Echoes of Others: Real-Time LLM Dialogue Generation
for Immersive NPC Interaction

James McGrath and Michela Lorandi

Dublin City University

{james.mcgrath, michela.lorandi}@mail.dcu.ie

Abstract

Large Language Models (LLMs) promise un-
scripted, adaptive NPC dialogue, but their la-
tency and resource demands hinder real-time
deployment in games. Our aim is to demon-
strate how viable it is, to have low-latency NPC
conversations that run on consumer hardware
and to characterise the speed—quality trade-offs
between local and cloud models. We intro-
duce Echoes of Others, an Unreal Engine 5
prototype that integrates three back-ends—(i)
GPT-40 Mini (cloud), (ii) OpenHermes-7B,
and (iii) a LoRA-tuned 4-bit variant trained on
100k lines of RPG dialogue—via a lightweight
server. The system runs on consumer hard-
ware while maintaining a 60 FPS budget and
dynamic response generation. We evaluate la-
tency and dialogue quality across three RPG
scenarios using LLM-as-a-Judge scoring on flu-
ency, relevance, and persona consistency.

1 Introduction and Background

Modern role-playing games rely on scripted di-
alogue, limiting player choice and replayability
despite massive writing efforts. Baldur’s Gate 3,
for example, contains over 125,000 hand-authored
lines, yet players are still constrained to fixed
options, making conversations predictable. Un-
scripted, generative Non Player Characters (NPC)
dialogue can preserve character and world consis-
tency while enabling unanticipated questions, creat-
ing more immersive experiences without the heavy
authoring costs.

Recent advances in LLMs have opened new pos-
sibilities for dynamic, unscripted dialogues. While
traditional systems in titles like Mass Effect or
Skyrim rely on finite-state machines or branching
scripts, research prototypes such as Facade (Mateas
and Stern, 2003) and NPCEditor (Leuski and
Traum, 2010) have explored procedural and sta-
tistical approaches. However, the complexity and
resource demands of such systems limited their
practical adoption.

1

Anya Belz
Dublin City University
anya.belz@dcu.ie

Figure 1: Screenshot of the in-game town with a dia-
logue interaction.

Integrating LLMs into modern engines like
Unreal Engine 5 (UES) introduces new techni-
cal challenges, such as latency, memory usage,
and maintaining dialogue coherence in real-time.
Performance constraints need careful optimisa-
tion, including level-of-detail scaling, occlusion
culling (Epic Games, 2023), and the Nanite geom-
etry engine (AMD GPUOpen, 2022), to free GPU
capacity for inference tasks.

To support character consistency, prompt en-
gineering plays a central role. Conditioning
LLMs with persona descriptions, world lore, and
stylistic constraints, drawing on work like Per-
sonaChat (Zhang et al., 2018) and Generative
Agents (Park et al., 2023), helps sustain in-
character responses across dialogue turns.

In this paper, we propose a UES working pro-
totype that enables real-time dialogue generation
for NPCs. A backend bridge connects to local or
cloud-based back-ends, generating character-aware
responses on consumer hardware. We evaluate
trade-offs between model quality, latency, and sys-
tem responsiveness, and offer a replicable blueprint
for developers. A video demo is available at
https://youtu.be/uvoibwA7rpc.

2 System Components

Gameplay. The game follows classic role-playing
design: players are free to explore, complete quests,
and influence the world state through their actions.
With the introduction of LLM-based dialogue, ev-

Proceedings of the 18th International Natural Language Generation Conference: System Demonstrations, pages 1-2
October 29-November 2, 2025. ©2025 Association for Computational Linguistics


https://youtu.be/uvoi5wA7rpc

ery character has its own distinct personality and
equal possibilities for unique interactions without
the need for thousands of handcrafted lines. As
players progress, changes in the world state (e.g.,
completed quests or character deaths) dynamically
alter persona prompts, creating new opportunities
for context-aware interactions.

Interactive Dialogue Flow. Dialogue genera-
tion is triggered by a UES Blueprint node that col-
lects (a) the player’s utterance, which is checked
against a list of banned words and terms before
being passed to the LLM to prevent toxic content,
(b) the chat history, and (c) the character’s per-
sonality and general information about the game
world, which is dynamically updated based on the
current world state. These elements are used to
construct the prompt given to the LLM, which is
bundled into a JSON payload and transmitted via
the HttpRequest subsystem. The server returns a
structured response; only the main reply is shown
in the game UI. The system supports a single active
speaker at a time; concurrency will be implemented
in future work.

System Architecture. Figure 2 illustrates the
overall system architecture for dialogue interac-
tions. A lightweight inference server connects UES
to local or cloud LLLM back-ends, supporting hot-
swapping without restarting the game. Local mod-
els are loaded with BitsAndBytesConfig using
4-bit NF4 quantisation and merged LoRA adapters.
Safety is enforced via a regex-based filter. The
entire pipeline is designed for drop-in backend re-
placement and minimal performance overhead.

Model Fine-Tuning and Persona Adaptation.
LoRA (Hu et al., 2021) is used to fine-tune the base
LLM, and the trained module is merged into the
frozen model at inference time. The chat history is
truncated client-side to manage token limits, and
persistent world state (e.g., quest flags) is used to
adjust persona prompts dynamically.

To fine-tune the pretrained LLM, we used
transcribed scripts of Skyrim and The Witcher,
two game of the year winning open world RPG
games. After cleaning and chunking into overlap-
ping 1024-token windows, we generated 10.7M
prompt—completion pairs. We further annotated
lines with high-level roles (e.g., Guard, Merchant,
Farmer) and subsampled 10,000 examples per role
to ensure persona diversity. The supervised objec-
tive is standard causal language modelling so that
the model learns to generate the next in-character
turn conditioned on recent dialogue and persona

UES5 Client

FastAPI Inference
Server

Local OpenHermes Local OpenHermes Remote GPT-40 Mini
Base Model Finetuned Model Model

Figure 2: Real-time inference pipeline.

text.

Evaluation. Across three live RPG contexts
(Guard, Blacksmith, Priest) we compared GPT-40
Mini, OpenHermes-7B, and a LoRA-tuned Open-
Hermes. Each model was scored by three indepen-
dent LLM-as-a-judge on relevance, persona con-
sistency, and fluency, with latency measured sepa-
rately. Mean server latencies were 1.9s, 12.3 s, and
3.0s respectively. Command-R Plus judge mean
scores (1-10) were 8.7, 7.0, and 4.7.

References

AMD GPUOpen. 2022. Nanite and geometry optimiza-
tion in UES. https://gpuopen.com/learn/unre
al-engine-performance-guide/.

Epic Games. 2023. Visibility and occlusion culling.
https://dev.epicgames.com/documentation/
en-us/unreal-engine/visibility-and-occlu
sion-culling-in-unreal-engine.

Edward J. Hu and 1 others. 2021. LoRA: low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Anton Leuski and David Traum. 2010. NPCEditor:
a tool for building question-answering characters.
In Proc. of the 7th Intl. Conf. on Intelligent Virtual
Agents (IVA).

Michael Mateas and Andrew Stern. 2003. Facade: an
experiment in building a fully-realized interactive
drama. In Game Developers Conference (GDC).

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: interactive sim-
ulacra of human behavior. In Proceedings of the
36th ACM Symposium on User Interface Software
and Technology (UIST).

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: “I have a dog, do you
have pets too?”. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics.


https://elderscrolls.bethesda.net
https://thewitcher.com/en/witcher3
https://gpuopen.com/learn/unreal-engine-performance-guide/
https://gpuopen.com/learn/unreal-engine-performance-guide/
https://dev.epicgames.com/documentation/en-us/unreal-engine/visibility-and-occlusion-culling-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/visibility-and-occlusion-culling-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/visibility-and-occlusion-culling-in-unreal-engine

