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Abstract

Speech Quality Assessment (SQA) aims to
approximate human perceptual judgments of
speech quality without relying on costly
and time-consuming subjective MOS tests.
In this paper, we introduce EM-VSQA, a
wav2vec2+BiLSTM based model enhanced
with two key strategies: (i) a multi-loss learn-
ing scheme that combines Mean Squared Error
with ListNet ranking loss to jointly optimize ab-
solute prediction accuracy and relative ranking
consistency, and (ii) the integration of a small
subset of VocalSound data to improve robust-
ness against non-speech vocal events. These
enhancements enable the model to achieve re-
liable performance across diverse audio condi-
tions. Our system ranked Top-2 in the VLSP
2025 Speech Quality Assessment shared task,
highlighting the effectiveness of combining
multi-loss optimization with targeted external
data augmentation for robust SQA. In addition,
we conducted a further exploration with an en-
semble variant, EEM-VSQA, which incorpo-
rates a VocalSound classifier to explicitly de-
tect vocal events and assign high-quality scores.
This experimental strategy achieved the best
performance on the private test set, providing
deeper insights into handling challenging edge
cases, although it was not part of the official
submission.

1 Introduction

Speech Quality Assessment (SQA) is a fundamen-
tal problem in speech and audio processing, with
applications in voice communication, speech syn-
thesis, automatic speech recognition, and virtual
assistants (Mittag et al., 2021; Shu et al., 2022).
An effective SQA system ensures better user ex-
perience, enables automatic quality control, and
facilitates real-time monitoring of communication
systems.

Traditionally, the gold standard for evaluating
speech quality relies on human subjective ratings,

where listeners assess attributes such as natural-
ness, clarity, and intelligibility. While reliable,
this approach is costly, time-consuming, and labor-
intensive, making it impractical for large-scale or
real-time scenarios (Manocha et al., 2021).

To address these limitations, machine learning-
based methods have been developed to predict
speech quality automatically. Existing approaches
can be broadly categorized into reference-based
and non-reference methods. Reference-based tech-
niques (Beerends et al., 2013; Rix et al., 2001)
compare degraded audio against a clean reference,
which is often unavailable in real-world applica-
tions. Non-reference methods (Mittag and Möller,
2019; Catellier and Voran, 2020), on the other hand,
predict speech quality directly from the degraded
signal, making them more practical for deploy-
ment.

Recent progress in non-reference SQA has been
driven by deep learning architectures such as Trans-
formers (Vaswani et al., 2017; Baevski et al., 2020),
CNNs (Ye et al., 2022), and Conformers (Gulati
et al., 2020; Ta et al., 2024a). These models are
commonly trained with a regression objective using
mean squared error (MSE) loss. In some cases, aux-
iliary branches, such as pairwise or triplet-ranking
loss, are introduced to enhance feature representa-
tion (Ta et al., 2024b).

In this paper, we propose EM-VSQA, a non-
reference speech quality assessment framework
built on a wav2vec2+BiLSTM backbone, en-
hanced with two key innovations. First, we incor-
porate a small but targeted subset of external Vo-
calSound data, which improves robustness against
non-speech vocal events frequently observed in
real-world recordings. Second, we employ a multi-
loss strategy that integrates mean squared error
(MSE) with the ListNet loss, a listwise ranking ob-
jective, thereby balancing absolute score regression
with relative ranking consistency. This design en-
ables EM-VSQA to deliver more robust and gener-



alizable predictions across diverse conditions. The
main contributions of this work are as follows:

• We propose EM-VSQA, a novel non-
reference framework that integrates targeted
external data to improve robustness against
challenging non-speech vocal events.

• We design a multi-loss objective that jointly
optimizes MSE for precise score regression
and ListNet for preserving ranking relation-
ships, thereby improving overall prediction
robustness.

• We provide extensive experiments demonstrat-
ing that EM-VSQA consistently outperforms
strong baselines, validating the effectiveness
of our design choices. In addition, we further
explore an ensemble variant, EEM-VSQA,
which integrates a VocalSound classifier dur-
ing inference to explicitly handle edge cases.
This experimental strategy achieved the best
results on the private test set, offering insights
for future research directions.

2 Proposed Method

2.1 Overview
The overall framework of our approach is illus-
trated in Figure 1.

We employ an architecture that integrates
wav2vec2 (Baevski et al., 2020) as the encoder
for speech representation, BiLSTM (Graves and
Schmidhuber, 2005) for feature pooling and an
multi-layer perceptron (MLP) module for output
prediction. The model is trained on an external
non-speech vocal dataset, namely the VocalSound
dataset (Gong et al., 2022), using a multi-task learn-
ing strategy with both MSE (regression loss) and
ListNet Loss (Cao et al., 2007) (ranking loss). All
components were integrated during the VLSP com-
petition in response to specific issues we observed
throughout the challenge.

2.2 Model Architecture
Given an input speech waveform x ∈ RT , where T
denotes the number of samples, the objective of our
model is to predict a Mean Opinion Score (MOS)
ŷ on a five-point scale (1 to 5).

First, we employ a wav2vec2 encoder fθ to trans-
form the raw waveform into frame-level acoustic
representations:

h = fθ(x), h ∈ RL×d, (1)

where L is the number of frames and d is the
feature dimension.

To capture long-term temporal dependencies, we
apply a bidirectional LSTM (BiLSTM) network gϕ
on the sequence h, and obtain the final representa-
tion z by averaging over all hidden states:

H = gϕ(h), H ∈ RT×d, (2)

z =
1

T

T∑
t=1

Ht, z ∈ Rd, (3)

where T is the sequence length and d is the hid-
den dimension of the BiLSTM.

Finally, the aggregated feature z is passed
through a MLP mψ to produce a scalar prediction:

ŷ = mψ(z), ŷ ∈ [1, 5], (4)

which corresponds to the predicted MOS of the
given utterance.

During training, the model parameters are opti-
mized using the Mean Squared Error (MSE) loss
between predicted scores ŷi and ground-truth MOS
labels yi:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 . (5)

This formulation enables the model to learn a
mapping from speech waveforms to continuous
MOS on the 1–5 quality scale.

2.3 Training with External Data

Our model was trained on two datasets: the offi-
cial public training set provided by the VLSP orga-
nizers and the external VocalSound dataset (Gong
et al., 2022). Initially, the model was trained solely
on the official VLSP training dataset. However,
when evaluated on the public test set, the model
exhibited poor performance.

Upon closer examination, we found that the pub-
lic test set includes a notable number of utterances
containing non-speech sounds (e.g., background
laughter) as well as clean, high-quality speech seg-
ments. In such cases, the model often misinterprets
these signal characteristics and assigns them low
MOS scores, as if they were degraded or noisy utter-
ances. This mismatch between training and testing
distributions highlighted a limitation of using only
the official public training data.

To address this issue, we incorporated the Vo-
calSound dataset into training, which consists of



Figure 1: Overall framework of our approaches. (a) EM-VSQA: input speech is encoded by wav2vec2, followed by
a BiLSTM and an MLP, trained jointly on the VocalSound and VLSP datasets with regression and ranking losses.
(b) EEM-VSQA: extends EM-VSQA by adding a VocalSound classification module trained on the VocalSound
dataset. At inference, if an input is detected as non-speech vocalization, a fixed MOS of 5 is assigned; otherwise,
the MOS prediction is obtained from the EM-VSQA pipeline trained on the VLSP dataset.

diverse non-speech vocalizations such as laughter,
coughs, and breaths. Since the recordings in Vocal-
Sound are clean and of high perceptual quality, we
heuristically assigned them the maximum MOS of
5. We then performed sampling from this dataset
and combined it with the original VLSP training
set to construct a more diverse training distribution.

This strategy allowed the model to better dis-
tinguish between genuinely noisy utterances and
clean but atypical cases such as laughter or other
non-speech vocalizations. As a result, the inclusion
of VocalSound significantly improved the model’s
prediction accuracy on the VLSP public test set.

2.4 Multi-Task Learning using Regression
and Ranking Loss

While our baseline model is trained with the Mean
Squared Error (MSE) loss for regression, we argue
that Speech Quality Assessment (SQA) should not
only be treated as an absolute scoring task, but
also as a relative ranking problem: instead of only
asking “how good” a single utterance is, the model
should also learn “which utterances are better or
worse” in comparison.

To capture this property, we introduce the List-
Net loss (Cao et al., 2007), a widely used listwise
ranking objective. In our setting, although the ap-
proach differs, ListNet is employed to encourage
consistent rankings among speech samples within

a batch, with the expectation of achieving improve-
ments in correlation similar to those reported in
(Ta et al., 2024b). Formally, given a batch of N
utterances with ground-truth MOS yi and model
predictions ŷi, we define probability distributions
using the softmax function:

P (yi) =
exp(yi)∑N
j=1 exp(yj)

, P (ŷi) =
exp(ŷi)∑N
j=1 exp(ŷj)

.

(6)
The ListNet loss is then computed as the cross-

entropy between the two distributions:

LListNet = −
N∑
i=1

P (yi) logP (ŷi). (7)

The final training objective combines both re-
gression and ranking objectives as:

L = λLMSE + (1− λ)LListNet, (8)

where λ ∈ [0, 1] balances the contribution of
each loss.

Empirically, adding the ListNet loss leads to a
significant improvement on the VLSP public test
set, demonstrating the benefit of treating SQA as
both regression and ranking.



3 Experiments

3.1 Baseline Models

We consider two baselines for comparison with our
proposed approach (EM-VSQA):

wav2vec2 + BiLSTM. This baseline uses the
same model architecture and training configuration
as EM-VSQA. However, unlike EM-VSQA, it is
trained only on the VLSP training set (without in-
corporating VocalSound) and optimizes a single
MSE loss, instead of the combined multi-loss ob-
jective. This baseline highlights the contribution of
both external data augmentation and the multi-loss
design in our proposed approach.

NISQA (Mittag et al., 2021). The second base-
line leverages the Neural Intrusive/Non-intrusive
Speech Quality Assessment (NISQA) framework, a
deep learning model for non-intrusive speech qual-
ity prediction. NISQA predicts both overall speech
quality and four perceptual dimensions: Noisiness,
Coloration, Discontinuity, and Loudness, which
provide insights into the causes of quality degra-
dation. In our experiments, we directly use the
pre-trained NISQA model to infer speech quality
on the VLSP test sets. Among the available outputs,
we focus on the Distortion score, since preliminary
evaluations on the training data showed that this
dimension correlates best with human-annotated
MOS.

3.2 Dataset

The overall dataset composition is summarized in
Table 1. The training dataset provided by the VLSP
organizers consists of 5,493 speech samples with
varying levels of audio quality, each annotated with
a Mean Opinion Score (MOS) ranging from 1 (low-
est quality) to 5 (highest quality). These MOS
reflect human perceptual judgments on speech qual-
ity. It is important to note that the VLSP data was
originally recorded at an 8 kHz sampling rate. For
consistency with our model architecture and feature
extraction pipeline, all recordings are resampled to
16 kHz prior to training.

In addition, we incorporate a subset of the Vo-
calSound dataset (Gong et al., 2022), a free crowd-
sourced collection of 21,024 recordings of non-
speech vocal events such as laughter, sighs, coughs,
throat clearing, sneezes, and sniffs, collected from
3,365 speakers with metadata (age, gender, native
language, and health condition). We randomly sam-
ple 250 clips (approximately 5% of the VLSP train-
ing size) and assign them the maximum MOS of 5,

so that the model learns to distinguish such events
without being biased toward always predicting high
scores.

For evaluation, we follow the VLSP setting, with
1,717 samples in the public test set and 2,221 sam-
ples in the private test set. During training, the data
is split into 80% training and 20% validation with
label-balanced partitions. To improve training sta-
bility, we adopt length-based batch sorting, where
samples are grouped by duration before batching,
thereby reducing padding overhead and leading to
more efficient optimization.

3.3 Experimental Setup

All audio samples are resampled to 16 kHz prior
to training. The proposed model architecture con-
sists of a wav2vec2 encoder to extract frame-level
acoustic representations, followed by a BiLSTM
layer that captures temporal dependencies in both
forward and backward directions. On top of the
BiLSTM, we use a multi-layer perceptron (MLP)
to predict the final MOS. The models are trained
for 200 epochs to ensure sufficient convergence
and stable performance. If a prediction falls out-
side the valid MOS range (1–5), it is clipped to
remain within [1, 5]. The detailed hyperparameters
are summarized in Table 2.

The choice of combining mean squared error
(MSE) with ListNet loss is motivated by the dual
objectives of speech quality assessment: (1) pre-
dicting an accurate MOS in the continuous scale
(regression), and (2) preserving the relative ranking
of speech samples in terms of quality (ranking).
We set the trade-off parameter λ = 0.5 to balance
these two objectives, ensuring that the model does
not overfit to one aspect while neglecting the other.
Empirically, this setting yielded stable training and
better generalization on both public and private test
sets.

3.4 Evaluation Metrics

Following the VLSP challenge setting, the final
score is defined as a weighted combination of the
Pearson correlation coefficient (PCC) and the Mean
Squared Error (MSE):

SCORE = 0.7× PCC − 0.3× MSE. (9)

The PCC between predicted scores ŷ and ground-



Table 1: Dataset composition.

Dataset Details
VLSP training set 5,493 speech samples (8 kHz, MOS 1–5)
VocalSound (subset) 250 clips from 21,024 recordings, MOS=5
VLSP public test set 1,717 samples
VLSP private test set 2,221 samples

Table 2: Model architecture and training hyperparame-
ters.

Component Configuration
Input audio Resampled to 16kHz
Feature encoder wav2vec2 base model
BiLSTM Hidden = 256, Dropout = 0.3
MLP layers 256 → 128 → 64 → 1
Activation ReLU (between layers)
Dropout 0.3 (applied in MLP)
Optimizer Adam
Learning rate 0.001
Training epochs 200
Loss function (1− λ) · LMSE + λ · LListNet
λ (weight) 0.5 (balanced training)

truth MOS y is computed as:

PCC =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2
√∑N

i=1(ŷi − ¯̂y)2
,

(10)
where ȳ and ¯̂y denote the means of y and ŷ, respec-
tively.

The MSE is computed as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (11)

3.5 Results
Table 3 summarizes the experimental results on
both the public and private test sets, comparing our
proposed EM-VSQA with the baselines.

The baseline wav2vec2+BiLSTM, which does
not use external data nor multi-loss training, per-
forms poorly, yielding even negative correlation
(PCC = −0.0612 on the public test and nearly zero
on the private test). This indicates that the model
trained solely on the official training data fails to
generalize.

On the other hand, NISQA (distortion score)
provides more competitive results, achieving mod-
erate correlation (PCC = 0.3369 on the public test
and 0.3842 on the private test). However, its per-
formance is still limited in terms of both PCC and

MSE, since it was not specifically adapted to the
VLSP dataset.

In contrast, our proposed EM-VSQA signifi-
cantly outperforms both baselines across all met-
rics. On the public test, it achieves a PCC of 0.7979
and the lowest MSE of 0.2113, while on the private
test, it maintains strong performance with PCC =
0.7624 and MSE = 0.3382. These results demon-
strate that the integration of external VocalSound
data and multi-loss optimization leads to more ro-
bust and accurate speech quality assessment.

Furthermore, we acknowledge that in our offi-
cial competition submission, the input audio was
inadvertently not resampled from 8 kHz to 16 kHz
prior to inference, even though the model had been
trained on 16 kHz data. This oversight introduced
a mismatch between training and evaluation con-
ditions, leading to a marked degradation in perfor-
mance, with the submitted scores of PCC = 0.6282,
MSE = 0.4776, and SCORE = 0.2965. For the sake
of accuracy and fairness, in this paper we report
the corrected results obtained with proper resam-
pling, which more faithfully represent the actual
performance of our system.

3.6 Ablation Study

To better understand the contribution of each com-
ponent in EM-VSQA, we conduct an ablation
study by gradually enabling external training data
and the multi-task learning strategy. The results are
summarized in Table 4.

When trained only on the official dataset with a
single-task objective, the system performs poorly,
with PCC values close to zero (−0.0612 on the
public set and 0.0125 on the private set) and even
negative overall scores. This indicates that the of-
ficial training data alone is insufficient to capture
the variability of real-world speech quality, and the
model tends to overfit.

Incorporating external training corpora yields
a substantial improvement: PCC rises to 0.7455
(public) and 0.6845 (private), while MSE decreases
by nearly 80% compared to the baseline. These



Table 3: Performance comparison on VLSP public and private test sets.

Method Public Test Private Test

PCC MSE SCORE PCC MSE SCORE

wav2vec2+BiLSTM -0.0612 1.2999 -0.4328 0.0125 1.2313 -0.3606
NISQA (distortion score) 0.3369 0.5275 0.0775 0.3842 0.7468 0.0449
EM-VSQA (Ours) 0.7979 0.2113 0.4951 0.7624 0.3382 0.4322

Table 4: Ablation study on the impact of external data and multi-task learning.

External Multi-task Public Test Private Test

PCC MSE SCORE PCC MSE SCORE

-0.0612 1.2999 -0.4328 0.0125 1.2313 -0.3606
✓ 0.7455 0.2679 0.4414 0.6845 0.3962 0.3603
✓ ✓ 0.7979 0.2113 0.4951 0.7624 0.3382 0.4322

results highlight the critical role of data scale and di-
versity, as the external data introduces more acous-
tic conditions and perceptual variations, enabling
the model to better align with human ratings.

Adding the multi-task loss on top of external
data further enhances robustness. The final sys-
tem achieves PCC scores of 0.7979 (public) and
0.7624 (private), with consistent gains in both MSE
and SCORE. This confirms that learning auxiliary
objectives encourages the model to capture richer
representations of perceptual quality, which are
complementary to the benefits of external data.

Overall, both external data and multi-task op-
timization are indispensable: external data pro-
vides the necessary coverage of acoustic conditions,
while multi-task learning improves generalization.
Their combination leads to the best performance
across all evaluation metrics.

3.7 Further Exploration

Table 5: Comparison between the proposed EM-VSQA
and its ensemble variant (EEM-VSQA) on the VLSP
private test set.

Method Private Test
PCC MSE SCORE

EM-VSQA 0.7624 0.3382 0.4322
EEM-VSQA 0.8119 0.2536 0.4922

During the experimental analysis, we observed
that EM-VSQA occasionally assigned unexpect-
edly high MOS values to distorted speech, mistak-
enly interpreting them as VocalSound. In addition,

some samples with ground-truth MOS = 5 were
predicted with scores below 4, indicating that cer-
tain VocalSound utterances still failed to be cor-
rectly classified.

To analyze this phenomenon, we define three
types of prediction samples:

• Over-predicted sample: A sample for which
the predicted MOS ŷ is higher than 3.5, while
the ground truth y is at least 1 point lower than
the prediction, i.e.,

ŷ > 3.5 and y ≤ ŷ − 1. (12)

• Under-predicted sample: A sample for
which the ground truth y = 5 but the pre-
dicted MOS is strictly lower than 4, i.e.,

y = 5 and ŷ < 4. (13)

• Normal sample: All other cases.

The illustration of these three types is shown in
Fig. 2 (a). As can be seen, many low-quality sam-
ples were clearly over-predicted, while a number of
clean utterances with y = 5 were under-predicted.
These inconsistencies indicate that the model occa-
sionally misjudged both degraded and high-quality
speech, thereby reducing robustness and limiting
generalization.

We hypothesize that these inconsistencies arise
because incorporating additional VocalSound data
during training altered the distribution of the origi-
nal dataset. Consequently, some low-quality sam-
ples were incorrectly assigned higher MOS values,



Figure 2: Scatter plots of predicted versus ground truth MOS on the VLSP private test set. Color denotes prediction
types: Over-predicted (ŷ > 3.5 and y ≤ ŷ − 1), Under-predicted (y = 5 and ŷ < 4), and Normal (otherwise).
(a) EM-VSQA: Several distorted utterances are Over-predicted, while some clean utterances with MOS = 5 are
Under-predicted. (b) EEM-VSQA: The ensemble strategy reduces both Over-predicted and Under-predicted cases,
yielding predictions more consistent with the ground truth.

while a portion of VocalSound utterances still re-
ceived lower-than-expected scores. To address this
issue, it is essential to adopt a method that pre-
serves the distribution of the official training set
while explicitly detecting VocalSound utterances,
ensuring that they are consistently assigned a MOS
of 5 without disturbing the original distribution.

To mitigate this issue, we explored an alterna-
tive ensemble strategy, denoted as EEM-VSQA.
Specifically, we trained a wav2vec2+BiLSTM
model exclusively on the VLSP training data in
order to preserve the distribution of the official
dataset. In parallel, we introduced a VocalSound
classification module, based on wav2vec2, to ex-
plicitly detect whether an input corresponds to Vo-
calSound. At inference time, the prediction rule is
defined as:

ŷ =

{
5, if classified as VocalSound,
pred, otherwise,

(14)

where pred denotes the MOS prediction from
the wav2vec2+BiLSTM model.

The results on the VLSP private test set are
summarized in Table 5. EEM-VSQA consis-
tently outperformed EM-VSQA, achieving higher
PCC (0.8119 vs. 0.7624), lower MSE (0.2536
vs. 0.3382), and an overall score improvement of
0.4922 compared to 0.4322. More importantly, as
shown in Fig. 2 (b), the ensemble approach ef-
fectively eliminated under-predicted utterances for

MOS = 5 samples and corrected most of the over-
predicted distorted cases, thereby producing predic-
tions more closely aligned with the ground truth.

It is worth noting that this ensemble strategy was
not part of our official submission to the VLSP
competition. Instead, it was conducted as a post-
hoc analysis to provide deeper insights into the task
and to suggest potential future directions.

4 Conclusion

In this work, we presented EM-VSQA, a frame-
work for speech quality assessment that leverages
multi-task learning and external data augmenta-
tion. Our approach integrates a dual-objective loss,
combining MSE with ListNet ranking, which en-
courages the model to capture both absolute qual-
ity scores and relative ranking relationships. Fur-
thermore, by incorporating a small subset of high-
quality vocal events from the VocalSound dataset,
the model learns to better handle diverse vocal ex-
pressions that commonly appear in real-world sce-
narios.

Experimental results on the VLSP 2025 bench-
mark demonstrate that EM-VSQA consistently out-
performs strong baselines, including wav2vec2 +
BiLSTM and the NISQA model, in both public
and private test sets. Additional exploration further
revealed that explicitly modeling VocalSound can
bring additional performance gains, suggesting that
targeted handling of special cases is a promising
direction.



For future work, we aim to develop strategies
that enhance the generalization capability of SQA
systems across a broader range of real-world chal-
lenges. Instead of focusing solely on specific edge
cases such as VocalSound, our goal is to design
more universal frameworks that can robustly adapt
to diverse noise types, recording conditions, and
speaking styles, thereby improving reliability in
practical deployment.
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