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Abstract

This work addresses the data scarcity
challenge in Vietnamese speech quality
assessment by leveraging pretrained self-
supervised speech models. We demonstrate
that multi-source training data combined
with fine-tuned SSL encoders achieves
strong performance in data-constrained
environments. Systematic experiments
demonstrate substantial improvements over
single-source baselines, with our best model
achieving a Final_Score of 0.506 on the public
test set. The multi-source training strategy
yields a +0.256 Final_Score improvement
over a VLSP-only baseline, with NISQA
providing the dominant contribution (+0.243)
and VocalSound adding robustness (+0.013).

1 Introduction

The automated assessment of speech quality is a
critical component of modern telecommunication
systems. This task becomes particularly
challenging in low-resource linguistic contexts
where labeled training data is scarce. This paper
addresses the task of no-reference Speech Quality
Assessment (SQA) for Vietnamese telephony,
developed in the context of the VLSP 2025
challenge (VLSP Organizing Committee, 2025).
The goal is to predict a single-channel quality
score in the range [1, 5] for each utterance
recorded over mobile networks (8 kHz narrowband)
with labels derived from POLQA (International
Telecommunication Union, 2011). The official
ranking metric prioritizes both association and
accuracy via Final_Score = 0.7× PCC− 0.3×
MSE, where higher is better.

Our approach builds on self-supervised
speech encoders and lightweight regressors,
following recent advances in neural speech quality
assessment (Avila et al., 2019; Liu et al., 2022;
Serrà et al., 2021). We develop a HuBERT-based
model with a complementary Wav2Vec2 pipeline

for validation. Because SSL encoders are trained
at 16 kHz, all inputs are upsampled from 8 kHz
to 16 kHz before feature extraction. Temporal
representations are summarized and mapped to
quality scores in [1, 5].

Our main contributions are:

• A robust SSL-based pipeline for Vietnamese
SQA, featuring a HuBERT-based primary
model and a complementary Wav2Vec2
system.

• A multi-source data strategy that combines the
VLSP 2025 dataset with the NISQA corpus
and VocalSound non-speech samples to
improve model robustness and generalization.

• A correlation-aware hybrid loss function and a
suite of data augmentation techniques tailored
for the SQA task.

• Systematic experiments demonstrating that
data diversity is the most critical factor for
improving performance in this low-resource
context.

In the remainder, we describe related work, the
task and rules, datasets and preprocessing, model
architectures and training procedures, experimental
setup, results with analyses and ablations, and
conclude with limitations and future work.

2 Related Work

2.1 Traditional Intrusive Measures
Early approaches to speech quality assessment
rely on intrusive metrics, where a clean reference
signal is required for comparison. Two standards
dominate this space:

PESQ (Perceptual Evaluation of Speech
Quality), standardized as ITU-T P.862, has
been widely used to objectively estimate the
mean opinion score (MOS) based on perceptual
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modeling of the human auditory system. POLQA
(Perceptual Objective Listening Quality
Assessment), defined by ITU-T P.863, is the
successor of PESQ and is designed to assess
narrowband, wideband, and super-wideband
telephony signals.

While both metrics are highly correlated with
subjective ratings in laboratory conditions, they
are not applicable in real-world, non-intrusive
scenarios, such as online telephony or streaming,
due to their reliance on reference signals. This
limitation motivates the development of non-
intrusive approaches.

2.2 Neural Non-Intrusive Methods

Neural SQA methodologies have evolved
considerably. Early approaches, such as SESQA,
demonstrated the viability of semi-supervised
learning. Subsequent end-to-end models,
including NISQA, advanced the field by removing
the need for complex auxiliary tasks. More
recently, architectures like CCATMOS have
integrated Transformers to better capture temporal
dependencies. Our work builds upon these
foundations by adapting powerful SSL encoders
specifically for the acoustic and linguistic
characteristics of Vietnamese telephony.

2.3 Self-Supervised Learning for Speech
Representation

Self-supervised learning has brought significant
advances to speech processing by allowing models
to learn rich representations directly from raw
audio data.

Wav2Vec 2.0 (Baevski et al., 2020) learns
contextualized representations from raw waveform
using a contrastive loss applied over masked latent
representations. It has been successfully fine-tuned
for tasks like ASR and increasingly adopted in
SQA pipelines due to its robustness to noise and
variability.

HuBERT (Hsu et al., 2021) improves upon
Wav2Vec by clustering acoustic features and using
masked prediction over pseudo-labels, facilitating
more efficient representation learning. HuBERT
has shown strong performance on both low-
resource and high-resource benchmarks.

These SSL encoders are increasingly used as
frontends in SQA models, either frozen or fine-
tuned, offering improved performance with less
supervision.

2.4 Vietnamese Speech Resources

Compared to English and Mandarin, Vietnamese
speech quality assessment remains under-
explored. The VLSP corpus (Phuong et al.,
2019) has provided foundational data for automatic
speech recognition (ASR) and machine translation
tasks in Vietnamese (Nguyen et al., 2022).
However, there is no known publicly available
Vietnamese dataset for SQA, and most state-of-
the-art SQA models are trained on English corpora.

This lack of Vietnamese-specific, telephony-
oriented datasets and models poses a significant
limitation for deploying SQA systems in
Vietnamese-language contexts, motivating the
development of Vietnamese-specific non-intrusive
SQA systems by adapting SSL-based models
to the acoustic and linguistic characteristics of
Vietnamese.

3 Task and Rules

The VLSP 2025 Speech Quality Assessment
challenge requires predicting a single-valued, no-
reference quality score in the range [1, 5] for
each Vietnamese speech utterance transmitted over
mobile networks. The audio is provided as 8 kHz
narrowband WAV files with quality labels derived
from POLQA measurements comparing original
and transmitted speech.1

3.1 Evaluation Metric

Systems are ranked using a composite metric that
balances correlation and error:

Final_Score = 0.7× PCC− 0.3×MSE (1)

where PCC is the Pearson correlation coefficient
between predictions and ground truth, and MSE
is the mean squared error. Higher Final_Score
values indicate better performance. This
formulation prioritizes correlation (association)
while penalizing prediction accuracy errors. Unless
otherwise noted, all reported Final_Score values
refer to the public test set.

Notes on Rules and Resources Systems are
evaluated using the official metric and may use
approved public pretrained encoders and datasets
(e.g., NISQA and VocalSound). We upsample
8 kHz audio to 16 kHz for SSL encoders.

1https://vlsp.org.vn/vlsp2025/eval/sqa
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Figure 1: VLSP 2025 dataset characteristics analysis.
Audio duration distribution justifies the 15-second
cutoff choice, while sample rate distribution confirms
8kHz telephony focus.

4 Datasets and Data Preprocessing

We integrate three complementary data sources
to train robust Vietnamese SQA models: the
VLSP 2025 training set, the NISQA corpus
for pretraining, and VocalSound for non-speech
robustness. Our final merged training dataset
contains 18,493 samples spanning multiple
languages, degradation types, and acoustic
conditions.

4.1 VLSP SQA 2025 Data

The primary dataset consists of 5,493 Vietnamese
speech samples recorded over mobile networks
at 8 kHz sampling rate, split into 4,394 training
and 1,099 development samples. Each utterance is
paired with a quality score in [1, 5] derived from
POLQA measurements comparing the original
and transmitted speech. The data exhibits
natural telephony degradations including codec
artifacts, packet loss, background noise, and
channel distortions typical of real-world mobile
communications.

Most quality scores are concentrated between
3.27 (25th percentile) and 4.00 (75th percentile).
The distribution is slightly left-skewed, with most
scores falling in the higher range. As shown in
Figure 2, the VLSP dataset’s quality scores are
skewed toward higher values, with insufficient low-
quality examples for robust training. As shown in
Figure 1, audio duration analysis shows most files
are below 15 seconds, making this an appropriate
cutoff for model input. All samples are recorded
at 8 kHz with no significant correlation observed
between amplitude and quality scores.

Figure 2: Quality score distribution is left-skewed, with
most scores between 3.3-4.0. This narrow distribution
creates training challenges due to insufficient low-
quality examples, motivating multi-source data
expansion.

4.2 NISQA Corpus

For pretraining and domain adaptation, we
incorporate 11,020 samples from the NISQA
corpus (Mittag et al., 2021). The NISQA
Corpus contains 14,432 speech samples exhibiting
both simulated degradations (e.g., codecs, packet
loss, noise) and live, real-world conditions (e.g.,
mobile phone, Zoom, Skype, WhatsApp). Each
sample includes subjective annotations: overall
MOS and four perceptual dimensions—Noisiness,
Coloration, Discontinuity, and Loudness. After
multiple experiments, we found that choosing the
Discontinuity (DIS) value from NISQA as the
main label could help boost accuracy. Ratings
are provided on the [1, 5] scale, making them
compatible for MOS-based tasks and viable for
pretraining and cross-domain transfer learning.

4.3 VocalSound Integration

To improve robustness against non-speech
vocalizations commonly occurring in telephony
(cough, laughter, throat clearing), we augment our
training with 3,079 training and 219 development
samples from VocalSound (Gong et al., 2022).
From the total 21,024 samples of non-speech
vocalizations, we sample a balanced subset to
avoid domination of non-speech data. These
samples are assigned high scores (4.5 - maximum
in the training set) to improve robustness and
help the model maintain stable predictions
when encountering non-speech segments during
inference.



4.4 Preprocessing Pipeline
All audio undergoes a standardized preprocessing
pipeline designed for SSL encoder compatibility:

1. Resampling: Convert all inputs from native
sampling rates (8 kHz for VLSP, variable for
NISQA/VocalSound) to 16 kHz as required by
HuBERT and Wav2Vec2 encoders.

2. Channel normalization: Convert stereo
recordings to mono by averaging channels.

3. Windowing: Pad shorter utterances or
truncate longer ones to a maximum duration
of 15 seconds (240,000 samples at 16 kHz) to
balance computational efficiency with content
preservation.

4. Feature extraction: Process windowed audio
through pretrained SSL encoders to obtain
temporal representations.

4.5 Data Splitting and Statistics
We employ stratified splitting to maintain score
distribution balance across training and validation
sets. The development set contains VLSP (1,099
samples) and VocalSound (219 samples) data
to maintain alignment with test distribution,
while NISQA corpus (11,020 samples) is used
exclusively for training.

Our final merged dataset contains approximately
18,493 training samples from multiple sources
and 1,318 development samples. The training
score distribution has mean ∼3.696 and standard
deviation 0.868, providing a broader score range
that is more balanced than the baseline VLSP-
only distribution due to the inclusion of more low-
score samples from NISQA dataset. Figure 3
illustrates the more balanced score distribution
obtained from the multi-source dataset, which
enables better model generalization. This ensures
sufficient representation across the full quality
spectrum for reliable model training and evaluation.

5 Methods

We develop a HuBERT-based model (Hsu
et al., 2021) as our primary system, with a
complementary Wav2Vec2-based model (Baevski
et al., 2020) used for validation and potential
ensembling. Both approaches follow a common
architecture: a pretrained SSL encoder, followed by
temporal pooling, a regression head, and sigmoid
scaling to map outputs to the [1,5] range.

Figure 3: Distribution of quality scores in the
multi-source dataset (mean=3.696, std=0.868). The
distribution provides broader coverage across the full
[1,5] range compared to VLSP-only, with more low-
score samples enabling robust training.

5.1 Overall Pipeline

Figure 4 illustrates the complete speech quality
assessment pipeline, which processes 16 kHz audio
through SSL encoders to produce quality scores in
the range [1, 5].

5.2 HuBERT Architecture

Our primary system builds on the HuBERT-
base model (Hsu et al., 2021) pretrained on
LibriSpeech 960h (facebook/hubert-base-ls960).
The architecture consists of:

1. SSL Encoder: 12-layer transformer
producing 768-dimensional frame-level
representations. We keep the encoder
trainable (no freezing) to adapt to telephony
domain characteristics.

2. Temporal Attention: Multi-head self-
attention layer (8 heads, 768 embedding
dimension) applied to SSL outputs, enabling
the model to focus on quality-relevant
temporal patterns.

3. Weighted Pooling: Attention-based temporal
aggregation where pooling weights are
computed as softmax(mean(H,dim = −1))
over hidden states H , producing a single 768-
dimensional utterance embedding.

4. Regression Head: Deep MLP with residual-
style connections: 768 → 512 → 256 →
128 → 64 → 1, using LayerNorm, GELU
activations, and dropout (0.3, 0.3, 0.2) for
regularization. Xavier normal initialization
is applied to all linear layers.



Figure 4: Speech Quality Assessment Pipeline. Audio input is processed through SSL encoders, optionally enhanced
with attention mechanisms, temporally pooled, and mapped to quality scores via regression and sigmoid scaling.

5. Score Mapping: Final sigmoid scaling
score = 1.0 + 4.0 × σ(logit) constrains
outputs to [1, 5] while maintaining gradient
flow.

5.3 Wav2Vec2 Pipeline

The complementary Wav2Vec2 system
uses facebook/wav2vec2-base with similar
architectural components but supports longer
contexts (up to 30 seconds) and includes optional
audio preprocessing with LUFS normalization
to −23.0 dB. This pipeline employs PyTorch
Lightning for distributed training and incorporates
domain-specific preprocessing options including
8 → 16 kHz upsampling simulation.

5.4 Hybrid Loss Function

To better align the training objective with the
evaluation criteria, we designed a hybrid loss
function that combines Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and
Pearson Correlation Coefficient (PCC):

L = 0.4×MSE+0.3×RMSE+0.3×(1−PCC)
(2)

This composite objective penalizes both absolute
prediction error and incorrect relative ranking.
While this design was empirically motivated to
align with the evaluation metric, we acknowledge
in Section 7.3 that the specific formulation has
limitations and that our core contribution lies in the
data strategy rather than loss engineering.

5.5 Training Procedure

Optimization: AdamW optimizer with learning
rate 5 × 10−5, weight decay 1 × 10−4, and
OneCycleLR scheduling. We use 5-epoch warmup
followed by cosine annealing over 60 total
epochs. Gradient clipping (max norm 1.0) prevents
instability during correlation loss computation.

Regularization: Mixup data augmentation with
α = 0.2 applied at 50% probability during training.
Additional waveform-level augmentations include
Gaussian noise (σ = 0.005) and temporal shifting
(±20% duration).

Validation: Early stopping based on
development set Final_Score with patience of 5
epochs. We maintain separate train/development
splits within the VLSP data for hyperparameter
selection and model checkpointing.

6 Experimental Setup

We conduct experiments to evaluate our dual SSL-
based approach on Vietnamese telephony SQA,
comparing single models and potential ensemble
strategies while ensuring reproducible training
protocols.

6.1 Hardware and Software Configuration
All experiments are conducted on a single NVIDIA
H100 GPU with CUDA support. We process 15-
second audio segments (16 kHz, 240k samples)
with batch sizes adjusted to accommodate memory
constraints. We implement models using PyTorch
with transformers for SSL encoders, torchaudio for
preprocessing, and standard scientific computing
libraries (NumPy, pandas, scikit-learn). Training
employs mixed precision when available to
optimize memory usage and training speed.

6.2 Training Configuration
Our training configuration uses the hybrid loss
function described in Section 5.4, with an AdamW
optimizer (lr = 5×10−5, weight decay = 1×10−4)
and a OneCycleLR scheduler. We use a batch size
of 8 and train for maximum 60 epochs with early
stopping based on the development set Final_Score.

6.3 Data Splitting
We maintain a held-out development set from the
VLSP training data for consistent evaluation across



all experiments. The development set is used for
model selection and hyperparameter tuning while
preserving score distribution balance.

6.4 Evaluation Protocol

Model performance is evaluated using the official
challenge metrics: Pearson Correlation Coefficient
(PCC), Mean Squared Error (MSE), and the
composite Final_Score. We report development
set results for model selection and hyperparameter
tuning. All metrics are computed at the utterance
level without additional aggregation or smoothing.

6.5 Reproducibility

To ensure reproducible results, we fix random seeds
across PyTorch, NumPy, and Python’s random
module. Model checkpoints are saved with full
configuration metadata, and training logs capture
loss curves, learning rates, and evaluation metrics.
We maintain deterministic data loading order and
disable non-deterministic CUDA operations where
possible. The complete experimental pipeline
including data preprocessing, model training, and
evaluation scripts are preserved for replication.

7 Results and Analysis

We conducted systematic experiments following
a progressive development approach, where
each phase built upon lessons learned from
the previous iteration. Our experimental
methodology demonstrates the critical importance
of multi-source training data, advanced modeling
techniques, and architecture comparison for
Vietnamese speech quality assessment.

7.1 Progressive Experimental Results

Our experimental approach followed a systematic
progression, incrementally adding components to
isolate their individual contributions (Table 2).

7.2 Multi-Source Data Ablation

To isolate the individual contributions of NISQA
and VocalSound datasets, we conducted ablation
experiments. Table 1 presents the results.

Table 1 demonstrates that NISQA accounts
for the majority of the improvement (+0.243,
or approximately 95%), likely due to its
telephony/VoIP degradations closely matching the
VLSP domain. The addition of VocalSound further
improves performance by +0.013, enhancing model
robustness to non-speech vocalizations.

Figure 5: Progressive experimental development
showing systematic improvements. The largest
gain (+0.256) comes from multi-source training,
demonstrating that data scale dominates architectural
complexity for Vietnamese SQA.

As shown in Table 2, the baseline model trained
solely on the VLSP dataset yielded a Final_Score
of 0.176. The second experimental phase (Phase 2)
focused on multi-source training by incorporating
the NISQA and VocalSound datasets, resulting
in a substantial performance gain (Final_Score:
0.432, +0.256). The third phase introduced
advanced modeling techniques, leading to further
improvement (Final_Score: 0.497, +0.065). The
final phase incorporated a Wav2Vec2 ensemble
(Final_Score: 0.506, +0.010).

We note that Phase 3 introduced multiple
techniques simultaneously (attention pooling,
deeper regression head, hybrid loss, noise
augmentation, mixup). Without controlled
ablations, we cannot definitively isolate individual
contributions. This represents a methodological
limitation driven by competition time constraints,
where we prioritized performance over exhaustive
ablation studies.

7.3 Loss Function Discussion

Our hybrid loss function (Section 5.4) combines
MSE, RMSE, and PCC terms. While this
design was motivated by aligning training
with the evaluation metric, we acknowledge
several limitations: (1) MSE and RMSE are
mathematically related, creating redundant gradient
paths; (2) PCC-based losses require careful
stability management (e.g., ϵ = 1e−8, gradient
clipping, batch diversity); (3) the specific weight
allocation was empirically tuned rather than
systematically ablated.

Importantly, our progressive results show that
data strategy dominated loss function details:



Training Data Final_Score ∆ from Baseline
VLSP only (baseline) 0.176 -
VLSP + NISQA 0.419 +0.243
VLSP + NISQA + VocalSound 0.432 +0.256

Table 1: Ablation results showing the individual impact of NISQA and VocalSound datasets on model performance
(HuBERT).

Experiment Phase Configuration PCC MSE Final_Score
Phase 1 Baseline dataset + HuBERT (VLSP-only) 0.456 0.479 0.176
Phase 2 Multi-source dataset + HuBERT 0.734 0.272 0.432
Phase 3 Multi-source dataset + Deep HuBERT* 0.802 0.2146 0.497
Phase 4 Multi-source + Deep HuBERT + Wav2Vec2 Ensemble 0.813 0.208 0.506
*Deep HuBERT includes: attention pooling, hybrid loss function, noise augmentation, and deep MLP architecture.

Table 2: Progressive experimental development on the public test set showing systematic improvements through
data expansion and architectural innovations.

• Multi-source data (Phase 1→2): +0.256
improvement

• Modeling + loss refinements (Phase 2→3):
+0.065 improvement

The 4× larger impact of data expansion validates
that our validated contribution is the multi-source
training strategy, with the hybrid loss serving as
an adequate but not necessarily optimal training
objective.

7.4 Key Technical Insights
Our progressive experimental approach revealed
several critical insights about Vietnamese speech
quality assessment:

Data Scale Dominates Architecture
Complexity: The most significant performance
gain (+0.256 Final_Score) came from expanding
training data from VLSP-only to multi-source
datasets, while advanced modeling techniques
provided additional but smaller improvements
(+0.065). As shown in Figure 5, this dramatic
improvement validates that for Vietnamese
SQA, data diversity is the primary factor, with
architectural innovations serving as secondary
enhancements.

Cross-Domain Transfer Learning
Effectiveness: Despite domain mismatch
between NISQA (telephony/VoIP quality) and
VLSP (general speech quality), pretraining on
NISQA provided substantial benefits. This
suggests that fundamental quality-related acoustic
patterns transfer across domains and supports
cross-corpus training strategies for low-resource
settings.

Non-Speech Robustness Through
VocalSound: Including VocalSound dataset

(containing vocalizations, non-speech sounds)
improved model robustness by teaching it to
avoid misclassifying natural human vocalizations
(laughter, sighs, breathing) as low-quality speech.
This addresses a common failure mode in speech
quality systems.

Ensemble Benefits vs. Complexity Trade-off:
The final Wav2Vec2 ensemble provided a modest
but consistent improvement (+0.010). While the
gain is small, it represents the difference between
competitive and winning performance in evaluation
challenges.

7.5 Final Model Performance

Our final HuBERT-based model (3_ensemble)
demonstrates strong performance on the public test
set:

• Public Test Performance: PCC: 0.813,
MSE: 0.208, Final Score: 0.506

• Training Stability: Consistent improvements
across progressive experimental phases

• Computational Efficiency: Single-model
inference without complex ensemble
requirements

The correlation score (PCC > 0.81)
indicates strong alignment with human perceptual
judgments, while the low error rate (MSE <
0.21) demonstrates precise quality prediction. The
systematic progression from 0.176 (VLSP-only) to
0.506 (final model) confirms the effectiveness of
our multi-source training strategy and modeling
innovations for Vietnamese telephony SQA.



8 Conclusion

This work demonstrates that a multi-source SSL
approach attains challenge-leading performance,
ranking 1st on both the public and private
leaderboards of the VLSP 2025 Speech Quality
Assessment task. By leveraging diverse data
sources and a correlation-aware training objective,
our model establishes a strong empirical foundation
for robust, reference-free QoE monitoring systems
in low-resource Vietnamese telephony. While
we do not claim global state-of-the-art across all
languages or datasets, the results underscore that
data diversity outweighs additional architectural
complexity for this challenge.

9 Limitations and Future Work

9.1 Current Limitations
While our approach achieves strong performance,
several limitations should be noted:

• Training limited to 8 kHz narrowband audio,
which may limit generalization to wideband
scenarios.

• Domain shift from NISQA may bias
predictions despite cross-domain benefits.

• Deep regression architectures increase
inference cost compared to simpler pooling
strategies.

• Evaluation only on VLSP 2025 data; broader
evaluation across diverse Vietnamese corpora
would strengthen claims.

9.2 Future Directions
Several promising avenues could further
improve Vietnamese speech quality assessment
performance:

Advanced Augmentations: Silence padding
and packet loss simulation could better model
telephony degradations. Multi-task learning for
perceptual dimensions (DIS, NOI, etc.) could
improve robustness through shared representations.

Broader Datasets: Incorporating DAPS, VCTK
with synthetic degradations, and more Vietnamese
corpora could enhance cross-domain robustness
and domain-specific adaptation.

Domain-Specific Pretraining: SSL encoders
specifically pretrained on telephony speech could
better capture domain-relevant acoustic patterns
compared to general-purpose models.

Cross-Modal SQA: Incorporating textual
content analysis alongside acoustic modeling could
provide complementary quality cues, particularly
for scenarios where semantic intelligibility impacts
perceived quality.
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