Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation
Eduardo Calò, Guanyi Chen, Elias Stengel-Eskin, Albert Gatt, Kees van Deemter
Abstract
Data-to-text natural language generation (NLG) models may produce outputs that closely mirror the structure of their input. We introduce formulaicness as a measure of the output-to-input structural resemblance, proposing it as an enhancement for reference-less naturalness evaluation. Focusing on logic-to-text generation, we construct a dataset and train a regressor to predict formulaicness scores. We collect human judgments on naturalness and examine how incorporating formulaicness into existing metrics affects alignment with these judgments.- Anthology ID:
- 2025.inlg-main.21
- Volume:
- Proceedings of the 18th International Natural Language Generation Conference
- Month:
- October
- Year:
- 2025
- Address:
- Hanoi, Vietnam
- Editors:
- Lucie Flek, Shashi Narayan, Lê Hồng Phương, Jiahuan Pei
- Venue:
- INLG
- SIG:
- SIGGEN
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 352–365
- Language:
- URL:
- https://preview.aclanthology.org/author-page-you-zhang-rochester/2025.inlg-main.21/
- DOI:
- Cite (ACL):
- Eduardo Calò, Guanyi Chen, Elias Stengel-Eskin, Albert Gatt, and Kees van Deemter. 2025. Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation. In Proceedings of the 18th International Natural Language Generation Conference, pages 352–365, Hanoi, Vietnam. Association for Computational Linguistics.
- Cite (Informal):
- Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation (Calò et al., INLG 2025)
- PDF:
- https://preview.aclanthology.org/author-page-you-zhang-rochester/2025.inlg-main.21.pdf