Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation

Eduardo Calò, Guanyi Chen, Elias Stengel-Eskin, Albert Gatt, Kees van Deemter


Abstract
Data-to-text natural language generation (NLG) models may produce outputs that closely mirror the structure of their input. We introduce formulaicness as a measure of the output-to-input structural resemblance, proposing it as an enhancement for reference-less naturalness evaluation. Focusing on logic-to-text generation, we construct a dataset and train a regressor to predict formulaicness scores. We collect human judgments on naturalness and examine how incorporating formulaicness into existing metrics affects alignment with these judgments.
Anthology ID:
2025.inlg-main.21
Volume:
Proceedings of the 18th International Natural Language Generation Conference
Month:
October
Year:
2025
Address:
Hanoi, Vietnam
Editors:
Lucie Flek, Shashi Narayan, Lê Hồng Phương, Jiahuan Pei
Venue:
INLG
SIG:
SIGGEN
Publisher:
Association for Computational Linguistics
Note:
Pages:
352–365
Language:
URL:
https://preview.aclanthology.org/author-page-you-zhang-rochester/2025.inlg-main.21/
DOI:
Bibkey:
Cite (ACL):
Eduardo Calò, Guanyi Chen, Elias Stengel-Eskin, Albert Gatt, and Kees van Deemter. 2025. Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation. In Proceedings of the 18th International Natural Language Generation Conference, pages 352–365, Hanoi, Vietnam. Association for Computational Linguistics.
Cite (Informal):
Incorporating Formulaicness in the Automatic Evaluation of Naturalness: A Case Study in Logic-to-Text Generation (Calò et al., INLG 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/author-page-you-zhang-rochester/2025.inlg-main.21.pdf