LoRA fine-tuning on XQUAD (F1 score).

Method Params XNLI Acc. XQUAD F1 Score

LoRA4 2.36M 74.4 74.1
LoRA128 75.50M 76.7 76.0

Llama Adapter 1.23M 78.5 78.1
Prefix tuning 1.23M 78.7 78.1

Table 7: Higher Lora rank vs prefix based methods perfor-
mance on XNLI and XQUAD for Llama 3.1 8B

(captured by F1) and producing exact matches (cap-
tured by EM). The best overall trade-off is obtained
at our chosen setting of temperature=0.1 and top-
p=0.75.

Performance comparison of LoRA4, LoRAr128

with prefix tuning and Llama Adapters. Ta-
ble 7 provides a comparative analysis of LoRA fine-
tuning under two rank configurations, r = 4 and
r = 128, against prefix tuning and Llama adapters.
While increasing the LoRA rank from 4 to 128
substantially increases the number of trainable
parameters, the resulting performance improve-
ments are relatively modest. More importantly,
our results show that parameter-efficient prefix-
based approaches namely prefix tuning and Llama
adapters consistently outperform LoRA, even at
higher ranks. This trend is evident in both the
XNLI and XQUAD benchmarks, emphasizing the

391



F1 EM0

10

20

30

40

50

60
Sc

or
e

Temp 0.1
Temp 1

F1 EM0

10

20

30

40

50

60

Sc
or

e

Top p 0.75
Top p 0.9

Figure 3: Varying temperature (left) and top-p (right) values
using Llama 3.2 (1B) on the XQUAD task.

effectiveness of prefix-based adaptation for cross-
lingual transfer. These findings suggest that simply
scaling LoRA with larger ranks does not necessar-
ily close the performance gap with prefix-based
methods, and the latter remains a more efficient
choice for multilingual scenarios.

Impact of hyperparameter tuning on prefix-
based adaptation. Prefix-based approaches are
governed by two critical hyperparameters: the pre-
fix length and the number of transformer layers
in which the prefixes are inserted. In soft prompt
tuning, the adaptation is constrained to the input
layer, whereas in prefix tuning, prefixes can be in-
jected across multiple layers of the model. To better
understand the effect of these design choices, we
systematically varied both hyperparameters. Our
experiments reveal that adapting 30 out of 32 lay-
ers with a prefix length of 10 tokens provides the
strongest gains across benchmarks, as summarized
in Tables 8 and 9. These results highlight the sensi-
tivity of prefix-based methods to hyperparameter
configurations, and emphasize the importance of
carefully selecting the number of adapted layers
and prefix length to maximize performance.(For
results on other models, refer to Appendix C.)

6 Conclusion

We show that prefix-based adaptation methods are a
practical and efficient mechanism for cross-lingual
transfer in decoder-only LLMs. Methods like soft
prompting, prefix-tuning, and Llama adapters in-
troduce learnable prefixes at different layers, while
using relatively small numbers of trainable param-
eters. This leads to highly efficient, task-specific
cross-lingual learning.

Crucially, this performance was achieved using
only English training data. We hypothesize this
success stems from learning language-agnostic be-
haviors. By adding context vectors while keeping
the base model frozen, these methods preserve the

Layers Params Acc.

20 0.82M 74.5
30 1.23M 78.7
32 1.31M 78.0

Table 8: XNLI perfor-
mance accuracy by varying
number of Llama 3.1 8B
layers in which prefixes are
inserted.

Tokens Params Acc.

5 0.61M 77.8
10 1.23M 78.7
20 2.46M 76.0

Table 9: XNLI perfor-
mance accuracy by varying
number of prefix tokens in
30 Llama 3.1 8B layers.

LLM’s inherent multilingual capabilities. In con-
trast, methods that alter full model weights (e.g.,
full fine-tuning and LoRA) suffer from catastrophic
forgetting when adapted monolingually, degrading
performance in unseen languages. These findings
advocate for prefix-based adaptation as a robust
strategy for zero-shot cross-lingual transfer.

Limitations

Our study shows that prefix-based methods yield
strong zero-shot cross-lingual performance, but it
has several limitations. First, due to computational
constraints, our experiments were limited to 24B
models; extending to larger models is a promising
direction for future work. Second, our evaluations
used only English as the source language. Ana-
lyzing other source languages could offer deeper
insights into the methods’ cross-lingual capabili-
ties. Finally, due to computational constraints, we
were unable to perform an extensive hyperparam-
eter search for full fine-tuning. We would like to
emphasize this limitation more explicitly and clar-
ify that our intention is not to claim full fine-tuning
is inherently weaker, but rather to highlight that
parameter-efficient methods provide strong alterna-
tives under realistic computational constraints. In
future work, we plan to explore improving response
generation for low-resource languages as seen in
the MGSM benchmark and also explore more di-
verse response generation tasks (e.g. summariza-
tion and translation). We also plan to investigate
why prefix-tuning is effective through attention vi-
sualization and representation probing.

Acknowledgments

We are grateful to the anonymous reviewers for
their insightful feedback. The last author gratefully
acknowledges the generous support provided by the
joint AI/ML initiative of Amazon and the Indian
Institute of Technology Bombay.

392



References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2019. On the cross-lingual transferability of mono-
lingual representations. CoRR, abs/1910.11856.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2024. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 749–775,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Yuezihan Jiang, Hao Yang, Junyang Lin, Hanyu Zhao,
An Yang, Chang Zhou, Hongxia Yang, Zhi Yang,
and Bin Cui. 2022. Instance-wise prompt tuning
for pretrained language models. arXiv preprint
arXiv:2206.01958.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In

Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024a. Gpt
understands, too. AI Open, 5:208–215.

Yijiang Liu, Rongyu Zhang, Huanrui Yang, Kurt
Keutzer, Yuan Du, Li Du, and Shanghang Zhang.
2024b. Intuition-aware mixture-of-rank-1-experts
for parameter efficient finetuning. arXiv preprint
arXiv:2404.08985.

Zequan Liu, Yi Zhao, Ming Tan, Wei Zhu, and
Aaron Xuxiang Tian. 2024c. PARA: Parameter-
efficient fine-tuning with prompt-aware representa-
tion adjustment. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing: Industry Track, pages 728–737, Miami,
Florida, US. Association for Computational Linguis-
tics.

Fred Philippy, Siwen Guo, Shohreh Haddadan, Cedric
Lothritz, Jacques Klein, and Tegawendé F. Bissyandé.
2024. Soft prompt tuning for cross-lingual trans-
fer: When less is more. In Proceedings of the 1st
Workshop on Modular and Open Multilingual NLP
(MOOMIN 2024), pages 7–15, St Julians, Malta. As-
sociation for Computational Linguistics.

Fred Philippy, Siwen Guo, Cedric Lothritz, Jacques
Klein, and Tegawendé Bissyandé. 2025. Enhancing
small language models for cross-lingual generalized
zero-shot classification with soft prompt tuning. In
Proceedings of the 1st Workshop on Language Mod-
els for Underserved Communities (LM4UC 2025),
pages 61–75, Albuquerque, New Mexico. Associa-
tion for Computational Linguistics.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions.

Lifu Tu, Jin Qu, Semih Yavuz, Shafiq Joty, Wenhao Liu,
Caiming Xiong, and Yingbo Zhou. 2024. Efficiently
aligned cross-lingual transfer learning for conversa-
tional tasks using prompt-tuning. In Findings of the
Association for Computational Linguistics: EACL
2024, pages 1278–1294, St. Julian’s, Malta. Associa-
tion for Computational Linguistics.

Lifu Tu, Caiming Xiong, and Yingbo Zhou. 2022.
Prompt-tuning can be much better than fine-tuning
on cross-lingual understanding with multilingual lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
5478–5485, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

393

https://arxiv.org/abs/1910.11856
https://arxiv.org/abs/1910.11856
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2024.emnlp-industry.55
https://doi.org/10.18653/v1/2024.emnlp-industry.55
https://doi.org/10.18653/v1/2024.emnlp-industry.55
https://aclanthology.org/2024.moomin-1.2/
https://aclanthology.org/2024.moomin-1.2/
https://doi.org/10.18653/v1/2025.lm4uc-1.8
https://doi.org/10.18653/v1/2025.lm4uc-1.8
https://doi.org/10.18653/v1/2025.lm4uc-1.8
https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
https://aclanthology.org/2024.findings-eacl.85/
https://aclanthology.org/2024.findings-eacl.85/
https://aclanthology.org/2024.findings-eacl.85/
https://doi.org/10.18653/v1/2022.findings-emnlp.401
https://doi.org/10.18653/v1/2022.findings-emnlp.401
https://doi.org/10.18653/v1/2022.findings-emnlp.401


Ivan Vykopal, Simon Ostermann, and Marian Simko.
2025. Soft language prompts for language trans-
fer. In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 10294–
10313, Albuquerque, New Mexico. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou,
Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao. 2024.
LLaMA-adapter: Efficient fine-tuning of large lan-
guage models with zero-initialized attention. In The
Twelfth International Conference on Learning Repre-
sentations.

Mengjie Zhao and Hinrich Schütze. 2021. Discrete and
soft prompting for multilingual models. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8547–8555,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Wei Zhu, Aaron Tian, Congrui Yin, Yuan Ni, Xiaol-
ing Wang, and Guotong Xie. 2024. IAPT: Instance-
aware prompt tuning for large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14285–14304, Bangkok, Thai-
land. Association for Computational Linguistics.

A Prompt Templates

Training and inference prompts for all the three
benchmarks we have evaluated. For MGSM, we
use the 8-shot chain-of-thought prompt as in (Wei
et al., 2022) (maj@1) to evaluate.

XQUAD

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
You will answer reading comprehension
questions using information from a provided
passage. Extract the exact answer from the
passage without modification and present it
in the following structured format:
{’answer’ : <Extracted Answer>}
### Input:
Context:
<context>
Question:
<question>

### Response:
{’answer’:

Belebele

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
The task is to perform a reading compre-
hension task. Given the following passage,
question, and answer choices, output the
number corresponding to the correct answer
only.
### Input:
Passage:
<passage>
Question:
<question>
Choices:
<choices>

### Response: The correct choice number
is
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Benchmark Languages
XNLI en, hi, el, vi, sw, bg, th, ar,

ar, de, es, fr, ru, tr, zh, ur
XQUAD en, hi, el, vi, ar, de, es, ro,

ru, th, tr, zh

Table 10: Languages used in the XNLI and XQUAD bench-
marks.

XNLI

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
The task is to solve Natural Language In-
ference (NLI) problems. NLI is the task of
determining whether the inference relation
between the second sentence (Hypothesis)
with respect to the first sentence (Premise)
is one of the following:
1. Entailment
2. Neutral
3. Contradiction
Output the relation number only.
### Input:
Premise:
<premise>
Hypothesis:
<hypothesis>

### Response: The relation number is

B Languages details

Evaluation language details included in the bench-
marks are given in Tables 10, 12 and 13.

C Hyperparameter details

We insert 10 prefix tokens across 30 layers for
LLaMA 3.1 8B, Mistral 7B, and Mistral 24B, while
for LLaMA 3.2 1B, the tokens are inserted across
all layers as it is small.For full fine-tuning, we used
a batch size of 8, a learning rate of 1e-5 with a
cosine learning rate scheduler, a warm-up ratio of
0.1, and trained the model for 2 epochs.Finally for
LoRA fine tuning, we applied it to the Q, K, and V
projection matrices across all layers.

D Complete elaborated experiment
results

Language F1 EM
ar 14.43 9.83
de 61.95 43.36
el 22.63 17.98
en 84.69 72.10
es 62.08 41.34
hi 15.23 11.76
ro 58.57 40.76
ru 18.65 10.42
th 16.13 12.35
tr 42.38 26.72
vi 43.47 25.88
zh 12.66 9.50
Avg 37.74 26.83

Table 11: Full fine tuning performance of Llama 3.1 8B on
XQUAD

Language Family

Kazakh Turkic
Kyrgyz Turkic
North Azerbaijani Turkic
Kannada Dravidian
Malayalam Dravidian
Tamil Dravidian
Amharic Afro-Asiatic
Tigrinya Afro-Asiatic
Tsonga Afro-Asiatic
Sindhi Indo-Aryan
Odia Indo-Aryan
Sinhala Indo-Aryan
Russian Balto-Slavic
Serbian Balto-Slavic
Slovak Balto-Slavic

Table 12: Languages grouped by family included in Belebele

Language Script

Kyrgyz Cyrillic
Russian Cyrillic
Serbian Cyrillic
Burmese Burmese
Shan Burmese
Swati Latin
Sundanese Latin
Bambara Latin
Sindhi Arabic
Egyptian Arabic Arabic
Western Persian Arabic
Amharic Ethiopic
Tigrinya Ethiopic

Table 13: Languages grouped by script included in Belebele
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Method en hi el vi sw bg th ar de es fr ru tr zh ur Avg

Base Model 34.3 34.7 33.8 33.6 33.4 33.8 32.8 33.6 34.1 33.8 33.5 33.6 34.2 33.9 33.6 33.8
LoRA4 47.3 42.2 42.1 44.8 43.5 47.3 44.0 45.0 41.6 42.1 40.0 48.3 40.0 43.9 40.6 43.5
Soft Prompts 79.4 41.8 46.7 67.6 44 70.5 48.8 56.5 73.2 75.3 75.9 67.0 60.9 69.4 49.5 61.7
Llama Adapter 92.0 58.1 64.8 69.3 46.9 73.9 61.3 61.7 79.0 79.3 80.6 76.0 65.2 76.7 55.6 69.4
Prefix Tuning 90.8 56.7 61.9 69.3 43.4 75.7 62.8 61.5 78.8 80.3 79.5 76.7 63.9 78.3 54.5 69.0

Table 14: Mistral v0.3 7B performance (accuracy) on XNLI benchmark comparing LoRA and prefix based adaption methods.The
best performance for each language is shown in bold, and the second-best is underlined.

Method en hi el vi ar de es ro ru th tr zh Avg

Base Model 77.7 35.4 47.9 62.7 46.9 65.4 66.4 64.3 53.8 47.4 48.0 57.8 56.1
LoRA4 82.5 41.37 53.52 48.0 54.1 67.1 68.2 66.7 58.8 53.2 51.1 64.9 59.12
Soft Prompts 72.1 1.6 19.4 42.2 18.4 61.6 62.3 59.6 49.3 10.1 48.1 18.4 38.6
Llama Adapter 88.5 42.5 53.4 69.1 51.1 75.9 80.0 78.6 72.3 41.3 58.3 71.0 65.1
Prefix Tuning 88.4 49.3 60.4 69.5 55.4 77.4 80.0 78.2 71.7 46.1 60.9 69.1 67.2

Table 15: Mistral v0.3 7B performance (F1 score) on XQUAD benchmark comparing LoRA and prefix based adaption
methods.The best performance for each language is shown in bold, and the second-best is underlined.

Script Language Base LoRA4 Soft Llama Prefix
Model Prompt Adapter tuning

Cyrillic
Kyrgyz 31.7 29.2 35.8 34.1 35.5
Russian 57.3 62.2 83.1 83.8 82.3
Serbian 55.5 60.2 79.0 79.8 76.5

Burmese
Burmese 28.3 23.0 33.0 30.8 30.7
Shan 26.0 21.5 26.1 25.3 27.0

Latin
Swati 28.6 27.3 29.6 30.0 32.0
Sundanese 32.1 30.5 37.4 35.7 35.4
Bambara 29.3 28.3 31.3 31.2 32.8

Arabic
Sindhi 31.3 24.3 31.4 29.2 30.8
Egyptian Arabic 39.3 35.0 48.6 45.1 43.7
Western Persian 41.2 35.1 55.4 49.8 52.5

Ethiopic
Amharic 29.3 22.7 31.1 29.2 30.7
Tigrinya 28.3 23.0 25.7 26.1 27.0

Table 16: Performance (accuracy) of Mistral v0.3 7B on the
Belebele benchmark, grouped by language script, comparing
LoRA and prefix-based adaptation methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.

Family Language Base LoRA4 Soft Llama Prefix
Model Prompting Adapter tuning

Turkic
Kazakh 33.7 29.4 38.0 34.3 35.6
Kyrgyz 31.7 29.2 35.8 34.1 35.5
North Azerbaijani 34.7 35.2 45.5 42.3 42

Dravidian
Kannada 34.3 25.7 38.1 34.2 36
Malayalam 31.8 25.7 36.7 31.8 31.4
Tamil 34.1 29.0 39.8 36.5 40.0

Afro-Asiatic
Amharic 29.3 22.7 31.1 29.2 30.7
Tigrinya 28.3 23.0 25.7 26.1 27.0
Tsonga 28.4 28.5 34.7 33.3 33.8

Indo-Aryan
Sindhi 31.3 24.3 31.4 29.2 30.8
Odia 30.5 23.6 30.3 30.7 30.5
Sinhala 32.2 27.1 34.5 29.4 34.5

Balto-Slavic
Russian 57.3 62.2 83.1 83.8 82.3
Serbian 55.5 60.2 79.0 79.8 76.5
Slovak 52.9 58.2 73.1 72.8 72.3

Table 17: Performance (accuracy) of Mistral v0.3 7B on the
Belebele benchmark, grouped by language family, comparing
LoRA and prefix-based adaptation methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.
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Abstract

Decoder-only large language models (LLMs)
excel in high-resource languages across vari-
ous tasks through few-shot or even zero-shot
in-context learning (ICL). However, their per-
formance often does not transfer well to low-
resource languages, especially those written
in non-Latin scripts. Inspired by recent work
that leverages transliteration in encoder-only
models, we investigate whether transliteration1

is also effective in improving LLMs’ perfor-
mance for low-resource languages written in
non-Latin scripts. To this end, we propose three
prompt templates, where the target-language
text is represented in (1) its original script
(SCRIPT{Orig}), (2) Latin script (SCRIPT{Latn}),
or (3) both (SCRIPT{Combined}). We apply these
methods to several representative LLMs of dif-
ferent sizes on various tasks including text clas-
sification and sequential labeling. Our findings
show that the effectiveness of transliteration
varies by task type and model size. For in-
stance, all models benefit from transliterations
for sequential labeling (with increases of up to
25%). We make our code publicly available.

1 Introduction

Decoder-only LLMs, such as LLaMA (Touvron
et al., 2023), Mixtral (Jiang et al., 2024), XGLM
(Lin et al., 2022), and BLOOM (Scao et al., 2023),
have shown impressive capability across a wide
range of tasks for high-resource languages, partic-
ularly through few-shot ICL (Brown et al., 2020).
However, they often underperform in low-resource
languages, especially those written in underrepre-
sented scripts. Multiple reasons exist, such as the
scarcity of low-resource languages in the training
data (Team et al., 2022; Üstün et al., 2024), insuf-
ficient crosslingual alignment during pretraining
(Hämmerl et al., 2024), as well as English being
the only language in the instruction tuning phase

1We consider a special type of transliteration that converts
non-Latin scripts into Latin script (also called romanization).
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Figure 1: Results of LLaMA7B, Mistral7B, BLOOM7B
and BLOOM3B on NER task. By leveraging translit-
eration, SCRIPT{Latn} or SCRIPT{Combined} consistently
improve the performance on NER across all models.

(Chen et al., 2024). The mainstream methodol-
ogy attempts to address this issue by translating
the texts written in languages other than English
into English using either external machine transla-
tion systems (Artetxe et al., 2023) or self-translate,
i.e., translation by leveraging the few-shot transla-
tion capabilities of the model itself (Etxaniz et al.,
2023). However, the quality of translations is con-
strained by the quality of the external systems or
the LLM itself. Additionally, this type of approach
is infeasible for truly low-resource languages.

Recent studies have demonstrated that leverag-
ing transliteration into a common-script effectively
improves the crosslingual transfer performance of
encoder-only models on low-resource languages
of non-Latin scripts (Liu et al., 2024a). This is
because a common script facilitates the model to
transfer knowledge through increased lexical over-
lap (Dhamecha et al., 2021; Purkayastha et al.,
2023; Moosa et al., 2023). Inspired by this line
of work, a natural research question is to explore
whether transliteration is also effective for decoder-
only LLMs, especially through their ICL capability
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The topic of the news 
वेि$कन क' रात क' प,हल/ हाथ
बटाई धोखेबाज़ 8नकलस बैक;<ॉम
?वारा गेम जीतय वाले गोल का साथ
र ◌ी। is label: {}

The topic of the news 
oveckin kii raat kii pahilii haath 
battaaii dhokhebaaja nikalas 
baikasttrom dvaaraa gem 
jiitaya vaale gol kaa saath rahii. 
is label: {}

The topic of the news वेि$कन क' रात क' प,हल/ हाथ
बटाई धोखेबाज़ 8नकलस बैक;<ॉम ?वारा गेम जीतय वाले गोल का
साथ र ◌ी। with its Latin transliteration: oveckin kii raat kii 
pahilii haath battaaii dhokhebaaja nikalas baikasttrom dvaaraa 
gem jiitaya vaale gol kaa saath rahii. is label: {}

वेि$कन क' रात क' प,हल/ हाथ बटाई
धोखेबाज़ 8नकलस बैक;<ॉम ?वारा गेम
जीतय वाले गोल का साथ र ◌ी।

Step 1: Transliteration with Uroman

Step 2: Prompt formalization

oveckin kii raat kii pahilii haath 
battaaii dhokhebaaja nikalas 
baikasttrom dvaaraa gem jiitaya 
vaale gol kaa saath rahii.

sentence-level word-level

Преусмери
Херман
Емил
Фишер

Preusmeri
Kherman
Emil
Fisher

[task description]
(Преусмери, is label: {})
(Херман, is label: {})
(Емил, is label: {})
(Фишер, is label: {})

[task description]
(Preusmeri, is label: {})
(Kherman, is label: {})
(Emil, is label: {})
(Fisher, is label: {})

[task description]
(Преусмери with its Latin transliteration Preusmeri, is label: {})
(Херман with its Latin transliteration Kherman, is label: {})
(Емил with its Latin transliteration Emil, is label: {})
(Фишер with its Latin transliteration Fisher, is label: {})

sentence-level

word-level

SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combine}

Figure 2: Illustration of our framework. We use Uroman (Hermjakob et al., 2018) to transliterate non-
Latin texts (sentence-level for text classification, and word-level for sequential labeling). We propose three
prompts: SCRIPT{Orig} (the original text is used), SCRIPT{Latn} (the Latin-script transliteration is used), and
SCRIPT{Combined} (transliteration is used as an augmentation to the original text).

which does not require any parameter updates.
To this end, the paper investigates the above

research question and proposes three types of
prompt templates where the non-Latin target-
language text is represented in (1) its original script
(SCRIPT{Orig}), (2) Latin script (SCRIPT{Latn}), or
(3) both (SCRIPT{Combined}). Given that texts in
different scripts convey the same semantics, the
knowledge encoded in one script should comple-
ment the other. A capable model, therefore, should
leverage this complementarity: when a word or
an entire sentence in the original script is not well
understood, the model should refer to its translit-
eration, and vice versa. We apply our methods to
several LLMs on various tasks and observe that the
effectiveness of transliteration varies by task type
and model size. Transliteration is particularly help-
ful for sequential labeling. On other tasks, however,
transliteration-augmented prompts are less effec-
tive, indicating models might have limited capacity
to exploit complementary information.

Our contributions are as follows: (i) We conduct
the first investigation towards the effectiveness of
transliteration in ICL for decoder-only LLMs. (ii)
We propose transliteration-augmented prompts that
are specifically for low-resource languages in non-
Latin scripts; (iii) We offer insights on when and
how transliteration can enhance ICL performance.

2 Experimental Settings

Models. We experiment with six models:
LLaMA2-7B (Touvron et al., 2023), Mistral-7B-
Instruct (Jiang et al., 2024), and the 7B, 3B,
1B, and 560M variants of the BLOOM model
(Scao et al., 2023). LLaMA2 is a model trained
on 28 languages and 5 scripts (Cyrillic, Latin,
Hang, Hani and Japanese). Mistral is an English-
centric model trained on five languages in Latin
script, while BLOOM is a multilingual LLM cov-
ering a wide range of languages in 11 scripts.2

We select these models to compare the effective-
ness of transliteration-augmented ICL on model
type (English-centric vs multilingual models) and
model size (different variants of BLOOM).

Methods. To investigate how transliteration im-
pacts the ICL performance for low-resource lan-
guages in non-Latin scripts, we propose three
prompt methods: (1) SCRIPT{Orig}, where we
feed the model with text in its original script, (2)
SCRIPT{Latn}, where we first transliterate the text
into Latin script and only feed the transliteration
into the model, and (3) SCRIPT{Combined}, where
we combine the text in its original script and its

2We check languages covered in each model’s training data
and consider the dominant script of each language as a script
supported by the model.
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Model Size Method NER SIB200 Taxi1500

LLaMA2 7B
SCRIPT{Orig} 66.8 37.2 44.8
SCRIPT{Latn} 67.9 21.6 46.7
SCRIPT{Combined} 66.3 48.5 46.7

Mistral 7B
SCRIPT{Orig} 69.5 50.6 54.6
SCRIPT{Latn} 71.5 33.2 51.1
SCRIPT{Combined} 67.7 48.6 54.3

BLOOM

7B
SCRIPT{Orig} 65.6 53.5 48.1
SCRIPT{Latn} 66.7 24.3 45.7
SCRIPT{Combined} 70.0 53.2 47.4

3B
SCRIPT{Orig} 62.6 48.1 48.0
SCRIPT{Latn} 63.4 29.3 46.5
SCRIPT{Combined} 68.2 39.1 47.8

1B
SCRIPT{Orig} 51.6 42.4 50.3
SCRIPT{Latn} 56.5 22.0 50.4
SCRIPT{Combined} 64.0 43.8 50.4

560M
SCRIPT{Orig} 52.9 41.5 46.1
SCRIPT{Latn} 56.7 20.4 45.8
SCRIPT{Combined} 56.1 39.1 46.5

Table 1: Task performance of three prompts (SCRIPT{Orig}, SCRIPT{Latn}, and SCRIPT{Combined}) for different
decoder-only LLMs of various sizes, averaged by languages. Transliteration shows strong effectiveness for NER
task but not for other tasks. Bold (underlined): best (second-best) result for each model in each task.

transliteration and feed both together into the model
to solve the task. The methods are illustrated in
Figure 2. For transliteration, we use Uroman (Her-
mjakob et al., 2018), a tool for universal roman-
ization, which can be applied to any underrepre-
sented scripts with high efficiency. Note that the
task description (in English) is the same across all
prompt templates. The target-language texts used
for few-shot demonstrations are also transliterated
in SCRIPT{Latn} and SCRIPT{Combined}.

Evaluation. We consider the following tasks for
evaluation: named entity recognition (NER), a se-
quence labeling task using WikiANN (Pan et al.,
2017); SIB200 (Adelani et al., 2024), a multilin-
gual classification task covering 205 languages;
and Taxi1500 (Ma et al., 2024), a multilingual 6-
class text classification dataset contains more than
1,500 languages. For each task, we only consider
a subset of languages that are written in non-Latin
scripts (details are shown in §A). For Taxi1500, we
perform a 3-shot prompt and follow the method in
Lin et al. (2024), calculating the average of word
embeddings in layer 8 of the Glot500 model (Imani-
Googhari et al., 2023) to retrieve semantically sim-
ilar ICL samples. For NER, we perform a 3-shot
prompt, since each sentence contains multiple to-
kens to predict and we find that 3 random demon-
strations can usually cover most NER categories.
We perform a 7-shot prompt for SIB200 to ensure
the demonstrations cover most classes. Details of

selecting the ICL demonstrations are in §B.

3 Results and Discussion

We report the average performance across all lan-
guages in Table 1 (per-language performance is in
§C). In addition, we show the performance on NER
averaged by script group in Table 3.

Transliteration benefits sequential labeling.
Across all models, we can observe that ei-
ther SCRIPT{Latn} or SCRIPT{Combined} outper-
forms SCRIPT{Orig} on NER. For instance,
SCRIPT{Combined} increases by 12.4 compared to
SCRIPT{Orig} on BLOOM-1B, which is more than
24% improvement. This demonstrates that mod-
els can make better predictions by leveraging the
knowledge encoded in the Latin-script translitera-
tions. This can be explained by the fact that NER
data contains many (proper) nouns shared across
languages. Transliteration enables the model to bet-
ter exploit such shared vocabularies for inference.

The impact of transliteration on text classifi-
cation varies across models. SCRIPT{Latn} al-
most always performs the worst across all models
compared with its counterparts, indicating that the
transliteration alone is not enough for the model to
understand the sentence-level semantics. Besides,
SCRIPT{Combined} performs suboptimal compared
to SCRIPT{Orig} on the English-centric (Mistral)
model and models trained on many multilingual
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Figure 3: Performance on NER task averaged by languages of the same script. Transliterations are generally effective
in improving the ICL across all models and scripts: SCRIPT{Latn} or SCRIPT{Combined} outperforms SCRIPT{Orig}.

data (BLOOM), which suggests these models can-
not well leverage complementary information. In-
stead, such information confuses the models. How-
ever, transliteration can be a good auxiliary input
for good Latin-dominant models such as LLaMA
(SCRIPT{Combined} achieves more than 29% and
4% on SIB200 and Taxi1500 respectively), as the
model can leverage transliteration when it cannot
fully understand the text in the original script.

Model performance varies by different scripts.
Figure 3 shows the average macro-F1 of ten scripts
on the NER task of LLaMA2-7B, Mistral-7B, and
BLOOM-7B. For BLOOM-7B, SCRIPT{Combined}
outperforms SCRIPT{Orig} and SCRIPT{Latn} on
most scripts except Thaana, a script not seen
by BLOOM-7B. Moreover, for scripts covered
in the pretraining data (Tamil, Bengali, and
Odia), SCRIPT{Combined} obtains the largest im-
provement. On the English-centric Mistral-7B,
prompts containing transliteration (SCRIPT{Latn}
or SCRIPT{Combined}) beats SCRIPT{Orig} on 5
out of 8 scripts. For LLaMA, combining both
the original text and transliteration is effective:
SCRIPT{Combined} achieves the best performance
on most scripts, indicating a strong ICL capability
of leveraging complementary information.

Model size plays an important role. Scaling up
the model size usually indicates a stronger capacity
from which the ICL can benefit (Zhao et al., 2023).
Indeed, we observe that the performance generally
increases for the BLOOM family when the model
size scales up for all three prompt types across dif-
ferent tasks except for Taxi1500. We hypothesize
this is because Taxi1500 is a relatively easy task
and its data builds up on the Bible, which is part of
the training data of these LLMs. In addition, the
sentences in Taxi1500 contain many proper nouns
whose transliterations the LLMs can easily exploit

for making predictions. Therefore, we also observe
good performance for SCRIPT{Latn} (comparable to
the other prompts) in Taxi1500, but not in SIB200.

4 Related Work

Positive effects of transliterating data into a com-
mon script have been demonstrated in various re-
cent works for encoder-only models (Dhamecha
et al., 2021; Purkayastha et al., 2023; Moosa et al.,
2023; Liu et al., 2024b). Additionally, leveraging
transliteration as an auxiliary input at fine-tuning
stage improves the cross-script performance (Liu
et al., 2024a). To improve ICL performance for
low-resource languages, demonstrations play an
important role. One line of approaches replaces
the target-language texts with English translations
(Artetxe et al., 2023; Shi et al., 2023; Etxaniz et al.,
2023). Another type of research augments the ICL
demonstrations, e.g., by retrieving the most similar
English texts to the target-language text (Nie et al.,
2023; Li et al., 2023; Wang et al., 2023)

5 Conclusion

This study explores the effectiveness of translitera-
tion in enhancing the ICL performance of decoder-
only LLMs, focusing on low-resource languages
written in non-Latin scripts. By proposing three
prompt templates – using original script, Latin
script, and a combination of both – we evaluate
their impact across various tasks on several repre-
sentative LLMs. Our findings indicate that translit-
eration is particularly effective for sequential la-
beling but its benefits for text classification tasks
are less consistent. We also observe a mixed ef-
fect of transliteration related to the model type and
model size. Our results highlight the potential of
transliteration as a possible way to enhance LLMs’
performance for low-resource languages.
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Limitations

There are mainly two limitations in our work. First,
we only consider models with up to 7 billion param-
eters due to constraints in our computing resources.
Second, the evaluation data is limited in terms of
the types of tasks. The major reason is the limited
availability of evaluation datasets containing a va-
riety of scripts. Nevertheless, as a pioneer study
in exploring the effectiveness of transliteration for
ICL involving low-resource languages in non-Latin
scripts, we hope future research can leverage larger
models and more datasets to explore this direction.
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Task Method Prompt

NER

SCRIPT{Orig}

Named Entity Recognition involves identifying and classifying named entities in a text into predefined categories 
such as person names, organizations, locations, and others. You will need to use the tags defined below: O 
means the word does'n correspond to any entity. B-PER/I-PER means the word corresponds to the beginning 
of/is inside a person entity. B-ORG/I-ORG means the word corresponds to the beginning of/is inside an 
organization entity. B-LOC/I-LOC means the word corresponds to the beginning of/is inside a location entity. Do 
not try to answer the question! Just tag each token in the sentence. {{'Светислав'}}  ||| {{labels}}

SCRIPT{Latn}

Named Entity Recognition involves identifying and classifying named entities in a text into predefined categories 
such as person names, organizations, locations, and others. You will need to use the tags defined below: O 
means the word doesn\u2019t correspond to any entity. B-PER/I-PER means the word corresponds to the 
beginning of/is inside a person entity. B-ORG/I-ORG means the word corresponds to the beginning of/is inside 
an organization entity. B-LOC/I-LOC means the word corresponds to the beginning of/is inside a location entity. 
Do not try to answer the question! Just tag each token in the sentence. {{'Svetislav'}}  ||| {{labels}}

SCRIPT{Combined}

Named Entity Recognition involves identifying and classifying named entities in a text into predefined categories 
such as person names, organizations, locations, and others. You will need to use the tags defined below: O 
means the word doesn\u2019t correspond to any entity. B-PER/I-PER means the word corresponds to the 
beginning of/is inside a person entity. B-ORG/I-ORG means the word corresponds to the beginning of/is inside 
an organization entity. B-LOC/I-LOC means the word corresponds to the beginning of/is inside a location entity. 
Do not try to answer the question! Just tag each token in the sentence.  {{'Светислав' with its Latin 
transliteration Svetislav'}}  ||| {{labels}}

SIB200

SCRIPT{Orig} The topic of the news {እዚኣቶም ብጣ/ኦሚ ቀለልቲ ኣይኮኑን፣ ስለዝኮነ ኣውን ኣሰሩ ብትልሙ ክመጽእ ብትራክቲካዊ ጎቦታት ዙርያ 
ነዊሕ ዙረት ወሲዱ.።} is label: { }

SCRIPT{Latn}
The topic of the news {eziaatome betaa/omi qalaleti aayekonune, selazekona aawene aasaru betelemu 
kematsee beteraaketikaawi gobotaate zureyaa nawihhe zurate wasidu.።} is label: { }

SCRIPT{Combined}

The topic of the news {እዚኣቶም ብጣ/ኦሚ ቀለልቲ ኣይኮኑን፣ ስለዝኮነ ኣውን ኣሰሩ ብትልሙ ክመጽእ ብትራክቲካዊ ጎቦታት ዙርያ 
ነዊሕ ዙረት ወሲዱ። with its Latin transliteration: eziaatome betaa/omi qalaleti aayekonune, selazekona aawene 
aasaru betelemu kematsee beteraaketikaawi gobotaate zureyaa nawihhe zurate wasidu.} is label: { }

Taxi1500

SCRIPT{Orig} The topic of the verse {既然 你們 要 按使 人 自由 的 律法 受 審判 ， 就 應該 按 律法 行事 為人。} is label: { }

SCRIPT{Latn} The topic of the verse {jiran nimen yao anshi ren ziyou de lufa shou shenpan ,  jiu yinggai an lufa xingshi 
weiren.} is label: { }

SCRIPT{Comined}

The topic of the verse {'既然 你們 要 按使 人 自由 的 律法 受 審判 ， 就 應該 按 律法 行事 為人。 with its Latin 
transliteration: jiran nimen yao anshi ren ziyou de lufa shou shenpan ,  jiu yinggai an lufa xingshi weiren.} is 
label: { }

Figure 4: Three types of prompt templates (SCRIPT{Orig}, SCRIPT{Latn} and SCRIPT{Combined}) that are used for
each task. We follow the prompt templates in (Lin et al., 2024) for the SCRIPT{Orig}, where the target-langauge
text is represented in the original script. We use Latin-script transliterations obtained by Uroman (Hermjakob et al.,
2018) for SCRIPT{Latn}. SCRIPT{Combined} leverages both the original script and its Latin transliteration.
Task |lan|

NER Cyrl Arab Hani Deva Geor Hebr Beng other all
17 10 5 5 2 2 2 19 62

SIB200 Arab Deva Cyrl Mymr Beng Tibt Hebr
15 9 8 2 2 2 2 22 62

Taxi1500 Cyrl Arab Deva Hani Mymr Beng Orya
24 9 7 3 2 2 2 15 64

Table 2: The number of languages in each script group
for each downstream task.

selected demonstrations typically encompass the
majority of NER categories. For SIB200, we do
a 7-shot prompt. The 7 demonstrations are man-
ually selected to cover the 7 classes of the task.
For Taxi1500, we use a 3-shot prompt and adhere
to the methodology outlined in Lin et al. (2024).
Specifically, we calculate the average of contextual-
ized word embeddings from layer 8 of the Glot500
model (ImaniGooghari et al., 2023) to identify 10
most semantically similar samples, and randomly
select 3 samples as the demonstrations.

|lan| |rows| #class measure (%)

NER 62 119 7 F1 score
SIB200 62 1140 7 Accuracy
Taxi1500 64 666 6 Accuracy

Table 3: Information of evaluation tasks. |lan|: lan-
guages we select as subset to evaluate; #class: the num-
ber of the categories if it is a sequence-level or token-
level classification task.

B Prompt Templates

We follow the prompt templates in (Lin et al., 2024)
for SCRIPT{Orig}, where the demonstrations and
the query are in the original script of the target
language. We employ Uroman (Hermjakob et al.,
2018) to transliterate the target-language demon-
strations and the target-language query into Latin
script. SCRIPT{Latn} only uses the transliteration,
while SCRIPT{Combined} leverage both the original
script and its Latin transliteration.

C Full Results for All Scripts/Languages

We report the complete results for all tasks and
language-scripts in Table 4 and Table 5 (NER),
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Table 6 and Table 7 (SIB200), and Table 8 and
Table 9 (Taxi1500).
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

ara_Arab 60.4 56.0 41.1 ara_Arab 63.2 59.4 82.3 ara_Arab 69.8 63.8 84.4
arz_Arab 62.4 58.3 40.7 arz_Arab 64.1 62.4 77.9 arz_Arab 69.9 65.9 81.0
ckb_Arab 61.7 56.7 73.6 ckb_Arab 58.7 57.9 77.7 ckb_Arab 61.6 60.4 84.1
fas_Arab 61.9 59.7 59.4 fas_Arab 62.8 61.8 82.6 fas_Arab 66.3 63.7 85.1
mzn_Arab 72.8 68.6 64.2 mzn_Arab 67.2 70.0 82.3 mzn_Arab 78.4 74.0 87.1
pnb_Arab 53.5 58.3 58.2 pnb_Arab 57.1 57.5 81.0 pnb_Arab 66.4 65.8 87.3
pus_Arab 47.2 41.2 30.4 pus_Arab 42.4 39.5 28.3 pus_Arab 49.3 48.7 30.2
snd_Arab 47.7 41.5 18.3 snd_Arab 44.0 45.4 19.3 snd_Arab 49.7 52.9 19.8
uig_Arab 49.0 49.4 50.3 uig_Arab 49.1 50.6 56.0 uig_Arab 55.5 55.6 58.7
urd_Arab 53.8 62.6 39.3 urd_Arab 48.4 65.0 71.2 urd_Arab 47.2 69.3 83.8
hye_Armn 47.7 57.8 71.3 hye_Armn 47.3 57.4 71.6 hye_Armn 64.1 64.5 78.6
asm_Beng 51.7 49.3 60.4 asm_Beng 43.4 53.6 70.7 asm_Beng 59.3 55.1 79.8
ben_Beng 57.6 56.7 66.5 ben_Beng 60.9 57.3 86.0 ben_Beng 66.9 60.2 87.0
bak_Cyrl 64.2 69.1 64.6 bak_Cyrl 65.5 63.2 69.1 bak_Cyrl 71.3 72.2 73.6
bel_Cyrl 55.3 58.2 68.7 bel_Cyrl 56.2 55.6 76.0 bel_Cyrl 66.7 64.9 75.3
bul_Cyrl 58.5 62.7 68.6 bul_Cyrl 58.6 61.4 73.7 bul_Cyrl 69.1 70.3 73.6
che_Cyrl 57.2 58.8 42.5 che_Cyrl 59.6 61.5 48.4 che_Cyrl 68.9 70.0 52.0
chv_Cyrl 57.8 62.3 75.6 chv_Cyrl 56.6 61.8 80.2 chv_Cyrl 69.6 68.1 85.3
kaz_Cyrl 59.9 64.6 69.3 kaz_Cyrl 58.7 61.3 70.8 kaz_Cyrl 72.5 72.5 75.7
kir_Cyrl 53.5 65.7 62.3 kir_Cyrl 56.5 60.1 65.1 kir_Cyrl 70.5 72.1 69.7
mhr_Cyrl 54.4 55.7 65.1 mhr_Cyrl 51.6 54.5 72.3 mhr_Cyrl 62.8 65.0 75.9
mkd_Cyrl 58.4 63.6 54.7 mkd_Cyrl 59.3 61.9 59.2 mkd_Cyrl 69.4 69.6 60.1
mon_Cyrl 50.6 51.4 70.8 mon_Cyrl 53.9 54.6 77.8 mon_Cyrl 63.1 59.4 81.7
oss_Cyrl 56.2 59.6 69.6 oss_Cyrl 57.8 60.3 71.4 oss_Cyrl 68.3 68.0 75.7
rus_Cyrl 51.6 58.3 71.2 rus_Cyrl 55.3 55.0 75.2 rus_Cyrl 66.1 65.4 79.3
sah_Cyrl 60.3 68.3 76.5 sah_Cyrl 59.0 63.8 79.8 sah_Cyrl 70.5 71.6 82.2
srp_Cyrl 55.4 56.6 69.5 srp_Cyrl 50.3 55.1 73.4 srp_Cyrl 64.0 62.0 77.2
tat_Cyrl 58.3 61.5 70.7 tat_Cyrl 57.3 60.0 73.5 tat_Cyrl 70.9 69.8 78.0
tgk_Cyrl 50.6 54.7 65.2 tgk_Cyrl 51.7 52.6 71.7 tgk_Cyrl 58.6 60.1 74.9
ukr_Cyrl 53.8 60.1 67.2 ukr_Cyrl 54.8 58.3 72.6 ukr_Cyrl 64.7 67.3 74.1
bih_Deva 47.0 44.6 49.6 bih_Deva 45.0 45.6 54.0 bih_Deva 56.1 49.4 55.8
hin_Deva 54.0 55.6 64.1 hin_Deva 52.1 56.2 79.6 hin_Deva 62.8 60.7 82.0
mar_Deva 56.1 61.6 52.4 mar_Deva 47.6 59.1 70.3 mar_Deva 61.6 65.9 77.7
nep_Deva 50.4 52.0 49.1 nep_Deva 47.2 55.7 67.5 nep_Deva 62.2 62.0 71.5
san_Deva 52.0 56.8 40.7 san_Deva 49.7 58.5 50.6 san_Deva 69.5 70.7 55.7
amh_Ethi 41.4 54.9 72.3 amh_Ethi 54.2 60.0 77.4 amh_Ethi 63.5 63.6 81.2
kat_Geor 57.0 67.3 69.9 kat_Geor 58.1 63.8 65.9 kat_Geor 68.0 72.3 73.7
xmf_Geor 54.8 61.3 67.8 xmf_Geor 55.2 57.7 69.6 xmf_Geor 63.4 68.1 72.1
ell_Grek 58.0 62.6 59.2 ell_Grek 61.8 60.4 66.4 ell_Grek 70.0 69.6 65.1
guj_Gujr 51.4 70.4 24.7 guj_Gujr 31.6 64.8 37.8 guj_Gujr 73.3 76.3 47.9
pan_Guru 43.9 57.6 46.2 pan_Guru 33.8 58.0 70.3 pan_Guru 55.9 63.2 78.5
kor_Hang 60.7 63.6 66.3 kor_Hang 58.5 60.5 70.6 kor_Hang 69.6 70.1 72.4
gan_Hani 54.7 54.1 72.6 gan_Hani 59.3 58.7 76.4 gan_Hani 57.2 60.3 72.3
lzh_Hani 58.4 57.8 41.3 lzh_Hani 60.9 62.4 50.3 lzh_Hani 70.4 71.7 52.1
wuu_Hani 51.5 55.0 71.7 wuu_Hani 55.8 55.6 75.6 wuu_Hani 56.1 52.6 72.8
yue_Hani 47.2 43.2 44.1 yue_Hani 47.7 44.1 39.7 yue_Hani 57.2 53.2 50.0
zho_Hani 44.8 38.1 37.7 zho_Hani 43.2 39.0 34.2 zho_Hani 51.4 47.2 40.0
heb_Hebr 62.7 60.1 67.5 heb_Hebr 61.6 59.9 66.0 heb_Hebr 69.6 67.9 72.2
yid_Hebr 66.0 59.6 67.3 yid_Hebr 61.9 57.7 69.1 yid_Hebr 68.2 65.5 71.2
jpn_Jpan 33.6 34.9 20.0 jpn_Jpan 38.8 35.0 20.0 jpn_Jpan 45.4 45.0 25.2
khm_Khmr 47.6 46.2 55.9 khm_Khmr 48.1 52.4 55.1 khm_Khmr 51.9 56.7 57.7
kan_Knda 52.8 71.6 34.2 kan_Knda 37.4 65.7 61.0 kan_Knda 74.4 75.4 76.1
mal_Mlym 54.3 65.9 53.7 mal_Mlym 47.7 61.6 70.1 mal_Mlym 68.8 68.9 76.9
mya_Mymr 32.3 52.5 37.8 mya_Mymr 32.4 51.4 30.7 mya_Mymr 49.3 59.1 36.3
ori_Orya 35.8 57.3 43.4 ori_Orya 28.4 56.3 64.9 ori_Orya 54.8 66.8 73.9
sin_Sinh 44.4 56.8 61.7 sin_Sinh 46.5 59.1 61.5 sin_Sinh 62.9 64.6 66.1
arc_Syrc 47.4 51.9 64.8 arc_Syrc 51.3 50.9 65.0 arc_Syrc 53.1 54.8 69.2
tam_Taml 62.1 64.0 65.9 tam_Taml 57.1 62.5 73.8 tam_Taml 69.6 69.2 80.2
tel_Telu 59.4 70.7 61.1 tel_Telu 47.5 67.8 67.6 tel_Telu 73.8 75.2 78.8
div_Thaa 32.8 46.6 31.0 div_Thaa 31.4 52.6 31.0 div_Thaa 39.9 58.0 33.8
tha_Thai 17.7 18.3 0.7 tha_Thai 12.6 21.7 0.4 tha_Thai 17.5 25.7 0.6
bod_Tibt 61.5 53.1 77.8 bod_Tibt 60.5 49.9 79.3 bod_Tibt 59.8 51.0 76.1

Table 4: Macro-F1 score of NER task on BLOOM 560m, BLOOM 1B and BLOOM3B (from left to right).
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

ara_Arab 70.6 65.7 86.9 ara_Arab 69.8 65.5 86.0 ara_Arab 74.0 69.2 85.9
arz_Arab 69.8 67.7 81.3 arz_Arab 73.6 67.0 70.1 arz_Arab 78.0 73.1 78.7
ckb_Arab 64.0 63.0 84.7 ckb_Arab 65.5 64.2 82.0 ckb_Arab 64.3 62.2 83.7
fas_Arab 70.5 67.3 87.2 fas_Arab 73.1 68.2 85.9 fas_Arab 70.8 67.8 84.5
mzn_Arab 80.4 79.4 87.7 mzn_Arab 79.7 77.9 82.3 mzn_Arab 81.9 81.3 83.9
pnb_Arab 68.5 68.7 86.9 pnb_Arab 72.5 71.1 90.2 pnb_Arab 74.0 71.7 90.9
pus_Arab 51.1 52.9 31.7 pus_Arab 53.0 58.6 33.9 pus_Arab 55.5 57.1 29.4
snd_Arab 52.2 57.5 21.6 snd_Arab 48.8 59.7 25.1 snd_Arab 48.7 59.3 18.7
uig_Arab 57.8 60.6 62.1 uig_Arab 58.3 58.5 55.5 uig_Arab 62.3 64.2 60.9
urd_Arab 62.7 71.8 83.4 urd_Arab 74.0 70.3 90.4 urd_Arab 74.9 70.0 89.6
hye_Armn 67.5 66.6 81.6 hye_Armn 72.1 71.5 80.8 hye_Armn 71.8 73.2 81.1
asm_Beng 64.9 60.4 83.3 asm_Beng 65.9 62.0 81.0 asm_Beng 62.5 61.2 78.5
ben_Beng 72.0 62.6 88.5 ben_Beng 71.4 65.5 88.7 ben_Beng 66.7 62.3 87.0
bak_Cyrl 75.2 73.6 73.2 bak_Cyrl 76.1 75.9 71.9 bak_Cyrl 83.0 83.3 73.8
bel_Cyrl 70.1 67.4 79.7 bel_Cyrl 74.8 72.8 81.1 bel_Cyrl 77.6 78.3 82.8
bul_Cyrl 71.6 73.9 78.7 bul_Cyrl 76.2 74.7 81.6 bul_Cyrl 81.3 82.1 81.2
che_Cyrl 69.4 73.2 53.9 che_Cyrl 73.8 75.3 51.9 che_Cyrl 76.7 74.9 55.3
chv_Cyrl 70.0 68.8 86.0 chv_Cyrl 75.9 76.5 84.8 chv_Cyrl 79.6 80.3 87.5
kaz_Cyrl 73.3 74.2 77.1 kaz_Cyrl 77.9 76.8 79.3 kaz_Cyrl 80.9 80.2 79.9
kir_Cyrl 73.4 74.2 70.2 kir_Cyrl 73.1 74.6 69.7 kir_Cyrl 78.5 79.3 69.5
mhr_Cyrl 67.2 67.7 83.0 mhr_Cyrl 69.5 73.8 85.3 mhr_Cyrl 79.4 78.3 84.9
mkd_Cyrl 71.7 73.0 61.2 mkd_Cyrl 75.7 73.6 65.1 mkd_Cyrl 78.4 79.0 62.9
mon_Cyrl 66.1 66.8 85.2 mon_Cyrl 69.0 66.7 83.1 mon_Cyrl 73.9 73.3 81.3
oss_Cyrl 70.5 70.1 81.2 oss_Cyrl 73.5 72.4 80.2 oss_Cyrl 76.5 74.7 80.5
rus_Cyrl 69.0 68.8 80.7 rus_Cyrl 71.9 72.8 83.4 rus_Cyrl 78.2 76.6 83.4
sah_Cyrl 69.9 69.2 82.9 sah_Cyrl 74.7 72.5 81.7 sah_Cyrl 81.3 80.7 83.9
srp_Cyrl 66.5 68.7 79.3 srp_Cyrl 70.1 69.7 82.6 srp_Cyrl 77.2 76.8 82.6
tat_Cyrl 72.4 73.3 79.7 tat_Cyrl 76.9 74.5 82.6 tat_Cyrl 81.2 79.7 81.1
tgk_Cyrl 63.3 61.8 76.3 tgk_Cyrl 65.0 65.3 74.8 tgk_Cyrl 70.6 71.3 78.8
ukr_Cyrl 66.7 71.3 78.0 ukr_Cyrl 72.7 73.1 82.5 ukr_Cyrl 77.9 78.8 80.6
bih_Deva 63.5 60.7 62.3 bih_Deva 65.0 64.6 69.0 bih_Deva 64.9 68.9 57.3
hin_Deva 66.4 65.1 82.9 hin_Deva 69.8 65.8 86.0 hin_Deva 71.2 69.7 83.2
mar_Deva 62.3 68.1 77.0 mar_Deva 71.0 70.1 78.6 mar_Deva 76.1 75.1 76.8
nep_Deva 70.6 68.9 74.5 nep_Deva 72.3 64.5 60.1 nep_Deva 72.8 70.7 62.7
san_Deva 71.9 68.8 51.5 san_Deva 59.4 65.9 38.6 san_Deva 58.7 71.4 42.4
amh_Ethi 69.0 68.2 83.5 amh_Ethi 66.1 63.6 76.7 amh_Ethi 69.7 69.4 80.4
kat_Geor 69.7 76.2 74.8 kat_Geor 73.0 73.5 70.1 kat_Geor 77.2 79.1 75.0
xmf_Geor 64.7 69.2 72.9 xmf_Geor 68.2 68.9 71.8 xmf_Geor 73.8 75.3 72.0
ell_Grek 72.0 74.3 68.5 ell_Grek 74.7 74.4 66.6 ell_Grek 78.7 80.8 63.0
guj_Gujr 73.5 77.1 47.9 guj_Gujr 38.8 72.5 15.9 guj_Gujr 47.2 77.1 19.0
pan_Guru 58.7 64.8 81.3 pan_Guru 67.5 68.7 82.5 pan_Guru 65.3 67.4 79.5
kor_Hang 72.8 73.9 75.9 kor_Hang 75.5 72.7 73.9 kor_Hang 78.6 77.2 78.0
gan_Hani 65.3 65.1 78.0 gan_Hani 75.0 75.8 85.0 gan_Hani 68.7 72.1 84.5
lzh_Hani 75.0 76.0 52.5 lzh_Hani 76.1 71.5 45.2 lzh_Hani 78.6 79.5 51.4
wuu_Hani 68.7 62.4 83.4 wuu_Hani 73.3 61.4 82.2 wuu_Hani 69.3 66.6 87.6
yue_Hani 63.6 58.6 43.1 yue_Hani 64.7 61.2 43.7 yue_Hani 68.5 62.5 42.1
zho_Hani 55.6 51.5 40.5 zho_Hani 58.9 53.1 39.2 zho_Hani 62.5 55.5 40.6
heb_Hebr 71.1 69.8 70.5 heb_Hebr 72.5 71.5 71.7 heb_Hebr 77.8 74.5 69.8
yid_Hebr 67.2 66.3 73.0 yid_Hebr 73.4 71.2 69.2 yid_Hebr 72.6 72.1 71.4
jpn_Jpan 49.7 48.6 25.1 jpn_Jpan 51.9 50.1 21.5 jpn_Jpan 55.9 51.2 26.0
khm_Khmr 59.9 62.1 65.7 khm_Khmr 52.1 62.0 49.1 khm_Khmr 62.3 71.4 64.1
kan_Knda 72.0 76.8 74.7 kan_Knda 53.0 76.1 25.7 kan_Knda 71.6 78.8 55.8
mal_Mlym 66.9 70.3 78.4 mal_Mlym 71.0 70.0 61.3 mal_Mlym 53.1 73.3 34.8
mya_Mymr 50.3 62.8 37.9 mya_Mymr 50.6 54.1 42.7 mya_Mymr 56.8 64.0 39.8
ori_Orya 56.4 67.4 77.9 ori_Orya 63.4 70.2 66.1 ori_Orya 54.4 73.2 67.0
sin_Sinh 64.6 66.1 65.8 sin_Sinh 65.1 67.9 61.8 sin_Sinh 66.6 71.7 65.5
arc_Syrc 59.1 61.7 77.2 arc_Syrc 62.0 65.5 73.7 arc_Syrc 62.0 66.5 79.4
tam_Taml 70.3 70.7 80.0 tam_Taml 69.6 68.6 69.7 tam_Taml 74.1 73.7 68.9
tel_Telu 72.3 78.1 77.2 tel_Telu 56.2 74.9 22.6 tel_Telu 71.2 78.7 49.7
div_Thaa 48.1 66.3 33.8 div_Thaa 46.0 65.9 32.6 div_Thaa 53.2 71.6 36.1
tha_Thai 18.0 27.0 0.7 tha_Thai 21.8 24.7 0.8 tha_Thai 22.0 26.1 0.7
bod_Tibt 61.7 53.9 81.4 bod_Tibt 62.0 66.7 84.7 bod_Tibt 56.1 70.6 87.6

Table 5: Macro-F1 score of NER task on NER task on BLOOM 7B, LLaMA2-7B and Mistral 7B (from left to right)
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

ace_Arab 18.1 18.6 20.6 ace_Arab 16.7 16.7 21.6 ace_Arab 27.5 19.6 20.6
acm_Arab 63.7 16.7 66.7 acm_Arab 67.6 18.1 70.1 acm_Arab 77.9 19.1 66.7
acq_Arab 63.7 16.7 64.7 acq_Arab 69.1 17.2 72.1 acq_Arab 77.9 21.1 64.7
aeb_Arab 63.2 17.6 56.9 aeb_Arab 62.7 17.2 67.2 aeb_Arab 74.0 18.6 56.9
ajp_Arab 68.6 18.1 67.2 ajp_Arab 71.1 18.1 74.5 ajp_Arab 75.0 25.5 67.2
apc_Arab 70.1 19.1 71.1 apc_Arab 74.5 17.2 75.0 apc_Arab 77.9 26.5 71.1
ars_Arab 65.7 15.7 65.7 ars_Arab 67.6 16.7 72.1 ars_Arab 76.5 19.6 65.7
ary_Arab 63.7 16.7 61.3 ary_Arab 60.8 16.7 72.1 ary_Arab 76.0 20.1 61.3
azb_Arab 36.3 17.6 32.4 azb_Arab 32.8 17.6 35.8 azb_Arab 34.3 22.5 32.4
ckb_Arab 21.1 19.1 19.6 ckb_Arab 19.6 17.2 20.6 ckb_Arab 25.5 24.0 19.6
knc_Arab 23.5 19.1 24.0 knc_Arab 20.6 19.6 23.0 knc_Arab 18.6 28.9 24.0
pbt_Arab 38.7 20.6 32.4 pbt_Arab 34.8 24.0 35.3 pbt_Arab 48.0 28.9 32.4
pes_Arab 39.7 19.1 44.1 pes_Arab 48.0 21.6 52.0 pes_Arab 52.0 28.4 44.1
prs_Arab 42.2 15.2 36.8 prs_Arab 45.6 20.1 51.5 prs_Arab 52.0 25.0 36.8
uig_Arab 20.1 16.7 16.7 uig_Arab 19.1 17.2 20.6 uig_Arab 21.6 24.5 16.7
hye_Armn 16.7 25.0 18.6 hye_Armn 15.7 32.4 15.7 hye_Armn 21.1 36.3 18.6
asm_Beng 58.3 12.3 42.6 asm_Beng 43.6 17.6 42.6 asm_Beng 72.1 23.5 42.6
ben_Beng 73.5 16.7 69.1 ben_Beng 72.5 16.2 69.6 ben_Beng 77.5 27.5 69.1
bak_Cyrl 19.6 39.2 24.5 bak_Cyrl 26.0 39.2 31.9 bak_Cyrl 37.7 50.5 24.5
kaz_Cyrl 23.0 30.4 22.1 kaz_Cyrl 29.9 35.3 31.4 kaz_Cyrl 37.3 43.1 22.1
kir_Cyrl 26.5 34.3 22.1 kir_Cyrl 28.9 38.7 34.8 kir_Cyrl 34.3 50.0 22.1
mkd_Cyrl 21.1 33.8 24.0 mkd_Cyrl 24.0 38.2 28.4 mkd_Cyrl 34.8 51.5 24.0
rus_Cyrl 24.0 37.3 26.0 rus_Cyrl 43.6 41.2 43.6 rus_Cyrl 57.8 51.5 26.0
srp_Cyrl 25.5 37.3 25.5 srp_Cyrl 25.5 35.8 29.4 srp_Cyrl 32.4 54.4 25.5
tgk_Cyrl 20.6 25.0 20.6 tgk_Cyrl 22.1 29.4 28.4 tgk_Cyrl 27.0 45.1 20.6
ukr_Cyrl 21.1 39.7 24.5 ukr_Cyrl 28.4 41.2 31.9 ukr_Cyrl 40.7 51.0 24.5
awa_Deva 63.7 17.6 59.8 awa_Deva 68.6 18.1 66.2 awa_Deva 73.5 26.5 59.8
bho_Deva 69.6 17.6 63.7 bho_Deva 64.7 19.1 66.2 bho_Deva 72.5 28.4 63.7
hin_Deva 65.7 14.7 63.2 hin_Deva 71.1 16.7 72.5 hin_Deva 74.5 22.5 63.2
hne_Deva 63.2 15.2 57.8 hne_Deva 65.2 18.1 64.2 hne_Deva 73.5 22.1 57.8
kas_Deva 43.6 23.5 46.1 kas_Deva 50.0 21.1 51.5 kas_Deva 49.5 35.3 46.1
mag_Deva 66.2 15.2 62.3 mag_Deva 67.6 17.2 67.2 mag_Deva 75.5 22.5 62.3
mai_Deva 64.2 15.7 59.8 mai_Deva 63.7 18.1 62.3 mai_Deva 73.5 24.5 59.8
npi_Deva 65.7 17.6 58.8 npi_Deva 71.6 20.1 68.6 npi_Deva 65.2 27.0 58.8
san_Deva 57.8 14.2 53.4 san_Deva 53.4 20.6 56.9 san_Deva 59.8 24.0 53.4
amh_Ethi 17.6 18.1 15.2 amh_Ethi 14.7 16.2 17.2 amh_Ethi 15.7 27.9 15.2
tir_Ethi 20.1 18.1 15.7 tir_Ethi 15.2 16.2 16.2 tir_Ethi 16.7 27.9 15.7
kat_Geor 21.1 30.4 23.5 kat_Geor 17.6 36.3 25.5 kat_Geor 14.7 41.7 23.5
ell_Grek 19.6 27.9 17.6 ell_Grek 16.7 33.8 25.0 ell_Grek 24.0 45.6 17.6
pan_Guru 57.4 17.2 54.9 pan_Guru 54.4 16.7 56.4 pan_Guru 69.6 20.6 54.9
zho_Hans 70.1 20.1 68.6 zho_Hans 75.5 17.6 73.0 zho_Hans 73.5 23.5 68.6
yue_Hant 68.6 18.1 67.2 yue_Hant 72.1 21.1 71.6 yue_Hant 74.5 25.5 67.2
zho_Hant 74.0 12.7 71.1 zho_Hant 76.0 19.1 74.0 zho_Hant 76.5 25.0 71.1
heb_Hebr 21.1 16.7 18.1 heb_Hebr 15.2 16.7 18.6 heb_Hebr 21.6 20.6 18.1
ydd_Hebr 21.1 18.6 15.2 ydd_Hebr 21.6 17.6 20.6 ydd_Hebr 16.2 22.5 15.2
jpn_Jpan 63.7 21.1 57.8 jpn_Jpan 67.2 18.1 66.2 jpn_Jpan 75.0 26.0 57.8
khm_Khmr 21.6 26.0 16.7 khm_Khmr 20.6 28.9 21.1 khm_Khmr 29.9 37.7 16.7
kan_Knda 57.8 16.2 55.4 kan_Knda 64.7 16.7 66.2 kan_Knda 66.7 27.0 55.4
lao_Laoo 22.5 24.0 22.1 lao_Laoo 28.9 27.0 31.9 lao_Laoo 28.9 37.3 22.1
mal_Mlym 68.1 16.7 49.0 mal_Mlym 67.6 18.6 70.6 mal_Mlym 71.6 21.1 49.0
mya_Mymr 17.6 20.6 18.1 mya_Mymr 12.7 18.1 15.7 mya_Mymr 19.1 28.4 18.1
shn_Mymr 21.1 22.1 18.1 shn_Mymr 27.9 31.9 25.0 shn_Mymr 26.5 40.2 18.1
nqo_Nkoo 17.2 16.7 17.6 nqo_Nkoo 13.2 18.1 14.2 nqo_Nkoo 14.2 27.0 17.6
sat_Olck 18.1 18.6 20.1 sat_Olck 16.7 14.7 15.7 sat_Olck 22.5 22.5 20.1
ory_Orya 58.8 19.1 58.8 ory_Orya 67.6 20.6 63.7 ory_Orya 65.7 31.4 58.8
sin_Sinh 17.2 16.2 17.6 sin_Sinh 13.2 18.6 14.7 sin_Sinh 15.2 21.6 17.6
tam_Taml 76.5 17.2 64.7 tam_Taml 75.0 17.2 71.1 tam_Taml 74.5 23.5 64.7
tel_Telu 62.3 15.7 53.4 tel_Telu 67.2 22.1 58.3 tel_Telu 66.2 25.0 53.4
tzm_Tfng 14.2 16.2 13.7 tzm_Tfng 14.2 16.7 12.3 tzm_Tfng 15.2 24.0 13.7
bod_Tibt 19.1 14.7 14.7 bod_Tibt 13.2 17.2 15.7 bod_Tibt 21.6 25.0 14.7
dzo_Tibt 17.2 19.1 14.2 dzo_Tibt 13.2 16.2 9.3 dzo_Tibt 14.2 18.1 14.2

Table 6: Accuracy of SIB200 task on BLOOM 560m, BLOOM 1B and BLOOM3B (from left to right).
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

ace_Arab 22.1 17.6 24.5 ace_Arab 17.6 11.8 19.6 ace_Arab 29.4 16.7 29.9
acm_Arab 79.9 10.3 81.4 acm_Arab 63.7 22.5 70.1 acm_Arab 77.0 22.5 73.0
acq_Arab 78.9 12.7 81.9 acq_Arab 62.3 15.2 67.2 acq_Arab 77.0 21.1 74.0
aeb_Arab 76.5 12.3 74.5 aeb_Arab 58.8 17.6 65.7 aeb_Arab 72.1 20.1 69.6
ajp_Arab 82.4 19.1 76.5 ajp_Arab 60.3 17.2 65.7 ajp_Arab 72.5 26.0 70.1
apc_Arab 79.9 17.6 81.9 apc_Arab 56.9 16.2 65.2 apc_Arab 75.5 24.0 73.5
ars_Arab 78.4 10.8 78.9 ars_Arab 61.3 15.2 71.1 ars_Arab 77.5 20.1 75.0
ary_Arab 77.0 13.2 77.5 ary_Arab 53.9 16.7 62.7 ary_Arab 75.0 19.6 71.1
azb_Arab 42.6 17.6 41.2 azb_Arab 29.9 17.2 43.1 azb_Arab 56.4 22.5 52.0
ckb_Arab 23.5 20.6 27.0 ckb_Arab 16.7 18.1 22.1 ckb_Arab 30.9 26.5 34.8
knc_Arab 24.5 21.1 20.1 knc_Arab 16.7 18.6 20.6 knc_Arab 23.0 24.5 25.0
pbt_Arab 56.9 30.9 50.5 pbt_Arab 25.5 22.5 29.9 pbt_Arab 54.9 32.8 50.5
pes_Arab 68.1 25.0 64.7 pes_Arab 53.4 21.1 64.7 pes_Arab 73.5 32.8 70.1
prs_Arab 66.7 21.1 62.3 prs_Arab 54.4 20.1 62.3 prs_Arab 73.5 32.8 67.6
uig_Arab 23.0 17.6 20.6 uig_Arab 17.2 17.2 22.1 uig_Arab 35.8 30.9 39.2
hye_Armn 20.1 31.4 28.4 hye_Armn 17.2 26.0 22.1 hye_Armn 40.2 40.2 44.1
asm_Beng 77.9 16.2 78.4 asm_Beng 26.0 25.5 38.2 asm_Beng 49.5 40.2 45.1
ben_Beng 75.0 17.6 80.4 ben_Beng 37.7 27.9 50.5 ben_Beng 62.7 38.2 54.4
bak_Cyrl 49.0 51.0 44.1 bak_Cyrl 41.7 42.2 46.1 bak_Cyrl 59.8 57.8 61.3
kaz_Cyrl 45.6 49.0 44.1 kaz_Cyrl 32.8 43.1 35.3 kaz_Cyrl 58.8 53.4 57.8
kir_Cyrl 45.6 48.5 44.6 kir_Cyrl 38.7 41.2 41.2 kir_Cyrl 63.7 56.4 62.3
mkd_Cyrl 45.1 49.0 48.5 mkd_Cyrl 64.7 59.8 66.2 mkd_Cyrl 76.0 68.1 76.0
rus_Cyrl 66.7 57.4 70.6 rus_Cyrl 73.5 66.2 77.5 rus_Cyrl 83.8 77.5 80.9
srp_Cyrl 43.1 51.5 49.0 srp_Cyrl 70.1 69.6 74.0 srp_Cyrl 83.3 80.9 82.4
tgk_Cyrl 33.3 40.2 35.8 tgk_Cyrl 25.0 31.9 28.9 tgk_Cyrl 49.5 52.0 49.5
ukr_Cyrl 52.5 50.0 53.9 ukr_Cyrl 74.0 55.4 75.5 ukr_Cyrl 80.4 71.6 81.4
awa_Deva 77.9 15.7 77.0 awa_Deva 52.0 34.8 62.3 awa_Deva 64.2 45.6 61.3
bho_Deva 76.0 17.2 75.5 bho_Deva 41.7 32.8 49.5 bho_Deva 59.3 45.6 57.4
hin_Deva 79.9 19.6 78.9 hin_Deva 52.9 41.7 62.3 hin_Deva 67.6 56.9 66.7
hne_Deva 75.5 17.2 74.5 hne_Deva 44.6 29.9 54.4 hne_Deva 60.8 42.2 61.3
kas_Deva 59.8 25.5 57.4 kas_Deva 31.4 24.0 36.8 kas_Deva 50.0 34.3 48.5
mag_Deva 77.9 15.2 78.9 mag_Deva 45.1 29.4 56.4 mag_Deva 59.3 42.6 55.9
mai_Deva 77.0 15.2 77.9 mai_Deva 45.1 34.8 56.9 mai_Deva 60.3 39.2 59.8
npi_Deva 78.4 22.1 79.4 npi_Deva 50.5 33.8 52.5 npi_Deva 62.7 49.5 55.9
san_Deva 70.1 16.7 64.7 san_Deva 39.2 33.8 46.1 san_Deva 52.0 46.1 50.5
amh_Ethi 17.2 18.6 14.7 amh_Ethi 14.7 17.6 16.2 amh_Ethi 21.6 27.5 25.0
tir_Ethi 18.1 19.6 14.7 tir_Ethi 14.7 16.7 15.7 tir_Ethi 21.1 23.0 23.5
kat_Geor 25.0 46.6 35.3 kat_Geor 23.5 39.7 28.9 kat_Geor 49.5 52.0 56.9
ell_Grek 32.8 49.5 31.4 ell_Grek 53.9 39.7 63.2 ell_Grek 74.0 60.8 69.6
pan_Guru 78.9 10.8 79.4 pan_Guru 16.7 19.1 20.6 pan_Guru 27.5 31.9 27.0
zho_Hans 80.9 21.6 83.8 zho_Hans 72.1 15.7 78.4 zho_Hans 81.4 31.4 80.9
yue_Hant 78.9 16.2 81.4 yue_Hant 70.1 14.7 76.0 yue_Hant 77.5 24.5 78.4
zho_Hant 82.8 14.7 83.8 zho_Hant 72.5 11.8 76.0 zho_Hant 80.4 27.9 81.4
heb_Hebr 27.5 20.1 23.0 heb_Hebr 40.7 13.2 47.5 heb_Hebr 65.2 16.2 60.8
ydd_Hebr 23.0 23.0 21.6 ydd_Hebr 20.6 18.6 24.5 ydd_Hebr 32.8 23.0 28.4
jpn_Jpan 78.9 17.6 77.5 jpn_Jpan 66.7 14.7 76.5 jpn_Jpan 81.4 25.0 77.5
khm_Khmr 38.7 37.3 33.3 khm_Khmr 23.0 23.5 24.0 khm_Khmr 42.2 32.8 39.2
kan_Knda 74.5 20.6 77.5 kan_Knda 21.1 26.0 25.0 kan_Knda 41.7 38.2 42.2
lao_Laoo 33.8 43.1 30.4 lao_Laoo 20.6 26.0 25.0 lao_Laoo 36.3 32.8 34.8
mal_Mlym 76.5 16.7 80.9 mal_Mlym 19.6 20.1 24.5 mal_Mlym 28.4 32.4 27.0
mya_Mymr 18.6 25.0 17.6 mya_Mymr 20.1 19.1 18.6 mya_Mymr 27.9 22.1 24.0
shn_Mymr 31.9 39.2 29.4 shn_Mymr 32.4 31.4 27.9 shn_Mymr 35.3 39.2 38.7
nqo_Nkoo 15.7 15.7 12.3 nqo_Nkoo 16.7 14.2 16.7 nqo_Nkoo 15.2 18.6 17.2
sat_Olck 15.2 20.6 12.7 sat_Olck 14.7 13.2 17.2 sat_Olck 9.8 13.2 11.3
ory_Orya 78.4 19.1 77.0 ory_Orya 17.2 26.0 20.6 ory_Orya 22.1 44.1 30.9
sin_Sinh 18.6 15.7 15.7 sin_Sinh 18.1 26.0 23.5 sin_Sinh 26.5 35.8 28.4
tam_Taml 77.9 16.2 77.9 tam_Taml 20.1 14.7 33.8 tam_Taml 37.3 23.0 32.8
tel_Telu 75.0 20.6 76.5 tel_Telu 18.1 27.5 23.0 tel_Telu 30.9 45.6 37.7
tzm_Tfng 20.6 16.2 16.7 tzm_Tfng 13.7 14.2 16.2 tzm_Tfng 15.7 18.6 19.1
bod_Tibt 20.1 15.7 19.1 bod_Tibt 16.2 18.1 16.7 bod_Tibt 22.5 17.2 23.0
dzo_Tibt 15.7 12.7 16.7 dzo_Tibt 15.2 16.2 15.7 dzo_Tibt 20.6 14.7 19.1

Table 7: Accuracy of SIB200 task on BLOOM 7B, LLaMA2-7B and Mistral 7B (from left to right)
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

arb_Arab 45.9 45.9 46.8 arb_Arab 53.2 54.1 53.2 arb_Arab 49.5 46.8 55.0
ary_Arab 34.2 41.4 36.9 ary_Arab 43.2 45.0 45.9 ary_Arab 36.0 35.1 44.1
arz_Arab 35.1 35.1 36.9 arz_Arab 44.1 45.9 45.9 arz_Arab 40.5 36.9 41.4
azb_Arab 43.2 42.3 39.6 azb_Arab 46.8 50.5 48.6 azb_Arab 41.4 41.4 43.2
ckb_Arab 45.0 46.8 47.7 ckb_Arab 46.8 48.6 48.6 ckb_Arab 43.2 44.1 43.2
fas_Arab 53.2 49.5 53.2 fas_Arab 53.2 55.0 55.0 fas_Arab 49.5 49.5 49.5
pes_Arab 53.6 46.4 55.5 pes_Arab 50.0 51.8 55.5 pes_Arab 49.1 48.2 50.0
prs_Arab 56.8 54.1 55.9 prs_Arab 60.4 59.5 59.5 prs_Arab 56.8 53.2 57.7
snd_Arab 54.1 53.2 53.2 snd_Arab 55.9 54.1 55.9 snd_Arab 48.6 49.5 49.5
hye_Armn 45.9 47.7 45.9 hye_Armn 52.3 58.6 53.2 hye_Armn 52.3 52.3 55.9
asm_Beng 36.0 37.8 36.9 asm_Beng 45.0 36.9 38.7 asm_Beng 48.6 36.0 46.8
ben_Beng 40.5 37.8 40.5 ben_Beng 47.7 45.0 43.2 ben_Beng 47.7 42.3 45.0
alt_Cyrl 48.6 48.6 45.9 alt_Cyrl 53.2 52.3 46.8 alt_Cyrl 47.7 46.8 45.9
bak_Cyrl 45.0 45.0 43.2 bak_Cyrl 51.4 55.9 51.4 bak_Cyrl 46.8 51.4 46.8
bel_Cyrl 45.9 43.2 45.0 bel_Cyrl 51.4 55.0 52.3 bel_Cyrl 45.0 45.9 45.0
bul_Cyrl 41.4 36.9 37.8 bul_Cyrl 44.1 42.3 41.4 bul_Cyrl 46.8 44.1 44.1
che_Cyrl 36.0 36.0 36.0 che_Cyrl 40.5 44.1 41.4 che_Cyrl 33.3 34.2 35.1
chv_Cyrl 46.8 48.6 47.7 chv_Cyrl 50.5 52.3 51.4 chv_Cyrl 42.3 41.4 45.9
crh_Cyrl 47.7 48.6 46.8 crh_Cyrl 48.6 47.7 49.5 crh_Cyrl 51.4 45.9 48.6
kaz_Cyrl 45.0 44.1 48.6 kaz_Cyrl 50.5 52.3 46.8 kaz_Cyrl 55.0 53.2 52.3
kir_Cyrl 62.2 61.3 59.5 kir_Cyrl 62.2 64.0 63.1 kir_Cyrl 56.8 59.5 58.6
kjh_Cyrl 42.3 44.1 44.1 kjh_Cyrl 49.5 50.5 49.5 kjh_Cyrl 42.3 47.7 45.0
kmr_Cyrl 38.7 37.8 38.7 kmr_Cyrl 44.1 45.0 45.0 kmr_Cyrl 43.2 43.2 39.6
krc_Cyrl 45.0 41.4 42.3 krc_Cyrl 49.5 55.9 51.4 krc_Cyrl 45.9 45.9 45.0
mhr_Cyrl 48.2 50.9 51.8 mhr_Cyrl 50.0 49.1 44.5 mhr_Cyrl 50.9 44.5 49.1
mkd_Cyrl 54.1 57.7 55.9 mkd_Cyrl 61.3 61.3 57.7 mkd_Cyrl 56.8 53.2 55.0
myv_Cyrl 36.0 38.7 38.7 myv_Cyrl 46.8 44.1 46.8 myv_Cyrl 45.0 45.0 40.5
oss_Cyrl 47.7 48.6 48.6 oss_Cyrl 52.3 53.2 52.3 oss_Cyrl 46.8 48.6 47.7
rus_Cyrl 43.2 44.1 45.9 rus_Cyrl 46.8 48.6 48.6 rus_Cyrl 45.0 45.0 42.3
sah_Cyrl 48.6 49.5 48.6 sah_Cyrl 48.6 56.8 53.2 sah_Cyrl 45.9 46.8 50.5
tat_Cyrl 43.2 45.0 43.2 tat_Cyrl 53.2 49.5 51.4 tat_Cyrl 47.7 47.7 50.5
tgk_Cyrl 45.9 48.6 44.1 tgk_Cyrl 54.1 50.5 50.5 tgk_Cyrl 47.7 47.7 46.8
tyv_Cyrl 36.0 39.6 39.6 tyv_Cyrl 45.0 47.7 45.0 tyv_Cyrl 47.7 45.9 43.2
udm_Cyrl 42.3 44.1 43.2 udm_Cyrl 45.0 43.2 48.6 udm_Cyrl 43.2 44.1 41.4
ukr_Cyrl 50.5 49.5 50.5 ukr_Cyrl 49.5 55.9 53.2 ukr_Cyrl 48.6 50.5 48.6
uzn_Cyrl 43.2 46.8 43.2 uzn_Cyrl 48.6 49.5 50.5 uzn_Cyrl 43.2 50.5 41.4
hin_Deva 55.0 45.9 51.4 hin_Deva 47.7 47.7 50.5 hin_Deva 46.8 50.5 47.7
hne_Deva 55.9 55.0 52.3 hne_Deva 61.3 58.6 58.6 hne_Deva 57.7 55.9 55.9
mai_Deva 45.0 45.0 44.1 mai_Deva 52.3 55.0 53.2 mai_Deva 49.5 45.9 51.4
mar_Deva 49.5 44.1 48.6 mar_Deva 48.6 49.5 51.4 mar_Deva 49.5 42.3 48.6
nep_Deva 51.4 45.9 50.5 nep_Deva 57.7 55.9 58.6 nep_Deva 54.1 45.9 48.6
npi_Deva 55.9 50.5 55.9 npi_Deva 55.0 54.1 57.7 npi_Deva 59.5 49.5 52.3
suz_Deva 42.3 45.0 42.3 suz_Deva 47.7 46.8 49.5 suz_Deva 45.0 47.7 47.7
mdy_Ethi 46.8 48.6 47.7 mdy_Ethi 45.9 49.5 47.7 mdy_Ethi 45.0 45.9 42.3
tir_Ethi 37.8 35.1 38.7 tir_Ethi 41.4 42.3 38.7 tir_Ethi 31.5 34.2 28.8
kat_Geor 43.2 42.3 45.0 kat_Geor 45.0 50.5 46.8 kat_Geor 43.2 45.9 49.5
ell_Grek 44.1 44.1 45.0 ell_Grek 48.6 52.3 46.8 ell_Grek 49.5 48.6 45.9
guj_Gujr 45.9 45.9 45.0 guj_Gujr 47.7 55.9 52.3 guj_Gujr 51.4 44.1 49.5
pan_Guru 44.1 40.5 45.0 pan_Guru 46.8 42.3 44.1 pan_Guru 46.8 41.4 45.9
kor_Hang 48.6 49.5 49.5 kor_Hang 51.4 55.9 53.2 kor_Hang 52.3 56.8 53.2
cmn_Hani 44.1 40.5 49.5 cmn_Hani 54.1 49.5 54.1 cmn_Hani 54.1 43.2 55.0
lzh_Hani 51.4 55.9 53.2 lzh_Hani 55.9 48.6 56.8 lzh_Hani 53.2 49.5 56.8
yue_Hani 45.9 43.2 52.3 yue_Hani 54.1 41.4 51.4 yue_Hani 53.2 48.6 52.3
khm_Khmr 52.3 55.9 54.1 khm_Khmr 55.9 56.8 59.5 khm_Khmr 52.3 53.2 52.3
lao_Laoo 47.7 51.4 49.5 lao_Laoo 51.4 48.6 53.2 lao_Laoo 56.8 56.8 56.8
ksw_Mymr 39.6 40.5 37.8 ksw_Mymr 49.5 43.2 39.6 ksw_Mymr 42.3 40.5 40.5
mya_Mymr 51.4 47.7 48.6 mya_Mymr 53.2 50.5 51.4 mya_Mymr 41.4 41.4 43.2
ori_Orya 51.4 51.4 47.7 ori_Orya 55.9 51.4 49.5 ori_Orya 54.1 45.0 52.3
ory_Orya 53.2 49.5 52.3 ory_Orya 51.4 49.5 55.9 ory_Orya 59.5 52.3 58.6
sin_Sinh 41.4 43.2 45.0 sin_Sinh 46.8 51.4 45.0 sin_Sinh 42.3 45.0 44.1
tam_Taml 55.0 56.8 55.9 tam_Taml 55.0 54.1 61.3 tam_Taml 60.4 55.0 57.7
tel_Telu 38.7 36.0 41.4 tel_Telu 52.3 46.8 48.6 tel_Telu 51.4 41.4 49.5
tha_Thai 45.0 45.0 45.9 tha_Thai 46.8 46.8 48.6 tha_Thai 41.4 39.6 42.3
dzo_Tibt 42.3 41.4 45.9 dzo_Tibt 41.4 40.5 44.1 dzo_Tibt 43.2 43.2 39.6

Table 8: Accuracy of Taxi1500 task on BLOOM 560m, BLOOM 1B and BLOOM3B (from left to right).
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Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined} Language SCRIPT{Orig} SCRIPT{Latn} SCRIPT{Combined}

arb_Arab 49.5 45.9 51.4 arb_Arab 43.2 45.9 45.9 arb_Arab 62.2 48.6 61.3
ary_Arab 38.7 30.6 38.7 ary_Arab 32.4 35.1 29.7 ary_Arab 55.9 38.7 50.5
arz_Arab 45.0 35.1 41.4 arz_Arab 31.5 39.6 34.2 arz_Arab 54.1 47.7 58.6
azb_Arab 47.7 43.2 48.6 azb_Arab 39.6 42.3 42.3 azb_Arab 51.4 42.3 55.9
ckb_Arab 45.0 47.7 42.3 ckb_Arab 44.1 45.0 42.3 ckb_Arab 47.7 44.1 46.8
fas_Arab 57.7 51.4 49.5 fas_Arab 49.5 50.5 53.2 fas_Arab 66.7 46.8 63.1
pes_Arab 59.1 51.8 56.4 pes_Arab 50.9 49.1 56.4 pes_Arab 64.5 49.1 62.7
prs_Arab 55.9 55.9 52.3 prs_Arab 50.5 55.0 55.9 prs_Arab 65.8 59.5 64.0
snd_Arab 56.8 50.5 52.3 snd_Arab 44.1 46.8 45.0 snd_Arab 62.2 51.4 62.2
hye_Armn 45.9 46.8 45.9 hye_Armn 45.9 50.5 53.2 hye_Armn 55.0 53.2 53.2
asm_Beng 55.0 43.2 55.9 asm_Beng 45.9 44.1 49.5 asm_Beng 55.9 50.5 53.2
ben_Beng 52.3 45.0 52.3 ben_Beng 40.5 45.9 45.0 ben_Beng 57.7 48.6 56.8
alt_Cyrl 45.0 46.8 44.1 alt_Cyrl 44.1 43.2 48.6 alt_Cyrl 45.9 48.6 45.9
bak_Cyrl 49.5 49.5 50.5 bak_Cyrl 45.0 47.7 46.8 bak_Cyrl 48.6 52.3 47.7
bel_Cyrl 48.6 39.6 45.9 bel_Cyrl 47.7 44.1 42.3 bel_Cyrl 55.9 58.6 58.6
bul_Cyrl 48.6 45.0 43.2 bul_Cyrl 45.0 45.0 44.1 bul_Cyrl 61.3 57.7 64.0
che_Cyrl 36.9 36.9 35.1 che_Cyrl 37.8 42.3 41.4 che_Cyrl 42.3 36.9 40.5
chv_Cyrl 45.0 45.9 45.0 chv_Cyrl 43.2 43.2 44.1 chv_Cyrl 45.0 50.5 51.4
crh_Cyrl 47.7 49.5 51.4 crh_Cyrl 49.5 47.7 49.5 crh_Cyrl 56.8 59.5 55.9
kaz_Cyrl 51.4 50.5 48.6 kaz_Cyrl 49.5 53.2 47.7 kaz_Cyrl 55.0 53.2 51.4
kir_Cyrl 47.7 53.2 46.8 kir_Cyrl 51.4 53.2 56.8 kir_Cyrl 53.2 57.7 60.4
kjh_Cyrl 45.0 43.2 41.4 kjh_Cyrl 44.1 42.3 43.2 kjh_Cyrl 47.7 49.5 51.4
kmr_Cyrl 45.0 46.8 40.5 kmr_Cyrl 39.6 40.5 38.7 kmr_Cyrl 39.6 41.4 39.6
krc_Cyrl 48.6 47.7 49.5 krc_Cyrl 45.9 44.1 45.0 krc_Cyrl 55.0 52.3 50.5
mhr_Cyrl 45.5 45.5 46.4 mhr_Cyrl 47.3 51.8 50.0 mhr_Cyrl 45.5 46.4 50.0
mkd_Cyrl 56.8 55.0 55.9 mkd_Cyrl 52.3 51.4 53.2 mkd_Cyrl 66.7 72.1 67.6
myv_Cyrl 40.5 44.1 38.7 myv_Cyrl 39.6 36.9 41.4 myv_Cyrl 45.0 47.7 45.9
oss_Cyrl 49.5 45.9 45.0 oss_Cyrl 49.5 45.9 48.6 oss_Cyrl 47.7 49.5 45.0
rus_Cyrl 50.5 52.3 50.5 rus_Cyrl 49.5 47.7 48.6 rus_Cyrl 57.7 64.9 64.0
sah_Cyrl 44.1 43.2 40.5 sah_Cyrl 40.5 41.4 41.4 sah_Cyrl 45.9 44.1 47.7
tat_Cyrl 45.9 46.8 45.9 tat_Cyrl 47.7 50.5 47.7 tat_Cyrl 53.2 47.7 51.4
tgk_Cyrl 48.6 49.5 48.6 tgk_Cyrl 42.3 44.1 46.8 tgk_Cyrl 55.9 58.6 54.1
tyv_Cyrl 43.2 44.1 45.9 tyv_Cyrl 38.7 45.0 43.2 tyv_Cyrl 47.7 46.8 46.8
udm_Cyrl 42.3 45.0 41.4 udm_Cyrl 36.9 40.5 38.7 udm_Cyrl 41.4 47.7 43.2
ukr_Cyrl 51.4 49.5 48.6 ukr_Cyrl 52.3 50.5 48.6 ukr_Cyrl 63.1 64.0 62.2
uzn_Cyrl 45.0 51.4 42.3 uzn_Cyrl 45.9 43.2 44.1 uzn_Cyrl 59.5 55.9 55.9
hin_Deva 49.5 44.1 50.5 hin_Deva 51.4 53.2 54.1 hin_Deva 64.9 59.5 64.0
hne_Deva 54.1 52.3 56.8 hne_Deva 55.9 56.8 55.0 hne_Deva 61.3 57.7 61.3
mai_Deva 49.5 46.8 48.6 mai_Deva 45.0 51.4 47.7 mai_Deva 62.2 51.4 58.6
mar_Deva 53.2 40.5 53.2 mar_Deva 49.5 51.4 51.4 mar_Deva 55.9 54.1 59.5
nep_Deva 63.1 49.5 57.7 nep_Deva 45.0 45.9 46.8 nep_Deva 66.7 61.3 64.9
npi_Deva 55.9 49.5 62.2 npi_Deva 51.4 50.5 51.4 npi_Deva 66.7 60.4 65.8
suz_Deva 42.3 42.3 41.4 suz_Deva 46.8 48.6 44.1 suz_Deva 43.2 49.5 48.6
mdy_Ethi 43.2 38.7 42.3 mdy_Ethi 39.6 45.9 44.1 mdy_Ethi 55.0 52.3 57.7
tir_Ethi 27.9 31.5 30.6 tir_Ethi 29.7 36.9 36.9 tir_Ethi 39.6 29.7 36.0
kat_Geor 42.3 41.4 41.4 kat_Geor 41.4 44.1 41.4 kat_Geor 45.0 46.8 45.9
ell_Grek 49.5 43.2 43.2 ell_Grek 49.5 43.2 52.3 ell_Grek 57.7 62.2 59.5
guj_Gujr 52.3 45.0 52.3 guj_Gujr 45.9 43.2 49.5 guj_Gujr 52.3 55.9 55.0
pan_Guru 46.8 39.6 48.6 pan_Guru 41.4 45.0 47.7 pan_Guru 45.9 50.5 49.5
kor_Hang 49.5 48.6 51.4 kor_Hang 48.6 50.5 55.9 kor_Hang 72.1 50.5 69.4
cmn_Hani 53.2 45.0 50.5 cmn_Hani 48.6 45.0 48.6 cmn_Hani 61.3 50.5 64.0
lzh_Hani 54.1 45.0 52.3 lzh_Hani 55.0 48.6 52.3 lzh_Hani 65.8 51.4 59.5
yue_Hani 53.2 45.0 50.5 yue_Hani 43.2 52.3 53.2 yue_Hani 63.1 48.6 65.8
khm_Khmr 48.6 47.7 54.1 khm_Khmr 52.3 53.2 53.2 khm_Khmr 55.9 50.5 53.2
lao_Laoo 46.8 49.5 46.8 lao_Laoo 45.0 49.5 51.4 lao_Laoo 45.0 46.8 46.8
ksw_Mymr 42.3 40.5 40.5 ksw_Mymr 44.1 47.7 45.0 ksw_Mymr 44.1 48.6 49.5
mya_Mymr 44.1 47.7 43.2 mya_Mymr 45.0 51.4 47.7 mya_Mymr 51.4 45.9 49.5
ori_Orya 51.4 46.8 50.5 ori_Orya 43.2 43.2 44.1 ori_Orya 50.5 58.6 47.7
ory_Orya 49.5 47.7 54.1 ory_Orya 44.1 48.6 52.3 ory_Orya 57.7 55.0 57.7
sin_Sinh 39.6 41.4 40.5 sin_Sinh 39.6 52.3 38.7 sin_Sinh 37.8 49.5 45.0
tam_Taml 59.5 51.4 58.6 tam_Taml 44.1 49.5 45.9 tam_Taml 60.4 50.5 55.9
tel_Telu 50.5 40.5 53.2 tel_Telu 33.3 43.2 36.9 tel_Telu 54.1 41.4 52.3
tha_Thai 43.2 43.2 39.6 tha_Thai 43.2 40.5 39.6 tha_Thai 57.7 43.2 52.3
dzo_Tibt 41.4 44.1 41.4 dzo_Tibt 45.0 49.5 47.7 dzo_Tibt 45.0 44.1 43.2

Table 9: Accuracy of Taxi1500 task on BLOOM 7B, LLaMA2-7B and Mistral 7B (from left to right).
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Abstract

This work investigates how amultilingual trans-

former model represents morphosyntactic prop-

erties of questions. We introduce the Ques-

tion Type and Complexity (QTC) dataset with

sentences across seven languages, annotated

with type information and complexity metrics

including dependency length, tree depth, and

lexical density. Our evaluation extends prob-

ing methods to regression labels with selectiv-

ity controls to quantify gains in generalizabil-

ity. We compare layer-wise probes on frozen

Glot500-m (Imani et al., 2023) representations

against subword TF-IDF baselines, and a fine-

tuned model. Results show that statistical fea-

tures classify questions effectively in languages

with explicit marking, while neural probes cap-

ture fine-grained structural complexity patterns

better. We use these results to evaluate when

contextual representations outperform statisti-

cal baselines and whether parameter updates

reduce availability of pre-trained linguistic in-

formation.

1 Introduction

Multilingual contextual embeddings show promise

for accessing fine-grained morphosyntactic prop-

erties across hundreds of languages. Probing how

transformer models encode certain linguistic prop-

erties has practical implications for language ty-

pology research, where systematic comparison of

structural features often relies on automated analy-

sis. Additionally, evaluations targeting specific lin-

guistic phenomena can test common architectural

assumptions about transformer models. Examples

include the often discussed layer-wise specializa-

tion from syntactic to semantic processing (Tenney

et al., 2019a) and the ability of shared embedding

spaces to effectively capture cross-linguistic pat-

terns.

Researchers rely on these assumptions in order

to describe the internals of the models when test-

ing on benchmarks (Conneau et al., 2020; Şahin

ara eng fin ind jpn kor rus

TyDi QA UD 2.15

What do you think of Air France ?
PRON AUX PRON VERB ADP PROPN PROPN PUNCT

1 2 3 4 5 6 7 8

root

obj

aux
nsubj

obl
case

compound

punct

labels

Type content

Token Count 8

Max. Tree Depth 2

Avg. Verbal Edges 3

Lexical Density 0.428

Avg. Edge Length 2

Avg. Sub. Chain Length 0
∑

complexity metrics 15.428

sentence representations

Subword TF-IDF

Glot500 encoder

Fine-tuned Glot500

Figure 1: Experimental pipeline from multilingual

datasets: TyDi QA (Clark et al., 2020), UD 2.15 (Zeman

et al., 2024), through annotation of question types and

complexity metrics to extraction of three representation

types used for model training.

et al., 2020), but also when evaluating their gen-

eral linguistic capabilities outside of specific tasks

(Brunato et al., 2020). However, comparisons with

appropriate baselines are often left out. Without

those, we cannot determine whether observed lin-

guistic capabilities reflect genuine structural pro-

cessing or are the result of patterns that simpler

statistical methods capture equally well.

This presents a challenge when investigating

universal sentence-level phenomena where the re-

lationship between surface form and underlying

structure varies extensively (Tenney et al., 2019b;

Ravishankar et al., 2019). We focus specifically

on interrogative sentences, which illustrate this

variation particularly well. For example, Arabic

uses explicit particles like “ له ” for polar (yes/no)

questions and overt subordinating conjunctions

for complex clauses. Alternatively, Japanese re-

lies on contextual cues for question interpretation

and implicit hierarchical embedding through case-

marking for structural complexity. The differences

in how languages encode both categorical distinc-

tions and continuous complexity metrics create a

natural setup for evaluating whether contextual rep-
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resentations capture structural patterns better than

surface-level statistical correlations obtained by,

for example, TF-IDF features.

We explore this question through controlled com-

parisons of neural representations with statistical

baselines across seven typologically diverse lan-

guages. Our framework extends probing methods

to continuous linguistic properties, including to-

ken count, lexical density, dependency length, tree

depth, verbal arity, and subordination patterns. Fig-

ure 1 illustrates our method: we start with existing

multilingual datasets, process and annotate these

for categorical (interrogative types) and continuous

labels, and we finally evaluate three representation

types (subword TF-IDF features, contextual em-

beddings, and a fine-tuned model) using our anno-

tated data in Arabic, English, Finnish, Indonesian,

Japanese, Korean, and Russian.

We present three key findings:

• Contextual embeddings outperform statisti-

cal baselines for question type classification,

particularly in languages requiring contex-

tual integration (Japanese, Korean, English,

Finnish).

• Regression performance varies significantly

across metrics, with distinct layer-wise pro-

files emerging for different structural proper-

ties.

• Fine-tuning compensates for unstable neural

encoding patterns but degrades performance

on metrics with stable layer-wise representa-

tions, revealing a trade-off between adapta-

tion and preservation of pre-trained linguistic

knowledge.

These results provide practical guidance for

model selection based on typological properties and

suggest that frozen representations may be prefer-

able for certain analytical tasks. Additionally, our

regression-based probing framework with selectiv-

ity controls opens new avenues for investigating

continuous linguistic properties in neural represen-

tations.

2 Related Work

Probing methods assess what linguistic knowledge

is encoded in neural representations by training

classifiers to predict specific properties in word em-

beddings (Adi et al., 2017; Conneau et al., 2018).

Early work demonstrated that contextualized and

static representations encode syntactic information

like part-of-speech categories, dependency rela-

tions, and word order variation (Köhn, 2015; Shi

et al., 2016).

Most probing studies focus on token-level prop-

erties, with fewer approaches looking at variation

in sentence-level regularities. Şahin et al. (2020);

Waldis et al. (2024) introduce comprehensive eval-

uation frameworks for sentence level probing tasks.

These reveal how models encode structural linguis-

tic properties such as morphological case marking,

agreement patterns, and syntactic hierarchies, as

well as functional properties including semantic

roles, discourse relations, and pragmatic features.

Question type classification represents a natural

extension of this work, as it requires models to inte-

grate both formal markers (interrogative particles,

auxiliary inversion) and functional understanding

(information-seeking intent, presupposition struc-

ture).

Two assumptions motivate current probing ap-

proaches. First, the layer-wise specialization hy-

pothesis suggests lower layers encode syntax while

higher layers capture semantics (Tenney et al.,

2019a). This informs decisions about which lay-

ers to probe for different linguistic tasks. Second,

multilingual models develop shared embedding

spaces that capture cross-linguistic patterns (Con-

neau et al., 2020), enabling efficient transfer across

languages.

Probes mainly target categorical properties

through classification tasks (Tenney et al., 2019b;

Jawahar et al., 2019). However, Pimentel et al.

(2020) argue that complex linguistic phenomena

require more sophisticated probing architectures

that can approximate a wider range of informa-

tion content. Regression-based probing is a sim-

ple approach that investigates linguistic properties

like syntactic complexity, processing difficulty, and

structural density. Complexity measures derived

through dependency parsing allow us to generate

target labels that reveal how models encode syntac-

tic structure along continuous and discrete dimen-

sions. We investigate these to assess how accessible

structural features are from learned embeddings.

Determining whether probes capture genuine

structural encoding requires appropriate baselines.

Hewitt and Liang (2019) introduced selectivity con-

trols comparing performance on real versus shuf-

fled labels to distinguish linguistic encoding from

spurious correlations. Most studies, however, eval-

uate neural representations without statistical base-

lines, making it difficult to assess whether con-

textual embeddings offer genuine advantages over
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Language # % Polar % Content Avg. Score

Arabic 1,116 48.3 51.7 0.42
English 1,374 50.0 50.0 0.38
Finnish 1,368 49.9 50.1 0.34
Indonesian 1,136 48.2 51.8 0.39
Japanese 1,329 50.8 49.2 0.41
Korean 921 46.9 53.1 0.39
Russian 1,376 50.0 50.0 0.41

Total 8,620 50.6 49.4 0.39

Table 1: QTC dataset statistics by language. # shows

total annotated sentences per language. Polar/Content

percentages reflect question type distribution. Average

Complexity represents normalized composite scores of

individual complexity metrics (see Appendix A for de-

tails).

frequency-based methods.

Similarly, while probing typically uses frozen

representations extracted from a specific layer of

the encoder, the relationship between pre-trained

knowledge and task-specific optimization remains

underexplored. Understanding when end-to-end

optimization preserves or degrades pre-trained lin-

guistic knowledge requires direct comparison of

frozen probes and fine-tuned models, particularly

for structural properties that may be disrupted by

task-specific adaptation.

3 Dataset

We introduce the Question Type and Complex-

ity (QTC) dataset containing ∼ 9, 000 annotated

questions across seven languages: Arabic, English,

Finnish, Indonesian, Japanese, Korean, and Rus-

sian. QTC combines TyDiQA-GoldP training data

(Clark et al., 2020) with Universal Dependency

treebank test data (Nivre et al., 2020; Zeman et al.,

2024) to balance natural language variation with

standardized syntactic annotation, with approxi-

mately 70% of sentences drawn from TyDiQA

and 30% from UD treebanks. The choice of lan-

guages was informed by different question forma-

tion strategies. Languages using explicit interrog-

ative marking include Arabic with “ له ”, Finnish

with suffix “-ko/-kö”, and Russian with particle

“ли”. Languages using implicit strategies like con-

text or prosody include Japanese, Indonesian, and

Korean. Lastly, auxiliary inversion in English can

be seen as a mixed strategy.

Categorical and continuous labels were created

using parallel annotation pipelines. For question

type classification, TyDiQA data already contained

human annotations from three independent anno-

tators. We adopted annotations where all three an-

notators agreed and manually resolved disagree-

ments. UD treebank sentences were annotated for

question type using language-specific rule-based

systems targeting morphosyntactic patterns: inter-

rogative particles, wh-phrase positioning, and aux-

iliary structures. We label polar questions as ‘1’

and content questions as ‘0’.

For complexity metrics, we used UDPipe 2.0

(Straka, 2018) to parse all sentences, then applied

the Profiling-UD framework (Brunato et al., 2020)

to extract six raw complexity features capturing

processing difficulty (see Appendix A for details).

We validated complexity metrics through statistical

outlier detection and (partial) manual verification

of parse quality.1

4 Probing Tasks

4.1 Question Type Classification

Classifying questions as polar (yes-no) or content

(wh-) is an interesting test case for comparing neu-

ral representations against statistical baselines. As

mentioned, languages with explicit marking strate-

gies use dedicated particles or consistent transfor-

mations, like English auxiliary inversion (Dryer,

2013a). This makes classes identifiable through

surface patterns that frequency features can cap-

ture.

Languages with implicit strategies prove chal-

lenging because they rely on context and prosody.

Japanese polar questions like “Ashita kimasu ka?”

[Tomorrow come-polite Q] and content questions

“Itsu kimasu ka?” [When come-polite Q] have iden-

tical sentence-final particles, differing only in the

presence of wh-words that often appear in non-

initial positions (Dryer, 2013b). This variation al-

lows us to test when contextual embeddings pro-

vide genuine advantages over frequency-based ap-

proaches for capturing structural patterns that go

beyond readily available surface cues.

4.2 Linguistic Complexity Prediction

In addition to question type classification, we also

use continuous labels and predict complexity scores

derived from morphosyntactic properties. This

operationalizes the idea that structural density in-

creases processing difficulty (Hawkins, 2007). We

formulate this as a regression task, targeting six nor-

malized complexity metrics: token count, lexical

1The QTC dataset and code are available at
hf.co/rokokot/question-type-and-complexity
and github.com/rokokot/qtype-eval.
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density, average dependency length, maximum tree

depth, verbal arity, and subordinate chain length.

This tests whether different representations capture

quantitative aspects of linguistic structure. We also

evaluate performance on a combined complexity

score calculated as the normalized sum of all six

individual metrics, providing an abstract measure

of structural density.

Statistical models can effectively capture surface-

level complexity indicators. Token count correlates

with question length from simple “Who left?” to

complex “What did the committee decide about the

proposal?”, while subordination patterns manifest

through explicit conjunctions that TF-IDF features

can detect. However, hierarchical syntactic prop-

erties present greater challenges. A question like

“Who ate the cake that Alice brought?” shares the

same interrogative markers as the simple exam-

ple, but involves multiple dependency levels and

clauses that increase syntactic complexity.

Unlike categorical properties typically studied in

probing, continuous dimensions allow us to isolate

aspects of linguistic structure most effectively cap-

tured by different representation approaches. This

allows us to test competing hypotheses about how

neural and statistical models encode structural in-

formation. If contextual representations truly cap-

ture abstract syntactic hierarchies, they should out-

perform frequency-based methods on metrics like

tree depth and subordination complexity, which

require understanding of long-distance dependen-

cies and recursive structures. Conversely, if neural

advantages primarily reflect sophisticated pattern

matching, we expect statistical baselines to remain

competitive across all complexity dimensions.

4.3 Experimental Setup

Our setup addresses the core methodological chal-

lenge of distinguishing genuine linguistic encoding

from pattern memorization when comparing neu-

ral and statistical approaches. Following Hewitt

and Liang (2019), we create three shuffled-label

control variants per task that preserve label distri-

butions while destroying text-label relationships.

We define selectivity as normalized performance

differences:

Scls =
accreal − acccontrol

acccontrol

Sreg =
msecontrol −msereal

msecontrol

(1)

with (acc)uracy for the classification task and

mean squared error (mse) for regression task.

This approach enables direct comparison of rep-

resentational quality. Selectivity measures how

much better a model performs when linguistic struc-

ture is present versus absent. Higher values (e.g.,

> 0.5) mean the model exploits “genuine” lin-

guistic patterns, while low selectivity suggests the

model performs similarly regardless of whether

input-label relationships are meaningful or random.

Strong selectivity shows when models capture in-

formation rather than surface correlations.

5 Experiments

The experiments were carried out on Glot500-m

(Imani et al., 2023), a multilingual encoder-only

transformer. Glot500-m was created by extend-

ing the XLM-R-base architecture (Conneau et al.,

2020) using continued pre-training on a custom

multilingual corpus and expanding the vocabulary

from 250K to 401K tokens to cover 511 languages,

including all seven languages in our dataset.

5.1 Subword TF-IDF Baselines

First, we establish baselines using linear and nonlin-

ear predictors trained on TF-IDF features and corre-

sponding sentence labels. We use the Glot-500-m

tokenizer to generate TF-IDF representations for a

fair comparison.

We establish baselines using linear models (lo-

gistic regression for classification, ridge regression

for complexity prediction) and XGBoost (Chen

and Guestrin, 2016) for nonlinear feature inter-

actions. XGBoost provides an upper bound for

statistical baseline performance while maintaining

interpretability through feature importance scores.

Dummy baselines using majority class and mean

value prediction set floor performance.

5.2 Probes on Frozen Representations

We extract sentence-level embeddings from each

of the 12 layers of the frozen encoder using mean

pooling across token representations, resulting in

a fixed-size 768-dimensional vector for each sen-

tence. For every sentence embedding at every layer

we train neural probes to predict the target label.

This allows us to track where different kinds of

linguistic information are most accessible to the

probe.

We designed our probe architectures to capture

complex patterns while maintaining training effi-

ciency. Classification probes use two-layer MLPs
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Language
TF-IDF

Linear S
TF-IDF

XGBoost S
Glot500

Best Probe S Layer
Glot500

Fine-tuned

Arabic 90.9 0.92 97.4 0.83 85.7 0.20 2 74.1

English 83.6 0.55 80.9 0.56 97.3 0.95 5 91.8

Finnish 84.5 0.85 87.2 0.91 94.5 0.89 5 92.3

Indonesian 67.3 0.41 65.5 0.23 80.9 0.62 6 73.6

Japanese 64.1 0.25 64.1 0.28 82.6 1.07 10 88.0

Korean 66.3 0.43 73.6 0.48 76.4 0.53 9 91.1

Russian 86.4 0.85 77.2 0.5 97.3 0.95 11 96.4

Table 2: Question type classification accuracy (%) and mean selectivity (S) across approaches. Bold values indicate
the highest accuracy and selectivity scores achieved for each language. Layer denotes the index of the encoder layer

at which the probe achieved highest accuracy.

with 384 hidden units optimized using binary cross-

entropy loss. Regression probes use three-layer

MLPswith 128 hidden units andminimize themean

squared error loss. All probes are trained sepa-

rately for each layer and task combination using

70/15/15 train/validation/test splits. While expres-

sive enough to capture complex patterns, this setup

ensures that performance differences reflect rep-

resentational properties rather than probe capacity

(Pimentel et al., 2020; Waldis et al., 2024).

5.3 Fine-tuned Model

To determine whether parameter updates preserve

pre-trained linguistic information, we train the com-

plete Glot500 model end-to-end on each task. The

fine-tuned model uses identical task-specific heads

as our probes but allows model updates (i.e., not

frozen).

We employ two-layer MLPs with binary cross-

entropy loss for classification and three-layer heads

with MSE loss for regression.

This configuration enables direct comparison

with frozen probes. If fine-tuning enhances lin-

guistic representations, the updated model should

consistently outperform probes across all metrics.

Conversely, degraded performance indicates that

task-specific optimization disrupts structural knowl-

edge encoded during pre-training.

We only report main task performance metrics

for fine-tuned models because selectivity controls

are less meaningful when the entire network adapts

to the specific label distribution, potentially reflect-

ing task-specific overfitting.

6 Results

Our statistical baselines employ logistic regression

for classification and ridge regression for complex-

ity prediction, with XGBoost capturing nonlinear

feature interactions.

Results across the two tasks reveal trade-offs

in the ability of our models to capture different

kinds of linguistic information. For question type

classification, neural probes consistently perform

the best, with the majority of highest accuracy and

selectivity scores. Regression results show more

variety, with different representation types leading

on different complexity metrics.
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Figure 2: Question type classification across languages and methods. Probing results per layer of Glot500-m.
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Submetric
TF-IDF

Ridge S
TF-IDF

XGBoost S
Glot500

Best Probe S Layer
Glot500

Fine-tuned

Token Count 0.042 0.46 0.032 0.60 0.004 0.68 5 0.006

Max. Tree Depth 0.013 0.60 0.013 0.58 0.002 0.57 2 0.017

Avg. Dependency Length 0.007 0.36 0.007 0.73 0.013 0.29 4 0.002

Avg. Subordinate Chain Length 0.015 0.52 0.055 0.29 0.053 0.47 6 0.019

Avg. Verbal Edges 0.042 0.35 0.066 0.32 0.070 0.40 6 0.030

Lexical Density 0.033 0.48 0.082 0.27 0.036 0.21 3 0.023

Combined Complexity 0.032 0.48 0.017 0.60 0.016 0.78 4 0.020

Table 3: Complexity submetric regression errors (mse) and mean selectivity (S) across approaches. Language codes
are shown next to every S value to indicate the corresponding language.

6.1 Surface Markers and Contextual

Classification Cues

Table 2 shows the classification accuracy and se-

lectivity scores across all languages and predictors.

Probes achieve the highest accuracy in four out of

seven languages and the best selectivity scores in

six. Arabic is the exception with XGBoost reach-

ing 97.4% accuracy (0.83 selectivity) compared to

85.7% accuracy (0.20 selectivity) with the best per-
forming probe. Linear models perform similarly

well (90.9% accuracy, 0.92 selectivity).

Figure 2 tracks how probes performwhen trained

on representations from different encoder layers,

compared to baseline predictors and the fine-tuned

model. English, Finnish and Russian show similar

trends, with both probes and fine-tuning achiev-

ing accuracies > 90%, although at different depths

(layer 5 for English and Finnish, layer 11 for Rus-

sian).

Indonesian probes perform poorly until layer 5,

after which they consistently exceed all baseline

methods, dipping only at the final layer. Japanese

and Korean show oscillating scores across layers,

with fine-tuning achieving notably higher accuracy.

The benefits of contextual representations are

clearest in English, Japanese, and Korean, where

the performance gap between statistical baselines

and Glot500-m probes/fine-tuning ranges from 10

to 20 percentage points increases. Finnish shows a

more moderate contextual advantage of less than 10

percentage points, while Arabic, Indonesian, and

Russian exhibit much smaller gaps between repre-

sentation types.

6.2 Continuous Complexity Probing

Table 3 presents regression errors across six com-

plexity sub-metrics plus the combined complexity

score, limited to results for languages that achieved

the best performance on each metric.

Glot500-m probes achieve the lowest error rates

on three metrics: token count (0.004 MSE, 0.68

selectivity), tree depth (0.002 MSE, 0.57 selectiv-

ity), and combined complexity (0.016 MSE, 0.78

selectivity). Fine-tuning leads on three others: de-

pendency length (0.002 MSE), verbal edges (0.030

MSE), and lexical density (0.023 MSE). Ridge re-

gression achieves the best performance on subordi-

nate chain length (0.015 MSE, 0.52 selectivity).

In terms of selectivity, statistical approaches are

surprisingly competitive, with TF-IDF methods

achieving the highest selectivity on four out of

seven metrics. This contrasts with classification

results where probes consistently outperformed our

baselines.

Layer-wise regression patterns come in three dis-

tinct profiles. Most combinations show flat per-

formance curves where all approaches converge

around similar values, with the difference between

highest and lowest error remaining below 0.01.

Cases with moderate layer-to-layer variation (error

differences between 0.01 and 0.03) suggest partial

encoding of relevant information across themodel’s

depth. More pronounced oscillations, where error

differences exceed 0.03, are usually coupled with

low probe performance and point to failures of the

contextual embeddings to encode the targeted in-

formation.

Fine-tuning achieves the lowest error rates on

three metrics: dependency length, verbal edges, lex-

ical density. These advantages appear concentrated

on metrics that show relatively flat layer-wise pro-

files, suggesting that the linguistic properties may

be better captured through end-to-end optimization

rather than frozen representations. Conversely, met-

rics where probes excel (token count, tree depth,

combined complexity) tend to show more pro-

nounced layer preferences, with fine-tuning per-

forming relatively poorly.
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Figure 3: Layer-wise regression trends show three distinct encoding profiles.

7 Discussion

7.1 Classification Performance Analysis

Classification results show that neural approaches

generally perform better than statistical baselines.

Arabic is the only exception, possibly reflecting the

widespread and unambiguous use of question parti-

cles. However, explicit marking does not uniformly

favor TF-IDF features. For example, Russian uses

particles which follow similar transformations, yet

benefit more from Glot500 embeddings. This con-

firms that the nature of marking strategy matters

more than its presence or absence.

English and Finnish further confirm this pattern.

English auxiliary inversion (“Is it raining?” / “It is

raining”) and Finnish suffixes (”-ko/-kö”) represent

complex morphosyntactic transformations rather

than simple particles, yet both show strong neural

advantages (97.3% and 94.5% respectively) over

statistical baselines. This suggests that transfor-

mational marking strategies require contextual pro-

cessing to identify the relevant structural changes,

even when the markers themselves are explicit.

Selectivity scores reveal that these representation

types capture distinct aspects of question formation.

Statistical methods excel when surface distributions

provide reliable cues, while neural representations

become necessary when question identification re-

quires integration of distributed contextual infor-

mation that goes beyond simple frequency patterns.

Differences in processing stability across lan-

guages can be seen in Figure 2. These patterns

appear related to how question type information

is distributed through the transformer architecture.

Arabic exhibits the highest variability with 0.25

accuracy difference between layers following its

overall lower neural performance. Russian has the

opposite tendency with minimal variation (< 0.1)
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while maintaining consistently high performance.

English, Korean, and Finnish show moderate vari-

ability (0.1), while Indonesian and Japanese display

higher fluctuations (> 0.2) that correspond with

the oscillations visible in their layer-wise profiles.

7.2 Regression Profiles

Despite Glot500 representations achieving consis-

tently low errors in complexity regression tasks,

TF-IDF approaches show higher selectivity scores

on tree depth, dependency length, subordinate chain

length, and lexical density metrics. Table 3 shows

the variety in the ability of transformers to encode

different morphosyntactic properties.

Regression probes have a clear advantage on

token count and combined complexity, but they

do not consistently outperform our baselines on

most of the metrics. Selectivity scores reveal that

statistical methods lead on four of seven complex-

ity metrics, demonstrating that frequency features

can distinguish meaningful structural patterns from

spurious correlations more reliably than contextual

representations.

Figure 3 shows a selection of layer-wise error

trends highlighting the three most common perfor-

mance profiles. Flat probe trends were observed

most often, meaning that certain structural proper-

ties are tied to surface features and that contextual

processing rarely provides additional benefit. High

probe oscillations and poor performance are more

interesting. They imply that rather than building

increasingly sophisticated representations of struc-

tural complexity, the transformer may be losing

and regaining access to relevant information as we

move through successive layers.

The differences between fine-tuning and frozen

probes point towards a trade-off between the two

neural approaches. Fine-tuning performs well al-

most exclusively on metrics characterized by high

oscillations and unstable layer-wise trends, sug-

gesting that parameter updates may compensate

for inconsistencies. On the other hand, low perfor-

mance on metrics with flat profiles demonstrates

that task-specific training may prevent access to

or even destroy pre-trained information. In other

words, when structural information is clearly en-

coded at specific layers, the parameter updates re-

quired for task optimization appear to interfere with

these patterns.

However, the success of fine-tuning on predict-

ing dependency length, verbal edges, and lexical

density suggests that some properties are not read-

ily available in frozen transformer representations,

requiring parameter updates to achieve reliable per-

formance on these metrics.

8 Conclusion

We investigated how multilingual transformers en-

code question patterns by comparing contextual em-

beddings against statistical baselines across seven

typologically diverse languages. Glot500 probes

show advantages in question type classification,

particularly for languages requiring contextual inte-

gration (Japanese, Korean, English, Finnish), while

Arabic’s unambiguous particles favor statistical

methods. For complexity regression, statistical

baselines show better selectivity on most individ-

ual metrics, though neural methods excel at token

count and verbal arity.

Different complexity metrics exhibit distinct

layer-wise encoding patterns. Fine-tuning com-

pensates for unstable neural encoding (high oscilla-

tions) but struggles onmetrics with otherwise stable

layer-wise representations, suggesting task-specific

optimization can disrupt pre-trained knowledge.

Our QTC dataset and regression-based probing

setup using selectivity controls provide tools for

investigating continuous linguistic properties. We

find that understanding when and why neural mod-

els capture linguistic structure requires careful com-

parison with principled baselines. Future work

should examine applications to other architectures,

investigate why certain complexity metrics resist

neural encoding, and develop training procedures

that preserve linguistic information while improv-

ing task performance.

Limitations

This study is limited to seven languages for which

high-quality treebanks and interrogative sentence

data were available. Our dataset focuses exclu-

sively on questions, so the findings do not gen-

eralize to other clause types. While we carefully

selected the languages to cover different interroga-

tive patterns, we do not cover all typological varia-

tion between target languages. Complexity metrics

are computed from automatic dependency parses,

which can introduce parser-specific biases and re-

duce comparability. However, the cross-linguistic

consistency of our findings suggests that genuine

structural differences emerge despite potential pars-

ing noise.
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A Metric Definitions

Token Count is a straightforward way to measure

sentence complexity. It refers to the number of pro-

cessed segments in a sentence, |T|. In languages like

English, tokens are words and punctuation marks.

In Japanese or Korean, which do not use spaces be-

tween words, tokens are aligned with grammatical

morphemes rather than orthographic words. Gener-

ally, the more tokens a sentence has, the more likely

it is to require greater processing efforts (Iavarone

et al., 2021).

Lexical density is the ratio of content words

(nouns, verbs, adjectives, adverbs) to the total num-

ber of tokens excluding punctuation. This metric

captures the information density of a sentence and

often serves as evidence of register difficulty due

to its variation across domains.

LD =
|content words|
|T| − |punct| =

3

7
= 0.428 (2)

Average Dependency Length is the linear dis-

tance between words and their syntactic heads,

across all dependency links in a sentence. This mea-

sure directly reflects cognitive processing load, as

longer dependencies require holding more informa-

tion during processing. Futrell et al. (2015) provide

compelling evidence in 37 languages, showing that

all human languages maintain shorter dependency

lengths than would occur by random chance.

ADL = 1
N−1

N−1∑
token(1)

|dep(i)− head(i)| = 12
6 = 2 (3)

Where N is the number of tokens (i.e., words)

without any punctuation and excluding the root of

the sentence (N− 1).
Maximum Tree Depth measures the longest

path from root to leaf in a dependency structure,

revealing how deeply embedded linguistic elements

420

https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9995771172701488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9995771172701488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9995771172701488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://aclanthology.org/2020.lrec-1.497/
https://aclanthology.org/2020.lrec-1.497/
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/W19-4318
https://doi.org/10.18653/v1/W19-4318
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
http://hdl.handle.net/11234/1-5787
http://hdl.handle.net/11234/1-5787
https://doi.org/10.1162/coli_a_00376
https://doi.org/10.1162/coli_a_00376


What do you think of Air France ?

PRON AUX PRON VERB ADP PROPN PROPN PUNCT

1 2 3 4 5 6 7 8

root

obj

aux

nsubj case

compound

obl

punct

Token root nsubj aux obj obl punct case compound

Tree Depth 0 1 1 1 1 1 2 2

Dependency Length 0 1 2 3 3 4 2 1

Figure 4: Dependency parse diagram showing grammatical relations, token indices (1-8) and POS tags, with dashed

arcs highlighting verbal edges, function words in gray, and a table listing dependency distance and tree depth.

are within a sentence. For token index i in sentence
S, Max Depth is defined as:

MTD = max
token(i)∈S

Depth(i) = 2 (4)

Average Verbal Edges, sometimes called ver-

bal arity, is a measure of direct dependents (argu-

ments and modifiers) attached to each verb in a

sentence. In a dependency structure, these corre-

spond to edges from a verb to its governing words,

such as objects, subjects, or adjuncts, but exclud-

ing punctuation and auxiliary verbs (Brunato et al.,

2020).

ve =
1

|verbs|
∑

v∈verbs
dependent(v) = 3 (5)

Average Subordinate Chain Length is calcu-

lated as the ratio of the combined length of all sub-

ordinate clauses and the total number of clauses in

a sentence. It reflects the level of propositional em-

bedding and recursion. Although the dependency

structure in Figure 4 contains no subordination, it

remains crucial for capturing the clausal hierarchy

of nested sentences.

ASC =
sum of sub. chain lengths

number of sub. chains
= 0 (6)

B Experimental Details

All experiments were conducted using NVIDIA

A100 80GB GPUs. Each probing experiment

took approximately 5-10 minutes of training time,

while fine-tuning experiments took one hour per

language-task combination. The complete exper-

imental suite (including baselines) involved over

3300 individual runs across 7 languages, 12 trans-

former layers, and multiple tasks with control con-

ditions. This includes experiments with linear al-

gorithms, ensembles, and the fine-tuned model.

Training was carried out with batch sizes of 16,

gradient accumulation steps of 2-4, and automatic

mixed precision. All experiments used fixed ran-

dom seeds to ensure reproducibility. The total com-

putational cost was approximately 80 GPU hours

on A100 hardware.

For fine-tuning experiments, learning rates were

set to 1e-5 for the encoder and 1e-3 for the task

head, with early stopping based on validation per-

formance monitored over a patience window of 5

epochs. Probe training used Adam optimizer with

learning rate 1e-3 with early stopping when valida-

tion loss plateaued.

C Additional Results

This appendix provides additional per-language

and per-metric performance data to supplement the

main analysis. Table 4, Table 5, and Table 6 present

detailed results for all seven languages across both

classification and regression tasks, including selec-

tivity scores for baseline methods and layer-specific

performance indicators for optimal and weakest

probe configurations. Figure 5 shows layer-wise

error curves for all complexity metrics across lan-

guages.
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Question Type Classification Combined Complexity Regression

Acc. control ∆Acc. Ŝ MSE control ∆MSE Ŝ
D
u
m
m
y
b
as
el
in
e

ar 71.4 71.4 0 0 0.059 0.059 0 0

en 50.0 50.0 0 0 0.038 0.039 0 0

fi 50.0 50.0 0 0 0.040 0.040 0 0

id 50.0 50.0 0 0 0.040 0.040 0 0

ja 50.0 50.0 0 0 0.063 0.063 0 0

ko 50.0 50.0 0 0 0.036 0.036 0 0

ru 50.0 50.0 0 0 0.059 0.059 0 0

L
in
ea
r
p
re
d
ic
to
rs

ar 90.9 47.2 43.7 0.92 0.045 0.064 0.019 0.29

en 83.6 53.9 29.7 0.55 0.023 0.043 0.020 0.46

fi 84.5 46.1 0.83 0.85 0.037 0.043 0.006 0.14

id 67.3 47.5 19.8 0.41 0.028 0.046 0.018 0.39

ja 64.1 51.1 13.0 0.25 0.039 0.064 0.015 0.23

ko 66.4 46.3 20.1 0.43 0.023 0.039 0.016 0.41

ru 86.4 46.7 0.85 0.85 0.032 0.069 0.037 0.53

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 97.4 53.2 44.4 0.83 0.034 0.063 0.029 0.46

en 80.9 51.8 29.1 0.56 0.018 0.043 0.025 0.58

fi 87.2 45.7 41.5 0.91 0.032 0.042 0.01 0.24

id 65.5 53.3 12.2 0.23 0.026 0.043 0.017 0.39

ja 64.1 50.0 14.1 0.28 0.037 0.061 0.024 0.39

ko 73.6 49.7 23.9 0.48 0.031 0.038 0.007 0.18

ru 77.2 48.8 28.4 0.51 0.039 0.061 0.022 0.36

O
p
ti
m
al
P
ro
b
e

ar 85.7 (2) 71.4 14.3 0.20 0.030 (4) 0.067 0.037 0.55

en 97.3 (5) 50.0 47.3 0.95 0.017 (1) 0.048 0.031 0.64

fi 94.5 (5) 50.0 44.5 0.89 0.025 (1) 0.050 0.025 0.50

id 80.9 (6) 50.0 30.9 0.62 0.024 (4) 0.047 0.023 0.49

ja 82.6 (10) 39.8 42.8 1.07 0.016 (4) 0.073 0.057 0.78

ko 76.4 (9) 50.0 26.4 0.53 0.043 (3) 0.093 0.050 0.53

ru 97.3 (11) 50.0 47.3 0.95 0.039 (6) 0.069 0.030 0.43

W
ea
k
es
t
P
ro
b
e

ar 62.5 (12) 71.4 8.9 0.12 0.057 (12) 0.061 0.004 0.07

en 89.4 (2) 50.0 39.4 0.79 0.043 (12) 0.045 0.002 0.04

fi 83.6 (3) 50.0 33.6 0.67 0.042 (12) 0.043 0.001 0.03

id 62.7 (12) 50.0 12.7 0.25 0.042 (12) 0.046 0.004 0.09

ja 63.0 (5) 40.2 22.8 0.57 0.058 (12) 0.061 0.003 0.05

ko 63.6 (1) 50.0 13.6 0.27 0.041 (2) 0.053 0.012 0.22

ru 90.0 (2) 50.0 40.0 0.80 0.067 (10) 0.075 0.008 0.11

F
in
e-
tu
n
ed

G
lo
t5
0
0 ar 74.1 - - - 0.042 - - -

en 91.8 - - - 0.020 - - -

fi 92.3 - - - 0.030 - - -

id 73.6 - - - 0.030 - - -

ja 88.0 - - - 0.029 - - -

ko 91.1 - - - 0.031 - - -

ru 96.4 - - - 0.045 - - -

Table 4: Performance metrics for question type classification (accuracy) and combined complexity regression (MSE)

tasks across seven languages.
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Dependency Length Max. Tree Depth Sub. Chain Length

MSE Ŝ MSE Ŝ MSE Ŝ

D
u
m
m
y
b
as
el
in
e

ar 0.065 0 0.052 0 0.077 0

en 0.009 0 0.029 0 0.027 0

fi 0.026 0 0.031 0 0.054 0

id 0.036 0 0.033 0 0.069 0

ja 0.108 0 0.083 0 0.092 0

ko 0.027 0 0.037 0 0.054 0

ru 0.017 0 0.025 0 0.054 0

L
in
ea
r
p
re
d
ic
to
rs

ar 0.045 0.29 0.028 0.48 0.054 0.34

en 0.007 0.3 0.013 0.60 0.015 0.51

fi 0.024 0.17 0.036 0 0.041 0.27

id 0.037 0.01 0.024 0.33 0.053 0.30

ja 0.09 0.18 0.065 0.22 0.076 0.25

ko 0.022 0.23 0.025 0.36 0.044 0.31

ru 0.022 0 0.019 0.29 0.035 0.42

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 0.057 0.15 0.028 0.44 0.059 0.24

en 0.007 0.3 0.014 0.55 0.025 0.10

fi 0.027 0.03 0.022 0.29 0.051 0.11

id 0.04 0 0.026 0.21 0.055 0.29

ja 0.105 0.04 0.063 0.24 0.081 0.14

ko 0.029 0.05 0.032 0.18 0.063 0.01

ru 0.019 0 0.017 0.35 0.044 0.22

O
p
ti
m
al
P
ro
b
e

ar 0.045 (6) 0.42 0.028 (6) 0.48 0.069 (6) 0.12

en 0.090 (6) 0.23 0.016 (8) 0.46 0.022 (6) 0.25

fi 0.025 (8) 0.18 0.016 (7) 0.52 0.047 (12) -0.01

id 0.030 (12) 0 0.024 (1) 0.34 0.049 (1) 0.46

ja 0.087 (1) 0.10 0.072 (9) 0.10 0.053 (6) 0.47

ko 0.023 (8) 0.18 0.020 (2) 0.57 0.047 (5) 0.26

ru 0.013 (4) 0.29 0.016 (6) 0.41 0.049 (5) 0.14

W
ea
k
es
t
P
ro
b
e

ar 0.073 (12) -0.13 0.053 (12) 0.05 0.080 (12) -0.04

en 0.015 (10) -0.29 0.029 (12) 0.06 0.031 (3) 0.06

fi 0.030 (2) 0.07 0.037 (12) -0.05 0.073 (10) 0.08

id 0.049 (11) 0.16 0.033 (12) 0.05 0.081 (11) 0.06

ja 0.122 (3) 0.06 0.103 (10) -0.10 0.094 (12) -0.03

ko 0.042 (3) 0.18 0.037 (12) 0.02 0.070 (7) -0.05

ru 0.020 (11) 0.07 0.028 (12) 0 0.058 (6) 0.03

F
in
e-
tu
n
ed

G
lo
t5
0
0

ar 0.056 - 0.038 - 0.069 -

en 0.008 - 0.022 - 0.019 -

fi 0.002 - 0.023 - 0.045 -

id 0.031 - 0.028 - 0.043 -

ja 0.105 - 0.068 - 0.061 -

ko 0.025 - 0.029 - 0.046 -

ru 0.015 - 0.017 - 0.046 -

Table 5: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 1:

Dependency Length, Tree Depth, Subordinate Chain Length).
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Verbal Edges Lexical Density N Tokens

MSE Ŝ MSE Ŝ MSE Ŝ

D
u
m
m
y
b
as
el
in
e

ar 0.060 0 0.067 0 0.078 0

en 0.060 0 0.028 0 0.029 0

fi 0.060 0 0.055 0 0.014 0

id 0.065 0 0.053 0 0.039 0

ja 0.107 0 0.063 0 0.061 0

ko 0.041 0 0.107 0 0.078 0

ru 0.044 0 0.071 0 0.012 0

L
in
ea
r
p
re
d
ic
to
rs

ar 0.09 0.32 0.057 0.15 0.042 0.46

en 0.041 0.36 0.027 0.17 0.034 0.59

fi 0.068 0.34 0.070 -0.12 0.015 0.05

id 0.070 0.06 0.033 0.47 0.037 0.11

ja 0.108 0.10 0.09 -0.36 0.045 0.26

ko 0.045 0.02 0.070 0.37 0.056 0.30

ru 0.047 0.10 0.049 0.33 0.013 0.08

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 0.107 0.13 0.067 0.02 0.032 0.59

en 0.104 0.23 0.028 0.10 0.013 0.56

fi 0.070 0.32 0.069 -0.11 0.009 0.33

id 0.090 -0.25 0.046 0.26 0.022 0.47

ja 0.104 0.08 0.080 -0.33 0.040 0.33

ko 0.046 -0.04 0.082 0.26 0.077 0.06

ru 0.044 0.08 0.061 0.14 0.007 0.47

O
p
ti
m
al
P
ro
b
e

ar 0.103 (1) 0.23 0.054 (3) 0.10 0.037 (4) 0.59

en 0.043 (1) 0.35 0.025 (6) 0.11 0.010 (3) 0.63

fi 0.080 (12) -0.01 0.039 (2) 0.14 0.006 (1) 0.59

id 0.046 (9) 0.35 0.036 (3) 0.21 0.025 (3) 0.32

ja 0.007 (6) 0.40 0.071 (7) 0 0.023 (5) 0.66

ko 0.034 (12) 0 0.062 (8) 0.13 0.073 (9) 0.18

ru 0.041 (9) 0.18 0.037 (7) 0.14 0.004 (5) 0.68

W
ea
k
es
t
P
ro
b
e

ar 0.140 (7) 0 0.065 (5) -0.02 0.079 (12) 0

en 0.076 (8) 0.04 0.030 (12) 0.02 0.023 (12) 0.17

fi 0.112 (5) -0.13 0.051 (12) -0.03 0.016 (12) -0.03

id 0.062 (12) 0.04 0.046 (12) 0.04 0.034 (7) 0.08

ja 0.094 (12) 0.06 0.093 (10) -0.14 0.063 (12) 0.03

ko 0.036 (11) -0.04 0.074 (6) -0.07 0.104 (3) 0.12

ru 0.057 (8) -0.08 0.051 (12) -0.07 0.016 (12) -0.09

F
in
e-
tu
n
ed

G
lo
t5
0
0

ar 0.030 - 0.055 - 0.056 -

en 0.039 - 0.023 - 0.020 -

fi 0.079 - 0.044 - 0.011 -

id 0.045 - 0.038 - 0.027 -

ja 0.078 - 0.071 - 0.035 -

ko 0.034 - 0.074 - 0.070 -

ru 0.038 - 0.043 - 0.006 -

Table 6: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 2:

Verbal Edges, Lexical Density, N Tokens).
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Figure 5: Performance metrics across languages and transformer layers
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Abstract
We introduce ENTROPY2VEC, a novel frame-
work for deriving cross-lingual language repre-
sentations by leveraging the entropy of mono-
lingual language models. Unlike traditional
typological inventories that suffer from feature
sparsity and static snapshots, ENTROPY2VEC
uses the inherent uncertainty in language mod-
els to capture typological relationships between
languages. By training a language model on
a single language, we hypothesize that the en-
tropy of its predictions reflects its structural
similarity to other languages: Low entropy in-
dicates high similarity, while high entropy sug-
gests greater divergence. This approach yields
dense, non-sparse language embeddings that
are adaptable to different timeframes and free
from missing values. Empirical evaluations
demonstrate that ENTROPY2VEC embeddings
align with established typological categories
and achieved competitive performance in down-
stream multilingual NLP tasks, such as those
addressed by the LinguAlchemy framework.

1 Introduction

Linguistic typology provides a framework for clas-
sifying languages based on shared structural fea-
tures, offering insights into language universals and
diversity. Databases like the World Atlas of Lan-
guage Structures (WALS) (Haspelmath, 2005), AU-
TOTYP (Bickel and Nichols, 2002), URIEL (Littell
et al., 2017), and URIEL+ (Khan et al., 2025) cat-
alog these features, serving as valuable resources
for researchers and practitioners in the field of com-
putational linguistics and beyond. However, these
inventories face significant limitations: they often
cover only a subset of languages, leading to miss-
ing values, and they represent static snapshots of
linguistic knowledge, neglecting the dynamic and
evolutionary nature of languages.

Recent advancements in neural language model-
ing have enabled the extraction of continuous repre-
sentations of languages through pre-trained models.

Figure 1: ENTROPY2VEC framework. Monolingual
LMs are trained per language, and cross-lingual perplex-
ity is used as an unsupervised signal to derive language
vectors and induce typological trees, aligning well with
expert-curated taxonomies.

These embeddings capture semantic and syntac-
tic properties, facilitating cross-lingual transfer in
various NLP tasks. Nonetheless, existing methods
primarily focus on monolingual or bilingual set-
tings and do not explicitly model the typological
relationships between languages. Moreover, they
often rely on manually curated features, which may
not generalize well across languages or over time.

To address these challenges, we propose EN-
TROPY2VEC, a framework that derives language
representations based on the entropy of monolin-
gual language models (LMs). Entropy, a measure
of uncertainty in information theory, reflects the
predictability of a language’s structure. By training
a language model on a single language and analyz-
ing its entropy when applied to other languages, we
can infer typological similarities and differences.
This approach offers several advantages: it is data-
driven, scalable, and inherently adaptable to new
languages and evolving linguistic features.

In this paper, we demonstrate that EN-
TROPY2VEC embeddings align with established
typological categories, such as phonological, mor-
phological, and syntactic features. We also show
that these embeddings outperform traditional ty-
pological inventories in downstream multilingual
NLP tasks, including language identification, typol-
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ogy prediction, and cross-lingual transfer. By in-
tegrating ENTROPY2VEC into the LinguAlchemy
framework (Adilazuarda et al., 2024), we achieve
competitive generalization across languages, espe-
cially those underrepresented in existing typologi-
cal resources.

2 Related Works

Typological Language Inventories Traditional
typological inventories, such as WALS (Haspel-
math, 2005), AUTOTYP (Bickel and Nichols,
2002), URIEL (Littell et al., 2017), and
URIEL+ (Khan et al., 2025), have been instru-
mental in documenting linguistic diversity and in-
forming computational models. However, these
resources are limited by their static nature and the
incomplete coverage of the world’s languages. For
instance, WALS provides typological data for only
a fraction of the estimated 7,000 languages, leading
to missing values that can hinder the performance
of NLP models . ENTROPY2VEC addresses these
limitations by deriving LMs from the entropy of
monolingual LMs. This approach is inherently dy-
namic, as it can adapt to new languages and evolv-
ing linguistic features without the need for manual
curation. Moreover, it provides dense, non-sparse
embeddings that capture the probabilistic structure
of languages, offering a more nuanced understand-
ing of typological relationships.

Language Vector in NLP Language vectors, or
embeddings, have become foundational in mod-
ern NLP, enabling models to represent words, sen-
tences, and even entire languages as continuous
vectors in a high-dimensional space. Techniques
like Word2Vec, GloVe, and FastText have demon-
strated that such embeddings capture semantic and
syntactic properties, facilitating tasks like word
similarity, analogy reasoning, and machine trans-
lation. These embeddings are typically learned
from large corpora and reflect the statistical pat-
terns in language use. However, they often treat
languages as isolated entities, without explicitly
modeling the relationships between them. Recent
advancements, such as multilingual BERT and
XLM-R, have sought to address this by training
models on multiple languages simultaneously, cap-
turing shared structures and enabling cross-lingual
transfer.ENTROPY2VEC contributes to this land-
scape by offering a novel perspective on language
representation. Instead of relying solely on large-
scale pre-training on vast corpora, ENTROPY2VEC

leverages the entropy of monolingual LMs to in-
fer typological relationships between languages.
This approach not only aligns with existing lan-
guage representation models but also extends their
capabilities by incorporating typological insights,
thereby enhancing multilingual understanding and
transfer learning

3 ENTROPY2VEC

3.1 Unsupervised Language Modeling
Unsupervised language modeling uses an autore-
gressive approach, where the LM predicts the next
token based on the previous ones. Mathematically,
given a sequence of tokens [x1, x2, . . . , xt], the LM
defines a probability distribution over the next to-
ken xt+1 conditioned on all previous tokens. This
can be formally expressed as:

xt+1 = argmax
x

P (x | x1, x2, . . . , xt; θ)

where and θ represents the parameters of
the model. The goal of training is to max-
imize the likelihood of the observed data,
which is equivalent to minimizing the cross-
entropy loss. Formally, given a dataset D =

(x
(1)
1 , . . . , x

(1)
n1 ), . . . , (x

(N)
1 , . . . , x

(N)
nN ), the cross-

entropy loss is defined as:

L(θ,D) = − 1

N

N∑

i=1

ni∑

t=1

logP (x
(i)
t | x(i)1 , . . . , x

(i)
t−1; θ)

This encourages the model θ to assign high prob-
ability to the actual next tokens in the training data.
The autoregressive nature of these models allows
them to generate coherent and contextually relevant
text by sequentially predicting tokens (Radford
et al., 2019; Brown et al., 2020; Cahyawijaya et al.,
2021), making them highly effective for building
strong language representations (Workshop et al.,
2023; Cohere et al., 2025).

3.2 LM Entropy as Language Vectors
Although having a strong language representa-
tion, LMs can only produce meaningful representa-
tion on languages that they have been pre-trained
on (Winata et al., 2023; Cahyawijaya et al., 2023c)
ans closely similar languages (Cahyawijaya et al.,
2023b, 2024). The cross-lingual generalization
often diminish when the corresponding model is
faced with languages that are low-resource (Bang
et al., 2023; Cahyawijaya et al., 2023a) and distant
from the languages it has been trained on (Lovenia
et al., 2024; Cahyawijaya, 2024; Bean et al., 2024).
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As the cross-lingual generalization of LMs
depends on the closeness of the language, we
argue that this limitation can actually be ex-
ploited to build a language vector which is a
vector that provides a global representation of
a certain language. More specifically, using
a set of monolingual LMs {θL1 , θL2 , . . . , θLn}
each trained on a specific language Li and a
set of monolingual corpora {DL1 ,DL2 , . . . ,DLn},
we build the vector representation of languages
{ZL1 , ZL2 , . . . , ZLn}, ZLi ∈ Rn by computing
the average cross-entropy of the corresponding lan-
guage model θi on each corpus Dj . Formally, we
define the language vector ZLi as:

ZLi = [L(θi,D1),L(θi,D2), . . . ,L(θi,Dn)]

We call our method of deriving language vec-
tor from the entropy of LMs as ENTROPY2VEC.
Unlike other existing language vectors like
URIEL (Littell et al., 2017) and URIEL+ (Khan
et al., 2025), which derive their language vec-
tors from various linguistic inventories, e.g.,
WALS (Dryer and Haspelmath, 2013), AUTO-
TYP (Bickel et al., 2023), etc., our method pro-
vides a fully unsupervised, data-driven approach
for building a language vector. Moreover, our vec-
tor can evolve following the actual evolution of
languages by updating each of the monolingual
LMs with more recent data on each of the corre-
sponding languages. ENTROPY2VEC leverages
the inherent patterns and structures within large-
scale textual data, eliminating the need for manual
feature engineering or reliance on predefined lin-
guistic inventories. By continuously updating the
models with new data, our approach ensures that
the language vectors remain dynamic and reflective
of the ever-changing nature of human language.

4 ENTROPY2VEC and Language
Typology

To assess the validity of ENTROPY2VEC, we com-
pare it against several established language vector
and tree baselines: URIEL (Littell et al., 2017) and
URIEL+ (Khan et al., 2025) vectors, as well as
the Glottolog tree (Nordhoff and Hammarström,
2011). For the first two, we derive a hierarchi-
cal clustering tree representing inter-language dis-
tances based on geographical and syntactic features.
We then evaluate how well the trees induced from
ENTROPY2VEC vectors replicate these known ty-
pological groupings, and whether they reveal novel
or diverging relationships.

4.1 Experiment Setting

Dataset Our data source is the Glot500c cor-
pus (Imani et al., 2023), from which we gather
textual data for 33 distinct languages which are
also present in URIEL, URIEL+, and Glottolog.
For each language, we cap the data at a maximum
of 1M sentences and split this data into 7:2:1 (train,
validation, test) split after collating the sentence
to cap each instance to 1024 characters to support
model’s max ingestion length. The details of the
quantity and split per language can be observed in
Appendix A.

Training Strategy We choose GPT-2 as our pre-
trained language model for learning language rep-
resentations, where the model is configured with
an embedding dimension of 512, 4 transformer lay-
ers, and 8 attention heads. More details—including
tokenizer configurations, optimization parameters,
and the precise methodology for perplexity extrac-
tion—are elaborated further in Appendix B. Train-
ing is conducted by using the same settings for
all 33 languages to extract their perplexity, a mea-
sure of how well the language model predicts the
test data. This perplexity scores, reflecting the
model’s "surprise" by a language’s characteristics,
are used to derive language vectors denoted as
{ZL1 , ZL2 , . . . , ZLn}, where each ZLi represents
a specific language. From now on, the entirety of
these vectors will be termed as ENTROPY2VEC.

Forming Typological Trees We generate hier-
archical language clusters from the learned vector
representations ZLusing the DBSCAN algorithm,
selected for its ability to discover clusters of arbi-
trary shape without requiring a predefined number
of clusters. This choice is motivated by the non-
uniform density and structure of real-world lan-
guage typologies, which traditional linkage-based
methods fail to capture due to its complexity (Ap-
pendix C). The resulting clusters are then trans-
formed into tree structures and post-processed to
ensure compatibility with downstream evaluation.
This includes standardizing hierarchical level la-
bels (e.g., family, subfamily, and language in
URIEL and URIEL+) to maintain parent-child re-
lationships naming convention consistency. We set
the same clustering hyperparameters for all exper-
iments to min_samples = 0.3 and epsilon = 0.1.
We apply these settings to all of our vector varia-
tions, including the pure ENTROPY2VEC and the
its concatenated variants with URIEL or URIEL+.
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(a) Glottolog Tree (pruned)

(b) Tree from URIEL syntax-knn (pruned) (c) Tree from ENTROPY2VEC

Figure 2: Tree comparison across methods: (a) Glottolog gold tree, (b) tree derived from URIEL syntax-knn
distances, and (c) our tree derived using ENTROPY2VEC representations with perplexity-based clustering.

We compare the similarity of the tree generated
from different language vectors with the ground
truth typological tree from Glottolog 1.

Evaluating Typological Tree We extract tree
subsets of the Glottolog and URIEL trees cor-
responding to only 33 languages present in our
evaluation. Then, we use them as the gold com-
parison against the created ENTROPY2VEC typo-
logical tree and evaluate them using two tree dis-
tance metrics: Robinson-Foulds (RF) (Robinson
and Foulds, 1981) distance and Lowest Common
Ancestor (LCA) (Aho et al., 1973). The RF dis-
tance quantifies the dissimilarity between two trees
based on the number of differing splits, while LCA
measures the structural proximity of node pairs by
comparing the depths of their lowest common an-
cestors. Together, these metrics assess both the
global and local alignment of the induced trees.

1Note that, there are other typological tree beside Glottolog
such as Ethnologue (Campbell and Grondona, 2008) which
have some differences on their typological clusters. How-
ever, as the general clusters are mostly similar, we only use
Glottolog as the ground truth within our study.

We also report results across multiple vector con-
catenation ENTROPY2VEC variations (denoted as
Φ), and conduct qualitative analysis to interpret the
effectiveness of each representation in capturing
linguistic typology.

4.2 Result and Analysis

Alignment with Language Typology Figure 2c
shows the reference typological tree from Glot-
tolog, the typological tree generated using URIEL
with syntax features, and the typological tree from
ENTROPY2VEC. Although there are several dif-
ferences, the constructed clusters within the tree
showcase the correct similarity between languages
where language that come from different language
families – i.e., English (eng), Tamil (tam), Chinese
(cmn), and Bishnupriya Manipuri (bpy) – form
their own branch on the top-level grouping, while
languages that are closely similar like the Malayic
language group (Hudson, 1970) – i.e., Indonesian
(ind), Malay (zlm), Balinese (ban), Banjarese (bjn),
and Minangkabau (min) – are grouped together.
Furthermore, similar to the typological tree from
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Language Vector Glottolog

MAE (↓) RF (↓)

Language Features

URIELGeo 11.11 13.0
URIELSyntax 9.35 18.0
URIEL+

Geo 11.15 13.0
URIEL+

Syntax 11.15 13.0
ENTROPY2VEC 8.60 17.0

Concatenated Features

URIELGeo + Ours 9.64 13.0
URIELSyntax + Ours 8.58 16.0
URIEL+

Geo + Ours 7.88 19.0
URIEL+

Syntax + Ours 10.12 12.0

Table 1: Comparison of tree distance metrics between
various language vector configurations and the Glot-
tolog baseline tree. Lower MAE values and lower RF
scores indicate better tree reconstruction quality. Ours
refers to ENTROPY2VEC vectors, while “+ Ours” in-
dicates feature concatenation with min-max normaliza-
tion.

Glottog, most of the Phillipine languages (Reid
and Liao, 2004) – i.e, Tagalog (tgl), Cebuano (ceb),
Waray Waray (war), Pampanga (pam), and Pan-
gasinan (pag) –, also clustered together with the
Malayic due to the shared morphosyntactic features
between the two groups.

We further quantify the similarity distance be-
tween these typological trees and the Glottolog
ground truth typological tree as described in §4.1.
The distance measures from the hierarchical clus-
tering trees generated= from different language vec-
tors are shown in Table 1. These metrics indicate
how well the generated typological trees align with
the typological tree from Glottolog. Overall, the
results demonstrate that tree from ENTROPY2VEC,
URIEL, and URIEL+ have similar alignment to
Glottolog, where ENTROPY2VEC yields best LCA
MAE with slightly lower RF scores in comparison
to URIEL and URIEL+ vectors, indicating that EN-
TROPY2VEC captures key linguistic relationships
similar to these vectors without supervision.

Combination of Language Features We also
compare the base representation (ZL) with con-
catenated features (Φ(A,B)). Across MAE and
RF, we observe that concatenation does not consis-
tently yield improvements. Although some com-

Language ISO639-3 Family Script Resource

Seen Languages

English∗ eng Indo-European Latn HRL
Vietnamese∗ vie Austroasiatic Latn HRL
Indonesian∗ ind Austronesian Latn HRL
Thai∗ tha Kra–Dai Thai HRL
Tamil∗ tam Dravidian Taml LRL
Burmese∗ mya Sino-Tibetan Mymr LRL
Ilocano ilo Austronesian Latn LRL
Javanese† jav Austronesian Latn LRL
Minangkabau min Austronesian Latn LRL
Sundanese sun Austronesian Latn LRL
Cebuano ceb Austronesian Latn LRL
Tagalog† tgl Austronesian Latn LRL
Standard Malay† zsm Austronesian Latn LRL

Unseen Languages

German∗ deu Indo-European Latn HRL
French∗ fra Indo-European Latn HRL
Hindi∗ hin Indo-European Deva HRL
Italian∗ ita Indo-European Latn HRL
Spanish∗ spa Indo-European Latn HRL
Lao lao Kra–Dai Laoo LRL
Khmer∗ khm Austroasiatic Khmr LRL
Banjar bjn Austronesian Latn LRL
Balinese ban Austronesian Latn LRL
Mizo (Lushai) lus Sino-Tibetan Latn LRL
Waray war Austronesian Latn LRL
Buginese bug Austronesian Latn LRL
Pangasinan pag Austronesian Latn LRL
Acehnese ace Austronesian Latn LRL
Sanskrit san Indo-European Deva LRL
Fijian fij Austronesian Latn LRL
Telugu∗ tel Dravidian Telu LRL
Tok Pisin tpi Creole Latn LRL
Marathi mar Indo-European Deva LRL

Table 2: Detailed list of languages used in the seen
and unseen evaluation in SIB-200. ∗ the language is
used in MASSIVE in the corresponding subset. † the
languages is used as part of unseen language evaluation
in MASSIVE.

binations show slight gains, others show worse
performance. For example, the combined EN-
TROPY2VEC and URIEL+Geo variant achieves the
lowest MAE (7.88), indicating a closer approxi-
mation to the reference tree in terms of distances
between the edges. Conversely, the combined
ENTROPY2VEC and URIEL+Syntax variant pro-
duces the best RF score (12.0), reflecting fewer
topological errors. However, these improvements
are not synergic across both metrics, suggesting
that combining features may introduce redundancy
or conflicting signals rather than complementarity.

Dissimilarity to Language Typology Despite
the similarity, there are still some inconsistencies
between trees and measurement of the distance be-
tween the expected ground truth typological tree
from Glottolog and comparing the similarities and
differences between different typological trees gen-
erated from different language features are not
straightforward. While our ENTROPY2VEC tree
broadly reflects syntactic and geographical relation-
ships, several misalignments persist, as shown in
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SIB-200 MASSIVE

Seen Unseen Seen Unseen

Language Vectors OVR Avg. HRL LRL HRL LRL Avg. HRL LRL HRL LRL Avg.

XLM-R

URIELGeo 77.71 79.3 78.3 79.8 77.7 78.8 80.48 76.11 75.09 74.94 76.7
URIELSyntax 77.19 78.9 77.9 78.5 77.2 78.1 80.19 75.56 74.68 74.48 76.2
URIEL+

Geo 77.56 79.9 78.6 80.7 77.9 79.3 79.89 75.15 74.25 74.03 75.8
URIEL+

Syntax 79.07 82.4 81.3 82.8 80.7 81.8 80.16 75.71 74.85 74.70 76.4
ENTROPY2VEC (Ours) 79.06 82.3 81.0 82.6 80.4 81.6 80.31 76.16 75.00 74.73 76.6

URIELGeo + Ours 76.72 78.2 77.2 77.6 76.4 77.3 80.12 75.36 74.46 74.42 76.1
URIELSyntax + Ours 78.85 82.1 80.7 82.3 79.9 81.3 80.50 75.84 74.86 74.67 76.5
URIEL+

Geo + Ours 77.47 80.5 79.0 81.3 78.1 79.7 79.34 74.69 73.44 73.32 75.2
URIEL+

Syntax + Ours 78.78 81.7 80.7 82.1 80.2 81.2 80.30 75.84 74.80 74.57 76.4

Table 3: Accuracy comparison of different language vectors for LinguAlchemy regularization on the XLM-R
backbone, using SIB and MASSIVE benchmark averages. Bold numbers indicate the best average performance,
while underlined numbers indicate the second-best. We report overall performance across different settings,
including seen and unseen languages during training, as well as High- vs. Low-resource languages. For XLM-R,
we observe that vector concatenation does not increase performance compared to their standalone counterparts, as
discussed detail in subsection 5.2

Figure 2c. For example, in the predicted tree, lao
is grouped with tam and tha under Unsplit_L3_1
cluster node rather than with its expected Mainland
Southeast Asian cluster (vie, khm) as appears in the
gold-standard Unsplit_L1_2. Regarding the clus-
ter sensitivity, bpy appears in a broad mixed group
(Cluster_L1_5) with jav, bsb, and war, rather
than with Tibeto-Burman-influenced languages like
lus and mya as in the gold-standard Unsplit_L1_3.
Similarly, the Malayic languages min, zlm, and zsm
are dispersed across different branches instead of
being tightly grouped under a single parent, as in
Unsplit_L1_1. These suggest that there still lies
a challenge in maintaining the persistence yntacti-
cal or geographical relationships between language
groups at more granular level.

5 ENTROPY2VEC as Language Vectors

In the previous section, we demonstrate that EN-
TROPY2VEC is able to represent meaningful lin-
guistic properties such as language family relation,
syntax similarity, and geographical distance. In
this section, we establish the applicability of EN-
TROPY2VEC and compare it to other existing lan-
guage vectors such as URIEL (Littell et al., 2017)
and URIEL+ (Khan et al., 2025). We compare
the effectiveness of ENTROPY2VEC and other lan-
guage vectors by measuring the LMs performance
when applying the vectors on downstream tasks.

5.1 Experiment Setting

Training Strategy To evaluate the downstream
effectiveness of ENTROPY2VEC, we utilize EN-
TROPY2VEC as a language vector to regular-
ize the LMs during the fine-tuning process with
LinguAlchemy (Adilazuarda et al., 2024). Lin-
guAlchemy utilize language vectors to bring better
cross-lingual generalization for low-resource and
unseen languages. In this case, the downstream
improvement on the low-resource and unseen lan-
guages with LinguAlchemy can be attributed to the
quality of the language vector.

Dataset We incorporate SIB-200 (Adelani et al.,
2024) and MASSIVE (FitzGerald et al., 2023) as
our evaluation dataset. In our evaluation, we filter
out the training and evaluation data to only cover
the languages that are related to our 33 supported
languages. This yields 13 languages for training
and seen-language evaluation with additional of 19
languages for unseen evaluations for SIB-200; and
6 languages for training and seen-language evalu-
ation with additional of 10 languages for unseen
evaluations for MASSIVE. The list of languages
covered for training and unseen evaluations are
shown in Table 2.

5.2 Result and Analysis

Performance Across Different Settings This
section discusses the impact of different language
vectors to the quality of LMs across different lan-
guage resource levels. The XLM-R results in Table
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SIB-200 MASSIVE

Seen Unseen Seen Unseen

Language Vectors OVR Avg. HRL LRL HRL LRL Avg. HRL LRL HRL LRL Avg.

mBERT

URIELGeo 67.61 69.4 70.9 72.7 70.2 70.8 72.40 65.24 60.25 59.77 64.9
URIELSyntax 67.49 68.8 70.2 72.5 69.6 70.3 72.63 65.53 60.56 60.14 64.7
URIEL+

Geo 66.67 68.3 69.6 72.2 68.7 69.7 71.76 64.32 59.36 59.06 63.6
URIEL+

Syntax 67.51 69.1 70.6 72.0 69.8 70.4 72.63 65.38 60.55 60.12 64.7
ENTROPY2VEC (Ours) 67.59 68.9 70.2 72.1 69.4 70.2 72.98 65.85 60.98 60.37 65.1

URIELGeo + Ours 68.16 70.2 71.6 73.1 70.9 71.5 72.80 65.73 60.74 60.14 65.3
URIELSyntax + Ours 68.29 70.2 71.5 73.2 70.6 71.4 72.92 66.09 61.09 60.59 65.7
URIEL+

Geo + Ours 67.87 69.9 71.0 72.9 70.1 71.0 72.72 65.57 60.64 60.12 65.3
URIEL+

Syntax + Ours 68.59 70.1 71.1 73.2 70.2 71.2 73.71 67.01 62.05 61.36 66.5

Table 4: Accuracy comparison of different language vectors for LinguAlchemy regularization on the mBERT
backbone, using SIB and MASSIVE benchmark averages. Bold numbers indicate the best average performance,
while underlined numbers indicate the second-best. We report overall performance across different settings,
including seen and unseen languages during training, as well as High- vs. Low-resource languages. For mBERT, we
observe that vector concatenation is able to boost performance compared to standalone counterparts, as discussed
detail in subsection 5.2,

3 indicate that ENTROPY2VEC provides compet-
itive accuracy (81.3) compared to URIEL+ (81.5,
the best baseline). The improvement is even more
pronounced when compared to URIEL’s Geo fea-
ture (78.5) and Syntax feature (78.1). The perfor-
mance difference between HRL and LRL follows
the trend observed in the baselines, both in seen
and unseen languages.

Although the trend similarity between URIEL,
URIEL+ and ENTROPY2VEC used with mBERT
still persists, ENTROPY2VEC does not show any
significant improvement (only resonating around
67. accuracy) compared to all baselines, as shown
in Table 4. Furthermore, there is lack of differ-
ence in accuracy between HRL and LRL. This
can be attributed to the limited representational
understanding capability of mBERT compared to
XLM-R, which results in minimal distinctions
between different standalone language vectors
(ENTROPY2VEC and baselines) and between lan-
guages with varying resource levels. Overall, our
results highlight that ENTROPY2VEC represents
a competitive or even superior vector regularizer
compared to baseline performance.

Significance of Combining Vectors We also ex-
plore the potential of combining ENTROPY2VEC

with baseline vectors to examine whether this leads
to any amplifying effect. By concatenating EN-
TROPY2VEC with baseline vectors (e.g. URIELGeo

or URIELSyntax), we hypothesize that the com-
bined vector may enrich the representation space:
ENTROPY2VEC contributes information about lan-

guage perplexity patterns, while the baseline vec-
tors provide structural or typological cue.

In XLM-R, the combination does not provide ad-
ditional benefit. For example, concatenating Ours
+ URIELGeo reduces the average accuracy to 77.2,
which is below the standalone ENTROPY2VEC

(81.3) and URIELGeo (78.5). A similar result is
observed with the Ours + URIELSyntax concate-
nated vectors, yielding 80.9, which is less than
ENTROPY2VEC (81.3) and URIELSyntax (81.5).
Concatenations with URIEL+ variants also show
similar trends. These results suggest that in XLM-
R, combining vectors may introduce redundancy
or even conflicting signals rather than complemen-
tary or synergistic gains, analogous to an overfit
scenario.

In contrast, concatenation improves the per-
formance in mBERT. The combination with
URIELGeo increases the average accuracy to 68.16
compared to the standalone counterparts (67.61
for URIELGeo only and 67.59 for ENTROPY2VEC

only). This trend is also observed in other combina-
tions with URIEL+ baselines across all language
features, as shown in Table 4. Our findings indicate
that mBERT benefits from vector concatenation
because the combined vectors provide stronger rep-
resentations to compensate for the weaker language
understanding of mBERT, as discussed in Subsec-
tion 5.2. Thus, ENTROPY2VEC can also be used
to improve language representation by leveraging a
weak multilingual model to improve performance.
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Dataset #Langs Sparsity Missing Features
in Data Last Update Dynamic

Inventory

WALS 260 Sparse ✓ 2003 ✗

AUTOTYP 1004 Sparse ✓ 2013 ✗

SSWL 178 Sparse ✓ 2015 ✗

PHOIBLE 2186 Sparse ✓ 2019 ✗

BDPROTO 257 Sparse ✓ 2020 ✗

Grambank 2467 Moderate ✓ 2023 ✗

APiCS 76 Dense ✓ 2013 ✗

eWAVE 77 Dense ✓ 2020 ✗

ENTROPY2VEC 33† Dense ✗ 2025 ✓

Table 5: Comparison between linguistic inventories in WALS, AUTOTYP, URIEL, and URIEL+ and EN-
TROPY2VEC. † ENTROPY2VEC can be extended to 1000+ languages with open-access corpora (See §6).

6 Discussion

As highlighted in Table 5, a significant limitation of
WALS, AUTOTYP, and other linguistic databases
is their inherently static nature of inventories. They
are the result of manual curation by linguistic ex-
perts, which process is both time-consuming and
resource-intensive. As a result, they represent a
fixed snapshot of the linguistic knowledge at that
point in time and suffer from incomplete cover-
age of the world’s languages. This static repre-
sentation doesn’t take into account that languages
are dynamic and constantly evolving through grad-
ual shift in syntax and the influence of language
contact (Christiansen and Kirby, 2003; Fairclough,
2009; Corballis, 2017; Grenoble, 2021; Brochha-
gen et al., 2023). ENTROPY2VEC directly ad-
dresses this problem by providing a fully unsu-
pervised data-driven framework. Since its lan-
guage vectors are derived from the entropy of lan-
guage models, they can change along with the lan-
guage they represent. If a language community
develops a new slang or undergoes a grammati-
cal shift, those changes will be reflected in the
new text corpora. This update can be performed
using continual learning, where models are incre-
mentally refined with new data rather than being
fully retrain from scratch. ENTROPY2VEC allevi-
ates the time-consuming process associated with
manual database updates and allows for the rapid
inclusions of newly documented or low-resource
languages. It is also worth noting that, the cur-
rent ENTROPY2VEC is only a prototype cover-
ing 33 languages. This however can be easily
extended to thousands of languages, by incorpo-

rating large-scale corpora such as CommonCrawl 2,
mC4 (Xue et al., 2021), Glot-500 (Imani et al.,
2023), FineWeb 2 (Penedo et al., 2025), etc.

7 Conclusion

ENTROPY2VEC represents a significant advance-
ment in the field of NLP, offering a novel, min-
imal human-derived knowledge and intervention
approach to language representation that captures
linguistic characteristics and achieves competi-
tive cross-lingual generalization compared to base-
lines. By leveraging existing language models, EN-
TROPY2VEC is able to derive features with dy-
namic inventory without having to restart manual
baseline-like typology studies and is free from the
missing values that plague traditional typological
language inventories. This adaptability and com-
pleteness make ENTROPY2VEC a powerful tool for
representing languages, as demonstrated by its abil-
ity to mirror patterns observed in linguistic studies
and enhance downstream NLP applications. The ef-
fectiveness of ENTROPY2VEC in improving cross-
lingual generalization—both as its sole vector and
when integrated with baselines—highlights its dy-
namic nature and compatibility with other repre-
sentations. ENTROPY2VEC holds strong promise
for advancing linguistic inclusion and supporting
language documentation and preservation efforts,
making it a valuable contribution to the field with
significant implications for future research in lan-
guage representation learning.

2https://commoncrawl.org/
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Limitations

While ENTROPY2VEC offers several advantages,
it is not without limitations. The quality of the em-
beddings depends on the availability and quality of
monolingual corpora for each language. For lan-
guages with limited textual resources, the resulting
embeddings may be less accurate or informative.
Additionally, the entropy-based approach may not
capture linguistic aspects, particularly those that
are less predictable or more variable.

Secondly, Figure 2c shows that similar lan-
guages, such as thai and lao, are separated at
an early stage of hiearchical cluster splitting, de-
spite their expected common language ancestry
relationship. This suggests that the representa-
tion is influenced by the encoding, causing sim-
ilar languages to split due to differing encodings.
This may not be ideal in a certain use case, as de-
spite having different scripts, languages like Thai,
Khmer, Lao, Burmese shared many vocabular-
ies due to a closely similar geopolitical and socio-
cultural background (Bradley, 2009; Siebenhütter,
2019; Bradley, 2023).

Future work could integrate additional linguistic
features or shared encoding structures to better cap-
ture underlying etymological relationships. Despite
these challenges, ENTROPY2VEC holds promise
for promoting linguistic inclusion and supporting
language documentation and preservation efforts,
making it a valuable contribution to the field with
significant implications for future research and ap-
plications in NLP.

Ethical Consideration

The development of ENTROPY2VEC has signif-
icant implications for the field of computational
linguistics and NLP. By providing a more compre-
hensive and adaptable representation of linguistic
diversity, ENTROPY2VEC can contribute to the de-
velopment of more inclusive and equitable NLP
models. This can help address issues related to
underrepresentation and bias in existing models,
promoting fairness and accessibility in NLP appli-
cations.

However, it is essential to consider the ethical im-
plications of using entropy-based measures to infer
typological relationships. While entropy provides
a quantitative measure of uncertainty, it may not
fully capture the complexity and nuance of linguis-
tic diversity. Therefore, it is crucial to complement
entropy-based approaches with qualitative analy-

ses and to remain mindful of the limitations and
potential biases inherent in the data and models.
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A Dataset Split

ISO 639-3 Total Sentences Train Val Test

ace 29,495 20,614 5,935 2,946
asm 1,446,686 1,012,860 289,415 144,411
ban 48,960 34,271 9,793 4,896
bcl 82,370 57,721 16,444 8,205
bew 226,176 158,323 45,235 22,618
bjn 47,158 32,997 9,425 4,736
bpy 164,807 115,282 32,999 16,526
bsb 61,759 43,228 12,350 6,181
ceb 1,433,543 1,003,516 286,718 143,309
cmn 57,500 40,250 11,500 5,750
deu 1,431,072 1,001,726 286,195 143,151
eng 1,431,047 1,001,710 286,203 143,134
fil 1,452,085 1,016,632 290,292 145,161
fra 1,430,341 1,001,232 286,082 143,027
gor 24,962 17,487 4,984 2,491
ilo 148,377 103,846 29,680 14,851
ind 1,430,227 1,001,157 286,058 143,012
ita 1,431,076 1,001,706 286,201 143,089
jav 449,862 314,774 90,134 44,954
khm 571,343 399,868 114,315 57,160
lao 56,924 39,838 11,395 5,691
lus 114,461 80,136 22,880 11,445
mad 9,055 6,055 1,500 1,500
min 593,618 415,559 118,724 59,335
mya 997,193 697,982 199,403 99,808
pag 11,812 8,268 2,365 1,179
pam 308,828 216,328 61,655 30,845
por 1,430,401 1,001,290 286,086 143,025
spa 1,430,138 1,001,097 286,027 143,014
sun 1,452,873 1,016,965 290,539 145,369
tam 1,465,996 1,026,120 293,394 146,482
tdt 7,028 4,028 1,500 1,500
tgl 1,430,721 1,001,500 286,145 143,076
tha 1,462,635 1,023,707 292,544 146,384
vie 1,436,327 1,005,431 287,358 143,538
war 1,430,401 1,001,302 286,056 143,043
zlm 30,475 21,332 6,095 3,048
zsm 849,043 594,323 169,806 84,904

Table 6: Language-wise sentence statistics with dataset
splits (Train / Validation / Test). We maintain a ratio of
7:2:1 for the split, with minimum amount of 1,500 for
val and test split.

B ENTROPY2VEC Training Detail

Tokenization We employ a custom character-
level tokenizer. This tokenizer can either be loaded
if previously trained for an experiment or trained
anew on the specific language’s dataset. It sup-
ports a byte_fallback mechanism, which, if en-
abled, represents characters not in the vocabulary
as a sequence of their UTF-8 byte codes (e.g.,
"0xef"); otherwise, out-of-vocabulary characters
are mapped to a [UNK] token. A [PAD] token is
also utilized. During data preparation, texts are tok-
enized with truncation enabled, a max length of
1024 tokens, and padding applied to the maximum
length.

More on Training Validation Evaluation is per-
formed every 100 steps, model checkpoints are
saved every 1000 steps, and a maximum of 2 check-
points are kept. The best model, determined by the
lowest eval loss, is loaded at the end of training.
Both training and evaluation utilize a per-device
batch size of 8, and models are trained for up to
150 epochs. Metrics are logged every 100 steps.
An EarlyStoppingCallback with a patience of
3 evaluations is used to prevent overfitting, and
a custom PerplexityLoggingCallback logs per-
plexity during training. Data is collated for causal
language modeling (i.e., mlm=False).

C Failure of Linkage-based Clustering

Traditional linkage-based clustering methods, such
as agglomerative clustering with different linkage
criteria (ward, complete, average) build trees by
iteratively merging or splitting clusters based on
simple distance metric. While effective with data
with a clear, sphere-like structure, these methods
fail in the context of generating language clusters
due to several foundational assumptions that do not
hold true for this data, which are:

Predefined Number of Clusters To derive a flat
set of clusters from a linkage-based hierarchy, the
number of clusters k must be specified to cut the
dendogram. This requires the priori knowledge
of the data’s structure, which is often unavailable
when exploring typological relationships. This
methodological requirement can force an unnat-
ural structure onto the data, potentially leading to
linguistically invalid groupings.

Sensitivity to Noise and Density Variation The
performance of linkage-based methods can be sig-
nificantly degraded by the presence of noise and
outliers. For example, single-linkage is suscep-
tible to a “chaining" effect, where it incorrectly
merges distinct clusters if a series of intermedi-
ate noise points connects them. Complete-linkage,
conversely, is sensitive to outliers and may fail to
merge clusters that are otherwise close.
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Abstract

Large Language Models (LLMs) have demon-
strated remarkable generalization capabilities
across tasks and languages, revolutionizing nat-
ural language processing. This paper inves-
tigates the naturally emerging representation
alignment in LLMs, particularly in the middle
layers, and its implications for disentangling
language-specific and language-agnostic infor-
mation. We empirically confirm the existence
of this alignment, analyze its behavior in com-
parison to explicitly designed alignment mod-
els, and demonstrate its potential for language-
specific manipulation without semantic degra-
dation. Building on these findings, we pro-
pose Inference-Time Language Control (ITLC),
a novel method that leverages latent injection
to enable precise cross-lingual language con-
trol and mitigate language confusion in LLMs.
Our experiments highlight ITLC’s strong cross-
lingual control capabilities while preserving
semantic integrity in target languages. Further-
more, we demonstrate its effectiveness in al-
leviating the cross-lingual language confusion
problem, which persists even in current large-
scale LLMs, leading to inconsistent language
generation. This work advances our under-
standing of representation alignment in LLMs
and introduces a practical solution for enhanc-
ing their monolingual and cross-lingual perfor-
mance.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, demonstrating re-
markable generalization capabilities across diverse
tasks and languages (Brown et al., 2020; Le Scao
et al., 2023; Anil et al., 2023; Team et al., 2025; Co-
here et al., 2025; Singh et al., 2025). Their ability
to adapt to new tasks in few-shot and even zero-
shot settings highlights their efficiency and ver-
satility (Bang et al., 2023; Susanto et al., 2025).

*Equal contributions. See Appendix K for further details.
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Figure 1: We inspect the alignment in the middle layer
representation of LLMs, allowing us to disentangle the
language-specific and language-agnostic information.
By exploiting this behavior, we are able to achieve
Inference-Time Language Control (ITLC), alleviating
the language confusion problem in LLMs.

Prior works have identified a naturally emerging
representation alignment across layers in LLMs,
particularly in the middle layers of LLMs (Chang
et al., 2022; Zhao et al., 2024a). This emerging
alignment in LLMs is the key factor in their ability
to handle multiple languages (Cahyawijaya, 2024;
Tang et al., 2024; Wilie et al., 2025), which is piv-
otal for their cross-lingual capabilities. However,
several questions remain open, such as whether this
emerging alignment behaves similarly to alignment
in models trained with enforced alignment objec-
tives (Reimers and Gurevych, 2020; Yang et al.,
2019a; Feng et al., 2022; Limkonchotiwat et al.,
2022, 2024), how this alignment can be utilized to
further enhance LLMs, etc.

In this work, we investigate the phenomenon of
representation alignment in LLMs, focusing on its
occurrence, distinction, and potential applications.
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We aim to confirm the presence of representation
alignment and contrast it with alignment in LLMs
with strictly designed alignment, such as multi-
lingual SentenceBERT (Reimers and Gurevych,
2019) or LaBSE (Feng et al., 2022). Our findings
highlight that, unlike LLMs with strictly designed
alignment, the naturally emerging alignment in re-
cent LLMs demonstrates a much stronger reten-
tion of language-specific information with much
smaller performance drop in the aligned represen-
tation compared to the unaligned layers which we
conjecture to be the minimum required language-
specific information required to perform do decod-
ing in the correct language.

To this end, we exploit the bottleneck of
language-specific information in the aligned rep-
resentation and develop a simple test-time inter-
vention method to control the decoding language,
namely inference-time language control (ITLC).
Specifically, we extracted a low-rank language vec-
tor from the aligned representations using linear
discriminant analysis (Balakrishnama and Ganap-
athiraju, 1998; Tharwat et al., 2017), aggregated
them per language to create language vectors, and
perform a simple vector translation to control the
decoding language as shown in Figure 1 1. We
show the effectiveness of ITLC in mitigating the lan-
guage confusion problem (Marchisio et al., 2024).
Furthermore, we conduct an extensive evaluation to
test that, unlike other approaches, ITLC can control
the language with minimal loss of semantic.

Our contribution in this work is fourfold:
• We confirm the presence of representation

alignment in LLMs, providing empirical evi-
dence of this phenomenon (§3.2).

• We contrast natural alignment with strictly
designed alignment, highlighting their compa-
rable impact on cross-lingual generalization
while emphasizing their differences in align-
ment locations and the extent of language-
specific information retention (§3.2).

• We investigate a method to extract language-
specific information from aligned representa-
tions, showcasing the potential for language-
specific manipulation while preserving the se-
mantic integrity of the generation (§4.1).

• We introduce ITLC, a novel method that en-
ables cross-lingual language control and miti-

1Note that, during the inference step, we only need to per-
form a single vector addition operation to control the language
as everything else can be precomputed.

gates language confusion problems that retain
semantic integrity in target languages (§5).

2 Related Work

2.1 Representation Alignment in LLMs

Representation alignment refers to the process by
which semantically identical inputs expressed in
different languages are mapped to similar inter-
nal embeddings within LLMs (Park et al., 2024b;
Wu and Dredze, 2020; Chang et al., 2022). Origi-
nally, representation alignment is strictly embedded
into the modeling objective to ensure output con-
sistency across languages and to enable a better
cross-lingual transfer (Pires et al., 2019; Wu and
Dredze, 2019; Reimers and Gurevych, 2020; Feng
et al., 2022; Choenni et al., 2024). Wendler et al.
(2024); Zhao et al. (2024a); Mousi et al. (2024)
have observed a tendency for LLMs to align repre-
sentations across different languages by measuring
the similarity between embeddings of parallel sen-
tences across different languages (Ham and Kim,
2021; Gaschi et al., 2023; Cahyawijaya, 2024). In-
spired from previous studies, our work measures
the degree of alignment across various layers be-
tween strictly and naturally aligned models to con-
trast the two and understand its relation to language-
specific and language-agnostic capabilities (Kul-
shreshtha et al., 2020; Libovický et al., 2020; Hua
et al., 2024; Wilie et al., 2025) of LLMs.

2.2 Latent Controllability in LLMs

LLMs controllability is crucial for ensuring that the
systems adhere with human intentions. Through
mechanisms such as adapter (Pfeiffer et al., 2020;
Hu et al., 2022), prompting (Lin et al., 2021; Bai
et al., 2022), latent manipulation (Madotto et al.,
2020; Ansell et al., 2021), etc, we aim to gain
control over the behavior of LLMs. Various as-
pects have been explored in LLM controllability,
including internal knowledge (Madotto et al., 2020;
Xu et al., 2022), styles & personas (Lin et al.,
2021; Wagner and Ultes, 2024; Cao, 2024), lan-
guages (Üstün et al., 2020; Ansell et al., 2021),
human values (Bai et al., 2022; Cahyawijaya et al.,
2025a), etc. Li et al. (2023b); Duan et al. (2024);
Ji et al. (2024); Chen et al. (2024) show that latent
states in LLMs exhibit discernible patterns for dis-
tinguishing truthful outputs from hallucinated ones,
suggesting an intrinsic awareness of fabrication.
Similar methods are also introduced for stylistic
and safety control (Subramani et al., 2022; Kwak
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Figure 2: Cross-lingual similarity across different layers in LaBSE and Qwen2.5-0.5B. LaBSE exhibits high
cross-lingual similarity in its final layer, whereas Qwen2.5-0.5B shows this similarity in the middle layer. This
difference suggests that the alignment of representations occurs at distinct positions within the two models.

et al., 2023). These underscore the potential of
latent interventions for precise control over LLM
behavior. ITLC extends the latent manipulation
methods for controlling the generated language
in inference time, demonstrating how language-
specific information can be extracted and manipu-
lated without losing semantic meaning. This opens
new avenues for controlling language generation
and mitigating confusion problems.

3 Understanding Representation
Alignment in LLMs

Prior works (Chang et al., 2022; Zhao et al.,
2024a; Cahyawijaya, 2024; Wilie et al., 2025; Pay-
oungkhamdee et al., 2025) demonstrate the ex-
istence of emerging representation alignment in
LLMs. We take a step further to provide a deeper
understanding to this behavior by contrasting it
with alignment in strictly-aligned LLMs. Specifi-
cally, we observe the correlation between the de-
gree of alignment with the cross-lingual generaliza-
tion and language identification (LID) capability,
which are the proxies to their language-agnostic
and language-specific capabilities, respectively.

3.1 Experiment Settings
Model Settings As a measure of alignment, we
compute the average cosine similarity of the latent
representation of a sentence in one language with
the representation of parallel sentences in the other
languages. For the LLM with strictly designed
alignment, we employ LaBSE (Feng et al., 2022).

For the LLM with emerging representation align-
ment, we employ multilingual decoder-only LLM,
i.e., Qwen2.5 (Qwen et al., 2025). Specifically, we
employ Qwen2.5-0.5B with 500M parameters to
have a comparable scale with the LaBSE model
with 471M parameters. To measure the LID ca-
pability, we take the latent representation of both
models in the first, middle, and last layers. In this
case, we are interested in comparing the behav-
ior between the strictly aligned representation in
LaBSE and the emerging aligned representation
in Qwen2.5-0.5B. Following Cahyawijaya et al.
(2025b), we measure LID performance by linear
probing and kNN to measure linear separability
and cluster closeness within each language class.
More details about the experiment are presented in
Appendix B and Appendix C.

Datasets We employ a set of multilingual eval-
uation datasets. To measure the degree of align-
ment, we employ 7 datasets: FLORES-200 (Team
et al., 2022), NTREX-128 (Federmann et al., 2022),
NusaX (Winata et al., 2023), NusaWrites (Cahyaw-
ijaya et al., 2023), BUCC (Zweigenbaum et al.,
2017), Tatoeba (Tiedemann, 2020), and Bible Cor-
pus (McCarthy et al., 2020). For cross-lingual eval-
uation, we incorporate 4 datasets: SIB200 (Ade-
lani et al., 2024), INCLUDE-BASE (Sridhar et al.,
2020), XCOPA (Ponti et al., 2020), and PAWS-
X (Yang et al., 2019b). For LID evaluation, we
incorporate 3 datasets, i.e., FLORES-200, NTREX-
128, and NusaX. The detailed description of each
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LaBSE Qwen2.5-0.5B

Method Layer FLORES-200 NTREX-128 NusaX FLORES-200 NTREX-128 NusaX

Linear
Probing

First 95.13 93.29 97.30 94.21 91.42 95.55
Middle 94.18 92.68 94.51 91.76 90.04 87.09
Last 70.89 74.36 65.44 92.46 90.27 88.77

KNN
First 88.35 90.43 81.78 83.69 86.06 65.79
Middle 78.85 81.30 45.37 55.32 54.73 25.05
Last 3.92 1.63 0.00 71.73 81.86 29.39

Table 1: LID performance by layer and classification method for LaBSE and QWEN2.5-0.5B. Red bold text
highlights the LID scores on the layer where alignment occurs in each corresponding model. LID performance is
consistently lower in a layer where the representation is aligned across all models and classification methods.

dataset is shown in Appendix A.

3.2 Experiment Result
Strictly and Naturally Aligned LLMs LaBSE
and Qwen2.5-0.5B demonstrate distinct patterns in
cross-lingual representation alignment. As shown
in Figure 2, LaBSE demonstrates a distributed
alignment strength across deeper layers, with the
middle and last layers achieving high average simi-
larity scores (0.758 and 0.754, respectively). This
aligns with the training objective of LaBSE, which
aligns the representation on the last layer. In
contrast, Qwen2.5-0.5B exhibits a more localized
alignment pattern, with the middle layer showing
a strikingly higher average similarity (0.922) than
both the first (0.591) and last (0.375) layers. This
suggests that Qwen2.5-0.5B concentrates represen-
tation alignment sharply in the middle layer, achiev-
ing both higher and more stable cross-lingual rep-
resentation. See detailed analysis in Appendix B.1.

This result displays distinct layer-wise behaviors
in retaining the language-specific and language-
agnostic information within the two types of
LLMs. Specifically, for model with strict align-
ment, aligned representation is located in the layer
where the objective is applied to – the last layer in
the case of LaBSE –, while in LLMs with natural
alignment, the aligned representation is formed in
the middle layers and breaks as the representation
goes closer into the last layer. This aligns with prior
works (Chang et al., 2022; Tang et al., 2024; Wilie
et al., 2025) that show the representation alignment
naturally emerges in the middle layer of LLMs.

Representation Alignment and Language-
Specific Information As shown in Table 1, the
LID performance of LaBSE and Qwen2.5-0.5B
models evaluated using both KNN and linear prob-
ing reveals that the first layer consistently achieves

the highest LID F1 scores across all datasets. For
LaBSE, the aligned representation in the last layer
exhibits notably weaker performance, particularly
for the FLORES-200 and NusaX datasets. Simi-
larly, in Qwen2.5-0.5B, the aligned representation
in the middle layer shows weaker LID performance
compared to the first and last layers. These em-
pirical findings highlight three key insights: (1)
language-specific information, such as surface-
level features and general linguistic patterns, is
more dominant in the early layers; (2) the degree of
alignment is negatively correlated with the amount
of language-specific information retained; and (3)
unlike strictly aligned LLMs, the aligned represen-
tation in LLMs with emerging alignment retains
more language-specific information, which poten-
tially serves as the basis for determining the lan-
guage of the generated sequence.

4 Inference-Time Language Control

Building on the insights presented in §3, we ex-
plore a method to control the language of the gener-
ated sequence with minimal semantic loss. Specif-
ically, we develop a method to extract language-
specific information at the layer where representa-
tion alignment occurs in LLMs. Using this infor-
mation, we gather language-specific vectors from
each language and use them to manipulate the
language-specific information during the inference
time. With this language-specific intervention, we
aim to steer the model toward utilizing language-
specific features, allowing us to perform Inference-
Time Language Control (ITLC).

ITLC offers two key advantages over exist-
ing intervention methods: Unlike existing inter-
vention methods that are limited to either cross-
lingual (Wang et al., 2024) or monolingual (Nie
et al., 2025) scenarios, and unlike approaches that
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Method Qwen2.5-0.5B Qwen2.5-0.5B-Instruct Qwen2.5-7B Qwen2.5-7B-Instruct Llama-3.1-8B Llama-3.1-8B-Instruct

Monolingual

Baseline 59.91 83.66 55.24 78.89 56.98 94.63
ICL (5-shot) 53.62 80.30 62.78 74.13 69.86 88.57

+ ITLC (ours) 74.38 86.28 69.55 81.01 82.18 93.21
PEFT 82.91 89.85 83.80 88.28 93.01 96.66

+ ITLC(ours) 86.17 90.51 85.60 90.12 96.03 97.19
ITLC (ours) 81.21 82.20 63.40 84.89 75.77 96.41

Cross-lingual

Baseline 35.36 57.69 60.61 78.81 26.13 83.25
ICL (5-shot) 50.63 69.70 69.37 78.51 62.38 86.68

+ ITLC (ours) 87.58 88.07 84.90 84.04 88.15 90.34
PEFT 77.55 84.34 82.66 83.56 89.73 91.13

+ ITLC (ours) 90.51 89.85 83.92 84.10 88.98 93.60
ITLC (ours) 85.61 86.79 74.40 84.73 81.68 89.06

Table 2: Main results for LPR metrics on LCB across different LLMs in monolingual and cross-lingual settings.
Blue rows denote methods combined with ITLC. Bold values represent the best result for each model. All results
have been applied with the QA/Chat template during inference.

Method Qwen2.5
0.5B

Qwen2.5
0.5B Instruct

Llama-3.1
8B

Llama-3.1
8B Instruct

Baseline 34.97 52.28 25.05 80.68
INCLINE 43.82 56.54 34.69 80.63
ReCoVeR 88.43 84.21 88.79 90.29
ITLC (ours) 81.22 81.97 76.38 85.65

Table 3: Comparison of cross-lingual LPR metrics on
LCB across baseline and state-of-the-art methods for
6 languages (AR, ES, HI, ID, RU, ZH). Bold values
represent the best result for each model. All results
have been applied with the QA/Chat template during
inference.

require interventions across all layers (Sterz et al.,
2025; Yunfan et al., 2025), ITLC is effective in both
settings while intervening at only a single middle
layer.

4.1 Methods

Latent Extraction Latent extraction techniques
are employed to isolate language-specific informa-
tion from the model’s representations. Specifically,
we extract hidden states from various large lan-
guage models to capture language-specific features
at their middle representation layers. Given an in-
put sequence from the FLORES-200 dataset (Team
et al., 2022), we compute the hidden states h ∈ Rd

at a specified layer, where d represents the hidden
state dimension of the respective model. Finally,
we apply mean pooling to ensure that only mean-
ingful token embeddings contribute to the final rep-
resentation.

Linear Discriminant Analysis To disentangle
language-specific information, we apply Linear
Discriminant Analysis (LDA) to maximize class
separability and reduce dimensionality. We use

the Singular Value Decomposition (SVD) solver
in order to handle high-dimensional embeddings
efficiently and select the top k eigenvectors corre-
sponding to the largest eigenvalues to form W ∈
Rd×k. Let D = {(hi, li)}Ni=1 denote a dataset
of hidden states hi ∈ Rd labeled with language
classes li ∈ {1, . . . ,K}, this projects hidden states
to a lower-dimensional space z = hTW ∈ Rk.

To validate the quality of the projection and
select the optimal number of components k, we
train a neural network classifier with a single linear
layer on the projected training data z. We exper-
iment with several k values and evaluate classi-
fication accuracy on a test set. Finally, we take
k = 100 because LID performance significantly
drops on higher components, indicating a major
loss of language-specific information. More details
on the LDA settings are shown in Appendix D

Language Vector Using the LDA-projected
space, we construct language vectors by leverag-
ing the neural network’s weights to identify active
dimensions for each language. For each language
l we extract the weight matrix U ∈ RK×k from
the neural network’s linear layer, where ul,j repre-
sents the contribution of dimension j ∈ {1, . . . , k}
to language l. We define a threshold τ = 0.01
and select active dimensions for language l as
Al = {j | |ul,j | > τ}. The language vector
vl ∈ Rk for language l is computed as the mean of
projected hidden states zi over samples of language
l, restricted to active dimensions:

vl[j] =

{
1
Nl

∑
hi∈l zi[j], if j ∈ Al,

0, otherwise,
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Figure 3: Comparison of LPR metrics on LCB between Qwen2.5-7B-Instruct with ITLC and Qwen2.5-7b-EAX
across 14 languages in monolingual and cross-lingual settings.

where Nl is the number of samples for language
l, and zi[j] is the j-th component of the projected
hidden state.

Vector Injection To enable injection, we project
the language vector back to the original embedding
space using the pseudo-inverse: vorig

l = vlW
† ∈

Rd. By applying this, we retain the original embed-
ding of the input and modify it with the language
vector inverse projection. For cross-lingual settings
with a source language x (e.g., English) and target
language y (e.g., Indonesian), we compute a shift
vector 2:

δ = −vorig
x + vorig

y .

For monolingual settings where source and tar-
get languages are identical (x = y), we treat the
shift vector as the language vector itself:

δ = vorig
x .

The shift vector is injected into the hidden states
at the middle layer during inference into both the
prompt and the generated tokens. Formally, we
apply:

h
′
t = ht + αδ, ∀t ∈ [1, Ttotal]

where ht is the middle-layer hidden state at posi-
tion t, α is a scaling factor, h

′
t is the corresponding

modified hidden state, and Ttotal is the total num-
ber of tokens during inference covering both input
and generated tokens. We provide an ablation of
different language shift strategies in Appendix E.

2We demonstrate the importance of subtracting the source
language vector in Appendix G.4.

Figure 4: Cross-lingual LPR performance on LCB, com-
paring base and instruct shift vector applications.

5 Impact of ITLC

We demonstrate the effectiveness of ITLC on miti-
gating the language confusion problem (Marchisio
et al., 2024). We also compare our method with an-
other test-time intervention methods specifically de-
signed for language confusion (Sterz et al., 2025) 3.
Furthermore, we showcase that ITLC can also per-
form language control while being highly efficient
with minimal semantic loss compared to other ex-
isting test-time intervention methods (Wang et al.,
2024).

5.1 Experiment Setting
Dataset For language confusion evaluation,
we utilize the Language Confusion Benchmark
(LCB) (Marchisio et al., 2024), which contains
both monolingual and cross-lingual settings across
14 languages. For semantic retention assessment,
We utilize the Dolly multilingual dataset from Aya

3We also find another related test-time intervention (Yun-
fan et al., 2025), nonetheless the code is not published so we
could not empirically compare ITLC with their approach.
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Evaluation Suite (Singh et al., 2024) 4 by taking
200 QA sentences in nine various languages from
diverse regions and language families: Indone-
sian (ID), Thai (TH), Turkish (TR), Japanese (JA),
French (FR), Spanish (ES), Arabic (AR), Chinese
(ZH), and Korean (KO). The description of datasets
is shown in Appendix A.

Model Settings We experiment on two fami-
lies of multilingual LLMs: Qwen2.5 (0.5B and
7B), and Llama-3.1-8B, and their instruct variants.
Specifically, for cross-lingual control with the base
model, the model will start to generate by having
several target contexts, while in the instruct model,
we add a language-identified prompt (i.e., Please
answer in XX language) at the beginning of the
sentence. See Appendix F for more details on lan-
guage confusion and Appendix H for more details
on semantic retention.

Evaluation Our evaluation on language confu-
sion problem based on official metrics defined in
Marchisio et al. (2024): Line-level Pass Rate (LPR).
Meanwhile, we evaluate the cross-lingual genera-
tion performance based on chrF++ and multilingual
BERT F1 5 metrics. Additionally, we conduct a
human evaluation with native annotators in both
EN→XX and XX→EN directions, focusing on 30
samples covering 3 aspects: naturalness, prompt-
completion relevance, and answer correctness us-
ing likert score ranging from [1. . . 5]. The human
annotation guideline is presented in Appendix J.

5.2 Results

5.2.1 ITLC in Mitigating Language Confusion

As shown in Table 2, our proposed method, ITLC,
surpasses both baseline and in-context learning
(ICL) configurations across models of varying
parameter scales in cross-lingual settings. This
superior performance is consistent in monolin-
gual settings with only one exception, where the
Qwen2.5-0.5B-Instruct model performs slightly
worse than the baseline, demonstrating that ITLC
effectively shifts the model’s language output in
cross-lingual settings. For the base model, cross-
lingual performance improves progressively with
few-shot examples, as they utilize English inputs

4https://huggingface.co/datasets/CohereLabs/
aya_evaluation_suite/viewer/dolly_machine_
translated.

5https://huggingface.co/google-bert/
bert-base-multilingual-cased
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Figure 5: Generation performance for different target
languages on Qwen2.5 and Llama-3.1 Instruct models
based on chrF++ (Left) and BERT F1 (Right). Baseline
denotes the same model prompted in the same language
as the desired target language.

with explicit target-language instructions, reinforc-
ing input-output alignment. In contrast, the instruct
model exhibits minimal variation in few-shot set-
tings compared to ITLC, as its instruction-tuning
inherently supports multilingual prompting with-
out dependency on few-shot quantity. These re-
sults demonstrate that our approach enhances cross-
lingual language consistency while accommodat-
ing training objective differences between base and
instruct models. Moreover, ITLC achieves compet-
itive performance on instruct model compared to
parameter-efficient fine-tuning (PEFT): LoRA fine-
tuning method (Hu et al., 2022), without requiring
any changes to the LLM weights. Notably, our
method can further mitigate language confusion
when combined with ICL and PEFT. The combina-
tion of PEFT + ITLC consistently achieves the best
results in monolingual settings across all models,
while in cross-lingual settings, different combina-
tions prove optimal depending on the model, with
ICL + ITLC and PEFT + ITLC both achieving top
performance on various models. A detailed per-
language breakdown of the results is presented in
Table 26 and Table 27.

Comparison of ITLC with other test-time inter-
vention methods While INCLINE (Wang et al.,
2024) was originally designed to project repre-
sentations from various languages into English
to enhance LLM performance on low-resource
languages, we adapt and reverse this mechanism
to project from English into various target lan-
guages. Due to computational constraints, we
compare our method, ITLC, against INCLINE
and ReCoVeR (Sterz et al., 2025) using two
model families, Qwen2.5-0.5B and Llama-3.1-8B,
and their instruct variants across six target lan-
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guages. As shown in Table 3, ITLC outperforms
INCLINE across all model configurations. No-
tably, INCLINE shows limited improvement on
instruction-tuned models, with almost no perfor-
mance gain on Llama-3.1-8B-Instruct, suggesting
that methods relying solely on the last token may
be ineffective at mitigating language confusion in
instruction-following models. Although ReCoVeR
achieves the highest performance overall, ITLC
demonstrates competitive results on instruction-
tuned models while being considerably more ef-
ficient. This indicates that intervention at a single
middle layer is sufficient for mitigating language
confusion, compared to ReCoVeR’s approach of
intervening across all layers.

Comparison of ITLC with Cross-lingual Opti-
mized Model Due to computational constraints,
we were unable to perform full parameter fine-
tuning. Instead, we use another model, Qwen2.5-
7b-EAX (Yang et al., 2025), which was fine-tuned
on Qwen2.5-7B and optimized for cross-lingual
translation ability. As shown in Figure 3, our
ITLC achieves similar results to the upperbound
on average monolingual LPR (84.89% vs 85.28%).
However, for cross-lingual settings, our method
achieves 84.73% on average LPR compared to
92.54% for the upperbound. Notably, there is a
substantial performance gap for Indonesian (ID),
Japanese (JA), and Chinese (ZH). We observe
that our ITLC exhibits code-switching to English
when handling these languages, indicating that our
method may not fully eliminate the source language
vector for these languages and might require further
language-specific tuning of the scaling factor α, or
that our ITLC cannot adequately disentangle the
language vector and capture the language-specific
information well for these languages. A detailed
per-language breakdown of the results is presented
in Table 24 and Table 25

Transferability of Language Vector to Post-
Trained Models Interestingly, as shown in Fig-
ure 4, applying language vectors gathered from the
base model to the instruct model achieves com-
parable performance to its native instruct vectors
which suggests the effectiveness of language shift
from the base model for cross-lingual control even
in the instruct model. This transferability indi-
cates that the relative distance between language-
specific and that the resulting language-specific
features from the pre-training phase is robust to
downstream adaptation, including tasks generaliza-

Model Lang Shift Nat. Rel. Cor.

Qwen2.5-7B-Instruct

Baseline
ID→ID 3.66 4.43 3.46

TH→TH 3.13 2.63 2.23
ZH→ZH 4.30 4.20 4.13

ITLC

EN→ID 4.00 4.90 3.96
EN→TH 2.46 3.93 3.40
EN→ZH 4.63 4.80 4.53

Llama-3.1-8B-Instruct

Baseline
ID→ID 4.50 4.46 3.86

TH→TH 3.20 2.36 2.36
ZH→ZH 3.96 4.33 3.76

ITLC

EN→ID 3.83 3.83 3.53
EN→TH 3.40 2.93 2.60
EN→ZH 4.76 4.66 4.53

Table 4: Human evaluation of ITLC response quality
in Qwen2.5 and Llama-3.1. Nat., Rel., and Cor. re-
spectively denote naturalness, relevance, and answer
correctness ranging from [1. . . 5]. Baseline denotes the
same model prompted in the monolingual setting.

tion from instruction-tuning and value alignment
in RLHF and preference-tuning. This evidence im-
plies that the cross-lingual symmetry – i.e., the geo-
metric alignment between language representations
– constructed during the fine-tuning is preserved
even after various downstream refinement of the
model. The preservation of these relationships im-
plies that language-specific cues are retained as in-
variant properties across model versions, enabling
consistent cross-lingual language control through
ITLC despite parameter updates during downstream
fine-tuning, instruction-tuning, preference-tuning,
and RLHF.

5.2.2 Semantic Retention in ITLC

Cross-lingual Semantic Retention We demon-
strated that the proposed ITLC method not only
improve the target language fidelity but is also able
to effectively control cross-lingual generation and
retain the semantic information, implying contextu-
ally accurate generation. As shown in Figure 5, sta-
tistically, our proposed ITLC method improved 2%
across the chrF++ and 3-5% in BERT F1 metrics in
the instruct model (refers to Table 14); the same in-
vestigation also occurred in the base models (refers
to Table 13). The highest performance shows on
Spain (ES), French (FR), and Indonesia (ID), it out-
performs its baseline by 1-2%, which is prompted
in the same language as the desired target language.
However, we found that in some languages, such
as Korean (KO), it retains less cross-lingual seman-
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Lang Shift Prompt (EN) Generated Output (XX) Literal Translation (EN)

EN → KO Tell me whether each of these
are animals or not: Alliga-
tor, Grass, Tree, Boat, Dolphin,
Shark, Fish, Fence, Dog, Car

물론입니다! 다음은각항 目的是中文，与问题无关。
继续回答您的 질문: 각항목들은 都是韩语로” 各項
目들” 이라고表述有误，请 수정해주세요. - 악어
(Alligator . . .

Of course! Next, each item purpose is in Chinese,
unrelated to the question. Continuing to answer
your question: each item are all in Korean as ”
각項目들”, which is incorrectly expressed, please
correct it. - Alligator (Alligator . . .

EN → ZH Why do potato chip bags be-
come stale after opening?

土豆 chip 袋在打开后会变软，主要是因为密封包
装中的环境发生了变化。未开封时，在真空或惰性
气体环境下保存的薯片可以保持脆度和新鲜口感较
长时间不被氧化影响风味与品质。. . .

Potato chip bags soften after opening, mainly be-
cause the sealed packaging environment changes.
When unopened, chips stored in vacuum or inert
gas can maintain crispness and freshness longer
without oxidation affecting flavor and quality. . . .

EN → JA Suggest 5 horror films to me もちろんです。お这儿应该是「は」です。「も」「し」
と连用して时，前が否定形の词で后ろ的始まり是
肯定表現時、接続詞” でも”” しか”” さえ � 等と
并 . . .

Of course. Oh, here it should be “は.”When
used with “も”or “し,”if the previous part is
negative and the following starts with a positive
expression, then it connects with conjunctions like
“でも,”“しか,”“さえ,”etc. . . .

Figure 6: Examples of the lowest generated outputs score from Qwen2.5-7B-Instruct on Korean, Chinese, and
Japanese in EN→XX, evaluated with the BERT F1 score. The literal translation column is translated from the
generated output, and it is done by using ChatGPT.

tics due to the unique challenges of distinct syntax
and semantics (Park et al., 2020, 2024a), which
happens across models. Further investigation re-
vealed that many overlaps or code switching occur
between these languages. For example, in Figure 6,
EN→KO direction, the generated output contains
Japanese tokens (denoted in blue), while the literal
output being disconnected from the context. Ad-
ditionally, in Japanese output generation, it seems
like answering out of context, while in Chinese
produced coherent and well-structured sentences.
See Appendix I for more detailed examples.

Human Evaluation We further conduct a hu-
man evaluation to validate our findings regarding
the semantic retention in ITLC. We recruit native
speakers to annotate 30 generation samples in In-
donesia (ID), Thai (TH), and Chinese (ZH). Based
on results presented in Table 4, we found that our
ITLC proposed method tends to have a similar level
of semantics compared to the monolingual base-
line (prompted in the same target language), with
Qwen2.5-7B-Instruct performing quite better in
terms of Relevance and Correctness metrics com-
pared to the Llama-3.1-8B-Instruct. Meanwhile,
our ITLC method performs much better than base-
line in Indonesia and Thai in Qwen2.5 models,
showed that our injection vector could improved
the semantic transferability across languages, en-
abling the model to retain both relevance and cor-
rectness. Overall, our results validate the capability
of ITLC to maintain relevance and correctness in
cross-lingual generation, highlighting its potential
for enhancing cross-lingual performance of LLMs.

6 Conclusion

Our work explores the phenomenon of representa-
tion alignment in LLMs, confirming its occurrence
and elucidating its behavior compared to strictly de-
signed alignment models. We have demonstrated
the potential for disentangling language-specific
and language-agnostic information, enabling effec-
tive language-specific manipulation without seman-
tic loss. Furthermore, we have shown the practical
applications of language control manipulation in
enhancing language control and mitigating confu-
sion problems. Our ITLC method demonstrates
significant gains on the language confusion bench-
mark, achieving an average improvement of 9% in
monolingual and 26.7% in cross-lingual settings.
It also achieves comparable performance to exist-
ing test-time intervention approaches, while being
much more efficient (requiring only a single middle
layer intervention). Ultimately, our work not only
advances the theoretical understanding of repre-
sentation alignment in LLMs but also introduces a
practical and effective solution for enhancing cross-
lingual capabilities, paving the way for more robust
and versatile LLLMs in multilingual contexts.

Limitations

The study has several limitations that should be
considered when interpreting the results. First, the
coverage of LLMs is limited to a specific set of
models for representation alignment, particularly
Qwen and LaBSE and only one model size (0.5B
parameters), which may not be representative of all
LLMs. The findings may not generalize to other
models with different architectures or training data,
as the behavior of representation alignment can
vary significantly across different LLMs. Future
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research should aim to include a more diverse range
of models to validate the generalizability of the
results.

Second, the evaluation is conducted on a lim-
ited number of languages, which may not capture
the full spectrum of linguistic diversity. The study
focuses on a subset of languages, and the results
may not extend to languages with different typo-
logical features or those that are underrepresented
in the training data. Expanding the evaluation to in-
clude a broader range of languages, especially low-
resource languages, would provide a more compre-
hensive understanding of the model’s capabilities
and limitations.

Moreover, The scaling factor α affects different
models differently, requiring careful adjustment
for optimal performance. Due to the nature of
Linear Discriminant Analysis (LDA), the number
of components (n_components) is constrained by
the number of target language classes. This con-
straint introduces a trade-off, the number of target
language hidden states that need to be extracted
depends on the chosen n_components, potentially
causing computational overhead, and vice versa.

Additionally, the human evaluation is based on
only 30 samples per language, which may not pro-
vide a comprehensive assessment of the model’s
performance. While the sample size is sufficient
for preliminary analysis, a larger dataset would be
necessary to draw more robust conclusions. In-
creasing the number of samples and involving a
more diverse group of evaluators could enhance
the reliability and validity of the findings.

Ethical Considerations

The research involves the use of LLMs, which
might raise ethical considerations regarding bias,
fairness, and transparency on the generated results.
To ensure ethical conduct, the study adheres to
the following principles: (1) Bias Mitigation: The
models used are evaluated for potential biases, and
efforts are made to mitigate any identified biases.
(2) Fairness: The evaluation is conducted across
multiple languages from diverse regions and lan-
guage families to ensure fairness and inclusivity.
(3) Transparency: The methodology and results are
presented transparently to allow for replication and
verification. (4) Privacy: No personal data is used
in the evaluation, and all data is anonymized to pro-
tect privacy. (5) Accountability: The researchers
take responsibility for the ethical implications of

the study and are committed to addressing any con-
cerns that may arise.

We also acknowledge that our research utilized
AI tools for writing, rewriting, and generating code.
Although these tools offer significant advantages
in terms of efficiency and productivity, their use
raises important ethical considerations. We recog-
nize the potential for bias and errors inherent in
AI-generated content and have taken steps to mit-
igate these risks through rigorous human review
and validation. Furthermore, we are mindful of
the potential impact on the broader software devel-
opment community, particularly regarding job dis-
placement and the need for upskilling. We believe
that responsible AI integration should prioritize
transparency, accountability, and the empowerment
of human developers, ensuring that these tools aug-
ment rather than replace human expertise. This
research aims to contribute to the ongoing dialogue
on ethical AI development and usage, advocating
for a future where AI tools are harnessed responsi-
bly to enhance human creativity and innovation in
the field of software engineering.
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A Details of All Evaluation Datasets

The following tables present the full details of
dataset sizes used in this study. Refer to Table 5,
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B Detail Experiment for Understanding
Representation Alignment in LLMs

B.1 Cosine Similarity Distributions Across
Datasets

To better understand the representational behavior
of the models, we analyzed the distribution of co-
sine similarity scores across layers. For LaBSE, the
average cosine similarity increases from the first
layer (mean = 0.6335, std = 0.0920) to the middle
layer (mean = 0.7580, std = 0.1182), and remains
comparably high in the last layer (mean = 0.7544,
std = 0.1150). This trend suggests that semantic
alignment becomes stronger toward the middle and
final layers, with relatively low variability, indi-
cating consistent behavior across input samples.
These observations align with prior findings that
intermediate layers in multilingual encoders often
capture the most transferable features.

In contrast, Qwen2.5-0.5B exhibits a markedly
different pattern. While the middle layer achieves
the highest average similarity (mean = 0.9218, std
= 0.0871), the first layer has a lower mean and
higher variance (mean = 0.5913, std = 0.1650),
indicating less stable representations early in the
network. Notably, the last layer shows a substan-
tial drop in similarity (mean = 0.3745) and a sharp
increase in variability (std = 0.3988), suggesting a
divergence in representational behavior, potentially
due to task-specific tuning or greater representa-
tional fragmentation. This may help explain the
weaker correlations between cosine similarity and
task performance observed in Qwen’s final layers.

These findings reinforce the role of middle lay-
ers in capturing semantically meaningful and trans-
ferable representations, particularly in instruction-
tuned or general-purpose multilingual models. See
Figure 2 for the histogram plot and Figure 7 for the
bar chart per alignment dataset.

B.2 Additional Analysis For Alignment and
Downstream Correlation

As shown in Table 10, the correlation between co-
sine similarity and downstream performance varies
by dataset, layer, and model architecture. The fol-
lowing sections provide detailed interpretations.

452

https://aclanthology.org/2025.coling-main.563/
https://aclanthology.org/2025.coling-main.563/
https://openreview.net/forum?id=ctXYOoAgRy
https://openreview.net/forum?id=ctXYOoAgRy
https://arxiv.org/abs/2408.05517
https://arxiv.org/abs/2408.05517
https://doi.org/10.18653/v1/W17-2512
https://doi.org/10.18653/v1/W17-2512


Dataset Train Test Total # Languages

SIB200 143,705 41,820 185,525 205
INCLUDE-BASE 890 22,638 23,528 44
XCOPA 1,100 5,500 6,600 11
PAWS-X 345,807 14,000 359,807 7

Table 5: Dataset sizes and number of languages for downstream tasks.

(a) Mean Cosine Similarity Score on LaBSE Model (b) Mean Cosine Similarity Score on Qwen2.5-0.5B Model

Figure 7: Layer-wise cosine similarity distributions of LaBSE and Qwen2.5-0.5B models across different datasets.

Dataset Total # Languages

FLORES-200 1,012 204
NTREX-128 1,997 128
NusaX 400 12
NusaWrites 14,800 9 (language pairs)
BUCC 35,000 4 (language pairs)
Tatoeba 88,877 112 (language pairs)
BibleCorpus 85,533 828 (language pairs)

Table 6: Total example counts and number of languages
for alignment tasks. We only use test set for this align-
ment task.

Dataset Train Test Total # Languages

FLORES-200 997 1012 2,009 204
NTREX-128 - 1,997 1,997 128
NusaX 500 400 400 12

Table 7: Total example counts per language and number
of languages for for LID tasks.

SIB200 For LaBSE, correlation values are con-
sistently strong and statistically significant across
all layers. The first (Pearson r = 0.323), middle
(Pearson r = 0.309), and last (Pearson r = 0.210)
layers all demonstrate meaningful positive corre-
lations with performance (p ≈ 0), indicating that

Dataset Train Test Total # Languages

FLORES-200 997 1012 2,009 204
Dolly - 1,800 - 9

Table 8: Total example counts per language and number
of languages for Language Control.

Dataset Total # Languages

Monolingual
Aya 100 5
Dolly 100 5
Okapi 100 10
Native prompts 100 4

Cross-lingual
Okapi 100 14
shareGPT 100 14
Complex prompts 99 14

Table 9: Total example counts per language and number
of languages for Language Confusion tasks, taken from
Language Confusion Benchmark. Only test set is avail-
able.

cosine similarity is well-aligned with task accu-
racy throughout the network. This suggests that
SIB200 benefits from LaBSE’s cross-lingual rep-
resentations, especially in the earlier and middle
layers. In contrast, Qwen2.5-0.5B shows very weak
but statistically significant correlations (r ≤ 0.12
across all layers). While the trends are consistent,
the effect sizes are negligible, suggesting that co-
sine similarity has limited practical influence on
performance for Qwen2.5-0.5B on this dataset.

INCLUDE-BASE For LaBSE, correlations be-
tween cosine similarity and performance are neg-
ligible and statistically non-significant across all
layers, with Pearson r values close to zero (−0.041,
0.005, −0.021). This suggests no meaningful
alignment between representational similarity and
task accuracy. In contrast, Qwen2.5-0.5B exhibits
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Dataset Model Layer Pearson r R2 p-value

SIB200

LaBSE
First 0.323 0.104 <10−300

Middle 0.309 0.096 <10−300

Last 0.210 0.044 <10−205

Qwen2.5-0.5B
First 0.060 0.004 <10−17

Middle 0.123 0.015 <10−69

Last 0.043 0.002 <10−9

INCLUDE-BASE

LaBSE
First -0.041 0.002 0.233

Middle 0.005 0.000 0.884
Last -0.021 0.000 0.545

Qwen2.5-0.5B
First 0.183 0.034 <10−7

Middle 0.142 0.020 <10−4

Last 0.168 0.028 <10−6

XCOPA

LaBSE
First -0.115 0.013 0.458

Middle -0.026 0.001 0.867
Last 0.144 0.021 0.352

Qwen2.5-0.5B
First 0.292 0.085 0.055

Middle -0.139 0.019 0.368
Last 0.538 0.289 <0.001

PAWS-X

LaBSE
First 0.141 0.020 0.484

Middle 0.270 0.073 0.173
Last 0.146 0.021 0.467

Qwen2.5-0.5B
First 0.228 0.052 0.252

Middle 0.532 0.283 0.004
Last 0.369 0.136 0.059

Table 10: Pearson correlation coefficients (r), R2, and
p-values for the relationship between cosine similarity
and task performance across different transformer layers
on LaBSE and Qwen2.5-0.5B.

weak but statistically significant positive correla-
tions (Pearson r range: 0.14–0.18), indicating that
higher cosine similarity is marginally associated
with improved performance. Despite the small ef-
fect sizes, these results highlight a slight but con-
sistent behavioural alignment in Qwen2.5-0.5B on
this dataset.

XCOPA For LaBSE, correlation values across
layers are weak and statistically insignificant, sug-
gesting minimal alignment between representa-
tional similarity and model performance. In con-
trast, Qwen2.5-0.5B exhibits a strong and statis-
tically significant positive correlation in the last
layer (Pearson r = 0.538, p < 0.001), implying
that deeper representations may be more predictive
for XCOPA.

PAWS-X LaBSE shows weak, non-significant
positive correlations across layers. However,
Qwen2.5-0.5B demonstrates a strong positive cor-
relation in the middle layer (Pearson r = 0.532,
p ≈ 0.004), suggesting that intermediate represen-
tations capture more alignment-relevant features
for paraphrase detection.

Downstream Performance Relative to Ran-
dom Baselines To provide a clearer picture
of cross-lingual generalization and behavior
alignment, we present a set of bar charts

comparing the performance of LaBSE and
Qwen2.5-0.5B across four downstream evaluation
datasets—SIB200, INCLUDE-BASE, XCOPA,
and PAWS-X—relative to their respective random
baselines.

On XCOPA and PAWS-X, LaBSE yields near-
random or below-random performance, indicating
that its fixed representations struggle with cross-
lingual commonsense reasoning and paraphrase
detection. For SIB200, LaBSE performs slightly
above the random baseline, suggesting limited task
sensitivity in multilingual sentence similarity set-
tings. However, its performance on INCLUDE-
BASE remains weak, staying near or below the
random baseline and highlighting deficiencies in
broader multilingual alignment.

In contrast, Qwen2.5-0.5B demonstrates
stronger generalization on both SIB200 and
INCLUDE-BASE, significantly outperforming
its baseline and showing evidence of better
cross-lingual task adaptation. However, it faces
challenges on XCOPA and PAWS-X, where
its performance hovers around or falls below
baseline, pointing to possible limitations in
zero-shot commonsense reasoning and paraphrase
understanding across languages.

These comparisons highlight the differing
strengths and weaknesses of encoder-only and
decoder-only multilingual models across select
zero-shot evaluation tasks. See Figure 8.

B.3 Additional Analysis For Alignment and
LID Correlation

As shown in Table 11, the correlation between
alignment (as measured by cosine similarity) and
downstream LID performance varies notably across
datasets, model architectures, and transformer lay-
ers. The following sections provide detailed inter-
pretations for each dataset to contextualize these
trends.

FLORES-200 On the FLORES-200 dataset, we
observe a moderate negative correlation between
cosine similarity and LID performance for both
LaBSE and Qwen2.5-0.5B. The strength of the
correlation increases in deeper layers, with the
last layer showing the strongest correlation (r =
−0.707, p < 10−31) for LaBSE. Qwen2.5-0.5B,
however, exhibits its strongest negative correlation
in the middle layer (r = −0.432, p < 10−9), indi-
cating that as the embeddings become more aligned
(i.e., higher cosine similarity), the language identity
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(a) Performance of LaBSE across downstream tasks compared
to random baselines.

(b) Performance of Qwen2.5-0.5B across downstream tasks
compared to random baselines.

Figure 8: Comparison of LaBSE and Qwen2.5-0.5B performance across various downstream tasks and their
corresponding random baselines.

Dataset Model Layer Pearson r R2 p-value

FLORES-200

LaBSE
First 0.024 0.001 0.732

Middle -0.122 0.015 0.084
Last -0.707 0.500 <10−31

Qwen2.5-0.5B
First -0.142 0.020 0.043

Middle -0.432 0.186 <10−9

Last -0.278 0.077 <10−4

NTREX-128

LaBSE
First 0.254 0.065 0.012

Middle -0.173 0.030 0.089
Last -0.621 0.385 <10−11

Qwen2.5-0.5B
First -0.232 0.054 0.021

Middle -0.476 0.226 <10−6

Last -0.340 0.115 0.001

NusaX

LaBSE
First -0.566 0.320 0.112

Middle -0.872 0.760 0.002
Last – – –

Qwen2.5-0.5B
First -0.455 0.207 0.218

Middle -0.873 0.763 0.002
Last -0.045 0.002 0.910

Table 11: Pearson correlation coefficients (r),R2, and p-
values for the relationship between KNN LID F1 score
using mean-pooled embedding and alignment cosine
similarity across different transformer layers on LaBSE
and Qwen2.5-0.5B.

signal tends to weaken, potentially due to semantic
abstraction. The statistically significant p-values
across all layers confirm the robustness of this rela-
tionship. These findings reinforce the idea that high
alignment may come at the cost of LID separabil-
ity, especially in final layers for LaBSE and middle
layer for Qwen2.5-0.5B, where representations are
more semantically homogenized.

NTREX-128 For NTREX-128, the correlation
trends diverge between the two models. LaBSE
exhibits its strongest negative correlation in the
the last layer (Pearson r = −0.621, p < 10−11),
with a positive correlation in the first layer (Pear-
son r = 0.254, p = 0.012) and weak negative
correlation in the middle (Pearson r = −0.173,
p = 0.089). This suggests that early representa-
tions in LaBSE may still retain relatively distinct
language features that diminish with depth. In con-

trast, Qwen2.5-0.5B shows more consistent nega-
tive correlations across all layers, particularly in
the middle layer (Pearson r = −0.476, p < 10−6).
These results highlight a more uniform degradation
of LID-relevant information in Qwen’s architecture
compared to LaBSE.

NusaX For NusaX, alignment-LID correlations
exhibit distinct patterns. LaBSE shows a weak cor-
relation in the first layer (Pearson r = −0.566,
p = 0.112), a highly negative correlation in the
middle layer (Pearson r = −0.872, p = 0.002),
and no measurable correlation in the last layer (–),
which we assume reflects a perfect inverse rela-
tionship (Pearson r ≈ −1) due to complete LID
failure. Qwen2.5-0.5B follows a similar pattern,
with its most negative correlation in the middle
layer (Pearson r = −0.873, p = 0.002) and negli-
gible correlations in the first (Pearson r = −0.455,
p = 0.218) and last layers (Pearson r = −0.045,
p = 0.910). The correlations for both models are
the most negative observed across all datasets, sug-
gesting alignment disproportionately degrades lan-
guage signals in low-resource settings. This ex-
treme inverse relationship likely stems from the
models’ lack of prior exposure to NusaX languages
during training, limiting their ability to retain lan-
guage identity in aligned embeddings.

C LID Methods and Results

C.1 Methods
To investigate language-specific information in
multilingual representations, we analyze two dis-
tinct paradigms: (1) frozen embeddings from
pretrained decoder-only LLMs (Qwen-2.5) and
(2) specialized multilingual sentence encoders
(LaBSE). We evaluate whether linguistic identity
is recoverable from their hidden states and how
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FLORES-200 NTREX-128 NusaX

Model Method Layer CLS Mean CLS Mean CLS Mean

LaBSE

KNN
First 80.65 88.35 87.02 90.43 64.12 81.78
Middle 65.11 78.85 71.37 81.30 33.89 45.37
Last 7.65 3.92 3.45 1.63 0.54 0.00

Linear
Probing

First 93.47 95.13 92.21 93.29 89.16 97.30
Middle 92.99 94.18 92.33 92.68 88.00 94.51
Last 30.03 70.89 22.91 74.36 56.00 65.44

Qwen2.5-0.5B

KNN
First – 83.69 – 86.06 – 65.79
Middle – 55.32 – 54.73 – 25.05
Last – 71.73 – 81.86 – 29.39

Linear
Probing

First – 94.21 – 91.42 – 95.55
Middle – 91.76 – 90.04 – 87.09
Last – 92.46 – 90.27 – 88.77

Table 12: F1 score for KNN and linear classifiers by layer and pooling on FLORES-200, NTREX-128, and NusaX.

pooling strategies affect clusterability (via non-
parametric KNN retrieval) and linear separability
(via supervised classification heads).

KNN-based Language Identification We hy-
pothesize that language identity manifests as sep-
arable clusters in the hidden space, which can be
detected via non-parametric nearest-neighbor re-
trieval.

For both Qwen-2.5 and LaBSE, hidden states
are extracted from the first (ℓ = 1), middle (ℓ =
m), and final (ℓ = L) layers. Let Hℓ ∈ RT×d

denote the hidden states at layer ℓ for a sequence of
length T . Sentence-level embeddings are derived
as follows:

• Qwen-2.5: Only mean pooling is applied:

eℓmean =
1

T

T∑

t=1

Hℓ
t ∈ Rd.

• LaBSE: Both CLS and mean pooling are com-
pared:

eℓCLS = Hℓ
[CLS], eℓmean =

1

T

T∑

t=1

Hℓ
t ∈ Rd.

For each layer ℓ ∈ {1,m,L} and pooling strategy
pool ∈ {mean,CLS}, we construct reference sets:

Rℓ
pool =

{(
e
ℓ,(i,j)
pool , y

(j)
)}200,204

i=1,j=1
,

where y(j) is the language label for the j-th lan-
guage in FLORES-200, and i indexes the examples
within each language. This results in a total of
200 × 204 = 40, 800 reference embeddings. For
Qwen-2.5, only Rℓ

mean is used, while LaBSE em-
ploys both Rℓ

CLS and Rℓ
mean.

We evaluate on three test sets: Flores-200,
NTREX-128, and NusaX. To ensure fair compari-
son, we retain only languages overlapping with the
FLORES-200 train set:

Loverlap = Ltest ∩ LFLORES-train,

where Ltest is the language set of the test dataset,
and LFLORES-train contains the 204 languages in
the FLORES-200 train set. For a test embedding
eℓtest,pool, we compute its L2 distance to all refer-
ence embeddings in Rℓ

pool:

d
(
eℓtest,pool, e

ℓ,(i,j)
ref,pool

)
=
∥∥∥eℓtest,pool − e

ℓ,(i,j)
ref,pool

∥∥∥
2

2
,

∀i ∈ {1, . . . , 200},
∀j ∈ {1, . . . , 204}.

The predicted language ŷtest is obtained via ma-
jority vote over the k = 256 nearest neighbors:

ŷtest = argmax
l∈Loverlap

∑

(i,j)∈Nk

1(y(j) = l),

where Nk denotes the set of indices for the top-k
neighbors, and 1 is the indicator function.

Linear Classification Head To complement our
non-parametric analysis, we probe the linear sep-
arability of language identity in Qwen-2.5 and
LaBSE embeddings. This evaluates whether lin-
guistic boundaries are geometrically aligned with
hyperplanes in the hidden space, which would sug-
gest that language control can be achieved through
simple affine transformations.

Similar to the KNN-based approach, embed-
dings are extracted identically. For each dataset
D ∈ {FLORES-200, NTREX-128, NusaX} and

456



each layer ℓ ∈ {1,m,L} representing early, mid-
dle, and last layers respectively, we train a separate
linear layer to map embeddings eℓ ∈ Rd to lan-
guage logits zℓ ∈ RC , where C is the number of
languages. The classifier for each layer is defined
as:

zℓ = Wℓeℓ + bℓ, Wℓ ∈ RC×d,bℓ ∈ RC ,

with cross-entropy loss minimized during training.

C.2 Results
Our analysis reveals distinct layer-wise behav-
iors in language identification (LID) performance
across LaBSE and Qwen2.5-0.5B models, focus on
mean-pooled embedding.

KNN-based Language Identification The KNN
method highlights significant performance vari-
ations across layers. As shown in Table 1, for
LaBSE, the first layer achieves robust results,
with mean F1 scores of 88.35% on FLORES-200,
90.43% on NTREX-128, and 81.78% on NusaX.
Performance declines moderately in the middle
layer, yielding 78.85% for FLORES-200, 81.30%
for NTREX-128, and 45.37% for NusaX. The last
layer exhibits catastrophic degradation, collapsing
to 3.92%, 1.63%, and 0.00% on the respective
datasets. This suggests that deeper LaBSE lay-
ers lose language-discriminative features critical
for KNN classification.

For Qwen2.5-0.5B, the first layer similarly out-
performs middle layers, with mean F1 scores of
83.69% on FLORES-200, 86.06% on NTREX-128,
and 65.79% on NusaX. The middle layer shows
the weakest results across all datasets: 55.32%,
54.73%, and 25.05%, respectively, while the last
layer partially recovers to 71.73%, 81.86%, and
29.39%. This non-monotonic trend suggests lim-
ited retention of language-specific signals in the
middle layer of Qwen2.5-0.5B.

LaBSE, trained for semantic alignment, shows
severe degradation in its final layer, with near-zero
F1 scores across datasets, as deeper layers erase
language-specific signals required for KNN classi-
fication. In contrast, Qwen2.5-0.5B, a standard pre-
trained LLM, experiences a performance dip in its
middle layer but recovers partially in the final layer,
retaining sufficient linguistic discriminability. This
divergence underscores a key architectural trade-
off: contrastive models like LaBSE discard lexical
or syntactic patterns in deeper layers to prioritize
semantic invariance, while standard LLMs preserve

partial language-identifying features across layers
despite progressive abstraction.

Linear-probing-based Language Identification
For LaBSE, the First Layer consistently achieves
the highest LID F1 scores across all datasets, with
a significant drop in performance observed in
the Last Layer. The NusaX dataset delivers the
best overall results, particularly in the First Layer,
where it reaches 97.30% F1 score. However, the
Last Layer shows notably weaker performance, es-
pecially for the FLORES-200 and NusaX datasets.
These findings suggest that earlier layers of LaBSE
retain more language-identification-relevant fea-
tures, such as surface-level linguistic cues, com-
pared to deeper layers (see Table 1).

Similarly, in the Qwen2.5-0.5B model, the First
Layer consistently outperforms the Middle Layer
in LID F1 scores across all datasets. The NusaX
dataset again produces the best results, with 95.55%
F1 score, while NTREX-128 exhibits the lowest
performance across all layers. These results indi-
cate that the shallow First Layer of Qwen2.5-0.5B
is more effective for language identification tasks
than deeper layers, such as the Middle Layer, which
shows weaker performance (refer to Table 1).

Overall, both models show that their highest
LID performance occurs in the First Layer, with
F1 scores declining as the layers get deeper. The
NusaX dataset consistently yields the best perfor-
mance, while the Last Layer in LaBSE and the
Middle Layer in Qwen2.5-0.5B exhibit the weak-
est results. These trends suggest that shallow layers
retain more language-specific information, which
is crucial for language identification, likely due to
their greater focus on surface-level features and
general linguistic patterns. Table 12 further il-
lustrate the comparative performance across lay-
ers and pooling techniques for both LaBSE and
Qwen2.5-0.5B models.

Classifier Comparison: KNN vs. Linear Head
As shown in Table 12, linear classifiers achieve
superior F1 scores compared to KNN across lay-
ers, suggesting their ability to identify language-
discriminative features within linearly separable
subspaces. However, linear methods exhibit at-
tenuated performance gaps between layers, for in-
stance, the difference between first and middle lay-
ers in Qwen2.5-0.5B is less than 5% with linear
classifiers, while KNN reveals differences exceed-
ing 30%. Similarly, LaBSE’s linear classifier re-
duces the last-layer performance gap to under 25%,
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whereas KNN shows near-complete degradation.
This contrast implies that parametric linear meth-
ods, while more accurate overall, may obscure
layer-specific language information degradation
due to their reliance on learned projections. In
contrast, KNN’s non-parametric nature might more
directly reflect the geometric structure of embed-
dings, amplifying sensitivity to layer-wise shifts in
language information quality.

Pooling Method Comparison: CLS Token vs.
Mean As shown in Table 12, the effectiveness
of pooling strategies varies across layers. In first
and middle layers, mean pooling achieves superior
performance, with F1 margins exceeding 10% over
CLS token pooling under KNN. However, in last
layers, CLS token pooling shows limited resilience
under KNN, marginally outperforming mean pool-
ing in isolated cases despite near-random overall
performance. Linear classifiers amplify mean pool-
ing’s advantage across all layers, suggesting its
robustness to layer-specific degradation.

This suggests that mean pooling better pre-
serves language-discriminative signals across lay-
ers, likely due to its aggregation of token-level
features. In contrast, the CLS token, optimized
for semantic tasks, exhibits sharper performance
declines in deeper layers, particularly under non-
parametric methods like KNN. These observations
highlight the interplay between pooling strategy,
layer depth, and classification method in language
identification tasks.

D Language Vector Setting

Linear Discriminant Analysis (LDA) (Balakrish-
nama and Ganapathiraju, 1998; Tharwat et al.,
2017) is utilized to construct language vectors
by extracting language-specific features from the
Qwen2.5-0.5B model’s scaled hidden states, opti-
mizing cross-lingual control through class separa-
bility. We evaluate various component sizes (20,
40, 50, 100, 150, 203) to balance LID accuracy and
unused variance, fitting an LDA model and training
a linear neural network (with 10 epochs, Adam op-
timizer, and CrossEntropyLoss) to achieve a peak
accuracy of approximately 90.63% at 100 compo-
nents. The unused variance is minimized, ensuring
retained discriminative information for injection (δ)
with pruning, which enhances language targeting
while the Figure 10 visually confirms this optimal
trade-off.

E Ablation on Language Shift Strategy

Language Shift Strategy We assess various
strategies for injecting the language vector in ITLC.
Specifically, we explore three strategies based on
the temporal scope of the latent intervention: (1)
prompt only, (2) generated tokens only, and (3)
both phases. Let h(m)

t ∈ Rd denote the hidden
state at position t in the middle layer m, and h

(m)′
t

denotes its language-shifted counterpart:
• Prompt-Only (prompt-only): Applies injec-

tion exclusively to input prompt processing:

h
(m)′
t =

{
h
(m)
t + αδ, ∀t ∈ [1, Tinput]

h
(m)
t , ∀t > Tinput

• Generated-Only (gen-only): Restricts injec-
tion to autoregressive generation:

h
(m)′
t =

{
h
(m)
t , ∀t ∈ [1, Tinput]

h
(m)
t + αδ, ∀t ∈ [Tinput + 1, Ttotal]

• Prompt and Generated (prompt-and-gen):
Applies injection throughout both phases:

h
(m)′
t = h

(m)
t + αδ, ∀t ∈ [1, Ttotal]

where Tinput is the input prompt length and
Ttotal = Tinput + N the total sequence length af-
ter generating N tokens.

Ablation Result All three language shift strate-
gies are compared in cross-lingual setting using
the Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, as
shown in Figure 9. The prompt-and-gen strategy
consistently achieves the strongest performance,
followed by gen-only and then prompt-only. This
indicates that while the prompt-only approach may
aid the model in understanding the input context
in the target language, and the gen-only strategy
directly shifts the generation process into target
language, while the prompt-and-gen method ef-
fectively combines both advantages via injecting
the shift language vector into all timesteps.

F Experiement Settings for Language
Confusion

F.1 Baseline
The results discussed is focus on Line-level Pass
Rate (LPR). Word-level Pass Rate (WPR) is mostly
excluded in discussion because WPR for Latin-
script languages is compromised by its funda-
mental reliance on Unicode character ranges, a
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Lang
Qwen2.5-0.5B Qwen2.5-7B Llama-3.1-8B

Baseline ITLC Baseline ITLC Baseline ITLC

chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1

ID 7.71 61.38 8.46 63.74 8.21 62.98 9.26 65.19 8.63 60.58 8.91 64.94
TH 3.39 62.12 3.42 63.78 3.62 62.55 3.88 63.90 2.96 59.02 4.28 64.37
TR 6.42 59.36 6.78 60.67 6.94 61.31 7.59 62.96 8.37 58.20 8.62 63.76
JA 1.90 59.98 2.11 61.53 2.08 60.14 1.84 61.15 1.52 53.26 2.60 62.94
FR 7.53 61.63 8.89 64.03 8.11 63.03 9.51 65.24 7.97 59.86 8.90 64.51
ES 8.51 62.66 9.43 64.90 9.30 64.24 10.01 65.65 8.69 61.14 9.84 65.65
AR 5.11 61.89 5.68 64.31 5.35 62.39 6.78 65.98 4.28 59.70 6.45 65.59
KO 1.86 60.93 2.08 61.90 2.09 61.67 2.14 62.35 2.14 54.61 3.31 65.19
ZH 2.61 62.26 2.97 64.85 2.73 62.93 3.33 65.18 2.00 55.14 2.67 63.98

AVG 5.01 61.36 5.53 63.30 5.38 62.36 6.04 64.18 5.39 58.39 6.76 64.29

Table 13: Generation performance for different target languages on Qwen2.5 and Llama-3.1 base version. Baseline
denotes the same model prompted in the same language as the desired target language. Bold values indicate the best
score for each metric across all models and settings.

Lang
Qwen2.5-0.5B-Instruct Qwen2.5-7B-Instruct Llama-3.1-8B-Instruct

Baseline ITLC Baseline ITLC Baseline ITLC

chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1 chrF++ BERT F1

ID 7.71 61.38 8.46 63.74 8.21 62.98 9.26 65.19 9.67 64.58 11.55 66.97
TH 3.39 62.12 3.42 63.78 3.62 62.55 3.88 63.90 5.42 64.68 6.67 67.82
TR 6.42 59.36 6.78 60.67 6.94 61.31 7.59 62.96 9.37 63.37 10.49 65.15
JA 1.90 59.98 2.11 61.53 2.08 60.14 1.84 61.15 3.33 63.29 4.11 66.23
FR 7.53 61.63 8.89 64.03 8.11 63.03 9.51 65.24 9.44 64.28 11.40 67.52
ES 8.51 62.66 9.43 64.90 9.30 64.24 10.01 65.65 10.32 64.78 12.24 67.68
AR 5.11 61.89 5.68 64.31 5.35 62.39 6.78 65.98 6.88 64.82 8.66 67.55
KO 1.86 60.93 2.08 61.90 2.09 61.67 2.14 62.35 3.74 64.52 4.59 66.99
ZH 2.61 62.26 2.97 64.85 2.73 62.93 3.33 65.18 2.58 64.26 3.70 66.82

AVG 5.41 61.79 6.11 63.74 5.82 63.24 6.48 64.96 6.97 64.80 8.49 67.19

Table 14: Generation performance for different target languages on Qwen2.5 and Llama-3.1 Instruction version.
Baseline denotes the same model prompted in the same language as the desired target language. Bold values
indicate the best score within each model, and the overall best across models.

Figure 9: Cross-lingual LPR performance across differ-
ent vector injection strategies.

limitation highlighted in (Marchisio et al., 2024).
For Latin-script WPR evaluation, we use the
following Unicode ranges: Basic Latin, Latin-
1 Supplement, Latin Extended-A through Latin

Extended-G, and Latin Extended Additional 6.
We use the following generation hyperparameters:
max_new_tokens=256 and top_k=50. We apply
nucleus sampling with top_p=0.9 and use a mod-
erate temperature of 0.7.

F.2 In-context learning (ICL)
We follow all the original settings for ICL in the
LCB benchmark. For the Q/A template, we use the
Q: A: format, while the chat template adopts the
model-specific instruction-tuning structure. Cross-
lingual few-shot prompts follow the benchmark’s
original setup, where English inputs include in-
structions such as Respond in <TARGET_LANG>.
For monolingual few-shot prompts, both inputs and
outputs are in the same language.It is important to
note that the few-shot demonstrations are provided
in languages distinct from the target language of
the current task. This design aims to guide the

6Taken from Wikipedia: https://en.m.wikipedia.
org/wiki/Unicode_block.
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Figure 10: Controlling the number of language feature representations by using LDA performance accuracy (Left)
and unused variance (Right) across number of components.

Lang Shift Prompt (XX) Generated Output (EN) Translation (XX)

KO → EN 사과먹는 5가지방법은무엇일까요? Here are five common ways to enjoy apples: 1.
Raw and fresh : Eating an apple straight from the
fruit bowl is a simple yet delicious way of enjoying
it. 2. Juiced or blended into smoothies: Apples
can be ju . . .

What are 5 ways to eat apples?

ES → EN ¿ Cómo escapar de un he-
licóptero atrapado en el agua?

Si usted encuentra sí mismos stuck inside a he-
licopter that has crashed into the water: 1. Re-
main calm: Panic can cloud your judgment and
increase risk of injury or drowning. 2. Verify ev-
eryone’s safety first before attempting to escape
from any. . .

How to escape from a helicopter trapped in water?

JA → EN 音楽家が音楽から収入を得る
方法のリストを用意してくださ
い.

Here are some ways that a musician can earn
income from their music: 1�”0307Live Perfor-
mances: Playing concerts, gigs and shows at var-
ious venues such as clubs, festivals or events.
2Ṙecording Music Sales : Selling albums through
digital platforms like . . .

Provide a list of ways musicians can earn income
from their music craft. . . .

Figure 11: Examples of generated outputs from Llama-3.1-8B-Instruct with injection in XX→EN.

model in understanding the task semantics rather
than identifying the appropriate output language.

F.3 Inference-Time Language Control (ITLC)

We use the following scaling factor α values: for
Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, α =
0.5; for Qwen2.5-7B and Qwen2.5-7B-Instruct,
α = 1.3. For Llama-3.1-8B, α = 0.15; and
for Llama-3.1-8B-Instruct, α = 0.10. See Ap-
pendix G.1 for details on the selection of scaling
factor.

F.4 Parameter-Efficient Fine-Tuning (PEFT)

For training data preparation, we use the Alpaca
subset from the Bactrian-X dataset (Li et al.,
2023a). Specifically, we extract the first 1,000 rows
per language across the 14 languages included in
the LCB benchmark (500 for monolingual and 500
for cross-lingual), resulting in a total of 14,000
samples. For monolingual data, we directly use the
same samples as in Bactrian-X. For cross-lingual
data, we replace the inputs with their corresponding

English variants in Bactrian-X and append the in-
struction "Please respond in <TARGET_LANG>"
to the prompt. For training data of the base model,
we concatenate the inputs and outputs and treat the
result as the output sequence without applying the
Q/A template.

The model is trained for one epoch us-
ing the LoRA fine-tuning technique (Hu
et al., 2022) with the following settings:
warmup_ratio = 0.05, batch_size =
1, gradient_accumulation_steps = 16,
learning_rate = 1e-4, lora_rank = 8, and
lora_alpha = 32. We employ the MS-SWIFT
framework (Zhao et al., 2024b) for model training,
with all other hyperparameters kept at their default
values.

F.5 Combination of ICL and ITLC

We apply ITLC only to the current input prompt us-
ing the scaling factor specified in Appendix F.3, but
not to the few-shot examples, since the languages
used in the few-shot examples differ from that of
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Lang Shift Prompt (EN) Generated Output (XX) Literal Translation (EN)

EN → TR How can you open a can without
using your hands?

Bir kâğıt parçasını, delikten geçir ve tutacak şek-
ilde yerleştir. Kapağın üzerine basınçlı bir cisimle
vurun (örneğin bıçak). Bu sayede metalin çarka
girmesiyle . . .

Pass a piece of paper through the hole and place
it so that it holds. Strike the cover with a pres-
surized object (for example, a knife). In this way,
with the metal entering the wheel... . . .

EN → ES Can you help me avoid credit
card debt?

¡Claro que sí, puedo ayudarte a evitar deudas con
tarjetas crédito. Aquí te presento algunas conse-
jos: 1) Crea un presupuesto y controla tus gastos
para saber cuántos ingresos tienes. . .

Of course! I can help you avoid credit card debt.
Here are some tips: 1) Create a budget and track
your expenses. This will help you understand how
much income you have and where your money is
going.

EN → TR What shapes are made up of
straight lines?

Evinizin değerini artırmak için bazı yollar şun-
lardır: 1. Dekorasyon: Evi modern ve şık bir şek-
ilde dekore etmek, evin görünümünü iyileştirir. 2.
Ren . . .

Here are some ways to increase the value of your
home: 1. Decoration: Decorating the house in a
modern and stylish way improves its appearance.
2. Paint ⋯. . .

Figure 12: Examples of generated outputs from Llama-3.1-8B-Instruct with injection in EN→XX.

the current task (see Appendix F.2).

F.6 Combination of PEFT and ITLC

The LDA is trained based on hidden states extracted
from the pre-trained model. We do not retrain
the LDA using new hidden states after PEFT. For
other details, please refer to Appendix F.4 and Ap-
pendix F.3

F.7 INCLINE

We extract sentence representations from the
FLORES-200 dataset (Team et al., 2022) and
use the same scaling factor α as defined in Ap-
pendix F.3 during inference.

F.8 ReCoVeR

We extract sentence representations from the
FLORES-200 dataset (Team et al., 2022) and apply
a scaling factor of α = 0.2 for Llama-3.1-8B and
its instruct variant, and α = 0.3 for Qwen2.5-0.5B
and its instruct variant.

G Language Confusion Result

G.1 Ablation Study of Scaling for Different
Language Vector Injection Strategies

As shown in Table 15, Table 16 and Table 17 Our
analysis reveals distinct optimal scaling factors
for cross-lingual LCPR across injection strategies:
prompt-only achieves peak performance at scaling
0.8 (65.71), gen-only at 0.6 (71.35), and prompt-
and-gen at 0.5 (78.93). Notably, prompt-and-gen
outperforms other strategies, suggesting combined
injection better preserves cross-lingual alignment.
The scaling factor for the Qwen2.5-0.5B model
family is adopted from our ablation study. How-
ever, due to computational constraints, a similar
study was not feasible for the Qwen2.5-7B and

Scaling Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

prompt-0.1 64.86 81.01 65.67 33.97 23.75 74.74
prompt-0.2 66.39 82.14 66.75 38.88 28.91 75.37
prompt-0.3 65.59 82.86 65.78 46.03 37.86 72.56
prompt-0.4 65.45 82.79 65.53 57.20 51.97 72.27
prompt-0.5 65.87 82.73 62.50 62.93 61.63 73.43
prompt-0.6 64.92 82.64 65.24 63.91 63.83 73.20
prompt-0.7 64.78 81.03 65.52 64.63 66.09 71.74
prompt-0.8 63.69 80.40 65.28 65.71 66.41 74.24
prompt-0.9 61.25 75.81 64.15 64.59 64.79 73.30
prompt-1.0 60.39 74.98 63.87 62.97 63.35 72.79

Table 15: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the prompt-only setting
with base shift vector, evaluated across different lan-
guage vector scaling factors, α.

Scaling Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

gen-0.1 64.75 83.99 63.85 35.07 24.79 74.92
gen-0.2 65.35 85.09 65.01 39.93 28.96 75.92
gen-0.3 62.61 86.55 59.29 48.08 38.97 71.16
gen-0.4 59.61 86.23 54.95 57.49 57.82 64.37
gen-0.5 59.61 86.85 54.76 67.00 74.04 66.07
gen-0.6 60.05 87.49 58.14 71.35 80.46 67.67
gen-0.7 58.01 87.41 55.72 69.39 80.73 66.57
gen-0.8 52.45 82.78 52.35 65.84 75.74 65.93
gen-0.9 47.07 75.83 50.58 58.61 68.51 63.73
gen-1.0 40.44 71.15 54.91 51.25 61.85 61.83

Table 16: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the generated-only set-
ting with base shift vector, evaluated across different
language vector scaling factors, α.

Llama3.1-8B families. For these models, we in-
stead conducted a limited manual evaluation, we
randomly generated outputs for a range of scal-
ing factors across different target languages and
selected the best-performing value based on human
assessment.
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Scaling Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

prompt-and-gen-0.1 64.21 84.27 63.77 39.48 28.69 75.74
prompt-and-gen-0.2 63.25 86.34 61.76 50.04 41.18 75.07
prompt-and-gen-0.3 62.94 88.24 60.85 64.22 64.18 72.53
prompt-and-gen-0.4 60.79 88.06 59.09 75.88 80.58 75.78
prompt-and-gen-0.5 59.98 87.11 59.41 78.93 85.08 77.15
prompt-and-gen-0.6 57.01 86.37 55.90 77.21 84.13 74.90
prompt-and-gen-0.7 53.56 82.91 53.63 72.57 81.98 71.51
prompt-and-gen-0.8 49.00 77.27 51.33 68.22 76.80 70.08
prompt-and-gen-0.9 40.41 70.51 48.16 60.97 69.07 66.44
prompt-and-gen-1.0 36.60 70.01 51.30 52.51 61.07 63.82

Table 17: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the prompt-and-generated
setting with base shift vector, evaluated across different
language vector scaling factors, α.

G.2 Impact of In-context learning (ICL) on
Monolingual and Cross-lingual
Performance

As shown in Table 18, Table 19, Table 20, Ta-
ble 21, Table 22 and Table 23, in the monolin-
gual setting, the impact of few-shot prompting
varies inconsistently across models. Qwen2.5-0.5B
and Qwen2.5-0.5B-Instruct exhibit decreased LPR,
while Qwen2.5-7B and Llama-3.1-8B show in-
creased LPR. For instruction-tuned models, both
Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct
demonstrate reduced LPR. This unstable and un-
predictable behavior may stem from the design of
monolingual few-shot prompts, which introduce
conflicting linguistic signals that models with lim-
ited capacity struggle to resolve effectively 7.

In the cross-lingual setting, few-shot prompt-
ing consistently improves performance across all
base models (Qwen2.5-0.5B, Qwen2.5-7B, and
Llama-3.1-8B). This improvement can be attributed
to the few-shot examples, which utilize English
inputs paired with explicit target-language direc-
tives, thereby reinforcing the desired input-output
alignment. These results indicate that English-
centric prompting effectively stimulates cross-
lingual adaptation in base models. However, the
effect differs for instruction-tuned models: while
smaller models like Qwen2.5-0.5B-Instruct benefit
from few-shot examples, larger models (Qwen2.5-
7B-Instruct and Llama-3.1-8B-Instruct) show mini-
mal gains. This stability suggests that instruction-
tuning pre-aligns their multilingual capabilities,
rendering additional in-context examples largely
redundant.

The divergent impact of ICL across models in-

7Please refer to Appendix F.2.

Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-0.5B 65.27 81.58 65.15 29.41 19.75 73.45
+ Q/A template (0-shot) 59.26 59.91 73.35 44.68 35.36 75.94

+ PEFT 75.96 82.91 78.30 76.15 77.55 80.56
+ 1-shot 56.12 55.38 73.70 47.42 37.95 75.42
+ 2-shot 51.59 49.70 70.98 49.36 41.64 75.03
+ 3-shot 52.52 51.51 72.07 53.16 46.65 77.07
+ 4-shot 54.16 52.95 74.15 55.03 48.23 77.60
+ 5-shot 54.47 53.62 70.40 56.78 50.63 76.16

+ ITLC (apply base shift vector)
+ prompt-only (α = 0.8) 63.69 80.40 65.28 65.71 66.41 74.24
+ gen-only (α = 0.6) 60.05 87.49 58.14 71.35 80.46 67.67
+ prompt-and-gen (α = 0.5) 59.98 87.11 59.41 78.93 85.08 77.15

+ Q/A template 62.50 81.21 64.60 81.30 85.61 80.84
+ PEFT 73.68 86.17 73.26 87.66 90.51 86.15

+ 5-shot 57.65 74.38 61.13 81.51 87.58 79.01

+ ITLC (apply instruct shift vector)
+ prompt-only (α = 0.8) 63.11 79.95 64.18 63.08 63.77 73.04
+ gen-only (α = 0.6) 55.89 86.38 55.32 68.70 78.99 65.36
+ prompt-and-gen (α = 0.5) 58.48 87.24 57.21 76.06 82.31 75.74

Table 18: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under monolingual and cross-
lingual settings.

dicates that the effectiveness of few-shot prompt-
ing might contingent upon the model’s instruction-
following aptitude, contextual understanding, pre-
existing upper-bound capability, and the depth of
alignment achieved during its instruction-tuning
process 8.

G.3 Chat/QA Template Efficacy Across
Settings

The findings are consistent with those observed
in the in-context learning (ICL) setting for LPR
performance, with one key exception: applying
the chat template to instruction-tuned models con-
sistently yields better performance, as shown in
Table 19.

G.4 Effect of Source Language Shift Vector

As shown in Figure 13, subtracting the source lan-
guage shift vector reduces the model’s bias toward
the source language (English) and guides the model
to generate content in the target language more ef-
fectively, compared to directly adding the target
language shift vector.

H Experiment setting for semantic
retention and human evaluation

H.1 Generation Hyperparameter

The generation process for the language control
and language confusion results uses specific hyper-
parameter to balance creativity and control. We
set max_new_tokens=50, and set top_k to 50. We

8All discussed results are based on experiments that apply
the official chat/QA templates during inference.
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Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-0.5B-Instruct 74.79 82.61 77.94 38.75 27.22 78.40
+ Chat template (0-shot) 74.52 83.66 77.12 63.00 57.69 79.50

+ PEFT 80.13 89.85 77.77 79.46 84.34 80.01
+ 1-shot 72.94 78.83 77.79 66.82 61.42 82.12
+ 2-shot 73.95 78.41 79.43 68.19 64.21 80.99
+ 3-shot 74.61 78.88 76.99 69.43 65.94 81.42
+ 4-shot 75.82 80.89 80.07 69.56 67.28 79.62
+ 5-shot 75.44 80.30 79.36 71.43 69.70 79.74

+ ITLC (apply base shift vector)
+ prompt-only (α = 0.8) 67.33 74.82 76.35 76.05 77.68 81.11
+ gen-only (α = 0.6) 67.00 84.07 65.83 75.56 82.42 74.51
+ prompt-and-gen (α = 0.5) 67.73 81.70 68.96 81.51 85.32 80.55

+ ITLC (apply instruct shift vector)
+ prompt-only (α = 0.8) 66.78 74.96 73.08 73.26 76.37 79.20
+ gen-only (α = 0.6) 67.42 83.64 65.46 73.95 84.06 71.40
+ prompt-and-gen (α = 0.5) 68.20 82.20 68.05 80.96 86.79 78.84

+ 5-shot 68.93 86.28 66.47 83.98 88.07 82.00
+ PEFT 68.16 90.51 62.58 85.38 89.85 82.83

Table 19: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B-Instruct on LCB under monolingual and
cross-lingual settings.

Figure 13: Cross-lingual LPR performance on LCB with
and without subtracting the source language shift vector
across Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, using
prompt-and-gen injection strategy with α = 0.5.

Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-7B 68.15 77.71 71.40 41.03 29.72 75.33
+ Q/A template (0-shot) 53.97 55.24 73.84 65.68 60.61 76.88

+ PEFT 73.46 83.80 72.80 78.93 82.66 79.51
+ 5-shot 63.23 62.78 75.77 72.15 69.37 79.45

+ ITLC (apply base shift vector)
+ prompt-and-gen (α = 1.3) 67.05 80.07 67.33 61.70 59.84 70.84

+ Q/A template 58.10 63.40 72.36 70.71 74.40 72.72
+ PEFT 73.12 85.60 72.40 78.25 83.92 78.39

+ 5-shot 65.24 69.55 73.42 79.60 84.90 77.13

Table 20: Performance (LCPR / LPR / WPR) of
Qwen2.5-7B on LCB under monolingual and cross-
lingual settings.

apply nucleus sampling with top_p=0.9, and use a
moderate temperature of 0.7 to encourage focused
yet varied outputs. To reduce repetitive phrases,
we apply a repetition_penalty of 1.5. We keep
all other hyperparameters at their model-specific
default values and use each instruct model’s native

Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-7B-Instruct (with chat template) 60.83 78.89 58.78 66.16 78.81 62.37
+ 5-shot 54.46 74.13 53.93 65.79 78.51 61.44
+ PEFT 75.03 88.28 73.19 78.32 83.56 77.93

+ ITLC (apply base shift vector)
+ prompt-and-gen (α = 1.3) 62.44 85.89 56.76 66.91 83.45 60.34

+ ITLC (apply instruct shift vector)
+ prompt-and-gen (α = 1.3) 61.35 84.89 56.97 66.89 84.73 60.02

+ 5-shot 57.75 81.01 53.73 66.26 84.04 58.97
+ PEFT 75.62 90.12 72.33 77.50 84.10 76.70

Table 21: Performance (LCPR / LPR / WPR) of
Qwen2.5-7B-Instruct on LCB under monolingual and
cross-lingual settings.

Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Llama-3.1-8B 43.52 44.07 59.66 1.46 0.74 88.10
+ Q/A template (0-shot) 63.68 56.98 82.26 39.01 26.13 87.27

+ PEFT 79.16 93.01 72.80 82.04 89.73 77.83
+ 5-shot 72.24 69.86 79.13 70.67 62.38 83.91

+ ITLC (apply base shift vector)
+ prompt-and-gen (α = 0.15) 50.97 60.77 57.07 60.69 69.69 57.74

+ Q/A template 73.13 75.77 77.28 81.29 81.68 82.78
+ PEFT 78.50 96.03 72.08 83.74 88.98 81.21

+ 5-shot 76.43 82.18 76.47 83.14 88.15 80.47

Table 22: Performance (LCPR / LPR / WPR) of Llama-
3.1-8B on LCB under monolingual and cross-lingual
settings.

Method Monolingual Cross-lingual

LCPR LPR WPR LCPR LPR WPR

Llama-3.1-8B-Instruct (with chat template) 83.05 94.63 76.11 79.34 83.25 77.01
+ 5-shot 82.27 88.57 79.88 84.32 86.68 82.77
+ PEFT 79.00 96.66 71.00 81.26 91.13 75.29

+ ITLC (apply base shift vector)
+ prompt-and-gen (α = 0.10) 82.50 95.68 75.68 83.48 88.52 80.37

+ ITLC (apply instruct shift vector)
+ prompt-and-gen (α = 0.10) 81.76 96.41 74.51 82.91 89.06 78.99

+ 5-shot 85.25 93.21 79.82 86.60 90.34 83.95
+ PEFT 79.04 97.19 71.36 83.44 93.60 77.05

Table 23: Performance (LCPR / LPR / WPR) of Llama-
3.1-8B-Instruct on LCB under monolingual and cross-
lingual settings.

chat template.

H.2 Monolingual & Crosslingual Prompting
Our experiments on the baseline (monolingual) and
ITLC (cross-lingual) settings use slightly different
prompt strategies. Specifically, for the baseline,
we aim to measure the upper bound of perfor-
mance within a particular language, whereas ITLC
involves different input and target languages.

To ensure fairness and consistency in model out-
put generation, we designed distinct input prompts
for the base model, Qwen2.5, and Llama-3.1. In the
base version, to control the contextual generation
in cross-lingual settings, we prepend an early por-
tion of the target language output—approximately
30% of the sentence length—as a guidance signal
for the model to continue generating coherent text.
This approach helps ensure that the language vector
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receives sufficient signal to produce linguistically
and semantically coherent outputs.

Additionally, for non-Latin scripts such as
Japanese and Chinese, we adopt a different seg-
mentation strategy. Instead of splitting based on
newlines, as in Latin-script languages, we apply
language-specific tokenizers such as PyThaiNLP
(Phatthiyaphaibun et al., 2023), Nagisa9, and
Jieba10. The proportional segment length is then de-
termined based on the number of tokens or phrases
produced by these tokenizers.

I Additional Examples of Cross-lingual
Generation

Figure 11 and Figure 12 present several exam-
ples of generated outputs across multiple source
languages targeting English. Overall, our ITLC
method successfully shifts to the desired target lan-
guage and demonstrates effective cross-lingual gen-
eration.

J Annotation Guidelines

J.1 Context of the Annotation Task

The annotation task involves evaluating the qual-
ity of cross-lingual language generation, where a
model generates responses in a target language
based on input prompts in a source language. The
goal is to assess how well the model performs in
terms of naturalness, relevance, and answer correct-
ness. This evaluation is crucial for understanding
the model’s capabilities and identifying areas for
improvement.

J.2 Detailed Scoring Guidelines

J.2.1 Naturalness (1-5):
• 1: The response sounds very unnatural,

robotic, or translated. It lacks fluency and typ-
ical language patterns of the target language,
making it sound artificial and unnatural.

• 2: The response is somewhat unnatural, with
noticeable awkwardness or unnatural word
choices. It may sound stilted or forced.

• 3: The response is moderately natural, with
some minor awkwardness but generally un-
derstandable. It flows reasonably well but has
room for improvement.

• 4: The response is mostly natural, with only
slight deviations from typical language use. It

9https://github.com/taishi-i/nagisa
10https://github.com/fxsjy/jieba

sounds almost native-like but may have minor
imperfections.

• 5: The response is completely natural, in-
distinguishable from text written by a native
speaker. It flows smoothly and uses language
patterns typical of the target language.

J.2.2 Relevance (1-5):
• 1: The response is completely irrelevant to the

input prompt. It fails to address the topic or
question posed.

• 2: The response is somewhat relevant but
misses key points or goes off-topic. It may
touch on related ideas but does not fully ad-
dress the prompt.

• 3: The response is moderately relevant, ad-
dressing some aspects of the prompt but lack-
ing completeness. It covers some key points
but omits important details.

• 4: The response is highly relevant, addressing
most key points of the prompt. It provides a
comprehensive answer but may miss minor
details.

• 5: The response is completely relevant, fully
addressing all aspects of the prompt. It covers
all key points and provides a thorough answer.

J.2.3 Correctness (1-5):
• 1: The response contains major factual errors

or inaccuracies. It provides incorrect informa-
tion or contradicts known facts.

• 2: The response contains some factual errors
or inaccuracies. It may be partially correct but
includes misleading or incorrect details.

• 3: The response is mostly correct but may
have minor inaccuracies or omissions. It is
generally accurate but requires minor correc-
tions.

• 4: The response is highly accurate, with only
minor details potentially incorrect. It is reli-
able and trustworthy but may have small er-
rors.

• 5: The response is completely accurate and
factually correct. It provides precise and reli-
able information without any errors.

J.3 Additional Notes

• Contextual Understanding: Annotators
should consider the context of the input
prompt and the intended audience when eval-
uating naturalness and relevance. A response
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that is natural and relevant in one context may
not be in another.

• Consistency: Annotators should strive for
consistency in their annotations across differ-
ent examples. This helps ensure that the eval-
uation is fair and reliable.

• Examples: Providing clear examples of each
rating level for each category can help anno-
tators understand the expected standards and
make consistent judgments.

• Feedback: Encourage annotators to provide
feedback on ambiguous cases or areas where
the guidelines could be improved. This can
help refine the annotation process and improve
the quality of the evaluations.
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Cross-lingual

Model AVG AR ES HI ID RU ZH

Qwen2.5-0.5B 34.97 31.72 48.12 3.03 42.44 48.77 35.74
+ INCLINE 43.82 34.94 74.17 6.58 56.38 59.22 31.63
+ ReCoVeR 88.43 99.66 97.02 64.67 84.88 98.99 85.38
+ ITLC (ours) 81.22 98.32 94.61 32.32 83.17 97.65 81.25

Llama-3.1-8B 25.05 10.60 37.63 25.71 38.13 17.61 20.59
+ INCLINE 34.69 19.61 39.25 38.92 40.46 32.36 37.56
+ ReCoVeR 88.79 100.00 84.30 93.44 70.97 98.69 85.37
+ ITLC (ours) 76.38 90.41 83.57 76.43 62.37 97.29 48.24

Table 24: LPR metrics for the base model on LCB
across baseline and state-of-the-art methods, with a de-
tailed language-wise breakdown for cross-lingual set-
tings. All results have been applied with the QA/Chat
template during inference.

Cross-lingual

Model AVG AR ES HI ID RU ZH

Qwen2.5-0.5B-Instruct 52.28 65.41 72.65 3.02 54.35 77.12 41.14
+ INCLINE 56.54 68.35 80.35 1.13 52.19 68.08 69.16
+ ReCoVeR 84.21 100.00 97.66 60.36 58.86 99.31 89.04
+ ITLC (ours) 81.97 98.97 95.31 49.03 64.39 98.98 85.13

Llama-3.1-8B-Instruct 80.68 87.12 89.27 82.76 73.89 87.93 63.14
+ INCLINE 80.63 86.80 89.60 81.10 70.21 86.58 69.51
+ ReCoVeR 90.29 100.00 93.30 95.24 67.96 99.32 85.92
+ ITLC (ours) 85.65 95.60 92.96 93.97 72.55 95.98 62.84

Table 25: LPR metrics for the instruct model on LCB
across baseline and state-of-the-art methods, with a de-
tailed language-wise breakdown for cross-lingual set-
tings. All results have been applied with the QA/Chat
template during inference.
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Monolingual

Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B 59.91 45.84 78.79 97.00 75.20 64.67 0.00 57.00 76.00 32.00 54.55 64.00 64.29 30.00 81.82 77.50
+ ICL (5-shot) 53.62 56.12 84.00 96.44 64.86 54.53 4.17 64.00 65.66 19.19 40.40 45.00 73.74 25.00 68.37 42.81

+ ITLC (ours) 74.38 77.94 94.00 99.49 94.33 89.67 0.00 78.00 77.00 55.56 74.75 79.50 87.00 55.00 74.00 79.50
+ PEFT 82.91 94.00 99.00 70.50 93.00 94.67 0.00 90.00 98.00 64.00 86.00 91.00 95.00 92.00 94.00 82.50

+ ITLC (ours) 86.17 99.33 100.00 77.00 99.33 99.33 8.25 94.00 100.00 57.00 81.82 98.00 98.00 99.00 90.00 91.50
+ ITLC (ours) 81.21 91.00 96.00 97.98 98.67 98.00 0.00 84.00 100.00 58.00 81.00 95.00 81.00 75.00 70.00 92.50

Qwen2.5-7B 55.24 29.43 73.00 98.48 70.04 66.17 1.01 63.00 78.00 39.00 22.68 65.00 36.08 26.80 83.00 76.85
+ ICL (5-shot) 62.78 43.26 79.00 96.39 71.84 74.02 15.96 73.74 82.00 59.00 44.79 50.36 65.66 56.25 82.00 47.50

+ ITLC (ours) 69.55 51.22 86.87 97.94 77.44 82.25 8.70 86.00 91.00 64.00 53.54 64.50 77.55 56.25 89.00 57.00
+ PEFT 83.80 95.00 99.00 49.58 94.00 94.00 6.06 91.00 97.98 75.00 85.00 91.94 96.00 94.00 100.00 88.50

+ ITLC (ours) 85.60 98.67 99.00 52.97 97.67 95.67 8.00 95.00 94.00 76.00 89.00 95.00 97.00 97.00 100.00 89.00
+ ITLC (ours) 63.40 52.79 76.00 98.99 84.71 77.53 0.00 75.00 78.00 45.92 31.00 77.44 60.61 21.65 85.86 85.50

Llama-3.1-8B 56.98 39.57 55.00 95.38 69.56 59.43 30.21 57.58 55.56 25.51 43.30 71.29 67.37 81.82 61.00 42.19
+ ICL (5-shot) 69.86 67.53 75.00 95.47 69.33 63.67 63.64 73.00 73.00 67.00 49.00 67.82 70.00 70.00 76.00 67.50

+ ITLC (ours) 82.18 79.26 90.00 99.50 92.67 84.00 65.00 66.00 90.00 87.00 68.37 86.92 89.00 70.00 87.00 78.00
+ PEFT 93.01 98.00 98.00 69.50 94.67 92.00 92.00 84.00 99.00 94.00 93.00 93.50 97.00 95.00 98.00 97.50

+ ITLC (ours) 96.03 100.00 97.00 91.50 97.67 97.33 96.00 91.00 99.00 95.00 97.00 92.50 99.00 99.00 98.00 90.50
+ ITLC (ours) 75.77 62.08 78.00 99.00 89.29 84.02 50.00 66.67 81.00 58.76 76.84 85.78 93.81 86.73 75.51 49.00

Cross-lingual

Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B 35.36 31.72 43.27 – 48.12 46.45 3.03 42.44 40.33 14.40 10.12 45.11 48.77 34.23 51.28 35.74
+ ICL (5-shot) 50.63 54.79 63.97 – 54.62 63.02 12.07 61.97 63.05 24.74 29.57 55.90 67.84 61.61 69.21 26.38

+ ITLC (ours) 87.58 99.66 97.99 – 96.62 97.33 39.07 85.52 95.26 72.91 88.95 90.95 98.99 91.96 92.63 78.24
+ PEFT 77.55 89.25 90.26 – 90.94 90.94 11.04 75.41 88.25 68.52 65.32 82.23 90.94 83.53 90.26 68.84

+ ITLC (ours) 90.51 100.00 99.67 – 96.65 97.32 63.78 85.61 98.99 69.22 88.97 90.97 99.67 96.99 96.99 82.26
+ ITLC (ours) 85.61 98.32 96.97 – 94.61 95.63 32.32 83.17 99.00 61.20 82.55 88.28 97.65 92.96 94.60 81.25

Qwen2.5-7B 60.61 62.24 67.82 – 71.07 68.68 24.87 60.80 67.31 51.90 50.29 68.40 69.21 59.40 72.07 54.42
+ ICL (5-shot) 69.37 70.22 77.42 – 75.04 75.20 36.45 70.53 81.43 59.16 59.26 70.02 84.24 77.05 79.20 55.94

+ ITLC (ours) 84.90 88.57 95.50 – 90.40 92.14 65.67 84.03 90.37 57.86 85.17 88.74 94.48 91.58 90.92 73.18
+ PEFT 82.66 93.62 93.23 – 89.27 89.93 24.20 83.16 86.25 76.87 80.56 86.84 95.29 91.57 90.93 75.53

+ ITLC (ours) 83.92 97.65 97.95 – 96.99 95.31 30.78 87.60 93.97 35.09 74.47 92.59 97.65 96.99 96.98 80.89
+ ITLC (ours) 74.40 83.00 89.49 – 89.51 87.43 27.12 76.65 87.42 32.80 58.81 87.35 91.49 82.97 85.93 61.61

Llama-3.1-8B 26.13 10.60 28.03 – 37.63 36.09 25.71 38.13 37.14 18.88 16.49 31.77 17.61 20.14 27.05 20.59
+ ICL (5-shot) 62.38 65.02 60.66 – 66.88 56.64 65.72 71.81 65.46 46.49 68.77 56.07 69.50 73.40 63.12 43.83

+ ITLC (ours) 88.15 85.24 96.97 – 87.62 84.40 76.23 76.51 87.56 93.79 96.94 89.34 99.66 92.87 92.58 74.44
+ PEFT 89.73 93.61 92.27 – 91.28 93.64 93.62 76.16 89.60 85.57 85.50 89.22 94.24 92.28 94.30 84.90

+ ITLC (ours) 88.98 98.99 96.96 – 86.21 75.21 98.65 67.22 89.96 88.95 95.61 84.58 99.33 95.31 92.96 75.86
+ ITLC (ours) 81.68 90.41 96.13 – 83.57 71.68 76.43 62.37 89.12 75.72 89.11 82.56 97.29 87.75 93.09 48.24

Table 26: LPR metrics for the base model on LCB, with a detailed language-wise breakdown for both monolingual
and cross-lingual settings. All results have been applied with the QA/Chat template during inference.
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Monolingual

Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B-Instruct 83.66 96.33 94.00 99.50 89.67 95.33 0.00 70.00 94.00 82.00 83.51 87.00 95.00 89.00 87.63 92.00
+ ICL (5-shot) 80.30 93.56 95.00 97.50 87.67 89.67 2.04 69.00 94.00 67.00 78.72 83.50 89.90 86.00 87.88 83.00

+ ITLC (ours) 86.28 98.33 98.00 98.50 97.67 96.67 13.00 82.00 98.00 80.00 77.00 94.00 89.00 96.00 95.00 81.00
+ PEFT 89.85 99.00 99.00 96.50 95.67 97.67 14.43 87.00 100.00 83.00 93.94 95.50 100.00 95.00 99.00 92.00

+ ITLC (ours) 90.51 100.00 98.00 100.00 98.67 100.00 29.00 94.00 100.00 80.00 81.00 98.00 88.00 99.00 99.00 93.00
+ ITLC (ours) 82.20 100.00 99.00 100.00 98.67 98.33 7.00 74.00 100.00 80.00 72.00 95.50 39.00 95.00 82.00 92.50

Qwen2.5-7B-Instruct 78.89 81.03 96.00 95.49 87.17 87.97 31.58 72.00 91.00 55.00 61.54 84.50 81.32 88.89 87.88 82.00
+ ICL (5-shot) 74.13 70.08 91.92 90.91 77.12 83.72 38.46 64.65 84.85 50.00 68.66 79.72 71.28 77.66 86.87 76.00

+ ITLC (ours) 81.01 80.85 92.00 92.88 86.68 86.45 51.61 68.00 87.88 75.00 81.32 83.27 71.58 90.43 84.21 83.00
+ PEFT 88.28 97.66 92.00 99.00 93.30 94.56 13.40 88.00 97.00 84.00 84.38 95.00 94.95 99.00 99.00 93.00

+ ITLC (ours) 90.12 99.33 98.00 98.49 96.99 96.00 20.20 89.00 96.00 80.00 91.75 96.50 97.00 97.00 99.00 96.50
+ ITLC (ours) 84.89 89.29 96.00 95.50 91.91 94.28 42.11 76.77 92.00 72.00 81.32 87.00 82.47 92.78 89.90 90.00

Llama-3.1-8B-Instruct 94.63 97.00 99.00 98.00 95.67 95.33 90.00 82.00 97.00 95.00 89.00 91.00 98.00 100.00 100.00 92.50
+ ICL (5-shot) 88.57 93.33 99.00 16.50 95.67 96.33 92.00 89.00 97.00 86.00 96.00 89.50 94.00 94.79 100.00 89.50

+ ITLC (ours) 93.21 97.00 98.00 46.74 96.00 98.00 99.00 90.00 99.00 95.00 98.00 95.00 99.00 92.86 100.00 94.50
+ PEFT 96.66 98.67 97.00 97.50 95.33 98.00 96.00 95.00 99.00 91.00 91.00 97.00 95.96 100.00 100.00 98.50

+ ITLC (ours) 97.19 100.00 100.00 98.99 97.67 97.67 95.00 89.00 100.00 93.00 94.00 96.50 98.00 100.00 100.00 98.00
+ ITLC (ours) 96.41 99.33 99.00 99.00 96.33 98.00 94.00 88.00 99.00 92.00 97.00 94.50 100.00 98.00 100.00 92.00

Cross-lingual

Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B-Instruct 57.69 65.41 72.12 – 72.65 71.82 3.02 54.35 63.95 45.09 39.18 68.47 77.12 62.79 70.60 41.14
+ ICL (5-shot) 69.70 81.82 83.57 – 79.01 80.73 8.38 67.25 80.70 61.51 63.66 73.39 83.97 79.14 75.93 56.71

+ ITLC (ours) 88.07 100.00 97.98 – 95.93 93.27 64.93 65.85 95.29 79.26 87.21 87.81 99.00 96.63 97.99 71.78
+ PEFT 84.34 91.72 92.75 – 93.50 93.16 14.45 85.75 94.12 85.07 77.16 90.56 95.55 90.59 96.50 79.85

+ ITLC (ours) 89.85 100.00 98.65 – 95.95 93.95 61.88 76.10 96.94 77.24 86.95 92.65 98.98 96.29 98.30 84.00
+ ITLC (ours) 86.79 98.97 97.64 – 95.31 92.27 49.03 64.39 97.31 73.24 79.27 91.98 98.98 93.25 98.32 85.13

Qwen2.5-7B-Instruct 78.81 81.96 88.38 – 83.92 84.49 52.64 73.14 82.92 71.04 79.19 85.16 80.32 88.54 77.73 73.85
+ ICL (5-shot) 78.51 79.33 92.24 – 84.59 86.68 58.27 66.12 87.17 67.86 78.04 80.94 85.12 84.47 73.78 74.52

+ ITLC (ours) 84.04 86.46 96.95 – 87.60 91.83 62.21 70.94 91.90 69.84 87.71 87.16 90.19 92.39 85.86 75.53
+ PEFT 83.56 94.54 91.04 – 91.73 91.22 27.18 82.67 87.85 79.03 82.33 87.08 95.29 88.69 91.48 79.72

+ ITLC (ours) 84.10 98.65 98.26 – 94.55 96.23 26.55 84.20 96.29 37.19 80.42 92.61 96.64 95.22 96.31 84.23
+ ITLC (ours) 84.73 86.71 95.21 – 90.56 91.19 57.03 75.07 94.23 63.87 88.74 87.56 92.88 92.92 90.95 79.27

Llama-3.1-8B-Instruct 83.25 87.12 89.92 – 89.27 85.58 82.76 73.89 89.25 71.51 80.10 82.57 87.93 90.52 91.94 63.14
+ ICL (5-shot) 86.68 86.24 91.60 – 89.60 91.94 86.17 74.53 90.26 81.89 90.80 80.90 92.18 90.26 94.29 72.83

+ ITLC (ours) 90.34 92.62 97.32 – 93.63 90.88 95.30 71.87 94.27 89.95 95.96 85.53 96.31 94.63 93.63 72.86
+ PEFT 91.13 95.22 94.18 – 95.30 94.96 92.22 79.09 94.20 87.18 89.06 86.86 93.82 91.28 93.57 88.84

+ ITLC (ours) 93.60 97.54 96.96 – 94.64 94.59 96.93 80.14 93.91 93.96 94.54 91.29 96.94 96.26 96.27 86.46
+ ITLC (ours) 89.06 95.60 97.99 – 92.96 93.64 93.97 72.55 92.62 83.60 91.98 83.94 95.98 93.95 95.30 62.84

Table 27: LPR metrics for the instruct model on LCB, with a detailed language-wise breakdown for both monolingual
and cross-lingual settings. All results have been applied with the QA/Chat template during inference.
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Abstract

Large Language Models (LLMs) show strong
potential for reranking documents in informa-
tion retrieval (IR), but training with monolin-
gual data often leads to monolingual overfit-
ting and lexical bias, limiting generalization in
cross-lingual IR (CLIR). To overcome these is-
sues, we investigate instruction-tuning LLaMA-
3.1-8B-Instruct on English and multilingual
code-switched data, and evaluate on mMARCO
and XQuAD-R. Results show that instruction-
tuning on code-switched data substantially im-
proves CLIR performance, while monolingual
tuning remains more effective for monolingual
reranking. We introduce a novel measure to
analyze the relationship between lexical over-
lap and reranking performance, showing that
the two factors are correlated. We finally con-
duct a causal analysis using counterfactual ex-
amples, where we evaluate whether rewriting
passages that share overlapping keywords with
the query causes models to change their rele-
vance predictions. Overall, we find that code-
switching serves as an effective and lightweight
strategy to improve cross-lingual generalization
in LLM-based re-ranking, while our analyses
show that lexical overlap remains a major factor
that can mislead reranking models.

1 Introduction

Large Language Models (LLMs) such as LLaMA-3
(Dubey et al., 2024), GPT-4 (OpenAI et al., 2024),
Gemini (Team et al., 2025), and Mistral (Jiang
et al., 2023) have shown strong performance across
a wide range of NLP tasks. In information retrieval
(IR), which aims to return relevant documents from
large text collections given a user query, recent
advances have led to growing interest growing in-
terest in leveraging LLMs as rerankers. In par-
ticular, LLMs have been explored as pointwise
(Zhuang et al., 2023; Sun et al., 2023), pairwise
(Qin et al., 2024), or list-wise rerankers (Tang et al.,

* Work done while at LMU Munich.

Figure 1: The first passage is semantically relevant to
the query but shares no lexical overlap. In contrast, the
second passage contains lexical overlap with the query
terms “population” and “Paris” but is topically unrelated.
Lexically biased LLM rerankers may incorrectly favor
the non-relevant passage.

2024; Chen et al., 2025; Parry et al., 2024; Ma
et al., 2023) under prompt-based inference settings,
where the model refines the order of documents
within the initial retrieval set. In parallel, many
LLMs have demonstrated their capability to pro-
cess and generate text in multiple languages (Dang
et al., 2024). This progress has further opened new
possibilities for the use of LLMs in cross-lingual
information retrieval (CLIR), where queries and
documents are written in different languages. Re-
cent work has begun to systematically evaluate the
performance of LLMs in cross-lingual retrieval set-
tings. For example, Zuo et al. (2025) benchmarked
a wide range of LLM rerankers under translated
and non-translated CLIR scenarios, analyzing list-
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wise and pairwise strategies as well as the interac-
tion between first-stage retrievers and second-stage
rerankers. However, they do not investigate how
LLMs make relevance judgments.

Understanding whether LLMs determine rele-
vance for the right reasons (i.e., semantic rele-
vance), or whether they are biased towards lexical
matches (i.e., shortcuts) is crucial for equitable in-
formation access and ensuring the trustworthiness
of LLM-based retrieval systems (Litschko et al.,
2023b). Biases in cross-lingual retrieval settings
have been well-studied in the context of multilin-
gual pre-trained language models (mPLMs). Prior
work includes studies on, e.g., language biases
in mPLM-based bi-encoders (Laosaengpha et al.,
2025; Huang et al., 2024; Yang et al., 2024; Roy
et al., 2020). Our work is closest to (Litschko et al.,
2023a), who study zero-shot cross-lingual trans-
fer of mPLM-based cross-encoders, where models
trained on English data have been found to exhibit
poor transfer performance to cross-lingual rerank-
ing tasks. The authors show that this monolingual
overfitting can be mitigated by training on code-
switched data instead, which naturally reduces the
lexical overlap between queries and documents.
However, it remains unclear whether LLMs ex-
hibit similar lexical biases when used as rerankers,
and whether instruction-tuning those models on
code-switched training data also leads to similar
improvements. Figure 1 illustrates this issue for
a single pairwise cross-lingual reranking step: the
model incorrectly prefers a lexically overlapping
but semantically irrelevant passage, suggesting that
relevance judgments may not always reflect gen-
uine semantic understanding. This motivates our
central question: Are LLM-based reranker outputs
relevant for the right reasons?

To address this, we investigate whether LLM-
based rerankers are affected by monolingual over-
fitting and lexical bias, and how instruction tuning
strategies change this behavior. Specifically, we
compare direct zero-shot reranking (without further
training) against instruction-tuning on monolingual
English data, multilingual code-switched data and
target language-pair data on both MoIR and CLIR.
In addition to our reranking experiments, we also
characterize the lexical bias through a correlation
and causal analysis. Our main contributions are:

• We show that instruction-tuning pair-wise
rerankers on code-switched data improves
their cross-lingual reranking performance.

However, unlike mPLM-based cross-
encoders, these gains come at the cost of a
worse monolingual reranking performance.

• We introduce two overlap-sensitive metrics,
ALOD and AP–LOD correlation, to quantify
the link between lexical overlap and rerank-
ing quality. Our results show that the two are
positively correlated. However, this correla-
tion is weak, underpinning that lexical overlap
are only one of multiple factors (and biases)
influencing what rerankers deem relevant.

• We evaluate the causal relationship between
lexical overlaps and reranking performance.
Specifically, we construct counterfactual ex-
amples from previously incorrectly classi-
fied instances (see Figure 1) and investigate
whether removing lexical overlap by rewriting
the passage causes rerankers to recover from
incorrect predictions.

2 Related Work

Shortcut Learning in Language Models. Sev-
eral recent studies have investigated shortcut learn-
ing behavior in LLMs, where models rely on super-
ficial features in the input, such as lexical overlap
or specific keywords, instead of performing gen-
uine semantic reasoning. Du et al. (2021) focus on
BERT-based models and show that these models
tend to favor shortcut tokens early in training. Tang
et al. (2023) found that LLMs often rely on shal-
low cues from prompts during in-context learning,
rather than understanding the task itself. Sun et al.
(2024) showed that instruction tuning and reinforce-
ment learning with human feedback can increase
shortcut learning in LLMs across tasks such as
reasoning. Yuan et al. (2024) provided a system-
atic evaluation of shortcut biases, including lexical
overlap, in prompt-based inference. Hagstrom et al.
(2025) found that LM-based rerankers can be mis-
led by lexical similarities, often favoring candidates
with high surface overlap over semantically more
relevant passages on English-only retrieval tasks.
The study shows that these biases can lead to sig-
nificant drops in model accuracy. Taken together,
these studies suggest that shortcut learning remains
a major challenge for LLMs.

However, these works do not explore how short-
cut bias behavior changes when LLMs are fine-
tuned for monolingual and cross-lingual pairwise
reranking. We fill this gap and study shortcut learn-
ing behavior in prompt-based reranking tasks, and
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especially regarding the model’s sensitivity to lexi-
cal overlap.

Bias in Multilingual and Cross-lingual Contexts.
Gao et al. (2025) analyzed LLMs’ cross-lingual
context retrieval ability on cross-lingual machine
reading comprehension (xMRC). They observed a
significant performance gap between monolingual
and cross-lingual settings, and propose a two-phase
explanation: the model first encodes the question
and then retrieves the answer. This highlighted that
performance degradation in xMRC is not solely
due to output generation but is rooted in earlier
stages of processing. While their work identifies
where in the model such limitations arise, it does
not fully clarify whether relevance decisions are
based on semantic features or surface-level lexical
shortcuts, which is the focus of our work.

Beyond retrieval tasks, cross-lingual inconsisten-
cies have also been observed across a range of tasks
involving semantic understanding, reasoning, and
prompt sensitivity. Wang et al. (2024) found that
multilingual models fail to achieve balanced perfor-
mance across languages, with significant disparities
depending on the language used. Lai et al. (2023)
showed that ChatGPT performs better in English
than in other languages, particularly on tasks requir-
ing complex reasoning, with performance gaps es-
pecially notable in lower-resource languages. Fur-
thermore, Etxaniz et al. (2024) showed that LLMs
often fail to realize their full multilingual potential
when prompted in non-English languages, high-
lighting an implicit preference for English in rea-
soning processes.

However, these studies do not examine how dif-
ferent instruction tuning strategies affect LLM per-
formance in monolingual versus cross-lingual infor-
mation retrieval tasks, nor do they address whether
such biases differ under different training condi-
tions. Our work aims to fill this gap by systemati-
cally comparing reranking behavior under monolin-
gual and code-switched instruction tuning setups.

3 Methodology

We conduct three different types of analyses: First
we investigate how well LLM rerankers instruction-
tuned on English data generalize to other monolin-
gual reranking (MoIR) and cross-lingual reranking
(CLIR) tasks, or whether they suffer from mono-
lingual overfitting (Section 3.1). We then propose
a measure that captures the correlation between
lexical overlap and reranking performance (Sec-

tion 3.2). Finally, we introduce an evaluation pro-
tocol that facilitates a causal analysis of the impact
of lexical overlap on reranking performance at the
instance-level (Section 3.3).

3.1 Pair-wise Reranking
This pipeline consists of three steps. (1) We con-
vert monolingual and code-switched training sets
into a unified instruction–output format. (2) We
fine-tune the base LLM under different language
settings. (3) We evaluate the tuned models using
pairwise prompting with a sliding window, follow-
ing (Qin et al., 2024). Each prompting unit is de-
fined as u(q, d1, d2), where q is a query and d1,
d2 are two candidate documents. To obtain the
full ranking, we apply a sliding window approach:
starting from a randomly shuffled ranking, we iter-
atively traverse the list in reverse order, comparing
and potentially swapping adjacent document pairs
(stride = 1) based on model judgments. For each
query, we repeat this process ten times to obtain
the final top-10 reranked results. The prompting
template we use is provided in Appendix A.

For reranking evaluation, we report the results
using the metric MRR@10 implemented in the
ir_measures package (MacAvaney et al., 2022). To
further understand the impact of superficial token
overlap, we introduce two complementary metrics
to analyze the model’s reliance on lexical overlap,
as discussed next.

3.2 Correlation Analysis
The first metric captures the average lexical over-
lap difference (ALOD) in lexical overlap between
relevant and irrelevant documents (lexical overlap
difference, LOD) for a given query. For a query q,
we compute:

LODq =
1

|D+
q |
∑

d∈D+
q

Overlap(q, d)

− 1

|D−
q |

∑

d∈D−
q

Overlap(q, d)

where D+
q and D−

q denote the sets of relevant
and irrelevant documents for query q, respectively,
and Overlap(q, d) denotes the lexical overlap score
between q and d, computed as the number of shared
tokens (after normalization and stopword removal).
We opted for LODq instead of simple lexical over-
lap to ignore shared non-keyword tokens that can
be found in both relevant and non-relevant docu-
ments. On the dataset-level, ALOD is the average
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Figure 2: We conduct two types of causal analyses to understand how models determine relevance. Left: We use
retention rate to measure the extent to which LLMs still correctly prefer the relevant passages (true positives) after
removing lexical overlapping keywords. A high retention rate indicates a low lexical bias. Right: We use the
recovery rate to measure the extent to which errors made by LLMs are due to being misguided by lexical biases. A
high recovery rates indicate high lexical bias.

of LODq over all queries:

ALOD =
1

|Q|
∑

q∈Q
LOD(q)

ALOD quantifies the degree to which lexical bias
can be present in monolingual and cross-lingual
ranking datasets. This baseline version of ALOD
provides a simple and transparent measure of lexi-
cal bias. In our reranking setup, we compute LOD
based on the negative documents found in the top-k
input ranking. To assess its robustness, we addition-
ally experimented with alternative pre-processing
settings, including stopword removal, lemmatiza-
tion, and subword tokenization, as well as varying
the number of negative documents per query. We
find that while these variations changed the abso-
lute ALOD values, the relative trends remained con-
sistent with the comparisons above. This confirms
that the ALOD metric is robust to preprocessing
choices and evaluation settings. Detailed results
are provided in Appendix F, Table 11.

The second is AP–LOD Correlation, which
measures the Spearman correlation (Zar, 2005) be-
tween the average precision (AP) (Harman, 1992)
of each query and its LOD. This correlation cap-
tures the alignment between lexical bias and actual
ranking performance.

These metrics are applied to both MoIR and
CLIR outputs to compare lexical reliance across
language settings. Higher ALOD scores indicate
a larger potential for models falling back to a lexi-
cally bias, while a high AP–LOD correlation shows
that this is strongly related to the reranking perfor-
mance of different models.

3.3 Causal Analysis

Inspired by counterfactual explanations (Verma
et al., 2024) and adversarial robustness studies
on multilingual embedding models (Michail et al.,
2025), we design two types of counterfactual exper-
iments to test to what extent lexical overlap impacts
a model’s notion of relevance. Here, we conduct
our analysis at the instance level, where each sam-
ple consists of a query, a relevant passage, and a
non-relevant passage. We initially evaluate LLMs
on queries that share tokens with the relevant and
non-relevant passages, respectively. We then repeat
our experiments with perturbed passages, where
we remove the lexical overlap (intervention) and
measure how it affects the model performance. The
original dataset and perturbations are automatically
generated with GPT-5 (OpenAI, 2025) (see prompt
templates in Appendix D). Using synthetic exam-
ples allows us to disentangle the effects of semantic
relevance and lexical bias in a controlled way. As
shown in Figure 2, we investigate model predic-
tions from two complementary perspectives:

Right for the right reasons? Here, we construct
instances where the relevant passage shares key-
word tokens with the question, while the non-
relevant passage is lexically distinct from the query
(Figure 6). We focus on instances where LLMs cor-
rectly prefer the relevant passage (henceforth, True
Positives – TP), and test if removing lexical over-
lap (intervention; Figure 8) causes LLMs to change
their preferred passages. We compute the reten-
tion rate as the fraction of TP instances where the
intervention has no impact. High retention rates
indicate a low lexical bias, where models prefer the
relevant passage for the right (semantic) reasons.
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Wrong because of lexical overlaps? In this ex-
periment, we generate samples where only the non-
relevant passages share keyword tokens with the
query, while the relevant ones do not (Figure 7).
Here we ask the question whether errors made by
LLMs are due to an over-reliance on lexical cues.
We focus on errors where models incorrectly prefer
the non-relevant passage (henceforth, False Posi-
tives – FP), and compute the recovery rate, defined
as the proportion of FP errors that are corrected
after keyword overlap cues are removed (interven-
tion; Figure 9). A high recovery rate indicates a
high lexical bias and captures the extent to which
models judge documents as relevant for the wrong
reasons, specifically caused by lexical overlap.

To ensure the correctness of lexical–semantic
conditions (see Figure 2), we prompted GPT-5 mul-
tiple times, each time generating 20 candidate ex-
amples for a given condition, and accumulated 240
candidates per condition before applying filtering
criteria. In the lexical-semantic conflict dataset, the
irrelevant passages share lexical tokens with the
query while relevant passage do not, and vice versa
for the other dataset.After filtering, we obtained
204 conflict and 200 non-conflict instances for the
retention and recovery rate analyses.

4 Experimental Setup

4.1 Model and Baselines

We use Llama-3.1-8B-Instruct (Dubey et al.,
2024) as the base model for zero-shot reranking
(Zero-shot model) and instruction tuning. During
both training and inference, we adopt the official
LLaMA-3.1 chat template as the prompting for-
mat.1 We compare this model against different
models instruction-tuned on code-switched queries
(EN-XX-tuned) or code-switched queries and doc-
uments (XX-XX-tuned). Hyperparameters are pro-
vided in Appendix B. An example prompt using
the chat format is shown in Appendix C.

To assess the impact of instruction-tuning on lex-
ical overlap behavior, we construct several variants
of Llama-3.1-8B-Instruct.

The EN-EN-tuned model is instruction-tuned on
English monolingual data and serves as our primary
baseline. This setup corresponds to the standard
zero-shot cross-lingual transfer setting (Lauscher
et al., 2020).

1https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_1/

The EN-XX-tuned and XX-XX-tuned models
are tuned on code-switched queries, and on both
code-switched queries and documents, respectively,
to evaluate the effect of multilingual and mixed-
language supervision.

As an upper bound, we include the Fine-tuned
model, which is directly instruction-tuned on the
target language pairs and evaluated on correspond-
ing reranking tasks. While this provides a per-
formance reference, it is important to note that
this baseline often cannot be reached in practice
due to limited language coverage of existing ma-
chine translation systems and lack of available
instruction-tuning training data.

4.2 Datasets

Following Litschko et al. (2023a), we use the mul-
tilingual MS MARCO dataset (mMARCO) dataset
(Bonifacio et al., 2022) for model training and eval-
uation.2 For instruction tuning, we reuse the public
training data provided by Litschko et al. (2023a)
in the HuggingFace repository,3 which was origi-
nally derived from the Train Triple Small set in
the multilingual mMARCO dataset.4 For the code-
switched training data. Specifically, we use the
multilingual code-switched data (EN-XX and XX-
XX code-switched data) with a translation probabil-
ity p = 0.5. From this pool, for each language pair,
we use a sampl of 1 million instances for training.

For evaluation, we construct a reduced version of
the dataset, denoted as top100.dev from the orig-
inal top1000.dev set provided by mMARCO by
keeping all qrels-marked relevant documents from
top1000.dev, discarding queries without them,
and randomly sampling non-relevant ones to obtain
100 documents per query. For each query, the order
of its 100 documents is randomly shuffled.

To validate whether other findings generalize
to other datasets, we also include the XQuAD-
R (Roy et al., 2020) dataset. Here, too, we con-
struct for each query input rankings consisting of
top-100 documents. Following the original setup
in Roy et al. (2020), we train the model using

2The mMARCO dataset includes 14 languages with vary-
ing levels of resource availability and writing systems: Ara-
bic (AR), Chinese (ZH), Dutch (NL), English (EN), French
(FR), German (DE), Hindi (HI), Indonesian (ID), Italian (IT),
Japanese (JA), Portuguese (PT), Russian (RU), Spanish (ES),
and Vietnamese (VI).

3https://huggingface.co/datasets/rlitschk/
csclir/tree/main

4https://github.com/spacemanidol/MSMARCO/blob/
master/Ranking/README.md
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EN DE AR IT RU AVG AVGX-X ∆ZS ∆ZS
X-X

Zero-shot 51.14 38.73 29.57 38.58 36.42 38.89 35.83 - -
EN-EN-tuned 72.41 62.08 55.34 62.30 61.57 62.74 60.32 +23.85 +24.50
EN-XX-tuned 70.72 60.27 45.45 59.31 57.93 58.74 55.74 +19.85 +19.92
XX-XX-tuned 70.50 60.86 45.64 61.46 57.79 59.25 56.44 +20.36 +20.62
Fine-tuned - 64.79 57.91 65.28 62.35 64.55 62.58 +25.66 +26.76

Table 1: MoIR: Monolingual re-ranking results on mMARCO language pairs in terms of MRR@10. Results are
reported per language and averaged in two ways: (1) AVG includes all monolingual pairs, and (2) AVGX-X excludes
EN–EN. ∆ZS: Improvement over the zero-shot baseline, computed based on AVG. ∆ZS

X-X: Improvement over the
zero-shot baseline, computed based on AVGX-X. Bold: The best performance for each language (excluding the
fine-tuned baseline model).

EN-DE EN-IT EN-AR DE-IT DE-RU AR-IT AR-RU AVG AVGX-X ∆ZS ∆ZS
X-X

Zero-shot 46.14 46.22 40.64 35.72 34.19 25.52 25.78 36.31 30.30 - -
EN-EN-tuned 62.87 62.90 52.61 54.00 53.43 40.96 42.42 52.74 47.71 +16.43 +17.40
EN-XX-tuned 64.21 63.55 51.17 53.31 52.09 33.31 34.31 50.28 43.25 +13.96 +12.95
XX-XX-tuned 64.63 64.51 51.70 56.32 54.39 41.34 41.01 53.42 48.26 +17.10 +17.96
Fine-tuned 66.21 66.54 59.38 61.09 60.01 53.53 52.53 59.90 56.79 +23.58 +26.49

Table 2: CLIR: Cross-lingual re-ranking results on mMARCO in terms of MRR@10.

the English-only SQuAD dataset and its machine-
translated versions generated via Google Translate
(Wu et al., 2016). For the code-switched version
of the SQuAD-based training data, we implement
the same code-switching method with a transla-
tion probability p = 0.5 following the approach in
(Litschko et al., 2023a).

We evaluate our pairwise rerankers on a mix
of high- and low-resource languages, covering di-
verse scripts and language families. Specifically,
for mMARCO, we include monolingual re-ranking
in English (EN), German (DE), Arabic (AR), Ital-
ian (IT), and cross-lingual re-ranking in EN-{DE,
AR, IT}, DE-{IT, RU} and AR-IT. For XQuAD-R,
we select three languages for MoIR (EN, DE, AR)
and evaluate CLIR on the following language pairs:
EN-{DE, AR}, DE-RU.

We conduct the lexical overlap perturbation ex-
periment on the mMARCO dataset, focusing on
four language pairs that include English: one mono-
lingual pair (EN-EN) and three cross-lingual pairs
(EN-DE, EN-IT, and EN-AR).

5 Results and Discussion

In the following, we first measure the performance
gap of LLMs in monolingual reranking (MoIR) and
cross-lingual reranking (CLIR). We specifically
investigate how well different instruction-tuning
strategies impact the generalization performance.
We then validate our findings on XQuAD-R.

5.1 Overall Reranking Results

Cross-task Generalization Performance. Ta-
bles 1 and 2 report the MRR@10 scores on
five MoIR and seven CLIR language pairs on
mMARCO under different training conditions. We
also report the average across all language-pairs
and language-pairs that do not involve English.
Across all settings, models perform better on MoIR
than CLIR. For example, the Zero-shot model
achieves an average MRR@10 of 0.389 for MoIR
versus 0.363 for CLIR. When language-pairs in-
volving are excluded, the gap widens (MoIR: 0.358,
CLIR: 0.303). After EN–EN tuning, MoIR reaches
0.627, while CLIR falls behind with a MRR@10 of
0.527. This gap widens to 0.12 if language-pairs in-
volving English are excluded. Similar patterns hold
for EN-XX-tuned (0.587 vs. 0.503, gap: 0.084) and
XX-XX-tuned (0.593 vs. 0.534, gap: 0.059).

These results show that monolingual reranking
is generally easier for LLMs than cross-lingual
reranking. This is expected since rerankers do not
have to rely on interlingual semantics. Even under
instruction-tuning on code-switched data, which
improves overall CLIR performance, the gap be-
tween MoIR and CLIR remains substantial. This
could be due to mismatching vocabularies, where
models can rely less on lexical shortcuts in CLIR
compared to MoIR. We will explore their correla-
tion and causal relationships further in Section 6.

Instruction-Tuning on English versus Code-
Switched Data. Across all MoIR and CLIR lan-
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MoIR CLIR

EN DE AR RU AVG EN-DE EN-AR DE-RU AR-RU AVG

Zero-shot 96.87 94.93 90.50 94.08 94.09 96.15 92.99 87.06 84.44 90.16
EN-EN-tuned 97.81 96.27 93.89 96.37 96.08 96.83 92.12 94.35 88.21 92.88
EN-XX-tuned 97.73 96.56 93.67 96.85 96.20 97.34 95.01 95.57 87.23 93.79
XX-XX-tuned 98.47 96.44 92.74 96.75 96.10 97.24 93.19 95.39 87.17 93.25
Fine-tuned 97.82 96.49 94.05 96.15 96.12 96.77 94.92 95.45 92.61 94.94

Table 3: MoIR and CLIR re-ranking results on XQuAD-R in terms of MRR@10.

guage pairs, models fine-tuned on the target lan-
guage pair (Fine-tuned) consistently achieves the
best performance, while the Zero-shot model
performs the worst. This is expected because
fine-tuning on cross-lingual data allows the model
to jointly align interlingual semantics and learn
ranking-specific features.

For all MoIR language pairs, the EN-EN-tuned
model consistently outperform models trained
on code-switched data, even on non-English
monolingual pairs. For example, it achieves a
MRR@10 score of 0.724 on English, outperform-
ing both the EN-XX-tuned model (0.707) and
XX-XX-tuned model (0.705). Similarly on Russian,
where it yields a performance 0.616 MRR@10,
also outperforming the EN-XX-tuned (0.579) and
XX-XX-tuned (0.578) variants. We find a con-
sistent trend of LLM rerankers performing worst
on monolingual reranking in Arabic and Russian
reranking tasks.

In contrast, CLIR performance generally bene-
fits more from instruction-tuning on code-switched
data. For example, on EN–DE, the XX-XX-tuned
model attains 0.646, outperforming EN-EN-tuned
(0.629). On AR–IT, it scores 0.413, slightly above
EN–EN tuning (0.410). The only exceptions
are EN–AR and AR–RU, where EN-EN-tuned
reranker remains superior (0.526 vs. 0.512/0.517,
and 0.424 vs. 0.343/0.410). The cross-lingual
reranking performance tends to improve when the
question and answer passage languages are typolog-
ically more similar. While the XX-XX-tuned model
performs well on EN–DE (0.646) and EN–IT
(0.645), it yields worse results on AR–IT (0.413)
and AR–RU (0.410).

Overall, our results indicate that instruction-
tuning on code-switched data improves cross-
lingual reranking performance. However, con-
trary to findings reported on mBERT-based cross-
encoders (Litschko et al., 2023a), we find a per-
formance trade-off, where code-switching train-
ing data improves CLIR at the expense of perfor-

mance drops in MoIR. We hypothesize that this
is related to the syntactic coherence, or the lack
thereof in code-switched data,5 of passages pro-
vided in context. The results also reveal a clear
English-centric bias: in MoIR, all rerankers achieve
the strongest performance on reranking English
passages; in CLIR, rerankers perform better on
language-pairs involving English queries. Exclud-
ing CLIR language-pairs involving English leads to
a sharp drops in CLIR performance, ranging from
-0.031 (Fine-tuned reranker) to -0.070 MRR@10
(EN-XX-tuned reranker). The consistently weaker
results on Arabic and Russian, and cross-lingual
language-pairs involving those languages, suggests
that LLM rerankers struggle to bridge the script
gap (Chari et al., 2025).

5.2 Evaluation on XQuAD-R

Table 3 presents the reranking performance of
models evaluated on XQuAD-R after instruction
tuning on the (code-switched) English SQuAD
dataset. The results generally follow similar trends
to those observed on mMARCO, especially re-
garding the benefits of code-switching CLIR data.
Consistent with our results on mMARCO, we find
on CLIR that instruction-tuning variants improve
upon the Zero-shot model (0.902), EN-XX-tuned
(0.938) and XX-XX-tuned models (0.933) outper-
form the EN-EN-tuned model (0.930), and the
model Fine-tuned on target the language-pairs
performs best (0.949). While the results are overall
much higher than those reported on mMARCO,
we find that the improvements on CLIR from code
switching are much smaller. Taken together, this
suggests that the benefits of reducing the lexical
overlap in instruction-tuning diminish as the rerank-
ing task become easier. In the rest of this paper we
focus our analysis on the mMARCO dataset.

5The dictionaries used for code switching were induced
from nearest cross-lingual neighbors in a multilingual word
embedding space. Because of this, there is no guarantee that
substituted words belong to the same word class.
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Figure 3: Results of the recovery rate analysis: Sankey diagrams illustrating model decisions on synthetic pairwise
reranking experiments before and after perturbation. Non-relevant passages share overlapping keyword tokens
with queries, while relevant passages have no overlap. Results are shown for the EN–EN-tuned, EN–XX-tuned, and
XX–XX-tuned models. The Zero-shot model (not shown) obtained perfect results without any false positives.

MoIR CLIR

ALOD ρAP-LOD ALOD ρAP-LOD

Zero-shot 0.90 22.10 0.20 10.49
EN-EN-tuned 0.90 28.16 0.20 18.19
EN-XX-tuned 0.90 25.61 0.20 14.46
XX-XX-tuned 0.90 21.85 0.20 14.81

Table 4: ALOD: Average lexical overlap difference com-
puted separately for MoIR and CLIR on mMARCO.
ρAP-LOD: Spearman correlation (in %) between the aver-
age precision of each query and its LOD across MoIR
and CLIR on mMARCO.

6 Further Analysis

In Section 6.1, we first establish to what degree
the reranking performance is correlated to the lex-
ical overlap between queries and documents. We
then investigate the reranking results at the instance
level by inspecting individual pair-wise classifi-
cation results (Section 6.2). Here, we evaluate
whether removing lexical overlap causes models to
recover from incorrect predictions.

6.1 Correlation Between Lexical Overlaps
and Reranking Performance

Table 4 summarizes the ALOD and AP–LOD cor-
relation across MoIR and CLIR on mMARCO. As
expected, relevant documents exhibit higher lexical
overlap with the query, and this signal is stronger in
MoIR (0.90) than CLIR (0.20). Across all models,
the AP–LOD correlation is consistently higher in
MoIR than CLIR, confirming that MoIR reranking
relies more heavily on surface-level overlap. In
CLIR, due to vocabulary mismatch between query
and document languages, lexical overlap is weak
and often limited to named entities, forcing models
to rely more on semantic relatedness features.

Among all models, EN-EN tuning shows the

strongest correlation between AP and lexical over-
lap, which means it relies heavily on surface word
matching. Instruction-tuning on code-switched
data also increases this reliance, though to a lesser
extent, suggesting more semantic-driven decisions.

6.2 Causal Effect of Removing Lexical
Overlap

Figure 3 and Table 5 summarize the results
of models that have been instruction-tuned on
the mMARCO dataset. For examples with lex-
ical–semantic conflicts, the EN-EN-tuned model
shows a recovery rate of 0.500, i.e., half of its false-
positive predictions were corrected once lexical
overlap cues were removed. This suggests a causal
dependence on surface-level keyword overlap. By
contrast, the two Code-switched-tuned models
(EN-XX-tuned and XX-XX-tuned) show smaller re-
covery rates (0.300 and 0.455), suggesting that
training rerankers on code-switched data indeed
mitigates their lexical bias. However, it is impor-
tant to interpret the results with caution, as the total
number of false positives is relatively small.

For the examples without lexical–semantic
conflicts, the Zero-shot achieves perfect re-
tention (1.00), whereas the EN-EN-tuned and
Code-switched-tuned models show slightly
lower scores (0.975–0.995). This indicates that
instruction-tuned models still exhibit a slight ten-
dency to rely on lexical overlaps when correctly
identifying the relevant passage. This observa-
tion aligns with our AP–LOD correlation analy-
sis, where instruction-tuned models show stronger
positive correlations between lexical overlap and
relevance scores. Different from our reranking
results (Section 5), we find that the Zero-shot
model outperforms instruction-tuned models. This
may be explained by domain differences: Both the
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Model
Retention Rate Analysis Recovery Rate Analysis

Accuracy True Positives Retention Rate Accuracy False Positives Recovery Rate

Zero-shot 1.000 204 / 204 1.000 1.000 0 / 200 –
EN-EN-tuned 1.000 204 / 204 0.976 0.690 62 / 200 0.500
EN-XX-tuned 1.000 204 / 204 0.995 0.900 20 / 200 0.300
XX-XX-tuned 0.995 203 / 204 0.995 0.945 11 / 200 0.455

Table 5: Summary of causal analysis. Left: Results in terms of classification accuracy, number of instances where
models correctly prefer relevant document (true positives; TP), and the fraction of TP instances where models still
identify relevant passage after removing lexical overlap (retention rate). Right: Results in terms of classification
accuracy, number of instances where models incorrectly prefer non-relevant document with lexical overlap (False
Positives; FP), and the fraction of FP instances where the preferred passage changes after removing lexical overlap.

EN-EN-tuned and Code-switched-tuned models
were fine-tuned on the mMARCO and XQuAD-R
datasets, which improved their in-domain perfor-
mance but reduced robustness when evaluated on
our synthetic data.

Overall, our findings provide causal evidence
that lexical overlap directly influences relevance
judgments. Compared to the EN-EN-tuned model,
instruction-tuning on code-switched data reduces
but does not fully removes lexical bias.

7 Conclusion

In this study, we investigate to what extent LLM-
based rerankers suffer from lexical biases as op-
posed to semantic relevance. Our results on MoIR
and CLIR show that instruction-tuning on English
data is most effective for monolingual retrieval,
whereas code switching provides the largest ben-
efits in CLIR. We also show that the correlation
between reranking performance and lexical overlap
is stronger for models trained on monolingual data
compared to those trained on code-switched data.
Our causal analysis reveals that spurious lexical
cues can mislead the model, but their removal often
restores correct semantic judgments. These find-
ings highlight both the promise of code-switched
data for improving cross-lingual generalization and
the need to address lexical bias to ensure that LLMs
are “relevant for the right reasons.”

8 Limitation and Future Work

Due to the high computational costs of instruction-
tuning LLMs, we limit our study to the widely-used
Llama-3.1-8B-Instruct model. In addition, the mul-
tilingual code-switched data was generated with a
fixed translation probability of 0.5, leaving open
how different translation probability might affect
cross-lingual generalization and lexical bias. In
future work, we plan to (1) detect lexical biases

at the model-internal level, in order to better un-
derstand how lexical overlap reliance and cross-
lingual alignment are shaped by different training
data, and (2) investigate methods for steering mod-
els away from undesired shortcut behavior. Finally,
our causal analysis is limited to monolingual exam-
ples. We plan to extend this framework to cross-
lingual settings in future work.

Acknowledgments

We acknowledge the support for BP through the
ERC Consolidator Grant DIALECT 101043235.

References
Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz

Abonizio, Israel Campiotti, Marzieh Fadaee, Roberto
Lotufo, and Rodrigo Nogueira. 2022. mmarco: A
multilingual version of the ms marco passage ranking
dataset. Preprint, arXiv:2108.13897.

Andreas Chari, Iadh Ounis, and Sean MacAvaney. 2025.
Lost in transliteration: Bridging the script gap in neu-
ral ir. In Proceedings of the 48th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’25, page 2900–2905,
New York, NY, USA. Association for Computing
Machinery.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma,
Wei Yang, Daiting Shi, Jiaxin Mao, and Dawei Yin.
2025. Tourrank: Utilizing large language models
for documents ranking with a tournament-inspired
strategy. In THE WEB CONFERENCE 2025.

John Dang, Shivalika Singh, Daniel D’souza, Arash
Ahmadian, Alejandro Salamanca, Madeline Smith,
Aidan Peppin, Sungjin Hong, Manoj Govindassamy,
Terrence Zhao, Sandra Kublik, Meor Amer, Viraat
Aryabumi, Jon Ander Campos, Yi-Chern Tan, Tom
Kocmi, Florian Strub, Nathan Grinsztajn, Yannis Flet-
Berliac, and 26 others. 2024. Aya expanse: Combin-
ing research breakthroughs for a new multilingual
frontier. Preprint, arXiv:2412.04261.

476

https://arxiv.org/abs/2108.13897
https://arxiv.org/abs/2108.13897
https://arxiv.org/abs/2108.13897
https://doi.org/10.1145/3726302.3730226
https://doi.org/10.1145/3726302.3730226
https://openreview.net/forum?id=JZKjBN1pUt
https://openreview.net/forum?id=JZKjBN1pUt
https://openreview.net/forum?id=JZKjBN1pUt
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2412.04261


Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi
Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong
Sun, and Xia Hu. 2021. Towards interpreting and
mitigating shortcut learning behavior of NLU models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 915–929, Online. Association for Computa-
tional Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier
Lopez de Lacalle, and Mikel Artetxe. 2024. Do mul-
tilingual language models think better in English?
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 550–564, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Changjiang Gao, Hankun Lin, Shujian Huang, Xin
Huang, Xue Han, Junlan Feng, Chao Deng, and Jia-
jun Chen. 2025. Understanding llms’ cross-lingual
context retrieval: How good it is and where it comes
from. Preprint, arXiv:2504.10906.

Lovisa Hagstrom, Ercong Nie, Ruben Halifa, Helmut
Schmid, Richard Johansson, and Alexander Junge.
2025. Language model re-rankers are fooled by lexi-
cal similarities. Proceedings of the Eighth Fact Ex-
traction and VERification Workshop (FEVER).

Donna Harman. 1992. Evaluation issues in information
retrieval. Inf. Process. Manag., 28(4):439–440.

Zhiqi Huang, Puxuan Yu, Shauli Ravfogel, and James
Allan. 2024. Language concept erasure for language-
invariant dense retrieval. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 13261–13273, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben
Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui,
and Thien Huu Nguyen. 2023. Chatgpt beyond en-
glish: Towards a comprehensive evaluation of large

language models in multilingual learning. Preprint,
arXiv:2304.05613.

Napat Laosaengpha, Thanit Tativannarat, Attapol
Rutherford, and Ekapol Chuangsuwanich. 2025.
Mitigating language bias in cross-lingual job re-
trieval: A recruitment platform perspective. Preprint,
arXiv:2502.03220.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Pairwise Re-ranking Prompt Template

System Prompt
You are an expert in multilingual
information retrieval. Your task is to
determine which of the two passages is more
relevant to the given query.
Strict instructions:
- Do NOT provide any explanation.
- Do NOT include any additional words,
punctuation, or formatting.
- Answer with only Passage A or Passage B
(without quotes).

User Prompt
Query: {query}
Passage A: {doc1}
Passage B: {doc2}
Which passage is more relevant to the query?
Respond with exactly one of the following
options:
Passage A
Passage B
Your answer:

Figure 4: Prompt for pairwise re-ranking.

B Hyperparameters and Infrastructure

Hyperparameter Value

Maximum sequence length 1024
Learning rate 2e-5
Batch size 32
Warm-up ratio 0.03
Optimizer AdamW (Loshchilov and

Hutter, 2017)
Re-ranking Model Llama-3.1-8B-Instruct
LLM Parameters 8 Billion

Table 6: Hyperparameter values for re-ranking models
used in our experiments.

Setup Value

GPU NVIDIA H100 SXM5-GPUs (94 GB)
Avg. Training Dura-
tion (per model)

45 h

Avg. Test Duration
(per language pair)

87 h

Table 7: Computational environment. We use the
Huggingface framework to train our models (von
Werra et al., 2020), ir-measures for computing
MRR@10 (MacAvaney et al., 2022), and Spearman
correlation coefficients for correlation analysis.

C Prompting Format

<|begin_of_text|><|start_header_id|>system<|
end_header_id|>
You are an expert in multilingual
information retrieval. Your task is to
determine which of the two passages is more
relevant to the given query.
<|eot_id|><|start_header_id|>user<|
end_header_id|>
Query: ....
Passage A: ....
Passage B: ....
Which passage is more relevant to the query?
Your answer:<|eot_id|><|start_header_id|>
assistant<|end_header_id|>

Figure 5: A simplified example of a chat-formatted
prompt using the official LLaMA-3.1 chat template.
This example is only for illustration and does not reflect
the full prompt used in our experiments. For the com-
plete prompt we use, see Appendix A.

D GPT-5 Synthetic Data Generation
Prompts

This appendix provides the exact GPT-5 prompt
templates used for generating and perturbing the
synthetic data described in Section 3.3. All prompts
are shown in their natural-language form for repro-
ducibility.

Prompt 1: Lexical-Semantic Non-Conflict
Candidate Generation
Please generate 20 samples in jsonl
format for pairwise semantic relevance
reranking task. Each sample must follow
the content requirements and format
requirements below.

**Content requirements:**
(1) The query should be a "wh"-question
and keywords in the questions must have
synonyms.
(2) Passage A must always be semantically
relevant to the query. Passage B must

always be semantically irrelevant to the
query.
(3) Passage A and the query must share at
least one overlapping non-stopword

keyword. Passage B must not contain any
overlapping token with the query.
(4) Passage A and Passage B should be
about similar or related topics, so that
the pair forms a hard example (difficult
to judge at first glance, but with a
unique correct answer).

**Format requirements:**
(1) Output must be in jsonl format.
(2) Each entry must include: qid, query,
passage_A, passage_B, and output.
(3) Each qid and pid must be unique and
assigned in order.
(4) Always set "output": "Passage A".
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Now, please directly generate 20 new
samples that strictly follow the above
rules.

Figure 6: GPT-5 prompt used for generating lexi-
cal–semantic non-conflict (TP) examples.

Prompt 2: Lexical-Semantic Conflict Candidate
Generation
Please generate 20 samples in jsonl
format for pairwise semantic relevance
reranking task. Each sample must follow
the content requirements and format
requirements below.

**Content requirements:**
(1) The query should be a "wh"-question
and keywords in the questions must have
synonyms.
(2) Passage A must always be semantically
relevant to the query. Passage B must
always be semantically irrelevant to the
query.
(3) Passage B and the query must share at
least one overlapping non-stopword token.
**Passage A** must not contain any
overlapping token with the query.
(4) Passage A and Passage B should be
about similar or related topics, so that
the pair forms a hard example (difficult
to judge at first glance, but with a
unique correct answer).

**Format requirements:**
(1)Output must be in JSONL format.
(2)Each entry must include: qid, query,
passage_A, passage_B, and output.
(3)Each qid and pid must be unique and
assigned in order.
(4)Always set "output": "Passage A".

Now, please directly generate 20 new
jsonl samples that strictly follow the
above rules.

Figure 7: GPT-5 prompt used for generating lexi-
cal–semantic conflict (FP) examples.

Prompt 3: Lexical-semantic Non-Conflict True
Positive Example Perturbation
Please perturb each of the following
triples (original examples) used for
pairwise semantic relevance reranking.
These examples all satisfy the following
conditions:
(1) "gold_output" Passage is always
semantically relevant to the query. the
other passage is always semantically
irrelevant to the query.
(2) the **relevant passage** and the
query share at least one overlapping non-
stopword token.

**Perturbation requirements:**
(1) Replace ALL OVERLAPPING TOKENS in the
**Relevant Passage** that also appears

in the query (i.e., all overlapping
tokens) with suitable synonyms, while
keeping the overall sentence semantics
unchanged.
(2) Do not modify any other part of
relevant passage except the overlapping
tokens, and make sure all overlapping
tokens are replaced. Do not modify
irrelevant passage.
(3) The output must be in JSONL format,
consistent with the structure of the
original examples.

Following the above instructions, please
perturb those original examples provided
below and return the results in JSONL
format.

Figure 8: GPT-5 prompt used for perturbing lexi-
cal–semantic non-conflict (TP) examples.

Prompt 4: Lexical-semantic Conflic False Positive
Example Perturbation
Please perturb each of the following
triples (original examples) used for
pairwise semantic relevance reranking.
These examples all satisfy the following
conditions:
(1) "gold_output" Passage is always
semantically relevant to the query. the
other passage is always semantically
irrelevant to the query.
(2) the **irrelevant passage** and the
query share at least one overlapping non-
stopword token.

**Perturbation requirements:**
(1) Replace all overlapping tokens in **
irrelevant passage** that also appears in
the query (i.e., all overlapping tokens)
with suitable synonyms, while keeping

the overall sentence semantics unchanged.
(2) Do not modify any other part of
irrelevant passage except the overlapping
tokens, and make sure all overlapping

tokens are replaced. Do not modify
relevant passage.
(3) The output must be in JSONL format,
consistent with the structure of the
original examples.

Following the above instructions, please
perturb the 20 original examples provided
below and return the results in JSONL

format.

Figure 9: GPT-5 prompt used for perturbing lexi-
cal–semantic conflict (FP) examples.
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EN-EN EN-DE EN-IT EN-AR

0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞)

Zero-shot 83.1 87.9 83.5 88.4 87.9 85.1 88.2 88.1 90.9 87.2 86.5 86.5
EN-EN-tuned 95.3 95.1 90.3 91.2 91.1 79.3 92.1 89.9 82.6 87.5 86.2 73.0
EN-XX-tuned 96.6 97.4 92.2 93.6 94.0 86.2 93.8 93.3 87.6 89.9 91.0 82.4
XX-XX-tuned 94.6 96.5 94.2 94.0 94.0 93.1 94.5 93.8 90.9 90.7 91.1 83.8

Table 8: Accuracy of pairwise relevance classification on the mMARCO dataset, where models are prompted to
judge which of two passages is more relevant to a query. The relevant passage is lexically disjoint from the query,
while the irrelevant passage exhibits varying degrees of lexical overlap. Irrelevant passages are grouped into three
categories based on their overlap count with the query: 0 (no overlap), [1, 2) (low overlap), and [3, +∞) (high
overlap). The table reports classification accuracy across language pairs and overlap levels. Bold indicates the
overlap group with the lowest accuracy for each model–language-pair pair.

EN-EN EN-DE EN-IT EN-AR

Zero-shot 32.4 23.1 36.4 70.0
EN-EN-tuned 55.0 50.0 38.1 35.0
EN-XX-tuned 50.0 33.3 46.7 46.2
XX-XX-tuned 50.0 16.7 36.4 25.0

Table 9: Accuracy (recovery rate) of different models on the subset of triple samples where the irrelevant document
originally had ≥3 lexical overlaps with the query and was incorrectly predicted as relevant. Results shows the
proportion of cases in which models correctly identified the relevant document after removing the overlapping
tokens.

E Causal Analysis with Word2Vec-based
Perturbation

Overlap EN-EN EN-DE EN-IT EN-AR

0 296 32,157 31,457 53,664
[1, 3) 1,759 7,218 6,262 4,652
[3,+∞) 206 87 121 74

Table 10: Number of pair-wise classification instances
extracted from mMARCO, grouped by how many to-
kens overlap between the query and non-relevant docu-
ment.

In an earlier version of our causal analysis, we
used real examples from the mMARCO dataset
and applied word2vec-based perturbations. we
first identify triplets u(q, dr, dnr) where the rele-
vant document dr shares no overlap with the query,
while the non-relevant document dnr contains vary-
ing degrees of overlap. Inspired by (Litschko et al.,
2023a), we partition samples into those where dnr
has no overlap (0 tokens), low overlap (1–2 tokens),
and high overlap (≥3 tokens) with q (see Table 10).
For these high-overlap samples, we replaced over-
lapping tokens in the non-relevant document with
their nearest neighbors in the word2vec embedding
space and re-evaluated model predictions.

Table 8 shows the classification accuracy of all
four models across the four language pairs (dubbed

clean run). Among the 16 combinations of 4 lan-
guage pairs and 4 models, we observed a consistent
pattern: in 12 of these settings, classification accu-
racy is lowest when the number of overlapping to-
kens between the query and non-relevant document
was greater than or equal to three. For example, for
the XX-XX-tuned model on the EN-AR pair, the
accuracy falls to 0.838 in the high-overlap group,
while reaching 0.907 in the no-overlap group and
0.911 in the low-overlap group. The only excep-
tions were the zero-shot model applied to the EN-
EN and EN-IT language pairs. These drops suggest
that models are more likely to over-rely on lexical
overlap signals, leading to misclassification when
the overlap is misleading.

When comparing models within the same lan-
guage pair, we find that in cases where the ir-
relevant document shares at least one token with
the query, the models trained on code-switched
data generally outperformed the EN-EN-tuned
model. For example, for the CLIR pair EN-IT,
the EN-XX-tuned and XX-XX-tuned models reach
accuracies of 0.876 and 0.909, respectively, ex-
ceeding the EN-EN-tuned model’s performance of
0.826.

In the second part of the experiment, we focus on
misclassified samples from each language pair in
the [3,∞) group and measure if substituting over-
lapping tokens causes the predictions to change.
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stopword
removal

lemmati-
zation

subword
tok-
enizer

without
nega-
tives

top-5
nega-
tives

top-10
nega-
tives

top-20
nega-
tives

top-50
nega-
tives

MoIR ALOD 0.847 1.083 2.042 2.508 0.902 0.903 0.904 0.904
CLIR ALOD 0.242 0.235 0.460 0.406 0.197 0.197 0.196 0.197

Table 11: Robustness analysis of the ALOD metric under different preprocessing alternatives and varying number
of negative documents extracted top the top-k documents in the input ranking.

Table 9 quantifies this recovery effect by report-
ing the proportion of misclassified high-overlap
samples that were corrected after corruption. We
observe that all four models show improved accu-
racy on these modified samples across all language
pairs.

However, upon closer inspection, we found that
this setup had several limitations. Many overlap-
ping tokens corresponded to named entities or fixed
expressions whose substitution could not preserve
meaning, and word2vec neighbors sometimes in-
troduced semantic drift. To ensure more controlled
perturbations and consistent semantics, we there-
fore replaced this analysis with the synthetic GPT-
5–generated data described in Section 3.3, which
allows for precise manipulation of lexical overlap
while maintaining contextual coherence.

F ALOD Robustness: Experimental
Results

This appendix reports the robustness evaluation
results for the ALOD metric, as summarized in
Table 11.
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Abstract

Generic statements like “birds fly” or “lions
have manes” express generalizations about
kinds that allow exceptions, yet language mod-
els tend to overgeneralize them to universal
claims. While previous work showed that AS-
CENT KB could reduce this effect in English
by 30-40%, the effectiveness of broader knowl-
edge sources and the cross-lingual nature of this
phenomenon remain unexplored. We investi-
gate generic overgeneralization across English
and four South African languages (isiZulu,
isiXhosa, Sepedi, SeSotho), comparing the
impact of ConceptNet and DBpedia against
the previously used ASCENT KB. Our experi-
ments show that ConceptNet reduces overgener-
alization by 45-52% for minority characteristic
generics, while DBpedia achieves 48-58% for
majority characteristics, with combined knowl-
edge bases reaching 67% reduction. These im-
provements are consistent across all languages,
though Nguni languages show higher base-
line overgeneralization than Sotho-Tswana lan-
guages, potentially suggesting that morpholog-
ical features may influence this semantic bias.
Our findings demonstrate that commonsense
and encyclopedic knowledge provide comple-
mentary benefits for multilingual semantic un-
derstanding, offering insights for developing
NLP systems that capture nuanced semantics in
low-resource languages. We release the dataset
and code1

1 Introduction

Generic statements express generalizations about
kinds that tolerate exceptions, representing a fun-
damental aspect of how humans conceptualize and
communicate about the world. Statements such as
“birds fly” or “lions have manes,” express truths
about these categories despite the fact that pen-
guins cannot fly and female lions lack manes. This

1https://github.com/sello-ralethe/
Multilingual_Generics

linguistic phenomenon poses a significant chal-
lenge for natural language understanding systems,
as both humans and language models exhibit a bias
toward interpreting these statements as universal
claims; a phenomenon known as generic overgen-
eralization (GOG) (Leslie et al., 2011).

The tendency to overgeneralize from generic
statements to universal claims reflects cognitive
biases in how humans process categorical infor-
mation. When presented with a true generic like
“ducks lay eggs,” people and models tend to in-
correctly accept the universal statement “all ducks
lay eggs,” despite the obvious fact that only fe-
male ducks possess this capability (Khemlani et al.,
2007). This effect has been documented in cog-
nitive science literature (Hollander et al., 2002;
Cimpian, 2010) and represents an important test
case for evaluating whether language models truly
understand the nuanced semantics of natural lan-
guage.

Recent advances in multilingual representation
learning have shown notable success in transferring
knowledge across languages, yet the interaction
between these methods and language-specific phe-
nomena like genericity remains largely unexplored.
This gap is more pronounced for morphologically
rich, low-resource languages, where both training
data and linguistic resources are scarce (Nigatu
et al., 2023; Chang et al., 2024; Qin et al., 2025).

Languages such as isiZulu, isiXhosa, Sepedi,
and SeSotho face challenges due to limited digi-
tal corpora (Eiselen and Gaustad, 2023; Mesham
et al., 2021). These languages express generic-
ity and other pragmatic phenomena through mor-
phological mechanisms distinct from English, po-
tentially affecting how generic statements are in-
terpreted and overgeneralized. The analytic tools
developed for machine translation and representa-
tion (e.g. morphology-aware modeling methods)
demonstrate that explicit morphological structure
affects performance in these contexts (Nzeyimana,
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2024), yet empirical work on genericity is lacking.
In this paper, we present an investigation of

generic overgeneralization across multiple lan-
guages, examining how this phenomenon manifests
in typologically diverse languages and whether
knowledge enhancement can mitigate its effects.
We make several contributions that advance the
understanding of this semantic phenomena. First,
we demonstrate that generic overgeneralization is
indeed a cross-linguistic phenomenon that affects
languages with different morphological systems
for expressing genericity. Our experiments with
four South African languages show patterns in how
different language families exhibit this bias, with
Nguni languages displaying higher baseline over-
generalization than Sotho-Tswana languages.

Second, we show that knowledge enhancement
through carefully selected knowledge bases can
reduce overgeneralization effects. By comparing
ASCENT KB (Nguyen et al., 2020), ConceptNet
(Speer et al., 2016), and DBpedia (Auer et al.,
2007) as knowledge sources, we find that differ-
ent types of knowledge address different aspects
of the overgeneralization problem. ConceptNet’s
commonsense knowledge proves effective for mi-
nority characteristic generics, achieving 45-52%
relative reduction in overgeneralization, while DB-
pedia’s encyclopedic coverage excels at handling
majority characteristic generics with 48-58% re-
duction. The combination of both knowledge types
yields even stronger results, reaching up to 67%
reduction in overgeneralization.

In this paper, we present the first investigation
of generic overgeneralization across morphologi-
cally rich, low-resource languages, examining how
this phenomenon manifests in typologically diverse
settings and whether knowledge enhancement can
mitigate its effects across linguistic boundaries.
We make several contributions that advance un-
derstanding of this semantic phenomenon in multi-
lingual contexts.

First, we demonstrate that generic overgeneral-
ization is indeed a cross-linguistic phenomenon,
providing empirical evidence across English and
four South African languages (isiZulu, isiXhosa,
Sepedi, and SeSotho) which represent two distinct
language families. Our experiments reveal system-
atic patterns in how different language families
exhibit this bias, with Nguni languages display-
ing 4-7% higher baseline overgeneralization than
Sotho-Tswana languages, suggesting that morpho-
logical features may modulate semantic biases.

Second, we compare three knowledge sources,
demonstrating that different types of knowledge
address different aspects of the overgeneralization
problem. We show that ConceptNet’s common-
sense knowledge proves effective for minority char-
acteristic generics, achieving 45-52% relative re-
duction in overgeneralization, while DBpedia’s en-
cyclopedic coverage excels at handling majority
characteristic generics with 48-58% reduction.

The combination of both knowledge types yields
even stronger results, reaching up to 67% reduc-
tion in overgeneralization. Importantly, these im-
provements remain consistent across all languages,
demonstrating that conceptual knowledge effec-
tively transfers across linguistic boundaries despite
significant morphological differences. Our find-
ings thus offer practical insights for developing
NLP systems that capture nuanced semantics in
low-resource multilingual settings while advancing
theoretical understanding of how semantic biases
interact with morphological systems.

2 Related Work

2.1 Generic Overgeneralization in Language
Models

The distinction between generic statements and
universally quantified statements represents a fun-
damental challenge in natural language semantics
that has implications for multilingual NLP. While
“tigers have stripes” holds true as a generic despite
albino tigers lacking stripes, the universal statement
“all tigers have stripes” is demonstrably false. This
subtle distinction shows how language encodes con-
ceptual knowledge about categories and their typi-
cal properties (pel, 2009).

The generic overgeneralization effect, first docu-
mented in cognitive science by Leslie et al. (2011)
and Khemlani et al. (2007), demonstrates a human
tendency to conflate these two types of statements.
This cognitive bias appears to be rooted in humans’
default processing mechanisms, where accepting
universal interpretations requires less cognitive ef-
fort than maintaining the nuanced understanding
that generics admit exceptions (Leslie et al., 2011).
Recent work by Ralethe and Buys (2022) extended
this investigation to pre-trained language models,
showing that when BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) were asked to predict
masked tokens in contexts like “[MASK] lions have
manes,” these models showed strong preferences
for universal quantifiers like “all” and “every.”
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Experiments by Ralethe and Buys (2022) demon-
strated that language models not only exhibit
human-like overgeneralization patterns but that this
bias could be partially mitigated through knowl-
edge injection. By incorporating factual knowledge
from ASCENT KB (Nguyen et al., 2020), they
achieved a 30-40% reduction in overgeneralization.
However, ASCENT KB’s limitations, including its
relatively sparse coverage of approximately 400k
animal-related triples and focus on specific factual
assertions rather than broader conceptual knowl-
edge, suggests that richer knowledge sources might
prove more effective.

2.2 Commonsense vs. Encyclopedic
Knowledge

The contrast between different types of knowledge
bases indicates complementary approaches to rep-
resenting world knowledge. ConceptNet (Speer
et al., 2016) encodes commonsense knowledge
that people typically know about the world, in-
cluding relations like “CapableOf,” “HasProperty,”
and “PartOf” that capture prototypical information
about concepts. This type of knowledge proves
valuable for generic reasoning because it encodes
default expectations about kinds, including infor-
mation about typical properties and capabilities that
align with how humans conceptualize categories
(Liu and Singh, 2004).

DBpedia (Auer et al., 2007), extracted from
Wikipedia, provides encyclopedic, factual knowl-
edge including specific information about in-
stances, detailed taxonomies, and factual proper-
ties. For generic reasoning, DBpedia’s strength
lies in its comprehensive coverage of exceptions
and variations (Mendes et al., 2011). It contains in-
formation about albino tigers, flightless birds, and
other edge cases that violate generic expectations,
making it particularly valuable for understanding
when universal generalizations fail.

The complementary nature of these knowledge
sources becomes apparent when considering their
coverage. While ASCENT KB focuses on spe-
cific faceted assertions like “young lions do not
have manes,” ConceptNet provides broader concep-
tual knowledge such as “mane is a characteristic
feature of male lions,” and DBpedia offers compre-
hensive factual coverage including specific infor-
mation about white lions, Barbary lions, and other
variations. This suggests that effective mitigation
of overgeneralization may require multiple types
of knowledge working in concert (Ilievski et al.,

2020).

2.3 Cross-Lingual Considerations
The expression of genericity varies significantly
across languages, raising important questions about
whether generic overgeneralization is universal or
language-specific (Dayal, 2004; Chierchia, 1998).
English uses bare plurals for generic reference,
while other languages use different morphosyn-
tactic strategies. In Nguni languages like isiZulu
and isiXhosa, the noun class system inherently
pluralizes nouns, with generic reference typically
achieved through class prefixes (Zeller, 2012;
Visser, 2008). For example, “amabhubesi” (lions)
in isiZulu uses the class 6 prefix ama-, which inher-
ently indicates plurality. Sotho-Tswana languages
like Sepedi and SeSotho use a different noun class
system with distinct morphological patterns for ex-
pressing genericity (Mojapelo, 2009).

These typological differences have important im-
plications for how generic overgeneralization might
manifest across languages. The obligatory plural
marking in Nguni languages may create different
baseline expectations about universality compared
to languages with optional plural marking (Demuth,
2000). Furthermore, the morphological complexity
of these languages poses additional challenges for
knowledge projection and alignment, as the same
concept may be realized through different morpho-
logical forms depending on the syntactic context
(Kiparsky, 2001).

Previous work on cross-lingual knowledge pro-
jection has shown that conceptual knowledge can
transfer across languages (Chen et al., 2016, 2021;
Sun et al., 2019), but the interaction with language-
specific phenomena like genericity remains largely
unexplored. The success of multilingual models
like mT5 (Xue et al., 2021) in capturing cross-
lingual semantic similarities suggests that con-
ceptual knowledge about generics might transfer
across languages, but this hypothesis requires em-
pirical validation across typologically diverse lan-
guages.

While prior work has examined generic overgen-
eralization in English (Ralethe and Buys, 2022),
our work is the first to: (1) investigate this
phenomenon across morphologically rich, low-
resource African languages, (2) systematically
compare commonsense versus encyclopedic knowl-
edge sources for GOG mitigation, and (3) demon-
strate effective cross-lingual knowledge transfer for
this semantic task despite typological diversity.
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3 Methodology

3.1 Data and Languages

Our investigation encompasses a curated dataset of
generic statements and a diverse set of low-resource
languages representing different typological fea-
tures. We utilize the generic overgeneralization
datasets from Ralethe and Buys (2022), comprising
5884 minority characteristic generics that express
properties true of only a subset of a kind, such
as “lions have manes,” and 8750 majority char-
acteristic generics that express prevalent but not
universal properties, such as “tigers have stripes.”
Additionally, we use 60368 training generics cover-
ing diverse generic types to ensure comprehensive
coverage of the phenomenon.

For our cross-lingual study, we select English
as our baseline and four South African languages
representing two distinct language families. The
Nguni languages, isiZulu and isiXhosa, share sim-
ilar morphological structures including extensive
noun class systems with obligatory plural marking.
The Sotho-Tswana languages, Sepedi and SeSotho,
use different noun class systems and morphologi-
cal patterns. This selection allows us to investigate
how typological differences influence generic over-
generalization while controlling for potential areal
effects, as all four languages are spoken in South
Africa.

3.2 Translation and Quality Validation

To ensure high-quality cross-lingual data, we trans-
lated all datasets using the Google Translate API
with rigorous quality controls. Our validation pro-
cess included back-translation verification to iden-
tify potential translation errors, entity name valida-
tion to ensure proper nouns were correctly handled,
and manual checking of quantifier translations.

To quantify translation quality, we conducted
manual validation on a random sample of 200
generic statements per language. Each translation
was evaluated for semantic accuracy and grammat-
ical correctness. The validation demonstrated high
translation quality overall: isiZulu (88%), isiXhosa
(89%), Sepedi (91%), and SeSotho (93%). Com-
mon translation errors included:

IsiZulu: Incorrect handling of noun class agree-
ment, particularly with complex subjects. For in-
stance, “Young elephants play in water” was in-
correctly translated as “Izindlovu ezincane zidlala
emanzini” where the class prefix failed to maintain
consistency with age modifiers.

IsiXhosa: Confusion between inclusive and ex-
clusive plural forms. The generic “Lions hunt
at night” was rendered as “Iingonyama zizingela
ebusuku” which could be interpreted as referring
to specific lions rather than lions in general.

Sepedi: Misalignment of aspectual markers af-
fecting the generic interpretation. “Birds migrate
seasonally” translated to “Dinonyana di huduga ka
nako ya sehla” lost the habitual aspect important
for generic meaning.

SeSotho: Occasional loss of generic force
through inappropriate determiner insertion. “Cats
are independent” became “Dikatse tsena di ikemela”
where “tsena” (these) inadvertently introduced a
deictic element.

These error patterns informed our analysis, par-
ticularly regarding how morphological features in-
teract with generic interpretation across language
families.

Rationale for Translation Approach We use
translation rather than collecting native generic
statements because no existing generic overgen-
eralization datasets exist for these low-resource
languages, and creating new datasets would re-
quire extensive linguistic validation to ensure con-
sistent generic interpretation across cultures. Trans-
lation maintains exact parallel alignment across
languages, enabling controlled comparison of how
the same conceptual content is processed across
different morphological systems. Our high transla-
tion quality (88-93% accuracy) and detailed error
analysis demonstrate that this approach is sound
for investigating cross-linguistic patterns, though
we acknowledge translation may introduce some
noise.

3.3 Knowledge Sources

Our experimental design compares three distinct
knowledge sources, each offering different types
and scales of information. Following Ralethe and
Buys (2022), we use ASCENT KB as our baseline,
which contains approximately 403k animal-related
triples with faceted information about properties
and subcategories. While ASCENT KB provides
valuable specific assertions, its coverage is limited
compared to larger knowledge bases.

We extend this baseline by incorporating Con-
ceptNet and DBpedia, both of which offer substan-
tially richer information. ConceptNet provides ap-
proximately 220k triples per language after projec-
tion into South African languages through LeNS-
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Align (Ralethe and Buys, 2025), encoding diverse
relation types including taxonomic relations like
“male_lion IsA lion,” property relations such as
“lion HasProperty mane,” capability relations like
“bird CapableOf fly,” and prototype relations such
as “tiger HasA stripes.” This commonsense knowl-
edge captures the conceptual structures that under-
lie generic statements.

DBpedia contributes approximately 450k triples
per language after projection (Ralethe and Buys,
2025), offering instance data such as “Cecil_(lion)
type Lion,” comprehensive taxonomic information
like “White_tiger subClassOf Tiger,” detailed prop-
erty data including “Albino_tiger colour White,”
and extensive geographic and demographic infor-
mation. This encyclopedic knowledge provides the
factual grounding necessary to understand excep-
tions to generic generalizations.

3.4 Model Architectures

Our experimental framework uses different archi-
tectures for English and multilingual experiments
to leverage the most appropriate models for each
setting. For English experiments, we implement
BERT-large and RoBERTa-large augmented with
knowledge bases using the KEPLER framework
(Wang et al., 2021), following the approach of
Ralethe and Buys (2022). KEPLER enables knowl-
edge integration by continuing pre-training on ver-
balized knowledge triples, where each triple is con-
verted to natural language using templates. This ap-
proach allows us to maintain compatibility with the
baseline while exploring richer knowledge sources.

For multilingual experiments, we adopt mT5-
large as our base model, leveraging its strong mul-
tilingual capabilities across all target languages.
We follow Ralethe and Buys (2025) in performing
knowledge injection of the projected knowledge
bases using an adaptation of the QA-GNN frame-
work (Yasunaga et al., 2021).

QA-GNN retrieves relevant subgraphs for each
generic statement and uses graph attention net-
works to reason over the structured knowledge,
enabling explicit traversal of knowledge graph con-
nections when interpreting generics across lan-
guages. This architecture proves well-suited for
working with projected knowledge bases in low-
resource languages, as it can leverage the graph
structure to compensate for potential noise in the
projections (See Appendix B for implementation
and training details).

3.5 Evaluation Framework

We use three complementary evaluation tasks to
assess model performance and the manifestation of
generic overgeneralization. The generic classifica-
tion task evaluates whether models can distinguish
between generic and non-generic statements, with
particular focus on universally quantified versions.
This task directly tests whether models understand
that statements like “all lions have manes” are not
true generics despite the truth of the unquantified
version.

Following the original work of Ralethe and Buys
(2022), the quantifier prediction task provides our
primary measure of overgeneralization. By mask-
ing the pre-nominal position in statements like
“[MASK] lions have manes,” we evaluate how
strongly models prefer universal quantifiers. We
calculate the Mean Reciprocal Rank (MRR), which
measures the inverse of the rank at which the first
correct answer appears, averaged across all test in-
stances. For this task, we consider universal quan-
tifiers (all, every, each) as the target predictions,
so lower MRR scores indicate better performance
as they suggest the model is less likely to predict
universal quantifiers. We also compute Precision
at 5 (P@5), which measures the proportion of test
instances where at least one universal quantifier
appears in the top 5 predictions. Lower scores on
both metrics indicate less overgeneralization, as
models that avoid predicting universal quantifiers
demonstrate better understanding of generic seman-
tics.

The quantifier interpretation probing task creates
statements with different quantifiers and masks the
property position, as in “all lions have [MASK].”
Models should assign higher probabilities to the
correct property for quantifiers that maintain truth
(some, most) than for those that create false uni-
versal statements. This task uses MRR to measure
how highly models rank the correct property, with
higher scores indicating better understanding when
the quantifier makes the statement true. This task
helps determine whether models genuinely under-
stand the semantic implications of different quanti-
fiers or merely exhibit surface-level patterns.

4 Results

4.1 Comparison with Previous Work: English
Results

Table 1 presents a comparison of our results on
English with the previous ASCENT KB baseline
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from Ralethe and Buys (2022). The improvements
achieved by ConceptNet and DBpedia are notable
across all evaluation metrics, showing important in-
sights about the types of knowledge most effective
for addressing generic overgeneralization.

For minority characteristic generics, Concept-
Net demonstrates notable effectiveness, achieving
45-52% relative reduction in overgeneralization
compared to 30-34% for using ASCENT KB. This
improvement stems from ConceptNet’s richer rep-
resentation of subcategory relationships and pro-
totypical properties. Where ASCENT KB might
only encode “male lions have manes,” ConceptNet
additionally provides conceptual relations such as
“mane IsA male characteristic” and “adult male lion
IsA lion with mane.” These additional layers of
conceptual knowledge help models understand that
properties like manes are inherently restricted to
subsets of a category.

DBpedia shows its greatest strength with ma-
jority characteristic generics, achieving 48-58%
reduction versus ASCENT KB’s 40%. This advan-
tage arises from DBpedia’s comprehensive cover-
age of exceptions and edge cases. While ASCENT
KB might note that albino tigers exist, DBpedia
provides detailed information about white tigers,
melanistic tigers, golden tigers, and numerous spe-
cific individuals. This exhaustive coverage of vari-
ations gives models concrete evidence against uni-
versal generalizations.

The combined ConceptNet+DBpedia approach
achieves up to 67% reduction in overgeneraliza-
tion, nearly doubling ASCENT KB’s best perfor-
mance. This synergy suggests that commonsense
and encyclopedic knowledge provide fundamen-
tally complementary benefits. ConceptNet helps
models understand the conceptual structure of cat-
egories and why certain properties might be re-
stricted to subsets, while DBpedia provides the
specific counterexamples that definitively rule out
universal generalizations.

4.2 Cross-Lingual Results
Table 2 presents the results of the quantifier pre-
diction task in all five test languages, demonstrat-
ing both universal patterns and language-specific
variations in generic overgeneralization across lan-
guages. The results show that knowledge enhance-
ment provides consistent benefits across typologi-
cally diverse languages, though interesting patterns
emerge related to language family and morphologi-
cal structure.

The most notable finding is the consistency of
knowledge enhancement effects across languages.
ConceptNet provides 43-47% reduction for minor-
ity generics across all languages, while DBpedia
achieves 52-56% reduction for majority generics.
This suggests that the conceptual knowledge en-
coded in these resources transfers effectively across
languages through the LeNS-Align projection pro-
cess, despite the significant morphological differ-
ences between English and the target languages.

A pattern emerges when comparing language
families. Nguni languages (isiZulu and isiXhosa)
exhibit higher baseline overgeneralization than
Sotho-Tswana languages (Sepedi and SeSotho) and
English. The baseline MRR for universal quanti-
fiers is 4-7% higher in Nguni languages. We hy-
pothesize that this may be related to the obligatory
plural marking in the Nguni noun class system,
which could prime speakers and models toward
universal interpretations of generic statements.

The pattern of ConceptNet excelling at minority
generics while DBpedia excels at majority generics
holds across all languages, confirming that different
types of overgeneralization (overgeneralizing from
“some” to “all” versus overgeneralizing from “most”
to “all”) require different types of knowledge to ad-
dress effectively. This cross-linguistic consistency
suggests that the cognitive and semantic factors
underlying generic overgeneralization are largely
universal, even as their surface manifestations vary
across languages.

4.3 Classification Results

The generic classification results presented in Ta-
ble 3 provide additional evidence for both the perva-
siveness of overgeneralization and the effectiveness
of knowledge enhancement. When asked to clas-
sify universally quantified statements as generic or
non-generic, baseline models fail, achieving only
around 10% accuracy. This near-chance perfor-
mance indicates that without additional knowledge,
models treat statements like “all lions have manes”
as equivalent to the generic “lions have manes.”

Knowledge enhancement provides improve-
ments, with the combined approach achieving 34-
39% accuracy across languages. While still far
from perfect, this represents a three- to four-fold
improvement over the baseline. This improvement
across languages reinforces our finding that knowl-
edge injection helps models develop more nuanced
understanding of generic semantics.
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Model Minority Majority

MRR Reduction MRR Reduction

BERT 0.326 - 0.337 -
+ASCENT† 0.228 30.1% 0.202 40.1%
+ConceptNet 0.179 45.1% 0.185 45.1%
+DBpedia 0.186 42.9% 0.175 48.1%
+Both KBs 0.142 56.4% 0.138 59.1%

RoBERTa 0.329 - 0.428 -
+ASCENT† 0.217 34.0% 0.257 40.0%
+ConceptNet 0.158 52.0% 0.221 48.4%
+DBpedia 0.171 48.0% 0.180 57.9%
+Both KBs 0.108 67.2% 0.141 67.1%

Table 1: English results for the quantifier prediction task comparing knowledge sources (MRR for universal
quantifiers - lower is better). † indicates results from Ralethe and Buys (2022).

Model Minority Characteristic Generics

English isiZulu isiXhosa Sepedi SeSotho Avg Reduction

mT5 0.318 0.347 0.352 0.324 0.319 -
+ConceptNet 0.175 0.189 0.193 0.181 0.177 45.0%
+DBpedia 0.184 0.198 0.201 0.186 0.182 42.1%
+Both KBs 0.139 0.151 0.154 0.144 0.141 55.7%

Model Majority Characteristic Generics

English isiZulu isiXhosa Sepedi SeSotho Avg Reduction

mT5 0.412 0.436 0.441 0.411 0.407 -
+ConceptNet 0.216 0.231 0.235 0.218 0.214 47.3%
+DBpedia 0.189 0.201 0.205 0.187 0.184 54.8%
+Both KBs 0.136 0.148 0.152 0.135 0.133 67.0%

Table 2: Cross-lingual results for the quantifier prediction task: MRR for universal quantifiers across all languages
(lower is better)

4.4 Probing Experiments

To investigate whether knowledge-enhanced mod-
els truly understand the injected knowledge, we
conducted two probing experiments adapted from
Ralethe and Buys (2022) for our multilingual mT5
setup.

4.4.1 Quantified Statement Classification
Probing

We fine-tuned the knowledge-enhanced mT5 on
the generic classification task and tested whether
quantified statements are correctly classified as
non-generic. We quantified minority characteris-
tic generics with “many” and “most,” and major-
ity characteristic generics with “few” and “some”
to create false generic statements. For example,
“most lions have manes” should be classified as
non-generic since only a minority of lions have
manes.

Table 4 shows that knowledge injection improves
the models’ ability to recognize false quantified
statements, though accuracy remains low. The

combined KB approach achieves 21.3% accuracy
for minority characteristics and 28.6% for major-
ity characteristics, suggesting that models partially
learn the conceptual distinctions but struggle to
apply them consistently. Detailed per-language re-
sults in Appendix A show that Nguni languages
underperform Sotho-Tswana languages in this task,
mirroring the overgeneralization patterns.

4.4.2 Quantifier Interpretation Probing
We evaluated whether models correctly interpret
different quantifiers by masking the property in
quantified statements. For each generic, we created
probing instances with four quantifiers (few, some,
many, most) and masked the final token. Models
should rank the correct property higher for quanti-
fiers that make the statement true.

The results in Table 5 show that knowledge-
enhanced models display improved quantifier in-
terpretation. For minority characteristic generics,
models correctly assign higher MRR to properties
when quantified with “few” or “some” compared
to “many” or “most.” The pattern reverses appro-
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Model English isiZulu isiXhosa Sepedi SeSotho Average

Baseline 10.8 9.7 8.3 12.1 11.4 10.5
+ConceptNet 23.4 21.2 19.6 24.5 23.7 22.5
+DBpedia 24.9 22.8 21.1 25.3 24.6 23.7
+Both KBs 38.7 36.4 34.2 39.1 38.3 37.3

Table 3: Generic classification accuracy (%) on universally quantified variants

Model Classification Accuracy (%)

Minority Majority

mT5 8.3 10.1
+ConceptNet 14.7 18.2
+DBpedia 13.9 19.4
+Both KBs 21.3 28.6

Table 4: Accuracy of classifying falsified quantified
generics as non-generic (averaged across languages; see
Appendix A for per-language results)

priately for majority characteristic generics. The
combined KB approach shows the strongest dif-
ferentiation between appropriate and inappropriate
quantifiers, with the gap between true and false
quantifiers widening from 0.21 to 0.41 for minority
characteristics and from 0.27 to 0.43 for majority
characteristics. Per-language analysis (Appendix
A) shows that Nguni languages achieve the largest
differentiation gaps despite higher baseline over-
generalization.

However, the relatively high MRR scores even
for false quantifiers (e.g., 0.31 for “most” with mi-
nority generics) indicate that models still strug-
gle with complete understanding. The quantifier
“some” proves particularly challenging across all
languages (Appendix A), maintaining relatively
high scores across both generic types, suggesting
models interpret it as a hedge rather than a specific
quantity indicator.

5 Discussion

Our results provide several insights into generic
overgeneralization, the role of knowledge in ad-
dressing it, and the cross-lingual nature of this phe-
nomenon.

5.1 Why ConceptNet and DBpedia
Outperform ASCENT KB

The effectiveness of ConceptNet and DBpedia over
ASCENT KB reflects their complementary knowl-
edge coverage. ConceptNet’s strength for minority
characteristic generics emerges from its encoding
of conceptual relationships that help models un-

derstand the logical structure of subset properties.
When a model needs to understand that “lions have
manes” does not mean “all lions have manes,” Con-
ceptNet provides the conceptual framework: manes
are a male characteristic, male lions are a subset of
lions, and characteristics can be subset-specific.

DBpedia’s advantage for majority characteristic
generics stems from its encyclopedic coverage of
exceptions. While ASCENT KB might note that
albino tigers exist, DBpedia provides detailed in-
formation about white tigers, golden tigers, and
stripeless tigers, giving models concrete evidence
against universal generalizations.

The combined approach achieving up to 67%
reduction demonstrates that generic reasoning re-
quires both conceptual understanding and factual
grounding. Neither pure commonsense nor pure
factual knowledge alone suffices; models need to
understand both the conceptual possibility of ex-
ceptions and specific instances of those exceptions.

5.2 Cross-Lingual Universality and Variation

The consistency of knowledge enhancement effects
across languages provides evidence that generic
overgeneralization reflects a deep semantic chal-
lenge rather than a surface linguistic phenomenon.
Despite different morphological systems for ex-
pressing genericity, all languages benefit similarly
from the same types of knowledge, supporting the
view that overgeneralization stems from conceptual
biases in how categories and properties are related.

However, the higher baseline overgeneralization
in Nguni languages could be related to obliga-
tory plural marking creating a stronger bias toward
universal interpretation, suggesting that language-
specific features can potentially amplify or dampen
universal cognitive biases. The fact that knowledge
enhancement reduces but does not eliminate these
cross-linguistic differences indicates a complex in-
teraction between universal conceptual tendencies
and language-specific morphosyntactic features.
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Model Minority Generics Majority Generics

Few Some Many Most Few Some Many Most

mT5 0.62 0.71 0.48 0.41 0.52 0.68 0.73 0.79
+ConceptNet 0.68 0.74 0.42 0.35 0.48 0.64 0.78 0.83
+DBpedia 0.65 0.72 0.44 0.37 0.45 0.61 0.81 0.85
+Both KBs 0.72 0.77 0.38 0.31 0.41 0.58 0.84 0.88

Table 5: Mean Reciprocal Rank of masked properties under different quantifiers (averaged across languages; see
Appendix A for per-language breakdowns). Higher scores for appropriate quantifiers indicate better understanding.

5.3 Implications for Multilingual NLP

Our findings demonstrate that knowledge resources
developed for one language can effectively trans-
fer to others when properly projected, suggest-
ing that conceptual knowledge is largely language-
independent. However, the type of knowledge mat-
ters as much as its quantity; simply adding more
factual assertions provides limited benefits com-
pared to incorporating diverse knowledge types.
The persistent differences between language fam-
ilies even after knowledge enhancement indicate
that effective multilingual systems must account
for typological variation while leveraging universal
conceptual knowledge. While knowledge enhance-
ment provides consistent benefits, the residual dif-
ferences between Nguni and Sotho-Tswana lan-
guages suggest that language-specific adaptations
may be necessary to achieve optimal performance.

6 Conclusion

We demonstrate that generic overgeneralization is a
universal semantic challenge that manifests across
typologically diverse languages, with language-
specific morphological features potentially mod-
ulating its expression. Our experiments show that
combining ConceptNet’s commonsense knowledge
with DBpedia’s encyclopedic coverage achieves up
to 67% reduction in overgeneralization. Our cross-
lingual analysis uncovers systematic variation be-
tween language families, with Nguni languages
exhibiting 4-7% higher baseline overgeneraliza-
tion than Sotho-Tswana languages, possibly due
to obligatory plural marking. Manual validation
of translations shows that morphological errors di-
rectly impact generic interpretation, yet knowledge
enhancement partially compensates for these arti-
facts. These findings advance multilingual NLP
by demonstrating that conceptual knowledge trans-
fers effectively across languages while highlighting
the need for morphology-aware methods in low-
resource settings.

Limitations

While our results demonstrate significant progress
in addressing generic overgeneralization, several
limitations point toward important future research
directions. The classification accuracy on univer-
sally quantified statements, while improved, re-
mains below 40% even with comprehensive knowl-
edge enhancement. This suggests that the models
still struggle with the fundamental distinction be-
tween generic and universal statements, indicating
a need for more sophisticated approaches to se-
mantic representation. The reliance on translated
generics introduces potential noise and errors that
may limit the effectiveness of knowledge enhance-
ment. Our study focuses on four South African
languages from two language families, which lim-
its generalizability to other language families and
morphological systems.
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A Detailed Probing Results by Language

This appendix presents the complete per-language
results for our probing experiments, which are aver-
aged in the main text. These detailed breakdowns
show language-specific patterns in how models
interpret quantifiers and generic statements after
knowledge enhancement.

A.1 Quantified Statement Classification
Probing

Table 6 shows the accuracy of classifying falsi-
fied quantified generics as non-generic for each
language. Minority characteristic generics were
quantified with “many” and “most” (creating false
statements), while majority characteristic generics
were quantified with “few” and “some.”

Notably, Nguni languages (isiZulu and isiXhosa)
show lower accuracy than Sotho-Tswana languages
(Sepedi and SeSotho) and English, mirroring the

overgeneralization patterns in the main results. The
gap persists across all knowledge configurations
but narrows with knowledge enhancement.

A.2 Quantifier Interpretation Probing

Tables 7 and 8 present the Mean Reciprocal Rank
of masked properties under different quantifiers
for each language. Models should rank properties
higher when paired with appropriate quantifiers
(few/some for minority generics, many/most for
majority generics).

A.3 Language-Specific Patterns

Several language-specific patterns emerge from the
results:

Nguni Languages (isiZulu, isiXhosa): These
languages show the strongest differentiation be-
tween appropriate and inappropriate quantifiers af-
ter knowledge enhancement, despite having higher
baseline overgeneralization. For majority generics
with combined KBs, the gap between “most” (0.90-
0.91) and “few” (0.38-0.39) reaches 0.52-0.53, the
largest among all languages.

Sotho-Tswana Languages (Sepedi, SeSotho):
These languages demonstrate more balanced im-
provements across both minority and majority char-
acteristics. They maintain better classification accu-
racy for falsified generics, suggesting more robust
understanding of quantifier semantics.

English: Shows the highest absolute accuracy
in classification tasks but moderate MRR differ-
entiation, suggesting that the multilingual model
may not fully leverage English’s richer training
data when processing generic semantics.

Quantifier “Some”: Across all languages, this
quantifier remains problematic, maintaining rela-
tively high MRR scores (0.55-0.61) even for major-
ity characteristic generics where it should receive
low scores. This universal challenge suggests a fun-
damental limitation in how current models process
scalar implicatures cross-linguistically.

B Training and Computational Details

All experiments were conducted on a Google Cloud
Compute Engine instance with an a2-ultragpu-2g
machine type, equipped with 2 x NVIDIA A100
80GB GPUs and 340GB memory.

For English BERT-large and RoBERTa-large ex-
periments, we used the KEPLER framework (Wang
et al., 2021) with a batch size of 32, learning rate
of 2e-5, and trained for 5 epochs on the knowledge-
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Model Minority Characteristic Generics (%)

English isiZulu isiXhosa Sepedi SeSotho Avg

mT5 9.2 7.3 6.8 9.7 8.5 8.3
+ConceptNet 16.3 12.8 11.9 16.1 16.4 14.7
+DBpedia 15.4 12.1 11.2 15.3 15.5 13.9
+Both KBs 23.7 18.4 17.2 23.8 23.4 21.3

Model Majority Characteristic Generics (%)

English isiZulu isiXhosa Sepedi SeSotho Avg

mT5 11.1 9.2 8.7 11.3 10.2 10.1
+ConceptNet 20.1 16.3 15.8 20.4 18.4 18.2
+DBpedia 21.4 17.5 16.9 21.6 19.6 19.4
+Both KBs 31.6 25.8 24.3 31.2 30.1 28.6

Table 6: Accuracy of classifying falsified quantified generics as non-generic, broken down by language. Higher
scores indicate better understanding that inappropriate quantifiers make statements non-generic.

Model English isiZulu isiXhosa Sepedi SeSotho

Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most

mT5 .63 .72 .49 .42 .60 .69 .51 .44 .59 .68 .52 .45 .64 .73 .45 .38 .65 .74 .44 .37
+CN .69 .75 .43 .36 .66 .72 .45 .38 .65 .71 .46 .39 .70 .76 .39 .32 .71 .77 .38 .31
+DB .66 .73 .45 .38 .63 .70 .47 .40 .62 .69 .48 .41 .67 .74 .41 .34 .68 .75 .40 .33
+Both .73 .78 .39 .32 .70 .75 .41 .34 .69 .74 .42 .35 .74 .79 .35 .28 .75 .80 .34 .27

Table 7: MRR for minority characteristic generics under different quantifiers by language. Higher scores for
few/some vs. many/most indicate correct interpretation. CN=ConceptNet, DB=DBpedia.

enhanced corpus. Knowledge triples were verbal-
ized using templates such as “X is capable of Y” for
ConceptNet’s CapableOf relation and “X has prop-
erty Y” for DBpedia property assertions, following
the approach of Ralethe and Buys (2022).

For multilingual mT5-large experiments, we
adopted the QA-GNN framework (Yasunaga et al.,
2021) as adapted by Ralethe and Buys (2025), us-
ing batch size 16, learning rate 1e-4, and 10 train-
ing epochs. Knowledge graph subgraphs were re-
trieved using a 2-hop neighborhood around entities
mentioned in each generic statement, with graph
attention networks processing up to 50 nodes per
subgraph. Training time was approximately 8 hours
for BERT/RoBERTa models and 12 hours for mT5
models per knowledge configuration.
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Model English isiZulu isiXhosa Sepedi SeSotho

Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most

mT5 .53 .69 .72 .78 .50 .66 .75 .81 .49 .65 .76 .82 .54 .70 .71 .77 .55 .71 .70 .76
+CN .49 .65 .77 .82 .46 .62 .80 .85 .45 .61 .81 .86 .50 .66 .76 .81 .51 .67 .75 .80
+DB .46 .62 .80 .84 .43 .59 .83 .87 .42 .58 .84 .88 .47 .63 .79 .83 .48 .64 .78 .82
+Both .42 .59 .83 .87 .39 .56 .86 .90 .38 .55 .87 .91 .43 .60 .82 .86 .44 .61 .81 .85

Table 8: MRR for majority characteristic generics under different quantifiers by language. Higher scores for
many/most vs. few/some indicate correct interpretation. CN=ConceptNet, DB=DBpedia.
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Abstract

How similar are model outputs across lan-
guages? In this work, we study this ques-
tion using a recently proposed model similar-
ity metric—κp—applied to 20 languages and
47 subjects in GlobalMMLU. Our analysis re-
veals that a model’s responses become increas-
ingly consistent across languages as its size
and capability grow. Interestingly, models ex-
hibit greater cross-lingual consistency within
themselves than agreement with other models
prompted in the same language. These results
highlight not only the value of κp as a practical
tool for evaluating multilingual reliability, but
also its potential to guide the development of
more consistent multilingual systems.

1 Introduction

Users interact with large language models (LLMs)
in a variety of languages across families and re-
source availabilities (Nicholas and Bhatia, 2023).
As such, there is a need for LLMs to perform well
across languages. These models should provide
consistent responses—if switching languages re-
sults in incorrect answers to the same question, it
could potentially mislead users, especially in crit-
ical areas like medical advice or legal interpreta-
tion. However, current evaluations primarily focus
on per-language accuracy, with little attention to
consistency across languages (Koto et al., 2024;
Romanou et al., 2024; Singh et al., 2024).

To quantify this consistency, we study the func-
tional similarity of model outputs. We use Chance
Adjusted Probabilistic Agreement (CAPA or κp),
a metric recently proposed by (Goel et al., 2025),
which incorporates model accuracy on a given
benchmark. We extend it to measure how similar
the mistakes are across different languages, giving
a view of multilingual functional similarity.

* These authors contributed equally
Please find our code here: GitHub

Figure 1: Our Main Findings: We use functional
similarity to measure the consistency of model outputs
across different languages. We find: (1) as language
models get bigger and more capable, their outputs be-
come more similar across languages; (2) models tend
to be more self-consistent across languages than when
comparing different models in a common language.

We use GlobalMMLU (Singh et al., 2024) - a
carefully translated version of MMLU across mul-
tiple languages - as our benchmark. It tests the
factual QA capabilities of models across a variety
of subjects, ranging from mathematics to philos-
ophy, in a multiple-choice format. Our choice of
this benchmark is motivated by its parallel nature,
which allows us to test whether models behave
consistently across languages on factual tasks.

Our study encompasses two dimensions of func-
tional similarity: intra-model (consistency across
languages for a given model) and inter-model
(consistency across models for a given language).
When considering intra-model similarity, we find
that with increasing size and accuracy, models are
becoming more functionally similar across lan-
guages. Notably, we observe that all models are
more consistent with themselves across languages
than they are with other LLMs for the same lan-
guage, indicating that intra-model similarity ex-
ceeds inter-model similarity for our task. Inter-
estingly, multilingual similarity further varies by
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domain and resource levels of the languages.
Primarily, we show that κp, a chance-adjusted

functional similarity metric, provides a power-
ful lens for analyzing multilingual consistency of
LLMs. We explore cross-lingual patterns that ac-
curacy and representational similarity alone cannot
capture, by combining the output behavior and per-
formance of the LLM. We find interesting patterns
about multilingual model behavior, including ef-
fects of scale, domain, and resources.

2 Related Work

Similarity Metrics: Prior work on model simi-
larity falls broadly into two classes: representa-
tional similarity and functional similarity. Rep-
resentational similarity metrics (Huh et al., 2024;
Klabunde et al., 2025) focus on the internal states
of models such as weights and activations, whereas
functional similarity metrics (Goel et al., 2025)
evaluate models based on their input–output behav-
ior, making them applicable across architectures.
Importantly, functional similarity better reflects the
user experience, since what ultimately matters is
whether models behave consistently across inputs,
rather than how their internal representations align.

Multilingual Evaluations: In representational
studies, researchers have identified language-
specific neurons (Tang et al., 2024) and language-
agnostic “semantic hubs” (Wu et al., 2024), and
even used steering interventions to demonstrate
their causal effects. While such work sheds light on
cross-lingual representations, it does not establish
quantitative trends in cross-lingual output consis-
tency as models scale. On the functional side, prior
work on multilingual factual consistency (Qi et al.,
2023), as well as classical agreement metrics (Scott,
1955; Cohen, 1960), do not account for model accu-
racy and can overestimate similarity. This leaves a
gap for metrics such as κp, which explicitly account
for error consistency with agreement to provide a
more realistic view of multilinguality.

3 Methodology

The accuracy of LLMs differ greatly across lan-
guages and their performance is particularly in low-
resource languages (Li et al., 2025). This can artifi-
cially inflate similarity scores for some languages
as high performance leaves little room for disagree-
ment (as explained further in Appendix A). Given
that κp addresses these issues, we use it to com-
pare similarity of model outputs in light of variable

performance across languages. Our work comple-
ments studies on representational similarity across
languages such as (Wu et al., 2024).
κp computes observed agreement cpobs as the pro-

portion with which the same option is selected
across samples. To account for agreement by
chance, κp introduces an expected agreement cpexp,
derived from the marginal distribution of each set
of predictions. The κp score is given by:

κp =
cpobs − cpexp

1− cpexp
,

We use the discrete variant of κp as described in
(Goel et al., 2025). As κp increases, models make
more similar mistakes, and their errors become
more correlated, making them functionally more
similar. Henceforth, we compute the average κp us-
ing micro-averaging by concatenating all datasets
in the group and then computing the κp across the
combined set. Since κp is non-linear, the technique
of micro-averaging is preferred as it smooths out
extremes and operates directly at the per-sample
level to better understand κp across a dataset.

We use Gemma-3 (1B, 4B and 12B variants)
(Team et al., 2025) and Qwen-3 (1.7B, 4B, 8B
and 14B variants) (Yang et al., 2025) in our exper-
iments, as they are some of the latest models as
of August 2025 which have undergone multilin-
gual pretraining. We also use the older Gemma-7B
(Team et al., 2024) as a sanity check. We evaluate
these models on a subset of 20 languages of the
GlobalMMLU dataset (Singh et al., 2024) with our
choice of languages justified in Appendix B. Build-
ing on our evaluation methodology, we leverage
the LM Evaluation Harness (Gao et al., 2024), a
unified framework for testing generative language
models on a wide variety of benchmarks known for
its reproducibility and extensive adoption.

4 Experimentation

4.1 Intra-Model Multilingual Similarity
RQ1: Are LLMs becoming similar across lan-
guages? Motivated by the findings of (Huh et al.,
2024) which shows that model representations tend
to converge with an increase in size and perfor-
mance of models, we investigate whether a simi-
lar convergence occurs in the output space across
languages. A clear trend is observed — as the
model size increases, the average κp score across
languages also increases. κp also positively corre-
lates with model accuracy. These findings suggest
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that outputs become more consistent across lan-
guages for larger and more accurate LLMs. The
statistically significant results are illustrated in Fig-
ure 2. A possible reason for this could be that
bigger models are trained on a greater volume of
data including from low resource languages allow-
ing for greater similarity. But it is not possible to
confirm this hypothesis as we do not have access
to their exact training data.

Figure 2: κp correlates positively with model size and
accuracy. (a) κp averaged over languages positively
correlates with model size (b) Similarly, κp averaged
over languages positively correlates with model perfor-
mance. This indicates that models grow similar across
languages with their capability and size.

RQ2: Does the domain of questions asked
matter? Prior work shows that the language of
prompting shapes LLM outputs, influencing both
cultural preferences and ethical judgments (Vida
et al., 2024; Agarwal et al., 2024; Aksoy, 2025).
We thus hypothesize that models will be more in-
consistent for subjects like ethics, morality, and
sociology, which tend to be heavily influenced by
sociocultural norms, as opposed to topics with rel-
atively fewer cultural priors, such as mathemat-
ics and computer science. The questions in Glob-
alMMLU are divided into four domains- STEM,
Humanities, Social Sciences and Other. We further
subdivide these categories to provide a more de-
tailed analysis. κp tends to be greater for STEM in
all the models as opposed to the other subjects (see
Figure 3). This affirms our hypothesis about lan-
guage sensitivity for culturally sensitive domains.
Looking at the fine-grained categories (refer Ta-
ble 6) in Figure 4 we continue to see a substantial
difference between κp of the subjects.

Figure 3: Models answer more similarly across lan-
guages for STEM than other domains. Each heatmap
cell represents the κp and accuracy averaged over lan-
guages. For example, a cell value of (0.3 | 0.4) for a
given model and category would represent an average
κp of 0.3 and an average accuracy of 40%, both aver-
aged over all the languages.

Figure 4: Intra-model κp scores are higher for categories
belonging to STEM (Mathematics, Physics, Computer
Science) than the Humanities (Philosophy, Psychology,
Sociology). (a) Family of Gemma models (b) Family of
Qwen Models.

4.2 Inter-Model Multilingual Similarity

RQ3: Do models agree more on high-resource
languages? When we average the κp scores for a
given language across all unique model pairs - a
clear trend emerges - high-resource languages tend
to have greater inter-model functional similarity,
implying that the results are more consistent for
languages like English than Amharic across all the
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Figure 5: Frequency density distribution of the intra-model (across 20 language pairs) and inter-model (1 model vs
remaining 7) κp scores along with the p-values of the Mann-Whitney U Test. Intra-Model similarity is greater for
all models than Inter-Model similarity with high significance.

models. We confirm this by using the number of
Wikipedia articles for a given language as a proxy
for their resource availability. Figure 6 indicates a
significant positive correlation between the count
of Wikipedia articles and inter-model functional
similarity κp score.

Figure 6: Higher-resource languages exhibit more
model agreement. We observe a high correlation be-
tween κp and number of wiki articles (Pearson correla-
tion = 0.923).

RQ4: Is cross-lingual similarity within the
same model stronger than cross-model similar-
ity in the same language? For each model, we
find the distribution of the κp scores for two cases-
Intra-Model (across all unique language pairs) and
Inter-Model (across all models for each language).
For the most part, models tend to be more similar
to themselves for different languages than other
models for the same language (see Figure 5). We
employ the Mann-Whitney U test (Nachar et al.,

2008) - a non-parametric statistical test commonly
used to compare two independent samples - for this
purpose. The null hypothesis of this test is that ran-
domly selected values from two populations have
the same distribution. The p-values (< 0.001) indi-
cate that all tests are statistically significant, con-
firming that the intra-model and inter-model simi-
larity distributions are significantly different, with
intra-model scores tending to be higher. We fur-
ther conduct an ablation using English, the highest-
resource language, as a pivot. The results (see
Appendix D) remain consistent: intra-model simi-
larity scores are higher than inter-model similarity
scores, reinforcing our main findings. Additionally,
we find that the functional and representational sim-
ilarity correlate to a certain degree in Appendix E.

5 Conclusion

We introduced κp as a functional similarity metric
for evaluating multilingual consistency in LLMs.
Across GlobalMMLU, we found that larger and
more capable models are more consistent across
languages, with intra-model similarity exceeding
inter-model similarity. Consistency also varies by
domain — being higher in STEM than in cultur-
ally sensitive subjects — and by resource availabil-
ity, with high-resource languages showing stronger
inter-model agreement. Together, these results es-
tablish κp as a practical tool for analyzing multilin-
gual functional behavior beyond accuracy alone.
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6 Future Work

We advocate for κp to be used as a tool for ana-
lyzing multilinguality. We find interesting obser-
vations on the GlobalMMLU dataset, and feel that
using this approach would be beneficial to the field
of multilingual NLP in addition to the substantial
work already being done in the representational
space. There is also a great scope to explore if
the two notions of similarity have any fundamental
connection.

Although we hypothesize that having more data
could help in improving multilingual consistency,
it is also possible that it is inherently easier to learn
one language from a greater capacity in another
language if their underlying structures are similar.
Is the cause of high functional similarity between
two languages a function of their training (multi-
lingual or parallel corpus), a natural alignment or a
common syntactic structure of the two languages,
or something different altogether? Establishing
causality to our observations using interpretability
techniques would be challenging but worthwhile.

Besides our current use case, we can see it being
valuable in several applications. Higher functional
similarity between two languages can have conse-
quences on downstream tasks. For example, if a
model with high κp between Hindi and English ex-
ists, it might become easier to translate between the
two languages. Furthermore, it might allow such
models to interpret Hindi-English code mixed text
samples more easily than another pair with a lower
score.

7 Limitations

Although our findings establish statistically signifi-
cant correlations across languages and models, we
cannot establish causality for the observed phe-
nomena as this would require extensive mechanis-
tic interventions. κp is limited to multiple-choice
benchmarks, and there is a lack of free-form func-
tional similarity metrics that take error consistency
into account. This restricts our study to multilin-
gual MCQ benchmarks. Additionally, there is also
a lack of parallel multilingual MCQ benchmarks,
and most existing ones, such as (Xuan et al., 2025),
are variants of MMLU. Hence, we limit our analy-
sis to the largest of these, GlobalMMLU.
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A κp vs Other Metrics

We choose κp as it has clear advantages over other
metrics which have been theoretically and empiri-
cally validated in (Goel et al., 2025). κp metric is
chance-adjusted, meaning it is not inflated when
model accuracy is high. An example to help un-
derstand this is A model with 95% accuracy in
English and Spanish answers 95/100 questions cor-
rectly in both. Raw agreement appears high, but
this is trivial—it reflects correctness. κp down-
weighs such expected agreement. In contrast, with
50% accuracy in two low-resource languages, if
the model makes similar mistakes, κp captures this
meaningful functional similarity as agreement be-
yond chance. When we compare it to other metrics
Cohen’s κ and Scott’s π, we observe the difference
in inflation due to accuracy.

Note that in our analysis we are using the dis-
crete variant of κp which converts probability logits
to their softmax labels. Consider two raters with
predictions [0, 0, 0, 1, 2, 1] and [0, 0, 0, 1, 2, 0]
respectively with ground truths [0, 0, 0, 1, 2, 2].

• Cohen’s κ

κ =
Po − Pe

1− Pe
=

5
6 − 15

36

1− 15
36

=
0.833− 0.417

0.583
≈ 0.714

• Scott’s π

π =
Po − Pe

1− Pe

where Po =
5
6 = 0.833,

Pe = (0.583)2 + (0.250)2 + (0.167)2

= 0.431
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thus

π =
0.833− 0.431

1− 0.431
≈ 0.707

• κp

κp =
cE,M

obs − cE,M
exp

1− cE,M
exp

where cE,M
obs = 5

6 ,

cE,M
exp = acc1 × acc2 =

5
6 × 5

6 = 25
36

thus
κp ≈ 0.45

Since both models are highly accurate (83.3%),
the similarity scores as measured by traditional met-
rics are inflated. This is not the case with κp as it
takes model accuracy into account.

All the results we have presented for remains
consistent for other metrics. These results substan-
tiate our findings, indicating their robustness and
generalizability beyond the confines of the κp met-
ric. Computed values are in tables 2, 3 and 4.

Here we showcase a numerical example of the
advantage of probabilistic κp over RankC (Qi et al.,
2023). Consider two raters with probabilistic pre-
dictions

R1 =



0.50 0.45 0.05
0.50 0.05 0.45
0.05 0.45 0.50




R2 =



0.50 0.05 0.45
0.50 0.45 0.05
0.45 0.05 0.50


 .

Finding the maximum probabilities from R1 and
R2, the hard labels are

r1 = [0, 0, 2], r2 = [0, 0, 2].

Thus Po = 1.

• Cohen’s κ

Rater marginals: p(1) = p(2) =
[
2
3 , 0,

1
3

]
,

Pe =
∑

i

p
(1)
i p

(2)
i =

(
2
3

)2
+ 02 +

(
1
3

)2
= 5

9 ,

κ =
Po − Pe

1− Pe
=

1− 5
9

1− 5
9

= 1.0.

• Scott’s π

Pooled counts over both raters: [4, 0, 2]

p =
[
2
3 , 0,

1
3

]
,

Pe =
∑

i

p2i =
(
2
3

)2
+ 02 +

(
1
3

)2
= 5

9 ,

π =
Po − Pe

1− Pe
=

1− 5
9

1− 5
9

= 1.0.

• RankC

For each item, let r(1), r(2) be class rankings

from R1, R2.For j = 1, 2, 3

P@j =

∣∣Top-j(r(1)) ∩ Top-j(r(2))
∣∣

j

Weights: wj =
e3−j

∑3
ℓ=1 e

3−ℓ

⇒ (w1, w2, w3) ≈ (0.665, 0.245, 0.090).

From the matrices:

(P@1,P@2,P@3) = (1, 0.5, 1).

⇒ item score =
3∑

j=1

wj · P@j

= 0.665 · 1 + 0.245 · 0.5 + 0.090 · 1
≈ 0.878.

Averaging over all three items (identical here)
gives

RankC ≈ 0.878.

• κp

κp =
cpobs − cpexp

1− cpexp

where cpobs =
1

N

N∑

i=1

C∑

c=1

p
(1)
i,c p

(2)
i,c = 0.295

cpexp = p̄(1) p̄(2) +

(
1− p̄(1)

) (
1− p̄(2)

)

C − 1

= 0.375

thus
κp = −0.128.

Collapsing to hard labels yields perfect agreement
(κ = π = 1.0). RankC, which compares top-j sets
from the probability rankings, shows high but non-
perfect agreement (≈ 0.878). κp, which directly
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evaluates the full probability distributions, detects
conflicting uncertainty allocations across classes
and therefore yields a negative chance-corrected
agreement (−0.128). This is intuitive, as when the
models are incorrect, they give very different (and
in fact, opposite) predictions which is not captured
by the other metrics.

B Choice of Languages Used

We choose to do our analysis over twenty lan-
guages as listed in Table 1. The languages cho-
sen belong to a wide range of groups, including
the Afro-Asiatic (Amharic, Arabic, Hebrew), Dra-
vidian (Telugu), Germanic (English, German), and
Indo-Iranian (Persian, Hindi, Bengali) language
families/branches, among others. The subset of
GlobalMMLU was curated to represent a spec-
trum of resource availability, where high-resource
languages refer to those with abundant linguistic
data, such as large corpora, annotated datasets, and
digital tools (e.g., English, Spanish), while low-
resource languages lack such resources and infras-
tructure (e.g., Amharic, Telugu). This selection
allows us to assess model behavior across typolog-
ically and resource-diverse settings. All the lan-
guages have an equal number of questions, and we
have chosen the subset among these which have
consistent answers among all the languages leading
to a total of 13844 questions in each language.

C Sub-Categorization of GlobalMMLU

We sub-categorized the existing categories of Glob-
alMMLU to make better and fine-grained infer-
ences. We follow the standard GlobalMMLU setup
in lm-evaluation-harness (Gao et al., 2024) to con-
duct the evaluations. The tables 5 and 6 show the
categorization based on the four domains and fur-
ther split 14 categories, respectively. The tables
also show the distribution of the samples for each
category. Each numerical value in the Samples
columns of the table corresponds to the number
of resulting samples for a given model for a given
language.

D Ablations for Inter-model vs
Intra-model Similarity

We explore an alternate way to plot inter-model
similarity by removing potential confounders from
cross-size comparisons. Initially, the computation
for the inter-model similarity was plotting the dis-
tribution of the computed κp values for each model

with the remaining seven models across 20 lan-
guages. For intra-model similarity, we compute,
for each model, the distribution of κp values across
20 unique language pairs. For this ablation, we
compute the κp values for inter-model similarity
to be a single κp value for each model with the
model of the other family with the closest num-
ber of parameters (model size). We then plot two
distributions for intra-model similarity. In Figure
8a, the intra-model similarity computation remains
the same, calculation κp across 20 unique language
pairs. In Figure 8b, the intramodel similarity dis-
tribution has been revised to include only pairs
of English-non-English languages (en− {lang}).
The results remain consistent with previous results,
showing that intra-model similarity is still greater
than inter-model similarity.

E Some Correlation Between Functional
and Representational Similarity

Following the procedure in (Wu et al., 2024), we
compute the representation cosine similarity and
use the last token position as the sentence repre-
sentation over a subset of the translation dataset,
FLORES-101 (Goyal et al., 2022). We subtract
these scores by a baseline of non-matching sen-
tences and find that when two languages have a
greater κp score, i.e. they have high functional
similarity, they also tend to have a greater represen-
tational similarity as measured by the increase over
the baseline. We do it over limited layers of the
Qwen model (Qwen3-4B and Qwen3-8B) due to
compute constraints. This experiment is carried out
to establish some degree of correlation between the
two notions of similarity, the existence of which
has been debated before in (Klabunde et al., 2025).

Figure 7: Languages with higher functional similar-
ity (κp) also exhibit greater representational similarity.
Representation cosine similarity is computed using the
last token position from FLORES-101 sentence pairs.
Scores are baseline-adjusted using non-matching sen-
tence pairs.
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Code Language
am Amharic
ar Arabic
bn Bengali
zh Chinese
en English

Code Language
fr French
de German
he Hebrew
hi Hindi
id Indonesian

Code Language
it Italian
ja Japanese
ko Korean
fa Persian
ru Russian

Code Language
es Spanish
sw Swahili
te Telugu
tr Turkish
vi Vietnamese

Table 1: Language codes and their corresponding language names used in our experiments.

(a) Frequency distribution of the intra-model (across 20 language pairs) and inter-model (1 model vs closest family model).

(b) Frequency distribution of the intra-model (across English-non-English pairs) and inter-model (1 model vs closest family
model).
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Metric Pearson correlation for Size Pearson correlation for
Accuracy

Pearson correlation for
Resource (log no. of Articles)

κp

0.7864
(0.02062)

0.7884
(0.02009)

0.9230
(6.82e-09)

Cohen’s κ
0.8862

(0.003376)
0.9714

(5.694e-05)
0.9321

(2.28e-09)

Scott’s π
0.8861

(0.003385)
0.9714

(5.728e-05)
0.9313

(2.53e-09)

Table 2: Pearson correlation coefficients (top) with p-values in parentheses (bottom).

Metric Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

κp

12150
(1.95e-21)

16686
(6.89e-11)

17278
(8.60e-10)

15148
(4.89e-14)

Cohen’s κ
23750

(6.08e-02)
21710

(1.29e-03)
17992

(1.48e-08)
14766

(6.90e-15)

Scott’s π
22358

(5.26e-03)
21644

(1.11e-03)
17542

(2.53e-09)
14460

(1.38e-15)

Table 3: Mann–Whitney U statistics for Qwen models (p-values in parentheses).

Metric gemma-3-1b-it gemma-3-4b-it gemma-7b gemma-3-12b-it

κp

180
(1.10e-67)

3050
(3.73e-54)

4556
(1.14e-47)

5148
(3.08e-45)

Cohen’s κ
5660

(3.46e-43)
11650

(7.83e-23)
16394

(1.88e-11)
7316

(6.87e-37)

Scott’s π
4364

(1.79e-48)
11176

(3.37e-24)
15598

(4.53e-13)
7228

(3.27e-37)

Table 4: Mann–Whitney U statistics for Gemma models (p-values in parentheses).

Domain Subjects # Samples

STEM College Chemistry, High School Computer Science, College Biology, Abstract Algebra,
High School Mathematics, Computer Security, Machine Learning, College Physics, Con-
ceptual Physics, Astronomy, High School Biology, High School Physics, Anatomy, College
Mathematics, Electrical Engineering, College Computer Science, High School Chemistry,
High School Statistics, Elementary Mathematics

3153

Humanities Philosophy, World Religions, Professional Law, Moral Scenarios, High School European
History, Moral Disputes, Jurisprudence, Formal Logic, High School US History, Prehistory,
High School World History, International Law, Logical Fallacies

4511

Social Sciences High School Microeconomics, High School Geography, US Foreign Policy, Professional
Psychology, Security Studies, High School Government and Politics, High School Psychol-
ogy, Econometrics, Sociology, High School Macroeconomics, Public Relations, Human
Sexuality

3076

Other Professional Accounting, Professional Medicine, College Medicine, Marketing, Nutrition,
Global Facts, Clinical Knowledge, Human Aging, Virology, Miscellaneous, Business Ethics,
Management, Medical Genetics

3104

Table 5: Original Grouping of GlobalMMLU subjects into 4 domains with corresponding sample counts.
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Category Subjects # Samples

Mathematics Abstract Algebra, College Mathematics, Elementary Mathematics
High School Mathematics, High School Statistics, Formal Logic
Logical Fallacies

1064

Logic Formal Logic, Logical Fallacies 289

Physics College Physics, Conceptual Physics, High School Physics, Astronomy 640

Biology College Biology, High School Biology, Human Aging
Human Sexuality, Virology

971

Chemistry College Chemistry, High School Chemistry 303

Medicine Anatomy, Clinical Knowledge, College Medicine
Medical Genetics, Nutrition, Professional Medicine

1251

Computer Science College Computer Science, High School Computer Science
Computer Security, Machine Learning

412

Economics and Business Econometrics, High School Macroeconomics, High School Microeconomics
Business Ethics, Management, Marketing
Professional Accounting

1461

Psychology and Sociology High School Psychology, Professional Psychology, Sociology 1358

Geography and Global Affairs Global Facts, High School Geography, US Foreign Policy
Security Studies

643

History High School US History, High School European History
High School World History, Prehistory

741

Government and Law High School Government and Politics, International Law, Jurisprudence
Professional Law

1951

Philosophy and Ethics Philosophy, Moral Disputes, Moral Scenarios 1552

Miscellaneous World Religions, Public Relations, Electrical Engineering, Miscellaneous 1208

Table 6: Fine-grained categorization of GlobalMMLU subjects used in our ablation.
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Abstract
Despite the effective performance of multilin-
gual large language models (LLMs), the mecha-
nisms underlying their multilingual capabilities
remain unclear. This study examines the inter-
mediate representations of multilingual LLMs
to determine if these models utilize human-like
second language acquisition strategies: coor-
dinate, sub-coordinate, or compound learning.
Our investigations into the discriminative and
generative aspects of these models indicate that
coordinate learning is the dominant mechanism,
with decoder-only models progressively devel-
oping distinct feature spaces for each language,
while encoder-only models exhibit a mixture
of coordinate and compound learning in their
middle layers. We find little evidence for sub-
coordinate learning. Moreover, the role of train-
ing data coverage in shaping multilingual repre-
sentations is reflected in the fact that languages
present in a model’s training data consistently
exhibit stronger separation than those absent
from it.

1 Introduction

Large language models (LLMs) have exhibited im-
pressive performance across multiple languages
in a wide range of tasks (Shi et al., 2023). How-
ever, the underlying mechanisms that enable their
multilingual capabilities remain largely unexplored.
Recent studies suggest that these capabilities may
stem from a combination of implicit translation
into a dominant language like English and inter-
nally adopted language-specific processing strate-
gies (Zhang et al., 2023; Wendler et al., 2024).

However, these studies primarily base their hy-
potheses on the generative capabilities of language
models, leaving the explicit exploration of their
internal mechanisms unaddressed. We fill this gap
by providing a granular perspective on the internal
mechanisms underlying multilingualism in multi-
lingual large language models. Specifically, we ex-
amine the intermediate representations (activations)

(a) coordinate (b) sub-coordinate (c) compound

Figure 1: A conceptual visualization of feature spaces
corresponding to human bilingualism. Each circle repre-
sents a feature space for a language. The gray diamond
in compound learning refers to a universal space formed
by the intersection of all language spaces.

of LLMs to identify the presence of multilingual
information that supports each of the three types
of bilingualism in human language learners: co-
ordinate, sub-coordinate, and compound learning
(D’Acierno, 1990). We generalize human bilin-
gualism into multilingualism and conceptualize it
in terms of the vector representation of linguistic
units formed in the intermediate activations of an
LLM. Figure 1 illustrates this conceptualization.

Coordinate learners acquire languages in dis-
tinct environments, such as home and school,
leading them to process each language indepen-
dently through separate cognitive systems. In
other words, coordinate learners tend to develop
language-specific feature spaces, where each lan-
guage is encoded in its own dedicated representa-
tional structure with minimal cross-linguistic in-
fluence. From a language model perspective, co-
ordinate learning manifests as distinct language
clusters in the intermediate representations.

Sub-coordinate learners, however, interpret lan-
guages through the lens of a dominant language
by implicitly translating non-dominant languages
into the dominant one. This typically occurs in late
acquisition, low proficiency, or non-immersive set-
tings, where the learner relies on mental translation
rather than direct comprehension. From the per-
spective of a language model, this translates to the
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existence of a broad feature space for the dominant
language, which includes other languages.

In contrast, compound human learners develop
a core, universal understanding of language, where
linguistic units such as word categories and con-
cepts are partially shared across different languages
and expressed through varying verbal forms. These
learners acquire multiple languages simultaneously
within the same environment and tend to abstract
away language-specific properties. In a language
model’s feature space, this translates into the exis-
tence of feature spaces shared across all languages.

The training environment of multilingual lan-
guage models resembles that of coordinate and
compound learners, as their training data are sam-
pled from multiple language sources, but each seg-
ment primarily consists of a pragmatically com-
plete text (i.e., coherent and self-contained seg-
ments, such as articles or conversational exchanges)
in a single language, with limited language mixing.
Accordingly, we hypothesize that multilingual lan-
guage models primarily adopt a coordinate learning
strategy with some degree of compound learning,
while sub-coordinate learning, if present, is likely
restricted to unseen languages.

We employ two complementary strategies to in-
vestigate this hypothesis based on the intermedi-
ate activations of language models. The first is
a discriminative approach, quantifying language-
specific and universal information in intermediate
feature activations. The second examines the mod-
els’ generation process by analyzing the contribu-
tion of intermediate features to token generation.

Our findings across different LLM architectures
strongly support the view that multilingual process-
ing in these models aligns primarily with coordi-
nate learning, with partial evidence of compound
learning. Decoder-only models such as mGPT
(Shliazhko et al., 2024) and BLOOM (Scao et al.,
2023) predominantly rely on coordinate learning,
whereas encoder-only models like mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020)
exhibit a more complex interplay of coordinate and
compound strategies. Evidence for sub-coordinate
learning is limited, as none of the models show
a strong dependence on a dominant language to
process others.

2 Previous Work

Zhang et al. (2023) systematically investigate the
multilingual capabilities of LLMs across three di-

mensions: reasoning, knowledge access, and artic-
ulation. Their analysis of ChatGPT-generated text
shows that LLMs perform better when prompted in
English, excel in tasks that allow direct translation,
and exhibit a mix of coordinate and sub-coordinate
bilingual processing. Our findings strongly sup-
port Zhang et al. (2023)’s conclusion that LLMs
function as coordinate learners. However, we find
clear contradictions with their claim that LLMs
also exhibit sub-coordinate bilingualism based on
their behavioral analysis of language models. Since
their study relies on a different methodology and
uses a commercial model (ChatGPT), which does
not provide access to internal representations, di-
rectly validating their results within our experimen-
tal setup remains infeasible.

Wendler et al. (2024) take a different approach to
examining the origins of multilingual capabilities
in language models primarily trained on English
text. They apply the logit lens technique, which
projects intermediate representations into the vo-
cabulary space using the model’s final token pro-
jection layer. Through this method, they argue that
a translational shift in intermediate representations
is indicative of sub-coordinate learning. However,
Belrose et al. (2025) highlight key limitations of
the logit lens, showing that it fails to yield meaning-
ful insights for modern language models, including
BLOOM (Scao et al., 2023). In particular, they
demonstrate that the logit lens often predicts the
input token itself as the top output and dispropor-
tionately allocates probability mass to tokens that
diverge from those emphasized in the model’s true
output distribution.

When it comes to implications of compound
learning, previous studies have suggested the ex-
istence of partially shared subspaces between lan-
guages in mBERT (Shliazhko et al., 2024). Specifi-
cally, Pires et al. (2019) attribute mBERT’s cross-
lingual capabilities to its language-independent to-
kenization, while Chi et al. (2020) demonstrate
that the model shares portions of its representations
across languages, suggesting that compound learn-
ing supports cross-lingual transfer through over-
lapping representational subspaces. Yet, whether
these subspaces reflect universal linguistic features
or artifacts of training remains an open question
that our analysis investigates.

This paper extends previous research by examin-
ing multilingualism in open-source LLMs trained
on multiple languages and architectures, in contrast
to Wendler et al. (2024), which focus on English-
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centric models. In addition, we propose novel
methods for probing interactions across languages
at the level of neural activations, enabling deeper
insights into multilingual processing than output-
based analyses, a line of inquiry recently criticized
for its limitations (Zhao et al., 2025)..

3 Methodology

Let us consider a sentence s = t1, . . . , tn drawn
from a language, and defineA as an l×n×d tensor
representing the intermediate activations of a lan-
guage model as it processes s. Here, l denotes the
number of layers, and d represents the number of
features, i.e., embedding dimension. In this setup,
A provides l distinct representations, each residing
in a separate d-dimensional space, for every token.
We extend this formulation to multiple aligned sen-
tences across different languages, where each token
is annotated with relevant linguistic labels (e.g., lan-
guage identification or POS tag). This results in a
large tensor of size l×N × d, where N is the total
number of tokens across all sentences.

To facilitate efficient visualization, reduce noise,
and retain the most informative features of the acti-
vation space, we apply principal component anal-
ysis (PCA) to each of the l views independently,
reducing their dimensionality to d̃ while preserving
at least 95% of the activation variance. This results
in a tensor H̃ of size l × N × d̃, which, together
with H , serves as the foundation for our analysis.

We adopt two approaches to examine the gen-
erative and discriminative aspects of intermediate
representations. The first adopts an information-
theoretic procedure to quantify the amount of V-
usable information (Xu et al., 2020) encoded in
intermediate representations that discriminates be-
tween language-specific and universal features.
The V-usable information in a random variable
X for predicting a category Y is defined as the dif-
ference in conditional entropy between predictions
based on X and a baseline prediction where no
input features are provided (i.e., Φ):

Iv(Y ;X) = H(Y |Φ)−H(Y |X)

A high value of Iv(Y ;X) indicates thatX is highly
effective at reducing the uncertainty in predicting
Y , though this does not necessarily translate to bet-
ter task performance. In order to make the usable
information comparable across tasks, we normal-
ize them by the marginal task entropy and refer to
it as the normalized usable information or usable

information for short.

Inv(Y ;X) = 1− H(Y |X)

H(Y |Φ) (1)

Our motivation for using this metric is twofold.
First, its discriminative nature makes it applicable
to both encoder-only and decoder-only architec-
tures. Second, it allows for a direct comparison of
the effectiveness of feature vectors across differ-
ent tasks defined over the same feature space X
(Ethayarajh et al., 2022). Such a comparison would
not be possible if the analysis were based solely on
task-specific metrics (e.g., F1-score and accuracy),
as these metrics are not directly comparable across
different tasks. Additional details regarding the
implementation of this metric are in Appendix A.

The second approach examines the generation
capability of the decoder-only models. It utilizes
saliency maps to examine how individual interme-
diate features contribute to token generation (Hou
and Castanon, 2023). By examining the gradients
of next-token predictions with respect to interme-
diate activations, we identify the features that play
a key role in encoding language-specific and uni-
versal properties. We use Gradient-weighted Class
Activation Mapping to measure the importance of
a feature hki at a layer k to the prediction of a token
by computing the product of the feature value for
an input token (i.e., hki (tj) ) and the gradient of
the prediction (before softmax) with respect to that
feature (i.e., ∂f(tj+1)

∂hk
i (tj)

). This product undergoes a
ReLU activation to ignore negative contributions:

cki (tj) = ReLU(hki (tj) ·
∂f(tj+1)

∂hki (tj)
)

where hki (tj) corresponds to the element (k, j, i)
in H , and f(tj+1) is the logit for tj+1.

To assess the significance of cki for a group of
tokens (e.g., tokens belonging to a particular lan-
guage), we conduct a two-tailed t-test with a sig-
nificance level of 0.01. We refer to features with
significant contribution to the generation of a par-
ticular token group as differentiating features for
the group. Accordingly, we define the differenti-
ating rate of layer k as the ratio of differentiating
features to the total features in the layer:

Dk =

∑d
i=1 I

(
p-value(cki ) < 0.01

)

d
(2)

where I is an indication function.
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In addition to the aforementioned metrics, which
are designed to assess coordinate and compound
learning, we introduce another approach in Sec-
tion 8 to assess sub-coordinate learning based on
the proximity of intermediate activations to those
of a dominant language.

4 Experiment Setup

We leverage the Parallel Universal Dependencies
(PUD) treebanks (Zeman et al., 2017; Nivre et al.,
2016) which comprise aligned sentences from news
sources and Wikipedia, annotated for both morpho-
logical and syntactic structures. The cross-lingual
alignment of sentences ensures that our findings
are not skewed by domain-specific variations or
differences in syntactic and semantic structures in
certain languages. Additionally, the availability of
syntactic annotations allows us to effectively assess
compound learning within LLMs.

Our experiments are based on 1000 sentences
from each of the 21 topologically different lan-
guages in PUD. A summary of the dataset is avail-
able in Table 1. The analyses are based on three
publicly available multilingual language models
with different architectures and language coverages:
BLOOM (Scao et al., 2023) and mGPT (Shliazhko
et al., 2024) are decoder-only models, and mBERT
(Devlin et al., 2019) and XLMR (Conneau et al.,
2020) (base and large) are encoder-only models.
More information about the models’ size and lan-
guage coverage is provided in Table 2.

To assess the generalizability of information to
unseen languages, we consider two experimental
scenarios based on whether a test language is in-
cluded in a model’s pre-training data. The Seen
setting contains only languages present during pre-
training, while the Unseen setting includes those
absent from it. For mBERT and XLM-R, the Un-
seen set is empty, as all test languages are covered
in their pre-training data.

5 Coordinate Learning

We investigate coordinate learning by analyzing the
separability of intermediate representations across
input languages through the usable information for
language identification and the feature differentia-
tion rate for language processing. The underlying
principle is that coordinate learners construct dis-
tinct processing systems for each language.

Language ISO Family Size A B C D

Arabic ar Afro-Asiatic 20K ✓ ✓ ✓ ✓
Chinese zh Sino-Tibetan 21K ✓ ✗ ✓ ✓
Czech cs IE Slavic 18K ✓ ✗ ✗ ✓
English en IE Germanic 21K ✓ ✓ ✓ ✓
Finnish fi Uralic 15K ✓ ✓ ✗ ✓
French fr IE Romance 25K ✓ ✓ ✓ ✓
Galician gl IE Romance 25K ✓ ✗ ✗ ✓
German de IE Germanic 21K ✓ ✓ ✗ ✓
Hindi hi IE Indo-Aryan 23K ✓ ✓ ✓ ✓
Icelandic is IE Germanic 18K ✓ ✗ ✗ ✓
Indonesian id Austronesian 19K ✓ ✓ ✓ ✓
Italian it IE Romance 25K ✓ ✓ ✗ ✓
Japanese ja Japonic 28K ✓ ✓ ✗ ✓
Korean ko Koreanic 16K ✓ ✓ ✗ ✓
Polish pl IE Slavic 18K ✓ ✓ ✗ ✓
Portuguese pt IE Romance 24K ✓ ✓ ✓ ✓
Russian ru IE Slavic 19K ✓ ✓ ✗ ✓
Spanish es IE Romance 23K ✓ ✓ ✓ ✓
Swedish sv IE Germanic 19K ✓ ✓ ✗ ✓
Thai th Kra-Dai 22K ✓ ✓ ✗ ✓
Turkish tr Turkic 17K ✓ ✓ ✗ ✓

Table 1: Selected languages. IE: Indo-European. A:
mBERT, B: mGPT, C: BLOOM, D: XMLR.

LLM Size l d LD LC

BLOOM 1.7B 24 1536 46 17%
mGPT 1.3B 24 2048 61 28%
mBERT 172M 12 768 104 100%
XLMR-base 270M 12 768 100 100%
XLMR-large 550M 24 1024 100 100%

Table 2: Language Models. l and d: number of layers
and features LD: Language Diversity – number of train-
ing languages; LC: Language Coverage – The ratio of
test languages to training languages.

5.1 Usable Information

Figure 2 presents the layer-wise variation in us-
able information for predicting the source language
from activation vectors. The consistent upward
trends in the decoder-only models indicate that the
activation vectors progressively encode more in-
formation about the processing language in deeper
layers. The presence of this trend in the Unseen set-
tings suggests that the language-specific informa-
tion captured by the models generalizes beyond the
languages seen during training. However, the over-
all level of usable information is substantially lower
for unseen languages than for seen ones, highlight-
ing the influence of pre-training data coverage on
the emergence of coordinate learning.

The encoder-only models, on the other hand,
show a different pattern. The decreasing trajectory
after the second layer indicates that these models
quickly encode language-specific information in
their lower layers but gradually lose it until the top
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Figure 2: Usable information for language identifica-
tion.

layers, where reconstruction begins. This pattern
holds regardless of the model size, as we see for
both the XLMR-base and XLMR-large.

Overall, the results from both architectures sup-
port our hypothesis that encoder- and decoder-only
models tend to take a coordinate learning, as their
primary multilingual learning strategy, which in
the case of the decoder-only models develops in-
creasingly through the layers, while being conflated
with other learning strategies in the middle layers
of encoder-only models.

The progression of coordinate learning is further
illustrated by the t-SNE visualization of activation
vectors in Figure 3. In both mBERT (encoder-only)
and BLOOM (decoder-only), the lower layers show
substantial cross-lingual overlap, with limited lan-
guage separation. In BLOOM, the language over-
lap diminishes in the upper layers, where language
representations become almost entirely separated
into distinct feature spaces. The formation of such
language-specific feature spaces is also evident for
languages not included in the models’ pre-training
data. Notably, BLOOM tends to develop distinct
feature spaces for unseen languages such as Ger-
man, Finnish, and Swedish. In contrast, mBERT
exhibits more substantial cross-lingual overlap in
its middle layers, with representations becoming
relatively more separable at the second and last
layers. Both models show some degree of coordi-
nate learning in their lower layers, limited to typo-

logically distant languages such as Arabic, Czech,
Finnish, German, Hindi, Korean, and Russian, oc-
cupying separate regions in the feature space.

5.2 Language Differentiating Features

By computing layer differentiation rates in decoder-
only models, we identify language-specific features
crucial for token generation in each language. The
features are identified through their contribution to
token prediction in each of the Seen and Unseen
settings based on Equation 2. For each language,
we estimate feature contributions to next-token pre-
diction and compare them across languages using
statistical tests. The proportion of features that
differ significantly at each layer defines its differ-
entiation rate, providing a layer-wise measure of
language-specific processing. The experiment is
detailed in Appendix B and the results are sum-
marized in Figure 4. High differentiation rates
indicate distinct feature spaces for each language
group, supporting coordinate learning.

The results show that both models tend to dedi-
cate a substantial number of features to differentiate
between languages. These features are significantly
higher for Seen languages than Unseen ones. The
upward trend in mGPT indicates that the model
progressively isolates languages into increasingly
distinct feature spaces across all layers, regardless
of whether the languages were part of its training
data. BLOOM, however, follows a different strat-
egy. For Unseen languages, the differentiation rate
remains relatively stable around 40-50%, while for
Seen languages, it takes a smooth downward trend,
implying that BLOOM tends to share some features
between languages at the top layers, although it still
processes languages through a set of significantly
isolated features for each language.

6 Compound Learning

Compound learning involves constructing univer-
sal feature spaces shared among languages. Our
analysis of compound learning examines the exis-
tence of such shared spaces at the syntax level for
Universal Part-Of-Speech tags (UPOS). We probe
this phenomenon through the usable information
for UPOS tagging and the joint differentiation rate
of features for languages and syntactic categories.

6.1 Usable Information for UPOS Tagging

Figure 5 illustrates the variation of usable infor-
mation in the models’ intermediate activations for
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Figure 3: tSNE visualization of activation vectors. Top: mBERT, bottom: BLOOM.
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Figure 4: Language differentiation rates across layers.
Shaded areas show variation across languages; solid
lines show the mean.

predicting UPOS tags. The results show a consis-
tent pattern across all models: usable information
for UPOS prediction is low in early layers, peaks
around the middle layers, and declines in the upper
layers. This trend holds irrespective of architecture
and aligns with prior findings on syntactic localiza-
tion in transformers (Tenney et al., 2019).

Comparing Seen and Unseen languages reveals
that the decoder-only models encode more UPOS
information for languages included in their training
data. To examine whether models encode univer-
sal syntax through shared representations or within
language-specific spaces, we measure usable infor-
mation for the joint prediction of UPOS tags and
languages. As shown in Figure 6, decoder-only
models exhibit a clear upward trend, indicating that
higher layers become increasingly informative for
the joint task. This pattern is also observable in
tSNE visualization of BLOOM’s activation vectors
in Figure 7, where the UPOS activations are clus-
tered within the feature space of languages formed
at the top layers of the model. This indicates that
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Figure 5: Usable information for UPOS identification.

decoder-only models such as BLOOM represent
universal syntax within language-specific feature
spaces, reducing the likelihood of compound learn-
ing, particularly in the upper layers.

However, the process appears more complex in
the encoder-only models. The increasing trends in
the initial and top layers support coordinate learn-
ing, while the decreasing patterns in the middle lay-
ers indicate an additional mechanism, likely linked
to compound learning. Still, the fairly high values
of the usable information for the joint language
and UPOS identification are more in support of co-
ordinate learning, which suggests that the models
tend to process universal syntactic properties of the
languages within language-specific feature spaces.
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Figure 6: Usable information for joint prediction of
UPOS tags and languages.

7 Language–UPOS Differentiating
Features

To further examine how UPOS tags are processed
within language-specific feature spaces, we mea-
sure layer differentiation rates based on the predic-
tion of words belonging to a given syntactic cate-
gory in a target language. By testing whether the
same syntactic tag is processed differently across
languages, we compute a joint differentiation rate
that quantifies the extent to which syntactic cate-
gories are represented in language-specific versus
shared feature spaces. The details of this experi-
ment are provided in Appendix C.

Figure 8 shows that decoder-only models al-
locate a subset of features to distinguishing syn-
tactic categories within each language, irrespec-
tive of whether the language was included in pre-
training. The absolute values of the differentiation
rates, however, are consistently higher for Seen
languages, suggesting that universal syntactic cat-
egories are more strongly encoded in language-
specific feature spaces when the language is repre-
sented in training. In mGPT, the modest upward
trend for Seen languages further indicates that these
differentiating features become increasingly effec-
tive in the top layers.

8 Sub-coordinate Learning

Sub-coordinate learning implies a shift in interme-
diate feature vectors towards a dominant language
that filters and influences the representations of
other languages. The dominant language, which
is more represented in the pre-training data of our
test language models, is English.

If a language model employs sub-coordinate
learning internally, we would expect the represen-
tations of non-English languages to be enveloped
by or significantly overlap with English represen-
tations. To examine this, we measure the prox-
imity of language-specific activation vectors by
computing the Kullback-Leibler (KL) divergence
between the distribution of each non-English lan-
guage and English. If language models employ
internal filtering mechanisms consistent with sub-
coordinate learning, we expect a reduction in KL
divergence, indicating that representations of differ-
ent languages become more aligned with English.

Figure 9 presents the KL divergence between the
feature space of each language and English. For
decoder-only models, divergence begins relatively
small in the lower layers and peaks in the middle
layers, reflecting increased separation from English.
At the top layers, BLOOM shows a sharp diver-
gence, whereas mGPT instead converges strongly
toward English. These trends are consistent across
both Seen and Unseen settings: BLOOM’s be-
havior suggests a weakening of sub-coordinate
learning, while mGPT’s sharp convergence in the
top layers provides stronger evidence. Neverthe-
less, because sub-coordinate learning is expected
to manifest primarily in the middle layers, the de-
crease observed at the top layers of mGPT is less
likely to be explained by this mechanism alone.

The encoder-only models display a different pat-
tern. mBERT and XLM-R show only a modest
shift toward English, while in XLM-R-large, this
turns into a growing divergence after the middle
layers. Moreover, the absolute divergence values
are substantially smaller than in decoder-only mod-
els, peaking at around 80 compared to several thou-
sand, indicating that encoder-only feature spaces
are generally denser. The modest reduction in di-
vergence may reflect weak sub-coordinate learning,
or, in line with our earlier discussion, could instead
result from weak compound learning effects in the
middle layers.
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Figure 7: tSNE visualization of activation vectors. Top: mBERT, bottom: BLOOM.
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Figure 8: Joint Language-UPOS differentiation rates
across layers. Shaded areas show variation across lan-
guages; solid lines show the mean.

9 Conclusion

Our analysis of multilingual large language mod-
els reveals differences in how encoder-only and
decoder-only architectures handle multilingual rep-
resentation. We examined the intermediate repre-
sentations of these models to determine whether
they follow coordinate, sub-coordinate, or com-
pound learning strategies.

We show that coordinate learning is the dom-
inant mechanism, with decoder-only models de-
veloping strongly separated feature spaces for
each language, while encoder-only models ex-
hibit a more complex interplay of coordinate and
compound learning in their middle layers. Sub-
coordinate learning plays little to no role. More-
over, training data coverage substantially affects
the strength of language separation, with Seen lan-
guages consistently exhibiting higher usable infor-
mation and differentiation rates.

Our findings show that both architecture and pre-
training data shape multilingual representations in
LLMs. Decoder-only models appear better suited
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Figure 9: KL Divergence between English and non-
English activation vectors. Shaded areas show variation
across languages; solid lines show the mean.

for tasks that require maintaining clear language-
specific boundaries, while encoder-only models
may be more advantageous for cross-lingual trans-
fer, as their denser and partially shared representa-
tions facilitate knowledge sharing. More broadly,
our results suggest that multilingual generalization
in LLMs is not a single mechanism but a balance be-
tween language separation and cross-lingual shar-
ing, which emerges differently across architectures
and training regimes.

In future work, we will extend the analysis
of compound learning to a broader set of cross-
linguistic features, including semantic and prag-
matic aspects. Additionally, we aim to explore the
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impact of training data diversity from a linguistic
typology perspective on the balance between co-
ordinate and compound learning, as well as how
language models generalize to unseen and low-
resource languages. Expanding our study to a wider
range of language models will help assess the in-
fluence of model scale on multilingual processing
strategies.

Limitations

The limitations of this study are as follows: First,
our analysis of compound learning primarily fo-
cuses on Universal POS (UPOS) tags, which re-
stricts the exploration of higher-level linguistic
properties such as syntax, semantics, and pragmat-
ics. Second, we evaluate a limited set of language
models, mBERT, XLMR, mGPT, and BLOOM, po-
tentially constraining the generalizability of our
findings to larger or differently trained models.
Third, the influence of pre-training data availabil-
ity may introduce biases in our cross-linguistic
comparisons, as certain languages are underrep-
resented. Fourth, while we draw parallels between
LLM multilingualism and human language acqui-
sition, our study lacks direct psycholinguistic eval-
uations to substantiate these comparisons. Finally,
our experiments focus on next-token prediction
and language identification, leaving other multi-
lingual tasks, such as cross-lingual transfer and
code-switching, unexplored.
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A The Implementation of Usable
Information

To compute V-usable information for a given func-
tion family V , we estimate the conditional entropy
terms H(Y |Φ) and H(Y |X) using a simple clas-
sifier to prevent overfitting, following Xu et al.
(2020). The classifier is a two-layer perceptron
with Layer Normalization applied after each lin-
ear layer, a ReLU activation between layers, and
a softmax activation at the output. For a given
task X → Y , we compute H(Y |X) as the cross-
entropy loss of a classifier trained on real samples
X and Y , and H(Y |Φ) is estimated using a sepa-
rate classifier that predicts Y based only on a zero
vector Φ.

In our experiments, Y corresponds to one of the
following: UPOS tags, language IDs, or a com-
bination of UPOS tags and language IDs, and X
represents a set of hidden activations. Accordingly,
for each task and a language model with l layers,
we train l classifiers to estimate H(Y |X), along
with an additional classifier to compute H(Y |Φ).
The classifiers are trained on the PCA-reduced rep-
resentations in H̃ for one epoch, using an 80/20%
split for training and testing. We employ the Adam
optimizer with a learning rate of 0.01 to minimize
the cross-entropy loss. The reported V-usable in-
formation values in this paper are based on the test
split.

B Layer Differentiation Rates for
Languages

For language differentiation, we extract the hidden
activations and logit gradients for predicting the
next token while processing sentences from a tar-
get language through a language model. Feature
contributions are then estimated by computing the
element-wise product of the activation and gradi-
ent tensors, followed by a ReLU activation. This
results in a contribution tensor of size l×n× d for
a target language, where l and d are the number of
layers and features of the language model, and n is
the number of tokens in the language.
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To assess differentiation, we repeat this process
for all other languages present in the pre-training
data of the language model (Seem languages), re-
sulting in a set of contribution tensors. A two-tailed
statistical test is applied to compare corresponding
elements in the contribution tensors of the target
language and each of the other languages. Specif-
ically, we perform the test on the arrays [i, :, j]
extracted from each tensor to measure the differen-
tiating rate of feature j at the layer i. This results in
a binary tensor of size l × d for each language pair
(i.e., a target language paired by each of the Seen
languages), where each element indicates whether
the corresponding feature in each layer contributes
differently across the two languages.

To identify differentiating features for the tar-
get language, we apply a logical AND operation
across all binary tensors, producing a final tensor
of size l × d. The mean value of this tensor along
the second dimension (d) represents the language
differentiation rate of each layer.

This procedure is applied to all languages, treat-
ing each as the target language in each of the Seen
and Unseen settings in turn. By doing so, we ob-
tain a comprehensive measure of how distinctively
the model processes each language relative to the
others.

C Layer Differentiation Rate for Joint
Language and UPOS Tags

For joint language–UPOS differentiation, we ex-
tend the procedure described in Appendix B to
account for universal syntactic categories within
languages. For a given language and UPOS tag, we
compile contribution tensors for all tokens assigned
to the tag. Each tensor, of size l × n× d, encodes
the contribution of each feature to next-token pre-
diction for words in that language–UPOS category,
where l is the number of layers, n the number of
tokens, and d the number of features.

We then assess feature-wise differences across
languages for each UPOS tag. Specifically, for a
feature j in layer i, we perform a two-tailed t-test
comparing the contribution arrays [i, :, j] from the
target language–UPOS pair with the corresponding
arrays from the same UPOS tag in other languages.
The target language may be any language under the
Seen or Unseen setting, while the comparison is
always made against Seen languages.

The resulting binary decisions are aggregated to
estimate the proportion of differentiating features

at each layer, yielding the layer differentiation rate
for the joint language–UPOS category. A high dif-
ferentiation rate indicates that the model processes
tokens of a given UPOS tag in distinct, language-
specific feature spaces, rather than in a universal
syntactic space.
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Abstract
This work investigates the effectiveness of
small autoregressive language models (SLMs)
with up to one billion parameters (sub-1B)
for natural language processing (NLP) tasks
in low-resource languages, focusing on
Basque. We analyze optimal training strategies
by comparing training from scratch and
continual pre-training using state-of-the-art
SLM architectures. Our analysis considers
factors such as model size and the extent of
Basque presence in the pre-training corpus.
To assess linguistic capabilities, models
are evaluated on 12 NLP tasks using the
Harness framework. We also conduct a
manual evaluation of fine-tuned models on
three downstream natural language generation
(NLG) tasks: question answering (QA),
summarization, and machine translation (MT).
Our findings indicate that continual pre-training
on a multilingual SLM substantially enhances
linguistic performance compared to training
from scratch, particularly in low-resource
language settings where available corpora
typically contain fewer than one billion words.
Additionally, the presence of Basque during the
pre-training and larger model sizes contribute
positively to performance in NLG tasks.

1 Introduction

In recent years, we have witnessed a growing
interest in small language models (SLMs) that
can run efficiently on-device with low energy and
memory consumption, as well as fast response
times, such as MobiLlama (Thawakar et al., 2024),
OpenELM (Mehta et al., 2024) or SmolLM2
(Allal et al., 2025). Leading research labs are
also releasing smaller versions of their flagship
models, namely Llama3.2 1B (Dubey et al., 2024),
DeepSeek-R1 1.5B (DeepSeek-AI et al., 2025) and
Qwen3-5 0.6B (Qwen-Team, 2025), to reach users
and use cases with computational constraints.

This work focuses on SLMs with up to one
billion parameters (sub-1B), specifically exploring

Figure 1: Comparison of from-scratch (dark blue) and
continual-trained (light blue) models across 12 tasks in
the Harness framework and NLG downstream tasks
(QA, MT and summarization). Upperlines (dashed
black) show Llama-eus-8B scores, and baselines (solid
black) include random guessing for Harness, BART for
QA and summarization, and a Transformer-based model
for MT. Metrics: accuracy for Harness, correct answers
for QA, correct/partially correct for summarisation, and
COMET22 for MT.

their effectiveness for performing NLP tasks in
low-resource languages, which struggle to collect
over 1B word datasets1, with Basque (see Appendix
A for details about the language) as a primary
case study. We aim to identify the most effective
training strategy for these models. To address this,
we investigate several key aspects of the training
process using state-of-the-art SLM architectures
(Mehta et al., 2024; Dubey et al., 2024): Is it more
efficient to train models from scratch, or should we
start with pre-trained models from other languages?
Does prior exposure to the target language during

1FineWeb 2 (Penedo et al., 2024b) covers over 1,000
languages, though only 57 exceed one billion words.
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pre-training provide any advantages? And how
does model size influence performance?

The results of our experiments show the
following (see summary in Figure 1):

• When working with limited corpora
(∼500M words), continuing training an
SLM pre-trained in other languages allows
for models with much better linguistic
capabilities than those trained from scratch.

• When fine-tuned for Question & Answering
(QA), summarization, and machine translation
(MT) tasks, continual pre-trained sub-1B
models perform notably better than robust
baselines based on BART (Lewis, 2019)
and Transformer-based sequence-to-sequence
models. This advantage is even more
remarked if the pre-trained base model has
been exposed, even minimally, to Basque.

• The performance gap in NLG tasks between
sub-1B continual pre-trained models
and the state-of-the-art Llama-eus-8B
(Corral et al., 2025) is smallest in MT,
followed by QA, and is most pronounced
in summarization—reflecting the increasing
linguistic complexity required by each task.

As part of the experimentation, the first sub-1B
models2 for Basque have been created, along
with fine-tuned versions for QA, summarization,
and MT tasks. Furthermore, two new Basque
datasets have been developed for QA and
summarization tasks, namely CloseBookQA-eu3

and SAMSUM-eu4.

2 Model Training

We selected two competitive English-centric
models: OpenELM (Mehta et al., 2024) and
Llama3.2 (Dubey et al., 2024). Specifically, we
included OpenELM-270M, OpenELM-1B, and
Llama3.2-1B. This selection enables comparisons
between two model sizes (270M vs 1B) and across
models with varying levels of exposure to Basque
during the pre-training phase (see Table 1).

To determine the most effective training strategy
for sub-1B SLMs, we explored two approaches:
training models from scratch (Liu et al., 2023;
Tonja et al., 2024) and continual pre-training of

2hf.co/collections/orai-nlp/slms-for-basque
3hf.co/datasets/orai-nlp/ClosedBookQA-eu
4hf.co/datasets/orai-nlp/SAMSUM-eu

multilingual models (Cui et al., 2023; Fujii et al.,
2024; Kuulmets et al., 2024; Etxaniz et al., 2024;
Corral et al., 2025).

From-scratch models —applied exclusively to
the OpenELM architecture— were pre-trained on
ZelaiHandi (San Vicente et al., 2024), the largest
freely available Basque text corpus, comprising
521 million words. Continual models were trained
using an 80-20 mix of ZelaiHandi and a FineWeb
(Penedo et al., 2024a) subset, following prior works
(Fujii et al., 2024; Kuulmets et al., 2024; Corral
et al., 2025) to avoid catastrophic forgetting, as
English results reported in Appendix F indicate.
For full pre-training detail see Appendix C.

Continual pre-trained models retained their base
model’s tokenizer, while from-scratch models
used a native 32K Llama3 tokenizer trained on
ZelaiHandi, resulting in a 50% reduction in the
tokens-per-word ratio and a tokenization scheme
more closely aligned with the morphological
structure of Basque (for a more in-depth analysis
of the tokenizers see Section 4.3).

3 Analysis of Language Priors in SLMs

In this section, we examine the extent to which
the models described in Section 2 were exposed
to Basque during pre-training. To this end, we
compare the base and continual 1B versions of
Llama-3.2-1B and OpenELM-1B.

Following previous work (Wang et al., 2024), we
sampled 512 generations per model using only the
beginning-of-sequence token as input. To examine
how language priors shift with stronger language
cues, we also assessed model generations when
provided with partial prompts of varying lengths
in Basque5. Each generation had a maximum
length of 300 tokens and was produced with a
temperature of 1.0. The primary language of each
generated sequence was determined automatically
using FastText (Joulin et al., 2016).

Table 1 presents the results of our analysis of
language priors in SLMs. Our findings show
that both of the base versions of Llama-3.2-1B
and OpenELM-1B exhibit a strong bias toward
English in their zero-word cue generations, with
English accounting for over 90% of outputs. When
given a Basque word as a cue, these models
still generate predominantly English text, with
only a slight increase in Basque output in the

5Document beginnings from the ZelaiHandi validation set
up to 2 words.
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Model EU Cue EN EU Oth

Llama 1B
base

0-words 94.1 0.0 5.9
1-words 87.3 4.7 8.0
2-words 62.9 21.7 15.4

OpenELM 1B
base

0-words 90.2 0.0 9.8
1-words 94.9 0.0 5.1
2-words 79.1 1.4 19.5

Llama 1B
cont.

0-words 13.5 85.5 1.0
1-words 7.7 89.6 2.7
2-words 5.5 91.4 3.1

OpenELM 1B
cont.

0-words 8.6 91.0 0.4
1-words 2.9 96.3 0.8
2-words 2.9 94.9 2.1

Table 1: Analysis of language priors in SLMs (base
and continual), showing the percentage of generations
classified as English (EN), Basque (EU), or others.

case of Llama-3.2-1B. As more words are added
to the prompt, Basque output increases, though
OpenELM-1B remains notably less responsive to
Basque cues than Llama-3.2-1B. These results
highlight that OpenELM-1B has been exposed to
less Basque data during pre-training, which likely
contributes to its lower responsiveness to Basque
cues. This suggests that, in theory, Llama-3.2-1B is
a more suitable candidate for continual pre-training,
as its initial exposure to Basque provides a stronger
foundation for further adaptation.

In contrast, the continually pre-trained models
exhibit a strong bias (over 85%) toward Basque
in the zero-word cue generations, which further
increases when Basque cue words are provided.

4 Evaluation

We conducted an intrinsic evaluation of the
linguistic competences of both from-scratch and
continual pre-trained models and compared them
to the original model using the Harness evaluation
framework. While Harness offers an automatic and
cost-effective method for assessing the potential
linguistic performance of SLMs, it does not fully
reflect real-world performance, as the scores are
based on the system selecting the most appropriate
answers from multiple-choice questions. To
better evaluate the models in realistic settings, we
also fine-tuned and manually evaluated them on
downstream NLG tasks. In addition, we explore
how native tokenizers contribute to more efficient
and linguistically aligned from-scratch models.

4.1 Intrinsic Evaluation of Linguistic Abilities

To evaluate models’ linguistic competences
in Basque, we employed a variety of existing
benchmarks including language proficiency,
reading comprehension, general knowledge
and commonsense reasoning tasks: ARC_eu,
Winogrande_eu, MMLU_eu and HellaSwag_eu
(Corral et al., 2025); BL2MP (Urbizu et al., 2024);
BasqueGLUE (Urbizu et al., 2022); Belebele
(Bandarkar et al., 2024); X-StoryCloze (Lin et al.,
2021a); EusProficiency, EusReading, EusExams,
and EusTrivia (Etxaniz et al., 2024). Evaluations
were carried out with the LM Evaluation Harness
framework (Gao et al., 2024), following an
in-context few-shot setup as in previous work
(Etxaniz et al., 2024; Corral et al., 2025). Results
are shown in Table 2.

The OpenELM base models perform below
random chance, likely due to limited exposure to
Basque data during pretraining. The Llama-3.2-1B
base model performs slightly better than random,
indicating that its exposure to Basque data, though
minimal, offers some advantage (see Section 3).

When trained from scratch, all OpenELM
models outperform their base counterparts.
However, these from-scratch models often perform
at random levels across many tasks. Notably, the
OpenELM-270M from-scratch model achieves the
highest overall performance, which might indicate
that a 1B model could struggle to generalize
effectively with a modest 521M-word Basque
training dataset due to its larger parameter size.

Substantial improvements are observed with
continual pre-training across all models, with
the 1B-parameter models performing comparably,
while the 270M model lags behind. Continual
pre-training consistently outperforms from-scratch
pre-training, especially in the 1B model, suggesting
that the available Basque training data —similar
to other low-resource languages— is insufficient
for from-scratch pre-training and leveraging
multilingual pre-training through continual training
proves to be more effective.

While there remains a performance gap of
approximately 20 points between the continual
pre-trained variants and Llama-eus-8B, the results
are consistent with expectations from scaling laws
(Hoffmann et al., 2022), highlighting the strong
capabilities of smaller models given their size.
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Model Bl2mp Arc WnGr. Mmlu HSwg Beleb. XStrC. Exams Prof. Read. Trivia BGlue Avg.
Random 50.0 25.0 50.0 25.0 25.0 25.0 50.0 25.0 25.0 25.8 26.6 37.5 32.5

OpenELM
270M

base 44.7† 26.0 47.6† 25.6 28.0 26.0 50.1 25.3 25.0 22.4† 26.2† 36.2† 31.9†
scratch 88.1 32.0 47.2† 27.8 40.0 27.9 55.7 24.9† 24.0† 25.3† 27.4 38.6 38.2
continual 89.9 33.6 53.2 23.3† 45.2 27.9 55.3 25.0 24.7† 30.4 27.1 41.0 39.7

OpenELM
1B

base 46.2† 24.4† 41.2† 25.2 27.6 28.1 49.8† 25.7 24.8† 23.3† 26.4† 37.8 31.7†
scratch 87.2 28.8 47.6† 25.2 40.4 25.4 54.1 24.5† 24.1† 24.2† 26.2† 37.9 37.1
continual 90.4 42.0 55.6 25.9 48.0 26.3 60.4 26.2† 24.4† 28.7 26.2 42.7 41.4

Llama 1B
base 49.1† 29.6 52.0 26.7 24.4† 27.9 50.0 26.5 23.8† 25.3† 28.6 38.4 33.5
continual 88.9 42.0 56.8 28.5 46.4 27.9 60.2 27.1 25.5 23.3† 28.2 41.4 41.4

Llama-eus 8B 89.2 55.2 67.2 53.3 63.6 73.4 65.7 52.5 48.4 54.6 56.2 55.3 61.2

Table 2: Results from the intrinsic evaluation of linguistic abilities, conducted using 5 in-context examples for most
tasks, except for HellaSwag (10-shot), ARC (25-shot), BL2MP (0-shot), X-StoryCloze (0-shot), and EusReading
(1-shot). The best-performing model is highlighted in bold, and † denotes models performing below random guess.

4.2 Downstream NLG Tasks Evaluation

We further assessed our models by fine-tuning
them on three downstream NLG tasks of varying
difficulty—ordered from most to least challenging:
summarization, QA (including both hard and
factoid questions), and English-to-Basque MT.
Fine-tuning details are provided in Appendix D.

To address the lack of task-specific Basque
datasets, we constructed training data for the QA
and summarization tasks. For QA, we constructed
CloseBookQA-eu based on the Belebele-eus
MCQA dataset (Bandarkar et al., 2024), and
enriched it with translated examples from the
MCTest MCQA dataset (Richardson et al., 2013)
as well as semi-automatically generated factoid
questions derived from news articles. For
summarization, we automatically translated the
SAMSUM dataset (Gliwa et al., 2019). In
the case of the MT task, we compiled a
2M-sentence English-Basque parallel dataset from
OPUS (Tiedemann, 2009). Appendix D.1 offers
further details on dataset creation.

Evaluation methodologies varied by task.
For QA-easy (factoid questions), QA-hard and
summarization, a native Basque speaker from our
team manually evaluated a random test set of 100
examples per task. QA responses were deemed
correct or incorrect, while summarization outputs
were rated correct, partially correct, or incorrect.
For MT, evaluation was performed by computing
the COMET22 (Rei et al., 2022) metric on the
Flores-200 benchmark (Team et al., 2024).

Regarding baselines, we fine-tuned a
monolingual BART for the QA and summarization
tasks, and trained a Transformer-based model
for MT (see Appendix B for further details).
Additionally, we fine-tuned Llama-eus-8B (Corral

et al., 2025) on downstream tasks to establish the
upper bound performance for each task.

Model QA Sum MT
Baseline 42|12 19 (39) 77.8
OpenELM

270M
scratch 17|09 06 (14) 75.9
continual 64|28 14 (29) 84.1

OpenELM
1B

scratch 31|07 06 (19) 77.8
continual 84|48 37 (54) 85.1

Llama 1B continual 88|54 39 (65) 86.3
Llama-eus 8B 95|73 60 (90) 86.8

Table 3: Results on the downstream NLG tasks of QA,
Summarization and MT). The QA task is formed by
two datasets of different difficulty (QA-easy|QA-hard).
Scores in parentheses for the summarization task
indicate the sum of correct and partially correct outputs.

Table 3 presents the results of the fine-tuned
models on downstream tasks. For the continual
pre-trained models, performance differences across
architectures and sizes align with the level of
language understanding required by each task,
with larger gaps observed in more complex
tasks—ordered from most to least complex:
QA-hard, summarization, QA-easy, and machine
translation. Notably, Llama 1B consistently
outperforms OpenELM 1B, highlighting the
benefits of Basque-specific priors discussed in
Section 3. In line with scaling laws (Hoffmann
et al., 2022), performance improves with model
size, with 1B models outperforming their 270M
counterparts and the 8B model achieving the
highest overall gains.

Following the trend in Section 4.1, from-scratch
models fail to surpass continual pre-trained
ones, reinforcing the importance of leveraging
prior linguistic knowledge through continual
pre-training. Despite the potential benefits of a
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Tokenizer Vocab. TPW Morph.
OpenELM 32K 3.23 0.12
Llama3 128K 2.95 0.20
Native 32K 1.60 0.41

Table 4: Vocabulary size, tokens-per-word (TPW)
ratio and morphological alignment score of different
tokenizers used by our models.

native Basque tokenizer, the results indicate it
does not offer a significant advantage in making
from-scratch models competitive. Section 4.3
analyzes the impact of native tokenizers and shows
that, although they improve the tokens-per-word
ratio and better align with Basque morphology,
they do not lead to a significant improvement in
linguistic performance.

4.3 Impact of Native Tokenizers

One potential advantage of training a model from
scratch is the ability to use a native tokenizer
fully adapted to the target language. This
results in a lower tokens-per-word ratio, which
implies shorter sequence lengths to process the
same word sequence, leading to faster and more
memory-efficient models.

As stated in Section 2, continually pre-trained
models retain their base’s tokenizer. In contrast, our
from-scratch models use a new native 32K Llama3
tokenizer trained on ZelaiHandi (San Vicente
et al., 2024), resulting in a 50% reduction in the
tokens-per-word ratio6, as shown in Table 4.

Furthermore, a native tokenizer is expected to
align more closely with morpheme boundaries,
which might be beneficial for morphologically
rich languages like Basque. To evaluate
this morphological alignment, we compare
the tokenized subwords with the expected
lemma-morpheme boundaries. A score of 1 is
assigned if the first subword matches the lemma.

We conduct this evaluation using a dataset
of 100K sentences (over 1M words), which
have been automatically annotated7 with lemma
and morpheme boundaries—e.g., Brasil da
aurten|go herrialde gonbidatu|a—extracted from
the 5M-word Basque corpus defined by Urbizu et al.
(2024). This corpus comprises news articles and
Wikipedia articles, offering a representative sample
of real-world Basque usage.

6Calculated on the ZelaiHandi validation set.
7Using an Apertium-based custom implementation.

Tokenizer Vocab. TPW Morph. Harness
Avg.

Original 128K 2.90 0.20 35.49
Native 128K 1.43 0.56 35.04

Table 5: Vocabulary size, tokens-per-word (TPW) ratio
and morphological alignment score for each tokenizer
of equal size, with average results for from-scratch
llama3.2 1B models on the Harness evaluation.

As shown in Table 4, native tokenizers achieve
higher morphological alignment scores. However,
results from Sections 4.1 and 4.2 indicate
that this alignment advantage does not yield
sufficient performance gains for scratch-trained
models to match those continually pre-trained
with suboptimal multilingual tokenizers. The
performance gap is especially pronounced in
downstream NLG tasks.

To more precisely assess the impact of using
a native tonenizer versus the English-centric
tokenizer, we trained two additional Llama 3.2-1B
models from scratch: one using the original
128k-token vocabulary and the other using a native
tokenizer of equivalent size8.

Table 5 shows the Harness evaluation results
for models trained from scratch. Although the
native tokenizer provides better morphological
alignment and achieves greater compression—as
evidenced by a lower tokens-per-word ratio—it
does not lead to improved linguistic performance
compared to the original tokenizer. This suggests
that, for Basque and with a training corpus of
around 500 million words, a native tokenizer does
not necessarily enhance the model’s linguistic
competence. This finding holds despite Basque’s
morphological complexity, particularly its rich
system of case endings, and is consistent with the
results reported by Urbizu et al. (2024).

5 Conclusions

This work examines the effectiveness of SLMs with
up to 1B parameters for NLP tasks in low-resource
languages, focusing on Basque. Our findings
show that continual pre-training of a multilingual
SLM notably improves performance compared to
training from scratch, with larger model sizes and
the presence of Basque during pre-training further
enhancing the performance on NLG tasks.

8With same training procedure of the native 32K tokenizer.
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Limitations

Basque has been chosen as a case study, as it is
an isolated language with complex morphology,
and a corpus of 521 million words has been
used for training. We consider this scenario
to be representative of a significant number of
low-resource languages. However, extending
these conclusions to other languages may require
additional experiments that account for their
specific linguistic characteristics and level of digital
development.

For the construction of the SLMs, we explored
training strategies both from scratch and based
on continual pre-training. In some languages,
developing SLMs using knowledge distillation
strategies could be of interest, and we leave this
analysis for future work.

The evaluation of SLMs on downstream tasks
has been limited to three representative tasks:
QA, summarization, and MT. Training for these
tasks was conducted using datasets of a fixed
size. In future work, we aim to extend this study
to additional downstream tasks and analyze the
impact of dataset size on the fine-tuning process
for each task.

Ethical Concerns

The outputs of the SLMs trained for this work
may show undesired biases and produce offensive
language. Although the Basque text sources
gathered to pre-train the SLMs were selected
by hand, they contain bad words from fictional
sources and social biases that were not handled
here. These aspects must be analyzed and treated
before building applications that interact with final
users.

Acknowledgments

This work has been partially funded by the
Basque Government (ICL4LANG project, grant no.
KK-2023/00094) and the European Union (EFA
104/01-LINGUATEC IA project, INTERREG
POCTEFA 2021-2027 program). Pre-training and
fine-tuning of SLMs were conducted using the
Hyperion system at the Donostia International
Physics Center (DIPC). We also acknowledge the
support of Google’s TFRC program for pre-training
the BART baseline on TPUs. Finally, we thank
Idoia Davila Uzkudun for her contributions to
manual data curation and evaluation.

References
Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,

Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček,
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Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024a. The
fineweb datasets: Decanting the web for the finest
text data at scale. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec,
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A Basque Language

Basque is a language with roughly 810K fluent
speakers in the region of the Basque Country,
spanning northern Spain and southwestern France.
It is currently classified as vulnerable according
to The UNESCO Atlas of the World’s Languages
in Danger (Moseley, 2010). Basque is a language
isolate (unrelated to any other known languages)
and uses the Latin script. It is a morphologically
rich language, with a flexible word order and
follows an ergative–absolutive syntactic alignment.
Despite being low-resource in terms of corpora (<
1B words), Basque does have annotated datasets
for a number of NLU and NLG tasks, thanks to the
effort of a strong local NLP community.

B Baselines

B.1 BART
The monolingual BART base model (139M
parameters), used as a baseline for question

answering (QA) and summarization tasks, was
pre-trained on the ZelaiHandi corpus (San Vicente
et al., 2024). It employs a Byte-Pair Encoding
(BPE) tokenizer with a 50K token vocabulary,
which was also trained on ZelaiHandi.

The model was trained for 154 epochs
(equivalent to 1,460K steps) with a batch size of 32,
a learning rate of 1e-4, and a sequence length of
512 tokens. The final checkpoint was retained as it
achieved the best performance based on validation
loss. We used the Flax implementation of BART
from the Hugging Face Transformers library (Wolf
et al., 2020) and pre-trained the model on a single
TPUv3-8 node for one week.

B.2 MT Baseline

The Baseline MT system was trained using the
sequence-to-sequence Transformer architecture
(Vaswani et al., 2017) as implemented in the Eole
Toolkit9 with the default configuration (6 layers,
1024 size vectors). We apply BPE tokenization
(Sennrich et al., 2016) learned on 32,000 merge
operations on the joint training parallel data.
The training corpus comprises of 2.2M parallel
sentences gathered from various sources from the
Opus collection (Tiedemann, 2009). The model
was trained for 230K steps (early stopping after
10 validation steps, validating each 10K steps).
Validation is done over 8K parallel sentences
composed of the Flores benchmark validation
dataset and 5K sentences excluded from the
training data. Training was carried out on a single
Nvidia RTX A5000 GPU.

C Pre-Training Details

From-scratch models were pre-trained for up to
25 epochs, while continual models were further
pre-trained for up to 5 epochs. In both cases, we
selected the best-performing checkpoint according
to validation loss for the final model. Our
OpenELM and Llama models, based on the
architectures of OpenELM10 (Mehta et al., 2024)
and Llama3.211 (Dubey et al., 2024), have a
maximum sequence length of 2048 and 4096,
respectively. OpenELM models were pre-trained
with a cosine learning rate of 3e-5 and an
effective batch size of around 4M following the
configuration of OpenELM-270M (Mehta et al.,

9https://eole-nlp.github.io/eole/
10Licensed under Apple Sample Code License
11Licensed under Llama3.2 Community License Agreement
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Model Size GPU time kgCO2eq
OE270M-s 270M 282h 30.46
OE270M-c 270M 138h 14.90
OE1B-s 1.1B 571h 61.67
OE1B-c 1.1B 290h 31.32
LL1B-c 1B 122h 13.18

Table 6: Carbon footprint of pre-training our models.
Llama3-1B is more efficient and emitted less CO2 due
to the available flash attention implementation. OE =
OpenELM, LL = LLama3. s = scratch. c = continual.

2024). Llama3-1B was further trained with a
cosine learning rate of 1e-4 and an effective batch
size of around 2M following the configuration of
LLama-eus-8B (Corral et al., 2025).

Pre-training LMs involves computationally
intensive experiments that contribute significantly
to carbon emissions. For efficient large-scale
pre-training, we opted for the Hugging Face
Transformers (Wolf et al., 2020) library, alongside
DeepSpeed ZeRO (Rajbhandari et al., 2020)
and Accelerate (Gugger et al., 2022). Flash
Attention (Dao et al., 2022) was only available
for Llama3 models since OpenELM does not have
it implemented on Transformers.

The training was conducted on NVIDIA A100
80GB GPUs (1-8). We provide details on model
size, compute hours, and carbon emissions for
our experiments in Table 6. Carbon emissions
were estimated using the Machine Learning Impact
calculator12 (Lacoste et al., 2019).

D Fine-Tuning Details

Each foundational model was fine-tuned for up
to five epochs, independently on each task (QA,
summarization, and MT). To ensure optimal
performance, we selected the checkpoint with the
lowest validation loss.

We used a batch size of 32 and a learning
rate of 3e-5. However, for certain models
where the validation loss curve showed
instability—collapsing before completing
the first epoch—, we reran fine-tunings, reducing
the learning rate until achieving a run with a stable
validation loss trajectory.

We fine-tuned the BART model on QA and
summarization with the same batch size, learning
rate and epochs as the rest of the models, selecting
the best-performing checkpoint on validation loss.

12https://mlco2.github.io/impact#compute

The transformer baseline on MT was trained from
scratch (see Appendix B.2).

D.1 Downstream Datasets

ClosedBookQA. For question answering (QA), we
constructed ClosedBookQA-eu, a closed-book QA
dataset derived from three sources: the MCQA
Belebele-eus dataset13 (Bandarkar et al., 2024), the
MCTest dataset14 (Richardson et al., 2013), and
semi-automatically generated examples based on
news content.

Belebele is a multiple-choice QA (MCQA)
dataset that includes a passage (context), a
question, and four possible answers. Although
a Basque version of Belebele is available, it
only provides a test set of 900 examples. To
adapt it for a generative QA setting, we extracted
passage–question–answer triplets and discarded
examples that were unanswerable15 without the full
set of answer choices. After filtering, we retained
573 usable examples, which we split into 423 for
training, 50 for validation, and 100 for the QA-hard
test set.

To further expand the training data, we
incorporated MCTest, which contains 2,000
MCQA examples. These were translated
into Basque using a proprietary document-level
machine translation system based on Llama-eus-8B
(Corral et al., 2025). After manually filtering out
translation errors, 1,962 examples were retained.
The final training set thus comprised 2,385
examples.

In addition to the QA-hard test set derived from
Belebele, we created a complementary QA-easy
test set of 100 simpler factoid questions. This
set was generated using GPT-4o (OpenAI, 2024)
in a two-step process: first, selecting passages
from 100 Basque news articles not included in
ZelaiHandi, and second, generating corresponding
questions and answers. All examples were
manually reviewed, corrected, and refined by a
native Basque speaker to ensure both linguistic
quality and appropriate difficulty.

Summarization. For summarization, there
is no publicly available summarization dataset
in Basque. To address this, we automatically
translated SAMSum16 (Gliwa et al., 2019), a

13Licensed under CC-BY-SA 4.0
14Licensed under Microsoft Research License
15E.g., “Which of these is true?” or “Which option is not

mentioned?”
16Licensed under CC-BY-NC-ND 4.0
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human-annotated dialogue dataset for abstractive
summarization, using a proprietary document-level
MT system based on Llama-eus-8B. We then
filtered out examples with incomplete translations
or non-Basque outputs.

The translated test set was further refined by a
native speaker to obtain 100 high-quality, manually
curated test examples. In total, we obtained 11,313
training examples, 636 validation examples, and
100 manually curated test examples for evaluation.

Machine translation. In the case of the MT task,
we compiled an English-Basque dataset gathered
from various sources in OPUS17 (Tiedemann,
2009). The final corpus contains a 2.2M parallel
sentences, obtained after applying rule-based
cleaning, and used BiCleaner (Ramírez-Sánchez
et al., 2020) with a threshold of 0.9.

E Harness Benchmarks for Basque

To assess our model’s performance in Basque, we
utilized a range of existing benchmarks:

• ARC_HT_eu_sample (Corral et al., 2025):
A subset of 250 samples manually translated
to Basque from the ARC dataset (Clark et al.,
2018). The ARC dataset consists of genuine
grade-school level, multiple-choice science
questions.

• Winogrande_HT_eu_sample (Corral et al.,
2025): A subset of 250 samples manually
translated to Basque from the WinoGrande
dataset (Sakaguchi et al., 2020). WinoGrande
is a dataset of 44k problems specifically
designed to test commonsense reasoning.

• MMLU_HT_eu_sample (Corral et al.,
2025): A subset of 270 samples manually
translated to Basque from the MMLU dataset
(Hendrycks et al., 2021). The MMLU dataset
is a massive multitask test consisting of
multiple-choice questions from various
branches of knowledge. The test spans
subjects in the humanities, social sciences,
hard sciences, and other areas that are
important for some people to learn.

• HellaSwag_HT_eu_sample (Corral et al.,
2025): A subset of 250 samples manually
translated to Basque from the HellaSwag
dataset (Zellers et al., 2019). The HellaSwag

17Includes data licensed under various open licenses.

dataset commonsense NLI evaluation
benchmark.

• BL2MP (Urbizu et al., 2024): The BL2MP
test set is designed to assess the grammatical
knowledge of language models in the Basque
language, inspired by the BLiMP (Warstadt
et al., 2020) benchmark.

• BasqueGLUE (Urbizu et al., 2022):
BasqueGLUE is an NLU benchmark for
Basque, which has been elaborated from
previously existing datasets and following
similar criteria to those used for the
construction of GLUE and SuperGLUE.

• Belebele (Bandarkar et al., 2024): Belebele
is a multiple-choice machine reading
comprehension dataset spanning 122
language variants.

• X-StoryCloze (Lin et al., 2021b):
XStoryCloze consists of the professionally
translated version of the English StoryCloze
dataset to 10 non-English languages. It
is a commonsense reasoning framework
for evaluating story understanding, story
generation, and script learning.

• EusProficiency, EusReading, EusExams,
and EusTrivia (Etxaniz et al., 2024):
Basque-specific benchmarks covering
proficiency tests based on past EGA exams
(C1 level Basque), reading comprehension,
public service exam preparation, and trivia
questions, respectively.

This comprehensive evaluation approach enables
us to measure the model’s capabilities across
various tasks, providing a thorough understanding
of its formal and functional competencies in
Basque.

F English Results on Harness

The continual models were trained using an 80-20
mix of ZelaiHandi and a FineWeb (Penedo et al.,
2024a) subset, following prior works (Fujii et al.,
2024; Kuulmets et al., 2024; Corral et al., 2025)
to avoid catastrophic forgetting. Thus, they are
expected to retain some English knowledge from
the pretraining. To measure English linguistic
abilities of the continual models and see if they are
kept from the base model, we evaluated base and
continual versions of OpenELM-1B and Llama-1B
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Model Arc WnGr. Mmlu HSwg Beleb. XStrC. Avg.
Random 25.0 50.0 25.0 25.0 25.0 50.0 32.5
OpenELM-1B base 53.2 70.8 30.7 67.6 27.7 72.1 53.2

continual 45.6 58.0 24.4 56.8 27.2 68.6 46.8
Llama 1B base 52.8 68.4 28.1 45.2 34.7 71.3 50.5

continual 53.6 66.4 23.7 64.8 30.4 71.1 51.7

Table 7: Results from the intrinsic evaluation of linguistic abilities on the English counterparts of the datasets used
for Basque, conducted using 5 in-context examples for most tasks, except for HellaSwag (10-shot), ARC (25-shot)
and X-StoryCloze (0-shot). The best-performing model is highlighted in bold.

in the English versions of the subsets of several
NLU tasks used to evaluate the models in Basque
in Section 4.1, described in Appendix E.

The results for English are shown in Table 7.
It shows that the results of the base models hold
after continual training for Basque, with a few
exceptions, proving that models kept most of their
English linguistic abilities, and the 80-20 corpora
approach is successful at avoiding catastrophic
forgetting. When we compare both architectures,
while Llama 1B holds its results in overall, there is
a small drop in the case of OpenELM, which might
be caused by the lack of prior exposure to Basque.
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Abstract

We introduce jina-embeddings-v4, a 3.8
billion parameter embedding model that unifies
text and image representations, with a novel
architecture supporting both single-vector
and multi-vector embeddings. It achieves
high performance on both single-modal and
cross-modal retrieval tasks, and is particularly
strong in processing visually rich content such
as tables, charts, diagrams, and mixed-media
formats that incorporate both image and textual
information. We also introduce JVDR, a novel
benchmark for visually rich document retrieval
that includes more diverse materials and query
types than previous efforts. We use JVDR
to show that jina-embeddings-v4 greatly
improves on state-of-the-art performance for
these kinds of tasks.

1 Introduction

We present jina-embeddings-v4, a multimodal
embedding model capable of processing text and
image data to produce single- and multi-vector em-
beddings, with modular LoRA adapters (Hu et al.,
2022) for information retrieval and semantic text
similarity. An adapter is also provided for program-
ming language embeddings, technical question-
answering, and natural language code retrieval.

This model supports dual-mode output, pro-
ducing both single-vector outputs suitable for
conventional embeddings-based applications and
multi-vector embeddings for "late interaction"
applications along the lines of ColBERT (Khattab
and Zaharia, 2020) and ColPali (Faysse et al., 2025).
This single-model approach entails significant
savings in practical use cases when compared to
deploying multiple AI models for different tasks
and modalities.

A major contribution of this model is introducing
new functionality for processing “visually rich”
documents: mixed textual and visual media like

*These authors contributed equally to this work

tables, charts, diagrams, screenshots, web page
captures, and similar images. (Ding et al., 2024)
We have devised a new diversified benchmark,
JVDR, for measuring performance on visually rich
materials and show that jina-embeddings-v4 far
outpaces comparable models on this type of media.

2 Related Work

Late interaction models generally have higher pre-
cision than traditional embedding models. (Khattab
and Zaharia, 2020; Faysse et al., 2025) These
models produce multi-vector outputs that consist of
sequences of context-sensitive token embeddings.
Similarity is calculated using a form of chamfer
distance adapted to the task: Given two sequences
of token embeddings, a query and a document, sum
the maximum cosine similarity values of each query
token embedding to any of the document token
embeddings.

Faysse et al. (2025) train a late-interaction embed-
ding model to search document screenshots using
text queries, performing significantly better than
traditional approaches involving OCR and CLIP-
style models trained on image captions. To show
this, they introduce the ViDoRe (Vision Document
Retrieval) benchmark. However, this benchmark
is limited to question-answering tasks in English
and French involving only charts, tables, and pages
from PDF documents. Xiao et al. (2025) extend this
benchmark to create MIEB (Massive Image Em-
bedding Benchmark) by rendering the texts from
existing semantic textual similarity tasks as images.

The principal purpose of multimodal embed-
ding models is to project objects from multiple
modalities into the same semantic embedding space.
Bimodal image-text models derived from OpenAI’s
CLIP architecture (Radford et al., 2021) consist of
one model for each modality, typically trained with
bimodal contrastive pairs to produce embeddings
in a common semantic space. The Vision-Language
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Model (VLM) is an alternate architecture with a
single processing path for both images and texts,
significantly improving performance on bimodal
text-image tasks. (Chen et al.; Bai et al., 2025)

Previous work has shed light on the so-called
modality gap in this kind of model. (Liang et al.,
2022; Schrodi et al., 2025; Eslami and de Melo,
2025) Good semantic matches across modalities
tend to lie considerably further apart in the embed-
ding space than comparable or even worse matches
of the same modality, i.e., texts in CLIP-style mod-
els are more similar to semantically unrelated texts
than to semantically similar images. Bai et al. (2025)
demonstrate that VLMs have less of a modality gap
than CLIP-style dual encoder architectures.

3 Model Architecture

The architecture of jina-embeddings-v4,
schematized in Figure 1, is a VLM built on a
Qwen2.5-VL-3B-Instruct1 backbone. Text and
image inputs are processed through a shared path-
way: Images are first converted to token sequences
via a vision encoder, then both modalities are jointly
processed by the language model decoder with
contextual attention layers.

As shown in Figure 1, this architecture supports
single- and multi-vector output. Additionally,
three task-specific LoRA adapters, each with 60M
parameters, provide specialized task optimization
without modifying the frozen backbone weights.

The core specifications of jina-embeddings-v4
are summarized in Table 1.
jina-embeddings-v4 differs from CLIP-style

dual-encoder models in offering a single processing
path for both text and image input. For text input, it
behaves like other Transformer-based embedding
models: The text is tokenized, each token is replaced
with a vector representation from a lookup table, and
then these vectors are stacked and become the input
vector to a Transformer-based language model.

For images, a Transformer-based image model
acts as a preprocessor to the language model: The
image is divided into patches and the image model
processes it as if each patch were a token given
to a language model. The output is a multi-vector
embedding which becomes the input to the language
model, as if it were a stacked set of tokenized text
vectors.

Users can choose between traditional single

1https://huggingface.co/Qwen/Qwen2.5-VL-3B-
Instruct

Feature Value

Parameters 3.8 billion (3.8×109) plus 60M
per LoRA

Text input Up to 32,768 tokens
Image input All images resized to 20

megapixels
Single-vector
embedding 2048 dimensions, truncatable

down to 128
Multi-vector
embedding 128 dimensions per token

Table 1: Basic specifications of jina-embeddings-v4

(dense) vector embeddings and ColBERT-style
multi-vector embeddings. Single-vector embed-
dings are the result of mean-pooling the final
layer of the base model to 2048 dimensions.
jina-embeddings-v4 has been trained with
Matryoshka Representation Learning (Kusupati
et al., 2022), so its single-vector embeddings can be
truncated to as few as 128 dimensions with minimal
loss of precision. An additional layer projects
the output of the base model into multi-vector
embeddings comparable to ColBERT (Khattab
and Zaharia, 2020) and ColPali (Faysse et al.,
2025) outputs. Single-vector embeddings offer
fast, memory-efficient retrieval ideal for large-
scale or first-stage search, while multi-vector
late-interaction approaches are more costly but
achieve higher accuracy by capturing fine-grained
interactions, as shown in the evaluation results in
Table 2. Multi-vector embeddings are best used to
re-rank first-stage retrieval results on a smaller set of
candidates or for technically challenging matching
scenarios where single-vector approaches perform
poorly, such as scanned technical documents.

We have implemented three task-specific LoRA
adapters for different information retrieval use cases
described in Section 4.2. Each LoRA adapter has
only 60M parameters, so keeping all three in mem-
ory adds less than 2% to the memory footprint of
jina-embeddings-v4. See Section 6 for perfor-
mance information about these adapters. We employ
PEFT (Mangrulkar et al., 2022) to support LoRA
and dynamically switch between adapters based on
the intended task for each batch, without significant
runtime overhead. We used a standard LoRA con-
figuration with rank 32 and a scaling factor of 1, pa-
rameterizing all linear layers in the backbone LLM.
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vision encoder

qwen2.5 LM decoder

task='retrieval'   doc=image     OR text        vector_type='multi_vector'input

output

Lora set base model

[retrieval] / [text-
matching] / [code search]

token embeddings mean pooling projector

single-vector
128 to 2048-dim

multi-vector
N x 128-dim

Figure 1: Architecture of jina-embeddings-v4.

4 Training Method

Before training, model weights are initialized
to match Qwen/Qwen2.5-VL-3B-Instruct. The
multi-vector projection layer and LoRA adapters
are randomly initialized. Only the LoRA adapters
are trained, the base model and projection layer
remain as initialized.

In all phases of training, we apply Matryoshka
loss (Kusupati et al., 2022) to our base loss
function so that single-vector embeddings from
jina-embeddings-v4 are truncatable.

4.1 LoRA pre-training

We pre-train a single LoRA adapter using pair
data and the contrastive InfoNCE (van den Oord
et al., 2018) loss function. There is no task-specific
training in the pre-training phase.

The training data consists of text-text and
text-image pairs from more than 300 sources.
Text-text pairs are selected and filtered as described
in Sturua et al. (2024). Text-image pairs have been
curated from a variety of sources following a more
eclectic strategy than previous work on training
text-image embedding models. We have also
created images from website screenshots, rendered
Markdown files, charts, tables, and other kinds of
materials "found in the wild." Queries primarily
consist of questions, keywords, key phrases, long
descriptions, and statements of fact.

In each training step, we sample two different

batches of training data:

• A batch Btext of text pairs.

• A batch Bmulti of multimodal pairs containing
a text and a related image.

We generate normalized single-vector and
multi-vector embeddings for all texts and images
in the selected pairs. We then construct a matrix of
similarity values Sdense(B) by calculating the co-
sine similarity of all combinations of single-vector
embeddings qi and pj in B. We construct an anal-
ogous matrix Schamf for each B for the multi-vector
embeddings using a normalized version of the
chamfer distance metric described by Khattab and
Zaharia (2020) for the ColBERT late interaction
model. Our choice of loss function requires a
normalized score, so we divide the chamfer distance
by the number of tokens in the query.

The result is four matrices of normalized
similarity scores for each batch:

• Cosine similarity of single-vector embeddings
for text-text pairs.

• Chamfer similarity of multi-vector embed-
dings for text-text pairs.

• Cosine similarity of single-vector embeddings
for text-image pairs.

• Chamfer similarity of multi-vector embed-
dings for text-image pairs.
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Then, we apply the contrastive InfoNCE loss
function LNCE (van den Oord et al., 2018) to each
of the four matrices to calculate the training loss.

Following Hinton et al. (2014), we compensate
for differences in error distributions between the
single-vector and multi-vector similarity scores by
adding the Kullback–Leibler divergence (DKL)
of the two sets of softmax-normalized similarity
scores. This enables us to train for the single-vector
and multi-vector outputs simultaneously, even
though the multi-vector/late interaction scores have
much less error.

Given Sdense(B) as the softmax of a matrix of
single-vector cosine similarity scores for batch
B, and Schamf(B) as the softmax of a matrix of
multi-vector chamfer similarity scores for batch B,
define the added term LD(B)

LD(B) :=DKL(Sdense(B)∥Schamf(B))

The resulting joint loss function, which we use
in training, is defined as:

Ljoint(Btext,Bmulti) :=

w1LNCE(Sdense(Btext),)

+w2LNCE(Schamf(Btext))+w3LD(Btext)

+w4LNCE(Sdense(Bmulti))

+w5LNCE(Schamf(Bmulti))+w6LD(Bmulti)

The weightsw1,...,w6 are training hyperparam-
eters.

4.2 Task-Specific Training
We instantiate three copies of the pre-trained LoRA
adapter and give each task-specific training.

4.2.1 Asymmetric Retrieval Adapter
We used the prefix method described by Wang et al.
(2022) to generate different query and document
embeddings in jina-embeddings-v4.

Our training data consists of hard nega-
tives. (Wang et al., 2022; Li et al., 2023) For every
pair (qi,pi) ∈ B in a batch, pi is intended to be a
good match for qi, and we presume that for all
(qj ,pj) ∈ B where j ̸= i, pj is a hard negative for
qi. We incorporate those negatives into the training
process via an extended version of the LNCE loss
described in Günther et al. (2023).

We used existing datasets to create multimodal
pairs for training, including Wiki-SS (Ma et al.,

2024) and VDR multilingual,2 but we also mined
hard negatives from curated multimodal datasets.

4.2.2 Text Matching Adapter
We find that for symmetric semantic similarity tasks
like text matching, training data with ground truth
similarity values works best. As discussed in Sturua
et al. (2024), we use the CoSENT3 loss functionLco

from Li and Li (2024), which operates on two pairs
of text values with known ground truth similarity.

We used data from semantic textual similarity
training datasets such as STS12 (Agirre et al., 2012)
and SICK (Marelli et al., 2014), where ground truth
similarity values are available. However, the amount
of data in this format is very limited, so we enhanced
our training data with pairs that do not have known
similarity scores. For these pairs, we use the
standard InfoNCE loss in place of the CoSENT loss.

4.2.3 Code Adapter
Code embeddings in jina-embeddings-v4 are
designed for natural language-to-code retrieval,
code-to-code similarity search, and technical
question answering. Because code embeddings
do not involve image processing, the vision
portion of jina-embeddings-v4 is not affected
by training the code retrieval LoRA adapter.
Qwen2.5-VL-3B-Instruct was pre-trained on
data including the StackExchangeQA4 and the
CodeSearchNet (Husain et al., 2020) datasets,
giving it some capacity to support code embeddings
before further adaptation.

Our LoRA training used the same method
described in Section 4.2.1. Training triplets
are derived from a variety of sources, including
CodeSearchNet, CodeFeedback (Zheng et al.,
2024), APPS (Hendrycks et al., 2021), and the
CornStack dataset (Suresh et al., 2025).

5 JVDR: Visually
Rich Document Retrieval Benchmark

To evaluate the performance of
jina-embeddings-v4 across a broad range
of visually rich document retrieval tasks, we have
produced a new benchmark collection and released
it to the public.5

2https://huggingface.co/datasets/llamaindex/
vdr-multilingual-train

3https://github.com/bojone/CoSENT
4https://github.com/laituan245/

StackExchangeQA
5https://huggingface.co/collections/

jinaai/jinavdr-visual-document-retrieval-
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This new collection extends the ViDoRe bench-
mark by adding more than 30 additional tests de-
signed to be compatible with ViDoRe. They span a
broad range of domains (e.g. legal texts, historic doc-
uments, marketing materials), cover a variety of ma-
terial types (e.g. charts, tables, manuals, printed text,
maps) and query types (e.g. questions, facts, descrip-
tions), and use up to 20 languages. These tests in-
clude re-purposed existing datasets, new manually-
annotated data, and generated synthetic data. We
employed LLM-based filtering to ensure all queries
are relevant and reflective of realistic usage.6

We have adapted a number of existing VQA
(visual question answering) and OCR datasets,
modifying and restructuring them into appropriate
query-document pairs. For some datasets, we used
structured templates and generative language mod-
els to formulate text queries to match their contents.
We also created benchmarks from available data
to use unconventional querying techniques. We
drew heavily on Wikimedia materials and other
public data sources. For example, some datasets
contain encyclopedia article fragments and image
descriptions as queries to match with charts and
maps. We obtained multilingual documents from
Wikipedia and paired them with paragraphs that
reference them. We used GitHub README files to
create rendered images from Markdown-formatted
rich texts and paired them with LLM-generated
natural language descriptions in 17 languages.

We have also curated a number of human-
annotated resources to better reflect real-world
use cases. These include educational materials
like lecture slides, commercial catalogs, marketing
materials, and institutional documents. We paired
these documents with human-written queries.

We have been attentive, in constructing JVDR, to
the lack of diversity that often plagues information
retrieval benchmarks. We cannot commission
human-annotated datasets for everything and have
had recourse to generative AI to fill in the gaps.

We obtained a number of datasets from primarily
European sources containing scans of historical,
legal, and journalistic documents in German,
French, Spanish, Italian, and Dutch, and public
service documents and commercial catalogs in
Hindi, Russian, and other often underrepresented
languages. We used Qwen27 to generate queries for

684831c022c53b21c313b449
6See A.5 for the specific prompts.
7https://huggingface.co/collections/Qwen/

qwen2-6659360b33528ced941e557f

these documents. In several cases, we introduced
cross-language queries synthesized using advanced
multilingual LLMs, in order to better measure
cross-language retrieval.

For a comprehensive overview of the individual
benchmarks, see Appendix A.3.

6 Evaluation

Table 2 provides an overview of benchmark
averages for jina-embeddings-v4 and other
embedding models.

6.1 Text Retrieval

For MTEB and MMTEB benchmarks (Enevoldsen
et al., 2025), we used the asymmetric retrieval
adapter except for some symmetric retrieval tasks
like ArguAna,8 where we used the text matching
adapter instead. We evaluated our model on
retrieval tasks that involve long text documents
using the LongEmbed benchmark (Zhu et al., 2024).
We also tested the text matching adapter on MTEB
STS and MMTEB STS benchmarks.

Results for these benchmarks are tabu-
lated in Appendix A.1. The performance of
jina-embeddings-v4 is broadly comparable
with the state-of-the-art. For long document
performance, jina-embeddings-v4 significantly
outpaces competing models except voyage-3.

6.2 Code Retrieval

To assess performance on code retrieval, we eval-
uated the model on the MTEB-CoIR benchmark (Li
et al., 2025). The results are reported in Table A6.
jina-embeddings-v4 is competitive with the
state-of-the-art in general-purpose embedding
models, but the specialized voyage-code model
has somewhat better benchmark performance.

6.3 CLIP Benchmark

To evaluate the model’s performance on typical
text-to-image search tasks, we used the CLIP Bench-
mark.9 The results are tabulated in Appendix A.2.
jina-embeddings-v4 generally outperforms

CLIP-style models on these benchmarks, although
nllb-siglip-large performs somewhat higher
on the Crossmodal3600 benchmark (Thapliyal et al.,
2022) (see Table A8) because it supports low-
resource languages not included in training the
Qwen2.5-VL-3B-Instruct backbone model.

8https://huggingface.co/datasets/mteb/arguana
9https://github.com/LAION-AI/CLIP_benchmark
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Model JVDR ViDoRe CLIPB MMTEB MTEB-en COIR LEMB STS-m STS-en

jina-embeddings-v4 (single) 73.98 84.11 84.11 66.49 55.97 71.59 67.11 72.70 85.89
jina-embeddings-v4 (multi) 80.55 90.17

text-embedding-3-large – – – 59.27 57.98 62.36 52.42 70.17 81.44
bge-m3 – – – 55.36 58.73
multilingual-e5-large-instruct – – – 57.12 53.47 41.76
jina-embeddings-v3 47.82 26.02 – 58.58 54.33 55.07 55.66 75.77 85.82
voyage-3 – – – 66.13 53.46 67.23 74.06 68.33 78.59
gemini-embedding-001 – – – 67.71 64.35 73.11 78.35 85.29
jina-embedings-v2-code – – – 52.24
voyage-code – – – 77.33

nllb-clip-large-siglip 83.19
jina-clip-v2 40.52 53.61 81.12

colpali-v1.2 (late) 63.80 83.90
dse-qwen2-2b-mrl-v1 (dense) 67.25 85.80
voyage-multimodal-v3 (dense) 84.24

Table 2: Average Retrieval Scores of Embedding Models on Various Benchmarks.

Task Acronyms: VidoRE = ViDoRe, CLIPB = CLIP Benchmark, MMTEB = MTEB(Multilingual, v2) Retrieval Tasks, MTEB-EN
= MTEB(eng, v2) Retrieval Tasks, COIR = CoIR Code Retrieval, LEMB = LongEmbed, STS-m = MTEB(Multilingual, v2)
Semantic Textual Similarity Tasks, STS-en = MTEB(eng, v2) Semantic Textual Similarity Tasks
Average Calculation: For JVDR and ViDoRE, we calculate the average for the multilingual tasks first and consider this as a
single score before calculating the average across all tasks. Scores are nDCG@5 for JVDR and ViDoRe, Recall@5 for CLIPB,
nDCG@10 for MMTEB, MTEB-en, COIR, and LEMB, and Spearman coefficient for STS-m and STS-en.
Evaluation of Text Retrieval Models on JVDR: For evaluating text retrieval models on JVDR, we used EasyOCR (https:
//github.com/JaidedAI/EasyOCR) and the provided extracted texts from the original ViDoRe datasets.

6.4 Visually Rich Document Benchmarks
Appendix A.4 tabulates the results of evaluating
jina-embeddings-v4 on our new JVDR bench-
mark. Table A12 provides a comparison with other
models. jina-embeddings-v4 excels at visually
rich document tasks, and is currently the state-of-
the-art in both single- and multi-vector mode. These
results suggest that other models underperform on
visually rich document tasks that do not closely
resemble the ones in the ViDoRe benchmark.

6.5 Modality Gap
The so-called modality gap is dramatically re-
duced with jina-embeddings-v4 because of its
cross-model encoder. We measure the cross-modal
alignment score of a multimodal embedding model
as the average of cosine similarities of matching
pairs of image and text embeddings. Table A10
displays this score for jina-embeddings-v4 and
CLIP-style models for data sampled from the
Flickr30K,10 MSCOCO, (Lin et al., 2014) and
CIFAR-10011 datasets. These results confirm
that jina-embeddings-v4 generates a far better
aligned cross-modal embedding space than

10https://www.kaggle.com/datasets/adityajn105/
flickr30k

11https://www.kaggle.com/datasets/fedesoriano/
cifar100

CLIP-style models, as can be seen in Figure 2 in
the appendix.

7 Conclusion

We present jina-embeddings-v4, a state-of-the-
art multimodal and multilingual embedding model
designed for a wide range of tasks, including
semantic text retrieval, text-to-image retrieval,
text-to-visually-rich document retrieval, and code
search. The model achieves strong performance us-
ing single-vector representations and demonstrates
even greater effectiveness with multi-vector repre-
sentations, particularly in visually rich document
retrieval. jina-embeddings-v4 aligns representa-
tions across modalities into a single, shared seman-
tic space, sharply reducing structural gaps between
modalities compared to CLIP-style dual-tower mod-
els, enabling more effective cross-modal retrieval.

We also present JVDR, a novel benchmark for
visually rich documents that dramatically extends
the ViDoRe benchmark by including much more
diverse data types, more languages, and more kinds
of queries and semantic similarity tests. We have
made this benchmark available to the public for
future work.
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Limitations

jina-embeddings-v4 is a model that extends
Qwen2.5-VL-3B-Instruct and is limited by its
original training. As a result, its performance on
many languages is not comparable to the state-of-
the-art and it may not perform well on materials
too far outside of its training. Furthermore, highly
domain-specialized models may have significantly
better performance at specific tasks.

Although this model is theoretically capable of
embedding text and image input together, it has
not been trained for such input. It has also not
been trained for image-image retrieval or semantic
similarity, and may underperform on those tasks.

JVDR is not a rigorously representative data
collection. It is a significant expansion over
previous related benchmarks, but this is a new area
for embeddings research, and JVDR undoubtedly
has gaps and shortcomings that usage will reveal.
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A Appendix

A.1 MTEB and MMTEB

Table A1: Evaluation Results on MTEB Retrieval Tasks (nDCG@10%)

Model Arg CQG CQU CFHN FEV FiQA HPQA SCI TREC TOU AVG

jina-embeddings-v4† 67.07 57.59 42.95 34.57 87.16 46.51 69.01 21.47 80.36 52.41 55.91
jina-embeddings-v3† 54.33 58.02 43.52 43.14 89.90 47.35 64.70 19.92 77.74 55.28 55.39
jina-embeddings-v2-base-en 44.18 56.52 38.66 23.77 73.41 41.58 63.24 19.86 65.91 63.35 49.05
jina-embedding-l-en-v1 48.30 51.68 38.66 25.93 71.16 41.02 57.26 18.54 60.34 62.34 47.52
multilingual-e5-large 54.36 58.70 39.89 26.00 83.79 43.82 70.55 17.45 71.15 49.59 51.53
e5-mistral-7b-instruct 61.65 63.52 46.75 28.50 86.99 56.81 73.21 16.32 87.03 55.44 57.62
text-embedding-3-large 57.99 65.40 50.02 30.10 88.53 55.00 71.66 23.07 79.56 58.42 57.98
gemini-embedding-001 86.44 70.68 53.69 31.06 88.98 61.78 87.01 25.15 86.32 52.39 64.35

†using the text-matching adapter

Tasks: Arg: ArguAna, CQG: CQADupstackGamingRetrieval, CQU: CQADupstackUnixRetrieval,
CFHN: ClimateFEVERHardNegatives, FEV: FEVERHardNegatives, FiQA: FiQA2018,
HPQA: HotpotQAHardNegatives, SCI: SCIDOCS, TREC: TRECCOVID, TOU: Touche2020Retrieval.v3

Table A2: Evaluation Results on MMTEB Retrieval Tasks (nDCG@10%)

Model Avg AI Arg Bel Cov Hag PK LB MIR ML SD SQA SO TC STC TR TW Wiki WG

JinaV4 66.5 50.2 67.1 74.3 80.2 98.8 69.8 94.8 61.2 74.9 21.5 30.2 91.9 80.4 59.5 1.3 84.4 88.5 67.3
JinaV3 58.6 32.8 54.3 73.4 78.6 98.7 38.0 93.4 62.6 73.4 19.8 0.7 90.8 77.7 39.2 0.6 73.0 89.1 18.6
BGE-M3 55.4 29.0 54.0 78.2 77.5 98.8 59.0 90.3 69.6 74.8 16.3 7.5 80.6 54.9 21.9 1.0 37.8 89.9 41.7
CohV3 59.2 29.7 55.1 81.1 77.1 98.8 38.2 93.8 68.0 76.1 19.3 4.7 89.4 83.4 24.2 0.9 75.8 90.9 58.4
Gem001 68.1 48.8 86.4 90.7 79.1 99.3 38.5 96.0 70.4 84.2 25.2 10.3 96.7 86.3 51.1 3.0 98.0 94.2 60.5
TE3L 61.1 42.0 58.0 68.8 68.4 99.1 69.8 95.2 56.9 73.2 23.1 7.4 92.4 79.6 31.1 2.1 81.4 89.2 29.1
Voy3 66.0 42.5 61.0 76.5 88.5 98.6 94.8 94.5 57.7 75.7 21.4 10.7 94.3 80.5 49.2 1.2 85.7 89.7 67.7
VoyM2 – 45.0 61.8 – – 98.9 97.0 95.9 – – 22.5 10.2 – 80.1 – 1.4 87.3 – 39.1

Model abbreviations: JinaV4: jina-embeddings-v4, JinaV3: jina-embeddings-v3, BGE-M3: bge-m3, CohV3:
cohere-embed-multilingual-v3, Gem001: gemini-embedding-001, TE3L: text-embedding-3-large, Voy3: voyage-3, VoyM2:
voyage-multilingual-2.
Tasks: Avg: Mean nDCG@10% for all tasks, AI: AILAStatutes, Arg: ArguAna, Bel: BelebeleRetrieval, Cov: CovidRetrieval,
Hag: HagridRetrieval, PK: LEMBPasskeyRetrieval, LB: LegalBenchCorporateLobbying, MIR: MIRACLRetrievalHardNegatives,
ML: MLQARetrieval, SD: SCIDOCS, SQA: SpartQA, SO: StackOverflowQA, TC: TREC-COVID,
STC: StatcanDialogueDatasetRetrieval, TR: TempReasonL1, TW: TwitterHjerneRetrieval, Wiki: WikipediaRetrievalMultilingual,
WG: WinoGrande
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Table A3: Retrieval performance on MTEB LongEmbed (nDCG@10%)

Model Avg NaQA Needle Passkey QMSum SummScreen Wikim

jina-embeddings-v4 67.11 57.52 51.75 65.50 46.49 96.30 85.08
jina-embeddings-v3 55.66 34.30 64.00 38.00 39.34 92.33 66.02
multilingual-e5-large 40.44 24.22 28.00 38.25 24.26 71.12 56.80
multilingual-e5-large-instruct 41.76 26.71 29.50 37.75 26.08 72.75 57.79
bge-m3 58.73 45.76 40.25 59.00 35.54 94.09 77.73
cohere-embed-english-v3 42.11 25.04 30.50 38.50 23.82 75.77 59.03
text-embedding-3-large 52.42 44.09 29.25 69.75 32.49 84.80 54.16
voyage-3 74.07 54.12 57.75 94.75 51.05 97.82 88.90
voyage-3-lite 71.41 51.67 54.00 84.75 53.01 96.71 88.34
voyage-multilingual-2 79.17 64.69 75.25 97.00 51.50 99.11 87.49

Tasks: Avg: Mean nDCG@10% for all tasks, NaQA: LEMBNarrativeQARetrieval, Needle: LEMBNeedleRetrieval,
Passkey: LEMBPasskeyRetrieval, QMSum: LEMBQMSumRetrieval, SummScreen: LEMBSummScreenFDRetrieval,
Wikim: LEMBWikimQARetrieval

Table A4: STS performance on MTEB v2 (Spearman correlation %).

Model Avg BIO SICK-R STS12 STS13 STS14 STS15 STS17 STS22 STSB

jina-embeddings-v4 85.89 89.21 89.23 83.50 88.61 84.77 89.69 88.71 70.71 88.58
jina-embeddings-v3 85.82 88.69 89.62 82.44 89.49 84.95 89.32 90.01 68.45 89.43
multilingual-e5-large 81.39 84.57 80.23 80.02 81.55 77.72 89.31 88.12 63.66 87.29
bge-m3 80.61 – 79.72 78.73 79.60 79.00 87.81 87.13 67.99 84.87
cohere-embed-English-3 82.40 83.50 81.27 74.37 85.20 80.98 89.23 90.34 68.18 88.55
cohere-embed-multilingual-v3 83.05 85.01 82.18 77.62 85.16 80.02 88.92 90.09 69.63 88.79
gemini-embedding-001 85.29 88.97 82.75 81.55 89.89 85.41 90.44 91.61 67.97 89.08
text-embedding-3-large 81.44 84.68 79.00 72.84 86.10 81.15 88.49 90.22 66.89 83.56
voyage-3 78.59 87.92 79.63 69.52 80.56 73.33 80.39 86.81 69.60 79.53
voyage-large-2 82.63 89.13 79.78 72.94 83.11 77.21 85.30 88.77 – 84.78
voyage-multilingual-v2 76.98 87.11 78.97 67.30 80.09 71.98 78.07 86.52 67.02 75.79

Tasks: Avg: Mean Spearman Correlation % for all tasks, BIO: BIOSSES, STS22: STS22v2, STSB: STSBenchmark

Table A5: STS performance on MMTEB v2 (Spearman correlation %).

Model Avg Faro FinP Ind JSCK SCKR STS12 STS13 STS14 STS15 STS17 STS22 STSB STSES Sem

JinaV4 72.7 72.3 14.4 35.2 80.3 89.2 83.5 88.6 84.8 89.7 88.7 70.7 88.6 75.3 56.5
JinaV3 75.8 80.8 22.4 54.7 78.2 89.6 82.4 89.5 84.9 89.3 85.9 71.1 89.4 77.9 64.6
BGE-M3 73.0 77.8 30.4 52.1 79.2 79.7 78.7 79.6 79.0 87.8 79.7 70.0 84.9 77.5 65.4
CohV3 73.8 76.0 28.2 46.7 77.2 82.2 77.6 85.2 80.0 88.9 90.1 69.4 88.8 78.8 63.8
Gem001 78.3 86.1 28.6 62.9 85.0 82.8 81.5 89.9 85.4 90.4 88.6 71.7 89.1 81.8 73.1
TE3L 70.2 75.0 23.5 12.6 81.2 79.0 72.8 86.1 81.2 88.5 90.2 69.3 83.6 74.2 65.2
Voy3 68.3 72.5 22.5 41.6 71.8 79.6 69.5 80.6 73.3 80.4 76.2 71.9 79.5 72.5 64.7
VoyM2 68.0 74.4 27.1 35.0 75.9 79.0 67.3 80.1 72.0 78.1 77.1 69.0 75.8 76.7 64.9

Model abbreviations: JinaV4: jina-embeddings-v4, JinaV3: jina-embeddings-v3, BGE-M3: bge-m3, CohV3:
cohere-embed-multilingual-v3, Gem001: gemini-embedding-001, TE3L: text-embedding-3-large, Voy3: voyage-3, VoyM2:
voyage-multilingual-2.
Tasks: Avg: Mean Spearman Correlation % for all tasks, Faro: FaroeseSTS, FinP: FinParaSTS, Ind: IndicCrosslingualSTS,
JSCK: JSICK, SCKR: SICK-R, STS22: STS22v2, STSB: STSBenchmark, Sem: SemRel24STS
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Table A6: Performance on MTEB Code Information Retrieval (MTEB-CoIR) (nDCG@10%).

Model Avg AppsR CCSN CodeMT CodeST CodeSN CodeTO CodeTD CosQA StackO SynSQL

jina-embeddings-v4 71.59 76.08 84.05 70.60 85.06 83.69 89.34 44.19 31.48 93.45 70.45
jina-embeddings-v3 55.07 29.01 – 59.67 78.14 53.18 77.37 30.91 35.34 90.79 41.27
jina-embeddings-v2-code 52.24 16.37 83.97 44.40 68.66 59.62 75.68 27.25 41.92 89.26 46.99
cohere-embed-English-3 51.36 13.72 – 47.02 74.82 52.81 65.28 31.38 30.65 89.35 57.20
cohere-embed-mult.-v3 54.31 31.91 – 42.91 74.19 57.57 70.25 30.14 32.58 89.42 59.79
gemini-embedding-001 73.11 93.75 81.06 56.28 85.33 84.69 89.53 31.47 50.24 96.71 69.96
text-embedding-3-large 62.36 28.37 – 68.92 80.42 73.18 84.25 34.23 31.00 92.44 68.45
voyage-3 67.23 73.03 – 66.69 83.02 77.87 89.92 33.92 28.70 94.34 57.56
voyage-code-3 77.33 93.62 89.35 93.58 90.67 90.09 94.96 38.57 34.45 97.17 62.87

Tasks: Avg: Mean nDCG@10% for all tasks, AppsR: AppsRetrieval, COIR: COIRCodeSearchNetRetrieval,
CodeMT: CodeFeedbackMT, CodeST: CodeFeedbackST, CodeSN: CodeSearchNetCCRetrieval,
CodeTO: CodeTransOceanContest, CodeTD: CodeTransOceanDL, StackO: StackOverflowQA, SynSQL: SyntheticText2SQL
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A.2 CLIP

Table A7: Cross-modal (Text-to-image) retrieval performance (Recall@5%) on the CLIP benchmark.

Model Avg flickr30k mscoco_captions crossmodal3600 xtd10

nllb-clip-large-siglip 83.19 92.24 70.84 82.07 87.60
jina-clip-v2 81.12 89.84 68.35 81.43 84.87
jina-embeddings-v4 84.11 91.36 76.18 79.42 89.46

Avg: Mean Recall@5% over all 4 tasks.

Table A8: Text-to-image retrieval performance (Recall@5%) on crossmodal3600 for all supported languages.

Language jina-embeddings-v4 jina-clip-v2 nllb-clip-large-siglip

average 79.42 81.43 82.07

ar 75.75 73.56 78.92
bn 57.97 63.78 75.19
da 80.47 85.39 87.14
de 91.75 91.25 89.56
el 66.50 75.03 77.83
en 76.47 75.83 73.11
es 83.64 83.64 82.64
fi 66.67 82.83 86.42
fr 88.69 88.78 87.86
hi 47.81 55.25 60.31
id 87.41 84.22 86.31
it 87.97 88.33 85.94
ja 91.22 87.03 86.06
ko 82.19 78.81 78.75
nl 81.00 82.56 81.69
no 71.94 81.08 82.69
pl 80.86 84.00 82.72
pt 81.42 82.42 82.69
ro 84.33 89.36 90.03
ru 90.28 88.97 86.44
sv 72.58 78.06 79.33
th 83.36 81.61 81.14
tr 73.08 81.31 83.47
uk 86.28 88.56 85.44
vi 88.81 86.64 85.56
zh 86.67 78.97 76.56

Table A9: Text-to-image retrieval performance (Recall@5%) on xtd10 for all supported languages.

Language jina-embeddings-v4 jina-clip-v2 nllb-clip-large-siglip

average 89.46 84.87 87.60

de 92.10 85.70 88.30
en 93.10 89.40 89.40
es 91.50 85.90 88.20
fr 91.30 85.10 87.70
it 92.20 85.80 89.30
ko 86.30 82.10 85.20
pl 89.10 86.50 89.40
ru 91.50 81.10 83.40
tr 84.70 83.70 88.30
zh 82.80 83.40 86.80
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Table A10: Comparison of cross-modal alignment scores on 1K of random samples from each dataset.

Model Flickr30K MSCOCO CIFAR-100

OpenAI-CLIP 0.15 0.14 0.20
jina-clip-v2 0.38 0.37 0.32
jina-embeddings-v4 0.71 0.72 0.56
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Figure 2: Distribution of the cosine similarities of the paired image-text embeddings versus paired text-text embeddings
from the Flickr8K dataset. Top: OpenAI CLIP, Middle: jina-clip-v2, Bottom: jina-embeddings-v4
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A.3 Datasets in the JVDR Benchmark

Table A11: Overview of the Dataset Collection

Dataset Name Domain Document
Format

Query
Format

Number of
Queries /
Documents

Languages

airbnb-synthetic-retrieval† Housing Tables Instruction 4953 / 10000 ar, de, en, es,
fr, hi, hu, ja
ru, zh

arabic_chartqa_ar Mixed Charts Question 745 / 342 ar
arabic_infographicsvqa_ar Mixed Illustrations Question 120 / 40 ar
automobile_catalogue_jp Marketing Catalog Question 45 / 15 ja
arxivqa Science Mixed Question 30 / 499 en
beverages_catalogue_ru Marketing Digital Docs Question 100 / 34 ru
ChartQA Mixed Charts Question 996 / 834 en
CharXiv-en Science Charts Question 999 / 1000 en
docvqa Mixed Scans Question 39 / 499 en
donut_vqa Medical Scans /

Handwriting
Question 704 / 800 en

docqa_artificial_intelligence Software / IT Digital Docs Question 70 / 962 en
docqa_energy Energy Digital Docs Question 69 / 971 en
docqa_gov_report Government Digital Docs Question 77 / 970 en
docqa_healthcare_industry Medial Digital Docs Question 90 / 961 en
europeana-de-news Historic Scans / News

Articles
Question 379 / 137 de

europeana-es-news Historic Scans / News
Articles

Question 474 / 179 es

europeana-fr-news Historic Scans / News
Articles

Question 237 / 145 fr

europeana-it-scans Historic Scans Question 618 / 265 it
europeana-nl-legal Legal Scans Question 199 / 244 nl
github-readme-retrieval-
multilingual†

Software / IT Markdown
Docs

Description 16953 / 16998 ar, bn, de, en,
es, fr, hi, id, it,
ja, ko, nl pt,
ru, th, vi, zh

hindi-gov-vqa Governmental Digital Docs Question 454 / 337 hi
hungarian_doc_qa_hu Mixed Digital Docs Question 54 / 51 hu
infovqa Mixed Illustrations Question 363 / 500 en
jdocqa News Digital Docs Question 744 / 758 ja
jina_2024_yearly_book Software / IT Digital Docs Question 75 / 33 en
medical-prescriptions Medical Digital Docs Question 100 / 100 en
mpmqa-small Manuals Digital Docs Question 155 / 782 en
MMTab Mixed Tables Fact 987 / 906 en
openai-news Software / IT Digital Docs Question 31 / 30 en
owid_charts_en Mixed Charts Question 132 / 937 en
plotqa Mixed Charts Question 610 / 986 en
ramen_benchmark_jp Marketing Catalog Question 29 / 10 ja
shanghai_master_plan Governmental Digital Docs Question /

Key Phrase
57 / 23 zh, en

wikimedia-commons-documents-
ml†

Mixed Mixed Description 15593 / 15217 ar, bn, de, en,
es, fr, hi, hu,
id, it, ja, ko,
my, nl, pt, ru,
th, ur, vi, zh

shiftproject Environmental
Documents

Digital Docs Question 89 / 998 fr

stanford_slide Education Slides Question 14 / 994 en
student-enrollment Demographics Charts Question 1000 / 489 en
tabfquad Mixed Tables Question 126 / 70 fr, en
table-vqa Science Tables Question 992 / 385 en
tatqa Finance Digital Docs Question 121 / 270 en
tqa Education Illustrations Question 981 / 393 en
tweet-stock-synthetic-retrieval† Finance Charts Question 6278 / 10000 ar, de, en, es,

fr, hi, hu, ja,
ru, zh

wikimedia-commons-maps Mixed Maps Description 443 / 451 en
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†For multilingual datasets, the total number of queries and documents is the sum across all language-specific splits.

A.4 JVDR (Visual Document Retrieval) Benchmark Results

Table A12: Overview of JVDR Results

Task bm25 +
OCR

jev3 +
OCR

j-clip-
v2

colpali-
v1.2

dse-qwen2-
2b-mrl-v1

jev4-
single

jev4-
multi

Average 46.88 48.97 40.96 65.39 68.89 75.47 81.52

medical-prescriptions 38.18 38.12 15.68 66.22 38.86 80.95 97.69
stanford_slide 81.78 95.28 91.48 100.0 100.0 100.0 97.16
donut_vqa 19.39 2.59 1.46 34.12 25.31 78.60 74.08
table-vqa 55.22 63.04 36.34 80.98 85.70 86.57 89.21
ChartQA 28.39 31.47 39.73 54.45 58.38 70.88 71.80
tqa 50.11 24.40 27.80 63.03 65.35 65.44 68.46
openai-news 76.63 87.30 70.05 94.81 93.75 93.97 96.43
europeana-de-news 11.26 12.02 11.18 35.20 44.32 48.89 63.76
europeana-es-news 51.99 43.82 12.95 45.70 60.66 60.81 80.70
europeana-it-scans 39.11 38.77 16.54 58.70 54.28 58.01 73.29
europeana-nl-legal 39.38 34.24 11.30 39.13 33.12 42.77 59.82
hindi-gov-vqa 1.83 7.51 5.21 11.43 10.19 15.32 22.49
automobile_catalogue_jp 20.92 50.39 32.54 35.72 66.44 72.22 81.32
beverages_catalogue_ru 11.05 14.09 39.66 68.47 80.32 85.68 87.73
ramen_benchmark_jp 28.02 63.37 41.28 52.03 51.66 90.77 94.65
jdocqa_jp_ocr 1.64 7.85 19.94 35.68 67.00 75.63 82.42
hungarian_doc_qa 34.28 57.84 50.44 68.83 55.25 74.64 75.56
arabic_chartqa_ar 9.32 8.63 6.62 26.92 49.35 62.16 66.64
arabic_infographicsvqa_ar 13.26 13.43 50.36 34.76 71.72 85.38 93.21
owid_charts_en 66.19 62.10 57.71 78.17 84.26 92.06 92.29
arxivqa 56.73 54.41 83.41 92.54 93.33 95.44 95.44
docvqa 81.11 50.81 45.29 90.38 86.28 83.06 92.98
shiftproject 62.42 70.25 31.85 75.18 78.54 82.55 91.13
docqa_artificial_intelligence 91.68 82.98 66.52 96.09 97.52 96.43 98.04
docqa_energy 89.97 76.97 65.56 96.03 90.08 88.66 96.28
docqa_gov_report 87.20 82.72 68.84 92.92 94.19 92.03 95.97
docqa_healthcare_industry 86.44 86.88 68.13 93.14 96.14 94.62 97.51
tabfquad 45.67 80.49 47.04 89.18 92.38 95.57 95.38
mpmqa_small 85.54 67.39 59.72 88.88 81.62 80.44 91.28
jina_2024_yearly_book 87.67 85.98 77.12 95.77 93.39 94.29 98.17
wikimedia-commons-maps 5.37 5.06 20.67 27.46 33.06 40.23 53.45
plotqa 61.13 51.44 24.05 70.58 75.99 77.48 78.75
MMTab 74.82 74.06 44.54 84.66 86.04 86.08 90.03
CharXiv-en 46.85 41.47 56.28 79.64 83.86 83.00 87.66
student-enrollment 1.05 1.30 0.70 3.95 4.09 8.04 11.55
tatqa 75.62 49.88 44.23 82.57 80.97 80.14 92.76
shanghai_master_plan 12.69 92.67 75.28 88.87 92.56 95.53 97.41
europeana-fr-news 24.55 23.69 16.43 30.33 38.23 36.66 50.16
infovqa 73.61 75.09 63.38 87.53 92.64 92.16 96.69

Models: bm25+OCR: BM25 with EasyOCR, jev3
+ OCR: jina-embeddings-v3 with EasyOCR, colpali-v1.2: ColPALI-v1.2, dse-qwen2- 2b-mrl-v1: DSE-QWen2-2b-MRL-V1,
je4-single: jina-embeddings-v4 single-vector, jev4-multi: jina-embeddings-v4 multi-vector
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Table A13: Retrieval performance on ViDoRe (nDCG@5%).

Model Avg AQA DVQA InfoVQA Shift AI Energy Gov Health TabFQ TQA

OCR + jina-embeddings-v3 26.02 26.31 12.62 32.79 14.18 22.84 27.47 31.16 45.78 44.54 2.53
jina-clip-v2 53.61 68.33 27.62 60.60 34.12 66.55 64.69 67.47 68.38 46.89 31.43
voyage-multimodal-3 84.20 84.90 55.60 85.40 78.70 94.50 89.50 96.00 95.10 92.80 69.90
colpali-v1.2 83.90 78.00 57.20 82.80 79.10 98.10 95.20 94.80 96.70 89.70 68.10
dse-qwen2-2b-mrl-v1 85.80 85.60 57.10 88.10 82.00 97.50 92.90 96.00 96.40 93.10 69.40
OCR + bm25 65.50 31.60 36.80 62.90 64.30 92.80 85.90 83.90 87.20 46.50 62.70
siglip-so400m-patch14-384 51.40 43.20 30.30 64.10 18.70 62.50 65.70 66.10 79.10 58.10 26.20
jina-embeddings-v4 (single) 84.11 83.57 50.54 87.85 84.07 97.16 91.66 91.48 94.92 94.48 65.35
jina-embeddings-v4 (multi) 90.17 88.95 59.98 93.57 92.35 99.26 96.76 96.95 98.39 95.13 80.34

Tasks: Avg: Mean nDCG@5% over all tasks, AQA: ArxivQA, Shift: Shift Project, DVQA: DocVQA, InfoVQA: InfographicVQA,
AI: Artificial Intelligence, Gov: Government Reports, Health: Healthcare Industry, TabFQ: TabFQuad, TQA: TAT-DQA

Table A14: Retrieval performance on ViDoRe V2 (nDCG@5%).

Model Avg Bio ESG-En ESG-Multi Econ

colpali-v1.2 50.7 54.1 54.3 50.7 43.7
jina-embeddings-v4 (single) 50.4 57.0 52.6 39.5 52.6
jina-embeddings-v4 (multi) 58.2 60.9 65.1 51.8 55.1

Tasks: Avg: Mean nDCG@5% over all tasks, Bio: MIT Biomedical Multilingual, ESG-En: ESG Restaurant Human English,
ESG-Multi: ESG Restaurant Synthetic Multilingual, Econ: Economics Macro Multilingual.

Table A15: Wikimedia Commons Retrieval Benchmark Results

Language bm25 +
OCR

jev3 +
OCR

j-clip-
v2

colpali-
v1.2

dse-
qwen2-
2b-mrl-
v1

jev4-
single

jev4-
multi

Average 21.99 37.43 48.63 33.60 58.67 66.04 75.63

Arabic (ar) 19.62 38.40 45.85 28.40 63.06 71.41 81.81
Bengali (bn) 22.93 44.55 49.37 26.63 52.89 66.98 76.41
German (de) 12.74 39.58 52.87 40.36 62.99 70.21 80.86
English (en) 36.45 45.24 56.58 64.98 70.23 73.55 81.66
Spanish (es) 12.75 46.10 54.85 41.34 66.43 71.68 80.82
French (fr) 15.59 36.06 35.73 43.93 41.32 53.58 59.42
Hindi (hi) 16.73 36.94 48.42 18.02 50.94 62.64 71.77
Hungarian (hu) 25.38 33.88 44.42 12.67 52.35 65.86 76.00
Indonesian (id) 28.79 39.48 50.85 40.46 62.03 66.02 73.72
Italian (it) 19.63 37.98 49.77 34.76 60.05 63.96 73.68
Japanese (jp) 21.41 30.43 44.03 28.83 63.71 66.50 77.13
Korean (ko) 34.98 35.24 47.61 29.82 68.37 71.45 81.77
Burmese (my) 22.84 29.45 54.36 10.28 37.61 56.58 65.01
Dutch (nl) 14.90 39.89 50.40 52.29 65.09 68.58 78.94
Portuguese (pt) 23.32 45.85 54.28 51.30 67.53 69.04 78.85
Russian (ru) 16.82 38.95 49.34 31.88 64.44 68.86 80.70
Thai (th) 30.00 29.64 46.25 39.13 56.41 61.68 71.02
Urdu (ur) 13.64 32.73 36.52 9.45 38.76 49.76 62.17
Vietnamese (vi) 32.40 39.80 54.59 43.72 64.62 73.30 80.24
Chinese (zh) 18.82 28.41 46.45 23.82 64.51 69.23 80.58
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Table A16: GitHub Readme Retrieval Benchmark Results

Language bm25 +
OCR

jev3 +
OCR

j-clip-
v2

colpali-
v1.2

dse-
qwen2-
2b-mrl-
v1

jev4-
single

jev4-
multi

Average 50.11 65.14 39.06 72.91 72.24 85.57 85.69

Arabic (ar) 27.49 27.98 31.02 55.19 55.95 75.02 75.26
Bengali (bn) 1.29 28.27 26.96 49.25 47.30 65.70 66.08
German (de) 60.11 84.58 45.46 84.15 80.62 91.09 91.35
English (en) 87.43 91.67 48.69 91.10 90.69 96.94 97.34
Spanish (es) 78.57 83.31 43.35 84.02 78.70 89.60 90.19
French (fr) 77.55 83.54 42.42 83.73 79.11 90.25 90.45
Hindi (hi) 2.72 48.08 28.55 51.22 46.49 69.31 70.98
Indonesian (id) 78.05 82.46 38.59 79.67 74.57 88.42 88.62
Italian (it) 78.83 86.54 44.26 85.31 80.81 91.76 91.41
Japanese (jp) 14.46 63.20 42.02 69.02 75.42 89.74 90.80
Korean (ko) 40.01 35.23 37.87 64.16 68.83 87.04 86.89
Dutch (nl) 76.52 86.36 43.25 84.10 82.85 92.83 91.37
Portuguese (pt) 80.33 84.46 43.88 85.00 80.09 91.43 91.47
Russian (ru) 39.78 50.86 37.04 78.16 78.92 89.51 88.61
Thai (th) 1.47 36.67 37.62 65.29 65.45 77.61 76.67
Vietnamese (vi) 66.70 79.67 37.14 70.05 68.20 86.90 86.94
Chinese (zh) 40.52 54.53 35.89 60.05 74.05 81.44 82.26

Table A17: Tweet Stock Retrieval Benchmark Results

Language bm25 +
OCR

jev3 +
OCR

j-clip-
v2

colpali-
v1.2

dse-
qwen2-
2b-mrl-
v1

jev4-
single

jev4-
multi

Average 22.30 42.77 55.36 76.36 62.76 78.10 85.34

Arabic (ar) 0.38 1.67 49.36 77.31 52.73 66.15 77.66
German (de) 48.27 66.86 52.49 73.53 57.35 79.38 85.63
English (en) 51.38 63.66 48.35 77.13 63.47 77.92 85.36
Spanish (es) 54.28 63.44 53.44 79.02 62.57 78.68 84.62
French (fr) 51.69 64.76 54.94 76.91 62.17 78.65 85.27
Hindi (hi) 0.08 0.08 88.55 93.39 97.00 97.46 96.50
Hungarian (hu) 15.55 62.31 52.30 71.06 58.17 80.09 85.01
Japanese (jp) 0.40 47.80 54.74 70.00 57.76 77.04 85.67
Russian (ru) 0.47 3.07 47.08 70.72 57.43 76.33 83.11
Chinese (zh) 0.45 54.04 52.30 74.54 58.94 69.33 84.55

Table A18: AirBnB Retrieval Benchmark Results

Language bm25 +
OCR

jev3 +
OCR

j-clip-
v2

colpali-
v1.2

dse-
qwen2-
2b-mrl-
v1

jev4-
single

jev4-
multi

Average 7.20 1.13 2.13 10.42 11.10 8.18 37.51

Arabic (ar) 1.10 0.40 0.47 3.06 3.64 2.20 6.20
German (de) 4.03 0.71 5.54 20.17 15.09 9.27 41.94
English (en) 48.39 1.70 4.83 23.26 12.94 13.33 64.17
Spanish (es) 6.25 0.18 2.10 18.06 8.61 9.11 39.84
French (fr) 3.86 2.00 2.05 10.86 11.87 8.70 30.55
Hindi (hi) 0.16 0.86 0.82 3.19 4.93 4.05 17.44
Hungarian (hu) 5.58 0.69 3.01 7.34 11.10 6.69 27.30
Japanese (jp) 0.36 1.53 0.54 3.44 14.91 7.63 45.65
Russian (ru) 1.67 1.39 0.88 13.16 13.61 8.66 40.80
Chinese (zh) 0.58 1.84 1.04 1.62 14.28 12.14 61.19

A.5 Data Preparation Prompts
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You are an assistant specialized in Multimodal RAG tasks.

The task is the following: given an image from a pdf page, you will have to generate questions that
can be asked by a user to retrieve information from a large documentary corpus.

The question should be relevant to the page, and should not be too specific or too general. The
question should be about the subject of the page, and the answer needs to be found in the page.

Remember that the question is asked by a user to get some information from a large documentary
corpus that contains multimodal data. Generate a question that could be asked by a user without
knowing the existence and the content of the corpus.

Generate as well the answer to the question, which should be found in the page. And the format of
the answer should be a list of words answering the question.

Generate at most THREE pairs of questions and answers per page in a dictionary with the following
format, answer ONLY this dictionary NOTHING ELSE:

{
"questions": [

{
"question": "XXXXXX",
"answer": ["YYYYYY"]

},
{

"question": "XXXXXX",
"answer": ["YYYYYY"]

},
{

"question": "XXXXXX",
"answer": ["YYYYYY"]

}
]

}
where XXXXXX is the question and ['YYYYYY'] is the corresponding list of answers that could be as

long as needed.

Note: If there are no questions to ask about the page, return an empty list. Focus on making
relevant questions concerning the page.

Here is the page:
<file source="{{ (path + '/' if path else '') + image }}"/>

We use this prompt to generate questions for document images that do not have related text values that can
be used to construct text-document pairs. This prompt follows the same formulation as the one introduced
in Faysse et al. (2025)

Figure 3: Prompt for generating questions for visually-rich documents
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Your task is to categorize each search query into one of the following two classes: VALID or INVALID
.

Criteria for VALID queries:
1. VALID queries should not be vague or ambiguous, they must provide enough context for search

outside a specific set of documents.
2. VALID queries should not depend on specific documents, charts, tables, but can mention known

entities (like individuals, institutions, etc.).

Queries that do not meet the given criteria should be classified as INVALID.

Format for response:
Query: "..."
Class: VALID/INVALID
Explanation: "..."

Examples for reference:

Query: "How are concerns logged and tracked throughout the process?"
Class: INVALID
Explanation: This query does not contain enough information, it is not clear what "process" is

being referenced.

Query: "For a married couple filing jointly, what is the withholding amount according to the Tax
Withholding table?"

Class: INVALID
Explanation: This query depends on a specific "Tax Withholding" table.

Query: "What is the role of Gnther Oberhofer at Conrad Electronic?"
Class: VALID
Explanation: This query provides enough context by asking about a specific person at a known

company.

Query: "Under what circumstances might the store send emails to customers?"
Class: INVALID
Explanation: This query is too vague because it does not specify which store is being referred to.

Query: "What is the premise of the story in Star Divide Ascension Series Book 2?"
CLASS: VALID
Explanation: This query provides enough context for a search by specifying the title of a

particular book within a series.

Query: "What action will be taken regarding the trading of BROKEN HILL PROSPECTING LIMITED's
securities?"

Class: INVALID
Explanation: The query lacks context such as timeframe, specific events, or responsible entities,

making it vague.

Query: "What is the purpose of Tallan's Accessible Web Portal?"
Class: VALID
Explanation: This query inquires the purpose of a well known portal.

Query: "What are some examples of how pupils at Doncaster School for the Deaf are involved in
enrichment opportunities?"

Class: VALID
Explanation: This query provides enough context for a search as it specifies a particular school (

Doncaster School for the Deaf).

Using the guidelines and format provided above, categorize the following query: "{{ query }}".

We use this prompt to filter out underspecified or document-dependent questions. It ensures that only
contextually self-contained queries—those not assuming prior knowledge of a specific document—are
retained. This filtering is necessary in datasets with synthetic questions, where question–document relevance
is annotated based on the generation source only.

Figure 4: Prompt for filtering questions
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Abstract

In recent years, large language models (LLMs)
have demonstrated significant potential across
various natural language processing (NLP)
tasks. However, their performance in domain-
specific applications and non-English lan-
guages remains less explored. This study in-
troduces a novel Romanian-language dataset 1

for multiple-choice biology questions, carefully
curated to assess LLM comprehension and rea-
soning capabilities in scientific contexts. Con-
taining approximately 14,000 questions, the
dataset provides a comprehensive resource for
evaluating and improving LLM performance in
biology.

We benchmark several popular LLMs, analyz-
ing their accuracy, reasoning patterns, and abil-
ity to understand domain-specific terminology
and linguistic nuances. Additionally, we per-
form comprehensive experiments to evaluate
the impact of prompt engineering, fine-tuning,
and other optimization techniques on model
performance. Our findings highlight both the
strengths and limitations of current LLMs in
handling specialized knowledge tasks in low-
resource languages, offering valuable insights
for future research and development.

1 Introduction

Large language models (LLMs) have achieved im-
pressive results across a wide range of natural lan-
guage processing (NLP) tasks. However, their per-
formance often degrades in specialized domains
and non-English languages, making Romania’s rich
tradition in biology an ideal context for evaluat-
ing LLMs’ scientific reasoning in a relatively low-
resource setting.

To rigorously examine and ultimately im-
prove LLM competence on such domain-specific
tasks, we created a Romanian-language dataset of
multiple-choice biology questions. The dataset was

1RoBiology Dataset - https://huggingface.co/
datasets/RoLLMHub/RoBiologyDataChoiceQA

developed to assess and enhance LLM performance
on authentic Romanian biology tests. It enables the
evaluation of model accuracy in a realistic multiple-
choice setting and can also be used to fine-tune
LLMs on domain-specific Romanian biology ter-
minology.

Our dataset comprises questions from two pres-
tigious national sources: the Romanian Biology
Olympiad and medical school admission examina-
tions. The Olympiad is the country’s largest biol-
ogy competition, targeting middle- and high-school
students, while medical entrance exams rigorously
assess pre-university candidates on foundational
biological knowledge. Together, these sources pro-
vide a comprehensive and challenging collection
of questions, covering a broad range of biological
topics, difficulty levels, and linguistic complexity.

This study goes beyond simple benchmarking.
We conduct extensive experiments to explore how
various factors such as prompt engineering strate-
gies, model origin, and domain-specific fine-tuning
influence model performance. Our statistical anal-
yses provide insights into how well LLMs grasp
Romanian biological concepts, reveal common fail-
ure patterns, and highlight differences across model
types.

Our contributions are threefold: (1) we intro-
duce a carefully curated Romanian-language biol-
ogy dataset suitable for benchmarking and domain
adaptation; (2) we assess the capabilities of leading
LLMs in scientific reasoning within a low-resource
language setting, building on previous work that
shows persistent challenges in this area (Huang and
Chang, 2023); and (3) we present an in-depth anal-
ysis of performance variation across experimental
conditions, offering insights that can inform future
model development and deployment in specialized
domains.

We aim to encourage research on LLMs for non-
English and domain-specific tasks, advancing NLP
for educational and scientific contexts.
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2 Related work

Biomedical question-answering (QA) datasets have
played a crucial role in advancing domain-specific
language models. PubMedQA (Jin et al., 2019)
introduced a large-scale English-language biomed-
ical QA dataset with 1,000 expert-annotated,
61,200 unlabeled, and 211,300 artificially gen-
erated yes/no/maybe questions. While valuable
for scientific text comprehension, it does not in-
clude multiple-choice questions, which require
more complex reasoning over structured informa-
tion.

A more relevant effort is MedQA (Jin et al.,
2021), an open-domain multiple-choice QA dataset
collected from professional medical board exams.
MedQA covers three languages — English (12,723
questions), simplified Chinese (34,251 questions),
and traditional Chinese (14,123 questions) — and
requires models to select the correct answer from
multiple options rather than extracting answers di-
rectly from text. Similarly, MedMCQA (Pal et al.,
2022) is an English-language multiple-choice QA
dataset designed for medical entrance exams, con-
taining over 194,000 questions. Unlike MedQA,
which focuses on board exam questions, MedM-
CQA emphasizes a wide range of medical knowl-
edge, testing over ten different reasoning abilities.

Efforts to develop language models specialized
for Romanian biology are quite limited. One
notable contribution is RoQLlama, a lightweight
Romanian-adapted language model designed to en-
hance NLP performance in Romanian-language
applications (Dima et al., 2024). RoQLlama was
evaluated using the RoMedQA dataset (Crăciun,
2023), a specialized collection of Romanian medi-
cal school examination questions.

Our work surpasses this effort by introducing a
carefully curated and extended Romanian-language
biology dataset extracted from multiple sources,
going beyond single-choice questions. We also
fine-tune promising models and perform multiple
benchmarks. Fine-tuning on our dataset signifi-
cantly improves LLM performance, making it a
valuable resource for enhancing language models
in biology. By focusing on this domain, our dataset
diversifies the range of available domain-specific
resources for Romanian, complementing previous
contributions in the medical field and aiming for
deeper reasoning.

Guidance on creating and documenting high-
quality NLP datasets is essential for ensuring the

utility of research outcomes. The dataset documen-
tation framework proposed by Gebru et al., 2018
provided foundational insights for structuring the
description and documentation of our dataset.

The use of LLMs in biology has shown signifi-
cant potential for transforming research in the life
sciences. Bhattacharya et al., 2023 explored the
evolution of LLMs from textual comprehension
tools to multimodal systems capable of analyzing
complex biological data and contributing to ad-
vances in molecular biology and medicine. Their
findings highlight the importance of LLMs in han-
dling scientific reasoning and specialized terminol-
ogy, which is central to our work.

3 Dataset Composition
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Figure 1: The data distribution based on question type
and collection sources details.

Artificially synthesized genes can be used for the production of:

1. Anti-hemophilic factor
2. Plasminogen
3. Erythropoietin
4. Growth hormone

IX - Group Choice

Viral RNA is:

A. Enveloped by a lipid bilayer in the case of the HIV retrovirus
B. Single-stranded in bacteriophage phi X 174 and the rabies virus
C. Protected by a capsid located over an envelope in the influenza virus
D. Linear in TMV (Tobacco Mosaic Virus) and circular in the Cauliflower
Mosaic Virus

XII - Single Choice

Hypoglycemia can cause:

1. The release of a neurosecretion under the influence of impulses
transmitted through long preganglionic fibers

2. Increased permeability of the adipocyte and hepatocyte
membranes to glucose

3. Mobilization of fatty acids from adipose tissue under the
influence of the free fraction of hydrocortisone

4. Stimulation of gluconeogenesis from amino acids and cholesterol
under the influence of glucagon

The patellar reflex arc:

A. Can be triggered by stimulating the quadriceps femoris muscle
B. Involves multiple interneurons at the level of the spinal cord
C. Is a defensive reflex, carried out by withdrawing a body segment
D. Has its sensory neuron located in the ganglion on the posterior
root of the spinal nerve

XI - Group ChoiceX - Single Choice

Figure 2: Examples of questions extracted and trans-
lated from the dataset
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3.1 Olympiads

The Romanian National Biology Olympiad is a
multiple-choice-based competition structured in
multiple stages, covering all high school grades and
occasionally including middle school. A typical
Olympiad exam consists of three primary question
categories:

• Single-choice questions – Typically, 30 ques-
tions with a single correct answer.

• Group-choice questions – Another 30 ques-
tions, where each answer can be one of five
predefined lettered combinations (further de-
tails in A).

• Complex single-choice questions – A set
of 10 advanced problems requiring analyti-
cal problem-solving to determine the correct
answer.

There are exceptions to this standard format, par-
ticularly in older exams or localized stages, where
the structure may differ, featuring only single-
choice questions or a varying number of items.

Olympiad data is collected exclusively from
PDF documents available online, typically hosted
on news websites, archived school portals, or dedi-
cated Olympiad platforms such as olimpiade.ro.

As shown in Figure 4, we extract only single-
choice and group-choice questions from multi-
ple grades, covering various competition stages
and years (Figure 3). Given that the source doc-
uments are predominantly text-based PDFs (with
occasional Word files, which we manually convert
into PDFs), PyMuPDF4LLM (Artifex, 2024) is
used to extract content in Markdown format. The
extracted text is subsequently parsed into question
instances using regular expressions.

A major challenge in this process is word frag-
mentation due to inconsistencies in document for-
matting. To address this, we employ Gemini 1.5
Flash and Gemma2 9B Instruct for grammar cor-
rection, followed by manual validation. Despite
instructions to preserve original meaning, models
often altered the semantics, particularly by cor-
recting intentionally wrong answer options. This
suggests that LLMs exhibit a tendency to favor
logically correct statements, indicating that they
have either encountered similar data during train-
ing or have developed an implicit understanding of
correctness through their learned representations.
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Figure 3: How many questions were collected from
each year and of which type.

3.2 College Admission

Several Romanian universities use multiple-
choice-based admission exams, with each univer-
sity providing a dedicated question book (Matusz
et al., 2020; Costache et al., 2020; Opincariu et al.,
2018). These books, authored by university pro-
fessors, serve as the primary study resource for
candidates, as the actual exam questions are guar-
anteed to be similar to them. Our dataset includes
approximately 6,000 questions collected from the
admission preparation books of three universities
(Figure 4).

Unlike the Olympiad materials, these documents
are scanned books in image-based PDFs, ne-
cessitating Optical Character Recognition (OCR).
The lack of Romanian-specialized OCR tools
presents a challenge. While docTR (Liao et al.,
2023) , a library known for strong English OCR
performance, was tested, it proved inadequate for
Romanian text. The most viable alternative was
Tesseract OCR, optimized with OpenCV-based
noise removal preprocessing (Kotwal et al., 2021).
However, this approach introduced challenges:
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• Inconsistent noise removal – Some tech-
niques improved OCR accuracy for one page
while degrading performance on others.

• Language constraints – The texts, although
in Romanian, contain Greek letters used
for specialized terminology (e.g., α, β, γ).
While Tesseract supports multiple languages,
enabling both Romanian and Greek led to
higher misinterpretation rates rather than
improved detection of Greek symbols.

To mitigate these issues, we explored AI-based
OCR solutions, relying on context-aware process-
ing for improved accuracy. The Gemini Flash 1.5
model provided better results in recognizing text
within scanned images. However, occasional hal-
lucinations—such as unintended duplication of
questions—necessitated manual verification to
ensure proper extraction.

3.3 Deduplication
When identical questions with the same answer op-
tions appear across different tests or problem sets,
we assign them a shared dupe_id, a unique UUID
identifying a group of duplicates. Each group con-
tains at least two instances. A question is consid-
ered a duplicate if both its text and answer options
match, regardless of option order, which, as a mat-
ter of fact, could impact performance (Pezeshkpour
and Hruschka, 2024). To detect slight rephrasings,
we compare text embeddings generated with jina-
embeddings-v3 (Sturua et al., 2024).

Rather than removing duplicates, we mark them,
as it is unclear which instance should be deleted.
Duplication data may also reveal relationships
between different subjects. While duplicates re-
main in the dataset, users can filter them using the
dupe_id if needed. We ensure that no duplicates
exist between the training, validation, and test splits
to maintain dataset integrity.

3.4 Data Splits
The dataset is split into 11,347 training, 1,374 val-
idation, and 1,388 test questions. Stratified sam-
pling was applied across grades, difficulty tiers
(national, regional, local), and institutional sources
to ensure balanced and representative coverage.

Validation and test sets were constructed via a
multi-step grade- and stage-based procedure, de-
tailed in Appendix A. University-level questions
were selected chapter-wise from multiple Roma-
nian medical schools, as outlined in the Appendix.
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Figure 4: Duplication groups by stage. Overlaps indi-
cate that the same question appears across all the par-
ticipating stages. There is no duplicate question to be
present in both olympiad and university subjects at the
same time.

Originally designed with 1,400 questions each,
the validation and test sets were slightly reduced
following a final round of manual deduplication.
Removed duplicates were reassigned to the training
set to maintain evaluation integrity.

4 Experiments

We conducted comparisons and benchmarks across
several dimensions, including zero-shot vs. few-
shot settings, group-choice heuristics, and com-
bined vs. individual predictions. To ensure repro-
ducibility, all experiments were run with temper-
ature set to zero. These experiments were carried
out using local hardware, a Google Colab Pro sub-
scription, and various API/runtime services, with
a total cost of $48.73. Although we do not have
an exact runtime estimate, the work was completed
over 2–3 months of intermittent activity.

4.1 Benchmarking on
RoBiologyDataChoiceQA

Acknowledging good benchmarking practices ex-
plored by Liang et al., 2023, we evaluate multi-
ple LLMs on the test split of the RoBiologyDat-
aChoiceQA dataset and report their accuracies in
Table 1. The selected models include those offer-
ing accessible API usage as well as competitive
open-source Romanian models. Details regarding
the prompts used can be found in the Appendix
(B).

Despite the dataset being in Romanian, the
Romanian-trained models (Rogemma2, Rollama3-
8B-Instruct-Imat, and Romistral-7B-Instruct) did
not show a significant advantage over multilingual
or primarily English-trained models. Given their
explicit training on Romanian (Masala et al., 2024),
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we expected them to perform better due to their
stronger grasp of Romanian syntax and seman-
tics. However, the observed improvements were
marginal, suggesting that language understanding
alone is not enough to solve this task. Instead, per-
formance appears to be primarily constrained by
the models’ ability to reason about biological con-
cepts and apply domain knowledge rather than by
linguistic factors.

Studies (Nguyen et al., 2025; Gao et al., 2024)
have shown that running the same models from
different providers could yield slightly different ac-
curacies in some contexts. This was not our case,
since doing this resulted in nearly identical accu-
racies, with variations of at most 0.04. Therefore,
we do not specify the source for each model. We
conduct evaluations both locally and via external
providers.

Model Single Acc. Group Acc. Multi Acc.
gemini-2.0-flash 0.733 0.524 0.585
gemini-2.0-flash-exp 0.719 0.537 0.539
qwen-max-2025-01-25 0.699 0.472 0.573
llama-3.1-405B-Instruct-Turbo 0.685 0.426 0.464
gemini-1.5-flash 0.668 0.419 0.406
DeepSeek-V3 0.665 0.453 0.474
llama-3.3-70B-Instruct-Turbo 0.629 0.413 0.378
rogemma2-9b-instruct (Q8) 0.543 0.298 0.198
gemma2-9b-it 0.529 0.346 0.226
llama3-8b-instruct 0.405 0.250 0.093
phi-3.5-mini-instruct (F32) 0.379 0.208 0.080
eurollm-9b-instruct (F16) 0.384 0.220 0.102
rollama3-8b-instruct-imat (FP16) 0.371 0.235 0.102
romistral-7b-instruct (Q8) 0.371 0.252 0.077
mistral-7b-instruct-v0.1 (Q8) 0.221 0.199 0.046
Baseline 0.245 0.200 0.032

Table 1: Accuracies of models benchmarked on zero
shot.

Running the models with a few-shot approach
did not yield substantial improvements (phe-
nomenon also found in Hendrycks et al., 2021
and Kojima et al., 2023); in fact, some models
performed worse, as shown in Figure 5. Notably,
certain LLMs exhibited a tendency to overfixate
on specific letters after being presented with ex-
amples—interestingly, not necessarily the ones in-
cluded in the prompt. The few-shot examples were
provided to the LLMs within the system prompt,
as described in Appendix B.

4.2 Benchmarking by source type

We compare model performance on Olympiad data
versus university admission data. As shown in Fig-
ure 2, models tend to perform better on university-
level questions with a single correct answer, sug-
gesting they are more accustomed to medical ad-
mission data than to biology Olympiad questions.
Alternatively, this may indicate that olympiad ques-
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Figure 5: Accuracies of some models over few shot
prompting.

Multiple Single Acc. Multiple Acc.
Olympiad UMF Brasov UMF Timisoara UMF Cluj

gemini-2.0-flash-exp 0.704 0.824 0.615 0.415
qwen-max-2025-01-25 0.679 0.838 0.655 0.439
llama-3.1-405B-Instruct-Turbo 0.665 0.824 0.565 0.301
gemini-1.5-flash 0.658 0.743 0.485 0.276
DeepSeek-V3 0.650 0.770 0.540 0.366
llama-3.3-70B-Instruct-Turbo 0.611 0.757 0.445 0.268
rogemma2-9b-instruct (Q8) 0.531 0.622 0.230 0.146
gemma2-9b-it 0.502 0.716 0.255 0.179
llama3-8b-instruct 0.409 0.378 0.130 0.033
eurollm-9b-instruct (F16) 0.393 0.270 0.110 0.073
phi-3.5-mini-instruct (F32) 0.387 0.324 0.085 0.073
romistral-7b-instruct (Q8) 0.374 0.324 0.085 0.065
rollama3-8b-instruct-imat (FP16) 0.372 0.365 0.120 0.073
mistral-7b-instruct-v0.1 (Q8) 0.210 0.297 0.055 0.033
Baseline 0.250 0.200 0.032 0.032

Table 2: Accuracies of models, separated by source.

tions are potentially more challenging, requiring
deeper knowledge and reasoning skills.

In Figure 2, we highlight instances where
Olympiad scores surpass university admission
scores. Even in these cases, the difference is gen-
erally small. However, when university admission
scores are higher, the margin tends to be larger.

Comparing the difficulty levels of the three uni-
versities, we observe that the UMF Bras, ov exam
appears to be the easiest, as it consists solely of
single-answer questions. In contrast, the UMF
Timis, oara and UMF Cluj exams contain multiple-
answer questions, making them more challenging
and not directly comparable to UMF Bras, ov. Ad-
ditionally, UMF Cluj’s exam seems to be the most
difficult, as all models achieve higher scores on
UMF Timis, oara’s admission questions. This aligns
with the common perception that among the three
universities analyzed, UMF Cluj has the most diffi-
cult admission exam, followed by UMF Timis, oara,
while UMF Bras, ov is considered the easiest.

4.3 Finetuning Gemini 1.5 Flash

Google AI Studio allows fine-tuning of the Gemini
1.5 Flash model with custom data by providing a
CSV file where one column serves as the input and
another as the model’s output. Using the training
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split of the RoBiologyDataChoiceQA dataset, we
set the input as the benchmarking prompt, replacing
%question-text% with the formatted question entry.
The output corresponds to the correct answer field
without additional formatting.

Once training is complete, we evaluate the fine-
tuned model on the test split. We train multiple ver-
sions with different parameter settings (e.g., num-
ber of epochs, batch size) as detailed in Figure 6.
Our fine-tuned models achieve new state-of-the-art
accuracies, as shown in Table 3.
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Figure 6: Accuracies of fine-tuned versions of Gemini
1.5 Flash.

Model Single Accuracy Group Accuracy Multiple Accuracy
gemini-2.0-flash 0.733 0.524 0.585
tuned_batch16_epochs5 0.752 0.627 0.486
tuned_batch16_epochs3 0.738 0.642 0.505
tuned_batch16_epochs1 0.733 0.614 0.486
tuned_batch32_epochs5 0.728 0.608 0.471
tuned_batch32_epochs3 0.748 0.629 0.533
tuned_batch32_epochs2 0.750 0.633 0.505
tuned_batch32_epochs1 0.745 0.637 0.464
tuned_batch16_epochs2 0.748 0.639 0.505
tuned_batch64_epochs3 0.733 0.612 0.517
gemini-1.5-flash 0.668 0.419 0.406

Table 3: Accuracies of fine-tuned Gemini 1.5 Flash
models

4.4 Finetuning Gemma 2 9B Instruct

After successfully improving Gemini’s perfor-
mance through fine-tuning, we extend this ap-
proach to a smaller model, Gemma 2 9B Instruct,
and observe similar accuracy gains, as shown in
Figure 7.

For fine-tuning, we employ the LoRA tech-
nique (Hu et al., 2021) via the Unsloth framework

0 1000 2000 3000 4000
Steps

0.54

0.56

0.58

0.60

0.62

0.64

Ac
cu

ra
cy

Single-Choice
Single-Choice Actual
Single-Choice Trend

0 1000 2000 3000 4000
Steps

0.35

0.40

0.45

0.50

0.55

Group-Choice
Group-Choice Actual
Group-Choice Trend

0 1000 2000 3000 4000
Steps

0.15

0.20

0.25

0.30

0.35

Multiple-Choice
Multiple-Choice Actual
Multiple-Choice Trend

Figure 7: Performance of Gemma 2 9B Instruct on the
test split over fine-tuning training steps.

(Daniel Han and Unsloth Team, 2023), training the
model for approximately four epochs, with 1,000
steps per epoch. Accuracy is evaluated at inter-
vals of 100 steps. While we halted training at four
epochs, the observed trend suggests that further im-
provements may still be possible, particularly for
single-choice and group-choice questions.

Single Acc. Group Acc. Multiple Acc.
gemma2-9b-it 0.529 0.346 0.226
finetune step 3700 0.641 0.570 0.291
finetune step 3900 0.645 0.547 0.365
finetune step 4100 0.653 0.532 0.365
max increase 0.124 0.186 0.139

Table 4: Best accuracies of the model during fine-tuning.

Table 4 reports the highest accuracies obtained
during fine-tuning. Compared to the initial model,
Gemma 2 9B Instruct achieves improvements of
over 12 percentage points. The fine-tuned model
attains performance comparable to larger models,
significantly narrowing the gap with Gemini 1.5
Flash on single-choice and multiple-choice ques-
tions (falling behind by only 1.5 and 4.1 percentage
points, respectively). For group-choice questions,
it outperforms all models from the initial bench-
mark, surpassing the previous state-of-the-art by
3.3 percentage points.

4.5 Treating group choice questions as
multiple choice

Inspired by Balepur et al., 2024, we hypothe-
sized that LLMs might struggle to correctly ap-
ply the grouping rules, particularly in cases where
the multiple-choice accuracy was higher. To test
this, we reformulated the questions into a multiple-
choice format, ran them as if they were multiple-
choice questions, and then manually mapped the
groupings to their respective answers.

For cases where the model produces invalid com-
binations that cannot be mapped to a valid answer,
we select the first letter (essentially randomizing
the answer). This results in a new accuracy, which
sometimes exceeds the original.

556



To further improve this accuracy, we imple-
mented heuristics instead of relying on the random
approach for invalid groups. For example, the com-
bination (1, 2) is mapped to (1, 2, 3); (1) or (3) is
mapped to (1, 3); (2, 3, 4) is mapped to (1, 2, 3, 4),
and so on. For most models, the use of heuristics
yields better results than the random selection, as
shown in Table 5.

Model Group Group As Multiple With Heuristics
gemini-2.0-flash-exp 0.537 0.449 0.499
DeepSeek-V3 0.453 0.388 0.423
llama-3.1-405B-Instruct-Turbo 0.426 0.453 0.484
gemini-1.5-flash 0.419 0.447 0.480
gemma2-9b-it 0.346 0.300 0.314
rogemma2-9b-instruct (Q8) 0.298 0.258 0.275
llama3-8b-8192 0.252 0.235 0.245
rollama3-8b-instruct-imat (FP16) 0.235 0.241 0.256
phi-3.5-mini-instruct (F32) 0.208 0.231 0.247

Table 5: The accuracies obtained on group choice ques-
tions with all strategies. Highlighting signifies a better
score with the group-as-multiple approach compared to
the initial strategy.

4.6 Accuracy by Grade

We also compare the accuracies obtained on ques-
tions, grouped by the corresponding grade level.
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Figure 8: Accuracies of models, grouped by competition
grade

As shown in Figure 8, models achieve the lowest
scores on grades X and XI, while performing better
on grades IX and XII. Performance on grade VII
falls between these extremes.

Examining the curricula for these grade levels,
we observe a correlation between subject focus and
model accuracy. Grades IX and XII emphasize
molecular biology and interactions between biolog-
ical systems, while grades X and XI focus on the
physiology and functions of biological systems (see
examples in Figure 2). Grade VII provides a broad
introduction, covering aspects of all these topics
while also including basic principles of hygiene
and health.

These results suggest that models perform better
on topics related to molecular biology and genetics
compared to those centered on the physiology of
biological systems.

4.7 Accuracy by Stage

We compare the accuracies obtained on questions
from the test split, grouped by the competition
stage in which they were presented (local, regional,
or national), and report the results in Figure 9.
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Figure 9: Accuracies of models on different competition
stages.

For both single-answer and group-choice ques-
tions, models achieve the highest scores on the
local stage, confirming that it is indeed the easiest
of the three. For single-choice questions, the ac-
curacy remains similar between the regional and
national stages, suggesting comparable difficulty
levels. However, for group-choice questions, mod-
els unexpectedly perform better on the national
stage than on the regional stage, despite the ex-
pectation that the national stage should be more
challenging.

4.8 Model Ensemble

Building on the LLM-Synergy framework pro-
posed by Yang et al. (2023), who used Majority
Weighted Voting to aggregate outputs from multi-
ple LLMs for biomedical QA, we implemented a
simplified ensemble learning strategy to enhance
model performance on our dataset. Specifically, we
created three groups of models with comparable
individual accuracies: (1) top-performing models,
(2) mid-range models, and (3) models fine-tuned
on Romanian. Each group included three models,
allowing us to use unweighted Majority Voting,
as weighting would not affect the outcome. All
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experiments were conducted under zero-shot set-
tings and computed separately for single, group,
and multiple-choice questions.

Table 6, 7, and 8 present the results of these
ensemble experiments.

Although not by a significant difference, the
Majority Voting surpassed the individual perfor-
mances on group-choice questions in all of the
chosen model subsets.

Model Single Group Multiple
gemini-2.0-flash 0.733 0.524 0.585
qwen-max-2025-01-25 0.699 0.472 0.573
llama-3.1-405B-Instruct-Turbo 0.685 0.426 0.464
All of the above combined 0.719 0.534 0.560

Table 6: The accuracy of Majority Voting compared to
the individual accuracies.

Model Single Group Multiple
DeepSeek-V3 0.665 0.453 0.474
gemini-1.5-flash 0.668 0.419 0.406
llama-3.1-405B-Instruct-Turbo 0.685 0.426 0.464
All of the above combined 0.707 0.457 0.439

Table 7: The accuracy of Majority Voting compared to
the individual accuracies.

Model Single Group Multiple
eurollm-9b-instruct (F16) 0.384 0.220 0.102
rollama3-8b-instruct-imat (FP16) 0.371 0.235 0.102
romistral-7b-instruct (Q8) 0.371 0.252 0.077
All of the above combined 0.372 0.266 0.102

Table 8: The accuracy of Majority Voting compared to
the individual accuracies.

4.9 Error Analysis
To explore common failure patterns in LLMs, we
analyzed 75 questions that were incorrectly an-
swered by all benchmarked models (24 single-
choice, 8 group-choice, 43 multiple-choice).

We presented these questions to a medical stu-
dent and observed that when asked to respond
quickly, their responses often resembled those of
the models. However, when given more time, the
student changed several responses. This indicates
a potential need for models to also ponder their
responses, which we did not sufficiently investi-
gate (using techniques like multi-turn prompting or
thinking tokens).

Beyond this, we observed that models often rely
on superficial associative reasoning. For instance,
when prompted with “Hiperglicemia poate deter-
mina o:” (“Hyperglycemia can determine a:”), mod-

els alternated between “hyposecretion of insulin”
and “hypersecretion of glucagon,” whereas the cor-
rect answer was “hyposecretion of glucocorticoids.”
We hypothesize this results from a bias toward
more frequently co-occurring hormone-glucose re-
lations in public corpora, and a lack of exposure to
nuanced clinical cases.

Models also struggle with traps involving lexical
similarity or subtle qualifiers. All failed a question
by confusing “bronhii” (bronchi) with “bronhiole”
(bronchioles). In another, most selected “gravita-
tional pull for veins located below the heart level”
as promoting venous return, an incorrect answer
due to the phrasing “below” instead of “above”.
These patterns suggest a lack of deeper contextual
reasoning.

5 Conclusion

This study introduced RoBiologyDataChoiceQA,
a novel Romanian-language dataset designed to
evaluate biology comprehension in large language
models (LLMs). Sourced from the Romanian Biol-
ogy Olympiad and medical school entrance exams,
it provides a diverse and challenging benchmark
for assessing domain-specific reasoning in a low-
resource language.

Our benchmarking experiments revealed signifi-
cant variations in model performance, highlighting
both strengths and limitations of LLMs in special-
ized tasks. While some models performed well
on structured, single-answer university questions,
their ability to handle grouped-choice and reason-
ing tasks remained inconsistent. Fine-tuning Gem-
ini 1.5 Flash and Gemma 2 9B Instruct improved
accuracy in certain cases, demonstrating that tar-
geted adaptation can be effective.

Beyond model evaluation, our study offers in-
sights into the impact of prompt engineering, fine-
tuning strategies, and dataset characteristics on
LLM performance. These findings contribute to
the broader effort of advancing NLP applications
in non-English languages and scientific domains.

Future research should focus on expanding the
dataset with fine-grained subdomain annotations,
improving OCR processing, experimenting with
other fine-tuning strategies and model architectures,
and addressing dataset biases by comparing perfor-
mance across question sources. Enhancing answer
verification through expert validation will also be
essential for benchmark reliability.
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6 Limitations

While our study provides valuable insights into
LLM performance on Romanian-language biology
questions, several limitations should be considered
when interpreting the results.

• Limited computational resources – Most
experiments were conducted using a single
NVIDIA RTX 3070 GPU (8 GB VRAM)
paired with 32 GB of system RAM, along
with external API and runtime providers. This
constrained our ability to perform large-scale
experimentation, including multiple training
runs, broader hyperparameter sweeps, and
evaluation of larger models.

• Lack of fine-grained tagging – The dataset
does not include detailed annotations distin-
guishing specific biological subdomains (e.g.,
genetics, physiology, ecology). This limits
the ability to analyze model performance at a
more granular level and identify knowledge
gaps in specialized areas.

• Potential inaccuracies in answer keys – Al-
though we rely on authoritative sources, occa-
sional ambiguities or errors in the provided an-
swer keys may affect benchmarking accuracy.
While we performed additional verification,
some uncertainties remain.

• Challenges with OCR-extracted data –
The dataset includes content extracted from
scanned PDFs, particularly for university ad-
mission exams. Despite preprocessing and
manual validation, some errors introduced by
OCR remain, potentially affecting model train-
ing and evaluation.

• Limited scope of fine-tuning experiments
While we observed improvements when fine-
tuning Gemini 1.5 Flash and Gemma 2 9B
Instruct, additional experiments with dif-
ferent architectures and training strategies
could yield further insights. Exploring other
Romanian-adapted models could provide a
broader perspective.

• Domain-specific biases in LLMs – Our
results suggest that models perform better
on university admission questions than on
Olympiad questions, likely due to differ-
ences in training data exposure. Investigating

whether this bias stems from pretraining cor-
pora, difficulty of questions, or inherent rea-
soning limitations could further refine model
evaluation.

• Language vs. Domain Effects: We do
not perform a cross-lingual evaluation (e.g.,
testing models on an English version of
the dataset or on other Romanian-language
datasets) to isolate the impact of language
from domain complexity. As such, we can-
not fully disentangle whether observed model
weaknesses stem primarily from Romanian
language handling or from the specialized na-
ture of biology. We leave this analysis to fu-
ture work.

• Potential Data Leakage: We do not explic-
itly verify whether the dataset’s questions ap-
pear in the training data of the evaluated lan-
guage models, particularly open-weight mod-
els. Due to the lack of transparency around
training corpora and the impracticality of ex-
haustively checking large-scale pretraining
data, this remains a potential source of data
leakage. While API-based models’ training
data are even less accessible, we acknowledge
that possible overlap could bias performance
results. We consider this an important caveat
and encourage future work to investigate this
aspect more thoroughly.

7 Ethical Statement

To promote transparency and responsible use, we
release the dataset under the Creative Commons
Attribution-NonCommercial 4.0 International (CC
BY-NC 4.0) license. This license allows for non-
commercial use, sharing, and adaptation with
proper attribution.

No personally identifiable or sensitive informa-
tion is included in the dataset. We encourage ethi-
cal research practices and responsible AI develop-
ment when using our dataset. However, a potential
risk is that it could inadvertently encourage the use
of LLMs in biology exams for cheating, rather than
for legitimate educational or research purposes. We
urge users to adopt responsible policies to prevent
misuse in academic settings.
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icală Universitară „Iuliu Hat,ieganu”, Cluj-Napoca,
Romania.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. MedMCQA: A Large-scale
Multi-Subject Multi-Choice Dataset for Medical do-
main Question Answering. In Conference on Health,
Inference, and Learning, volume 174 of Proceed-
ings of Machine Learning Research, pages 248–260.
PMLR.

Pouya Pezeshkpour and Estevam Hruschka. 2024.
Large language models sensitivity to the order of op-
tions in multiple-choice questions. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 2006–2017, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram,
Michael Günther, Bo Wang, Markus Krimmel, Feng
Wang, Georgios Mastrapas, Andreas Koukounas,
Nan Wang, and Han Xiao. 2024. jina-embeddings-
v3: Multilingual embeddings with task lora.

Han Yang, Mingchen Li, Huixue Zhou, Yongkang Xiao,
Qian Fang, and Rui Zhang. 2023. One LLM is not
enough: Harnessing the power of ensemble learning
for medical question answering. medRxiv.

A Datasheet

A.1 Motivation for Dataset Creation

Why was the dataset created?
The dataset was developed to assess and enhance

the performance of large language models (LLMs)
on domain-specific tasks, specifically Romanian
biology tests. It offers choice-based questions to
evaluate LLM accuracy and can also be used for
fine-tuning LLMs to understand specialized Roma-
nian biology terminology.

What (other) tasks could the dataset be used
for?

One potential application of this dataset is its
use as training data for models designed to gen-
erate multiple-choice questions. Additionally, the
dataset could be utilized for automatically assess-
ing question difficulty.

A.2 Dataset Composition

What are the instances?
The instances consist of (single, group, or multi-

ple) choice questions sourced from Romanian biol-
ogy olympiads and college admission exam books.
Each question is paired with its correct answer(s),
extracted from the corresponding answer keys. Ad-
ditional identifying information is also appended
to each instance, as detailed in the following para-
graphs.

Are relationships between instances made ex-
plicit in the data?

Yes, relationships between instances are explic-
itly marked. Using question identification meta-
data, instances can be grouped by attributes such as
source, year, grade, and stage. When identical ques-
tions with identical answer options appear across
different tests or problem sets, they are assigned a
shared dupe_id.

Duplicates are retained rather than removed for
several reasons:

• To analyze patterns of data repetition (e.g.,
identifying sources of inspiration between
tests).

• To avoid arbitrarily deciding which instance to
delete, leaving duplicate removal to the user’s
discretion.

All known duplicates are included exclusively in
the training split.

How many instances of each type are there?
The dataset contains a total of 14,109 extracted

questions:

• Single choice: 6,021

• Group choice: 3,918

• Multiple choice: 4,170

Of these, 8,021 questions are sourced from bi-
ology olympiads, while 6,088 come from college
admission books. The tests span multiple years
(2004-2024), although they are not uniformly dis-
tributed.

What data does each instance consist of?
We will explain each field:
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• question_number = an integer stored as
string; for olympiads it takes values from 1 to
80. Most tests tend to have at most 60, but the
very old ones (2004) do not quite respect the
format. As for college admissions, those take
values from 1 to 800 (not uniformly, there are
tests/chapters with random number of ques-
tions, no general rule).

• question = the question text

• type - can be one of the following:

– single-choice: indicating the question
has exactly one correct answer.

– group-choice: indicating that the answer
is a single letter, which corresponds to
a combination of options being true to-
gether:

A - if ONLY the options num-
bered by 1, 2 and 3 are correct
B - if ONLY the options num-
bered by 1 and 3 are correct
C - if ONLY the options num-
bered by 2 and 4 are correct
D - if ONLY the option num-
bered by 4 is correct
E - if ALL of the numbered
options are correct

The group choice is the only type that
has options identified by numbers, while
the others have them identified by letters.

– multiple-choice: indicating that the an-
swer is represented by any alphabetically
ordered combination of the given options.
Even though it is multiple, the answer
CAN STILL be a single letter)

• options = a list of texts (usually statements
or list of items) that in combination with the
question text can be considered true or false.
Olympiad tests have 4 options, while college
admission tests have 5.

• grade = where the test/problem set was ex-
tracted from; it takes 6 values: facultate (col-
lege), XII, XI, X, IX (highschool), VII (middle
school).

• stage = for college it is fixed on admitere (ad-
mission). For olympiad it represents the chain

of theoretical importance and difficulty: lo-
cala -> judeteana -> nationala (local -> re-
gional -> national).

• year = the year (as a string) in which the prob-
lem set/test was used in a competition

• right_answer = a letter for single-choice and
group-choice (check the explanations above)
and multiple (non-repeating) letters concate-
nated in a string with no other characters, in
alphabetical order for multiple-choice.

• source = olimpiada (Olympiad of Biology
in Romania) or, in the case of college, the
university it was taken from (currently 3 pos-
sible values: UMF Cluj, UMF Bras, ov, UMF
Timis, oara)

• id_in_source = a string that has the purpose
of further recognising the question within the
problem set it was given, in case of ambigu-
ity. Ensures uniqueness when combined with
the other fields recommended for identifying
the questions. Keep in mind that it contains
spaces.

• dupe_id = a UUID that uniquely identifies a
group of duplicated questions. The group may
contain 2 or more instances. The instance is
considered a duplicate if and only if both the
question and options are the same (not nec-
essarily in the same order for options). Two
texts are considered the same if they are iden-
tical/use synonyms for common words/are ob-
viously rephrased versions of each other. If
a text adds extra words but besides that it is
identical with another text, it is not marked as
a duplicate.

For uniquely identifying a question/instance we
recommend the following combination of fields:





item[’year’],
item[’source’],
item[’id_in_source’],
item[’grade’],
item[’stage’],
item[’question_number’]





Is everything included or does the data rely
on external resources?
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Everything is included.

Are there recommended data splits or evalua-
tion measures?

The data is currently split into three: train, valid,
test. We attempted a uniform distribution of the
data, based on both quantity and quality of the data.

Both the test and valid splits were sampled via
the recipe explained below.

First we do a grade-based separation:

• Grade XII: 175 questions
- 75 national level
- 100 state level

• Grade XI: 175 questions
- 75 national level
- 100 state level

• Grade X: 200 questions
- 55 national level
- 125 state level
- 20 local level

• Grade IX: 250 questions
- 115 national level
- 115 state level
- 20 local level

• Grade VII: 200 questions
- 85 national level
- 85 state level
- 30 local level

• University Level (Facultate): 400 questions
(detailed division below)

1. UMF Timis, oara: 200 questions
- 11 chapters total, 18 questions per chapter, except
for the Nervous System, which has 20 questions
due to higher coverage.

2. UMF Bras, ov: 75 questions
- Derived from 15 questions from each synthesis
test.

3. UMF Cluj: 125 questions
- Physiology (for medical assistant students): 8
questions (1 question per chapter for 5 chapters,
plus 3 random questions)
- Anatomy (for medical assistant students): 8 ques-
tions (same structure as Physiology)
- Physiology (for medical students): 55 questions
(4 questions from each of the first 13 chapters, plus
3 questions from Chapter 14)
- Anatomy (for medical students): 54 questions

(similar to Physiology, but only 2 questions from
Chapter 14)

Grade-Stage Yearly Distribution
The tables 9, 10, 11 present the yearly distribu-

tion of how many questions to select for each grade,
per stage: “-” means no data was available for that
year, while “X” means nothing was selected.

Note: While each split originally con-
tained 1,400 questions (summing every-
thing mentioned above), the validation
and test splits have fewer questions than
expected. Although duplicates were iden-
tified prior to splitting, an additional
round of manual duplicate verification
was conducted specifically for the val-
idation and test sets. Newly identified
duplicates were moved to the training
split, reducing the size of the validation
and test splits.

A.3 Data Collection Process

How was the data collected?
Olympiad data: Sourced from public online

archives, primarily from olimpiade.ro (https://
www.olimpiade.ro/). Additional data was re-
trieved through separate online searches when
needed.

College admission books: Obtained from the
internet. The collected data consists of PDFs, with
some containing parsable text and others consisting
of images that required additional processing.

Who was involved in the data collection pro-
cess?

The PDF data was collected by our team, with
guidance from medical students who provided valu-
able insights on where to locate the relevant mate-
rials.

Over what time-frame was the data collected?
It took roughly one month to collect the data.

How was the data associated with each in-
stance acquired?
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04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
VII - - - - - 5 5 7 8 8 12 15 15 - - - - - - - -
IX 2 2 - - 4 4 - 5 5 5 8 8 8 - 10 12 - - 12 15 15
X - - - - - - - - - - 3 3 4 - 5 7 - - 8 10 15
XI - - - - - - - - - - 5 5 7 - 8 8 - - 12 15 15
XII - - - - - - - - - - 5 5 7 - 8 8 - - 12 15 15

Table 9: Number of questions to select in test/validation data for each grade in every year from the national stage of
the olympiad.

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
VII - - - - - 5 5 7 8 12 13 15 - - - - - - - - -
IX 1 1 - - 1 2 2 3 3 3 4 4 6 8 10 12 12 - 13 15 15
X - - - - - - - - - - 5 5 6 8 10 12 14 - 20 20 25
XI - - - - - - - - - - 4 4 6 8 8 12 14 - 14 15 15
XII - - - - - - - - - - 4 4 6 8 8 12 14 - 14 15 15

Table 10: Number of questions to select in test/validation data for each grade in every year from the regional stage
of the olympiad.

The data was initially collected as PDF files.
To standardize the format, a Word-to-PDF con-
verter was sometimes used. The PDFs either con-
tained parsable text or had text embedded in im-
ages. While the quality of some images was ques-
tionable, most of the information was successfully
recognized.

For PDFs with parsable text, Python libraries
were used for data extraction, with occasional man-
ual verification and refactoring. For PDFs contain-
ing images, Gemini 1.5 Flash was employed to
extract the data. Random sampling was performed
to verify the accuracy of the extracted data.

Does the dataset contain all possible in-
stances?

No. Some olympiads, although we know for
sure existed, were not found on the internet. Addi-
tionally, there is more data collected in PDF format
that has not yet been parsed into actual instances.

If the dataset is a sample, then what is the
population?

The population includes additional college ad-
missions and olympiads from Romania that can
be found and parsed. It can also contain closely
related national contests that feature choice-based
questions, which could be included.

Is there information missing from the dataset
and why?

Questions that included images/figures were re-
moved as this is not a multi-modal dataset (at the
moment).

Are there any known errors, sources of noise,
or redundancies in the data?

There are several potential sources of error and
redundancy in the data:

• Parsing issues: Questions with options repre-
sented as tables might have been parsed incor-
rectly. Some parsing errors may result in ty-
pos (e.g., words broken into two segments) or
missing words at the end of an option. Many
of these errors have been manually corrected,
especially in the test split, which should be
free of such issues.

• Image noise: The images for college admis-
sions can present noise, but Gemini 1.5 Flash
processed them relatively well. Some halluci-
nations may still exist, although we manually
searched for them.

• Duplicates: Some questions and options are
duplicated across different problem sets or
even within the same source. We have marked
the obvious duplicates, but repetition of ques-
tions and answer options could still occur.

• Answer errors: Some answers might be wrong
due to parsing errors or LLM hallucinations.
Although we have manually checked every
parsed answer, human error is still a possi-
bility. Additionally, there could be mistakes
in the original answer sheets, where wrong
answers may have been transcribed. Despite
thorough checks (as the collected data is from
national contests with official sources), it is
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04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
VII X - - - - X X - X X X X X 15 15 - - - - - -
IX X - - - - X - - X X X X X 15 15 - - - - - -
X X - - - - X - - X X X - X 10 10 - - - - - -
XI - - - - - - - - - - - - - - - - - - - - -
XII - - - - - - - - - - - - - - - - - - - - -

Table 11: Number of questions to select in test/validation data for each grade in every year from the local stage of
the olympiad.

possible that a few incorrect answers might
have slipped through.

• Image dependent questions: We have tried to
filter out any question that was dependent on
a figure, as we do not intend for the dataset
at the moment to be multi-modal, but some
questions might have slipped through. This is
possible only for the olympiad questions.

A.4 Data Pre-processing

What pre-processing/cleaning was done?
After extraction, several pre-processing and

cleaning steps were applied to standardize and
structure the data:

1. Extracted the question number from the ques-
tion text and placed it in a separate field.

2. Standardized option identifiers to uppercase
letters.

3. Ensured all options followed the structure:
"[identifier]. [text]", where [identifier]
is either a letter (A–D, or A-E for five-option lists)
or a number (1–4 for group-choice questions).

4. Replaced multiple spaces with a single space.
5. Replaced newline characters with spaces.
6. Standardized quotes by replacing Romanian

quotation marks with English ones.
7. Normalized diacritics to proper Romanian

characters (e.g., s,, t,, â, ă).
8. Manually corrected grammar issues and ty-

pos.
9. Removed trailing characters such as commas,

dots, spaces, and semicolons from option texts.
10. Made Gemini 1.5 Flash act as a grammar

correcting tool to help us further find typos. Man-
ually checked the output of it as the LLM has a
tendency to replace words besides the typos. (Also
used Gemma-2-9B when Gemini 1.5 Flash was
unavailable).

Was the “raw” data saved in addition to the
preprocessed/cleaned data?

The PDF files are saved privately.

Is the pre-processing software available?
No.

Does this dataset collection/processing pro-
cedure achieve the motivation for creating
the dataset stated in the first section of this
datasheet?

This dataset successfully provides specialized
(Romanian) biology terms that can be used for
training or knowledge evaluation.

B Prompts

User Prompts Used for Benchmarking
Single Choice

%question-text%

You received a biology question in Romanian with
multiple options. The biology question is col-
lected from either national high school olympiads
or admission exams for medical universities. Only
one answer is correct.

You will output only the letter of the right answer.
Do not give any explanations.

The letter of the right answer is:

Group Choice

%question-text%

You received a biology question in Romanian with
multiple numbered options. The question is from
national high school olympiads or medical univer-
sity admission exams.

To answer:
1. Identify correct options.
2. If only option 4 is correct, the answer must be
D.
3. If only options 1,3 are correct, the answer must
be B.
4. If only options 2,4 are correct, the answer must
be C.
5. If only options 1,2,3 are correct, the answer
must be A.
6. If all options are correct, the answer must be E.
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Do not give any explanations.

The right answer is:

Multiple Choice

%question-text%

You received a biology question in Romanian with
multiple options. The question is from national
high school olympiads or medical university ad-
mission exams. One or multiple answers are cor-
rect.

You will output the letter(s) of all the correct an-
swers. Do not give any explanations.

The letters of the right answers, as compact as
possible, are:

System Prompts Used for Benchmarking
We include only five-shot prompts; one- and three-shot follow
the same format with fewer questions. The displayed prompts
use translated questions, but LLMs receive the original
Romanian versions.

Single Choice - Five Shot

Here are some examples of biology questions in
Romanian with multiple options and the correct
format for answering them:

# Question: The prokaryotic cell:
A. characterizes viruses, bacteria, and blue-green
algae
B. contains peptidoglycan in the composition of
the cell membrane
C. does not have a cell wall
D. the nuclear material is a circular double-
stranded DNA molecule
# Answer: D
—
# Question: The mesosomes of prokaryotes:
A. have a role in respiration
B. are made up of rRNA and proteins
C. are invaginations of the plasma membrane in
the form of lamellae
D. have a role in photosynthesis
# Answer: A
—
# Question: The sciatic nerve:
A. is a cranial nerve
B. contains only motor fibers
C. contains both sensory and motor fibers
D. originates in the medulla oblongata
# Answer: C
—
# Question: Contain hydrolytic enzymes with a
role in intracellular digestion:
A. ribosomes
B. lysosomes
C. centrosome
D. centrioles
# Answer: B
—
# Question: Photosynthetic plastids are:
A. oleoplasts
B. leucoplasts
C. rhodoplasts
D. amyloplasts
# Answer: C

Group Choice - Five Shot

Here are some examples of biology questions in
Romanian with multiple numbered options and
the correct format for answering them:

# Question: Organic substances with a structural
role include:
1. lipids
2. carbohydrates
3. proteins
4. nucleic acids
# Explanation: 1,3 are correct; 2,4 are not
# Answer: B
—
# Question: The fundamental substance is present
in the structure of:
1. mitochondria
2. chloroplasts
3. the nucleus
4. vacuoles
# Explanation: 1,2,3 are correct; 4 is not
# Answer: A
—
# Question: The nucleolus:
1. is surrounded by its own membrane
2. is the densest part of the nucleus
3. is the site of mRNA synthesis
4. its volume depends on the physiological state
of the cell
# Explanation: 2,4 are correct; 1,3 are not
# Answer: C
—
# Question: The granum of chloroplasts:
1. is found freely in the stroma
2. contains DNA, RNA, proteins, and metals
3. is surrounded by a double porous membrane
4. contains photosynthetic pigments
# Explanation: 4 is correct; 1,2,3 are not
# Answer: D
— # Question: The interphase:
1. represents the time interval between two
successive cell divisions
2. is characterized by DNA, RNA, and protein
synthesis
3. is the most metabolically active stage
4. precedes the division phase of the cell cycle
# Explanation: 1,2,3,4 are correct
# Answer: E

Multiple Choice - Five Shot

Here are some examples of biology questions in
Romanian with multiple options and the correct
format for answering them:

# Question: The heart:
A. has the mitral valve between the right atrium
and right ventricle
B. is equipped with trabeculae in the atria
C. is a parenchymatous organ due to its strong
ventricular musculature
D. is equipped with 2 valves
E. contains the His bundle, which plays a role
in automatism with a discharge frequency of 25
impulses/min
# Answer: E
—
# Question: The right atrium is characterized by:
A. containing the sinoatrial node
B. having trabeculae inside
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C. receiving the inferior venae cavae
D. having a systole duration of 0.1s
E. being the site where pulmonary veins open
# Answer: ACD
—
# Question: The following associations are
correct:
A. chordae tendineae - atrioventricular valves
B. sinoatrial node - interatrial septum
C. cardiac cycle - 0.8s at a heart rate of 100
beats/min
D. venous pressure at the level of the right atrium
is 10 mmHg
E. tricuspid valve - right atrioventricular orifice
# Answer: AE
—
# Question: Arteries that originate directly from
the subclavian artery include:
A. external carotid
B. vertebral
C. brachial
D. internal thoracic
E. anterior intercostal
# Answer: BD
—
# Question: The pulmonary veins:
A. are two in number
B. open into the left atrium, which contains the
sinoatrial node
C. are part of the small circulation, which begins
in the right ventricle
D. bring oxygenated blood to the heart from
the alveolar-capillary membrane, which has an
average thickness of 0.6 microns
E. like the venae cavae, bring venous blood into
the atria
# Answer: CD
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Abstract
We introduce MMCRICBENCH-3K, a bench-
mark for Visual Question Answering (VQA)
on cricket scorecards, designed to evalu-
ate large vision-language models (LVLMs)
on complex numerical and cross-lingual rea-
soning over semi-structured tabular images.
MMCRICBENCH-3K comprises 1,463 syn-
thetically generated scorecard images from
ODI, T20, and Test formats, accompanied
by 1,500 English QA pairs. It includes two
subsets: MMCRICBENCH-E-1.5K, featuring
English scorecards, and MMCRICBENCH-H-
1.5K, containing visually similar Hindi score-
cards, with all questions and answers kept in
English to enable controlled cross-script eval-
uation. The task demands reasoning over
structured numerical data, multi-image con-
text, and implicit domain knowledge. Em-
pirical results show that even state-of-the-art
LVLMs, such as GPT-4o and Qwen2.5VL,
struggle on the English subset despite it be-
ing their primary training language and ex-
hibit a further drop in performance on the
Hindi subset. This reveals key limitations in
structure-aware visual text understanding, nu-
merical reasoning, and cross-lingual general-
ization. The dataset is publicly available via
Hugging Face at https://huggingface.co/
datasets/DIALab/MMCricBench, to promote
LVLM research in this direction.

1 Introduction

Text-centric visual question answering (VQA) has
seen considerable progress with benchmarks such
as TextVQA (Singh et al., 2019b), ST-VQA (Xia
et al., 2023), DocVQA (Mathew et al., 2021),
VisualMRC (Tanaka et al., 2021), and OCR-
Bench (Liu et al., 2024c), which evaluate mod-
els on tasks requiring OCR-based understand-
ing and textual reasoning. More recently, tab-
ular VQA datasets like TableVQA-Bench (Kim

*Equal contribution.

Figure 1: LVLM performance on MMCRICBENCH-E-
1.5K (English) and MMCRICBENCH-H-1.5K (Hindi)
cricket scorecards. While accuracy on English score-
cards peaks at 55.1%, performance on visually similar
Hindi scorecards remains consistently lower, highlight-
ing a persistent gap in cross-lingual structure-aware nu-
merical reasoning over images.

et al., 2024), TabComp (Gautam et al., 2025),
and ComTQA (Zhao et al., 2024) have introduced
structure-aware challenges focusing on numerical
reasoning and table comprehension. However, as
summarized in Table 1, these benchmarks often
fall short in one or more dimensions: they are pri-
marily monolingual (mostly English), lack multi-
image contextual reasoning, and offer limited eval-
uation of fine-grained domain-specific numerical
reasoning.

Cricket scorecard images, on the other hand,
represent a compelling testbed for evaluating such
capabilities. These semi-structured layouts com-
bine tabular numeric data (runs, overs, wick-
ets) with implicit contextual information (e.g.,
Which bowler has bowled the most wides in the
match? Q3 in Figure 2), sometimes spanning
across multiple images. In this work, we intro-
duce MMCRICBENCH-3K, a novel benchmark
for visual question answering on cricket score-
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Q1 : What is Colin Munro's strike rate?
A1 : 142.86 ✅
Q2 : How many batsmen have been dismissed for a 
duck?
A2 : 1 ❌
Q3 : How many batsmen had a strike rate greater than 70 
in the first innings? 
A3 : 3 ❌

Q1 : What is Colin Munro's strike rate?
A1 : 142.86 ✅
Q2 :How many batsmen have been dismissed for a duck? 
A2 : 1 ❌
Q3 : How many batsmen had a strike rate greater than 70 
in the first innings?
A3 : 4 ✅

Q1 Q1

Q2 Q2

Q3 Q3

Figure 2: Examples of LVLMs (dis)parity between MMCRICBENCH-E-1.5K and MMCRICBENCH-H-1.5K.
Example predictions by Qwen2.5VL-7B on English (left) and Hindi (right) scorecards. Q1 is a simple retrieval
question, correctly answered in both cases. Q2 requires structure-aware, domain-specific reasoning, leading to
failure in both. Q3 reveals a cross-lingual gap answered correctly on the English scorecard but incorrectly on the
Hindi one, despite identical content.

cards, designed to evaluate the structure-aware,
mathematical, multi-image, and cross-lingual rea-
soning capabilities of large vision-language mod-
els (LVLMs). MMCRICBENCH-3K comprises
1,463 synthetically generated scorecard images
(822 single-image and 641 multi-image exam-
ples), along with 1,500 English QA pairs. It
includes two subsets: MMCRICBENCH-E-1.5K
(English scorecards) and MMCRICBENCH-H-
1.5K (Hindi scorecards), with all questions and
answers provided in English to enable controlled
evaluation across script variations.

Large Vision-Language Models (LVLMs)
(LLaVA-1.5 (Liu et al., 2024b), MiniGPT4 (Chen
et al., 2023), mPLUG-Owl (Ye et al., 2024), Qwen-
VL (Wang et al., 2024), and InternVL2 (Chen
et al., 2024)) have become the de facto approaches
for visual question answering tasks, including

text-aware visual tasks (Penamakuri and Mishra,
2024a). Recent LVLMs such as Qwen2.5VL (Bai
et al., 2025), mPLUG-DocOwl2 (Hu et al., 2024),
InternVL2 (Chen et al., 2024), and TextMon-
key (Liu et al., 2024d) have further advanced
the bar on text-aware tasks, including VQA, by
incorporating text-aware objectives into their
pretraining or instruction-tuning stages. While
studies exist to show strong performance of these
models on English benchmarks, similar studies to
understand their robustness across low-resource
languages like Hindi1 remains unexplored in the
literature.

To this end, we leverage our MMCRICBENCH-
H-1.5K benchmark to understand and evaluate
cross-lingual mathematical reasoning abilities of

1Hindi as a textual language is not a low-resource lan-
guage, however, when we look at visual text space, Hindi is a
low-resource language.
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LVLMs. Our experiments reveal a consistent per-
formance drop when these LVLMs are evaluated
on MMCRICBENCH-H-1.5K (As illustrated in
Figure 1), highlighting significant shortcomings
in structure-aware, cross-lingual, and intensive nu-
merical reasoning. Although advanced paradigms
like Chain-of-Thought (CoT) prompting improve
performance over naive variant, they still fall short
compared to their performance on English score-
cards.

In summary, our contributions are three-fold:
(i) We introduce MMCRICBENCH-3K, a novel
structure-aware text-centric VQA benchmark to
cover for the shortcomings of existing OCR and
table-based VQA benchmarks by incorporating
cross-lingual, multi-image, structure-aware, and
numerically rich reasoning tasks grounded in the
domain of cricket analytics. (ii) We compre-
hensively benchmark a range of leading LVLMs
(open and closed-source) across different model
sizes and show that they struggle on this bench-
mark, revealing key limitations in structure-aware
visual understanding, numerical reasoning, and
cross-lingual robustness. (iii) We conduct ex-
tensive ablations incorporating specialized com-
ponents such as Optical Character Recognition
(OCR), Table Structure Recognition (TSR), and
advanced prompting strategies including Chain-of-
Thought (CoT) reasoning. While these methods
improve performance, they still fall short com-
pared to the model’s strong results on conventional
text-centric benchmarks, highlighting the unique
difficulty of our task.

2 MMCRICBENCH-3K Dataset

We introduce MMCRICBENCH-3K, a novel
dataset designed to study a visual question an-
swering (VQA) task on cricket scorecard im-
ages. Cricket scorecard images represent un-
structured yet complex tabular images. VQA
on such scorecards requires structural under-
standing, numerical data extraction, and implicit
contextual reasoning across image(s). To the
best of our knowledge, our work is the first
principled work on studying VQA over cricket
scorecard images. Specifically, we present
two sub-benchmarks under MMCRICBENCH-3K:
MMCRICBENCH-E-1.5K (with English score-
cards) and MMCRICBENCH-H-1.5K (with Hindi
scorecards), with English question-answer anno-
tations. This dataset is aimed at benchmarking

the capabilities of Large Vision-Language Models
(LVLMs) in performing cross-lingual deep mathe-
matical reasoning over semi-structured content.

MMCRICBENCH-3K consists of cricket score-
cards sourced from various international game for-
mats: ODI, T20, Test Match, and popular regional
leagues: the Big Bash League (BBL, Australia)
and the Indian Premier League (IPL, India). We
provide carefully curated QA annotations to eval-
uate the numerical comprehension and deep math-
ematical reasoning abilities of LVLMs. Next, we
explain the dataset curation pipeline.
Data Collection and Annotation: We begin to
collect data for our benchmark by identifying pub-
licly available datasets and repositories that con-
tain cricket scorecard information. The initial
dataset was obtained from Kaggle2, which pro-
vides detailed cricket match statistics in CSV for-
mat. This dataset includes essential match statis-
tics such as runs, wickets, and strike rates across
different cricket formats (international game for-
mats and regional leagues). Note that the data cu-
rated from the above-mentioned source does not
contain scorecard images.
Scorecard Image Generation: We employed
the open-source library Weasy Print3 to convert
CSV records into visually coherent scorecard ta-
bles. The generation process was inspired by de-
sign templates from various publicly accessible
sports websites, ensuring diversity in fonts, styles,
and table structures. We generated two distinct
types of scorecard visualizations to support differ-
ent VQA scenarios: (i) single-image scorecards
for limited-overs formats (ODI, T20, and league
matches) containing both innings in one compre-
hensive image, and (ii) multi-image scorecards for
Test matches, where each image contains one in-
ning, resulting in n images per match where n is
the number of innings in the match. This dual ap-
proach allows us to evaluate both standard single-
image VQA capabilities and more complex multi-
image reasoning where models must synthesize
information across multiple visual inputs. The
multi-image format particularly challenges mod-
els to maintain contextual awareness and perform
cross-referential numerical reasoning across sep-
arate visual sources. Each scorecard image con-
tains semi-structured tabular information such as
player names, runs, balls faced, boundaries, and

2https://www.kaggle.com/datasets/raghuvansht/
cricket-scorecard-and-commentary-dataset

3https://weasyprint.org/
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Reasoning type

Benchmark Cross-lingual Multi-Image Tabular Mathematical QA Lang. VT Lang.
Text-centric VQA
TextVQA 7 7 7 7 English English
ST-VQA 7 7 7 7 English English
DocVQA 7 7 3 7 English English
EST-VQA 7 7 7 7 English, Chinese English, Chinese
VisualMRC 7 7 3 7 English English
MTVQA 7 7 Not a major focus 7 9 langauges 10 languages
OCRBench 7 7 Not a major focus 7 English English

Tabular VQA
TableVQA-Bench 7 7 3 3 English English
TabComp 7 7 3 Not a major focus English English
ComTQA 7 7 3 Not a major focus English English

Ours
MMCRICBENCH-E-1.5K 3 3 3 3 English English
MMCRICBENCH-H-1.5K 3 3 3 3 English Hindi
MMCRICBENCH-3K 3 3 3 3 English English, Hindi

Table 1: Summary of Text-centric and Tabular VQA benchmarks, highlighting reasoning types and language
support.

bowling figures, visually embedded in layouts typ-
ical of real-world cricket statistics. More details
regarding the specific fonts, structural variations,
and template designs are provided in the Appendix
A.3.
Data Translation: To create images for
MMCRICBENCH-H-1.5K benchmark, we
translate the English CSV records into
Hindi using Google Translate4 and follow
a similar synthetic image generation proce-
dure as of MMCRICBENCH-E-1.5K. The
MMCRICBENCH-H-1.5K sub-benchmark is
introduced to evaluate the cross-lingual semantic
landscape of LVLMs associated with answering
complex visual questions. Note that the trans-
lation process was performed at the cell level,
ensuring that cricket-specific terms and numerical
patterns remained consistent across languages.
Additionally, we conducted a manual review of
translated records to account for any potential
translation inaccuracies and domain-specific
inconsistencies.
Question-Answer Generation: We lever-
age cricket scorecard images to construct the
MMCRICBENCH-3K dataset, designed to evalu-
ate Large Vision-Language Models (LVLMs) on
structure-aware, cross-lingual, and numerically
intensive reasoning tasks. We manually designed
question templates and categorized them into
three categories depending on the complexity
associated with answering these questions. The
categories are: (i) Direct Retrieval & Simple
Inference - C1: In this task, questions target

4https://translate.google.com

Figure 3: Distribution of questions based on their first
few words in the dataset, illustrating common question
prefixes after preprocessing.

direct information extraction from the scorecard
image. For example, given an image containing
the entry: Aaron Finch | 89 | 52 | 4 | 7, we
generate a question: “Who hit the most sixes?”
with the answer “Aaron Finch”. The model
must read the image, interpret the tabular layout,
understand the required context, and identify the
relevant value. (ii) Basic Arithmetic Reasoning
& Conditional Logic - C2: Here, questions
require numerical reasoning based on arithmetic
operations or conditional checks applied to one
or more rows in the image. For example, from a
scorecard showing: Virat Kohli | 94 runs | 50 balls,
we generate the question: “What is Virat Kohlis
strike rate?” with the answer “188.0”, computed

4
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Category Category Name Example Question

C1 Direct Retrieval & Simple Inference

Which bowler has bowled the most wides in the match?
Who got out for a duck in the first innings?
Did any bowler take a 4-fer in the match?
Has [Batsman X] taken more wickets than [Batsman Y]?
Which bowler has conceded the most extras?
Who has hit the maximum sixes?
Does [Batsmax X] hit more sixes than [Batsman Y]?
How many extras were bowled in the first innings?

C2 Basic Arithmetic Reasoning & Conditional Logic

What is [Batsman X] strike rate?
Did [Batsman X] score better in the first innings or the second innings?
Which batsman scored a century in the match?
Which bowler took a 4-fer in the match?
Has [Batsman X] hit more boundaries than [Batsman X]?
Which batsman was dismissed for a golden duck in the match?

C3 Multi-step Reasoning & Quantitative Analysis

Which batsman had the highest strike rate (minimum 10 balls faced)?
Which batsman had the highest boundary percentage?
Which bowler had the better economy rate in the first innings?
Which innings had the higher run rate?
Which batsman had a strike rate greater than 70 in the first innings?
Has the same fielder caught any batsman twice?
Has any batsman been dismissed twice by the same bowler?

Table 2: Category and example questions. A full table containing statistics for each one of the single-image and
multi-image questions is provided in the Appendix (Table A.4).

using: Strike Rate = Runs
Balls × 100. The model must

correctly localize relevant cells, extract values,
and apply the correct reasoning. (iii) Multi-step
Reasoning & Quantitative Analysis - C3: This
task involves combining information across
multiple players or sections in the scorecard. For
instance, to answer: “Who has the highest bound-
ary percentage?”, the model needs to compute
(4s×4+6s×6)

Total Runs × 100 for each player and select
the maximum. This requires layout-aware text
extraction, numerical computation, and multi-row
comparison across the image.

Few question templates across the three cate-
gories are shown in Table 2. Detailed questions
and statistics under all three categories are shown
in Appendix A.4.
Answer Extraction via SQL: To ensure accuracy
and consistency in answer generation, we used
SQL queries to derive answers directly from the
structured CSV data. This approach minimized
manual errors and ensured the traceability of an-
swers back to the original data. The SQL queries
were formulated based on the question type and
corresponding data structure. For instance:

• To retrieve highest boundary percentage:
SELECT Batsman_Name FROM batting
WHERE Innings = 1 AND Balls > 0
ORDER BY ((([4s]*4 + [6s]*6) * 100.0
/ Runs)) DESC LIMIT 1;

• To retrieve better economy rate in innings 1:
SELECT Bowler_Name, ROUND((SUM(Runs)
* 1.0 / SUM(Over)), 2) AS Economy_Rate
FROM bowling WHERE Innings = 1 GROUP
BY Bowler_Name ORDER BY Economy_Rate
ASC LIMIT 1;

SQL queries for every question template in
MMCRICBENCH-3K are shown in Table 12 in
the Appendix. Further, the question-answer pairs
are subjected to manual verification for possible
factual and mathematical errors.

Further, we categorized answers into four cat-
egories, namely, (i) Binary (Yes/No), (ii) Numer-
ical, (iii) Categorical (1/2/3/4 for innings-based
questions), and (iv) Open-ended (Person names).
Detailed statistics of MMCRICBENCH-3K for are
shown in the Figure 6 (a). Further, a selection of a
few QA samples for each of the answer categories
is shown in Table 9 in the Appendix.

3 Experiments

Baselines. We chose the VLMs from three se-
lection criteria: (a) VLMs with no OCR-aware
tasks during their pretraining or instruction tun-
ing stages: LLaVA-Next (Liu et al., 2024a), and
(b) VLMs based on the size of their parameters:
(i) Small VLMs (SVLMs) with parameters less
than 5B: SmolVLM-500M (Marafioti et al., 2025),
Qwen2.5VL-2B (Wang et al., 2024), (ii) Large
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MMCricBench-E-1.5K MMCricBench-H-1.5K

Model [#params] C1 C2 C3 Avg. C1 C2 C3 Avg. Σ ↑ ∆ ↓
Open-source

Small VLM (≤ 3B params)
SmolVLM [500M] 19.5 21.6 15.9 19.2 20.4 12.9 24.3 19.0 19.1 0.2
Qwen2.5VL [3B] 38.7 40.1 41.7 40.2 39.8 24.5 35.5 33.3 36.8 6.9

Large VLM (params >3B and <10B)
LLaVA-NeXT [7B] 40.2 10.8 33.9 28.3 35.7 10.8 33.3 26.6 27.4 1.7
mPlugDocowl2 [8B] 33.9 13.9 14.2 20.7 33.6 13.7 12.3 19.9 20.3 0.8
Qwen2.5VL [7B] 64.6 52.1 30.6 49.1 62.7 39.8 25.2 42.6 45.8 6.5
InternVL-2 [8B] 33.6 26.3 28.2 29.4 28.5 16.4 25.2 23.4 26.4 6.0

X-Large VLM (>10B)
Llama-3.2-V [11B] 26.7 35.3 19.8 27.3 25.2 26.9 22.2 24.8 26.0 2.5

Closed-source

GPT-4o 56.0 65.1 50.6 57.3 54.6 49.7 30.9 45.1 50.5 12.2

Table 3: Results on single-image questions split of MMCRICBENCH-3K.

MMCricBench-E-1.5K MMCricBench-H-1.5K

Method [#params] C1 C2 C3 Avg. C1 C2 C3 Avg. Σ ↑ ∆ ↓
LLMs+OCR
Llama-3.2 [3B] 32.1 31.4 22.8 28.8 24.1 7.4 18.3 16.6 22.7 12.2
Qwen2.5 [3B] 36.6 31.4 16.5 28.2 34.2 13.1 13.5 20.3 24.2 7.9

VLMs Chain-of-Thought
Qwen2.5VL [7B] 69.1 55.7 36.0 53.6 65.2 40.7 31.5 45.8 49.7 7.8

Table 4: Results on single-image of our ablation: LLMs+OCR vs VLMs on MMCRICBENCH-3K.

VLMs (LVLMs) with parameters between 5B-14B:
InternVL2-8B (Chen et al., 2024), Qwen2.5VL-
7B (Bai et al., 2025), mPLUG-DocOwl2 (Hu
et al., 2024), (c) X-Large VLMs with parameters
greater than 14B: Llama-3.2-V-11B (Grattafiori
et al., 2024) and (iii) closed-source VLMs: GPT-
4o (OpenAI, 2024).

3.1 Result and Discussion

Performance of Open-Source Models Across
Scales: Tables 3 and 5 present results for single-
image and multi-image setups, revealing a consis-
tent trend: model scale has a notable impact on
performance across all question categories. Larger
models generally outperform their smaller coun-
terparts, with more pronounced gains on com-
plex reasoning categories such as C2 (arithmetic)
and C3 (multi-hop reasoning). For instance,
Qwen2.5VL-7B (Bai et al., 2025) significantly out-
performs its smaller 3B variant across all settings,
with an average performance gap of 8.5 points.
While this scaling advantage is particularly evi-
dent in higher-complexity tasks, the gains are less
pronounced on simpler C1 (retrieval-based) ques-
tions, as expected.
Closed-Source vs Open-Source Models: Closed-

source models, notably GPT-4o, consistently out-
perform open-source models across both the
English (MMCRICBENCH-E-1.5K) and Hindi
(MMCRICBENCH-H-1.5K) subsets. On single-
image questions, GPT-4o achieves the highest av-
erage accuracy of 57.3% on English and 45.1% on
Hindi, while in the multi-image setting, it scores
50.6% on English and 43.6% on Hindi. This re-
flects a clear cross-lingual drop of 12.2 and 7.0
points in the single- and multi-image settings, re-
spectively. Although GPT-4o is not immune to the
challenges posed by script variation, it still outper-
forms the closest open-source model Qwen2.5VL-
7B by an average margin of 8.2 points across
all tasks and subsets. These results highlight the
robustness gap that remains between open and
closed-source models, particularly in structured,
cross-lingual VQA settings.

Comparison of cross-lingual capabilities: Mod-
els consistently exhibit a significant performance
drop when transitioning from English to Hindi
scorecards, particularly in categories requiring
arithmetic reasoning (C2) and multi-step reason-
ing (C3). This decline highlights the limitations of
cross-lingual generalization that scaling alone fails
to address. For instance, GPT-4o, the strongest

6
573



MMCricBench-E-1.5K MMCricBench-H-1.5K

Model [#params] C1 C2 C3 Avg. C1 C2 C3 Avg. Σ ↑ ∆ ↓
Open-source

Small VLM (≤ 3B params)
SmolVLM [500M] 14.4 10.8 10.2 11.8 20.0 6.0 9.0 11.6 11.7 0.2
Qwen2.5VL [3B] 34.1 35.3 24.1 31.2 27.5 19.8 18.7 22.0 26.6 9.2

Large VLM (params >3B and <10B)
LLaVA-NeXT [7B] 27.5 6.6 14.4 16.2 24.5 5.4 14.5 14.8 15.5 1.4
mPlugDocowl2 [8B] 24.7 7.5 13.2 15.2 23.3 7.1 12.6 14.4 14.8 0.8
Qwen2.5VL [7B] 41.9 41.9 27.1 37.0 37.7 33.5 25.3 32.2 34.6 4.8
InternVL-2 [8B] 29.3 5.4 21.1 18.6 28.1 4.8 21.7 18.2 18.4 0.4

X-Large VLM (>10B)
Llama-3.2-V [11B] 34.7 14.3 29.5 26.2 29.3 11.3 20.4 20.4 23.3 5.8

Closed-source

GPT-4o 50.3 61.1 40.4 50.6 39.5 53.8 37.3 43.6 47.1 7.0

Table 5: Results on multi-image questions split of MMCRICBENCH-3K.

MMCricBench-E-1.5K MMCricBench-H-1.5K

Method [#params] C1 C2 C3 Avg. C1 C2 C3 Avg. Σ ↑ ∆ ↓
LLMs+OCR
Llama-3.2 [3B] 24.5 17.9 25.9 22.8 18.5 1.8 14.4 11.6 17.2 11.2
Qwen2.5 [3B] 30.5 24.5 27.7 27.6 23.3 10.7 22.8 19.0 23.3 8.6

VLMs Chain-of-Thought
Qwen2.5VL [7B] 40.7 40.7 22.9 34.8 36.5 29.9 23.5 30.0 32.4 4.8

Table 6: Results on multi-image of our ablation: LLMs+OCR vs VLMs on MMCRICBENCH-3K.

overall performer shows a substantial drop of 12.2
points (single-image) and 7.0 points (multi-image)
on average when evaluated on Hindi scorecards.
Similarly, Qwen2.5VL-7B experiences a 6.5 to 6.9
point decrease across both subsets. These degra-
dations indicate that even state-of-the-art models
with strong English capabilities are not robust to
script variation in visually embedded text. Our
findings suggest that effective VQA on cricket
scorecards requires a combination of table struc-
ture understanding, OCR, and visual text ground-
ingcapabilities that current models struggle to
achieve in non-Latin scripts and low-resource vi-
sual text languages like Hindi.

3.1.1 Ablations
LLMs + OCR: To isolate the role of visual per-
ception in scorecard-based VQA, we evaluate a
baseline that combines OCR with text-only large
language models (LLMs). Specifically, we ex-
tract text from scorecard images using the Tesser-
act OCR engine (Smith, 2007) and feed the out-
put into two LLMs: LLaMA-3.2-3B (Dubey et al.,
2024) and Qwen2.5-3B (Yang et al., 2024). This
setting evaluates whether textual cues alone are
sufficient to reason over cricket scorecards. As
shown in Tables 4 and 6, both models perform sig-

nificantly worse than vision-language models. On
average across MMCRICBENCH-3K, LLaMA-
3.2-3B exhibits a performance drop of 4.7%, while
Qwen2.5-3B shows a much larger drop of 16.5%
compared to their vision counterparts. These
results highlight the limitations of OCR+LLM
pipelines: despite having access to textual input,
these models struggle to capture structural cues
such as column alignment and row grouping that
are essential for tabular reasoning. The English-
Hindi gap remains wide, showing that OCR-based
pipelines struggle in cross-lingual, visually com-
plex settings.

CoT Prompting vs. Regular Prompting: Ap-
plying Chain-of-Thought (CoT) prompting to
Qwen2.5VL-7B improves overall performance in
the single-image setting, with accuracy increasing
from 45.8% to 49.7%. This gain is especially no-
table in reasoning-heavy categories such as arith-
metic (C2) and multi-step (C3), indicating that
CoT helps the model decompose complex queries
into interpretable steps. However, in the multi-
image setting, overall performance drops slightly
from 34.6% to 32.4%, suggesting that CoT may
not transfer well when reasoning must span multi-
ple visual contexts. While CoT improves reason-
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ing behaviour, the cross-lingual gap still remains.

4 Comparison with Related Work

LVLMs for VQA over text images: Re-
cent advancements of large vision-language mod-
els (LVLMs) have transformed visual question-
answering (VQA) tasks into gaining impressive
zero-shot performance across diverse scenarios
(OpenAI, 2024; Yang et al., 2024; Chen et al.,
2024; Liu et al., 2024a) including text-centric
VQA. On these lines, DocPedia (Feng et al., 2024)
processes high-resolution inputs without increas-
ing token sequence length. mPLUG-DocOwl(Ye
et al., 2024), Qwen2-VL (Wang et al., 2024),
and TextMonkey (Liu et al., 2024d) further lever-
age publicly available document VQA datasets to
boost text performance. Extensions of the LLaVA
(Liu et al., 2024b) framework such as LLaVAR
(Zhang et al., 2023), InternVL (Chen et al., 2024),
KaLMA (Penamakuri and Mishra, 2024b) and
UniDoc (Feng et al., 2023) have broadened LVLM
capabilities in visual text by leveraging both tex-
tual content and visual content, thereby setting
a new benchmark for text-centric VQA includ-
ing their knowledge-aware counterparts (e.g. Tex-
tKVQA (Singh et al., 2019a)). Despite these sig-
nificant strides, LVLMs fall short in complex tasks
like MMCRICBENCH-3K as discussed in Sec-
tion 3.
Text-centric VQA: The existing text VQA
datasets TextVQA (Singh et al., 2019b), ST-VQA
(Biten et al., 2019), DocVQA (Mathew et al.,
2021), and VisualMRC (Tanaka et al., 2021) solely
focus on the English language. While EST-VQA
(Wang et al., 2020) and MTVQA (Tang et al.,
2024) are multilingual, they do not cover low-
resource visual languages e.g. Hindi. Further,
existing datasets either primarily focus on single-
image QA or lack questions that require structure-
aware mathematical reasoning (summarized in Ta-
ble 1). We aim to address this gap.
Models and Datasets for Table VQA: While
benchmark datasets like TableVQA-Bench (Kim
et al., 2024), TabComp (Gautam et al., 2025), and
ComTQA (Zhao et al., 2024) exist for VQA over
table images, they are all English-focused with an-
swers directly in the images. However, table im-
age datasets to evaluate the cross-lingual mathe-
matical reasoning capabilities of LVLMs remain
underexplored.
Multi-image VQA: Several benchmarks (Talmor

et al., 2021; Mathew et al., 2021; Bansal et al.,
2020; Chang et al., 2022; Penamakuri et al., 2023;
Wu et al., 2025) explore reasoning across mul-
tiple image. However, these tasks largely over-
look structure-aware tabular understanding, nu-
merical reasoning, and cross-lingual robustness,
which are central to our setting. In contrast,
we include a dedicated multi-image subset within
MMCRICBENCH-3K, where answering a ques-
tion requires aggregating statistics across multiple
images representing different innings of a match,
thereby combining tabular, numerical, and cross-
lingual reasoning.
Table Reasoning Ability of LLMs: LLMs and
multimodal LLMs (MLLMs) are evaluated in
(Deng et al., 2024) using tables presented as ei-
ther text or images, finding that text-based repre-
sentations yield better results, while image-based
table reasoning remains weak for current models.
To enhance reasoning, (Lu et al., 2024) introduced
TART, a tool-augmented framework that enables
step-by-step table question answering by integrat-
ing LLMs with symbolic tools. Similarly, (Nahid
and Rafiei, 2024) proposed TabSQLify, which im-
proves efficiency by decomposing large tables into
smaller, relevant segments using text-to-SQL con-
version. Furthermore, (Zhao et al., 2022) pro-
posed ReasTAP, a pretraining strategy using syn-
thetic table reasoning examples to inject structured
reasoning ability into LLMs. Despite these ad-
vances, most research focuses on structured ta-
bles in English. A critical gap remains in (i) ta-
ble reasoning in low-resource languages (such as
Hindi in our dataset), particularly visually com-
plex, domain-specific formats like cricket score-
cards, (ii) evaluating multi-step reasoning and con-
ditional logic in understanding the tabular con-
tent. Our work addresses this need by introduc-
ing MMCRICBENCH-H-1.5K, a benchmark de-
signed to push the limits of visual-text reasoning
in Hindi.

5 Conclusion

We presented MMCRICBENCH-3K, a novel
benchmark for VQA on cricket scorecards that ad-
dresses critical gaps in existing datasets by incor-
porating cross-lingual understanding, multi-image
reasoning, and domain-specific numerical anal-
ysis. Our evaluation across MMCRICBENCH-
E-1.5K (English) and MMCRICBENCH-H-1.5K
(Hindi) scorecards reveals a significant perfor-
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mance disparity among state-of-the-art LVLMs.
While these models show reasonable proficiency
with English scorecards, they struggle substan-
tially with Hindi variants despite identical infor-
mation content. Even advanced prompting strate-
gies like CoT fail to bridge this performance gap.
These findings highlight a critical weakness in
cross-lingual visual reasoning capabilities, high-
lighting the need for more robust models that
can effectively process structured numerical data
across language boundaries. As AI applications
expand globally, addressing these limitations be-
comes increasingly crucial. MMCRICBENCH-3K
provides researchers with a challenging testbed
for advancing LVLM capabilities beyond English-
centric contexts, particularly in domains requiring
precise analysis of semi-structured information.

6 Limitations

Despite the strengths of MMCRICBENCH-3K in
evaluating structure-aware and cross-lingual vi-
sual question answering, several limitations per-
sist. First, the dataset’s linguistic scope is limited
to English and Hindi, leaving out other regional
scripts and languages prevalent in cricket contexts.
Second, the use of synthetically generated score-
cards, while visually coherent, may not fully cap-
ture the complexity and noise present in real-world
documents.

Ethical Considerations

Our benchmark, MMCRICBENCH-3K, is synthet-
ically generated using publicly available cricket
statistics, with no private or sensitive personal in-
formation involved. All scorecard data is derived
from open datasets (e.g., Kaggle) and only in-
cludes publicly known player names and match
events. We translate content using automated tools
(e.g., Google Translate), and manually verify for
correctness to minimize cultural or linguistic bias.

While our dataset uses Hindi as a representa-
tive low-resource script for cross-lingual evalua-
tion, we acknowledge the limitations of focusing
only on English-Hindi and encourage future exten-
sions to other regional languages and scripts. Ad-
ditionally, though we simulate realistic scorecards,
real-world images may include noise, varied lay-
outs, or OCR artifacts that are not fully captured in
our synthetic setup. Our work aims to support fair
and inclusive evaluation of vision-language mod-
els in global contexts. No human annotators were

subjected to sensitive or harmful content during
data creation, and no demographic or identity in-
formation is used or inferred in this study.
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A Appendix

A.1 Implementation Details
We conduct all of our experiments on the base-
line VLMs in a zero-shot setting, with their de-
fault setting provided in their respective implemen-
tations. When prompted with these methods, we
faced two challenges: (i) verbose answers and (ii)
digits written in text, e.g. Fifth in place of 5. To
overcome these challenges and generate precise
and concise answers, we added a brief instruction
to the prompt: ‘Answer precisely in 1-2 words,
answer in digits when required’ before the main
question. We conducted all our experiments on
a cloud machine with 3 A6000 Nvidia GPUs (48
GB each) rented from online cloud GPU provider
TensorDock (TensorDock Inc., 2024).

A.2 Cricket Specific Terms and Their
Calculations

In cricket, performance metrics help quantify a
player’s efficiency in both batting and bowling.
Two key metrics are the Strike Rate and the Econ-
omy Rate. The following explanations and for-
mulas provide a detailed understanding of these
terms.

A.2.1 Strike Rate
The Strike Rate is primarily used to measure a
batsman’s scoring efficiency. It represents the
average number of runs scored per 100 balls faced,
indicating how quickly a batsman can accumulate
runs.

Calculation: The basic formula for Strike Rate
is:

Strike Rate (SR) =
Total Runs Scored
Total Balls Faced

× 100

Example: For instance, if a batsman scores 50
runs from 40 balls, the Strike Rate is calculated as:

SR =
50

40
× 100 = 125
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This means that, on average, the batsman scores
125 runs for every 100 balls faced. A higher strike
rate reflects a more aggressive and effective scor-
ing approach.

A.2.2 Economy Rate
The Economy Rate measures a bowlers efficiency
by calculating the average number of runs con-
ceded per over. An over in cricket typically con-
sists of 6 legal deliveries.

Calculation: The basic formula for Economy
Rate is:

Economy Rate (Econ) =
Total Runs Conceded
Total Overs Bowled

If the data is provided in terms of balls bowled
rather than overs, the formula is adjusted by con-
verting balls to overs:

Economy Rate (Econ) =
Total Runs Conceded
Total Balls Bowled

×6

Example: Consider a bowler who concedes 30
runs in 10 overs. The Economy Rate is:

Econ =
30

10
= 3.0 runs per over

A lower economy rate suggests that the bowler is
effective at limiting the opposing team’s scoring.

A.2.3 Summary
Understanding these calculations is fundamental
for analyzing cricket performance:

• The Strike Rate provides insight into a bats-
man’s ability to score quickly, which is espe-
cially valuable in limited-overs formats.

• The Economy Rate evaluates a bowler’s per-
formance by highlighting how few runs they
allow per over, thus reflecting their effective-
ness in containing the opposition’s scoring.

These metrics are essential for comparing
player performances across different matches and
cricket formats, offering a standardized way to
assess and discuss efficiency in both batting and
bowling.

A.2.4 Rationale for Multi-Images
Cricket matches played over multiple innings of-
ten contain statistics that span beyond a single ta-
ble or image. For instance, Test matches com-
monly have four innings across five days, with
runs, wickets, and partnerships distributed across

these innings. A single static image may not en-
capsulate the full statistical narrative, necessitating
a shift toward a multi-image structure. LVLMs
must then establish logical connections across
these images to accurately answer questions in-
volving cumulative statistics or cross-inning per-
formance comparisons.

(a) C1

(b) C2

(c) C3

Figure 4: Word cloud of category-wise questions.

A.3 Scorecard Image Template Design

The HTML/CSS template used to render each
match’s batting and bowling scorecards is defined
via a Jinja2 template and styled to ensure consis-
tent layout and visual separation of sections. Im-
ages are generated by rendering this HTML to
PDF via WeasyPrint, converting singlepage PDFs
to 300 DPI PNGs, and cropping whitespace. Be-
low, we list all key design parameters in Table 8.

A.3.1 Country Diversity
Cricket is a global sport played across continents,
with scorecards reflecting diverse naming conven-
tions, team compositions, and performance statis-
tics. Incorporating scorecards from 13 countries
ensures that the dataset captures these variations,
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Country
Afghanistan
Australia
Bangladesh
England
India
Ireland
New Zealand
Pakistan
South Africa
Sri Lanka
West Indies
Zimbabwe
Netherlands

Table 7: Distribution of Scorecards Across 13 Coun-
tries.

Multi-step 
26.2%

Basic Arithmetic 
26.2%

Direct Retrieval & 
47.6%

Figure 5: Category Distribution for Batting and Bowl-
ing Questions.

providing a comprehensive representation of crick-
eting data across different regions and formats.
The country list is in table 7.

A.4 Remaining set of questions and their
category

Table A.4 containing the remaining set of ques-
tions and their categories.

A.5 SQL Query for extracting answers
Table 12 contains questions and SQL queries used
for getting answers.

Figure 6: MMCRICBENCH-3K questions and answers
analysis: (a) Answer distribution over various ques-
tion categories, (b) Distribution of the number of words
across questions.
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Category Ingredient Specification

Setup
Page setup & font 20 px margins; white background; Arial, sans-serif font.
Table layout Full-width tables; collapsed borders; centered; 20 px vertical margins.
Cell padding 1 px padding on all header and data cells.

Styling

Header row styling Custom background color; black text; 14 px font; left-aligned.
Data cell styling 14 px font; centered text.
Column widths First column left-aligned (min-width 120 px); others centered (min-width 60 px).
Team-name banner Bold 12 px text on customizable background; 5 px padding and vertical margins.
Section separation 1 px bottom border + extra spacing between innings.
Special rows Bold white rows for Extras and Total.

Color variants

Variant 1 Banner #DA8EE7; header #CCCCFF.
Variant 2 Banner #E8CCFF; header #CCE7FF.
Variant 3 Banner #D0CCFF; header #E8CCFF.
Variant 4 Banner #CCFFE7; header #CCFFCC.

Table 8: Template ingredients for scorecard image generation.

Model MMCRICBENCH-E-1.5K MMCRICBENCH-H-1.5K

Single Multi Single Multi

Cat. i ii iii iv i ii iii iv i ii iii iv i ii iii iv

GPT4o
C1 84.1 30.6 50.0 45.0 79.6 28.33 16.6 50.0 81.3 15.9 50.0 30.4 71.1 15.0 41.6 27.7
C2 67.9 94.4 NA 50.2 60.0 75.00 NA 56.90 55.5 75.0 NA 27.1 33.3 80.56 NA 48.2
C3 57.6 65.8 44.7 35.7 69.23 17.14 NA 31.6 35.7 33.3 36.8 16.3 67.3 25.7 NA 22.78

Qwen2.5VL [7B]
C1 87.3 68.1 0.0 25.6 72.8 21.6 33.3 27.7 85.8 69.9 0.0 18.2 76.2 20.0 16.6 11.1
C2 55.5 69.5 NA 42.5 46.6 69.4 NA 33.3 32.7 72.8 0.0 19.1 46.6 63.8 NA 22.4
C3 58.9 10.7 5.2 30.1 59.6 2.8 Na 16.4 51.5 10.7 13.1 18.1 67.3 2.8 NA 7.5

Table 9: Answer-type-wise accuracy (%) of GPT-4o and Qwen2.5VL [7B] on MMCRICBENCH-E-1.5K and
MMCRICBENCH-H-1.5K across single-image and multi-image settings. The table highlights the models’ perfor-
mance breakdown by question category (C1-C3) and answer type: (i) Binary, (ii) Numerical, (iii) Categorical, and
(iv) Open-ended.

Country India Australia Pakistan

League Teams

Mumbai Indians Sydney Thunder Islamabad United
Kolkata Knight Riders Adelaide Strikers Lahore Qalandars
Kings XI Punjab Melbourne Renegades Karachi Kings
Royal Challengers Bangalore Sydney Sixers Peshawar Zalmi
Gujarat Lions Perth Scorchers Multan Sultans
Delhi Daredevils Hobart Hurricanes Quetta Gladiators
Sunrisers Hyderabad Brisbane Heat
Rising Pune Supergiants Melbourne Stars
Chennai Super Kings
Rajasthan Royals
Delhi Capitals

Table 10: List of franchise Cricket teams by Country and League included in the dataset.
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Cat. Category Name Example Question #sQ’s #mQ’s #Total %

C1 Direct Retrieval & Simple Inference

Which bowler has bowled the most no-balls in the match? 9 5 14 0.93
Who got out for a duck in the second innings? 16 12 28 1.87
Did any batsman score a century in the match? 25 11 36 2.4
Which bowler has bowled the maximum maidens? 4 15 19 1.27
Did any bowler take a 3-fer in the match? 24 9 33 2.2
Did any bowler take a 5-fer in the match? 18 7 25 1.67
Did any bowler take a 6-fer in the match? 23 8 31 2.07
How many wides were bowled by Team 1? 27 13 40 2.67
How many no balls were bowled by Team 1? 24 9 33 2.2
How many leg byes did Team 1 concede? 23 6 29 1.93
How many byes did Team 1 concede? 49 24 73 4.87
How many extras are bowled in match? 35 11 46 3.07
Which bowler has bowled the most wides in the match? 22 8 30 2
Who got out for a duck in the first innings? 6 5 11 0.73
Did any bowler take a 4-fer in the match? 15 7 22 1.47
Has [Batsman X] taken more wickets than [Batsman Y]? 30 19 49 3.27
Which bowler has conceded the most extras? 57 16 73 4.87
Who has hit the maximum sixes? 24 8 32 2.13
Does [Batsmax X] hit more sixes than [Batsman Y]? 16 15 31 2.07
How many extras were bowled in the first innings? 46 18 64 4.27

C2 Basic Arithmetic Reasoning & Conditional Logic

How many batsmen have scored a century? 19 6 25 1.67
How many batsmen have been dismissed for a duck? 20 16 36 2.4
Which bowler took a 3-fer in the match? 27 21 48 3.2
Which bowler took a 5-fer in the match? - 9 9 0.6
Which bowler took a 6-fer in the match? - 2 2 0.13
What is [Batsman X] strike rate? 46 18 64 4.27
Did [Batsman X] score better in the first innings or the second innings? - 7 7 0.47
Which batsman scored a century in the match? 11 15 26 1.73
Which bowler took a 4-fer in the match? 6 11 17 1.13
Has [Batsman X] hit more boundaries than [Batsman X]? 13 2 15 1
Which batsman was dismissed for a golden duck in the match? 24 15 39 2.6

C3 Multi-step Reasoning & Quantitative Analysis

How many batsmen had a strike rate greater than 70 in the first innings? 21 11 32 2.13
Which innings had the maximum maidens? 4 12 16 1.07
Has any batsman been dismissed for a golden duck in the match? 54 15 69 4.6
Which batsman had the highest strike rate (minimum 10 balls faced)? 37 17 54 3.6
Which batsman had the highest boundary percentage? 35 18 53 3.53
Which bowler had the better economy rate in the first innings? 38 18 56 3.73
Which innings had the higher run rate? 38 15 53 3.53
Which batsman had a strike rate greater than 70 in the first innings? 49 13 62 4.13
Has the same fielder caught any batsman twice? 37 14 51 3.4
Has any batsman been dismissed twice by the same bowler? 28 19 47 3.13

Total 1000 500 1500 100

Table 11: Statistics of single-image and multi-image questions.
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Question SQL Query
Which bowler has bowled the most wides in the match? SELECT Bowler_Name, SUM(WD) AS Total_Wides FROM bowling GROUP BY

Bowler_Name ORDER BY Total_Wides DESC LIMIT 1;
Who got out for a duck in the first innings? SELECT Batsman_Name FROM batting WHERE Runs = 0 AND Innings = 1 AND

‘Bowler/Catcher‘ NOT LIKE ’not out%’;
Did any bowler take a 4-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 4;
Has Batsman X taken more wickets than Batsman Y? SELECT CASE WHEN SUM(CASE WHEN Bowler_Name = ’Bowler X’ THEN Wicket

ELSE 0 END) >SUM(CASE WHEN Bowler_Name = ’Bowler Y’ THEN Wicket ELSE 0
END) THEN ’Yes’ ELSE ’No’ END AS Result FROM bowling WHERE Bowler_Name
IN (’Bowler X’, ’Bowler Y’);

Which bowler has conceded the most extras? SELECT Bowler_Name, SUM(WD + NB) AS total_extras FROM bowling_data GROUP
BY Bowler_Name ORDER BY total_extras DESC LIMIT 1;

Who has hit the maximum sixes? SELECT Batsman_Name, MAX("6s") AS max_sixes FROM batting_data;
Does Batsmax X hit more sixes than Batsman Y? SELECT Batsman_Name, SUM(‘6s‘) AS Total_Sixes FROM batting WHERE Bats-

man_Name IN (’Batsman X’, ’Batsman Y’) GROUP BY Batsman_Name;
How many extras were bowled in the first innings? SELECT SUM(WD + NB) AS Total_Extras FROM bowling WHERE Innings = 1; for leg

bye and bye we calculated manually
Which bowler has bowled the most no-balls in the match? SELECT Bowler_Name, SUM(NB) AS Total_Wides FROM bowling GROUP BY

Bowler_Name ORDER BY Total_NB DESC LIMIT 1;
Who got out for a duck in the second innings? SELECT Batsman_Name FROM batting WHERE Runs = 0 AND Innings = 2 AND

‘Bowler/Catcher‘ NOT LIKE ’not out%’;
Did any batsman score a century in the match? SELECT Batsman_Name, Runs, Innings FROM batting WHERE Runs >= 100;
Which bowler has bowled the maximum maidens? SELECT Bowler_Name, SUM(Maiden) AS Total_Maidens FROM bowling GROUP BY

Bowler_Name HAVING Total_Maidens >1 ORDER BY Total_Maidens DESC;
Did any bowler take a 3-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 3;
Did any bowler take a 5-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 5;
Did any bowler take a 6-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 6;
How many wides were bowled by Team 1? SELECT SUM(WD) AS Total_Wides_By_Team1 FROM bowling WHERE Innings IN (1,

3);
How many no balls were bowled by Team 1? SELECT SUM(NB) AS Total_Wides_By_Team1 FROM bowling WHERE Innings IN (1,

3);
How many leg byes did Team 1 concede? SELECT SUM(byes) AS Total_Wides_By_Team1 FROM bowling WHERE Innings IN (1,

3);
How many byes did Team 1 concede? SELECT SUM(legbyes) AS Total_Wides_By_Team1 FROM bowling WHERE Innings IN

(1, 3);
How many extras are bowled in match? SELECT SUM(WD + NB) AS Total_Extras_In_Match FROM bowling;
How many batsmen have scored a century? SELECT COUNT(*) AS Century_Count FROM batting WHERE Runs >= 100 AND

"Bowler/Catcher" NOT LIKE ’%not out%’;
How many batsmen have been dismissed for a duck? SELECT CASE WHEN COUNT(*) = 0 THEN ’None’ ELSE CAST(COUNT(*) AS

TEXT) END AS Duck_Result FROM batting WHERE Runs = 0 AND "Bowler/Catcher"
NOT LIKE ’%not out%’;

Which bowler took a 3-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 3;
Which bowler took a 5-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 5;
Which bowler took a 6-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket >= 6;
What is Batsman X strike rate? SELECT ROUND((SUM(Runs) * 100.0 / SUM(Balls)), 2) AS Strike_Rate FROM batting

WHERE Batsman_Name = ’batsman X’ AND Innings = 1;
Did Batsman X score better in the first innings or the sec-
ond innings?

SELECT CASE WHEN SUM(CASE WHEN Innings = 0 THEN Runs ELSE 0 END)
>SUM(CASE WHEN Innings = 2 THEN Runs ELSE 0 END) THEN ’1st Innings’ WHEN
SUM(CASE WHEN Innings = 2 THEN Runs ELSE 0 END) >SUM(CASE WHEN Innings
= 0 THEN Runs ELSE 0 END) THEN ’2nd Innings’ ELSE ’None’ END AS Better_Innings
FROM batting WHERE Batsman_Name = ’batsman X’;

Which batsman scored a century in the match? SELECT Batsman_Name, Runs, Innings FROM batting WHERE Runs >= 100;
Which bowler took a 4-fer in the match? SELECT Bowler_Name, Wicket, Innings FROM bowling WHERE Wicket = 4;

Table 12: Question and its SQL query to extract answer from CSV.
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Question SQL Query
Has Batsman X hit more boundaries than Batsman X? SELECT CASE WHEN SUM(CASE WHEN Batsman_Name = ’batsman X’ THEN ‘4s‘

+ ‘6s‘ ELSE 0 END) >SUM(CASE WHEN Batsman_Name = ’batsman Y’ THEN ‘4s‘
+ ‘6s‘ ELSE 0 END) THEN ’Yes’ ELSE ’No’ END AS Result FROM batting WHERE
Batsman_Name IN (’batsman X’, ’batsman Y’);

Which batsman was dismissed for a golden duck in the
match?

SELECT Batsman_Name FROM batting WHERE Runs = 0 AND ‘Bowler/Catcher‘ NOT
LIKE ’not out%’;

How many batsmen had a strike rate greater than 70 in the
first innings?

SELECT COUNT(DISTINCT Batsman_Name) AS Count FROM batting WHERE Innings
= 1 AND Strike_Rate >70;

Which innings had the maximum maidens? SELECT Innings, SUM(Maiden) AS Total_Maidens FROM bowling GROUP BY Innings
HAVING Total_Maidens >1 ORDER BY Total_Maidens DESC LIMIT 1;

Has any batsman been dismissed for a golden duck in the
match?

SELECT Batsman_Name, Innings FROM batting WHERE Runs = 0 AND Balls = 1;

Which batsman had the highest strike rate (minimum 10
balls faced)?

SELECT Batsman_Name FROM batting WHERE Innings = 1 AND Balls >= 10 ORDER
BY Strike_Rate DESC LIMIT 1;

Which batsman had the highest boundary percentage? SELECT Batsman_Name FROM batting WHERE Innings = 1 AND Balls >0 ORDER BY
((([4s]*4 + [6s]*6) * 100.0 / Runs)) DESC LIMIT 1;

Which bowler had the better economy rate in the first in-
nings?

SELECT Bowler_Name, ROUND((SUM(Runs) * 1.0 / SUM(Over)), 2) AS Economy_Rate
FROM bowling WHERE Innings = 1 GROUP BY Bowler_Name ORDER BY Econ-
omy_Rate ASC LIMIT 1;

Which innings had the higher run rate? SELECT Innings FROM batting GROUP BY Innings ORDER BY
SUM(Runs)*1.0/COUNT(DISTINCT Batsman_Name) DESC LIMIT 1;

Which batsman had a strike rate greater than 70 in the first
innings?

SELECT GROUP_CONCAT(Batsman_Name) AS Aggressive_Batsmen FROM batting
WHERE Innings = 1 AND Strike_Rate >70 AND Balls >= 10 GROUP BY Batsman_Name
HAVING Strike_Rate >70;

Has the same fielder caught any batsman twice? SELECT TRIM(SUBSTR(‘Bowler/Catcher‘, 3, INSTR(‘Bowler/Catcher‘, ’b’) - 3)) AS
Fielder, COUNT(*) AS Catches FROM batting WHERE ‘Bowler/Catcher‘ LIKE ’c %b
%’ GROUP BY Fielder HAVING Catches >1;

Has any batsman been dismissed twice by the same
bowler?

SELECT Batsman_Name, SUBSTR(‘Bowler/Catcher‘, INSTR(‘Bowler/Catcher‘, ’b ’) +
2) AS Bowler, COUNT(*) AS Dismissals FROM batting WHERE ‘Bowler/Catcher‘ LIKE
’%b %’ GROUP BY Batsman_Name, Bowler HAVING Dismissals >1;

Table 13: Question and its SQL query to extract answer from CSV continued.
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Abstract

Evaluating text generation capabilities of large
language models (LLMs) is challenging, partic-
ularly for low-resource languages where meth-
ods for direct assessment are scarce. We pro-
pose MUG-Eval, a novel framework that
evaluates LLMs’ multilingual generation ca-
pabilities by transforming existing benchmarks
into conversational tasks and measuring the
LLMs’ accuracies on those tasks. We specif-
ically designed these conversational tasks to
require effective communication in the target
language. Then, we simply use task success
rate as a proxy for successful conversation gen-
eration. Our approach offers two key advan-
tages: it is independent of language-specific
NLP tools or annotated datasets, which are lim-
ited for most languages, and it does not rely on
LLMs-as-judges, whose evaluation quality de-
grades outside a few high-resource languages.
We evaluate 8 LLMs across 30 languages span-
ning high, mid, and low-resource categories,
and we find that MUG-Eval correlates strongly
with established benchmarks (r > 0.75) while
enabling standardized comparisons across lan-
guages and models. Our framework provides a
robust and resource-efficient solution for eval-
uating multilingual generation that can be ex-
tended to thousands of languages.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in many languages, but
evaluating their multilingual generation abilities
remains a significant challenge, particularly for
low-resource languages. These challenges are par-
ticularly pronounced for low-resource languages,
which often lack robust natural language process-
ing tools, comprehensive reference corpora, or
established benchmarks. Consequently, evalua-
tion resources for these low-resource languages
predominantly derive from massively multilingual

*These authors contributed equally.

Dataset in English

Questioner
LLM

Answerer
LLM

Question 
Context

Answer 
Context

Q to get A   

Response   

Judge by 
Simple 

Algorithm

1

2

Self-Communication in 
the Target language

× N

Answer

Figure 1: General concept of MUG-Eval. Two in-
stances of the same LLM engage in self-communication
in the target language to complete information-gap tasks.
Model outputs are evaluated using algorithmic methods
(e.g., string matching or code testing), without requiring
language-specific tools or LLMs-as-judges. Task suc-
cess rate serves as a proxy for measuring the model’s
multilingual generation capability.

evaluation benchmarks (Hasan et al., 2021; Goyal
et al., 2022; Bandarkar et al., 2024; Adelani et al.,
2024, inter alia). Extending and evaluating natu-
ral language generation tasks presents considerable
complexity, especially in the absence of language-
specific resources.

Recent approaches (Holtermann et al., 2024;
Pombal et al., 2025) have employed LLMs-as-
judges, but they face an inherent limitation—the
reliability of judgments depends on the evaluator
LLM’s performance in the target language. While
this limitation may be less pronounced for high-
resource languages (Pombal et al., 2025), the ap-
plicability of such approaches to low-resource lan-
guages remains unclear and has not been rigorously
validated. Conventional evaluation approaches for
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Feature Global-MMLU Belebele Flores-101 XL-Sum MultiQ MUG-Eval

Evaluates generation (not comprehension) ✗ ✗ ✓ ✓ ✓ ✓

Metrics comparable across languages ✓ ✓ ✗ ✗ ✓ ✓

No LLMs-as-Judges required ✓ ✓ ✓ ✓ ✗ ✓

Native speaker annotation is optional ✗ ✗ ✗ ✗ ✓ ✓

# of languages supported 42 122 101 47 137 2,102

Table 1: Positioning of MUG-Eval among multilingual evaluation benchmarks. MUG-Eval uniquely combines:
(1) evaluation of generation capability (not just comprehension), (2) cross-linguistically comparable metrics,
and (3) objective scoring without LLMs-as-judges, and (4) reduced dependency on cross-lingual annotation.
Tested on 30 languages, MUG-Eval currently supports 2,102 languages via GlotLID (Kargaran et al., 2023), with
the potential to scale further as more advanced language identification tools develop. Benchmarks referenced
are MultiQ (Holtermann et al., 2024), Flores-101 (Goyal et al., 2022), XL-Sum (Hasan et al., 2021), Global-
MMLU (Singh et al., 2025), and Belebele (Bandarkar et al., 2024).

generation ability often require human-annotated
ground truth data, such as BLEU (Papineni et al.,
2002) for machine translation or ROUGE (Lin,
2004) for summarization. Overall, there exists a
gap in methodologies that offer both reliability and
scalability for quantifying LLM generation perfor-
mance across diverse languages.

In this paper, we propose MUG-Eval, a frame-
work for evaluating the multilingual generation
capabilities of LLMs, particularly for languages
where direct evaluation proves challenging or in-
feasible. Our methodology creates information-gap
scenarios that require successful communication
in the target language to complete tasks, such as
providing hidden information to one agent while
another must discover it through questioning. We
implement three tasks in MUG-Eval by adapting
existing benchmarks into conversational and multi-
lingual settings—Easy Twenty Questions (Zhang
et al., 2024), MCQ Conversation (Bandarkar et al.,
2024), and Code Reconstruction (Muennighoff
et al., 2024)—where task completion rates serve
as proxies for different aspects of generation abil-
ity: reasoning, instruction following, and program-
ming (§3.1). Our approach builds on the insight
from Muennighoff et al. (2024): instead of directly
assessing LLM-generated text quality, we can in-
directly measure how well the LLM comprehends
what it has itself generated.

We evaluate 8 LLMs across 30 languages from
high-, mid-, and low-resource categories as de-
fined by Singh et al. (2024). Our experiments
demonstrate that MUG-Eval has strong discrim-
inative power, enabling precise comparisons both
across languages and across models (§4.1). The
framework shows high internal consistency among
its three tasks and correlates strongly (Pearson’s

r > 0.75) with established benchmarks including
Belebele (Bandarkar et al., 2024), MultiQ (Holter-
mann et al., 2024), and Global-MMLU (Singh et al.,
2025) (§5.1). Additionally, our analysis of MCQ
Conversation reveals that when native-language ref-
erences are unavailable, English is not always the
optimal substitute language, particularly for low-
resource languages (§5.2).

Our primary contribution lies in proposing
MUG-Eval1, a novel language-agnostic framework
for evaluating multilingual generation in large lan-
guage models through self-comprehension tasks,
without relying on language-specific NLP tools
or human annotations. To demonstrate the utility
and effectiveness of this framework, we structure
the paper as follows. We begin by reviewing the
landscape of multilingual generation evaluation,
identifying critical gaps in existing methodologies
that motivate our approach (§2). We then present
the design of MUG-Eval, introducing three conver-
sational tasks that recast generation evaluation as a
communication-based task (§3). We evaluate eight
large language models in 30 linguistically diverse
languages, demonstrating strong correlations with
established benchmarks while offering unprece-
dented scalability (§4). Through detailed analysis,
we uncover cross-linguistic performance patterns
and validate the effectiveness of MUG-Eval as a ro-
bust, language-agnostic evaluation framework (§5),
and conclude with directions for future work in
multilingual LLM evaluation (§6).

2 Related Work

Reference-based metrics such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and

1Code and dataset available at https://github.com/
seyoungsong/mugeval.
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Task 1: Easy Twenty Questions
Find the target word

彗星

Target wordCandidate words

Questioner 
LLM

Answerer 
LLM

Question
Generation

Question
Answering

それは動物ですか No

それは食べ物ですか

それは天体ですか Yes

それは惑星または衛星ですか No

Is it a celestial body?

Is it a planet or satellite?

No

彗星
Judge by 

String Match

Task 2: MCQ Conversation
Choose the answer for the question

Ini adalah akuisisi terbesar dalam 
sejarah eBay. Perusahaan berharap 

untuk ... dan memperoleh popularitas 
di area tempat Skype memegang 

posisi kuat, seperti ...

Passage

Apa yang diakuisisi 
oleh eBay?

Question

Questioner 
LLM

Answerer 
LLM

Question
Generation

Reading 
Comprehension

No

3
Judge by 

String Match

1. Microsoft 2. Apple
3. Skype 4. Zoom

Choices

Apakah eBay mengakuisisi 
Microsoft?

No
Apakah eBay mengakuisisi 

Apple?

 

def triangle_area(a, h): 
   return a * h / 2.0 

Task 3: Code Reconstruction
Write the code based on explanations

Code

Describer 
LLM

Rebuilder 
LLM

Code
Explanation

Hii ni kazi inayoitwa `triangle_area` 
ambayo inachukua vigezo viwili `a` na `h`. 

Inarudisha thamani ambayo ni eneo la 
pembetatu, likihesabiwa kwa kutumia 
formula: nusu ya `a` kuzidishwa na `h`.

Code
Generation

 

def triangle_area(a, h): 
   return 0.5 * a * h 

Code
Judge by 
Code Test

Existing 
Dataset

Self-Comm. 
in the 
Target

language

e.g., 
Japanese, 

Indonesian, 
Swahili

Simple 
Judge

1

2

Apakah eBay mengakuisisi 
Skype?

Yes

ハンモック,  コウモリ, 
…, 彗星, …, 

ペパーミント, 看板

hammock,  bat,
…, comet, …, 

peppermint, billboard

comet

Is it an animal?

Is it food?

What was acquired by eBay?

It is the biggest acquisition in eBay's 
history. The company hopes to ... and 
gain popularity in areas where Skype 

holds a strong position, such as ...

Did eBay acquire Microsoft?

Did eBay acquire Apple?

Did eBay acquire Skype?

This is a function called `triangle_area` which takes two parameters `a` 
and `h`. It returns a value which is the area of a triangle, calculated using 

the formula: half of `a` multiplied by `h`.

This is a function called `triangle_area` which 
takes two parameters `a` and `h`. It returns a 

value which is the area of a triangle, calculated 
using the formula: half of `a` multiplied by `h`.

Figure 2: Overview of evaluation tasks. Two instances of the same LLM engage in self-communication in the
target language to complete information-gap tasks: (1) Easy Twenty Questions—guessing a hidden word, (2) MCQ
Conversation—finding the answer through passage-based dialogue, and (3) Code Reconstruction—explaining and
reconstructing code.

chrF (Popović, 2015) assess generation quality by
comparing outputs against reference texts, usually
requiring human-generated target texts as ground
truth. These metrics are widely adopted in bench-
marks such as MEGA (Ahuja et al., 2023), GlotE-
val (Luo et al., 2025), Multi-IF (He et al., 2024),
and BenchMAX (Huang et al., 2025). However,
such reference-based approaches are limited by
their reliance on high-quality parallel data, which is
scarce in many languages. Moreover, they struggle
in cross-lingual comparisons due to their sensitivity
to lexical and syntactic features.

To address these limitations, reference-free meth-
ods—particularly those using LLMs as evalua-
tors—gained attention (Dang et al., 2024; Holter-
mann et al., 2024; Pombal et al., 2025). Nonethe-
less, Hada et al. (2024b) highlights the instabil-
ity and reduced reliability of LLM evaluators in
low-resource or non-Latin script languages, raising
concerns about fairness and generalizability.

An emerging line of work evaluates genera-
tion quality through downstream utility, assess-
ing how well generated content supports task
completion. Recent benchmarks explore the
generation-comprehension link through interac-
tive information-gap tasks that require mutual
understanding. These include clarifying ques-

tion generation (Gan et al., 2024), reference
games (Gul and Artzi, 2024; Eisenstein et al.,
2023), bidirectional code understanding (Muen-
nighoff et al., 2024), and multi-turn interactive
benchmarks such as HumanEvalComm (Wu and
Fard, 2025), telephone-game simulations (Perez
et al., 2025), and 20Q (Zhang et al., 2024).

Drawing inspiration from 20Q (Zhang et al.,
2024) and HumanEvalExplain (Muennighoff et al.,
2024), our framework builds on tasks that in-
herently require both comprehension and gener-
ation, foregrounding successful communication
as the central evaluation criterion. Designed to
be language-agnostic, reference-free, and LLM-
independent, it offers a more equitable and scalable
multilingual evaluation across an unlimited spec-
trum of languages.

3 MUG-Eval: A Language-Agnostic
Evaluation Framework

MUG-Eval consists of three tasks adapted from ex-
isting benchmarks (Zhang et al., 2024; Bandarkar
et al., 2024; Muennighoff et al., 2024) to evaluate
multilingual generation capabilities. The bench-
marks for Easy Twenty Questions and Code Recon-
struction were originally English-only, while the
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source for the MCQ Conversation task is the multi-
lingual Belebele dataset. Each task is structured as
a self-communication scenario between two “LLM
instances”—separate API calls to the same model,
each assigned a distinct conversational role (e.g.,
Questioner or Answerer) with a unique system
prompt and access to different information. The
instances communicate turn-by-turn in the target
language, with the output from one serving as the
input for the next. The model’s capability is mea-
sured by the task completion rate, which serves as
the primary evaluation metric.

This section provides detailed descriptions of
each task and evaluation procedures. Additional
details, including prompts and generation parame-
ters, are provided in the Appendix B.2.

3.1 Tasks

Easy Twenty Questions. This task evaluates rea-
soning and strategic questioning abilities through
a word-guessing game. Drawing from the Things
dataset (Zhang et al., 2024), we translate 140 En-
glish words into 30 languages using Google Trans-
late. One model instance (answerer) receives a hid-
den word from this set, while another (questioner)
must identify it from a list of 100 candidates. The
questioner poses up to 20 yes/no questions in the
target language, to which the answerer responds
only with “yes,” “no,” or “maybe” in English. The
predefined candidates ensure consistent evaluation
across languages, mitigating lexical diversity from
affecting task difficulty or scoring mechanisms.

MCQ Conversation. We transform the Bele-
bele benchmark (Bandarkar et al., 2024)—a read-
ing comprehension dataset spanning 122 lan-
guages—into a conversational task. From the origi-
nal dataset of 900 samples, we separate the reading
passages from their corresponding questions and
answer choices. Similar to the previous task, the
answerer instance accesses only the passage, while
the questioner sees the question and four answer
options. To discover the correct answer, the ques-
tioner may ask up to 10 yes/no questions in the
target language, receiving “yes,” “no,” or “maybe”
responses in English, similar to the previous task.
This design tests multi-turn instruction-following
capabilities.

Code Reconstruction. This task adapts Hu-
manEvalExplain (Muennighoff et al., 2024) to as-
sess code generation abilities across languages, not

only in English. Using 164 Python function sam-
ples with corresponding unit tests, one model in-
stance (describer) generates a natural language ex-
planation of the code in the target language. An-
other instance (rebuilder) then reconstructs the orig-
inal function from this description and the func-
tion declaration snippet. Success is measured by
whether the reconstructed code passes all unit tests.

3.2 Evaluation Metrics

Task completion rate serves as our primary metric,
calculated as the ratio of successfully completed
tasks. We use exact string matching for word or
choice predictions, with responses prompted to ap-
pear within double brackets and extracted via reg-
ular expressions. We employ GlotLID (Kargaran
et al., 2023) to ensure the model’s responses are
in the target language. Tasks fail when models:
(1) produce a question or description in the wrong
language, (2) produce invalid responses, or (3) vi-
olate task-specific constraints such as including
more than 20 consecutive source code characters
in explanations.

4 Experiments

Models. We evaluate eight multilingual large lan-
guage models to assess their generation capabilities
across diverse languages. Our selection includes
four open-weight models: Llama 3.3-70B (Llama
Team, 2024), Llama 3.1-8B, Qwen2.5-72B (Qwen
Team, 2024), and Qwen2.5-7B, alongside four
closed-source models: GPT-4o (OpenAI, 2024),
GPT-4o-mini, Gemini 2.5 Flash (Google, 2025),
and Gemini 2.0 Flash (Google, 2024). All models
are accessed via API endpoints, with GPT-4o vari-
ants served through Azure OpenAI Services and the
remaining models through OpenRouter. Detailed
model information is provided in the Appendix B.1.

Languages. We test our framework on 30 lan-
guages grouped by resource availability follow-
ing Singh et al. (2024)’s classification, with 10
languages selected from each resource category.
We include high-resource languages Arabic (arb),
Chinese (zho), English (eng), French (fra), Ger-
man (deu), Hindi (hin), Italian (ita), Japanese
(jpn), Portuguese (por), and Spanish (spa); mid-
resource languages Bengali (ben), Greek (ell),
Hebrew (heb), Indonesian (ind), Korean (kor),
Lithuanian (lit), Malay (zsm), Romanian (ron),
Thai (tha), and Ukrainian (ukr); and low-resource
languages Amharic (amh), Hausa (hau), Igbo (ibo),
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Figure 3: Accuracy of 8 LLMs across three tasks in 30 languages. Languages are grouped by resource level and
sorted by average performance within each group. Results show that Code Reconstruction is the easiest task,
followed by MCQ Conversation and Easy Twenty Questions. The gap is minor between high and mid-resource
languages, but substantial between mid and low. Larger models consistently outperform smaller ones within the
same language family, and tasks exhibit distinct ceiling effect.

Model
Easy Twenty Questions MCQ Conversation Code Reconstruction

All ENG High Mid Low All ENG High Mid Low All ENG High Mid Low

GPT-4o 62.21 75.71 72.64 69.21 44.79 70.14 85.56 77.31 74.33 58.78 83.43 88.41 89.02 86.59 74.70
Gemini-2.0-flash 51.93 51.43 56.07 55.57 44.14 66.72 86.22 73.33 69.74 57.08 86.79 89.02 89.21 89.45 81.71
Gemini-2.5-flash 62.26 72.14 70.57 66.36 49.86 62.90 85.89 68.90 65.74 54.07 77.05 90.85 74.63 84.39 72.13
Qwen2.5-72B 35.17 72.14 53.86 40.64 11.00 61.90 80.33 76.61 72.44 36.63 73.68 84.76 87.56 84.15 49.33
GPT-4o-mini 31.95 53.57 44.29 35.93 15.64 59.83 78.78 70.11 65.91 43.48 75.02 87.80 82.50 80.12 62.44
Llama-3.3-70B 33.79 53.57 44.14 40.36 16.86 61.15 81.33 70.04 68.29 45.12 58.03 75.61 68.05 65.61 40.43
Qwen2.5-7B 7.90 20.71 14.50 6.64 2.57 37.33 64.67 46.48 40.33 25.17 40.47 75.00 56.28 46.22 18.90
Llama-3.1-8B 8.45 25.00 12.64 7.71 5.00 28.94 44.22 33.46 30.23 23.13 31.95 51.83 46.10 36.16 13.60

Table 2: Average accuracy (%) of 8 LLMs across three tasks, grouped by language resource categories. The best
and the second-best performances within each task and resource category are bolded and underlined, respectively.
A consistent performance degradation is observed as the language resource level decreases from high (including
English) to low.

Kyrgyz (kir), Nepali (npi), Sinhala (sin), Somali
(som), Swahili (swh), Telugu (tel), and Yoruba
(yor). This selection covers diverse language fami-
lies and writing systems, including Latin, Cyrillic,
and Devanagari scripts, ensuring comprehensive
evaluation across typologically distinct languages.
Detailed language information is provided in the
Appendix A.1.

4.1 Results

Table 2 summarizes overall accuracy, and Figure 3
visualizes trends by language and task. Full results
are provided in Appendix C.1.

How difficult is MUG-Eval? Average accuracy
scores across tasks vary depending on the model

and the resource level of the language. Code Re-
construction is the easiest task, followed by MCQ
Conversation, while Easy Twenty Questions chal-
lenges the most. This may be due to the number of
interaction turns: multi-turn tasks are more error-
prone as mistakes accumulate. This pattern aligns
with average turn counts (Table 9): Easy Twenty
Questions requires the most turns, MCQ Conversa-
tion fewer, and Code Reconstruction only one.

Performance varies across resource levels and
models. The performance gap between high- and
mid-resource language groups is relatively small
compared to the much larger gap observed be-
tween mid- and low-resource groups. Additionally,
larger models consistently outperform smaller ones
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within the same model family. Despite some vari-
ation in task-wise rankings, overall trends of task
rankings remain stable across models.

Complementary ceiling effects exist across tasks.
Code Reconstruction and MCQ Conversation sat-
urate near the upper bound—around 0.9 and 0.8,
indicating 90% and 80% accuracy. In contrast,
Easy Twenty Questions exhibits saturation toward
the lower end, with many scores concentrated near
zero—especially in low-resource languages and
smaller models. MCQ Conversation shows lower
saturation than its original benchmark, Belebele
(0.8 vs. 0.95; see Figure 4), likely due to its split-
agent design, which can produce ambiguous ques-
tion generations, leading to unsolvable cases.

These differing saturation patterns enhance the
discriminative power of MUG-Eval. Easier tasks
are more effective at separating weaker models and
low-resource languages, while the harder task bet-
ter distinguishes stronger models and high-resource
languages. Together, they ensure that MUG-Eval
maintains discriminative power across the full per-
formance spectrum.

5 Discussion

5.1 Comparative Analysis

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

Easy-20Q

MCQ
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Code
Reconstruction

Belebele

Global-MMLU

MultiQ

Ta
sk
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Figure 4: Score distributions across six evaluation tasks,
demonstrating varying discriminative powers. Notably,
MCQ Conversation, derived from the Belebele task,
exhibits greater statistical dispersion, indicating greater
ability to distinguish between models than the original
Belebele benchmark.

Which tasks best distinguish between models?
Figure 4 presents violin plots of accuracy scores for
six tasks, including the three introduced in MUG-
Eval. Easy Twenty Questions exhibited a broad

distribution of scores, indicating strong discrimi-
native power and the ability to distinguish models
with varying capabilities. In contrast, Code Re-
construction showed a much narrower range, sug-
gesting limited differentiation among a few models.
Notably, MUG-Eval’s MCQ Conversation demon-
strated substantially greater discriminative power
compared to the original Belebele task, highlight-
ing its usefulness in evaluating multilingual under-
standing with finer granularity. Overall, all three
tasks in MUG-Eval show greater discriminative
capability than the three existing benchmarks.

How consistent is performance across different
tasks? To validate the internal consistency of our
framework, we analyzed performance correlations
across our three tasks. While the tasks measure
distinct abilities, a moderate positive correlation
suggests that they capture a consistent, general sig-
nal of a model’s multilingual capabilities. Figure 5
compares these performance correlations across
six tasks, including the three introduced in MUG-
Eval. Pearson correlation coefficients are all above
0.75, indicating strong consistency between task
accuracy. Spearman’s rank correlation coefficients
exceed 0.75 in all cases, suggesting positive cor-
relations in rank ordering. The reason why the
correlations are not perfect is likely due to the dis-
tinct capabilities each task targets. Easy Twenty
Questions primarily evaluates the reasoning aspect
of generation, MCQ Conversation focuses on in-
struction following, Code Reconstruction assesses
coding under information asymmetry. These dif-
ferences account for the variation observed across
tasks despite overall similarity.

Validation against established benchmarks.
Figure 5 also compares performance correlations
across six tasks, including the three introduced in
MUG-Eval. While neither Pearson’s nor Spear-
man’s coefficients indicate perfect alignment be-
tween the three tasks in MUG-Eval and existing
benchmarks, the figure demonstrates a high degree
of correlation. This suggests that MUG-Eval pro-
duces reliable results in terms of both accuracy
and ranking, despite its low cost due to the ab-
sence of human-annotated datasets. The detailed
visualization result on Pearson’s r is provided in
Appendix C.2.

590



Ea
sy-

20
Q

MCQ-Con
v

Cod
e-R

Bele
be

le

Glob
al-

MMLU
Mult

iQ

Easy-20Q

MCQ-Conv

Code-R

Belebele

Global-MMLU

MultiQ

1.00 0.80 0.79 0.79 0.90 0.76

0.80 1.00 0.85 0.89 0.85 0.79

0.79 0.85 1.00 0.87 0.86 0.86

0.79 0.89 0.87 1.00 0.93 0.87

0.90 0.85 0.86 0.93 1.00 0.86

0.76 0.79 0.86 0.87 0.86 1.00

O
ur

s
Pearson's r

Ea
sy-

20
Q

MCQ-Con
v

Cod
e-R

Bele
be

le

Glob
al-

MMLU
Mult

iQ

1.00 0.78 0.80 0.85 0.92 0.79

0.78 1.00 0.81 0.90 0.79 0.75

0.80 0.81 1.00 0.79 0.81 0.78

0.85 0.90 0.79 1.00 0.92 0.76

0.92 0.79 0.81 0.92 1.00 0.76

0.79 0.75 0.78 0.76 0.76 1.00

Spearman's 

Figure 5: Correlation analysis between MUG-Eval tasks
and existing multilingual benchmarks. Heatmaps show
Pearson’s r (left) and Spearman’s ρ (right) correlation
coefficients between three MUG-Eval tasks and three
established benchmarks. All correlations exceed 0.75,
demonstrating strong consistency between MUG-Eval
and existing evaluation methods, validating its effective-
ness as a multilingual evaluation framework.

5.2 Language Resource Flexibility: A
Substitution Analysis

The original MCQ Conversation task assumes that
the answerer receives a passage written in the tar-
get language. This raises a practical question: if
such a passage is unavailable, can an English pas-
sage be used instead without significantly affecting
performance? Would using passages from other
high-resource languages yield a better substitute?

To investigate this, three experimental settings
were compared: (1) using the original target
language passage, (2) using an English passage,
and (3) using five separate versions of each pas-
sage, each written in one of the high-resource lan-
guages—English, Chinese, Arabic, Japanese, or
Hindi. Two models, GPT-4o and GPT-4o-mini,
were evaluated,1 with the GPT-4o result presented
in Figure 6. The result on the other model (GPT-
4o-mini) is provided in the Appendix C.3.

On average, performance based on the five high-
resource language passages more closely approx-
imated that of the target-language baseline than
when using English alone. This indicates that in-
corporating diverse high-resource languages may
provide a better alternative when native-language
passages are unavailable.

To further validate the applicability of MCQ
Conversation, we conducted an evaluation to as-
sess whether replacing native-language passages
with those in five high-resource languages main-

1This resource-intensive analysis was limited to the GPT
models available via Azure OpenAI Service to stay within our
computational budget.
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Figure 6: MCQ Conversation accuracy comparison
across 30 languages for GPT-4o using passages in: (1)
the target language, (2) English, and (3) five fixed high-
resource languages (averaged), and (4)an optimized sub-
set of up to five high-resource languages most similar
to the target language. Results demonstrate that high-
resource language substitution more closely approxi-
mates native language performance than using English
alone, especially for low-resource languages.

tains consistent performance patterns across lan-
guages. The correlation between results using
original target-language passages and those using
the high-resource substitutes was 0.60 for Pearson
(based on raw scores) and 0.71 for Spearman (based
on rank-order consistency). Given that MUG-Eval
is ultimately designed for cross-lingual compar-
isons, the higher Spearman correlation suggests
that relative language rankings are preserved with-
out native-language input.

To deepen the analysis, we identified the high-
resource language combination that best approxi-
mates the native passage for each target language.
MCQ Conversation was executed across all target
languages using the five high-resource passages
across two models: GPT-4o and GPT-4o-mini.

For each case, the L2 distance between the per-
formance with the substituted passage and that on
the original native-language passage was calcu-
lated. The combination of high-resource language
that minimizes this distance is reported in Table 7
and plotted in Figure 6. Results show that for high-
and mid-resource languages, the best-performing
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combination typically includes English. However,
for low-resource languages, combinations exclud-
ing English usually performed better. This indi-
cates that English is not always the optimal substi-
tute, especially for low-resource languages. The
details about the best combinations on each lan-
guage is provided in Appendix C.4.

5.3 Qualitative Error Analysis: GPT-4o in
English and Korean

0 20 40 60 80 100
Korean

English
Easy-20Q

0 20 40 60 80 100
Korean

English
MCQ Conversation

Questioner Both Answerer

Figure 7: Attribution of errors by conversational role.
Bars show the percentage of failures caused by Ques-
tioner (green), Answerer (blue), or Both roles (purple).

Setup. To validate that task completion rates re-
flect genuine language capabilities, we conducted
a fine-grained error analysis on GPT-4o outputs
in English and Korean. We chose GPT-4o as a
representative high-performing model and selected
English and Korean to leverage the authors’ profi-
ciency for reliable annotation. The authors manu-
ally annotated 160 GPT-4o conversation logs, sam-
pling 20 success and failure cases each for Easy
Twenty Questions and MCQ Conversation in En-
glish and Korean. Initial classification was per-
formed using Gemini-2.5-flash, then manually cor-
rected by two authors proficient in both languages.

Findings. Figure 7 reveals systematic task-
specific error patterns that validate our framework
design. The Code Reconstruction task is excluded
from this role-based error analysis, as attributing
failure to either the ‘describer’ or ‘rebuilder’ is in-
herently ambiguous. Easy Twenty Questions failed
primarily due to questioner errors, reflecting strate-
gic question generation challenges, while MCQ
Conversation showed predominantly answerer er-
rors, indicating passage comprehension difficul-
ties. These patterns remained consistent across
languages, confirming that failures stem from gen-
uine communicative challenges rather than external

factors. Success cases showed minimal errors in
both roles, while rare successful cases with conver-
sational errors reflected expected random chance.
The LLM-based initial annotation achieved 78.8%
accuracy (62.5% for failure cases, 95.0% for suc-
cess cases).

Representative Error Case. In the MCQ Con-
versation task, Questioner errors often stemmed
from failures to faithfully incorporate all relevant
information from the original query when gen-
erating questions. Key semantic or lexical ele-
ments were frequently omitted, resulting in ques-
tions that lacked sufficient grounding in the pas-
sage—ultimately leading to unanswerable or mis-
leading queries. In contrast, Answerer errors pri-
marily reflected incorrect inference from the pas-
sage. Detailed examples of representative error
cases are provided in Appendix C.5.

In the Easy Twenty Questions task, Ques-
tioner errors were typically caused by ineffective
information-seeking strategies, such as asking in-
sufficiently discriminative questions within the 20-
turn limit or making premature guesses despite the
presence of multiple plausible candidates. Most
Answerer errors in this task were due to halluci-
nated responses, where the model generated logi-
cally incorrect “yes”/“no”/“maybe” answers.

5.4 Generation Statistics

While running the experiments, we collected de-
tailed generation statistics, averaged over models
and language groups. Specifically, we measured
(1) token count, (2) sequence length, (3) language
fidelity, (4) instruction-following of the Answerer,
and (5) interaction length. A full description of
these statistics is provided in Appendix D. We sum-
marize key findings below:

• Token Count and Sequence Length: Output
length varied by language resource level, with
English being the shortest and low-resource
languages generally producing the longest out-
puts.

• Language Fidelity: Although slightly lower
in low-resource languages, fidelity scores re-
mained similarly high across all groups.

• Answerer Instruction-Following and Inter-
action Length: These metrics were largely
consistent across language resource groups
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and models. On average, Easy Twenty Ques-
tions involved 14.3 turns, and MCQ Conver-
sation 4.0.

6 Conclusion

A fundamental limitation in multilingual evalua-
tion is the reliance on ground-truth references or
LLM-based judgments, which are often unreliable
or infeasible for low-resource languages. To ad-
dress this, we introduce MUG-Eval, a language-
agnostic evaluation framework based on three con-
versational task completion between LLMs that
assess both generation and comprehension.

We evaluate 8 LLMs across 30 languages using
MUG-Eval. Our framework demonstrates strong
internal consistency and aligns well with estab-
lished multilingual benchmarks, while remaining
reference-free and cost-effective. Our results high-
light a few implications. First, MUG-Eval enables
fine-grained performance comparisons even in low-
resource settings due to its task diversity and satura-
tion characteristics. Second, we find that substitut-
ing native-language passages with English often de-
grades performance—especially for low-resource
languages—underscoring the need for evaluation
methods that go beyond English-centric assump-
tions.

Limitations

MUG-Eval measures whether communication suc-
ceeds, but not how well it succeeds—a model gen-
erating minimal functional text scores identically
to one producing sophisticated, nuanced output,
as long as both complete the task. This limita-
tion poses challenges for applications requiring
natural, culturally appropriate, or stylistically rich
text generation. Furthermore, comparing linguis-
tic quality across languages remains fundamentally
difficult because notions of richness and quality
vary significantly across linguistic and cultural con-
texts, making it challenging to establish universal
cross-linguistic metrics. This focus on commu-
nicative effectiveness over stylistic quality is an
intentional design choice, ensuring our framework
remains scalable and objective in low-resource set-
tings where fluency evaluation is often infeasible.
While this trade-off enables our language-agnostic
evaluation approach, it remains a limitation for
comprehensively assessing generation quality.

While MUG-Eval’s reliability is supported by
its strong correlations with existing benchmarks,

comprehensive human evaluation has not yet been
conducted. Our qualitative error analysis of 160
conversation logs (§5.3) provided initial validation
of failure patterns and confirmed that task fail-
ures stem from genuine communicative challenges
rather than external factors. However, broader hu-
man validation across all 30 languages would pro-
vide deeper insights into the framework’s fairness
across different languages and enable more detailed
qualitative analysis of model performance patterns.
Given the conversational nature of MUG-Eval’s
tasks, human evaluation could reveal which specific
conversational aspects challenge different models,
particularly since performance varies significantly
depending on conversational roles.

Despite MUG-Eval’s language-agnostic design,
certain implementation aspects remain English-
centric. The difficulty of accurately translating
prompts into all target languages, especially low-
resource ones, necessitated using English for in-
structional prompts in the conversational scenar-
ios. Additionally, the Code Reconstruction task
employs Latin script for code, with variable and
function names following English naming conven-
tions. These factors may introduce systematic bi-
ases against non-Latin script languages and low-
resource language contexts, potentially affecting
the framework’s cross-linguistic validity.

Ethical Considerations

Our human evaluation study was conducted with
approval from the Institutional Review Board
(IRB), ensuring all procedures adhered to estab-
lished ethical research standards. All participants
recruited for the annotation task were compensated
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mately 21.76 USD as of September 2025), a rate
that meets or exceeds fair compensation guidelines
for our region.
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Appendix

A Data Preparation

A.1 Languages

Throughout this paper, we evaluated LLMs across
30 languages: 10 high-resource, 10 mid-resource,
and 10 low-resource languages. The resource
classification follows the categorization defined
by Singh et al. (2024).

ISO Code Language Script Resources

arb_Arab Arabic Arabic High
deu_Latn German Latin High
eng_Latn English Latin High
fra_Latn French Latin High
hin_Deva Hindi Devanagari High
ita_Latn Italian Latin High
jpn_Jpan Japanese Japanese High
por_Latn Portuguese Latin High
spa_Latn Spanish Latin High
zho_Hans Chinese Simplified Han High
ben_Beng Bengali Bengali Mid
ell_Grek Greek Greek Mid
heb_Hebr Hebrew Hebrew Mid
ind_Latn Indonesian Latin Mid
kor_Hang Korean Hangul Mid
lit_Latn Lithuanian Latin Mid
ron_Latn Romanian Latin Mid
tha_Thai Thai Thai Mid
ukr_Cyrl Ukrainian Cyrillic Mid
zsm_Latn Malay Latin Mid
amh_Ethi Amharic Ethiopic Low
hau_Latn Hausa Latin Low
ibo_Latn Igbo Latin Low
kir_Cyrl Kyrgyz Cyrillic Low
npi_Deva Nepali Devanagari Low
sin_Sinh Sinhala Sinhala Low
som_Latn Somali Latin Low
swh_Latn Swahili Latin Low
tel_Telu Telugu Telugu Low
yor_Latn Yoruba Latin Low

Table 3: All 30 languages used in this paper with each
language’s corresponding ISO codes, scripts, and re-
source classifications defined by Singh et al. (2024)

A.2 Datasets

Easy Twenty Questions. We began with 200 En-
glish words from the dev and test sets of the Things1

dataset (Zhang et al., 2024). We translated these
words into all 30 target languages using Google
Translate2. To ensure consistency and quality, we

1
https://github.com/apple/

ml-entity-deduction-arena
2
https://translate.google.com

applied several filtering steps: we removed words
where Latin characters persisted in non-Latin script
languages, eliminated duplicates within each lan-
guage, and filtered out remaining loan words to
ensure semantic consistency across all languages.
This filtering process yielded a final set of 140
words that maintained equivalence across all 30
languages. For each target word in each language,
we randomly sampled 99 additional words from
the same language to create a candidate pool of
100 words. The composition of these candidate
pools and their ordering were kept consistent across
all languages to ensure fair comparison. Table 4
provides example target words used in the Easy
Twenty Questions task.

Other tasks and benchmarks. We utilized
datasets available on Hugging Face for Belebele3,
HumanEvalExplain4, Global-MMLU5, and Mul-
tiQ6. Our experiments included the same 30 lan-
guages for Belebele and MultiQ that we used in
our framework, while Global-MMLU experiments
covered 29 languages (excluding Thai). For Global-
MMLU, we specifically used only the Culturally-
Agnostic (CA) subset to ensure fair cross-lingual
comparability across all evaluated languages.

B Experimental Setup

B.1 Models

We conduct our evaluation by selecting recent
LLMs, accessing with APIs. This information is
summarized in Table 5.

B.2 Generations

The tasks used in our evaluation were configured
with different generation parameters, such as tem-
perature, token limits, and thresholds for fidelity
scoring. Details for each task are provided in Ta-
ble 6.

Generation settings. We modified several bench-
mark settings to ensure fair multilingual compari-
son. Key adjustments included explicitly prompt-
ing models to use the target language, rather than
assuming responses would match the question lan-
guage. For Code Reconstruction, we removed code
description length limits since consistent length

3
https://hf.co/datasets/facebook/belebele

4
https://hf.co/datasets/bigcode/humanevalpack

5
https://hf.co/datasets/CohereLabs/

Global-MMLU
6
https://hf.co/datasets/caro-holt/MultiQ
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ISO Code
Translated Words

Foam Mango Ice
amh_Ethi አረፋ ማንጎ በረዶ

arb_Arab رغوة مانجو ثلج

ben_Beng ĺফাম আম বরফ

deu_Latn Schaum Mango Eis
ell_Grek Αφρός Μάνγκο Πάγος
eng_Latn Foam Mango Ice
fra_Latn Mousse Mangue Glace
hau_Latn Kumfa Mango kankara
heb_Hebr קצף מנגו קרח

hin_Deva फोम मɇगो बफ़[
ibo_Latn ụfụfụ Mango ice
ind_Latn Busa Mangga Es
ita_Latn Schiuma Mango Ghiaccio
jpn_Jpan 泡 マンゴー 氷

kir_Cyrl көбүк Манго Муз
kor_Hang 거품 망고 얼음

lit_Latn Putos Mangas Ledas

npi_Deva फोम आँप बरफ
por_Latn Espuma Manga Gelo
ron_Latn Spumă Mango Gheață

sin_Sinh ෙපන අඹ අþÂ

som_Latn xumbo Cambaha baraf
spa_Latn Espuma Mango Hielo
swh_Latn Povu Embe barafu

tel_Telu నుర గ� మ�ǽĬ� ఐɂ

tha_Thai โฟม มะมวง นํ้าแข็ง
ukr_Cyrl Піна Манго Лід
yor_Latn Foomu Mango Yinyin
zho_Hans 泡沫 芒果 冰

zsm_Latn Buih Mangga Ais

Table 4: Example target words used in the Easy Twenty
Questions task. Words were sourced from the Things
dataset and translated into 30 languages via Google
Translate.

constraints across different scripts isn’t feasible.
We use 5-shot prompting for Global-MMLU and
zero-shot for Belebele.

Prompts. We provide prompts used for the three
main tasks introduced in Section 3.1, as well as for
established benchmarks which are Belebele (Ban-
darkar et al., 2024), MultiQ (Holtermann et al.,

2024), and Global-MMLU (Singh et al., 2025) (for
section §5.1). Each table outlines the role-specific
prompts that we provided to two separate model
instances. For Easy Twenty Questions and MCQ
Conversation, the instances act as a questioner and
an answerer; for Code Reconstruction, they act as
a describer and a rebuilder. The prompt for Easy
Twenty Questions is provided in Table 11, MCQ
Conversation is in Table 12, and Code Reconstruc-
tion is in Table 13. The prompts for the preexisting
three tasks are provided in Table 14.

Cost Analysis. The total cost to replicate our
main results (Table 2) was approximately 608 USD,
calculated using API pricing from OpenRouter and
Azure OpenAI Service. The costs were distributed
across the tasks as follows: Easy Twenty Ques-
tions (252 USD), MCQ Conversation (338 USD),
and Code Reconstruction (18 USD). Notably, the
evaluation of GPT-4o, our most expensive model,
accounted for the majority of this expenditure at
449 USD.

C Detailed Experiment Results and
Analysis

This section presents a comprehensive breakdown
of our experimental results, including task-specific
performance and its cross-lingual comparisons
across multiple models. We also provide visual-
izations of task-wise correlations and additional
evaluation results not included in the main paper.

C.1 Results on all languages on all models

Table 17, 18 present the evaluation results for
all eight models across 30 languages and three
tasks. For each model, we report task-wise ac-
curacy scores across all languages, along with their
corresponding Z-scores.

To account for varying task difficulties and en-
able a unified language ranking per model, we com-
pute Z-scores that aggregate performance across
the three tasks. Each task’s scores are standard-
ized independently, using the global mean and stan-
dard deviation computed over all models and lan-
guages for that task. This ensures that task-specific
differences in difficulty are normalized appropri-
ately. We then compute the average Z-score across
the three tasks per language, allowing for relative
performance comparisons across languages within
each model.

A Z-score above 0 indicates that the model’s
accuracy on that language is above the global aver-
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Model Model Identifier API Provider

GPT-4o gpt-4o-2024-08-06 Azure OpenAI ServiceGPT-4o-mini gpt-4o-mini-2024-07-18

Gemini-2.5-flash gemini-2.5-flash-preview-04-17

OpenRouter

Gemini-2.0-flash gemini-2.0-flash-001
Qwen2.5-72B Qwen/Qwen2.5-72B-Instruct
Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
Llama-3.3-70B meta-llama/Llama-3.3-70B-Instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct

Table 5: Model identifiers and API providers used in experiments

Name Temperature Max Tokens Fidelity Threshold

Easy Twenty Questions 0.7
Questioner: 1024
Answerer: 128

Language: 0.7
Answer: 0.9

MCQ conversation 0.7
Questioner: 2048
Answerer: 256

Language: 0.9
Answer: 0.9

Code Reconstruction
Describer: 0.7
Rebuilder: 0.2 2048 Language: 0.9

Global MMLU 0.0 32 N/A
Belebele 0.7 2048 N/A

MultiQ 0.0
Model: 256
Judge: 32 Language: 0.9

Table 6: Task-specific generation settings used in the evaluation

age, while a negative score suggests below-average
performance. These aggregated Z-scores provide a
normalized basis for ranking languages within each
model and allow for interpretable comparisons.

C.2 Visualizations of task-wise correlations

We present a set of 6 × 6 scatter plots in Figure 10,
visualizing pairwise correlations between the six
tasks. Each plot compares the accuracy scores of
two tasks across all 30 languages for 8 models,
resulting in one point per language per model.

Each point in a scatter plot represents the per-
formance of a particular language on two different
tasks, with the x- and y-axes indicating the accu-
racy scores for each task. These visualizations
help identify trends and clusters, revealing how
performance on one task relates to another across
languages.

These scatter plots serve as a visual counterpart
to the Pearson correlation coefficients (r) reported
in Figure 5, offering an intuitive understanding
of inter-task relationships observed in our experi-
ments.

C.3 Additional plot about language resource
flexibility on MCQ Conversation

Following up on the analysis in Section 5.2, we
conducted the same experiment with GPT-4o-mini
under identical settings.

Figure 8 presents the MCQ Conversation accu-
racy across 30 languages when passages are pro-
vided in four different conditions: (1) the target
language, (2) English, (3) a fixed set of five high-
resource languages (averaged), and (4) a selection
of up to five high-resource languages that are most
similar to the target language. The overall trend is
consistent with that of GPT-4o (Figure 6).
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Figure 8: MCQ Conversation accuracy comparison
across 30 languages for GPT-4o-mini, using passages in:
(1) the target language, (2) English, (3) a fixed set of five
high-resource languages (averaged), and (4) a selection
of up to five high-resource languages most similar to
the target language, with scores averaged.

C.4 Additional analysis about language
resource flexibility on MCQ Conversation

To complement the substitution analysis in Sec-
tion 5.2, Table 7 lists, for each of the 30 target
languages, the subset of high-resource languages
(selected from English, Chinese, Japanese, Hindi,
and Arabic) that most closely approximates the
original target-language passage in terms of MCQ
Conversation accuracy.

The optimal subset for each target language was
determined by selecting the combination (up to five
languages) that minimizes the L2 distance from
the original accuracy, as described in Section 5.2.
When the target language itself was one of the five
high-resource languages, it was excluded from its
own substitution set. These exclusions are marked
with ✗ in the corresponding table entries.

ISO Code Language Resources ENG ZHO ARB JPN HIN

spa_Latn Spanish High ✔ ✔ ✔

arb_Arab Arabic High ✔ ✔ ✗ ✔

deu_Latn German High ✔ ✔

fra_Latn French High ✔ ✔

ita_Latn Italian High ✔ ✔

por_Latn Portuguese High ✔ ✔

zho_Hans Chinese High ✔ ✗

eng_Latn English High ✗ ✔

jpn_Jpan Japanese High ✔ ✗

hin_Deva Hindi High ✔ ✗

zsm_Latn Malay Mid ✔ ✔ ✔ ✔

lit_Latn Lithuanian Mid ✔ ✔ ✔

kor_Hang Korean Mid ✔ ✔ ✔

ben_Beng Bengali Mid ✔ ✔

ron_Latn Romanian Mid ✔ ✔

ukr_Cyrl Ukrainian Mid ✔ ✔

ell_Grek Greek Mid ✔ ✔

heb_Hebr Hebrew Mid ✔ ✔

ind_Latn Indonesian Mid ✔ ✔

tha_Thai Thai Mid ✔ ✔

sin_Sinh Sinhala Low ✔ ✔ ✔ ✔

npi_Deva Nepali Low ✔ ✔ ✔

kir_Cyrl Kyrgyz Low ✔ ✔

amh_Ethi Amharic Low ✔

swh_Latn Swahili Low ✔

hau_Latn Hausa Low ✔

ibo_Latn Igbo Low ✔

som_Latn Somali Low ✔

tel_Telu Telugu Low ✔

yor_Latn Yoruba Low ✔

Table 7: Optimal subsets of high-resource languages
(selected from English, Chinese, Japanese, Hindi, and
Arabic) for approximating the native-language passage
performance in the MCQ Conversation task. For each
target language, the listed subset scores the lowest L2
distance from the original accuracy. If the target lan-
guage is one of the five high-resource options, it is
excluded from its own substitution set, denoted with ✗

C.5 Human analysis case on MCQ
Conversation Errors

As described in Section 5.3, we conducted a quali-
tative error analysis for both the Easy Twenty Ques-
tions and MCQ Conversation tasks. Specifically,
we examined which conversational agent—the
Questioner or the Answerer—was primarily respon-
sible for task failure in each case. Tables 15 and 16
provide illustrative examples of typical errors for
each role, along with our analysis of the underlying
issues.

C.6 Correlation with Human Evaluation on
MultiQ

To further validate MUG-Eval’s effectiveness as a
proxy for human evaluation, we conducted a human
analysis for MultiQ dataset on 14 languages and 8
models.
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C.6.1 Setup
To empirically validate MUG-Eval’s automated
scores against human judgments, we conduct a
human evaluation study. Because the conversa-
tional logs from our framework are highly struc-
tured, we use the more open-ended MultiQ bench-
mark (Holtermann et al., 2024) to test whether
MUG-Eval scores generalize as a reliable proxy
for general-purpose text quality. This study eval-
uates outputs from the eight LLMs for a set of 15
questions sampled from the original 200 in the Mul-
tiQ benchmark. The evaluation spans 14 languages
selected to cover high-resource (Arabic, Chinese,
English, French, Hindi), mid-resource (Bengali, In-
donesian, Korean, Malay, Thai), and low-resource
(Amharic, Kyrgyz, Sinhala, Swahili) categories.

We recruit 12 annotators—primarily university
students in South Korea—each a native speaker of
their assigned language(s). Ten annotators cover a
single language, while two bilingual annotators are
responsible for two languages each (French/Arabic
and Chinese/Malay). The same 15 questions are
selected for all languages. To ensure the evaluation
is both manageable and effective at differentiating
model performance, we prioritize the most chal-
lenging questions based on a preliminary LLM-as-
judge scoring using Gemini-2.5-flash. Before the
main task, annotators are calibrated using a stan-
dardized set of English examples scored by the
authors to ensure consistent judgment. Each partic-
ipant evaluates the full set of generated responses
for their language(s) in a two-hour session. Follow-
ing a rubric adapted from Hada et al. (2024a), re-
sponses are scored on a 5-point Likert scale across
three criteria: Linguistic Acceptability (fluency and
naturalness), Output Content Quality (coherence
and clarity), and Task Quality (how well the re-
sponse addresses the question).

C.6.2 Result
For each question–answer set across 14 languages
and 8 models, we first computed annotation scores
for three metrics—Linguistic Acceptability, Out-
put Content Quality, and Task Quality—and then
averaged them to obtain a Total Average score per
sample. These final annotation scores were sub-
sequently averaged across samples for each lan-
guage–model pair, yielding 112 aggregated scores
(14 languages × 8 models). We then examined the
correlation between these human evaluation scores
(based on the three criteria) and task-specific scores
from MUG-Eval as well as three existing multilin-

gual benchmarks, all provided per language and
model. Correlation statistics are reported in Fig-
ure 9.

The results show moderate to strong correlations
between human judgments and MUG-Eval scores
across tasks and metrics. This demonstrates that
although MUG-Eval was originally designed for
structured, information-gap tasks, its task comple-
tion–based scores generalize well to open-ended
question answering in MultiQ. The strongest corre-
lation was with Task Quality and the weakest with
Linguistic Acceptability, reflecting MUG-Eval’s
focus on accurate information transfer rather than
fluency. These findings suggest that MUG-Eval
scores align well with human evaluation, though
the three metrics are not fully independent.
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Figure 9: Correlation analysis between human annota-
tion on MultiQ data and six tasks consisting of MUG-
Eval and existing multilingual benchmarks. Heatmaps
show Pearson’s r (left) and Spearman’s ρ (right) cor-
relation coefficients between human annotation and
six tasks. All correlations exceed 0.4, demonstrating
medium to strong consistency between human annota-
tion with other six tasks, validating MUG-Eval’s effec-
tiveness as a multilingual evaluation framework.

C.7 Extending MUG-Eval to Summarization

To demonstrate the extensibility of the MUG-
Eval framework beyond our initial three tasks, we
implement a new summarization task based on
the same “information-gap” paradigm underlying
MUG-Eval’s design.

C.7.1 Methodology
We employed the same 8 models and 30 languages
from MUG-Eval. The summarization evaluation
was conducted as follows:

Summarization-Length Limit Normalization:
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Using the FLORES+ (Goyal et al., 2022) dataset,
which primarily contains human-translated texts,
we sampled 100 English sentences and retrieved
their translations in 30 target languages. For each
pair, we computed the ratio of character lengths by
dividing the length of the translated sentence in a
target language by the length of the corresponding
English sentence, using Python’s len() function.
These ratios were then applied for length control in
multilingual summarization.

Dataset: We sampled 100 articles from the
QAGS (Wang et al., 2020) dataset, each originally
in English. For each article, we generated 5 En-
glish question–answer pairs using GPT-4o-mini,
with answers reflecting key factual entities.

Evaluation Process: For each model, language,
and article, we followed this process:

1. A Summarizer LLM (target model) produced
a summary of the article in the target
language. Its language was verified using
GlotLID, and the length was constrained to(Original English article length) ×
0.5 × (language length ratio).

2. An Answerer LLM (target model) received
only the target-language summary and the En-
glish questions, and generated answers in En-
glish.

3. The generated answers were compared to the
gold answers using an LLM-as-Judge (GPT-
4o-mini). Since both gold and generated an-
swers were in English, this evaluation setup
avoids translation-related bias.

C.7.2 Results
The average accuracy of the Answerer LLM across
all models and languages is reported in Table 10,
and its correlation score with six tasks consisting of
MUG-Eval and existing multilingual benchmarks
is reported in Table 8. This experiment shows
that MUG-Eval can be readily extended to sum-
marization while preserving its information-gap
design, enabling scalable evaluation without ref-
erences or human judgments. The results further
exhibit moderate-to-strong correlations with the
original MUG-Eval tasks, indicating that the frame-
work captures a generalizable signal of multilingual
generation quality.

D Generation Statistics

As stated in Section 5.4, we report detailed gener-
ation statistics in Table 9, averaged over models

and language groups. Specifically, we measured
the following:

• Token Count and Sequence Length: The
number of tokens (# Token) and total charac-
ter count (# Char) are computed from outputs
generated in the target language by the ques-
tioner or the describer. The number of tokens
were computed using the tokenizer associated
with each model used in the experiments.

• Language Fidelity: Fidelity is measured as
the percentage of questioner or describer out-
puts identified by GlotLID as matching the
target language.

• Instruction-Following of the Answerer: An-
swerer Instruction-Following (A I-F) is de-
fined for Easy Twenty Questions and MCQ
Conversation as the proportion of answerer re-
sponses that strictly follow the output format
(“yes,” “no,” and “maybe”).

• Interaction Length: The number of question
turns per interaction (# Turn) is reported for
Easy Twenty Questions and MCQ Conversa-
tion, both of which are multi-turn tasks.

Pearson Spearman

Easy Twenty Questions 0.65 0.63
MCQ Conversation 0.65 0.61
Code Reconstruction 0.79 0.74
Global MMLU 0.68 0.68
Belebele 0.66 0.65
MultiQ 0.62 0.65

Table 8: Correlation score of summarization task with
six tasks consisting of MUG-Eval and existing multilin-
gual benchmarks. Overall correlation scores show high
correlation, suggesting that the extension of MUG-Eval
to other domains is plausible.
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Easy Twenty Questions MCQ Conversation Code Reconstruction
# Token # Char. Fidelity A I-F # Turn # Token # Char. Fidelity A I-F # Turn # Token # Char. Fidelity

L
an

gu
ag

e All 29.95 52.12 95.00 99.57 14.33 49.07 103.85 98.32 99.50 3.99 181.04 374.30 97.72
ENG 11.19 45.28 96.52 100.00 14.32 23.22 111.43 99.88 99.95 4.05 93.50 412.86 99.63
High 16.19 44.47 95.78 99.30 14.25 30.24 94.63 97.76 99.37 3.98 113.36 341.29 97.91
Mid 18.88 41.97 95.59 99.53 14.32 38.16 92.54 98.93 99.72 3.95 147.26 344.32 98.64
Low 54.77 69.87 93.61 99.88 14.42 78.70 124.31 98.28 99.40 4.04 282.50 437.31 96.61

M
od

el

GPT-4o 14.80 38.52 97.16 100.00 13.96 27.10 71.54 99.80 100.00 4.02 123.68 345.46 99.91
Gemini-2.0-flash 9.81 22.60 94.49 99.99 15.59 44.15 110.25 99.06 100.00 4.21 124.75 332.00 99.85
Gemini-2.5-flash 9.70 24.23 95.28 99.90 14.02 55.10 178.68 91.88 99.88 3.95 117.67 296.46 96.48

Qwen2.5-72B 57.47 78.58 96.48 100.00 14.24 61.42 98.82 99.85 100.00 3.94 288.51 494.24 99.46
GPT-4o-mini 14.28 34.67 97.64 100.00 16.00 47.45 81.39 99.85 100.00 4.08 124.70 351.47 99.98

Llama-3.3-70B 38.33 82.68 91.52 99.93 11.07 46.92 82.72 99.86 98.85 4.00 139.93 256.66 99.83
Qwen2.5-7B 61.22 81.07 93.78 99.83 16.50 77.60 128.97 97.16 99.92 3.30 256.50 443.95 92.84

Llama-3.1-8B 33.83 54.97 93.62 96.89 13.25 87.03 138.48 99.12 97.34 4.40 272.59 474.21 93.39

Table 9: Average token count (# Token), character-level sequence length (# Character), GlotLID-based language
fidelity (Fidelity), instruction-following rate of the answerer (A I-F), and average number of question turns (# Turn)
are computed per task, model, and language group.
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Figure 10: Correlation matrix showing relationships between MUG-Eval tasks and existing multilingual benchmarks.
Each cell displays Pearson’s correlation coefficient (r) with 95% confidence intervals, with points colored by
language resource level.
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gpt-4o gpt-4o-mini gemini-2.5-
flash

gemini-2.0-
flash

qwen-2.5-
72b

qwen-2.5-7b llama-3.3-
70b

llama-3.1-8b

Spanish 0.76 0.77 0.78 0.79 0.81 0.62 0.52 0.4
Arabic 0.57 0.56 0.54 0.53 0.57 0.3 0.25 0.07

German 0.76 0.78 0.8 0.75 0.81 0.55 0.49 0.39
French 0.76 0.76 0.79 0.76 0.8 0.6 0.46 0.46
Italian 0.76 0.75 0.8 0.78 0.8 0.6 0.45 0.34

Portuguese 0.79 0.77 0.78 0.74 0.82 0.57 0.5 0.39
Chinese 0.56 0.56 0.6 0.63 0.75 0.56 0.36 0.18
English 0.79 0.76 0.83 0.74 0.8 0.64 0.52 0.42

Japanese 0.58 0.52 0.6 0.65 0.71 0.47 0.37 0.11
Hindi 0.6 0.64 0.63 0.58 0.61 0.45 0.4 0.27

Malay 0.73 0.78 0.79 0.75 0.69 0.29 0.44 0.25
Lithuanian 0.71 0.71 0.71 0.67 0.71 0.47 0.42 0.33

Korean 0.6 0.52 0.6 0.68 0.62 0.37 0.38 0.13
Bengali 0.69 0.68 0.68 0.72 0.72 0.42 0.45 0.3

Romanian 0.76 0.78 0.78 0.76 0.8 0.54 0.5 0.39
Ukrainian 0.69 0.73 0.75 0.71 0.73 0.45 0.44 0.26

Greek 0.73 0.69 0.78 0.73 0.72 0.44 0.47 0.06
Hebrew 0.67 0.63 0.68 0.67 0.51 0.26 0.43 0.22

Indonesian 0.77 0.77 0.78 0.73 0.85 0.6 0.5 0.38
Thai 0.73 0.65 0.72 0.74 0.73 0.49 0.42 0.08

Sinhala 0.52 0.47 0.69 0.64 0.5 0.28 0.36 0.11
Nepali 0.68 0.65 0.74 0.74 0.64 0.44 0.42 0.1

Kyrgyz 0.65 0.65 0.7 0.72 0.61 0.4 0.34 0.11
Amharic 0.35 0.35 0.53 0.58 0.42 0.21 0.31 0.18
Swahili 0.75 0.75 0.79 0.75 0.65 0.41 0.42 0.33

Hausa 0.74 0.77 0.77 0.72 0.66 0.4 0.45 0.3
Igbo 0.71 0.78 0.8 0.73 0.64 0.42 0.45 0.26

Somali 0.73 0.7 0.74 0.74 0.63 0.36 0.46 0.28
Telugu 0.65 0.61 0.7 0.69 0.57 0.33 0.41 0.33
Yoruba 0.67 0.71 0.78 0.71 0.63 0.44 0.5 0.26

Table 10: Results of the summarization task: average accuracy of the Answerer LLM across 8 models and 30
languages, demonstrating the extensibility of MUG-Eval framework
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Role Type Prompt

Questioner Initial
Instruction

You will be solving an entity deduction game by asking questions about a
hidden item in {lang_full}. Your goal is to identify exactly one correct entity
from a list of 100 items through strategic questioning, using as few questions as
possible. You can ask yes/no/maybe questions in {lang_full}, one at a time.
Each question must be concise and answerable only with "Yes," "No," or
"Maybe." Do not ask for hints or the answer directly.

Among the list, exactly one is correct. You have a maximum of 20 questions
before making your final choice, but fewer questions are better. When you have
determined the correct entity, provide your final answer using double brackets:
[[entity]]. The entity must be exactly as it appears in the Entity List (do not
translate to another language).

<|Entity List|>
{entity_list}

<|Language|>
{lang_full}

Begin with your first question.

Answerer Instruction "Answer the following question about the hidden entity: {entity}. Respond
only with ""Yes,"" ""No,"" or ""Maybe"" (including the period) without
providing explanations or additional words. Do not use ""Maybe"" if the answer
can be definitively ""Yes"" or ""No."" Your responses must be in English.
Never mention the entity in your response. If the query contains two or more
questions asked simultaneously, consider it invalid and respond with ""Maybe.""

<|Entity|>{entity}
<|Language|>{lang_full}
<|Question|>{question}
<|Options|>

- Yes.
- No.
- Maybe.

Questioner Final
Instruction
After
20 Turns

You have now used all available questions. Based on the responses you’ve
received, provide your final guess of the entity. Even if you cannot determine
the entity with confidence, provide your best guess based on the information
gathered. Indicate your answer in double brackets: [[entity]]. The entity must
be exactly as it appears in the Entity List (do not translate to another language).

Table 11: Prompt design for the Easy Twenty Questions task. The questioner and answerer are separately prompted
with role-specific instructions to simulate a Twenty Questions game. The prompts include task rules, language
constraints, response formatting requirements, and structured input fields (e.g., {entity_list}, {lang_full},
{question})
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Role Type Prompt

Questioner Initial
Instruction

You will be solving a multiple-choice question by asking questions about a
hidden passage. I am serving as an intermediary between you and a person
who has this passage. You can ask me questions about the passage content, and
I will relay these to the person. They will respond with only “yes,” “no,” or
“maybe,” which I will then share with you.

Your questions must be in {lang_full} and you can only ask one question
at a time. Do not ask for hints or request the passage directly. Among the
four answer choices provided, exactly one is correct. You must ask exactly
4 questions (one corresponding to each answer choice) before making your
final decision. After receiving all four responses, provide your final answer in
{lang_full}, indicating the correct number choice with double brackets: [[X]]

<|Query|>
{query}

<|Choices|>
(1) {c1}
(2) {c2}
(3) {c3}
(4) {c4}

<|Language|>
{lang_full}

Answerer Instruction Answer the following question based solely on the information contained in the
passage. Do not use any external knowledge or make assumptions beyond what
is explicitly stated in the text. Your response must be in English and limited
to exactly one of these three answers: "Yes.", "No.", or "Maybe." (including
the period). Do not provide any explanation or additional words. If the query
contains two or more questions asked simultaneously, consider it invalid and
respond with "Maybe."

<|Passage|>
passage

<|Language|>
lang_full

<|Question|>
question

<|Options|>

- Yes.
- No.
- Maybe.

Questioner Final
Instruction
After
10 Turns

You have now used all available questions. Based on the responses you’ve
received, please provide your final answer in lang_full. Indicate your choice by
including the number of the correct answer in double brackets: [[X]]

Table 12: Prompt design for the MCQ Conversation task. The questioner and answerer are assigned separate
prompts to simulate a collaborative multiple-choice reasoning task. The questioner asks yes/no questions based on a
hidden passage, while the answerer responds with constrained answers. Prompts include language and formatting
instructions, as well as structured fields such as {query}, {passage}, and {lang_full}.
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Role Type Prompt

Describer Instruction
for
the English
Language

Provide a concise natural language description of the code in {lang_full}.

<|Code|>{code}
<|Language|>{lang_full}

Describer Instruction
for
Non-English
Languages

Provide a concise natural language description of the code in lang_full. Variable
names or technical terms in English are allowed, but there shouldn’t be any
phrases or full sentences written in English or any language except lang_full.

<|Code|>
code

<|Language|>
lang_full

Rebuilder Instruction "Write functional code in {code_lang_full} according to the description
written in {lang_full}. Start your code with the given declaration. Write only
the code without any additional descriptions, comments, or delimiters.

<|Language|>{lang_full}
<|Description|>{description}
<|Declaration|>{declaration}

Table 13: Prompt design for the Code Reconstruction task. One model instance (the describer) generates a natural
language description of a given code snippet in the target language. Another instance (the rebuilder) reconstructs
the original function from this description and a given declaration. The prompts specify language requirements and
restrict the output format to code-only.
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Benchmark Type Prompt

MultiQ Evaluatee Please provide an answer to the following question in {lang_full}.

<|Question|>{question}
<|Language|>{lang_full}

MultiQ Classifier
(LLM-as-a-
Judge)

Determine if the answer to the following question is correct. The question is in
English and the answer is in {lang_full}. Respond only with ’yes’ or ’no’ - do
not include explanations or additional words.

<|Question|>
{question_en}

<|Language|>
{lang_full}

<|Answer|>
{model_pred}

Global-
MMLU

- {question}
A. {option_a}
B. {option_b}
C. {option_c}
D. {option_d}
Answer:

Belebele - Given the following passage, query, and answer choices, output the number
corresponding to the correct answer in double brackets: [[X]]

<|Language|>
{lang_full}

<|Passage|>
{passage}

<|Query|>
query

<|Choices|>
(1) {c1}
(2) {c2}
(3) {c3}
(4) {c4}

Table 14: Prompt design for the pre-existing benchmark tasks used in our evaluation. For MultiQ, we include
both evaluatee prompts and classification prompts for LLM-as-a-Judge. Global-MMLU and Belebele use simpler
one-shot prompts formatted according to their original task definitions. Prompts include structured input fields such
as {question}, {lang_full}, and {choices}
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Language Korean

Passage Victoria Falls is a small city in western Zimbabwe, across the border from Livingston,
Zambia and Botswana. This town is located right next to the waterfalls, and they are the
town’s main attraction, and this popular tourist attraction also offers many opportunities for
adventurers and tourists alike to stay longer. During the rainy season (November to March),
waterfalls increase in volume, and the waterfalls become more dramatic. Crossing a bridge
or walking down a winding path near the waterfall will cause your clothes to get wet. On the
other hand, the amount of water is so large that the actual size of the waterfall is obscured by
the sheer volume!
빅토리아 폴스는 리빙스턴, 잠비아와 보츠와나 근처의 국경 건너편의 짐바브웨 서쪽에
있는작은도시입니다. 이마을은폭포바로옆에위치해있고,그폭포들이마을의주요
명소이며,또한이유명한관광지는모험가들과관광객들모두에게더오래머물수있는
많은기회를제공한다. 우기(11월부터 3월까지)에는수량이증가하며,폭포가더극적으
로 변합니다. 다리를 건너거나 폭포 근처의 구불구불한 길을 따라 걸어가면 옷이 젖게
됩니다. 반면에, 물의 양이 너무 많아서 실제 보이는 폭포의 크기는 - 엄청난 수량으로
인해 -가려진다!

Query If I want an open view , when should I visit the waterfall?
탁트인전망을원한다면언제폭포를방문해야합니까?

Choices 1. From November to March 11월부터 3월까지
2. During the tourist season관광철에
3. When the water volume is high수량이많을때
4. When it’s not rainy season장마철이아닐때

Conversation Questioner: Is the period from November to March suitable for visiting the waterfall?
폭포를방문하기에 11월부터 3월까지가적합한가요?
Answerer: Yes.

Questioner: Is the tourist season suitable for visiting the waterfall?
폭포를방문하기에관광철이적합한가요?
Answerer: Maybe.

Questioner: Is it suitable to visit the waterfall when the water volume is high?
폭포를방문하기에수량이많을때가적합한가요?
Answerer: Maybe.

Questioner: Is it suitable to visit the waterfall when it is not the rainy season?
폭포를방문하기에장마철이아닐때가적합한가요?
Answerer: Maybe.

Error
Analysis

Each questions from the Questioner does not ask whether the visiting timing is suitable if
the visitor wants an open view . As a result, each question becomes an ambiguous question
that is difficult to answer based on the passage.

Table 15: Human analysis of a case where the Questioner made an erroneous output in MCQ Conversation, ran by
gpt-4o-2024-08-06. The original dataset and conversation are in Korean, with the Korean text shown in gray.
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Language English

Passage During the 18th century Cambodia found itself squeezed between two powerful neighbors,
Thailand and Vietnam. The Thais invaded Cambodia several times in the 18th century and in
1772 they destroyed Phnom Phen. In the last years of the 18th century the Vietnamese also
invaded Cambodia.

Query Which of the following statements accurately describes the invasions of Cambodia?

Choices 1. The Vietnamese invaded Cambodia several times
2. The Thais and Vietnamese invaded Cambodia in 1772
3. The Vietnamese destroyed Phnom Phen
4. The Thais invaded Cambodia several times

Conversation Questioner: Is it true that the Vietnamese invaded Cambodia several times?
Answerer: No.

Questioner: Did the Thais and Vietnamese invade Cambodia in 1772?
Answerer: Yes.

Questioner: Is it true that the Vietnamese destroyed Phnom Penh?
Answerer: No.

Questioner: Did the Thais invade Cambodia several times?
Answerer: Yes.

Error
Analysis

The answerer gave an incorrect response to the second question. While there is a mention
that the Thais invaded in 1772, there is no information indicating that the Vietnamese invaded
Cambodia in 1772. However, the answerer responded Yes. to the second question.

Table 16: Human analysis of a case where the Answerer made an erroneous output in MCQ Conversation, ran by
gpt-4o-2024-08-06.
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gpt-4o-2024-08-06 gpt-4o-mini-2024-07-18
Total E-20Q MCQ-C CR Total E-20Q MCQ-C CR

resource lang
Z avg. Z (Acc) Z (Acc) Z (Acc)

resource lang
Z avg. Z (Acc) Z (Acc) Z (Acc)

high eng 1.37 1.62 (75.7) 1.56 (85.6) 0.94 (88.4) high eng 0.94 0.7 (53.6) 1.2 (78.8) 0.92 (87.8)
high zho 1.33 1.94 (83.6) 1.01 (75.2) 1.04 (90.9) high zho 0.77 0.76 (55) 0.8 (71.3) 0.74 (83.5)
mid ron 1.29 1.7 (77.9) 1.14 (77.7) 1.02 (90.2) mid ukr 0.68 0.55 (50) 0.67 (68.8) 0.81 (85.4)
high ita 1.26 1.73 (78.6) 1.07 (76.3) 0.99 (89.6) high spa 0.66 0.37 (45.7) 0.86 (72.3) 0.74 (83.5)
high por 1.24 1.47 (72.1) 1.21 (79.1) 1.04 (90.9) high fra 0.59 0.2 (41.4) 0.82 (71.7) 0.76 (84.1)
high spa 1.18 1.29 (67.9) 1.16 (78.1) 1.09 (92.1) high por 0.58 0.14 (40) 0.75 (70.3) 0.86 (86.6)
mid ell 1.17 1.35 (69.3) 1.08 (76.6) 1.07 (91.5) high deu 0.57 0.46 (47.9) 0.75 (70.2) 0.51 (78)
high fra 1.16 1.32 (68.6) 1.18 (78.4) 0.99 (89.6) high jpn 0.54 0.4 (46.4) 0.65 (68.3) 0.56 (79.3)
mid ukr 1.16 1.62 (75.7) 1.09 (76.7) 0.79 (84.8) mid ron 0.51 0.14 (40) 0.62 (67.8) 0.79 (84.8)
mid heb 1.13 1.76 (79.3) 0.93 (73.8) 0.69 (82.3) high hin 0.46 0.7 (53.6) 0.18 (59.6) 0.51 (78)
high arb 1.12 1.29 (67.9) 1.11 (77.1) 0.97 (89) mid ell 0.45 0.2 (41.4) 0.58 (67.1) 0.59 (79.9)
high deu 1.12 1.32 (68.6) 1.27 (80.2) 0.76 (84.1) high ita 0.39 -0.31 (29.3) 0.81 (71.4) 0.66 (81.7)
high jpn 1.08 1.5 (72.9) 0.95 (74.1) 0.79 (84.8) mid kor 0.37 -0.01 (36.4) 0.48 (65.1) 0.64 (81.1)
mid zsm 1.06 1.08 (62.9) 1.12 (77.3) 0.97 (89) mid zsm 0.34 -0.25 (30.7) 0.6 (67.6) 0.66 (81.7)
mid ind 1.05 1.17 (65) 1.1 (77) 0.86 (86.6) high arb 0.33 -0.28 (30) 0.58 (67.1) 0.69 (82.3)
mid kor 1.05 1.35 (69.3) 1.07 (76.4) 0.71 (82.9) mid tha 0.29 -0.07 (35) 0.43 (64.2) 0.51 (78)
high hin 1.04 1.41 (70.7) 0.67 (68.9) 1.04 (90.9) mid ind 0.29 -0.57 (22.9) 0.82 (71.7) 0.61 (80.5)
mid tha 1.03 1.41 (70.7) 0.83 (71.8) 0.86 (86.6) mid ben 0.28 0.25 (42.9) 0.06 (57.2) 0.53 (78.7)
mid ben 0.84 1.35 (69.3) 0.24 (60.7) 0.94 (88.4) mid heb 0.22 -0.22 (31.4) 0.48 (65.1) 0.41 (75.6)
mid lit 0.81 0.67 (52.9) 1.02 (75.4) 0.74 (83.5) mid lit 0.17 -0.34 (28.6) 0.45 (64.6) 0.41 (75.6)
low kir 0.77 1.05 (62.1) 0.68 (69) 0.59 (79.9) low npi 0 -0.13 (33.6) -0.2 (52.3) 0.33 (73.8)
low npi 0.72 1.05 (62.1) 0.36 (63) 0.74 (83.5) low kir -0.1 -0.19 (32.1) -0.15 (53.3) 0.03 (66.5)
low swh 0.68 0.2 (41.4) 0.94 (73.9) 0.92 (87.8) low swh -0.16 -0.96 (13.6) -0.02 (55.7) 0.51 (78)
low tel 0.56 0.7 (53.6) 0.3 (61.8) 0.69 (82.3) low tel -0.28 -0.66 (20.7) -0.39 (48.7) 0.21 (70.7)
low sin 0.35 0.34 (45) 0.4 (63.7) 0.31 (73.2) low hau -0.53 -1.02 (12.1) -0.5 (46.7) -0.07 (64)
low som 0.16 0.17 (40.7) -0.01 (55.9) 0.33 (73.8) low som -0.61 -1.17 (8.6) -0.8 (41) 0.13 (68.9)
low hau 0.1 -0.28 (30) 0.12 (58.4) 0.46 (76.8) low sin -0.61 -1.05 (11.4) -0.52 (46.3) -0.28 (59.1)
low yor -0.01 0.2 (41.4) -0.49 (46.8) 0.28 (72.6) low ibo -0.77 -0.93 (14.3) -1.27 (32.1) -0.12 (62.8)
low ibo -0.07 0.08 (38.6) -0.57 (45.3) 0.28 (72.6) low yor -0.92 -1.2 (7.9) -1.02 (36.8) -0.53 (53)
low amh -0.46 -0.16 (32.9) -0.32 (50) -0.89 (44.5) low amh -1.61 -1.43 (2.1) -1.81 (21.9) -1.6 (27.4)

gemini-2.5-flash-preview gemini-2.0-flash-001
Total E-20Q MCQ-C CR Total E-20Q MCQ-C CR

resource lang
Z avg. Z (Acc) Z (Acc) Z (Acc)

resource lang
Z avg. Z (Acc) Z (Acc) Z (Acc)

high eng 1.36 1.47 (72.1) 1.57 (85.9) 1.04 (90.9) high eng 1.06 0.61 (51.4) 1.59 (86.2) 0.97 (89)
high zho 1.15 1.59 (75) 0.85 (72.2) 1.02 (90.2) high fra 1.04 0.88 (57.9) 1.13 (77.6) 1.12 (92.7)
mid ukr 1.12 1.29 (67.9) 1.02 (75.3) 1.07 (91.5) high jpn 1 1.2 (65.7) 1.02 (75.4) 0.79 (84.8)
mid ind 1.11 1.32 (68.6) 1.19 (78.6) 0.81 (85.4) mid ukr 0.99 0.96 (60) 1.05 (76) 0.97 (89)
mid heb 1.07 1.29 (67.9) 1 (75.1) 0.92 (87.8) high zho 0.99 0.91 (58.6) 0.87 (72.7) 1.19 (94.5)
high arb 1.02 1.32 (68.6) 0.96 (74.2) 0.79 (84.8) mid ron 0.96 0.67 (52.9) 1.19 (78.6) 1.02 (90.2)
mid zsm 1.02 1.11 (63.6) 1.22 (79.2) 0.71 (82.9) high por 0.93 0.64 (52.1) 1.04 (75.9) 1.09 (92.1)
high hin 0.98 1.62 (75.7) 0.55 (66.6) 0.76 (84.1) mid lit 0.91 0.58 (50.7) 1.06 (76.1) 1.09 (92.1)
high jpn 0.92 1.05 (62.1) 0.82 (71.7) 0.89 (87.2) mid zsm 0.88 0.91 (58.6) 0.85 (72.1) 0.89 (87.2)
mid kor 0.87 1.23 (66.4) 0.64 (68.2) 0.74 (83.5) mid ind 0.88 0.67 (52.9) 0.99 (74.9) 0.97 (89)
mid tha 0.84 1.35 (69.3) 0.11 (58.1) 1.07 (91.5) high hin 0.87 0.99 (60.7) 0.64 (68.2) 0.97 (89)
mid ron 0.81 1.32 (68.6) 0.12 (58.3) 0.99 (89.6) high deu 0.86 0.58 (50.7) 1.03 (75.6) 0.97 (89)
low sin 0.8 1.2 (65.7) 0.31 (61.9) 0.89 (87.2) high spa 0.84 0.91 (58.6) 0.66 (68.7) 0.94 (88.4)
high spa 0.74 1.17 (65) 0.55 (66.4) 0.51 (78) mid kor 0.8 0.82 (56.4) 0.63 (68) 0.97 (89)
high ita 0.74 1.53 (73.6) 0.74 (70.1) -0.05 (64.6) mid ell 0.79 0.91 (58.6) 0.46 (64.8) 1.02 (90.2)
low tel 0.63 1.11 (63.6) 0.34 (62.6) 0.43 (76.2) mid heb 0.74 0.7 (53.6) 0.63 (68.1) 0.89 (87.2)
mid lit 0.56 0.85 (57.1) 1 (75) -0.15 (62.2) mid tha 0.72 0.52 (49.3) 0.54 (66.3) 1.09 (92.1)
high deu 0.54 1.56 (74.3) 0.56 (66.7) -0.51 (53.7) high ita 0.69 0.49 (48.6) 0.58 (67.1) 0.99 (89.6)
mid ell 0.53 1.08 (62.9) -0.15 (53.3) 0.66 (81.7) high arb 0.68 0.82 (56.4) 0.52 (66) 0.71 (82.9)
mid ben 0.43 1.44 (71.4) -1.05 (36.2) 0.92 (87.8) mid ben 0.61 1.08 (62.9) -0.19 (52.6) 0.94 (88.4)
high fra 0.41 1.53 (73.6) 0.3 (61.8) -0.61 (51.2) low sin 0.6 0.96 (60) 0.36 (63) 0.46 (76.8)
low amh 0.36 0.31 (44.3) 0.47 (65) 0.31 (73.2) low kir 0.57 0.61 (51.4) 0.55 (66.6) 0.56 (79.3)
low npi 0.3 1.26 (67.1) -1.1 (35.3) 0.74 (83.5) low tel 0.57 0.7 (53.6) 0.36 (63) 0.64 (81.1)
low swh 0.3 0.11 (39.3) 0.36 (62.9) 0.43 (76.2) low swh 0.5 -0.07 (35) 0.8 (71.2) 0.76 (84.1)
high por 0.3 1.2 (65.7) -0.14 (53.4) -0.18 (61.6) low amh 0.34 0.76 (55) -0.16 (53) 0.43 (76.2)
low ibo 0.27 0.4 (46.4) -0.36 (49.3) 0.76 (84.1) low hau 0.26 -0.43 (26.4) 0.28 (61.3) 0.92 (87.8)
low kir -0.04 1.05 (62.1) 0.18 (59.4) -1.34 (33.5) low som 0.23 -0.04 (35.7) 0.04 (56.9) 0.69 (82.3)
low som -0.04 0.17 (40.7) -0.28 (50.9) -0.02 (65.2) low yor 0.15 -0.13 (33.6) -0.23 (51.7) 0.81 (85.4)
low yor -0.06 0.11 (39.3) -0.53 (46.1) 0.26 (72) low ibo 0.11 0.11 (39.3) -0.33 (49.8) 0.56 (79.3)
low hau -0.19 -0.28 (30) -0.47 (47.2) 0.18 (70.1) low npi 0.08 0.61 (51.4) -1.15 (34.3) 0.79 (84.8)

Table 17: Results for each task on MUG-Eval across 30 languages, evaluated using gpt-4o-2024-08-06, gpt-4o-
mini-2024-07-18, gemini-2.5-flash-preview, and gemini-2.0-flash-001. Accuracy was normalized using Z-scores
and averaged across tasks. Languages were then ranked by their averaged Z-score.
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llama-3.3-70b-instruct llama-3.1-8b-instruct

resource lang
Total E-20Q MCQ-C CR

resource lang
Total E-20Q MCQ-C CR

Z avg. Z (Acc) Z (Acc) Z (Acc) Z avg. Z (Acc) Z (Acc) Z (Acc)
high eng 0.81 0.7 (53.6) 1.33 (81.3) 0.41 (75.6) high eng -0.56 -0.49 (25) -0.63 (44.2) -0.58 (51.8)
high zho 0.79 1.11 (63.6) 0.94 (73.9) 0.31 (73.2) high spa -0.62 -0.84 (16.4) -0.87 (39.6) -0.15 (62.2)
high fra 0.56 0.61 (51.4) 0.96 (74.3) 0.1 (68.3) high ita -0.85 -0.99 (12.9) -1.19 (33.6) -0.38 (56.7)
mid ind 0.55 0.73 (54.3) 0.99 (74.9) -0.07 (64) high por -0.96 -1.2 (7.9) -1.24 (32.6) -0.43 (55.5)
high spa 0.54 0.43 (47.1) 0.9 (73.1) 0.28 (72.6) mid ind -0.97 -1.05 (11.4) -1.13 (34.8) -0.73 (48.2)
mid ron 0.53 0.61 (51.4) 0.76 (70.6) 0.21 (70.7) high fra -0.99 -0.96 (13.6) -1.55 (26.8) -0.45 (54.9)
mid ukr 0.51 0.55 (50) 0.8 (71.3) 0.18 (70.1) high deu -1.1 -1.08 (10.7) -1.61 (25.7) -0.61 (51.2)
mid zsm 0.5 0.73 (54.3) 0.87 (72.6) -0.1 (63.4) high zho -1.12 -1.05 (11.4) -1.23 (32.9) -1.09 (39.6)
high por 0.45 0.14 (40) 0.92 (73.4) 0.31 (73.2) mid ukr -1.13 -1.08 (10.7) -1.27 (32) -1.04 (40.9)
high ita 0.4 0.25 (42.9) 0.77 (70.8) 0.18 (70.1) mid ron -1.14 -1.17 (8.6) -1.4 (29.6) -0.86 (45.1)
high deu 0.36 0.14 (40) 0.8 (71.2) 0.15 (69.5) high jpn -1.17 -1.14 (9.3) -1.26 (32.2) -1.11 (39)
mid ell 0.24 0.05 (37.9) 0.51 (65.8) 0.15 (69.5) mid zsm -1.21 -1.14 (9.3) -1.21 (33.2) -1.29 (34.8)
mid heb 0.2 0.28 (43.6) 0.37 (63.1) -0.05 (64.6) mid kor -1.21 -1.22 (7.1) -1.15 (34.3) -1.27 (35.4)
mid tha 0.14 0.17 (40.7) 0.46 (64.9) -0.2 (61) high hin -1.24 -0.93 (14.3) -1.22 (33) -1.57 (28)
high arb 0.11 0.43 (47.1) 0.6 (67.4) -0.71 (48.8) mid tha -1.26 -1.14 (9.3) -1.3 (31.4) -1.34 (33.5)
mid lit 0.1 -0.31 (29.3) 0.66 (68.7) -0.05 (64.6) mid ell -1.3 -1.28 (5.7) -1.56 (26.7) -1.06 (40.2)
mid ben 0.1 0.23 (42.1) 0.18 (59.4) -0.1 (63.4) mid lit -1.35 -1.31 (5) -1.29 (31.7) -1.44 (31.1)
high jpn -0.08 -1.02 (12.1) 0.67 (68.9) 0.1 (68.3) high arb -1.43 -1.31 (5) -1.16 (34.1) -1.82 (22)
high hin -0.15 0.28 (43.6) -0.53 (46) -0.2 (61) mid heb -1.49 -1.37 (3.6) -1.6 (25.9) -1.49 (29.9)
low tel -0.23 -0.54 (23.6) 0.15 (58.9) -0.3 (58.5) mid ben -1.6 -1.25 (6.4) -1.76 (22.8) -1.8 (22.6)
low swh -0.24 -0.43 (26.4) 0.37 (63.1) -0.66 (50) low ibo -1.61 -1.14 (9.3) -1.71 (23.7) -1.98 (18.3)
mid kor -0.25 -1.52 (0) 0.82 (71.7) -0.05 (64.6) low swh -1.63 -1.43 (2.1) -1.54 (26.9) -1.9 (20.1)
low npi -0.38 -0.13 (33.6) -0.43 (48) -0.58 (51.8) low som -1.64 -1.28 (5.7) -1.57 (26.4) -2.08 (15.9)
low kir -0.54 -0.84 (16.4) -0.04 (55.4) -0.73 (48.2) low hau -1.65 -1.2 (7.9) -1.66 (24.7) -2.1 (15.2)
low sin -0.58 -0.78 (17.9) 0.18 (59.4) -1.14 (38.4) low tel -1.7 -1.31 (5) -1.87 (20.8) -1.93 (19.5)
low hau -0.86 -0.96 (13.6) -0.5 (46.7) -1.11 (39) low kir -1.75 -1.37 (3.6) -1.53 (27.1) -2.33 (9.8)
low ibo -1.08 -0.87 (15.7) -1.04 (36.4) -1.34 (33.5) low yor -1.76 -1.11 (10) -1.77 (22.6) -2.41 (7.9)
low som -1.26 -1.2 (7.9) -1.23 (32.9) -1.37 (32.9) low sin -1.83 -1.4 (2.9) -1.78 (22.4) -2.31 (10.4)
low yor -1.35 -1.11 (10) -1.36 (30.3) -1.57 (28) low amh -1.9 -1.46 (1.4) -1.95 (19.2) -2.28 (11)
low amh -1.68 -1.37 (3.6) -1.91 (20) -1.75 (23.8) low npi -1.96 -1.43 (2.1) -2.04 (17.6) -2.41 (7.9)

qwen2.5-72b-instruct qwen2.5-7b-instruct

resource lang
Total E-20Q MCQ-C CR

resource lang
Total E-20Q MCQ-C CR

Z avg. Z (Acc) Z (Acc) Z (Acc) Z avg. Z (Acc) Z (Acc) Z (Acc)
high eng 1.18 1.47 (72.1) 1.28 (80.3) 0.79 (84.8) high eng 0.06 -0.66 (20.7) 0.45 (64.7) 0.38 (75)
high zho 1.17 1.29 (67.9) 1.14 (77.8) 1.07 (91.5) high zho -0.21 -0.49 (25) -0.27 (51) 0.13 (68.9)
high fra 1.04 0.96 (60) 1.23 (79.4) 0.92 (87.8) high spa -0.28 -1.08 (10.7) 0.06 (57.2) 0.18 (70.1)
high deu 1.02 0.94 (59.3) 1.2 (78.8) 0.94 (88.4) high fra -0.29 -0.75 (18.6) 0.06 (57.2) -0.18 (61.6)
high arb 0.86 0.58 (50.7) 1.11 (77.1) 0.89 (87.2) high deu -0.35 -0.75 (18.6) -0.11 (54) -0.2 (61)
high jpn 0.85 0.82 (56.4) 0.96 (74.3) 0.76 (84.1) mid ind -0.41 -1.11 (10) -0.02 (55.8) -0.1 (63.4)
high por 0.84 0.4 (46.4) 1.18 (78.4) 0.94 (88.4) high ita -0.55 -1.05 (11.4) -0.54 (45.9) -0.05 (64.6)
mid ron 0.81 0.52 (49.3) 0.97 (74.4) 0.94 (88.4) mid ukr -0.59 -1.05 (11.4) -0.43 (47.9) -0.3 (58.5)
high spa 0.77 0.14 (40) 1.16 (78.1) 1.02 (90.2) mid kor -0.67 -1.2 (7.9) -0.54 (45.9) -0.28 (59.1)
mid zsm 0.75 0.4 (46.4) 0.97 (74.4) 0.89 (87.2) mid zsm -0.69 -1.02 (12.1) -0.59 (44.9) -0.45 (54.9)
mid ukr 0.72 0.43 (47.1) 0.99 (74.8) 0.74 (83.5) mid ron -0.78 -1.31 (5) -0.79 (41.1) -0.23 (60.4)
mid ind 0.71 0.05 (37.9) 1.13 (77.4) 0.94 (88.4) high arb -0.89 -1.08 (10.7) -0.45 (47.6) -1.14 (38.4)
high ita 0.66 0.02 (37.1) 1.04 (75.9) 0.92 (87.8) high por -0.91 -1.02 (12.1) -2.01 (18.1) 0.31 (73.2)
mid kor 0.66 0.28 (43.6) 1 (75) 0.69 (82.3) mid lit -1.19 -1.37 (3.6) -1.12 (34.9) -1.06 (40.2)
high hin 0.61 0.49 (48.6) 0.52 (65.9) 0.81 (85.4) mid ell -1.2 -1.25 (6.4) -0.91 (38.9) -1.44 (31.1)
mid tha 0.6 0.43 (47.1) 0.62 (67.8) 0.76 (84.1) high jpn -1.22 -0.93 (14.3) -0.8 (41) -1.93 (19.5)
mid ell 0.54 0.05 (37.9) 0.82 (71.6) 0.76 (84.1) mid tha -1.29 -1.4 (2.9) -1.49 (28) -0.99 (42.1)
mid ben 0.45 -0.1 (34.3) 0.67 (68.8) 0.79 (84.8) mid heb -1.36 -1.43 (2.1) -0.87 (39.7) -1.77 (23.2)
mid heb 0.42 0.11 (39.3) 0.73 (69.9) 0.43 (76.2) high hin -1.45 -1.4 (2.9) -1.48 (28.1) -1.47 (30.5)
mid lit 0.3 -0.54 (23.6) 0.75 (70.3) 0.69 (82.3) mid ben -1.47 -1.31 (5) -1.57 (26.3) -1.52 (29.3)
low npi -0.07 -0.19 (32.1) -0.21 (52.1) 0.21 (70.7) low tel -1.52 -1.4 (2.9) -1.48 (28.1) -1.67 (25.6)
low kir -0.24 -0.57 (22.9) -0.33 (49.8) 0.18 (70.1) low som -1.62 -1.4 (2.9) -1.68 (24.3) -1.77 (23.2)
low tel -0.51 -0.72 (19.3) -0.67 (43.4) -0.15 (62.2) low hau -1.62 -1.4 (2.9) -1.66 (24.8) -1.8 (22.6)
low swh -0.8 -1.2 (7.9) -0.83 (40.4) -0.38 (56.7) low swh -1.63 -1.37 (3.6) -1.59 (26) -1.93 (19.5)
low sin -1 -1.31 (5) -0.75 (42) -0.94 (43.3) low npi -1.64 -1.37 (3.6) -1.6 (25.8) -1.95 (18.9)
low hau -1.19 -1.25 (6.4) -1.41 (29.3) -0.91 (43.9) low kir -1.65 -1.37 (3.6) -1.45 (28.7) -2.13 (14.6)
low som -1.27 -1.31 (5) -1.44 (28.8) -1.04 (40.9) low yor -1.74 -1.43 (2.1) -1.83 (21.6) -1.95 (18.9)
low ibo -1.29 -1.22 (7.1) -1.64 (25) -1.01 (41.5) low sin -1.74 -1.46 (1.4) -1.7 (24) -2.05 (16.5)
low yor -1.4 -1.4 (2.9) -1.55 (26.8) -1.24 (36) low ibo -1.74 -1.46 (1.4) -1.6 (25.8) -2.15 (14)
low amh -1.49 -1.46 (1.4) -1.45 (28.7) -1.57 (28) low amh -1.78 -1.46 (1.4) -1.77 (22.7) -2.1 (15.2)

Table 18: Results for each task on MUG-Eval across 30 languages, evaluated using llama-3.3-70b-instruct, llama-
3.1-8b-instruct, qwen2.5-72b-instruct and qwen2.5-7b-instruct. Accuracy was normalized using Z-scores and
averaged across tasks. Languages were then ranked by their averaged Z-score.
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Abstract

Most languages lack sufficient data for large-
scale monolingual pretraining, creating a “data
wall.” Multilingual pretraining helps but is lim-
ited by language imbalance and the "curse
of multilinguality." An alternative is to trans-
late high-resource text with machine transla-
tion (MT), which raises three questions: (1)
How does MT-derived data scale with model
capacity? (2) Can source-side transforma-
tions (e.g., simplifying English with an LLM)
improve generalization to native text? (3)
How well do models pretrained on MT-derived
data adapt when continually trained on lim-
ited native text? We investigate these ques-
tions by translating English into Indonesian
and Tamil—two typologically distant, lower-
resource languages—and pretraining GPT-2
models (124M–774M) on native or MT-derived
corpora from raw and LLM-simplified English.
We evaluate cross-entropy loss on native text,
along with accuracy on syntactic probes and
downstream tasks. Our results show that (1)
MT-pretrained models benefit from scaling; (2)
source-side simplification harms generalization
to native text; and (3) adapting MT-pretrained
models on native text often yields better perfor-
mance than native-only models, even with less
native data. However, tasks requiring cultural
nuance (e.g., toxicity detection) demand more
exposure to native data.

1 Introduction

Language technologies have advanced rapidly,
with Large Language Models (LLMs) achieving
strong performance across an array of tasks (Brown
et al., 2020; Team et al., 2024; Qwen et al., 2025;
Grattafiori et al., 2024). Scaling studies in pre-
training language models show consistent gains
with more parameters and more data (Kaplan et al.,
2020; Hoffmann et al., 2022). Yet for most of the
world’s languages, the native corpora necessary to
realize these pretraining benefits are scarce (Üstün
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Figure 1: Loss vs. model size for Indonesian (top) and
Tamil (bottom). CPT models are trained with 1B and
2.5B native tokens, respectively. Dashed lines show
the loss of the best Native model (Native-774M) as the
baseline. Natural-MT outperforms Simplified-MT in
both languages. All CPT models exceed Native base-
lines under equal native token budgets, with Tamil CPT
models even surpassing the 5B tokens baseline.

et al., 2024), causing models to quickly hit a "data
wall"—a performance plateau imposed by limited
training data. A common strategy to push past this
data wall is multilingual pretraining, which aims
to transfer knowledge from high-resource to low-
resource languages. However, its effectiveness is
constrained by challenges such as language imbal-
ance (Chang et al., 2024), suboptimal multilingual
vocabularies (Rust et al., 2021), and the “curse of
multilinguality” (Conneau et al., 2020).
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One alternative is to translate data from a high-
resource language into the target language using
machine translation (MT). While this enables large-
scale corpus creation, it introduces limitations,
including reliance on MT quality and the preva-
lence of “translationese”—literal phrasing, source-
language bias, and cultural mismatches (Jalota
et al., 2023). Nonetheless, its scalability makes MT
a practical solution to data scarcity. Recent studies
investigate the utility of pretraining on MT-derived
data (MT pretraining) in both monolingual (Doshi
et al., 2024; Alcoba Inciarte et al., 2024) and mul-
tilingual settings (Wang et al., 2025), consistently
reporting downstream performance comparable to
models pretrained on native text.

We structure our study around three research
questions:

(1) Does increasing the size of MT-pretrained
models improve generalization to native text
(cross-entropy loss on held-out native text,
syntactic probes, downstream tasks), or does
it merely overfit to translation artifacts?

(2) Does simplifying source text prior to trans-
lation improve the usefulness of MT-derived
corpora for pretraining?

(3) Does MT pretraining improve the data effi-
ciency of pretraining on limited native text?

Why these questions aren’t obvious and why
they matter.

(1) Scaling on MT-derived data. Scaling studies
show that performance reliably improves with
more parameters and data, but this assumes
access to large, high-quality native corpora.
When MT-derived data is the only viable op-
tion, with its inherent noise and translation
artifacts, it remains unclear whether scaling is
beneficial or merely leads to overfitting.

(2) Source-side simplification. Intuitively, sim-
pler sentences are easier to translate and
should yield fewer errors, but at the cost of
reduced nuance and lexical/syntactic diver-
sity. If such errors can be reduced in MT-
derived data, will this improve pretraining and
enhance generalization to native text?

(3) MT pretraining → Native CPT. MT pretrain-
ing may yield transferable features but also
embeds translationese patterns that must be

unlearned during continual pretraining (CPT)
on native text. With a fixed native token bud-
get, is CPT from an MT-pretrained checkpoint
more effective than native-only pretraining?

To answer these, we conduct controlled experi-
ments by translating English into Indonesian and
Tamil and compare GPT-2 models (124M–774M
parameters) pretrained on native corpora against
those trained on MT-derived data from both natural
and LLM-simplified English sources. We evaluate
generalization to native text using cross-entropy
loss on held-out data, as well as accuracy on syn-
tactic minimal-pair probes and natural language
understanding (NLU) tasks including sentiment
analysis (SA), toxicity detection (TD), natural lan-
guage inference (NLI), and causal reasoning (CR).

Our findings are as follows:

• Scaling MT-pretrained models (124M–774M)
improves cross-entropy loss on held-out na-
tive text, indicating they do not simply overfit
to translation-specific artifacts.

• Simplifying source text before translation re-
duces generalization to native text, likely due
to diminished lexical and syntactic variety.
Raw translation is therefore both simpler and
more effective.

• Continual pretraining on limited native text
generally improves syntactic probe accuracy
and downstream performance, often surpass-
ing native-only models even with less native
data. This shows that MT pretraining provides
a strong initialization for bootstrapping target-
language performance.

• MT-pretrained models underperform on tasks
requiring cultural nuance, such as toxicity de-
tection, suggesting that such domains demand
more extensive native data.

To the best of our knowledge, this is the first
systematic study of scaling effects in pretraining
on MT-derived data, as well as the first exploration
of source-side text manipulation prior to translation
as a means of enhancing MT data quality.
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2 Related Work

Performance gap in low-resource languages.
Recent LLM breakthroughs have centered on high-
resource languages like English, where abundant
high-quality data is available (Joshi et al., 2020).
In contrast, low-resource languages still lag due
to limited training data and benchmarks. This gap
has driven community efforts such as Masakhane
(Orife et al., 2020), SEA-CROWD (Lovenia et al.,
2024), and multilingual open-source LLMs like
BLOOM (Workshop et al., 2023) and Aya (Üstün
et al., 2024), highlighting the need for data and
model development beyond English.

Pretraining on Multilingual Data. Multilingual
pretraining improves performance in low-resource
languages (Liu et al., 2020), offering a path be-
yond the data wall. Its promise lies in transfer-
ring knowledge across languages, but this comes
with the “curse of multilinguality” (Conneau et al.,
2020), a phenomenon where training on many lan-
guages degrades performance on individual lan-
guages due to limited capacity and inter-language
interference. Despite notable successes (Xue et al.,
2021; Workshop et al., 2023; Üstün et al., 2024),
multilingual models still face challenges such as im-
balanced data (Chang et al., 2024), and suboptimal
tokenization (Rust et al., 2021). As an alternative
for improving monolingual performance with lim-
ited native data, we explore leveraging MT models
to generate target-language data for monolingual
pretraining.

Pretraining on Machine-Translated Data. Pre-
training on MT-derived data has been explored in
monolingual settings for Arabic (Alcoba Inciarte
et al., 2024) and Indic languages (Doshi et al.,
2024), as well as in multilingual settings (Wang
et al., 2025), consistently showing downstream per-
formance on par with models pretrained on native
text. Most related to our work is Doshi et al. (2024),
who pretrained 28M and 85M decoder models and
explored CPT of larger LLMs (Gemma-2B, Llama-
3-8B) on translationese and native texts, finding
MT-derived data competitive with native data. Yet
it remains unclear whether MT pretraining bene-
fits larger models and whether CPT on native texts
helps when the base model is pretrained on trans-
lationese. Our study fills this gap by examining
model scaling on MT-derived data (124M–774M),
source-side manipulation before translation, and
CPT on native texts.

3 Data Setup

3.1 Languages and MT Systems

For the source language, we chose English because
of its high-resource status. We selected target lan-
guages using the following criteria: (1) the lan-
guage has not yet been studied in the context of
MT pretraining; (2) monolingual data in that lan-
guage are relatively scarce; (3) an open-source MT
model is available; (4) high-quality, human-curated
NLU benchmarks exist; and (5) a diagnostic bench-
mark for linguistic knowledge is available, similar
to BLiMP (Warstadt et al., 2020). These criteria are
essential for evaluating how MT pretraining gen-
eralizes to native text beyond language-modeling
performance.

For MT, we use OPUS-MT (Tiedemann
et al., 2023) for English→ Indonesian1 and En-
glish→Tamil2, which achieve BLEU scores of
38.7 and 4.6 on the FLORES-101 dev set, respec-
tively (Tiedemann, 2012). We use OPUS-MT due
to its open-source license (CC BY 4.0), compact
model size, and efficient inference.

Feature Simplified Natural

PER-DATASET STATS
Total words 3.45B 3.72B
Types (unique words) 9.56M 12.70M
Type-token ratio (%) 0.28% 0.34%
Unigram entropy (bits) 10.34 10.77

CROSS-DATASET STATS
Compression (<80%) 27.52% —
Exact match 2.02% —
High lexical overlap 3.75% —
Medium lexical overlap 32.08% —
Low lexical overlap 60.77% —
Exact mismatch 1.38% —
Semantic Sim (>80%) 77.78% —

Table 1: Per-dataset and Cross-dataset statistics of the
source-side corpus. Reduced per-dataset stats in Simpli-
fied indicate lower complexity compared with Natural.
Lexical overlap is measured using ROUGE-2 (R2), with
the following thresholds: exact match (R2 = 1), high
(0.8 < R2 < 1), medium (0.4 < R2 ≤ 0.8), low
(0 < R2 ≤ 0.4), and exact mismatch (R2 = 0). Se-
mantic Sim is computed as the cosine similarity of the
paragraph embeddings. Cross-dataset stats suggest Sim-
plified texts differ in form but preserve core content. See
examples in Appendix A and B.

1Version opus-2019-12-18, https://huggingface.co/
Helsinki-NLP/opus-mt-en-id

2Version opus-2020-07-26, https://huggingface.co/
Helsinki-NLP/opus-mt-en-dra
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Figure 2: Corpus Feature distributions. Metrics in the first row are adapted from Alva-Manchego et al. (2020). The
first row suggests Simplified is shorter, has more sentence splits, uses simpler structures, and uses more common
words. The second row shows that Simplified is semantically similar to Natural, with low word-order overlap
(low ROUGE-2), moderate preservation of idea flow and structure (moderate ROUGE-L), and clearly higher FRE,
indicating systematic differences in readability. For better visualization, we removed outliers, which account for 3%
of the data (see Appendix C for definition and examples of outliers).

Native Data. For Indonesian, we use Indo4B
(Wilie et al., 2020), one of the largest and most
widely adopted pretraining datasets for the lan-
guage. For Tamil, we sample 5B tokens from the
Tamil subset of IndicMonoDoc (Doshi et al., 2024),
a large-scale, document-level pretraining corpus.

Natural Data. The English data was drawn from
three permissively licensed corpora3: Dolma v1.6
(Soldaini et al., 2024), FineWeb-Edu (Penedo et al.,
2024), and Wiki-40B (Guo et al., 2020). The final
dataset contains 4B tokens, with 40% Dolma (web,
social media, books, academic), 10% Wiki-40B
(Wikipedia), and 50% FineWeb-Edu (web).

Simplified Data. We use Llama 3.1 8B
(Grattafiori et al., 2024) to convert the Natural
Data into simplified texts, referred to as the Sim-
plified Data. Simplification reduces surface-level
complexity—shorter sentences, simpler words, and
simpler structures—while keeping core content ap-
proximately constant. For efficient inference, we
employ the INT8 quantized version4 of the model
with vLLM (Kwon et al., 2023) as the inference
server. More details on the prompt in Appendix D.
We validate the reduction in complexity and preser-
vation of core content using per-dataset and cross-

3Dolma and FineWeb-Edu (ODC-BY), Wiki-40B (CC)
4https://huggingface.co/neuralmagic/

Meta-Llama-3.1-8B-Instruct-quantized.w8a8

dataset metrics (Table 1) as well as distributional
analysis (Figure 2). An example simplified text is
shown below:

Natural Data: Maintaining a relaxed
state of mind allows you to approach
challenges with clarity and calm, mak-
ing it easier to find balanced solutions.

Simplified Data: Staying calm helps
you face challenges more clearly and
find better solutions.

Machine-Translated Data. Translation is per-
formed at the sentence level and then reconstructed
into documents. We apply pre-MT and post-MT
processing and filtering to control quality and ef-
ficiency (see Appendix E). Token statistics for all
datasets are shown in Table 4.

3.2 Evaluation and Fine-tuning Data
The evaluation touches on three aspects: (1)
out-of-distribution generalization to native text,
(2) native-language proficiency, and (3) native-
language downstream performance.

Aspect (1): Out-of-distribution generalization
to native text. We use a held-out validation set
of 200 million tokens from each language’s native
corpus and compute cross-entropy loss. Strong per-
formance indicates proficiency in native language
modeling.
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Aspect (2): Native-language grammatical
proficiency. We use the LINDSEA syntax sub-
set (Leong et al., 2023), formatted as minimal
pairs—sentence pairs differing only by a specific
grammatical feature to test whether a model favors
the grammatical form over the ungrammatical one.
The benchmark covers morphology, negation, argu-
ment structure, and filler-gap dependencies. Strong
performance indicates robust grammatical knowl-
edge.

Aspect (3): Native-language NLU perfor-
mance. We evaluate on the Indonesian and Tamil
subsets of SEA-HELM (Susanto et al., 2025) across
four NLU tasks: sentiment analysis (SA), toxicity
detection (TD), natural language inference (NLI),
and causal reasoning (CR). Strong performance in-
dicates effective transfer from MT-derived to native
data.

3.3 Fine-tuning Data

Task Train Data Labels (counts)

SA

Amazon
(Hou et al., 2024)
Yelp
(Zhang et al., 2015)

negative (50K)
positive (50K)

TD HateSpeech
(Davidson et al., 2017)

hate (0.6K)
clean (2.4K)
rough (10.3K)

NLI WANLI
(Liu et al., 2022)

contradiction (11.2K)
entailment (10.9K)
neutral (11K)

CR B-COPA
(Kavumba et al., 2019)

cause (0.5K)
effect (0.5K)

Table 2: Overview of fine-tuning tasks, data sources,
label splits, and example counts (in thousands). SA =
Sentiment Analysis, TD = Toxicity Detection, NLI =
Natural Language Inference, CR = Causal Reasoning.

In low-resource settings with little or no fine-
tuning data, we extend the MT pretraining ap-
proach by translating English task datasets into the
target language (Table 2). All datasets are curated
to be label-balanced, except TD, where downsam-
pling would reduce the data to roughly 600 exam-
ples per label. Translation and filtering follow the
same procedure as used for pretraining data.

4 Experimental Setup

4.1 Models and Training
Architectures. We train models in three sizes
(Table 3) following the GPT-2 architecture (Rad-
ford et al., 2019). A 50,257-token BPE (Sennrich

et al., 2016) is trained per language on native data
and reused across all pretraining conditions (Na-
tive, Natural-MT, Simplified-MT). Details on the
tokenizer and special tokens are provided in Ap-
pendix F.

Size Layers dmodel Heads MLP Params

Small 12 768 12 3072 124M
Medium 24 1024 16 4096 355M
Large 36 1280 20 5120 774M

Table 3: Model configurations for the three GPT-2 sizes.
Columns show number of layers, hidden size (dmodel),
attention heads, feed-forward dimension (MLP), and
parameter counts in millions.

Pretraining conditions. For each language we
train nine models: three corpora (Native, Natural-
MT, Simplified-MT) crossed with three sizes
(Small, Medium, Large). We use causal language
modeling objective with a 1,024-token context.
Native-only models are pretrained on whole na-
tive corpus (4.3B for Indonesian and 5B for Tamil)
to serve as a proxy for upper bound performance in
low-resource scenarios. Full optimizer and sched-
ule details are in Appendix F.

Continual pretraining (CPT). For CPT, we
continue pretraining the final Natural-MT and
Simplified-MT models on a subset of native corpus
(1B tokens for Indonesian, 2.5B for Tamil). All
settings match pretraining except for a lower peak
learning rate. More details in Appendix F.

Token budgets. Table 4 summarizes MT and na-
tive token budgets for each training setup. CPT
refers to native continuation after MT pretraining
stage. For example, in Indonesian, Native-only
is trained on 4.3B native tokens, Natural-MT on
2.9B MT-derived tokens, and Natural-MT-CPT con-
tinues Natural-MT training with an additional 1B
native tokens.

4.2 Fine-tuning & Evaluation

Supervised tasks. Each pretrained checkpoint
is fine-tuned on sentiment analysis (SA), natural-
language inference (NLI), and toxicity detection
(TD; Indonesian only) using machine-translated
training data, then evaluated on native SEA-HELM
test sets. Dataset sources and label splits are in
Table 2. We also fine-tune on causal reasoning
(CR), but because all systems remain near chance
(≈50–54% balanced accuracy) with no clear trends,
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Indonesian Tamil

Setup MT Native MT Native

Native — 4.3B — 5.0B
Natural-MT 2.9B — 4.8B —
Natural-MT-CPT 2.9B 1.0B 4.8B 2.5B
Simplified-MT 2.7B — 5.2B —
Simplified-MT-CPT 2.7B 1.0B 5.2B 2.5B

Table 4: Training token budgets by setup for each lan-
guage (billions). MT counts reflect machine-translated
corpora; Native counts reflect native-language text. CPT
denotes native continuation from the MT checkpoint.
All token counts are computed with each language’s
fixed 50,257-token BPE tokenizer trained on native cor-
pora and reused across all conditions.

we omit CR from the main results tables; for trans-
parency, full CR means± std appear in Appendix
Table 9.

No pretraining baseline. For each size (Smal-
l/Medium/Large), we also train a No Pretraining
baseline: a randomly initialized GPT-2 decoder
with the same architecture and classification head,
optimized only on the task data (no LM pretrain-
ing). Optimization settings, sequence length, and
hyperparameter search match those used for pre-
trained checkpoints.

Metric and model selection. We select by bal-
anced accuracy on a translationese dev split and
report average scores over three seeds on SEA-
HELM benchmark. Batch sizes per task are listed
in Appendix Table 7; fine-tuning heads, pooling,
and the hyperparameter search space are described
in Appendix G.

Zero-shot syntactic probing. To assess the lin-
guistic knowledge encoded in the pretrained rep-
resentations, we evaluate all models on the Syn-
tax subset of LINDSEA. The subset is converted
to BLiMP-style minimal pairs; a model is correct
when it assigns a higher log-probability to the gram-
matical member of the pair. Accuracy is averaged
across all syntactic phenomena.

5 Results and Discussion

We present results by our three research questions,
then report translationese fine-tuning outcomes.
Each subsection starts with a short answer, fol-
lowed by evidence and a practical takeaway.

Indonesian Tamil

Model Acc. ∆ Acc. ∆

Small
Native 53.6 71.5
Natural-MT 47.6 66.2
Natural-MT-CPT 52.9 +5.3 69.1 +2.9
Simplified-MT 46.6 61.3
Simplified-MT-CPT 52.4 +5.8 72.1 +10.8

Medium
Native 52.4 62.8
Natural-MT 50.5 65.5
Natural-MT-CPT 53.7 +3.2 72.8 +7.3
Simplified-MT 49.5 65.1
Simplified-MT-CPT 52.1 +2.6 76.0 +10.9

Large
Native 57.4 70.9
Natural-MT 49.7 62.8
Natural-MT-CPT 54.5 +4.8 72.8 +10.0
Simplified-MT 49.7 62.8
Simplified-MT-CPT 56.3 +6.6 70.9 +8.1

Table 5: Accuracy on the LINDSEA Syntax subset
(higher is better; random chance is 50 %). Native
pretraining produces the strongest Indonesian model
(57.4%), whereas CPT lifts MT models to the top for
Tamil (76.0% for Medium Simplified-MT-CPT). In
Indonesian, MT models score close to or below ran-
dom, but CPT raises them by 2–7 percentage points,
partially closing the gap to native. Tamil results
are uniformly higher: even MT-only models exceed
60%, and CPT adds another 7–11 percentage points.
Medium Simplified-MT-CPT surpasses all Large mod-
els in Tamil. A per-phenomenon breakdown appears in
Appendix Table 8.

5.1 Does scaling on MT-derived data improve
loss on native text?

Answer: Within our setup, yes. Larger MT-
pretrained models generally achieve lower loss on
held-out native text than smaller ones, except for
the Tamil Simplified-MT 774M model, which per-
forms slightly worse.
Evidence: For both languages, validation loss on
native text decreases with larger model size when
pretrained on MT-derived data (Fig. 1). Dimin-
ishing returns appear at 774M, likely due to the
data–to–parameter ratio, but further experiments
are needed to confirm. Overall, the trend sug-
gests larger models improve generalization to na-
tive text, despite being trained only on MT-derived
data. This pattern persists after CPT, indicating
that greater capacity captures transferable structure
rather than simply memorizing translation artifacts.
Takeaway: More parameters enhance transfer to
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native text even when pretraining solely on MT-
derived data.

Indonesian Tamil

Model SA NLI TD SA NLI

Small
No Pretraining (LB) 56.1 43.0 41.3 75.3 38.3
Native (UB) 63.4 53.7 52.6 87.1 42.8
Natural-MT 61.9 56.9 42.5 88.4 42.3
Natural-MT-CPT 63.5 57.4 47.6 88.9 43.5
Simplified-MT 61.3 56.2 44.5 88.8 40.7
Simplified-MT-CPT 62.9 58.2 49.6 89.0 43.0

Medium
No Pretraining (LB) 55.9 43.7 41.8 75.2 38.9
Native (UB) 62.7 57.7 53.0 84.8 41.1
Natural-MT 62.6 60.7 44.1 90.3 43.8
Natural-MT-CPT 64.2 59.7 49.5 91.2 45.1
Simplified-MT 61.6 55.8 44.6 90.6 44.8
Simplified-MT-CPT 62.6 57.2 48.3 90.5 45.1

Large
No Pretraining (LB) 56.0 37.1 41.0 75.8 40.0
Native (UB) 63.7 56.6 54.7 86.2 43.4
Natural-MT 62.6 61.6 45.2 90.6 43.6
Natural-MT-CPT 63.7 61.4 48.3 92.1 45.6
Simplified-MT 61.5 63.2 46.2 90.0 43.3
Simplified-MT-CPT 64.3 61.9 49.1 90.3 44.4

Table 6: Balanced accuracy on SEA-HELM after fine-
tuning each model on translationese (averaged over
three seeds). LB = lower bound (No Pretraining); UB =
upper bound (Native). For SA and NLI, MT-pretrained
models approach Native performance, with CPT typi-
cally boosting results beyond UB. For TD, Native pre-
training remains stronger, with MT-pretrained models
lagging by 3–11 points despite identical fine-tuning data.
Standard deviations are in Table 9 in the Appendix.

5.2 Does source-side simplification help
transfer to native text?

Answer: Within our setup, no. Simplifying En-
glish before translation reduces transfer to native
text.
Evidence: In language modeling, Simplified-MT
yields worse loss on native text than Natural-MT
across all sizes (see Fig. 1). In syntactic probing,
Natural-MT consistently outperforms Simplified-
MT, with the largest gap in Tamil small mod-
els, though the gap narrows with larger sizes (Ta-
ble 5). In downstream tasks, neither is consis-
tently better—Simplified-MT leads on some tasks
and Natural-MT on others—except for TD, which
strongly favors Native models. Overall, accuracy
differences are usually within 1–2 points (Table 6),
suggesting that improvements in language model-
ing loss do not always translate directly into down-

stream gains.
Takeaway: For source-side English, higher lexical
and syntactic diversity yields MT-derived data that
transfers better to native text. Avoid operations
that reduce this diversity (e.g., simplification) if the
goal is native transfer.

5.3 Is MT pretrain → Native CPT more
data-efficient than native-only?

Answer: Within our setup, yes. With the same
native-token budget, MT-initialized CPT matches
or surpasses native-only.
Evidence: A short CPT phase (1B tokens for In-
donesian; 2.5B for Tamil) reduces loss on native
text, surpassing native-only models trained on the
same native budget. Notably, Tamil CPT models
surpassed native-only models trained on 5B native
tokens (see Figure 1). In syntactic probing, CPT
yields significant gains across model sizes, raising
accuracy by about 2–7 points in Indonesian and
7–11 points in Tamil (Table 5). We surmise the
gains come from better alignment with the native
distribution, suggesting an "error correction" or
unlearning of translationese artifacts.
Takeaway: When native data is scarce, MT pre-
training followed by continual pretraining on native
text often outperforms native-only pretraining.

5.4 Translationese fine-tuning outcomes
Answer: For SA and NLI, MT-pretrained models
approach the Native upper bound, with CPT often
pushing results beyond it. For TD, performance
strongly favors Native models.
Evidence: After fine-tuning on translationese, all
pretrained models (Native, MT, MT-CPT) exceed
the No Pretraining baseline across tasks, confirm-
ing the utility of pretraining. For SA and NLI, MT-
pretrained models are typically within 1–2 points
above the Native models, and CPT variants of-
ten exceed the upper bound performance (Native)
within each size group (Table 6). For Indonesian
TD, Native models retain a 3–11 point edge over
MT-pretrained ones despite identical fine-tuning
data. We omit CR from Table 6 because all sys-
tems remain near chance (≈50–54% balanced accu-
racy) and perform similarly to No Pretraining; full
means±std over three seeds appear in Appendix
Table 9.
Takeaway: In low-resource scenarios, MT-derived
fine-tuning data is useful for tasks like sentiment
analysis and NLI but has limited value for more
culturally nuanced tasks such as toxicity detection.
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6 Conclusion

In this work, we asked whether larger models im-
prove generalization to native text when pretraining
data is pure machine-translated text, how source-
side complexity affects transfer to native text, and
whether MT-pretrained models are good starting
points for continually pretraining on native text.
We observed three consistent patterns. First, for
the 124M to 774M parameters setup, more param-
eters improve transfer to native text even when
pretraining solely on MT-derived data. Second, for
source-side English texts, higher lexical and syntac-
tic diversity yields MT-derived data that transfers
better to native text. Avoid operations that reduce
this diversity (e.g., simplification) if the goal is na-
tive transfer. Third, when native data is scarce, MT
pretraining followed by continual pretraining on na-
tive text often outperforms native-only pretraining.
In scenarios with zero or limited fine-tuning data,
MT-derived fine-tuning data is useful for tasks like
sentiment analysis and NLI but has limited value
for more culturally nuanced tasks such as toxicity
detection.

We distill our findings into a recipe for improv-
ing monolingual models beyond what is achievable
with the available native data:

• Generate more target-language data via MT.

• Pretrain on MT-derived data (using the largest
model size you can afford).

• Continue pretraining on native data from an
MT-pretrained checkpoint.

• With limited native fine-tuning data and a
fixed annotation budget, maximize cover-
age by translating training data from high-
resource languages for tasks like sentiment
analysis and NLI, while reserving native an-
notation for more culturally nuanced tasks like
toxicity detection.

For future work, extending these experiments to
larger models, better MT systems, different source-
side and target languages, and more advanced pre-
processing that balances MT ease with linguistic
diversity will clarify when the effects observed here
amplify or taper. Furthermore, extending this ap-
proach to post-training regimes such as instruction
tuning and preference alignment remains an open
direction.

Limitations

Our study has some limitations. First, we used a
fixed dataset and only three GPT-2 sizes (124M,
355M, 774M), which may limit generalizability;
broader variation in data and scale could yield
different insights. Second, fine-tuning relied on
translated rather than native data, so it is unclear
if the same patterns hold with native training data.
Third, MT quality matters—BLEU scores varied
across languages, but we did not separate trans-
lation effects from linguistic confounds. Fourth,
LLM-based simplification can hallucinate or omit
information, causing Simplified-MT to diverge se-
mantically from Natural-MT to some degree. Fi-
nally, since language and culture are deeply con-
nected, our focus on translation does not address
the transfer of cultural knowledge.
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sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

A Examples from Natural and Simplified
Data by Semantic Similarity

As shown in Table 1, 77.78% of datasets have se-
mantic similarity of greater than 80%. We show
examples here of texts with varying semantic sim-
ilarity scores with their corresponding ROUGE-2
scores.
Examples of semantic similarity > 0.8:

SEMANTIC SIMILARITY: 0.90, ROUGE-2: 0.27;
Natural:important officials and well

known persons who visited the islands
wrote

Simplified:important visitors to the
islands wrote

SEMANTIC SIMILARITY: 0.95, ROUGE-2: 0.41;
Natural:Also, the authors now expect to

apply their approach to other regions
. They have a lot of work to do.
After all, arid landscapes occupy
about 65 million square kilometers of
the earth's surface (this is almost
four areas of Russia).

Simplified:The authors now plan to use
their method in other areas. They
have a lot of work ahead of them.
Arid landscapes cover almost 65
million square kilometers of the
Earth's surface, which is roughly
four times the size of Russia.

SEMANTIC SIMILARITY: 0.90, ROUGE-2: 0.19;
Natural:On its face, the USDA's decision

to have participation in the NAIS be
voluntary seems to solve all of the
major concerns. Small and organic
farmers will be able to "opt out" of
participation in the NAIS if they
have objections to its methodology. [
FN203]

Simplified:The USDA made the NAIS
voluntary. This means that small and
organic farmers can choose not to
participate if they don't agree with
how the NAIS works.

SEMANTIC SIMILARITY: 0.96, ROUGE-2: 0.43;
Natural:The ICD-11 includes a revised

definition for alcohol use disorders
(AUDs) and, more specifically, for
alcohol dependence and the "harmful
patterns of alcohol use."

Simplified:The ICD-11 has changed how it
defines alcohol use disorders (AUDs).
It now includes a new definition for
alcohol dependence and for when
alcohol use causes harm.

SEMANTIC SIMILARITY: 0.95, ROUGE-2: 0.75;
Natural:Feel free to check out more of

this website. Our goal is to provide
rebuttals to the bad science behind
young earth creationism, and honor
God by properly presenting His
creation.

Simplified:Our goal is to provide
rebuttals to the bad science behind

young earth creationism, and honor
God by properly presenting His
creation. You can find more
information on this website.

SEMANTIC SIMILARITY: 0.82, ROUGE-2: 0.50;
Natural:separate trees you simply set the

CODEBASE attributes of each applet
Simplified:set the CODEBASE attribute of

each applet
SEMANTIC SIMILARITY: 0.98, ROUGE-2: 0.74;

Natural:The U.S. Geological Survey's
National Wildlife Health Center
verified the disease in a little
brown bat found this month in North
Bend, about 30 miles east of Seattle.

Simplified:The U.S. Geological Survey's
National Wildlife Health Center found
a disease in a little brown bat in
North Bend, which is about 30 miles
east of Seattle.

Examples of semantic similarity < 0.5:

SEMANTIC SIMILARITY: 0.09, ROUGE-2: 0.00;
Natural:- Press Ctrl + 2 to add more text

boxes. Press Ctrl + shift + 2 to
adjust text box.

Simplified:(Note: Please provide your
output in the format specified above,
ensuring it is free of grammatical
errors and easy to read.)

SEMANTIC SIMILARITY: 0.38, ROUGE-2: 0.00;
Natural:his bark is worse than his bite,

he is bad-tempered but harmless
Simplified:This person is grumpy, but he

won't hurt you.
SEMANTIC SIMILARITY: 0.44, ROUGE-2: 0.00;

Natural:said to have sworn, under duress,
that he

Simplified:The person was forced to say
something, but he didn't really mean
it.

SEMANTIC SIMILARITY: 0.35, ROUGE-2: 0.24;
Natural:and operated at 33 MHz and 20

MIPS. ...Many thanks to Robert B
Garner - who

Simplified:The computer was made by Intel
and operated at 33 million cycles
per second and 20 million
instructions per second.

SEMANTIC SIMILARITY: 0.48, ROUGE-2: 0.32;
Natural:you are near the surface of the

Earth, regardless of what the object
is

Simplified:The surface of the Earth is
the outermost solid layer of our
planet.

SEMANTIC SIMILARITY: 0.36, ROUGE-2: 0.09;
Natural:upon his visage, rather than pure

devotion, such as one might
Simplified:The person's face showed more

of a sense of duty than pure love.
SEMANTIC SIMILARITY: 0.14, ROUGE-2: 0.00;

Natural:- Genetic screens in human cells
using the CRISPR-Cas9 system. Science
343, 80-84 (2014) , , &

Simplified:Simplification of the text
should be provided in the format
specified above.

SEMANTIC SIMILARITY: 0.11, ROUGE-2: 0.00;
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Natural:Strategies you implement are
usually defined as the tone of your
information. Here is the summary of
tone types:

Simplified:(Note: Please provide your
output in the format specified above,
ensuring it is clear, well-organized
, and free of grammatical errors.)

SEMANTIC SIMILARITY: 0.08, ROUGE-2: 0.00;
Natural:- Mathematics - Knowledge of

arithmetic, algebra, geometry,
calculus, statistics, and their
applications.

Simplified:Simplification of the text
should be done in the same format as
the examples provided.

SEMANTIC SIMILARITY: 0.14, ROUGE-2: 0.00;
Natural:Art. 304, consists of two clauses

, and each clause operates as a
proviso to Arts. 301 and 303.

Simplified:The law has two parts. Each
part is connected to other laws.

SEMANTIC SIMILARITY: 0.45, ROUGE-2: 0.00;
Natural:- Can you think of other cases

where a government has addressed its
previous wrongdoing?

Simplified:- Yes, there are several
examples.

B Examples from Natural and Simplified
Data by ROUGE-2

In Table 1, we used ROUGE-2 (R2) thresholds to
define the level of lexical overlap.
Examples of low lexical overlap (0 < R2 ≤ 0.4):
ROUGE-2: 0.19;

Natural:An independent panel of technical
experts convened by the American
Chemical Society Green Chemistry
Institute formally judged the 2017
submissions from among scores of
nominated technologies and made
recommendations to EPA for the 2017
winners. The 2017 awards event will
be held in conjunction with the 21st
Annual Green Chemistry and
Engineering Conference.

Simplified:An independent group of
experts looked at many technologies
and chose the best ones for the 2017
awards. They recommended these
winners to the EPA. The 2017 awards
ceremony will be held at the same
time as a conference on green
chemistry.

ROUGE-2: 0.38;
Natural:Only $24.00 and a pair of high

boots was all it took for the first
property owner to purchase the land
where the now renowned Pioneer
Courthouse Square is located. The
block was the site for Portland's
first school. Shortly thereafter, it
became the Portland Hotel where it
served as a social center. The hotel
was demolished in 1951 to make room
for the automobile with installation

of a full city block of parking. Due
to progressive civic leadership in
the 1970's, Portland worked to
revitalize its downtown, including a
move away from the use of automobiles
and back toward mass transit. The
demolition of the parking garage and
creation of Pioneer Courthouse Square
remains a major landmark of this
effort.

Simplified:Only $24.00 and a pair of
boots was all it took for the first
person to buy the land where Pioneer
Courthouse Square is now. This block
was once home to Portland's first
school. Later, it became the Portland
Hotel, where people would meet and
socialize. The hotel was torn down in
1951 to make room for cars. In the
1970s, Portland's leaders decided to
make the city more people-friendly.
They wanted to reduce the use of cars
and increase the use of public
transportation. As part of this
effort, the parking garage was
removed, and Pioneer Courthouse
Square was created.

ROUGE-2: 0.10;
Natural:- 2002 - 2011 is the ten years

preceding the ratings evaluation, and
Simplified:- 2002 to 2011 was the time

before the ratings were checked.
ROUGE-2: 0.39;

Natural:The wearing of gowns at formals
is compulsory at some colleges and
various other traditions are usually
observed, including grace said in
Latin or English. The wearing of
gowns may sometimes constitute the
only dress code; in other cases,
formal wear (for example, a lounge
suit for men or equivalent for women)
is required in addition to, or
instead of, the gown.

Simplified:The wearing of gowns at
formals is required at some colleges
and some other traditions are
followed, like saying grace in Latin
or English. In some places, wearing a
gown is the only dress code, while
in others, you also need to wear
formal clothes (like a suit for men
or something similar for women) along
with the gown.

Examples of medium lexical overlap (0.4 <
R2 ≤ 0.8):
ROUGE-2: 0.68;

Natural:HDTV technology is estimated that
this will be the future of
television standards, so a senior
researcher in the field of systems
and management strategies Dr. Indu
Singh predicts that the world market
for HDTV would reach 250 billion
dollars per year (year 2010).

Simplified:HDTV technology is expected to
be the future of television
standards. Dr. Indu Singh, a senior
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researcher in the field of systems
and management strategies, predicts
that the world market for HDTV will
reach $250 billion per year by 2010.

ROUGE-2: 0.74;
Natural:Prophetically, he feels the need

to plead for ten years of life so
that:

Simplified:Prophetically, he feels the
need to ask for ten more years of
life so that:

ROUGE-2: 0.47;
Natural:Most common palm species are

Elaeis guineensis and Borassus
aethiopium (rhun palm).

Simplified:The two most common types of
palm trees are Elaeis guineensis and
Borassus aethiopium, also known as
the rhun palm.

ROUGE-2: 0.51;
Natural:The glare of publicity that

swirled about Yellow Thunder Camp
last September when the government
ordered its occupants to leave their
chosen spot has faded like the leaves
of autumn. The traditional but
transient tepees have been
supplemented with a geodesic dome.
The legal battle which will determine
the camp's future drags on in nearby
Rapid City.

Simplified:The glare of publicity that
swirled around Yellow Thunder Camp
last September when the government
ordered its occupants to leave their
chosen spot has faded. The campers
have added a new, dome-shaped shelter
to their traditional tepees. The
legal fight about the camp's future
is still going on in Rapid City.

ROUGE-2: 0.41;
Natural:Also, the authors now expect to

apply their approach to other regions
. They have a lot of work to do.
After all, arid landscapes occupy
about 65 million square kilometers of
the earth's surface (this is almost
four areas of Russia).

Simplified:The authors now plan to use
their method in other areas. They
have a lot of work ahead of them.
Arid landscapes cover almost 65
million square kilometers of the
Earth's surface, which is roughly
four times the size of Russia.

ROUGE-2: 0.75;
Natural:Feel free to check out more of

this website. Our goal is to provide
rebuttals to the bad science behind
young earth creationism, and honor
God by properly presenting His
creation.

Simplified:Our goal is to provide
rebuttals to the bad science behind
young earth creationism, and honor
God by properly presenting His
creation. You can find more
information on this website.

Examples of high lexical overlap (0.8 < R2 <

1):
ROUGE-2: 0.85;

Natural:That same year, the FDA and EPA
issued a recommendation that pregnant
women and young children eat no more
than two servings, or 12 ounces, of
salmon and other low-mercury fish
each week.

Simplified:The FDA and EPA suggested that
pregnant women and young children
eat no more than two servings, or 12
ounces, of salmon and other low-
mercury fish each week.

ROUGE-2: 0.84;
Natural:With a little imagination, other

services could be provided as well.
Simplified:With a little imagination,

other services could be provided too.
ROUGE-2: 0.82;

Natural:o Suggests questions to help
facilitate professional development
group discussions, especially among
peers

Simplified:o Suggests questions to help
facilitate group discussions,
especially among peers

ROUGE-2: 0.90;
Natural:tendonitis. The flattened arch

pulls on calf muscles and keeps the
Achilles tendon under tight strain.
This constant mechanical stress on
the heel and tendon can cause
inflammation, pain and swelling

Simplified:tendonitis. The flattened arch
pulls on calf muscles and keeps the
Achilles tendon under tight strain.
This constant stress on the heel and
tendon can cause pain and swelling.

Examples of exact match (R2 = 1):
ROUGE-2: 1.00;

Natural:- Does the modal not show a
coupon code? Then you can click
directly in the big blue button "
VISIT Hidden24 VPN

Simplified:- Does the modal not show a
coupon code? Then you can click
directly in the big blue button "
VISIT Hidden24 VPN"

ROUGE-2: 1.00;
Natural:- IVF through implanting multiple

embryos can be one way of getting
science to help with the process

Simplified:IVF through implanting
multiple embryos can be one way of
getting science to help with the
process.

ROUGE-2: 1.00;
Natural:For more information about the

program contact Stoughton at
435-259-7985 or email email@example.
com.

Simplified:For more information about the
program, contact Stoughton at
435-259-7985 or email email@example.
com.

ROUGE-2: 1.00;
Natural:An earthworm's home, and the dirt

around it, can be called a factory.
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This factory makes a special kind of
dirt called topsoil.

Simplified:An earthworm's home and the
dirt around it can be called a
factory. This factory makes a special
kind of dirt called topsoil.

ROUGE-2: 1.00;
Natural:Tim Wilson will be speaking to

The New Zealand Initiative in:
Simplified:Tim Wilson will be speaking to

The New Zealand Initiative in:
ROUGE-2: 1.00;

Natural:- extending far in width; broad:
deep lace; a deep border.

Simplified:- extending far in width;
broad: deep lace; a deep border.

Examples of exact mismatch (R2 = 0):

ROUGE-2: 0.00;
Natural:ensure that every medical issue

receives attention.
Simplified:Medical issues should get

attention.
ROUGE-2: 0.00;

Natural:- Press Ctrl + 2 to add more text
boxes. Press Ctrl + shift + 2 to
adjust text box.

Simplified:(Note: Please provide your
output in the format specified above,
ensuring it is free of grammatical
errors and easy to read.)

ROUGE-2: 0.00;
Natural:judicial decorum when expressing

himself on conservation matters. . .
."

Simplified:The judge spoke about
conservation in a respectful and
proper way.

ROUGE-2: 0.00;
Natural:his bark is worse than his bite,

he is bad-tempered but harmless
Simplified:This person is grumpy, but he

won't hurt you.
ROUGE-2: 0.00;

Natural:*An earlier version of this
article misstated the study's
benchmark for deficit reduction.

Simplified:The article previously
mentioned the wrong target for
reducing the deficit.

ROUGE-2: 0.00;
Natural:said to have sworn, under duress,

that he
Simplified:The person was forced to say

something, but he didn't really mean
it.

ROUGE-2: 0.00;
Natural:and resulted in considerable

damage.
Simplified:The hurricane caused a lot of

damage.
ROUGE-2: 0.00;

Natural:- Thomas, B. 2009. Did Humans
Evolve from 'Ardi'? Acts & Facts. 38
(11): 8-9.

Simplified:Simplified Text:
"Thomas wrote about a discovery called 'Ardi' in

2009. He asked if humans evolved from this
ancient creature.

ROUGE-2: 0.00;
Natural:Strategies you implement are

usually defined as the tone of your
information. Here is the summary of
tone types:

Simplified:(Note: Please provide your
output in the format specified above,
ensuring it is clear, well-organized
, and free of grammatical error

C Outliers

To improve visualizations, we clipped outliers
(Flesch Reading Ease) which only accounts for
3.49% (Natural) and 1.37% (Simplified), and also
removed outliers (Sentence Split Difference, Com-
pression Level, Dependency Tree Depth Ratio)
which only accounts for 3% of paragraphs. To-
tal paragraphs for each dataset is 44,868,680. This
section defines, quantifies, and illustrates the out-
liers.

C.1 Outliers: Flesch Reading Ease

Flesch Reading Ease (FRE) is interpreted as 0 to
100 but the FRE formula does not enforce bound-
aries, for this reason we clip negative values to 0
and clip to 100 if FRE is beyond 100. Negative
FRE values can happen for dense paragraphs with
very long sentences (typically, complex sentences)
with long words. While FRE of greater than 100
can happen for paragraphs with very short sen-
tences with short words. The percentage of outliers
are as follows: 3.49% for Natural and 1.37% for
Simplified examples.
Examples of outliers are provided below.

# Natural
FRE: 100.00; "Come out of her, my people, lest

you take part of her sins, lest you share in
FRE: 112.09; - Press Ctrl + 2 to add more text

boxes. Press Ctrl + shift + 2 to adjust text
box.

FRE: 102.53; Do you know the name of the bird
group you are looking for?

# Simplified
FRE: 103.01; - 2002 to 2011 was the time before

the ratings were checked.
FRE: 103.70; - As these experts say, we need to

start
FRE: 103.65; The eastern part of the bridge

weighs over 3,800 tons. The western part
weighs over 1,000 tons.

# Natural
FRE: -15.65; Zambia started its accelerated

malaria control campaign in 2003 when
approximately 500,000 insecticide-treated
nets were distributed and artemisinin-based
combination therapy (ACT) started in seven
pilot districts through a grant from the UN-
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backed Global Fund to fight AIDS,
Tuberculosis and Malaria.

FRE: -11.91; NASA Image: ISS015E13648 - View of
Expedition 15 astronaut and Flight Engineer,
Clayton Anderson, working with test samples
in the Human Research Facility - 2

Refrigerated Centrifuge for the Nutritional
Status Assessment experiment to help
understand human physiologic changes during
long-duration space flight.

FRE: -1.59; o Suggests questions to help
facilitate professional development group
discussions, especially among peers

# Simplified
FRE: -53.65230769230766; Interconnectedness,

empowerment, cooperation, relationships,
partnership, flexibility, and diversity are
key to realizing opportunities and creating
sustainable systems. This includes nations,
organizations, and communities working
together effectively.

FRE: -18.44999999999996; Environmental engineers
with experience in project management,

regulatory compliance, environmental
compliance, and engineering design tend to
earn more, according to data from PayScale
(2017).

FRE: -8.098461538461521; Occupational therapists
help people do everyday activities by

giving them exercises and practice.

C.2 Outliers: Sentence Split Difference,
Compression Level, Dependency Tree
Depth Ratio

For these metrics, we identified outliers by com-
puting the interquartile range (IQR). We compute
bounds as lower_bound = Q1 − 3 ∗ IQR and
upper_bound = Q3 + 3 ∗ IQR, where IQR =
Q3−Q1 and Q1 and Q3 stands for Quartile 1 and
3, respectively. Usually, 1.5 was used to compute
the bounds but we increased it to 3 to widen the
threshold and make the tagging of outliers less ag-
gressive. The percentage for each outlier type are
as follows: sentence split difference (1.28%), com-
pression level (0.37%), dependency tree depth ratio
(1.55%). Combined and without duplicates, it ac-
counts for only 3% of the data. We removed these
outliers for the visualization in Figure 2. We give
examples of outliers below.
Example of Compression Level outliers:

Compression level: 1.80;
Natural:- Centers for Disease Control and

Prevention. Update: respiratory
syncytial virus activity - United
States, 1998-1999 Season. MMWR Morb
Mortal Wkly Rep. 1999;48:1104-15.

Simplified:Simplified Text:
"The Centers for Disease Control and Prevention

(CDC) reported on the respiratory syncytial
virus (RSV) activity in the United States

for the 1998-1999 season. RSV is a virus
that affects the respiratory system. The CDC
monitored RSV activity and reported the
findings in a weekly report.

Compression level: 2.12;
Natural:LEEDS, A. Introduction. In:

WILBERT, J. (Ed.). The evolution of
horticultural systems in native south
America: causes and consequences - A
Symposium. Caracas: Sociedad de
Ciencias Naturales La Salle, 1961. p.
1-12. [ Links ]

Simplified:The evolution of horticultural
systems in native South America is a
topic of great interest. This
symposium aims to explore the causes
and consequences of these changes.
The book you are reading is a
collection of papers presented at
this symposium. It covers various
aspects of horticulture in South
America, from the early days to the
present. The authors of these papers
are experts in their fields and have
contributed significantly to our
understanding of this subject.

Compression level: 1.81;
Natural:of the legion to carry out

special duties. Marius thus created a
fully

Simplified:Marius created a special group
of soldiers within the Roman legion.
This group was responsible for
carrying out specific tasks.

Example of Dependency Tree Depth Ratio out-
liers:
Max Dependency Tree Depth Ratio: 2.33;

Natural:- Press Ctrl + 2 to add more text
boxes. Press Ctrl + shift + 2 to
adjust text box.

Simplified:(Note: Please provide your
output in the format specified above,
ensuring it is free of grammatical
errors and easy to read.)

Max Dependency Tree Depth Ratio: 2.00;
Natural:Reade, Julian. Assyrian Sculpture.

London: The British Museum; and
Cambridge, MA: Harvard University
Press, 1983, repr. 1994.

Simplified:Julian Reade wrote a book
about Assyrian sculpture. It was
published by the British Museum in
London and Harvard University Press
in Cambridge, MA. The book was first
published in 1983 and then again in
1994.

Max Dependency Tree Depth Ratio: 2.00;
Natural:Clarke disclosed no relevant

relationships with industry. Co-
authors disclosed multiple relevant
relationships with industry.

Simplified:Clarke did not have any
relationships with companies that
could affect the study. The other
authors had relationships with
companies that could affect the study
.
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D LLM-based Simplification Prompt

The prompt engineering is done through trial-and-
error and judged by the authors according to the
following qualitative criteria:

• Does it use simpler words? By "simpler
words," we mean commonly used words.

• Does it convert compound or complex sen-
tences into simple sentences?

• Does it preserve the original content and orga-
nization of thoughts?

Once we found a prompt that can reliably do
all those things on a small sample, we used that
prompt to transform the whole corpus.

The final prompt is shown below:

---

Role Description:
You are an experienced educator and linguist

specializing in simplifying complex
texts without losing any key information
or changing the content. Your focus is
to make texts more accessible and
readable for primary and secondary
school students, ensuring that the
essential information is preserved while
the language and structure are adapted
for easier comprehension.

---

Task Instructions:
1. Read the Following Text Carefully:

- Thoroughly understand the content,
context, and purpose of the text to
ensure all key information is
retained in the simplified version.

2. Simplify the Text for Primary/Secondary
School Students:

- Rewrite the text to make it more
accessible and easier to understand.

- Use age-appropriate language and simpler
sentence structures.

- Maintain all key information and do not
omit any essential details.

- Ensure that the original meaning and
intent of the text remain unchanged.

3. Preserve Key Information:
- Identify all essential points, facts,

and ideas in the original text.
- Ensure these elements are clearly

presented in the simplified version.

4. Avoid Adding Personal Opinions or
Interpretations:

- Do not introduce new information or
personal views.

- Focus solely on simplifying the original
content.

---

Simplification Guidelines:

Sentence Structure:
- Use simple or compound sentences.
- Break down long or complex sentences into

shorter ones.
- Ensure each sentence conveys a clear idea.

Vocabulary:
- Use common words familiar to primary and

secondary school students.
- Replace advanced or technical terms with

simpler synonyms or provide brief
explanations.

- Avoid jargon unless it is essential, and
explain it if used.

Clarity and Coherence:
- Organize the text logically with clear

paragraphs.
- Use transitional words to connect ideas

smoothly.
- Ensure pronouns clearly refer to the

correct nouns to avoid confusion.
- Eliminate redundancies and unnecessary

repetitions.

Tone and Style:
- Maintain a neutral and informative tone.
- Avoid overly formal language.
- Write in the third person unless the text

requires otherwise.

---

Output Format:
Provide the simplified text in clear, well-

organized paragraphs.
Do not include the original text in your

output.
Do not add any additional commentary or notes

.
Ensure the final output is free of

grammatical errors and is easy to read.
Output $<|eot_id|>$ right after the

simplified text.

---

Example Simplifications:

Example 1:

Original Text:
"Photosynthesis is the process by which green

plants and some other organisms use
sunlight to synthesize foods from carbon
dioxide and water. Photosynthesis in

plants generally involves the green
pigment chlorophyll and generates oxygen
as a byproduct."

Simplified Text:
"Photosynthesis is how green plants make food

using sunlight, carbon dioxide, and
water. They use a green substance called
chlorophyll, and the process produces
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oxygen.$<|eot_id|>$"

Example 2:

Original Text:
"Global warming refers to the long-term rise

in the average temperature of the Earth'
s climate system, an aspect of climate
change shown by temperature measurements
and by multiple effects of the warming
."

Simplified Text:
"Global warming means the Earth's average

temperature is increasing over a long
time. This is part of climate change and
is shown by temperature records and
various effects.$<|eot_id|>$"

Example 3:

Original Text:
"The mitochondrion, often referred to as the

powerhouse of the cell, is a double-
membrane-bound organelle found in most
eukaryotic organisms, responsible for
the biochemical processes of respiration
and energy production through the
generation of adenosine triphosphate (
ATP)."

Simplified Text:
"A mitochondrion is a part of most cells that

acts like a powerhouse. It has two
membranes and makes energy for the cell
by producing something called ATP.$<|
eot_id|>$"

---

Text to Simplify:
<Insert Text Here>

---

Your Output:

E Data Filtering

Pre-MT filtering. We drop documents with at
least one problematic sentences. We define prob-
lematic sentences as sentences outside the sentence
length bounds to avoid translating excessively long
inputs and to reduce MT runtime. For Indonesian,
sentence length bounds range from 3–250 tokens,
while for Tamil they range from 4–150 tokens. This
choice is made purely for efficiency.

Post-MT filtering. After translation, we compute
the target/source sentence-length ratio (in tokens)
and drop any document containing a sentence with
ratio >2. We then reassemble sentences back into
documents.

Parallelization constraint. All Natural and Sim-
plified English documents are kept parallel prior to
MT; the resulting Natural-MT and Simplified-MT
corpora therefore cover the same text content.

F Training Details

Tokenizer and special tokens. For each lan-
guage (Indonesian and Tamil), we train a 50,257-
token BPE on native corpora and reuse it across
Native, Natural-MT, and Simplified-MT pretrain-
ing. We add [PAD] and [SEP]; [PAD] also serves
as EOS during sequence packing. Vocabularies are
language-specific and fixed for all experiments.

Implementation note. All models are causal de-
coders with a standard LM head during pretrain-
ing; downstream experiments replace the LM head
with a lightweight classification head (details in
Appendix G).

Optimization and schedule. Left-to-right lan-
guage modeling with a 1,024-token context
and an effective batch size of 384. AdamW
(β1=0.9, β2=0.999, ε=10−8), weight decay
0.01, 5% warm-up, linear decay. A 100M-token
LR sweep over {5×10−5, 1×10−4, 5×10−4} se-
lected 5×10−4 for pretraining. Mixed precision
(autocast + GradScaler) and gradient clipping (1.0)
are enabled; Large models use gradient checkpoint-
ing.

Continual pretraining (CPT). Applied only to
Natural-MT and Simplified-MT models. Each run
resumes from the final MT checkpoint and con-
tinues on native text: 1B tokens (Indonesian) and
2.5B tokens (Tamil), i.e., about half of the respec-
tive MT budgets. All hyperparameters are retained
except the peak learning rate, reduced to 5×10−5;
warm-up (5%) and linear decay are unchanged.

Hardware and runtime. Small/Medium:
8×P100 (16 GB); Large: 8×P40 (24 GB).
Wall-clock times range from 19 h (Indonesian
Simplified-MT, Small) to 12 d 11 h (Tamil
Simplified-MT, Large). Fine-tuning uses the same
hardware; a complete grid search for one model
across all tasks takes ∼5 h (Small), 11 h (Medium),
and 20 h (Large).

G Fine-tuning Settings

Classification head and pooling. We attach a
single linear classification layer on top of the de-
coder. For each input, we pool by taking the logits
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Lang. Task Batch size

Indonesian

CR 50
SA 12
NLI 10
TD 2

Tamil
CR 10
SA 2
NLI 2

Table 7: Batch sizes used during downstream fine-
tuning.

at the final non-padding token; cross-entropy loss
is computed on the pooled logits. All decoder pa-
rameters and the classification head are updated
jointly.

Search space and sched-
ule. We sweep learning rates
{1×10−4, 5×10−5, 2×10−5, 1×10−5, 5×10−6}
with task-dependent epoch budgets (SA: 1 epoch,
NLI: 1–2 epochs, TD/CR: 1–3 epochs). Maximum
sequence length is 1,024 tokens; we use 5%
warm-up with linear decay and no early stopping.
Batch sizes per task are given in Table 7.

H LINDSEA Phenomenon Breakdown

We report per-phenomenon accuracies on the
LINDSEA Syntax subset to complement the aggre-
gate results in Table 5. The evaluation follows our
BLiMP-style minimal-pair setup described in §4.1
(Zero-shot syntactic probing): a model is correct
when it assigns a higher log-probability to the gram-
matical member of each pair. Table 8 shows accura-
cies (%) for four phenomenon families—Negative
Polarity Items (NPIs) & negation, argument struc-
ture, filler—gap dependencies, and morphology.

Across sizes, continual pretraining (CPT) consis-
tently improves MT-pretrained models, especially
for Tamil; Simplified-MT tends to underperform
Natural-MT at the phenomenon level, echoing our
main findings in §5.2.

I Full Downstream Results (incl. CR,
mean±std)

Causal reasoning (CR) is omitted from the main
results due to near-chance performance across all
settings; full CR means and standard deviations are
included here for transparency.
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Indonesian Tamil

Model NPIs Arg. Fill-gap Morph. NPIs Arg. Fill-gap Morph.

Small
Native 72.5 45.9 59.2 57.1 100.0 75.7 58.3 71.2
Natural-MT 60.0 40.0 60.0 49.3 90.0 72.1 50.0 65.8
Natural-MT-CPT 70.0 41.9 65.0 57.9 100.0 75.7 55.0 67.7
Simplified-MT 65.0 38.8 53.3 50.0 100.0 63.6 50.0 61.2
Simplified-MT-CPT 65.0 41.9 66.7 56.4 100.0 80.0 50.0 71.9

Medium
Native 70.0 40.6 66.7 57.1 50.0 70.0 50.0 62.3
Natural-MT 55.0 41.9 68.3 52.1 100.0 70.0 50.0 65.4
Natural-MT-CPT 80.0 40.6 68.3 58.6 100.0 82.9 58.3 69.6
Simplified-MT 65.0 40.6 60.0 52.9 80.0 65.7 55.0 66.5
Simplified-MT-CPT 65.0 40.0 66.7 57.9 80.0 85.0 61.7 74.2

Large
Native 70.0 47.5 63.3 64.3 100.0 77.1 53.3 70.4
Natural-MT 60.0 39.4 63.3 54.3 60.0 64.3 50.0 65.0
Natural-MT-CPT 70.0 41.2 70.0 60.7 100.0 82.1 50.0 71.9
Simplified-MT 60.0 45.0 60.0 49.3 90.0 62.9 48.3 65.0
Simplified-MT-CPT 75.0 48.8 66.7 57.9 90.0 78.6 56.7 69.2

Table 8: LINDSEA syntax accuracy by phenomenon (Indonesian and Tamil). Columns show Negative Polarity
Items (NPIs), argument structure (Arg.), filler–gap (Fill-gap), and morphology (Morph.). Item counts: Indonesian
20/160/60/140; Tamil 10/140/60/260 (NPIs/Arg./Fill-gap/Morph.). Trends mirror Table 5: CPT most benefits Tamil
MT models, simplification generally underperforms Natural-MT, and Medium+CPT can surpass Large. Values are
accuracy (%).

Indonesian Tamil

Pretraining CR SA NLI TD CR SA NLI

Small
No Pretraining 51.3 ± 0.6 56.1 ± 0.3 43.0 ± 0.8 41.3 ± 1.2 51.6 ± 0.3 75.3 ± 0.7 38.3 ± 0.1
Native 54.5 ± 2.8 63.4 ± 0.4 53.7 ± 0.3 52.6 ± 0.4 50.8 ± 0.8 87.1 ± 0.7 42.8 ± 1.4
Natural-MT 51.6 ± 0.9 61.9 ± 1.0 56.9 ± 1.8 42.5 ± 0.8 48.8 ± 3.3 88.4 ± 0.6 42.3 ± 0.5
Natural-MT-CPT 51.2 ± 3.1 63.5 ± 0.5 57.4 ± 0.8 47.6 ± 2.9 50.9 ± 0.2 88.9 ± 0.3 43.5 ± 0.7
Simplified-MT 51.2 ± 1.9 61.3 ± 0.5 56.2 ± 1.2 44.5 ± 3.5 51.3 ± 3.3 88.8 ± 0.4 40.7 ± 0.7
Simplified-MT-CPT 49.4 ± 1.3 62.9 ± 0.7 58.2 ± 0.4 49.6 ± 1.0 50.0 ± 1.7 89.0 ± 0.6 43.0 ± 0.5

Medium
No Pretraining 51.3 ± 0.8 55.9 ± 0.4 43.7 ± 0.4 41.8 ± 1.0 50.1 ± 0.8 75.2 ± 1.0 38.9 ± 0.8
Native 51.5 ± 3.8 62.7 ± 0.2 57.7 ± 1.8 53.0 ± 0.7 50.8 ± 3.0 84.8 ± 0.2 41.1 ± 0.9
Natural-MT 49.6 ± 2.8 62.6 ± 0.5 60.7 ± 0.9 44.1 ± 1.1 53.7 ± 2.2 90.3 ± 0.2 43.8 ± 0.2
Natural-MT-CPT 51.9 ± 3.6 64.2 ± 0.5 59.7 ± 0.7 49.5 ± 0.7 50.9 ± 1.5 91.2 ± 0.5 45.1 ± 0.8
Simplified-MT 47.7 ± 2.2 61.6 ± 0.8 55.8 ± 0.4 44.6 ± 1.5 51.9 ± 3.1 90.6 ± 0.1 44.8 ± 0.9
Simplified-MT-CPT 53.4 ± 1.6 62.6 ± 0.7 57.2 ± 0.3 48.3 ± 1.6 50.7 ± 3.1 90.5 ± 0.2 45.1 ± 0.3

Large
No Pretraining 52.3 ± 0.8 56.0 ± 1.0 37.1 ± 6.0 41.0 ± 1.9 52.2 ± 3.7 75.8 ± 0.9 40.0 ± 0.6
Native 51.5 ± 3.7 63.7 ± 0.5 56.6 ± 1.1 54.7 ± 1.9 51.9 ± 1.5 86.2 ± 0.9 43.4 ± 0.8
Natural-MT 54.8 ± 1.6 62.6 ± 0.3 61.6 ± 1.6 45.2 ± 1.3 50.9 ± 4.7 90.6 ± 0.2 43.6 ± 1.4
Natural-MT-CPT 52.9 ± 2.9 63.7 ± 0.3 61.4 ± 0.7 48.3 ± 1.8 51.7 ± 2.0 92.1 ± 0.4 45.6 ± 0.8
Simplified-MT 52.7 ± 3.0 61.5 ± 0.3 63.2 ± 1.0 46.2 ± 0.5 49.0 ± 0.9 90.0 ± 0.4 43.3 ± 0.7
Simplified-MT-CPT 52.5 ± 1.6 64.3 ± 0.2 61.9 ± 1.0 49.1 ± 2.3 51.6 ± 1.2 90.3 ± 0.2 44.4 ± 0.6

Table 9: SEA-HELM: balanced accuracy (%, mean ± std over three seeds). Most standard deviations are ≤2 points,
supporting the trends in Table 6. Wider spreads (≈2–4) appear mainly for CR. Qualitatively: native pretraining
dominates TD, MT-CPT delivers the strongest NLI/SA, CR hovers near chance, and Medium occasionally surpasses
Large.
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solely for illustrative purposes. These ex-
amples may be upsetting to some readers
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of the authors.

Abstract

Despite substantial efforts, detecting and pre-
venting hate speech online remains an under-
studied task for marginalized communities, par-
ticularly in the Global South, which includes
developing societies with increasing internet
penetration. In this paper, we aim to provide
marginalized communities in societies where
the dominant language is low-resource with a
privacy-preserving tool to protect themselves
from online hate speech by filtering offen-
sive content in their native languages. Our
contributions are twofold: 1) we release RE-
ACT (REsponsive hate speech datasets Across
ConTexts), a collection of high-quality, culture-
specific hate speech detection datasets compris-
ing multiple target groups and low-resource lan-
guages, curated by experienced data collectors;
2) we propose a few-shot hate speech detection
approach based on federated learning (FL), a
privacy-preserving method for collaboratively
training a central model that exhibits robust-
ness when tackling different target groups and
languages. By keeping training local to user de-
vices, we ensure data privacy while leveraging
the collective learning benefits of FL. We exper-
iment with both multilingual and monolingual
pre-trained representation spaces as backbones
to examine the interaction between FL and dif-
ferent model representations. Furthermore, we
explore personalized client models tailored to
specific target groups and evaluate their perfor-
mance. Our findings indicate the overall effec-
tiveness of FL across different target groups,
and point to personalization as a promising di-
rection.

1 Introduction

Combating online hate is a crucial aspect of con-
tent moderation, with prevailing solutions often
relying on machine learning models trained on
large-scale datasets (Pitenis et al., 2020; Röttger
et al., 2021; Nozza, 2021). However, these efforts
and the resources required are largely limited to a
few high-resource languages, such as English and
German. While multilingual hate speech datasets
have been developed (Röttger et al., 2022; Das
et al., 2022), a significant portion of the world’s
low-resource languages and their users remain un-
protected from online abuse. A key challenge in
hate speech detection lies in its inherently subjec-
tive and context-dependent nature, which varies not
only at the individual level but also across cultures
and regions. The issue is exacerbated by the lack
of expertise of annotators on marginalized target
groups, as many studies rely on crowdsourcing for
data collection, often resulting in a disconnect be-
tween those labeling the data and those directly
affected by hate speech (Davidson et al., 2019; Sap
et al., 2019). Additionally, both language and hate
speech constantly evolve, with new expressions and
terminology regularly emerging.

To address these challenges, we develop high-
quality, culturally relevant datasets that reflect the
experiences of marginalized communities. This
is achieved through a prompt-based data collec-
tion procedure, carried out by data collectors pro-
ficient in the target languages and familiar with
the nuances of hate speech directed at marginal-
ized groups within their respective contexts. The
result is REACT, a set of localized, context-aware
datasets containing positive, neutral, and hateful
sentences across various low-resource languages.
We release REACT under CC BY-SA 4.0. 1

1https://huggingface.co/datasets/htyeh/REACT
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One key limitation of current hate speech fil-
tering solutions is their reliance on centralized,
server-side processing. In such setups, user data
must be transmitted to remote servers for analysis,
restricting individual control over the content be-
ing filtered. Moreover, centralized models are less
adaptable to highly specific targets, particularly in
low-resource language settings.

To overcome this, we propose the use of fed-
erated learning (FL) (McMahan et al., 2017), a
decentralized machine learning paradigm where
multiple users collaboratively train a central model
without sharing raw data. FL operates in two itera-
tive stages: first, client devices receive the current
server model and train it locally on private data;
then, updates are sent back to the server, aggre-
gated, and used to improve the server model. This
decentralized approach not only preserves user pri-
vacy but also enables rapid adaptation to culturally
specific hate speech patterns.

Our work aims to tackle the following research
questions. RQ1: Can zero-shot or few-shot learn-
ing effectively detect hate speech in low-resource
languages? RQ2: If not, can FL bridge this per-
formance gap? RQ3: Given the specificity of hate
speech, does client personalization improve over
zero- or few-shot learning in low-resource settings?

2 Related Work

2.1 Toxic and offensive language datasets

Earlier efforts in the detection of toxic and offen-
sive language, including hate speech, have con-
tributed to the curation of diverse datasets, predom-
inantly in English (Waseem and Hovy, 2016; Wul-
czyn et al., 2017; Zhang et al., 2018) and to a lesser
extent in other high-resource languages, like Ger-
man and Arabic (Mandl et al., 2019; Mulki et al.,
2019). More recent work has developed datasets
with more fine-grained details, such as different
types of abuse (Sap et al., 2020; Guest et al., 2021)
and target groups (Grimminger and Klinger, 2021;
Maronikolakis et al., 2022). In a related manner,
Dixon et al. (2018) and Röttger et al. (2021) adopt a
template-based data generation process to construct
hate speech datasets categorized by targeted sub-
groups. Recognizing the need for broader linguistic
coverage, recent initiatives have expanded data col-
lection to include multiple languages, including
low-resource ones (Röttger et al., 2022; Das et al.,
2022; Dementieva et al., 2024; Bui et al., 2025),
which is crucial for developing robust hate speech

detection systems for underrepresented languages.
Notably, Muhammad et al. (2025) introduce Afri-
Hate, an offensive speech dataset covering 15 low-
resource languages and dialects spoken in Africa.

2.2 Hate speech detection
Transformer-based (Vaswani et al., 2017) language
models have emerged as the backbone of many
natural language processing tasks. This trend ex-
tends to hate speech detection, where various
Transformer-based models have been employed
(Mozafari et al., 2019; Ranasinghe and Zampieri,
2021, 2022), including some pre-trained specifi-
cally to identify hate and offensive content (Caselli
et al., 2021; Sarkar et al., 2021).

More recently, large language models (LLMs)
based on Transformer architectures have demon-
strated remarkable capabilities across a wide range
of domains (Brown et al., 2020; Ouyang et al.,
2022; Webb et al., 2023). Despite their effective-
ness, training such models remains highly data- and
resource-intensive, requiring substantial computa-
tional power and centralized datasets (Gupta et al.,
2022; Patel et al., 2023).

2.3 Federated learning
Public datasets used to train language models often
contain personally identifiable information (PII),
raising privacy concerns as models may inadver-
tently memorize and expose such data (Kim et al.,
2023; Lukas et al., 2023). At the same time, the
rapid development of LLMs, which require increas-
ingly vast amounts of training data, has sparked
concerns over the depletion of publicly available
data. A recent study by Villalobos et al. (2022) sug-
gests that we may reach this data limit as early as
2026.

In this context, effectively leveraging privately
held data, such as that stored on user devices, in
a privacy-preserving way offers a promising po-
tential. Federated learning (FL) (McMahan et al.,
2017) is a decentralized machine learning paradigm
designed to preserve data privacy. Instead of col-
lecting user data centrally, FL enables models to
be trained locally on individual devices (clients),
ensuring that raw data never leaves the device.
Model updates from each client are then col-
lected and aggregated on a central server using the
FederatedAveraging (FedAvg) algorithm, which
computes a weighted average of received local up-
dates. One of the first applications of FL was in im-
proving next-word prediction in Gboard, Google’s
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virtual keyboard (Hard et al., 2018). In this setting,
user interactions contributed to model improve-
ments without exposing any actual data generated
by individuals. FL has since been applied to other
privacy-sensitive domains such as finance (Byrd
and Polychroniadou, 2020) and medicine (Sheller
et al., 2020). Despite its potential, FL has only re-
cently begun to be explored in the context of hate
speech detection. Gala et al. (2023) and Zampieri
et al. (2024) apply FL on public offensive speech
datasets and benchmarks, demonstrating its feasi-
bility for content moderation. Additionally, Singh
and Thakur (2024) explore FL to detect hate speech
in various Indic languages, showing its relevance
for low-resource contexts. In contrast to these ap-
proaches, we investigate the use of FL for few-
shot hate speech detection in low-resource settings,
where annotated data is extremely limited. We fur-
ther explore personalized FL to enhance adaptabil-
ity to specific target groups.

2.4 Personalized FL

The standard FL framework assumes that client
data is independently and identically distributed
(i.i.d.). In scenarios where client data is highly het-
erogeneous (non-i.i.d.), traditional FL may suffer
from degraded performance and slow convergence
due to client drift (Karimireddy et al., 2020; Li
et al., 2020). In the context of hate speech detection,
clients may represent marginalized or underrepre-
sented groups whose data characteristics differ sig-
nificantly from the majority. Personalized FL offers
a potential solution by allowing model customiza-
tion at the client level, better addressing group-
specific sociolinguistic patterns. Additionally, it
further enhances privacy by limiting the amount
and type of information shared with the central
server. A straightforward approach to client per-
sonalization is FedPer (Arivazhagan et al., 2019),
which decouples the client model into base (shared)
and personalized layers. This architecture enables
clients to retain parameters tailored to their local
data while still contributing to the server model.
Following this approach, we apply personalized FL
to integrate local adaptations with selective infor-
mation sharing.

3 REACT Dataset

We release a localized hate speech detection dataset
for several marginalized groups in regions where
low-resource languages are predominantly used.

We name this dataset REACT (REsponsive hate
speech datasets Across ConTexts). To construct the
dataset, we recruit data collectors who are either
native or highly proficient in the target language
and have deep familiarity with the sociocultural
nuances and contexts of hate speech in the respec-
tive countries. REACT comprises data on six tar-
get groups–Black people, LGBTQ, Russians, Rus-
sophone Ukrainians, Ukrainian war victims, and
women–across four languages: Afrikaans, Korean,
Russian, and Ukrainian.

Each dataset is organized into six categories
based on the sentiment polarity (positive, neutral,
hateful) and the presence or absence of profanity,
which includes vulgar or obscene language such as
swear words. We collect data both with and without
profanity within each polarity category to minimize
the association of profanity with hateful content.

For each of the six categories, data collectors
receive a prompt formatted as follows:

Provide [polarity] text in [target
language] about the [target group]
[using/without using] profanity.

To prepare the data collectors, we first show min-
imal pair examples illustrating the distinction be-
tween profane and non-profane usages with the
same polarity. Data collection is conducted using
structured Google Sheets,2 with one sub-sheet per
category. The corresponding prompt is displayed
at the top of each sub-sheet, and data collectors
are instructed to record one sentence per row. In
addition to the sentence itself, optional fields al-
low collectors to provide information such as an
English translation and notes explaining culturally
specific terms or contexts.

Further details on the data collection procedure
are provided in §A. Table 1 shows the number of
sentences collected for each category across all
datasets. Most datasets are balanced across cate-
gories and contain around 1000-2000 sentences
related to the target groups.

Data source. Data is collected predominantly
from social media platforms like Facebook3 and
X (formerly Twitter),4 as well as local online fo-
rums, news articles, and comment sections. Addi-
tional sources include books and text corpora, such
as Common Crawl.5 In some cases, data collec-

2https://docs.google.com/spreadsheets
3https://www.facebook.com
4https://x.com
5https://commoncrawl.org
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language target positive neutral hateful total
P+ P- P+ P- P+ P-

Afrikaans
Black people 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 2028
LGBTQ 197 (19.3%) 174 (17.1%) 169 (16.6%) 150 (14.8%) 174 (17.1%) 152 (14.9%) 1016

Ukrainian
Russians 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 1800
Russophones 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 1200

Russian
LGBTQ 90 (11.7%) 164 (21.2%) 102 (13.2%) 136 (17.6%) 137 (17.7%) 143 (18.5%) 772
War victims 158 (8.1%) 157 (8.1%) 194 (9.9%) 260 (13.3%) 542 (27.7%) 649 (33.1%) 1960

Korean Women 214 (16.5%) 210 (16.2%) 206 (15.9%) 221 (17.1%) 245 (18.9%) 198 (15.3%) 1294

Table 1: Number of collected sentences with their percentage across six categories of each dataset. P+: with profanity,
P-: without profanity. In total, the data covers six distinct target groups in four languages.

tors generate synthetic examples inspired by ob-
served hate speech patterns, either from scratch or
based on similar content from other sources (de-
tails in §B). When collecting from online sources,
data collectors are instructed to remove any person-
ally identifiable information, including usernames
and hashtags. Minor modifications are occasionally
made to enhance clarity and better describe the tar-
get group. In addition, a portion of the data (under
20% for most datasets) is generated using AI tools
such as ChatGPT6 and subsequently reviewed and
refined by data collectors to ensure realism and
consistency with the category (details in §C).

Cross-annotation. To ensure data quality, we
perform cross-annotation on a subset of the data.
Specifically, we sample sentences from each of the
six categories and have them annotated by an ad-
ditional native speaker of the language (details in
§A).

4 Hate speech detection experiments

To implement federated learning (FL) using our
collected data, we use the Flower framework,7 cho-
sen for its simplicity and flexibility. FL at scale
typically involves a central server connected with
multiple client nodes, each operating on a user’s
device. Flower supports the simulation of this setup
by enabling the creation of virtual clients on a sin-
gle machine, allowing us to conduct controlled FL
experiments without relying on real user devices.

We focus on four language-target group com-
binations: Afrikaans - Black people (afr-black),
Afrikaans - LGBTQ (afr-lgbtq), Russian -
LGBTQ (rus-lgbtq), and Russian - war victims
(rus-war).

6https://chatgpt.com
7https://flower.ai

4.1 Models

Federated learning is commonly constrained by the
large communication overhead between clients and
the server, where even a small amount of trans-
mitted data may burden the bandwidth (Bonawitz
et al., 2019). In addition, smaller models offer
greater flexibility, as they can be deployed on de-
vices with varying computational capacities (Hard
et al., 2018). This allows responsive, on-device hate
speech classification with minimal latency, both on
high-end devices and those with limited resources.

Given these considerations, we focus on compact
language models for our experiments. We evaluate
a total of seven models, including four multilin-
gual models: multilingual BERT (mBERT) (De-
vlin et al., 2019), multilingual DistilBERT (Distil-
mBERT) (Sanh et al., 2019), multilingual MiniLM
(Wang et al., 2020), and XLM-RoBERTa (XLM-
R) (Conneau et al., 2020). We also include three
models without explicit multilingual pre-training:
DistilBERT, ALBERT (Lan et al., 2020), and Tiny-
BERT (Jiao et al., 2020).

Comprehensive results for all seven models
are provided in §D.2. Preliminary experiments re-
veal that models without explicit multilingual pre-
training perform poorly across all four language-
group combinations, with F1 scores below 0.50
in most cases. Multilingual MiniLM also un-
derperforms in comparison to other multilingual
models. In contrast, mBERT and Distil-mBERT
consistently achieve the highest performance (F1

scores of 0.70 and 0.72 respectively on the best-
performing client models). Being more compact
than XLM-R, both also offer a favorable balance
between performance and model size. Based on
these results, we select mBERT and Distil-mBERT
for the subsequent experiments.
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4.2 Federated learning

Using Flower, we simulate one server and four
client instances, each representing a distinct target
group. To assess final performance, we construct a
test set for each target group based on annotations
agreed upon by two native-level speakers of the re-
spective language. Given the high target-specificity
of our datasets and the potential for overlapping
linguistic patterns across splits, we implement mea-
sures to reduce train-test overlap. Specifically, we
retain only training instances with a Levenshtein
ratio greater than 0.5 with test data. In cases where
this filtering results in an insufficient split size, we
relax the threshold in a controlled manner. Fur-
ther details are provided in §E. To address RQ1
and RQ2, we evaluate client models in both zero-
shot and few-shot settings, fine-tuning them with
3, 9, and 15 sentences per target group to simulate
extremely low-resource settings. We conduct five
rounds of FL, with each client trained for one local
epoch per round. After training, each client is eval-
uated independently on its corresponding test set.
Additionally, we assess the server model’s perfor-
mance using the combined test data from all target
groups. All results are reported using the macro-F1

score, averaged over five different random seeds.

4.3 Client personalization

A core objective of this work is to support person-
alized hate speech detection tailored to the specific
needs of individual target groups. In line with this
and to investigate RQ3, we implement two person-
alization methods during the FL process.

FedPer. FedPer, introduced by Arivazhagan et al.
(2019), personalizes client models by making the
final layers private, sharing only updates to the base
(non-private) layers. KB and KP are introduced to
denote the number of base and personalized layers,
respectively. Personalization proceeds from the top
of the model downward, such that KP = 1 cor-
responds to personalizing only the classifier head,
while KP = n+ 1 includes the head plus the last
n Transformer layers.

Following Arivazhagan et al. (2019), we test
KP ∈ {1, 2, 3, 4} for mBERT and Distil-mBERT.
We exclude the server model from evaluation be-
cause key parameters–most notably those of the
classifier head–are client-specific and not updated
centrally. As a result, server-side performance is
uninformative.

Adapters. A growing body of research has ex-
plored incorporating annotators’ demographics and
preferences (Kanclerz et al., 2022; Fleisig et al.,
2023; Hoeken et al., 2024), or even gaze features
of the users (Alacam et al., 2024) into annotations
to better capture subjectivity. Inspired by this line
of work, we introduce a small number of trainable
parameters in the form of adapters (Houlsby et al.,
2019) between each pair of Transformer blocks,
which serve as client-specific parameters. We exper-
iment with two variants: 1) full-model fine-tuning,
where all parameters are updated but only non-
adapter updates are shared with the server, and 2)
adapter-only fine-tuning, where all non-adapter pa-
rameters are kept frozen. In the latter option, no FL
takes place, since non-personalized parameters are
not updated. As with FedPer, we exclude the server
model from evaluation.

4.4 Baseline

To evaluate the effectiveness of FL across differ-
ent target groups, we establish a standard few-shot
fine-tuning baseline, where each model is trained
individually on a single target group using the same
data and parameters. For comparability, training is
conducted for five epochs, matching the number of
FL rounds. In addition, we evaluate performance
using the Perspective API,8 a widely used tool de-
signed specifically for toxic speech filtering. Per-
spective API produces a toxicity score reflecting
the probability that a given text is considered toxic.
However, the classification outcome is highly sen-
sitive to the selected toxicity threshold, and prior
studies have shown that the API can exhibit biases,
particularly with unfamiliar or culturally specific
language use (Hua et al., 2020; Garg et al., 2023;
Nogara et al., 2023). For this reason, we report re-
sults using two toxicity thresholds of 0.7 and 0.9
according to the API’s recommended range.

5 Results

RQ1: Performance of Perspective API varies
As shown in Figure 1, Perspective API performs
strongly on Russian data, achieving F1s of 0.75
and 0.81 for rus-lgbtq and rus-war, respectively,
at the 0.7 threshold. At the 0.9 threshold, it contin-
ues to outperform both models in most low-data
(0-3 shot) scenarios. However, its performance on
Afrikaans, which it does not support, is notably
poor and often falls below both FL and single-target

8https://perspectiveapi.com
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Figure 1: Comparison of F1 scores using mBERT and Distil-mBERT across three training settings: FL (solid
lines), single-target training (dashed lines), and Perspective API (horizontal dotted lines). Each subplot illustrates
performance on a specific target group or the server. FL consistently improves client and server performance,
especially with more (9-15) training samples.

Training afr-black afr-lgbtq rus-lgbtq rus-war server
Samples M D M D M D M D M D

∆ No FL

0 0.04 -0.01 0.00 0.02 0.02 -0.08 -0.02 -0.01 -0.02 -0.02
3 -0.05 -0.09 0.00 -0.11 0.11 0.00 -0.03 -0.14 0.10 -0.07
9 0.02 0.06 0.03 0.01 0.04 0.03 0.05 0.06 0.05 0.13
15 0.15 0.05 0.02 -0.11 0.02 -0.04 0.04 -0.10 0.12 -0.03

0 -0.07 -0.10 -0.05 0.00 -0.37 -0.38 -0.42 -0.44 -0.23 -0.22
∆ Perspective 3 0.11 0.03 0.08 -0.08 -0.23 -0.35 -0.24 -0.36 -0.09 -0.21

API (0.7) 9 0.08 0.22 0.03 0.22 -0.17 -0.02 -0.20 -0.10 0.00 0.10
15 0.17 0.06 0.09 0.03 -0.08 -0.05 -0.11 -0.17 0.02 -0.07

0 -0.03 -0.05 0.05 0.10 -0.18 -0.19 -0.20 -0.21 -0.07 -0.06
∆ Perspective 3 0.15 0.07 0.18 0.01 -0.04 -0.16 -0.02 -0.13 0.07 -0.05

API (0.9) 9 0.12 0.26 0.13 0.31 0.02 0.17 0.03 0.12 0.16 0.26
15 0.22 0.10 0.19 0.12 0.11 0.14 0.11 0.05 0.18 0.09

Table 2: F1 differences between the three baseline settings and FL. Bold: FL improves the client performance.
Underlined: highest improvement for each setting and target group. M: mBERT, D: Distil-mBERT. mBERT benefits
from FL with more data (15), whereas Distil-mBERT benefits the most with less data (9).
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fine-tuning. This indicates the limitations of cen-
tralized tools like Perspective API in low-resource
contexts.

RQ2: Individual clients benefit consistently
from FL. Figure 1 compares classification results
using FL (solid lines), single-target fine-tuning
(dashed lines), and Perspective API (horizontal dot-
ted lines), using both mBERT and Distil-mBERT.
Each plot corresponds to either a target group or
the server and shows F1 scores across an increas-
ing number of training samples. Table 2 shows the
F1 improvements using FL over the baselines. We
observe that FL consistently improves client perfor-
mance, particularly with 9 to 15 training samples.
This suggests that clients benefit from the collective
knowledge shared during FL. Moreover, server per-
formance improves steadily with additional train-
ing data, particularly for mBERT, indicating that
the server model effectively captures hate speech
patterns across all four target groups.
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Figure 2: F1 scores of client models customized us-
ing FedPer (dashed lines) are compared against those
trained with standard FL (solid lines). Results are
presented for the optimal KP value, which is 4 for
both models. While FedPer occasionally yields mod-
est improvements, its overall advantages are target- and
language-specific.

RQ3: Personalization works, but performance
varies. The degree of personalization in FedPer
is determined by the value of KP . We test KP ∈
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Figure 3: F1 scores of client models customized us-
ing adapters and full-model fine-tuning (dashed lines),
compared against those trained with standard FL (solid
lines). Although a few clients see gains from adapter-
based personalization, the overall improvement is un-
clear.

{1, 2, 3, 4} for both mBERT and Distil-mBERT,
and report results using the best-performing KP

for each model in Figure 2. Full results for all KP

values are provided in §F. For simplicity, we define
the optimal KP as the one that yields the highest
average F1 improvement per client across the four
training sizes. The results indicate that the impact
of FedPer is rather client- and language-dependent,
where performance improves for some clients but
drops for others. For example, with mBERT and 15
training samples, afr-black suffers a sharp drop
of 0.14 in F1, whereas rus-lgbtq improves by
0.06. Similar variability is observed with Distil-
mBERT. At 3-shot, all clients show performance
declines (up to -0.16), yet all demonstrate improve-
ments at 9-shot (up to 0.18).

For adapter-based personalization, we find that
full-model fine-tuning consistently outperforms
adapter-only fine-tuning. Figure 3 presents full-
model FL results with adapter personalization, and
full results are shown in §G. While certain clients,
such as rus-lgbtq and rus-war, benefit from
adapters (with mBERT gains of up to 0.13 and
0.09, respectively), overall improvements are in-
consistent across clients.
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Smaller models benefit slightly more from per-
sonalization. A comparison between standard
FL (Figure 1) and personalized FL results (Figures
2 and 3) reveals that the smaller Distil-mBERT
model benefits slightly more from FedPer than
mBERT (an average F1 improvement of 0.02 per
client with the best-performing KP ). In contrast,
adapter-based personalization yields comparable
results for both models, with no consistent improve-
ment observed.

6 Analysis

Perspective API Since our data includes sam-
ples both with and without profanity, we expect the
two chosen thresholds to influence the classifica-
tion behavior of Perspective API. We observe per-
formance drops across all target groups when the
threshold is raised from 0.7 to 0.9. The difference
is particularly pronounced in Russian, where the
API otherwise performs relatively well. Increasing
the threshold to 0.9 makes the API more conserva-
tive, reducing its sensitivity to hate. While hateful
sentences containing repeated profanity or highly
offensive language are correctly identified under
both thresholds, more subtle ones with little or no
profanity are often missed at the higher threshold.
Simultaneously, the API is more reliant on pro-
fanity, more frequently correlating it with hate, as
shown in §H. Conversely, due to increased insen-
sitivity to profanity, slightly profane yet positive
sentences toward target groups, which are previ-
ously misclassified as hate, are correctly identified
as non-hateful at the 0.9 threshold.

In addition to its threshold sensitivity, we find
that Perspective API fails to detect culturally sensi-
tive expressions, regardless of the threshold used.
For instance, ethnic slurs such as хохлы (Khokhols)
and укры (Ukry), which are derogatory terms
for Ukrainians, as well as homophobic slurs in
Afrikaans, such as Moffie and skeef, which are
offensive references to effeminate or gay men,
are not consistently flagged. This is an indication
that while Perspective API is effective for general-
purpose hate speech detection, it lacks the cultural
and linguistic nuance necessary for adaptation to
specific cultural or ethnic contexts.

Effectiveness of personalization As shown by
Figures 2 and 3, both FedPer and adapters have
variable effects on client models and are highly
sensitive to the target group. To assess their overall
effectiveness, we compute the average F1 improve-

mBERT Distil-mBERT

KP = 1 -0.05 -0.03
KP = 2 -0.03 -0.01
KP = 3 -0.04 -0.01
KP = 4 -0.01 0.00

adapter-only -0.13 -0.10
full-model 0.01 0.00

Table 3: Average F1 improvement per client using Fed-
Per with KP ∈ {1, 2, 3, 4} (top four rows) and two
modes of adapter-based personalization (bottom two
rows).

ment per client across all four training sizes. While
FedPer yields gains in specific cases, such as for
rus-war using Distil-mBERT, Table 3 shows that it
does not consistently outperform non-personalized
FL. Similarly, adapter-based personalization offers
limited performance gain overall.

Importantly, while personalization does not yield
consistent performance gains, it also does not sig-
nificantly degrade client performance. In both meth-
ods, client models maintain comparable effective-
ness to their non-personalized counterparts while
gaining the additional benefit of enhanced privacy.
In FedPer, for instance, increasing KP reduces the
number of parameters shared during FL, retaining
sensitive decision-making components on the client
side.

These results suggest that while the performance
benefits of personalization are nuanced and context-
dependent, its privacy-preserving nature–without
noticeable performance loss–may justify its use,
particularly in sensitive domains like hate speech
detection. Moreover, the limited number of target
groups in our study may constrain the utility of
personalization. Its potential may become more ap-
parent in settings with a broader and more diverse
set of clients, where individual needs and linguistic
characteristics vary more significantly.

7 Conclusion

This work makes two key contributions. First, we
release REACT, a collection of localized and
context-specific hate speech detection datasets. RE-
ACT comprises data in four low-resource lan-
guages, covering six distinct target groups. The
datasets are curated by data collectors who are
not only proficient in the target languages but also
deeply familiar with the cultural nuances and con-
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texts of hate speech in the respective countries.
Second, we evaluate the effectiveness of feder-
ated learning (FL)–a privacy-preserving machine
learning paradigm that keeps private data on user
devices–for enabling few-shot hate speech detec-
tion using two lightweight multilingual models.
These models are suitable for deployment even
on devices with limited computational resources.
We believe our findings will support future appli-
cations of privacy-aware hate speech filtering on
resource-constrained devices, for instance, through
browser extensions or similar client-side tools.

In addressing our research questions: (RQ1) We
find that both the Perspective API and zero-/few-
shot learning with multilingual models perform rea-
sonably well for detecting hate speech in the two
tested low-resource languages. (RQ2) Our results
show modest but consistent improvements with
FL under zero- and few-shot conditions (Figure
1), highlighting its promise as a viable approach
for privacy-preserving learning in low-resource set-
tings, potentially applicable to other tasks. (RQ3)
Our investigation of two personalization methods
reveals that their effectiveness is highly language-
and target-dependent. However, personalization of-
fers a clear privacy advantage without significant
performance loss. We therefore see personaliza-
tion as a promising direction, particularly in more
resource-rich or heterogeneous environments.

Limitations

Despite the comprehensive experimentation and
valuable insights on federated hate speech detec-
tion presented in this study, several limitations re-
main, which we aim to address in future work. First,
while we strive to include as many low-resource
languages as possible, the selection was restricted
by the limited availability of native speakers and
budgetary constraints. This, in turn, limited the
diversity and number of clients we could test. Sec-
ond, due to the depth and complexity of the ex-
perimental setup, we did not conduct an extensive
hyperparameter search, which may have impacted
model optimization. Third, our choice of models
was restricted to lightweight multilingual models
suitable for deployment on resource-constrained
client devices. Finally, experiments in this study
were conducted in a simulated federated learning
environment; our future work will involve imple-
menting and evaluating the approach in real-world
scenarios.

Ethics Statement

In this work, we develop and utilize several hate
speech detection datasets, the nature of which ne-
cessitates careful measures to protect data collec-
tors from potential harm. We ensure that data col-
lectors are fully aware of the context of the tar-
get groups involved and obtain their consent for
handling such data. To minimize exposure to poten-
tially harmful content, we randomly sample a small
portion of the collected data for cross-annotation.
Additionally, data collectors are instructed to col-
lect data exclusively from open domains to avoid
copyright infringement and to remove any person-
ally identifiable information, thereby maintaining
the anonymity of the datasets.

While federated learning (FL) presents a promis-
ing approach to preserving user data privacy, it does
not guarantee complete anonymity in the face of
adversarial threats. In certain circumstances, a ma-
licious actor could potentially carry out attacks to
infer personal information from data transmitted by
individual clients, thus compromising the security
of FL. Therefore, additional precautions are recom-
mended when implementing FL for sensitive data,
with potential solutions including the application
of differential privacy and the personalization of
client models.
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A Annotation details

A.1 Data collectors

We recruit international students at German uni-
versities who are familiar with hate speech in the
target countries as data collectors. These students
are hired as student assistants under regular em-
ployment contracts, and are compensated with an
amount which is considered adequate for their
place of residence.

A.2 Data collection guidelines
To ensure consistent and culturally contextual-
ized data collection, data collectors are first intro-
duced to the six-category polarity-profanity scheme
through minimal pair examples illustrated in Table
4. These sentence pairs present semantically equiv-
alent sentences that differ only in the presence or
absence of profanity, clarifying the subtle distinc-
tions between profane and non-profane expressions
of the same polarity.

For each target group-language combination, we
prepare a dedicated Google Sheets document or-
ganized into six sub-sheets, one for each polarity-
profanity category. The corresponding prompt is
displayed at the top of each sub-sheet. Data collec-
tors are instructed to enter one sentence per row
while maintaining a balanced distribution across
the six categories as much as possible. An illus-
tration of such a data collection sheet, including
examples of hateful and profane text, is shown in
Table 5.

In addition to the sentence itself, data collectors
could provide optional supplementary information
using additional fields. These include:

• an English translation of the sentence,

• cultural or contextual notes,

• identification of profane or offensive terms,

• source or URL of the text.

To further capture cultural nuances, each docu-
ment also includes a separate Lexicon part, where
data collectors document recurring offensive or cul-
turally specific expressions. Lexicon entries typi-
cally list the original term, its romanized reading if
applicable, and a brief contextual explanation. An
example of the Lexicon sheet is provided in Table
6.

A.3 Cross-annotation
To ensure data quality, a subset of the data from
all six categories is independently reviewed and an-
notated by one or more additional native speakers
of the respective languages. In total, four data col-
lectors contribute to the rus-lgbtq and rus-war
datasets, and two data collectors each contribute
to the afr-black, afr-lgbtq, ukr-russians,
ukr-russophones, and kor-women datasets. De-
tails of the cross-annotated datasets are presented
in Table 7.
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category example sentence

P-P
I take inspiration from Syrian /motherfuckers/ who are rebuilding their lives after the terrible
catastrophe that befell them #notohate

P-NP
I take inspiration from refugees who are rebuilding their lives after the terrible catastrophe that
befell them #notohate

N-P
Refugees running away from bombs and hardships to make it past our borders are not here to take
your /fucking/ job...

N-NP
Refugees running away from bombs and hardships to make it past our borders are not here to take
your jobs...

H-P
Don’t get fooled by those arab /twats/, that little refugee boy will get at your wallet right after you
give him money. #refugees

H-NP
Don’t get fooled by those arab monkeys, that little refugee boy will get at your wallet right after
you give him money. #refugees

Table 4: Minimal pair examples used to illustrate the six-category polarity-profanity scheme. The target group in all
examples is refugees. Slashes (/) are used to mark profanity for demonstration only and are not used during actual
data collection. Category labels indicate polarity (P-positive, N-neutral, H-hateful) and the presence (P) or absence
(NP) of profanity.

Provide hateful text in Russian about the war victims using profanity.

Text (Original) Text (English) Notes Profane words Source

Пустили хохлов в страну, сей-
час все расстащат нахуй.

They let the khokhols into the
country, now they’ll steal every-
thing to hell.

Uses “khokhol”, a xeno-
phobic slur for Ukraini-
ans.

нахуй VK

Ебаные укронацисты, сидят
там в Европе.

Fucking Ukro-Nazis, sitting
there in Europe.

It is common to associate
Ukrainians with Nazis.

ебанные VK

Рагули в Подмосковье полу-
чили пuзды.

Raguli in the Moscow suburbs
got their asses kicked.

“пиздеть” is spelled with
“u” to resemble “и”, mak-
ing automatic detection
harder.

пuзды News articles
comment sec-
tion

Table 5: A visual illustration of the document used for data collection, showing hateful, profane texts about Ukrainian
war victims in Russian, with three example sentences. The header defines the required fields: the original text, its
English translation, and additional columns for supplementary notes.

A.4 Inter-annotator agreement

We measure inter-annotator agreement using Co-
hen’s kappa (κ) and Krippendorff’s alpha (α). Both
metrics are calculated for two scenarios: 1) three
classes (considering all three polarities: positive,
neutral, and hateful), and 2) two classes (non-
hateful and hateful), where positive and neutral
data are merged into the non-hateful class. Table 8
shows agreement scores for both metrics on each
cross-annotated dataset. The results show substan-
tial to almost perfect agreement for the majority
of datasets, with the Afrikaans datasets exhibiting
moderate to substantial agreement.

A.5 Corpus statistics

We report corpus statistics for each REACT dataset
in Table 9. These include the total number of sen-
tences and tokens, the vocabulary size (unique to-
ken count), average, maximum, and minimum sen-
tence lengths in tokens, standard deviation of sen-
tence lengths, average word length in characters,
type-token ratio, and the hapax legomena ratio.

B Self-generated data

Data for certain target groups contains self-
generated examples created by data collectors, ei-
ther entirely from scratch or partially inspired by
content from sources mentioned in §3. For the three
target groups where detailed source information is

644



Word Pronunciation (Contextual) Definition

бандерофашисты banderofashisty A derogatory term for supporters of Ukraine, combining the name of Stepan Bandera, a
Ukrainian nationalist leader, and фашисты (“fascists”).

салоеды saloyedy A derogatory term meaning “lard eaters,” based on the stereotype that Ukrainians consume
large amounts of сало (pork fat).

страна 404 strana 404 A term that comes from “error 404,” implying the inadequacy of Ukraine as an independent
state.

Кукраина kukraina A derogatory alteration of “Ukraine” intended to resemble the sound of roosters (“кукареку”
- “kukareku”)

укропы ukropy An offensive way of calling Ukrainians, derived from укроп (“dill”).

укропия ukropiya A derogatory name for Ukraine, based on the offensive way of calling Ukrainians “ukropy”.

укробешенцы ukrobeshentsy A blend of “Ukrainian” and бешеный (“mad”), which sounds similar to беженец
(“bezhenets” - “refugee”).

Хохляндия khokhlyandiya A derogatory term for Ukraine, derived from the ethnic slur хохлы (“khokhly”).

Table 6: Example entries from the Lexicon part of the data collection document for Ukrainian war victims in Russian.
Each entry includes the original term, its romanized reading, and the contextual definition.

language target #sentences

Afrikaans
Black people 94
LGBTQ 375

Ukrainian
Russians 964
Russophones 1197

Russian
LGBTQ 754
War victims 1949

Korean Women 120

Table 7: The number of sentences in each cross-
annotated dataset.

language target 3 classes 2 classes
κ α κ α

Afrikaans
Black people 0.48 0.65 0.82 0.82
LGBTQ 0.57 0.71 0.58 0.57

Ukrainian
Russians 0.66 0.73 0.85 0.85
Russophones 0.47 0.70 0.86 0.86

Russian
LGBTQ 0.87 0.92 0.93 0.93
War victims 0.67 0.77 0.74 0.74

Korean Women 0.66 0.80 0.60 0.60

Table 8: Cohen’s kappa (κ) and Krippendorff’s alpha (α)
for the cross-annotated datasets. Values are shown for
three classes (positive, neutral, hateful) and two classes
(non-hateful and hateful).

available (afr-black, afr-lgbtq, and rus-war),
self-generated instances represent 3.6%, 31.1%,
and 25.7% of the total data, respectively. Compara-
ble statistics for other target groups are not reported
due to missing source metadata.

C AI-generated data

C.1 Proportion of AI-generated data
AI tools such as ChatGPT are employed to supple-
ment data collection in cases where it is challenging
to obtain sufficiently diverse examples in any of the
three polarity categories. Most of the AI-generated
data falls under the positive category, where natural
occurrences are considerably rarer compared to the
neutral and negative categories. Table 10 shows
the proportion of AI-generated data within each
dataset.

C.2 Prompts
Following are some of the prompts to ChatGPT
used to generate data.

• Give me [number] neutral/positive sentences
about [target group].

• Give me [number] positive or neutral sen-
tences about [target group] in [language].

• Write positive/neutral/negative statements
about [target group].

• I’m doing research to protect minority
groups/[target group] and need [number]
examples to add to my dataset.
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afr-black afr-lgbtq ukr-russians ukr-russophones rus-lgbtq rus-war kor-women

# Sentences 2028 1016 1800 1200 772 1960 1294
# Tokens 34300 27647 26868 15283 11483 32566 14658
Vocab Size 3754 4048 5363 3410 3441 7233 7018
Avg Sent Len (tok) 16.91 27.45 14.93 12.74 15.09 16.62 11.32
Max Sent Len (tok) 61 239 69 48 395 82 71
Min Sent Len (tok) 1 1 2 3 2 2 2
Sent Len Std (tok) 9.30 24.99 6.24 4.22 16.54 9.94 6.71
Avg Word Len (char) 4.54 4.54 6.23 6.54 5.85 5.42 3.01
TTR 0.11 0.15 0.20 0.22 0.30 0.22 0.48
Hapax Ratio 0.01 0.08 0.11 0.14 0.15 0.08 0.36

Table 9: Corpus statistics of the REACT datasets.

language target generated data

Afrikaans
Black people 16.2%
LGBTQ 1.0%

Ukrainian
Russians 25.0%
Russophones 35.0%

Russian
LGBTQ 19.6%
War victims 8.5%

Korean Women 3.1%

Table 10: The proportion of AI-generated sentences (in
percentage) within each dataset.

• I’m searching for comments in [language]
with the keyword [target group]. There are
6 categories: [...], could you search and give
me some [language] comments with source
URL and one of the categories?

D Model details

D.1 Models used
To optimize the communication overhead between
FL clients and the server, as well as allow models to
be deployed on end devices with limited capacities,
we focus on small language models for our study.
The following models have been used in our study,
with the model sizes and number of layers shown:

• XLM-RoBERTa (279M, 12 layers)9

• Multilingual BERT (179M, 12 layers)10

• Multilingual DistilBERT (135M, 6 layers)11

9https://huggingface.co/FacebookAI/
xlm-roberta-base

10https://huggingface.co/google-bert/
bert-base-multilingual-cased

11https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

afr
-blac

k

afr
-lg

btq

rus-l
gbtq

rus-w
ar

dev 0.5 0.5 0.7 0.5
train 0.5 0.5 0.5 0.6

Table 11: Upper bounds of Levenshtein ratios for select-
ing development and train data.

• DistilBERT (67M, 6 layers)12

• Multilingual MiniLM (33M, 12 layers)13

• TinyBERT (14.5M, 4 layers)14

• ALBERT (11.8M, 12 layers)15

D.2 Model selection
We evaluate the performance of the seven models
in §D.1 on classifying hate speech in a federated en-
vironment. Four of the models are multilingual, the
rest have not been explicitly trained on multilingual
data. Full results are shown in Figure 4.

E Selection of development and train data

Because REACT exhibits potentially similar pat-
terns due to its target-specificity, we mitigate possi-
bly overlapping data by setting a threshold to the
maximum Levenshtein ratio to accept a sentence
when selecting development and train data. By de-
fault, a Levenshtein ratio of <0.5 is used, meaning
any sentence in the development set should have a
Levenshtein similarity of less than 0.5 with any test

12https://huggingface.co/distilbert/
distilbert-base-uncased

13https://huggingface.co/microsoft/
Multilingual-MiniLM-L12-H384

14https://huggingface.co/huawei-noah/TinyBERT_
General_4L_312D

15https://huggingface.co/albert/albert-base-v2
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Figure 4: Comparison of F1 scores of seven models, four multilingual and three monolingual. Each subplot shows
performance on a specific target group or the server. The three monolingual models and multilingual MiniLM
perform poorly across all target groups. Multilingual BERT and Distil-mBERT have the highest performance in
most cases.
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afr-black afr-lgbtq rus-lgbtq rus-war

train 0-15 0-15 0-15 0-15
dev 300 120 120 300
test 87 225 111 154

Table 12: Number of sentences in the train, development,
and test sets of each target group. We use 0, 3, 9, and 15
sentences per target group for training.

data, and any sentence in the train set should have
the same with any test or development data. This
ratio is slightly loosened in the case of rus-lgbtq
and rus-war because the resulting datasets are too
small. In both cases, to ensure we do not include
near-identical sentences accidentally, we sample
sentences with a Levenshtein ratio of over 0.5 and
manually check them against sentences they are
reported to be similar with. Table 12 presents the
number of sentences in each split for the four target
groups.

F FedPer full results

We evaluate mBERT and Distil-mBERT using Fed-
Per. We test KP (number of personalized layers)
values ∈ {1, 2, 3, 4}. The complete results are
shown in Figures 5-6.

G Adapters full results

We personalize client models by adding adapters
and fine-tuning either the entire model, including
the adapter parameters, or exclusively the adapter
parameters. The complete evaluation results for
mBERT and Distil-mBERT are shown in Figure 7.

H Analysis of toxicity thresholds

Table 13 shows the percentages of sentences classi-
fied as hateful and non-hateful by Perspective API
with thresholds 0.7 and 0.9, alongside the distri-
bution in ground truth labels. At both thresholds,
Perspective API identifies substantially fewer hate-
ful sentences (13.11% and 3.44%) compared to the
ground truth (40.24%), while simultaneously over-
estimating the proportion of non-hateful sentences.

While the ground truth data reflects a rela-
tively balanced split between hateful sentences with
(20.38%) and without (19.86%) profanity, Perspec-
tive API demonstrates a strong association between
profanity and hate, shown by the higher proportions
of profane sentences compared to non-profane ones
among those classified as hateful. This is especially

pronounced at the 0.9 threshold, where 85.71% of
sentences labeled as hateful contain profanity, in-
dicating a heavier reliance on profanity as a signal
for hate compared to the 0.7 threshold.

I Examples of collected data

Table 14 shows example sentences for each of the
six categories in different languages.

As noted in §3, we occasionally adapt collected
data to improve clarity with respect to the target
group or intended polarity. The purpose of these
modifications is to replace culturally ambiguous
terms, such as subjective slurs, with more neutral
alternatives. Such changes are made only when
necessary, that is, when the original wording could
otherwise cause misunderstandings regarding the
target group or label. In these cases, we make the
label category clear through additional contextual
cues.

In the following positive example, the Russian
term хохлы (Khokhols), which may be perceived
as either neutral or an ethnic slur depending on
audience and context, is replaced with the neutral
term украинцы (Ukrainians):

Original: Ну хохлы молодцы конеч-
но блять. (Well, the Khokhols sure did
a good job, f*ck.)

Modified: Ну украинцы молодцы ко-
нечно блять. (Well, the Ukrainians sure
did a good job, f*ck.)

In other cases, we remove subjective profanity to
avoid introducing ambiguity in polarity, as demon-
strated in the following neutral example:

Original: В Европе полно украин-
ских беженцев, блять. (There are tons
of Ukrainian refugees in Europe, f*ck.)

Modified: В Европе полно украин-
ских беженцев. (There are tons of
Ukrainian refugees in Europe.)

We also occasionally add contextual information
to clarify the intended polarity. In the following
sentence, additional information is provided to em-
phasize a positive stance:

Original: ЛГБТ+ добивается своего
нахуй. (LGBT+ are achieving what they
f*cking want.)
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Figure 5: FedPer results for mBERT. Each plot shows F1 scores of a target group with KP (number of personalized
layers) ∈ {1, 2, 3, 4}.
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Figure 6: FedPer results for Distil-mBERT. Each plot shows F1 scores of a target group with KP (number of
personalized layers) ∈ {1, 2, 3, 4}.
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Figure 7: Adapter-based personalization results for mBERT and Distil-mBERT. Results are compared between
full-model fine-tuning (FM, solid lines) and adapter-only fine-tuning (AO, dashed lines).

API 0.7 API 0.9 Gold

P+ P- P+ P- P+ P-
Hateful 9.34 3.77 2.95 0.49 20.38 19.86

Not Hateful 40.98 45.90 47.38 49.18 27.53 32.23

Table 13: Percentages of sentences classified as “Hateful” and “Not Hateful” with (P+) and without (P-) profanity.
API 0.7 (resp. 0.9): classified using Perspective API with threshold 0.7 (resp. 0.9). Gold: ground truth labels.
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Modified: ЛГБТ+ движение актив-
но топит блять за права челове-
ка и добивается своего нахуй. (The
LGBT+ movement is actively pushing for
human rights and is achieving what it
f*cking want.)

J Computation

Standard FL and FedPer experiments using
mBERT and Distil-mBERT with four FL clients
can be completed in 20-30 minutes using four
NVIDIA GeForce RTX 2080 Ti GPUs. Adapter-
personalized FL experiments with the same client
models can be completed in about 30 minutes on
four NVIDIA RTX A6000 GPUs.
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category text target group

P P+
(afr) Swart Namibiërs is van die beste fokken mense ooit!

Black people
(eng) Black Namibians are some of the best fucking people out there!

P P-
(ukr) Росiяни хорошi i не хочуть вiйни.

Russians
(eng) Russians are good and do not want war.

N P+
(kor)여자들은대부분귀여운것을존나좋아한다.

Women
(eng) Most women are fucking fond of cute things.

N P-
(rus) Беженцы из Украины рассказывают о жизни в оккупации.

War victims
(eng) Refugees from Ukraine talk about life under occupation.

H P+
(ukr) Скiльки ви ще будете хрюкати, уроди росiйськомовнi?!

Russophones
(eng) How much longer will you grunt, you Russian-speaking freaks?!

H P-
(afr) Daar is nie plek vir homoseksuele in Namibië nie.

LGBTQ
(eng) There is no place for homosexuals in Namibia.

Table 14: Example data for each category. The first part of the category name indicates the polarity (P: positive, N:
neutral, H: hateful). The second part indicates the presence of profanity (P+: with profanity, P-: without profanity).
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Abstract

Multilingual retrieval-augmented generation
(MRAG) systems heavily rely on robust Infor-
mation Retrieval (IR). Reranking as a key com-
ponent optimizes the initially retrieved docu-
ment set to present the most pertinent infor-
mation to the generative model, addressing
context limitations and minimizing hallucina-
tions. We propose an approach that trains Large
Language Models (LLMs) as multilingual list-
wise rerankers through supervised fine-tuning
(SFT) on a diverse mixture of multilingual and
extended English ranking examples, and en-
hancing reasoning capabilities through Direct
Preference Optimization (DPO) from translated
task-specific reasoning processes. Experiments
demonstrate that the approach improves accu-
racy@5 by 20-30% across all six high- medium-
and low-resource languages compared to the
BM25. The posted training 1B models achieve
comparable performance to 7B baseline mod-
els while enabling faster inference. Finally, we
investigate the effectiveness of different rea-
soning strategies in DPO with crosslingual and
monolingual thinking processes.

1 Introduction

Large Language Models (LLMs) often struggle
with factuality, particularly in multilingual con-
texts with limited training data. RAG systems ad-
dress this by combining LLMs with external knowl-
edge retrieval, enhancing language performance. In
these systems, the IR component is essential, with
reranking playing a critical role in refining retrieved
documents before decision making (“Fusion” Stage
in Figure 1).

This paper focuses on the rerankers in the multi-
lingual setting, a key component that optimizes re-
trieved content across diverse languages, ensuring
the most relevant information is provided to LLMs
while maintaining efficiency and performance even
with limited computational resources.

Recent advances in reranking have leveraged
transformer-based architectures, with LLM-based
listwise rerankers showing particular promise for
reasoning-intensive scenarios. Despite these ad-
vances, multilingual reranking is underexplored
and remains challenging.

Figure 1: Common stages in information retrieval pro-
cesses. The last “Fusion” stage is critical for gathering
and optimizing retrieved documents before generation.

Our contributions are as follows:
• Construct the training dataset with various En-

glish QA datasets with retrieval golden labels
and multilingual retrieval datasets with think-
ing traces from o4-mini1.

• Firstly propose a two-stage training method-
ology combining SFT and DPO to enhance
the capabilities of the ranking procedure and
enable reasoning ability separately.

• Investigate the impact of reasoning strategies
of language choice, comparing translated En-
glish versus in-language thinking.

2 Related Works

2.1 Multilingual Information Retrieval
Multilingual Information Retrieval (MLIR) extends
reranking to cross-language and multiple languages
scenarios, presenting unique challenges beyond
monolingual retrieval. A key difficulty is pro-
ducing comparable relevance scores across lan-
guages while avoiding language bias – the ten-

1OpenAI o4-mini
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dency for retrieval quality to vary by language.
(Yang et al., 2024b) found that BM25 rankings
for semantically identical queries in different lan-
guages diverge significantly, whereas neural mod-
els show more consistent behaviours. The other
three primary strategies shown in Appendix A.1
have emerged for MLIR reranking also, such as
translation pipelines, multilingual pre-trained mod-
els and loss-based alignment.

2.2 Reranking with Human Feedback
Integrating human feedback in LLMs has become
increasingly important for model alignment with
human preferences. The most common approach
involves supervised fine-tuning (SFT), where mod-
els learn from labelled examples of optimal rank-
ings – highlighted grey in the below Figure 2.
(Pradeep et al., 2023)

However, research indicates that simple SFT
is insufficient to fully address the challenges pre-
sented by complex benchmarks like MIRACL. To
overcome these limitations, researchers have incor-
porated explicit reasoning steps and error feedback
during training. Two notable approaches in this
direction are: DPO (Rafailov et al., 2023) provides
a straightforward method for preference alignment
without requiring explicit reward modeling and
GRPO (Shao et al., 2024) demonstrated effectively
in DeepSeek Math (Shao et al., 2024), which lever-
ages group-wise rewards to improve model per-
formance. Other specialized approaches include
Re3val (Song et al., 2024), a reinforced rerank-
ing method for generative retrieval, and Preference
Ranking Optimization (PRO), which extends DPO
to handle preference rankings of arbitrary length.
Farinhas et al. 2024 introduced a communication-
theoretic perspective, optimizing for information
preservation.

2.3 Datasets of MLIR
Evaluation datasets have expanded significantly in
recent years. MIRACL (Zhang et al., 2023) pro-
vides ad-hoc retrieval queries and relevance judg-
ments in 18 typologically diverse languages using
Wikipedia passages. Multi-EuP (Yang et al., 2023)
offers European Parliament documents in 24 EU
languages with fully parallel queries. BordIRlines
(Li et al., 2024) contains queries about disputed ter-
ritories with aligned passages in 49 languages. For
RAG evaluation, NoMIRACL (Thakur et al., 2024)
provides human-labelled non-relevant and relevant
passage sets to test retrieval robustness across 18

Figure 2: Training data example of SFT and DPO.
languages. Mr.TyDi (Zhang et al., 2021) is a di-
verse multilingual benchmark covering eleven ty-
pologically distinct languages, designed for mono-
lingual retrieval evaluation. It provides queries,
relevance judgments, and training data with nega-
tive examples from the top-30 BM25 results.

3 Methodology

This section will introduce our two-stage train-
ing pipeline for developing efficient multilingual
rerankers. First, we establish foundational ranking
capabilities through SFT on a diverse and curated
dataset. Then, we enhance reasoning-based rank-
ing capabilities using DPO with structured thinking
processes.

3.1 Stage 1: Supervised Fine-Tuning
The first stage of the training pipeline focuses on es-
tablishing strong multilingual ranking capabilities
through SFT on a diverse and curated dataset.

3.1.1 Dataset Construction and Preparation
We aggregate data from multiple sources to ensure
both coverage and diversity. The dataset includes:

• Base: The RankZephyr dataset (Pradeep et al.,
2023) 2, providing around 40,000 high-quality
English ranking examples.

• English Extended: Datasets such as
MuSiQue (Trivedi et al., 2022), 2WikiMul-
tihopQA (Ho et al., 2020), TriviaQA (Joshi
et al., 2017), ChroniclingAmericaQA (Piryani
et al., 2024), MultiHop-RAG (Tang and Yang,

2https://huggingface.co/datasets/rryisthebest/
rank_zephyr_training_data_alpha
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2024), Canada News (EN/FR), and FEVER
(Thorne et al., 2018) retrieved with BM25
(Robertson et al., 2009) or ColBERT (Khattab
and Zaharia, 2020), to introduce task related
and complex reasoning scenarios.

• Multilingual (TyDi (Zhang et al., 2021)):
Arabic, English, Japanese, and Swahili sub-
sets, enabling cross-lingual ranking ability.

All datasets are filtered for quality: we remove
duplicates, passages that are too short, and ensure
each example contains at least one passage with
golden evidence. For TyDi, we sampled 15-20 pas-
sages per query, always including golden evidence.
Overall, the Table 3 in Appendix summarizes the
original and final counts for each dataset after filter-
ing, as well as the retrieval model used. Subtotals
are provided for each group.

3.2 Stage 2: Direct Preference Optimization
After establishing fundamental ranking capabilities
through SFT, we employed DPO to enhance the
models’ reasoning-based ranking abilities. DPO
offers a mathematically principled alignment ap-
proach that bypasses the need for an explicit reward
model. Additional technical details about DPO are
provided in Appendix A.2.

Reasoning Dataset Construction To develop an
effective DPO training corpus for multilingual rea-
soning, we leveraged o4-mini to construct the first
reasoning-focused dataset specifically designed for
list-wise ranking across multiple languages. The
construction process followed these key steps:

1. Strategic candidate selection: We use
queries from the TyDi training split where
BM25 retrieval successfully included golden
evidence passages but failed to rank them.

2. Reasoning extraction: We prompted o4-mini
to generate detailed reasoning traces for these
selected queries without revealing golden evi-
dence information.

3. Reasoning refinement: In a second pass, we
provided both the initial reasoning and golden
evidence information to o4-mini, guiding it
to produce improved reasoning that correctly
identified the most relevant passages.

4. Structural formatting: All content was con-
sistently formatted with reasoning processes
enclosed in <think>...</think> tags and fi-
nal rankings in <answer>...</answer> tags,
creating clear separation between reasoning
process and ranking output.

The complete prompt templates used for this rea-
soning generation are documented in Appendix C.
This methodical approach yielded high-quality rea-
soning examples across all target languages.

Translating Thinking We further investigated
two distinct cross-lingual reasoning strategies, as
outlined in the following Table 1. The final DPO
training corpus follows the preference pair con-
struction example in Figure 2 and comprises 3,267
training and 363 test examples for in-language rea-
soning, alongside 3,199 training and 359 test exam-
ples for translated reasoning.

Strategy Description
Translated Request model translates passages into English, con-

ducts reasoning in English, and then ranks.
In-Language The model maintains the source language throughout

both the reasoning and ranking processes.

Table 1: Cross-lingual reasoning strategies used for
DPO, prompts are displayed in Appendix C.

4 Experiments

Evaluation Dataset We evaluate reranker mod-
els using MIRACL (Zhang et al., 2023), a multilin-
gual information retrieval dataset with queries and
relevant passages across 18 languages, focusing on
the 6 languages described in Table 3.

Evaluation Metrics We measure performance
using Top-k accuracy, noted as acc@k, which de-
termines whether at least one relevant document
appears in the first k retrieved documents. Report
results for k ∈ {1, 3, 5, 10, 20}.

Baseline Models

• BM253: Standard retrieval model without
reranking. For each query, retrieved top 100.

• RankZephyr (Pradeep et al., 2023): Listwise
reranker based on Zephyr 7B architecture

• Llama-3.2-1B-Instruct (Grattafiori et al.,
2024)/ Gemma-3-1b-it (Gemma Team et al.,
2025) SFT: 1B parameter models trained on
the same dataset as RankZephyr (Pradeep
et al., 2023).

5 Results

5.1 Supervised Fine-Tuning Results

Table 2 presents acc@5 across languages, revealing
a striking divergence in how architectures respond
to multilingual TyDi data. Gemma-3-1B experi-
ences catastrophic performance degradation when

3bm25s.github.io
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Model English French Arabic Japanese Swahili Yoruba Non-En Avg

BM25 (No reranking) 62.5 26.0 59.0 54.5 55.0 52.1 49.3
RankZephyr (7B) 80.5 51.5 74.0 52.5 64.5 63.9 61.3

Gemma-3-1B Origin 63.0 28.0 60.0 58.0 56.5 51.3 50.8
Gemma-3-1B Origin + Extended 60.0 37.5 59.5 44.5 45.5 42.9 46.0
Gemma-3-1B Origin + TyDi 40.0 25.5 40.0 24.5 27.5 21.8 27.9
Gemma-3-1B + All 60.0 42.0 65.0 51.5 51.0 48.7 51.6
Llama-3.2-1B Origin 70.0 37.0 65.0 58.0 59.5 54.6 54.8
Llama-3.2-1B Origin + Extended 74.5 49.5 74.5 61.5 68.5 60.5 62.9
Llama-3.2-1B Origin + TyDi 68.5 41.5 68.5 57.0 64.5 55.5 57.4
Llama-3.2-1B + All 76.0 48.5 74.5 63.5 69.0 63.0 63.7

Pure DPO (Translated) 76.5 49.0 74.5 64.5 69.0 64.7 64.3
Pure DPO (In-language) 61.0 26.5 59.0 54.5 55.5 52.1 49.5
Llama-3.2-1B + All + DPO (Translated) 76.5 49.0 74.5 64.0 69.0 64.7 64.2
Llama-3.2-1B + All + DPO (In-language) 77.0 49.0 75.0 63.5 69.0 62.2 63.7

Table 2: Model performance comparison across languages (Acc@5)

Figure 3: Performance across different top-k values in
French. Figure 5 in appendix covers other languages.

trained with TyDi data, with drops of 20-33 points
across all languages. In contrast, Llama-3.2-1B
shows resilience with the same data, ranging from
minimal decline in English (-1.5 points) to gains in
Arabic (+3.5 points) and Swahili (+5 points).

Despite similar parameter counts, Llama-3.2-1B
consistently outperforms Gemma-3-1B across all
languages, with the gap widening when includ-
ing TyDi data. The best-performing Llama-3.2-
1B model approaches or exceeds the much larger
RankZephyr (7B) model, delivering improvements
over BM25 ranging from 9 to 22.5 points. Per-
formance varies by language, with English and
Arabic showing highest accuracy, while Japanese
and French present greater challenges. The gain is
more pronounced for languages covered in training
data (Arabic, Swahili, Japanese) compared to other
non-covered languages.

Analyzing retrieval patterns across different k
values (Figure 3), improvements are most pro-
nounced at lower k values. The improvement
curves flatten as k increases, with most dramatic
gains occurring between k=1 and k=5. Japanese
and French show more gradual improvement as k
increases compared to English and Arabic, suggest-
ing different document relevance distributions.

Moreover, Llama-3.2-1B+All outperforms the

larger RankZephyr (7B) model across most lower-
resource languages (Arabic, Japanese, Swahili,
Yoruba), while RankZephyr maintains an edge in
high-resource languages (English, French). This
suggests our approach of mixing diverse training
data is particularly effective for lower-resource lan-
guages, even with smaller models.

5.2 Direct Preference Optimization Results

DPO experiments results from Table 2 reveal clear
patterns regarding reasoning strategy and training
methodology. Reasoning strategy dramatically af-
fects pure DPO performance. Models trained with
in-language thinking regress to baseline BM25 lev-
els across all non-English languages. Conversely,
translated thinking (reasoning in English) yields
strong improvements comparable to SFT models,
suggesting stronger reasoning capabilities in En-
glish benefit multilingual reranking.

Combined SFT+DPO approach mitigates reason-
ing strategy sensitivity. When applied after SFT,
both reasoning approaches yield similar results,
with in-language thinking showing only slight
degradation. The SFT phase provides a founda-
tion that DPO can effectively refine.

6 Conclusion

Our results demonstrate that compact 1B-parameter
models can effectively perform multilingual rerank-
ing when appropriately trained, with Llama-3.2-1B
consistently outperforming Gemma-3-1B, particu-
larly with diverse training data. The dramatic dif-
ferences between model families in their ability to
incorporate multilingual data highlight the impor-
tance of architecture in cross-lingual transfer. For
deployment scenarios requiring efficiency across
multiple languages, carefully trained 1B models
offer an attractive alternative to larger 7B models
with comparable performance but faster inference.
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8 Limitations

Despite promising results, our approach faces sev-
eral important limitations:

Language Coverage While we demonstrate im-
proved performance across six languages, our train-
ing focuses primarily on four languages (Arabic,
English, Japanese, and Swahili). The generaliza-
tion to low-resource languages remains challeng-
ing, as evidenced by the relatively lower perfor-
mance gains in Yoruba and French. Future work
should incorporate a broader language spectrum
during training to better address linguistic diver-
sity.

Reasoning Quality While our DPO approach
improves reasoning capabilities, the quality of rea-
soning varies significantly between languages. The
stark difference between translated and in-language
reasoning performance suggests that reasoning abil-
ities in non-English languages remain underdevel-
oped in these models, creating potential fairness
issues in deployment scenarios.

GRPO Implementation Challenges Our at-
tempts to implement Group Relative Policy Op-
timization (GRPO) with language-specific reward
functions did not yield stable results, often pro-
ducing random strings instead of coherent rank-
ings. This suggests fundamental challenges in de-
signing effective reward functions for multilingual
reranking tasks, particularly for maintaining lan-
guage consistency during reasoning. The language-
alignment reward function showed promise in con-

cept but requires further research to stabilize train-
ing dynamics.

Computational Resources Although our 1B pa-
rameter models offer efficiency advantages over
larger models, the two-stage training pipeline still
requires substantial computational resources, par-
ticularly during the DPO phase. This may limit
accessibility for research groups with limited in-
frastructure.

Evaluation Metrics Our evaluation primarily fo-
cuses on accuracy@k metrics, which may not fully
capture nuanced aspects of ranking quality such as
diversity, fairness across demographic groups, or
robustness to adversarial queries. The rank-based
metrics could be adopted, such as MRR (Mean
Reciprocal Rank), MAP@k (Mean Average Preci-
sion).

Future work should address these limitations by
expanding language coverage, developing more sta-
ble GRPO implementations with carefully designed
reward functions, and exploring alternative evalua-
tion frameworks that better capture real-world per-
formance considerations across diverse linguistic
contexts.
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A Extended Relative Work

A.1 MLIR Reranking pipeline
Translation pipelines convert either queries or doc-
uments into a pivot language (typically English) to
leverage monolingual rankers. (Adeyemi et al.,
2024) evaluated LLM rerankers by translating be-
tween English and four African languages, finding
that LLMs perform best when operating in English,
but cross-lingual setups can approach monolingual
effectiveness with sufficiently multilingual models.

Multilingual pre-trained models like mBERT,
XLM-R, and multilingual T5 enable direct cross-
lingual encoding. Recent work by (Zhang et al.,
2024) developed mGTE, a new long-context (8192
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tokens) multilingual encoder with a contrastively
trained reranker that achieves SOTA performance
across multiple languages.

Contrastive and loss-based alignment tech-
niques explicitly align language representations.
(Yang et al., 2024a) proposed Multilingual
Translate-Distill (MTD), which trains a multilin-
gual dual encoder using translation and teacher-
student distillation to ensure consistently scored
documents across languages.

A.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has emerged as an effective RL-free
technique for aligning models with human prefer-
ences. Instead of explicitly training a reward model
and then using RL, DPO leverages a mapping be-
tween reward functions and optimal policies. It
directly optimizes the language model policy using
a simple binary cross-entropy loss on preference
pairs (x, yw, yl), where yw is the preferred and yl
is the dispreferred completion for prompt x. The
DPO loss is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]

where πθ is the policy being optimized, πref is a
reference policy (usually the SFT model), β con-
trols the deviation from the reference policy, and
σ is the logistic function. This approach implicitly
optimizes a reward function while being computa-
tionally lightweight and stable.

B Experiments Details and Results

B.1 Data Statistic

Category Dataset Retrieval
Model

Original
Count

Final
Count

Origin RankZephyr - 39,912 39,912
Extended musique (dev) BM25 2,417 998

2WikiMultihopQA (train) BM25 14,999 8,655
2WikiMultihopQA (dev) BM25 12,576 7,693
TriviaQA (dev) BM25 8,837 7,387
TriviaQA (train) ColBERT 78,785 67,711
ChroniclingAmericaQA (val) BM25 24,111 7,994
MultiHop (train) BM25/BGE 940 938
Canada News EN (train) BM25 896 866
Canada News FR (train) BM25 1,140 908
FEVER (train) BM25 300 182
Subtotal 144,701 103,332

Multilingual Arabic BM25 12,335 7,484
(TyDi) English BM25 3,547 3,119

Japanese BM25 3,697 3,364
Swahili BM25 2,072 1,888
Subtotal 21,651 15,855

Train Total 212,051 160,206
Multilingual Arabic (ar) BM25 2,896 200
Evaluation English (en) BM25 799 200
(MIRACL) Japanese (ja) BM25 860 200

Swahili (sw) BM25 482 200
Yoruba (yo) BM25 119 119
French (fr) BM25 343 200
Test Total 5,499 1,119

Table 3: Detailed dataset composition for Supervised
Fine-Tuning and evaluation. The final count represents
the number of examples after filtering for quality and
relevance.

B.2 Finetuning Setup

For training Llama-3.2-1B-SFT and Gemma-3-1B-
it SFT, we follow RankZephyr (Pradeep et al.,
2023) with a learning rate of 5e-5, AdamW op-
timizer, and cosine learning rate schedule. We train
for 3 epochs with batch size of 16 and gradient
accumulation of 3. For DPO, we use a learning
rate of 5e-7 and beta parameter of 0.1, training for
5 epochs. All experiments were run on 4 NVIDIA
H100 80GB GPUs using bf16 precision and Deep-
Speed ZeRO-3.

B.3 Results

Figure 4: Performance improvement of Llama-3.2-1B
over BM25 baseline across languages and metrics.
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Figure 5: Performance of rerankers across different top-k values by language

C Prompts and Data Example

This section documents the prompt templates used
for creating the reasoning-based DPO training
datasets.

C.1 Initial Thinking Prompt
The initial prompt used to obtain reasoning pro-
cesses without revealing golden evidence informa-
tion:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I will provide you with
{num_contexts} passages, each
indicated by a numerical identifier
[].

↪→

↪→

↪→

Rank the passages based on their
relevance to the search query:
{query}

↪→

↪→

{contexts}

Search Query: {query}

Think carefully about the relevance of
each passage to the query.↪→

Explain your reasoning process in detail,
and then provide your final ranking.↪→

For the final ranking, list all passages
in descending order of relevance
using the format [N] > [M] > etc.

↪→

↪→

C.2 Refinement Prompts

C.2.1 In-Language Thinking Refinement

The prompt used to refine reasoning while main-
taining the query language:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I received the following thinking
process and ranking for this search
query: {query}

↪→

↪→

Initial thinking and ranking:
{initial_thinking_response}

The passages that actually contain the
answer are: {golden_ids_str}↪→

Please refine the thinking process to
focus on why these passages are most
relevant to the query.

↪→

↪→

Format your thinking in the same
language as the query ({language}).↪→
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Format your response with the thinking
part wrapped in <think></think> tags
and the final ranking wrapped in
<answer></answer> tags.

↪→

↪→

↪→

The final ranking should be in the same
language as the query.↪→

The final ranking should include all
passages in descending order of
relevance using the format [N] > [M]
> etc.

↪→

↪→

↪→

C.2.2 Translated Thinking Refinement
The prompt used to refine reasoning with English
translation:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I received the following thinking
process and ranking for this search
query: {query}

↪→

↪→

Initial thinking and ranking:
{initial_thinking_response}

The passages that actually contain the
answer are: {golden_ids_str}↪→

Please refine the thinking process to
focus on why these passages are most
relevant to the query.

↪→

↪→

Format your thinking in English while
making clear references to the
passages.

↪→

↪→

Format your response with the thinking
part wrapped in <think></think> tags
and the final ranking wrapped in
<answer></answer> tags.

↪→

↪→

↪→

The final ranking should be in the same
language as the query ({language}).↪→

The final ranking should include all
passages in descending order of
relevance using the format [N] > [M]
> etc.

↪→

↪→

↪→

C.3 DPO Preference Pair Construction

The format for creating DPO preference pairs:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I will provide you with passages,
each indicated by a numerical
identifier [].

↪→

↪→

Rank the passages based on their
relevance to the search query:
{question}

↪→

↪→

{contexts}

Search Query: {question}

Rank the passages above based on their
relevance to the search query.↪→

All passages should be included and
listed using identifiers, in
descending order of relevance.

↪→

↪→

The output format should be [] > [],
e.g., [1] > [2].↪→

Chosen Response:
<think>
{thinking content}
</think>
<answer>
{correct ranking with golden evidence

prioritized}↪→

</answer>

Rejected Response:
<think></think>
<answer>
{incorrect ranking with golden evidence

deprioritized}↪→

</answer>

C.4 Complete Sample

Below is a simplified example showing a DPO
training pair related to the query "What is stainless
steel?" with associated passages (only key passages
shown):

Query: What is stainless steel?

[8] Stainless steel In metallurgy,
stainless steel, also known as inox
steel or inox from French

↪→

↪→
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inoxydable (inoxidizable), is a steel
alloy, with highest percentage
contents of iron, chromium,

↪→

↪→

and nickel, with a minimum of 10.5%
chromium content by mass and a
maximum of 1.2% carbon by mass.

↪→

↪→

[7] Austenitic stainless steel
Austenitic stainless steel is a
specific type of stainless steel

↪→

↪→

alloy. Stainless steels may be
classified by their crystalline
structure into four main types:

↪→

↪→

"austenitic", "ferritic," "martensitic
and duplex."↪→

[2] Stainless steel The Allegheny Ludlum
Corporation worked with Ford on
various concept cars with

↪→

↪→

stainless steel bodies from the 1930s
through the 1970s to demonstrate the
material's potential.

↪→

↪→

Chosen Response:
<think>
We prioritize passages that directly

explain what stainless steel is—its
composition and classification.

↪→

↪→

1. Passage [8] gives the core definition:
it states stainless steel is a steel
alloy with a minimum

↪→

↪→

chromium content, precisely
answering "what is stainless
steel."

↪→

↪→

2. Passage [7] expands on the definition
by classifying stainless steels into
main types.

↪→

↪→

3. Passage [2] only illustrates
applications rather than defining
the material.

↪→

↪→

</think>
<answer>[8] > [7] > [3] > [10] > [2] >

[6] > [1] > [4] > [5] > [9]</answer>↪→

Rejected Response:
<think></think>
<answer>[2] > [7] > [6] > [3] > [4] > [5]

> [1] > [9] > [10] > [8]</answer>↪→

This example demonstrates how DPO pairs are
structured: the chosen response includes detailed
reasoning that correctly prioritizes the definitional

passage [8], while the rejected response lacks rea-
soning and incorrectly ranks an application-focused
passage [2] first, placing the core definition passage
[8] last.

663



Author Index

A, Snegha, 385
Adelani, David Ifeoluwa, 149, 652
Africa, David Demitri, 106
Agarwal, Shubham, 285
Aji, Alham Fikri, 426, 438
Akram, Mohammad Kalim, 531
Al Ghussin, Yusser, 243
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Saralegi, Xabier, 519
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