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Message from the Workshop Chair

Welcome to the INLG 2025 Workshop on LLM Reasoning on Medicine: Challenges, Opportunities, and
Future!

The rapid rise of Large Language Models has ignited a revolution across countless fields, but perhaps
nowhere are the stakes higher than in medicine. The potential is immense: from automating the
generation of clinical notes and summarizing complex patient histories to providing real-time decision
support, LL.Ms promise to revolutionize healthcare delivery, making it more efficient, accessible, and of
higher quality for all.

However, this promise comes with profound responsibility. Applying LLMs in medicine is a double-
edged sword. The specialized nature of medical treatment and the severe consequences of errors or
hallucinations mean we cannot simply adopt off-the-shelf models. We need new approaches to ensure
these systems are not just fluent, but fundamentally sound, trustworthy, and safe.

Whether you are an NLP researcher, a clinician, an ethicist, or an industry innovator, your perspective is
crucial. We invite you to join us for this vital conversation, to share your work, challenge assumptions,
and help build a roadmap for the responsible integration of LLMs into medicine.

Together, let’s shape the future of Al in healthcare. We look forward to seeing you in Hanoi, Vietnam!

Workshop Chair of INLG 2025 Workshop: LLM Reasoning on Medicine: Challenges, Opportunities,
and Future

Changmeng Zheng
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Crop Disease Management with LLMS

Sree Ganesh Thottempudi Varsha Balaji Ernest Mnkandla,
CAIDS, School of Computing SRH University = CAIDS, School of Compu
UNISA - South Africa Germany  UNISA - South Africa

Abstract

This research paper, "Crop Disease Management
System," investigates the application of artificial
intelligence (Al) and machine learning to enhance
sustainable agricultural production. Driven by a
commitment to sustainable agriculture and its
importance for global food security, the paper employs
technologies such as Inception v3, TensorFlow
Integrated Gradients, and Llama 2-Chat 7B to
revolutionize crop disease management. The core
concept is to develop an Al framework that improves
the accuracy and efficiency of identifying and
managing agricultural diseases, with a focus on
Explainable Al (XAI) to ensure transparency for
farmers and experts. The research includes a detailed
analysis of deep learning models like ResNet50 and
Inception V3 for diagnosing crop diseases using
images, as well as the pros and cons of XAl methods
like SHAP and Integrated Gradients. Additionally, it
explores advanced Natural Language Processing
(NLP)  techniques to  provide  actionable
recommendations, thereby enhancing the effectiveness
of crop disease management systems in agriculture. In
this paper we are mainly concentrating on the second
part.

1 Introduction

Agriculture is the backbone of global food
security and economic growth. It provides
essential sustenance to the world's population and
has a significant economic impact in many
nations. However, agriculture faces numerous
challenges, particularly in managing crop
diseases, which can greatly affect both the
quantity and quality of agricultural products.
Traditional methods of disease management often
rely on manual monitoring and control measures

1

that are labor-intensive, inefficient, and prone to
errors. These methods are becoming increasingly
ineffective in the face of rapidly changing
diseases and environmental conditions.

The advancement of technology, especially
artificial intelligence (Al) and machine learning,
offers remarkable solutions in this area. Al's
ability to analyze vast amounts of data—whether
in the form of images or text—and detect patterns
that are difficult for humans to discern makes it a
powerful tool for managing agricultural diseases.
Al and machine learning have the potential to
revolutionize the way we identify and address
these diseases through enhanced image
recognition, predictive analytics, and real-time
monitoring. This approach not only improves
efficiency and accuracy but also enables the
implementation of preventive  measures,
potentially preventing significant losses in yield
and productivity.

This introduction to Al-driven agricultural
practices lays the groundwork for this paper,
which aims to explore and apply these
technologies to develop more effective and
sustainable crop disease management
systems. Moreover, agriculture's global
importance goes beyond merely providing food; it
is a vital engine of socioeconomic development,
particularly in developing countries, where it
accounts for most job opportunities. The
significance of managing agricultural or crop
diseases cannot be overstated, as they can lead to
considerable economic losses and food shortages.
While traditional disease management strategies
are important, they face new challenges from
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factors such as climate change, which exacerbates
the complexity and spread of diseases.

In this context, Al and machine learning are not
just beneficial tools; they are essential. They offer
greater precision and predictability than previous
methods. For instance, Al systems can analyze
climatic data, soil conditions, and crop health to
predict disease outbreaks before they occur.
Machine learning algorithms, trained on extensive
datasets, can identify subtle patterns indicating the
likelihood of disease, allowing for timely
intervention. This shift towards technology-
centric agriculture is not merely an enhancement
of existing practices; it represents a fundamental
transformation in our approach to agricultural
health and production. The integration of Al into
agriculture provides a more robust and efficient
food production system, which is crucial for
meeting the growing global demand. Thus, this
thesis aims to leverage modern technologies to
address the critical issue of crop disease control,
with the goal of making a significant contribution
to the field of sustainable agriculture.

2 Objective

This research paper aims to leverage Llama 2's
NLP capabilities for comprehensive data
collection, combined with TensorFlow Integrated
Gradients to enhance Al decision interpretability.
Utilizing Inception v3 for image classification
will allow for precise detection of early crop
disease indicators, surpassing previous methods.
Pinecone's vector database will facilitate efficient
data management.

The primary goal is to improve the accuracy of
disease prediction models while ensuring
interpretability. This involves fine-tuning
Inception v3 and applying TensorFlow IG for
transparent insights into predictions. The study
will explore how these technologies can create a
more effective crop disease prediction system and
assess the impact of Al interpretability on
technology adoption in agriculture.

This project seeks to enhance the accuracy and
utility of crop disease prediction systems using
Al The goal is to address current limitations in Al
interpretability and user interface design in
agriculture, aiming for a holistic solution that
improves disease prediction while making the

technology more actionable for agricultural
professionals. This integrated approach has the
potential to transform crop disease management,
impacting global food security and sustainability.

2.1 Research questions

We are addressing the following research questions
1 this paper.

1. How effective are deep learning models like
ResNet50 and Inception V3 in classifying crop
diseases from images?

2. What are the pros and cons of using XAl
techniques, specifically SHAP and Integrated
Gradients, for interpreting deep learning model
decisions?

3. Which XAI technique, SHAP or Integrated
Gradients, offers more actionable insights for
managing crop diseases?

4. How can advanced NLP tools, akin to GPT
models, be integrated into crop disease
management to provide clear recommendations
and improve user adoption?

5. How does a conversational Al like the LLAMA
2 chatbot affect the accessibility and usability of
Al-driven crop disease management systems?

6. Can the LLAMA 2 chatbot bridge the gap
between AI models and practical agricultural
decision-making, enhancing crop disease
management strategies?

3 Literature Review

The study by Abdelouafi Boukhris (2023)
introduces an advanced technique for diagnosing
crop diseases using a tailored Convolutional
Neural Network (CNN). The approach involves
meticulous preparation of crop images, including
normalization and resizing, to ensure data
consistency before training on the extensive Plant
Village dataset. A significant aspect of their
method is the use of the Adam optimization
algorithm, known for its adaptive learning rates.
As a result, the model achieved an impressive
100% test accuracy and 97.50% validation
accuracy, showcasing its reliability and
efficiency.



In their research, Szegedy et al. (2015) examined
the fine-tuning of the Inception architecture for
image processing. They optimized the model to
enhance performance while reducing processing
load, leading to greater efficiency in image
classification. Their improved Inception-v3
model set a new benchmark with outstanding
accuracy rates (21.2% top-1 and 5.6% top-5 error)
on the ILSVRC 2012 classification, all with a
minimal increase in computational cost and fewer
parameters than previous models.

Li et al. (2020) proposed a technique for detecting
rice plant diseases and pests using video footage
alongside deep CNNs. They compared various
CNN architectures, including VGG16 and ResNet
variants, to evaluate their effectiveness in rice
video identification under the same experimental
conditions.

3.1 Explainable Al

Sundararajan et al. (2017) in their study on
"Axiomatic Attribution for Deep Networks"
address the challenge of attributing a deep neural
network's predictions to its input properties. They
propose two essential axioms—sensitivity and
implementation invariance—that reliable
attribution systems must fulfill. Their novel
approach, Integrated Gradients, adheres to these
axioms without modifying the original network,
requiring only a few gradient operator calls. This
adaptable method has shown utility in debugging,
rule extraction, and enhancing user interaction.
While it offers significant advancements in
understanding neural network decisions, its
reliance on gradients may limit its applicability in
certain contexts.

Ennadifi et al. (2020) focus on preprocessing
wheat images and using segmentation techniques
to analyze various disease types with
Convolutional Neural Networks (CNNs). They
employ GradCAM visualization to localize
affected areas, achieving a high accuracy of
93.47% in disease classification. However, they
acknowledge the limitations posed by their small
dataset, recommending future work to expand the
dataset and assess the approach's robustness in
diverse agricultural applications.

Selvaraju et al. (2017) utilize Grad-CAM to
provide visual explanations for CNN decisions,
generating a heatmap that highlights important
areas in the input image contributing to the
model's choice.

In a study on Uveal Melanoma (UM) (Shakeri et
al., 2023), researchers employed advanced deep
learning algorithms to enhance early diagnosis of
this serious intraocular malignancy. They tested
four CNN architectures—InceptionV3, Xception,
DenseNet121, and DenseNetl 69—using fundus
images from various patients. The results showed
that DenseNet169 achieved the highest accuracy
(89%) and lowest loss (0.65%) in classifying
choroidal nevus (CN), marking a significant
advancement in early UM detection and reducing
the risks of vision loss and metastasis. To address
interpretability in deep learning, the study also
used SHapley Additive Explanations (SHAP)
analysis, which highlights relevant areas in eye
scans for predicting CN. This approach enhances
diagnostic transparency and provides a better
understanding of CN detection.

This literature review examines research in image
classification, explainable Al (XAI), and natural
language processing (NLP), focusing specifically
on plant disease detection using convolutional
neural networks (CNNs). It highlights the
performance of complex models such as ResNet,
Inception, and YOLO, which demonstrate high
accuracy in diagnosing diseases. However, these
models  encounter  challenges, including
limitations in datasets and constraints in real-
world applications. Within the realm of XAI,
studies on  Integrated  Gradients and
methodologies like NEFTune and Orca show
significant advancements in model training and
performance. Nonetheless, issues such as data
bias and model transparency persist, underscoring
the need for further development in these areas.

4 Methodology

The system is developed in stages, starting with
rigorous data collection and preparation to ensure
quality and usability focused on cashew plants.
Data is obtained from agricultural databases and
field surveys to identify signs of potential
disecases. The preprocessing stage cleans and
normalizes this data for training a machine



learning model. At the core is a disease
classification model based on the Inception V3
architecture, known for its efficiency in image
classification. It learns to recognize disease
indicators with high accuracy from the pre-
processed data.

After training, the model's decisions are
interpreted using the Integrated Gradients
approach, which attributes predictions to specific
input characteristics, enhancing the model's
credibility for cultivators and researchers.

This model serves as the foundation for an
interactive chatbot built with the Llama2
framework. The chatbot provides real-time advice
to farmers and agricultural specialists by allowing
users to report symptoms, upload images, or ask
questions about cashew plant health, using data
from the classification algorithm. Let’s explore
each component of this system in more detail and
discuss the experiments conductedhis research
paper aims to leverage Llama 2's.
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Figure 1: Process Flowchart of the Disease
Management System

4.1 Fine-tuning LLMs

In (Ibrahim et al., 2024), these methodologies
make a compelling argument for continuing
pretraining of LLMs as an efficient and effective
way to update models with new knowledge or
domain-specific data. It represents a transition
towards more sustainable and scalable model
update approaches, decreasing the need to start
over each time new data is available. Furthermore,
the discovery that these strategies function
similarly to a "infinite learning rate schedule"
simplifies the procedure by demonstrating that
complex scheduling is unnecessary during the
regular pretraining phase.
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Figure 2: Fine-tuning LLM

4.2 Chatbot using Lama-2

The integration of Llama 2 into agricultural
systems  involves  utilizing  open-source
foundational models and fine-tuned versions, as
explained in Touvron et al. (2023) in their work
"LLAMA 2: Open Foundation and Fine-Tuned
Chat Models." This integration leverages Llama
2’s foundational components to enhance the
infrastructure for Natural Language Processing
(NLP), along with fine-tuned chat models
specifically designed for agricultural applications.

For instance, in this system, the initial prompt for
the chatbot is set to “What is the treatment for
{predicted label}?” In this case, the predicted
label is “Anthracnose.” The system can interpret
the input, reference its knowledge base, and
provide a detailed and understandable response.
The bot can guide users through management
practices and advise on preventive measures.

Additionally, the chatbot employs fine-tuned chat
models tailored to address agricultural challenges,
ensuring that the recommendations are accurate
and relevant. This level of specialization is
particularly important in agriculture, where
advice must be both technically sound and
practically applicable. By incorporating Llama 2,
the crop disease classification system evolves
from a diagnostic tool into an interactive assistant
that helps farmers and agronomists make
informed decisions, ultimately leading to
improved crop management and increased yields.

The Llama 2 model is pretrained and fine-tuned
using 2 trillion tokens and consists of 70 billion
parameters. This configuration makes it one of the
most powerful open-source models available. It
represents an enhancement over the Llama 1
models, as it is trained on 40% more tokens and
employs grouped query attention techniques for
faster performance, thus outperforming other
large language models (LLMs). Langchain is an



open-source framework designed for developing
applications, particularly those utilizing Large
Language Models (LLMs).

For practical applications like this system, where
we want to fine-tune a LLM to chat using web
data, continued pretraining offers a pathway to
incrementally improve model’s performance and
knowledge base over time. It allows for the
integration of new information and making the
model more relevant and valuable for that specific
use case over a period.

Let us now discuss the process flow. The first step
is initializing the pipeline. We initialize the text
generation  pipeline  with  hugging face
transformers for the pretrained Llama 2- 7b- chat
model.
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Figure 3: Training of Llama 2-chat

The integration of Llama 2.0, Pinecone, and
LangChain for question-and-answer system on
specific data is done. We first load the Llama 2.0
model, and initializing it for conversational
question-and-answer task. We leverage Pinecone
for efficient vector storage and retrieval, enabling
quick and accurate document search. On top of
that Langchain is employed to help us with the
end-to-end pipeline building.

We begin by installing the necessary libraries to
establish the foundational framework for our
model, data acquisition, and processing tasks.
Next, we collect data from web sources. This
involves automating the search for web scraping
based on the specific topic we are working with.
This dynamic approach not only enhances the
accuracy of data acquisition but also ensures real-
time relevance by tailoring the retrieved
information to the current context, such as disease
classification.

After obtaining the data, we split it into
manageable segments. This critical preprocessing

step addresses the limitations imposed by
language models' processing capacities. By
breaking the data into smaller, more
comprehensible chunks, we can speed up
calculations and allow the model to handle easier-
to-understand text.

Qand A

Figure 4: Process workflow

Once the data is segmented, the text chunks are
transformed  into  embedding  numerical
representations of the semantic information
contained in the text. These embeddings serve as
compact yet rich representations of the textual
material, enabling quick and accurate retrieval of
semantically relevant information from the
database. We use these embeddings to efficiently
search for and retrieve similar or pertinent
information, as they encapsulate embedded
meanings.

The final step of this process involves passing the
query with relevant information to the model,
which subsequently generates an appropriate
response. From a more practical perspective, this
approach demonstrates how we may successfully
integrate advanced natural language processing
techniques with up-to-date database technology to
develop specialised question-and-answer
systems.

Looking ahead, there are vast possibilities for
improving the Al system, especially the
conversational Al system. One interesting way
would be to build a more sophisticated model such
as Retrieval-Augmented Generation (RAG)
system into our framework. RAG brings in a
combination of strengths or retrieval-based
system and generation-based approach, giving
contextually improved output. By introducing
RAG into our system, we can improve the ability
to understand more complex queries and generate



Figure 5: Chatbot results

better  informative  answerss.  Moreover,
introducing our system with Reinforcement
Learning from Human Feedback (RLHF)
technique provides a tremendous opportunity for
further improvement. RLHF allows systems to
learn and adapt based on feedback directly from
users,enabling themg to refine the responses
overtime.

5 Findings
5.1 Explainable AI (XAI)

This study delves into the field of Explainable Al
(XAI) to gain a better understanding of the
decision-making processes behind the models
used. SHAP visualizations provided pixel-level
insights into feature relevance for disease
classification, enhancing comprehension of model
predictions. Additionally, Integrated Gradients
offered a gradient-based approach to assigning the
importance of predictions to specific features,
providing clearer insights into the areas of focus
for the model in the input images. This method
proves to be more interpretable than the colored
pixelated outputs derived from SHAP values

5.1.1 Insights and Practical Implications

Implementing XAI approaches provided crucial
insights into how models identify various crop
diseases. The visual explanations highlighted the
significant areas in the images that influence the
models' decisions. This not only fosters trust in
Al-powered crop disease management systems
but also aids in refining model designs and

training data, ultimately leading to improved
performance.

5.1.2 Integration of Llama 2 Chatbot

The integration of a Llama 2-based chatbot into
the crop disease management system represents a
significant advancement in creating interactive
and user-friendly Al applications in agriculture.
Utilizing conversational Al, the system now
offers comprehensive and understandable
explanations, along with actionable suggestions
based on classification This
development aims to bridge the gap between
complex Al decisions and practical farming
methods.

outcomes.

5.1.3 Potential Challenges

However, there are challenges associated with this
technology. The risk of "hallucination"—where
the chatbot generates factually incorrect or
nonsensical information—can increase with
ongoing pre-training, particularly when new data
is integrated into a language model (LLM).
Factors contributing to this risk include data
quality, relevance, model-data mismatch,
inadequate generalization, and overfitting on new
data. To mitigate these risks, it is important to
assess the quality of new data, utilize diverse data
sources, regularly evaluate the model, and apply
prompt engineering and post-training corrections
to reduce hallucinations. Ultimately, careful
management and collection of external data are
vital to the system's success.

6 Discussion

e Increasing Trust through Transparency:
The use of SHAP (SHapley Additive
exPlanations) and Integrated Gradients
provides
decision-making processes of models,

valuable insights into the

thereby improving transparency. By
identifying the factors that influence
model predictions, these XAl approaches
help clarify the underlying mechanisms
of the models, fostering confidence

among users and stakeholders.



e The interpretability offered by XAl
methods directly impacts strategies for
managing crop diseases. By
understanding which elements of crop
images are most relevant in disease
classification, agronomists and farmers
can better tailor their observation and
intervention methods. This leads to more

disease

efficient and effective

management practices.

e Facilitating User Engagement and
Understanding:** The integration of the
LLAMA 2 chatbot represents a significant
advancement in making complex Al
models more accessible to non-expert
users. By providing natural language
explanations and actionable guidance, the
chatbot helps bridge the divide between
intricate Al technology and practical
agricultural practices. This enables users to
make informed decisions based on Al-
generated insights.

This approach demonstrates a user-centered
design philosophy in the development of Al
systems for agriculture. It highlights the potential
of Al not only to automate and enhance decision-
making processes but also to engage directly with
users, equipping them with the knowledge and
tools needed to effectively address agricultural
challenges.

7 Conclusion

The findings of this project highlight the
implementation of the LLAMA 2 chatbot acts as
a crucial link, converting these profound insights
into practical advice for agricultural practitioners.
This approach effectively bridges the gap between
cutting-edge Al innovations and real-world
agricultural practices. Overall, this
comprehensive strategy not only leads to the
development of more effective and sustainable
crop disease management techniques but also sets
a framework for future Al research and
applications in agriculture and related fields.

The integration of cutting-edge technology with
user-friendly interfaces presents a promising

approach that could significantly impact Al
solution development across various fields. By
making advanced findings more accessible, this
strategy can enhance Al-powered solutions,
driving transformation in global agriculture and
beyond. In terms of future directions, increasing
the diversity and volume of datasets can improve
model robustness and accuracy. A larger training
set allows the model to better classify a range of
diseases, enhancing performance. Exploring
advanced classification models will further
optimize accuracy and results.

For explainable Al (XAI), developing
sophisticated interpretability techniques, such as
integrated gradients, can deepen understanding.
Additionally, integrating advanced methods like
RAG into the LLAMA 2 chatbot may enhance
information extraction and response relevance.
Implementing reinforcement learning from
human feedback (RLHF) can improve user
interaction and personalization. The insights from
this study can also be applied to other agricultural
areas, such as pest detection, soil health analysis,
and crop yield prediction, demonstrating Al's
versatility in addressing diverse agricultural
challenges.

Future research may focus on developing real-
health
Implementing models for

time  crop analysis  capabilities.

instant  image
interpretation would allow for immediate disease
detection and intervention, greatly reducing
agricultural productivity loss. This requires
optimizing models for speed and accuracy,
possibly through model pruning, quantization, or

designing lightweight solutions.

Integrating Al models with IoT devices could
create a comprehensive monitoring system that
continually assesses crop health, identifies early
disease signs, and provides timely alerts to
farmers for proactive management. Continuous
learning methods can enhance model accuracy by
adapting over time with new data. Techniques like
online learning can ensure the system remains
effective as diseases evolve.

Utilizing GPU technology will accelerate deep
learning model training and inference, enabling



efficient real-time analytics. Future research may
focus on parallel processing and distributed
computing for greater computational efficiency.
Engaging farmers, agronomists, and Al
researchers in development processes will ensure
that the tools are both advanced and practical for
users.
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Abstract

Medical question answering systems face limi-
tations in capturing the collaborative and spe-
cialized nature of clinical practice. Current
multi-agent debate frameworks suffer from in-
formation homogeneity, while traditional RAG
systems employ generic retrieval strategies that
overlook domain-specific expertise. We pro-
pose Multi-disciplinary RAG-enhanced Col-
laborative Debate(MRCD), a framework that
addresses these issues through three key com-
ponents: (1) Dynamic Expert Recruitment for
selecting domain-appropriate specialists based
on clinical context, (2) Domain-Specific RAG
Enhancement that provides each expert with tai-
lored knowledge retrieval, and (3) Multi-Phase
Collaborative Protocol that enables structured
knowledge integration across specialties. Our
approach draws inspiration from real-world
clinical consultation practices. Experiments on
medical QA benchmarks show that MRCD out-
performs existing approaches in both accuracy
and reasoning quality.

1 Introduction

Medical question answering has emerged as a crit-
ical application domain for large language mod-
els, with significant potential to augment clinical
decision-making and medical education (Rui et al.,
2025). However, current approaches face funda-
mental limitations in capturing the collaborative
and specialized nature of real-world medical prac-
tice.

Existing multi-agent debate frameworks in med-
ical domains suffer from information homogeneity.
Current systems deploy multiple agents that access
identical knowledge sources, resulting in artificial
consensus rather than meaningful intellectual dis-
course (Tang et al., 2023; Xu et al., 2025). This pre-
vents the emergence of diverse perspectives essen-
tial in medical decision-making, where specialists

*Corresponding author
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Figure 1: Consulting specialists from different fields
and accessing specialized materials produces synergistic
effects.

naturally approach clinical problems from distinct
viewpoints based on their domain expertise.

Simultaneously, Retrieval-Augmented Genera-
tion (RAG) systems in medical applications em-
ploy generic retrieval strategies that treat all clini-
cal questions uniformly (Zhao et al., 2025; Xiong
et al., 2024c). This approach misunderstands the
highly specialized nature of medical knowledge,
where different clinical domains require distinct
evidence bases and diagnostic criteria. A cardiolo-
gist and neurologist investigating chest pain would
naturally focus on entirely different literature and
diagnostic pathways, yet current RAG systems fail
to capture this domain-specific expertise.

To address these challenges, we propose a
Multi-disciplinary RAG-enhanced Collaborative
Debate (MRCD) framework with three key compo-
nents: (1) Dynamic Expert Recruitment that selects
domain-appropriate specialists based on clinical
context, (2) Domain-Specific RAG Enhancement
that provides each expert with tailored knowledge
retrieval specialized to their medical domain, and
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(3) Multi-Phase Collaborative Protocol that en-
ables structured knowledge integration across spe-
cialties.

Our approach draws inspiration from multi-
disciplinary consultation in clinical practice.
Through evaluation on medical QA benchmarks,
we demonstrate that MRCD achieves improve-
ments over existing approaches in both accuracy
and reasoning quality.

2 Method

We propose a Multi-disciplinary RAG-enhanced
Collaborative Debate (MRCD) framework that ad-
dresses information homogeneity in medical ques-
tion answering through domain-specific expert col-
laboration. Our approach dynamically recruits spe-
cialist experts based on clinical context and equips
each with tailored external knowledge retrieval, en-
abling comprehensive multi-perspective analysis
that mirrors real-world medical consultation prac-
tices.

2.1 Framework Overview

As illustrated in Framework Figure 2, given a med-
ical question g, traditional approaches generate re-
sponses as r = M (q) where M represents a large
language model. Our framework instead orches-
trates a structured collaboration between domain-
specific experts { £; }*_;, where each expert E; spe-
cializes in a relevant medical discipline d; and ac-
cesses domain-tailored external knowledge through
specialized RAG systems. The framework oper-
ates through dynamic expert recruitment, domain-
specific knowledge retrieval, and collaborative con-
sensus formation.

2.2 Dynamic Expert Recruitment(DER)

The first innovation lies in context-aware expert
selection. Given a clinical question g, we employ
a domain classifier C to identify the two most rele-
vant medical specialties:

D =C(q) = {di, d2} (D

where D represents the selected domain pair and
d; € {cardiology, neurology, oncology, ...}. The
classifier analyzes clinical keywords, anatomical
references, and pathological indicators to ensure ap-
propriate specialist involvement. For each selected
domain d;, we instantiate a corresponding domain
expert F; with specialized clinical knowledge and
reasoning patterns specific to that medical field.
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2.3 Domain-Specific RAG Enhancement
Unlike traditional RAG systems that retrieve
generic medical literature, our approach imple-
ments domain-aware retrieval for each expert. For
domain expert E; handling question g, the retrieval
process is formulated as:

R; = R(q,d;) ()

where R; represents domain-specific retrieved
knowledge. The retrieval function R constructs
domain-focused queries by combining the clini-
cal question with specialty-specific terminology,
where ¢ = f(q, d;) transforms the original ques-
tion to emphasize pathophysiology, diagnostic cri-
teria, and therapeutic approaches specific to do-
main d;.

Each domain expert then generates their initial
analysis by integrating their specialized knowledge
with retrieved evidence:

mY = Ei(ge R,) 3)
(1)

where m,"’ represents the initial message from
expert ¢ and @ denotes context concatenation.

24

Our collaborative protocol operates through three
sequential phases that enable progressive knowl-
edge integration and consensus refinement:

Phase 1: Domain-Specific Analysis. Each re-
cruited expert independently analyzes the clini-
cal question from their specialty perspective us-
ing domain-enhanced RAG retrieval. This ensures
unbiased domain-specific reasoning before inter-
disciplinary influence:

Multi-Phase Collaborative Protocol

MO = (e, @)

where M (1) represents the collection of initial
domain-specific analyses.

Phase 2: Cross-Disciplinary Synthesis. Each
expert reviews analyses from other domains and
refines their perspective by considering inter-
disciplinary insights. Critically, experts can per-
form adaptive retrieval to address questions or con-
cerns raised by other specialists:

M(l))

m§2) =FEi(g®R; ® \i

&)

where M\(zl) denotes all expert analyses except
expert ¢, and R represents adaptively retrieved
knowledge based on inter-disciplinary discourse.
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Figure 2: Overview of Multi-disciplinary RAG-enhanced Collaborative Debate(MRCD). A domain classifier recruits
multi-specialty doctor agents (Neurology highlighted as the first), each using domain-specific RAG; agents debate
with adaptive retrieval and then form a consensus answer.

The adaptive retrieval R} = R(q,di,M\(il)) en- 3 Experiments
ables experts to gather targeted evidence addressing

specific points raised by colleagues. 3.1 Experimental Setup

Dataset. We evaluate MRCD on VQA-RAD (Lau
et al., 2018) (Visual Question Answering in Radiol-
ogy), which contains 3,515 question-answer pairs
covering diverse radiological scenarios with both
close-ended and open-ended questions.
r=38(qM W, M (2)) (6) Implementation Details. Our framework uses
Qwen2.5VL-7B (Bai et al., 2025) as the base model
where S represents the consensus synthesis func-  for 411 agents. The domain classifier utilizes GPT-
tion and M = {mz@)}?:l contains the refined 40 mini, achieving human-level performance in

Phase 3: Consensus Integration. A synthesis
mechanism integrates multi-disciplinary perspec-
tives to generate the final comprehensive response:

expert analyses. identifying relevant medical specialties. The RAG
component employs vector databases of specialized
2.5 Multi-Perspective Consensus Synthesis medical literature with sentence-transformers for

embedding generation(Xiong et al., 2024a).

Baselines. We compare against Chain-of-
Thought (CoT)(Wei et al., 2022) prompting, Multi-
Agent Debate (MAD)(Liang et al., 2023) with
homogeneous knowledge access, and traditional
RAG(Xiong et al., 2024b) with generic medical
retrieval.

Metrics. We report BLEU-1, ROUGE-1, Pre-
cision, Recall, F1-score, and Accuracy for close-
ended questions, and Accuracy for open-ended

where H represents the complete multi-phase  questions.
collaboration history and 7 is a synthesis tem-
plate. The template 7 specifically guides the syn- 3.2 Main Results
thesis process to evaluate domain-specific insights, ~ As shown in Table 1, our MRCD framework
identify clinical convergence points, assess con-  achieves superior performance across all evalua-
flicting perspectives between specialties, and inte-  tion metrics compared to existing approaches. On
grate evidence-based findings with clinical exper-  the VQA-RAD dataset, MRCD obtains 62.3% over-
tise across all involved domains. all accuracy, representing a 0.6 percentage point

The consensus function S integrates domain-
specific expertise through a structured synthesis
process that preserves the unique contributions of
each medical specialty while identifying areas of
convergence and divergence:

r=8(g MY MP)=MroqaHt) @)
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Model |

Close ‘ Open | Overall

‘ Bleul Rougel Pre. Rec. F1 Acc. ‘ Acc. ‘ Acc.
MedVLM-R1-2B(Pan et al., 2025) | 30.0 33.0 300 33.0 315 450 | 55.0 48.6
BiMediX2-8B(Sahal et al., 2024) 30.5 340 310 340 325 455 | 565 49.2
LLAVA-Med-7B(Li et al., 2023) 31.0 350 320 36.0 34.0 46.0| 58.0 53.7
Qwen2.5VL-7B (COT) 343 374 373 391 382 49.0 | 72.1 62.0
Qwen2.5VL-7B (MAD) 335 36.6 362 388 374 483 | 70.8 60.2
Qwen2.5VL-7B (MRCD(Ours)) 34.7 37.1 377 403 385 49.5 | 72.5 62.3

Table 1: Performance comparison on VQA-RAD dataset. Close-ended (multiple-choice/yes-no) questions evaluated
with BLEU-1, ROUGE-1, Precision, Recall, F1, and Accuracy. Open-ended questions evaluated with Accuracy.

Bold underlined values show best results.

Model Variant | Close Acc. | Open Acc. | Overall Acc.
MRCD (Full) 49.5 725 62.3
w/o DS-RAG 48.2 71.5 614
w/o DER 46.2 69.8 59.2

Table 2: Ablation study results showing the impact
of Dynamic Expert Recruitment(DER) and Domain-
Specific RAG enhancement(DS-RAG). Performance
measured on VQA-RAD dataset.

improvement over the strong CoT baseline and a
2.1 percentage point improvement over the MAD
approach. The improvements are particularly pro-
nounced in open-ended questions (72.5% vs 72.1%
for CoT), where the multi-disciplinary collabora-
tion provides substantial benefits for complex clini-
cal reasoning.

The superior performance of MRCD stems from
its ability to capture diverse medical perspectives
through domain-specific expertise. Unlike tradi-
tional multi-agent approaches that suffer from in-
formation homogeneity, our framework enables
genuine intellectual discourse between specialists
accessing different knowledge bases. This leads
to more comprehensive analysis and better error
correction through cross-disciplinary review.

Beyond quantitative metrics, we conduct de-
tailed analysis of reasoning quality through expert
evaluation. Medical professionals assess the clini-
cal appropriateness, depth of analysis, and practical
applicability of generated responses. MRCD con-
sistently demonstrates superior clinical reasoning,
with 78% of responses rated as "clinically com-
prehensive" compared to 65% for CoT baselines.
The multi-disciplinary approach particularly excels
in complex cases requiring integration of multiple
medical specialties.

12

3.3 Ablation Study

To understand the contribution of domain-specific
RAG enhancement in our MRCD framework, we
conduct an ablation study examining the impact
of replacing our specialized retrieval system with
generic medical knowledge retrieval.

Table 2 presents the results of our ablation study.
Removing DS-RAG leads to a 0.9 percentage point
drop in overall accuracy (61.4% vs 62.3%), while
removing DER results in a 3.1 percentage point
degradation (59.2% vs 62.3%). The substantial im-
pact of DER highlights a critical issue: when RAG
systems operate without proper expert recruitment,
they suffer from focus dispersion problems that
can make performance worse than using medical
models alone.

Without DER, the system retrieves diverse medi-
cal literature without appropriate domain filtering,
leading to information overload and conflicting per-
spectives that confuse the reasoning process. This
demonstrates that simply adding external knowl-
edge through RAG is insufficient—the knowledge
must be appropriately targeted through expert re-
cruitment to avoid degrading model performance.

The domain-specific RAG enhancement enables
each expert to access literature tailored to their
medical specialty. When addressing chest pain, a
cardiologist retrieves cardiology-specific literature
focusing on cardiac causes and treatment proto-
cols, while a pulmonologist accesses respiratory
medicine literature emphasizing pulmonary etiolo-
gies. This targeted retrieval ensures each expert
operates with the most relevant specialized knowl-
edge, avoiding the focus dispersion that occurs with
generic retrieval approaches.
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