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Abstract

Speech Emotion Recognition (SER) is an im-
portant task in affective computing and human-
computer interaction, with applications in vir-
tual assistants, customer service, education, and
healthcare. Most existing approaches use early
or late fusion, but they are complex and re-
quire large labeled datasets, which limits prac-
tical use, especially for low-resource languages
like Vietnamese. We propose a hybrid fu-
sion pipeline that concatenates acoustic features
with ASR-based text features and processes
them using Logistic Regression, Random For-
est, and XGBoost with ensemble weighting. On
the VLSP 2025 private test set, hybrid fusion
achieves 0.8438 WA, outperforming early fu-
sion (0.8131 WA), late fusion (0.8140 WA), and
both acoustic-only (0.7458 WA) and text-only
(0.7463 WA) approaches. This demonstrates
that hybrid fusion is the most effective method
for SER in Vietnamese.

1 Introduction

Emotion in communication is the process through
which humans express, convey, and perceive af-
fective states via both linguistic and non-linguistic
channels. It goes beyond the semantic meaning
of speech and encompasses vocal attributes such
as prosody, pitch, rhythm, and intensity (Scherer,
2003). This diversity enables humans to easily rec-
ognize emotions but poses significant challenges
for machines, thereby driving the need to develop
automatic systems capable of emotion recognition.

In this context, SER has emerged as a central
task in affective computing and human-computer
interaction. SER refers to the process of analyzing
speech signals to infer the emotional state of the
speaker. This capability unlocks a wide range of
applications, from customer experience analysis to
online education support.

However, emotion recognition based only on
acoustics is not sufficient, since emotions are also

expressed through linguistic content. Acoustics re-
flect paralinguistic cues, while text conveys explicit
meaning; the two channels complement each other
in emotion recognition. Therefore, the key chal-
lenge is how to effectively combine both sources
of information, leveraging their strengths and ad-
dressing their weaknesses through fusion methods,
in order to build a lightweight pipeline.

Fusion refers to integrating multiple informa-
tion sources to predict an output variable. There
are three main approaches: early fusion (com-
bining features right after extraction, capturing
inter-channel correlations but requiring parallel
data), late fusion (combining predictions from
each channel via averaging, voting, or weighting-
flexible with missing data but ignoring low-level
interactions), and hybrid fusion aka dual-stage fu-
sion (leveraging both approaches for better perfor-
mance) (Baltrusaitis et al., 2018).

Recently, in the line of fusion-based approaches
for SER, researchers have mainly explored early
fusion (Thi et al., 2025) or late fusion (Gémez-
Sirvent et al., 2025) strategies, and in some cases,
hybrid fusion approaches have incorporated mech-
anisms such as attention or ensemble learning (Re-
sende Faria et al., 2024; He et al., 2024) to improve
accuracy. However, these hybrid methods often
depend on complex architectures, which reduce
their practicality, and suggest a need for lightweight
fusion models that can still achieve good perfor-
mance (Chowdhury et al., 2025). In addition, their
reliance on large amounts of labeled data makes
them less suitable for low-resource languages such
as Vietnamese (Anh et al., 2024).

In this study, we address the challenge of SER in
low-resource languages such as Vietnamese, where
large-scale labeled datasets and complex deep ar-
chitectures are impractical. Prior work has shown
that lightweight classifiers combined through en-
semble learning can deliver accuracy and robust-
ness comparable to deep models when applied to
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multimodal features (Sahu et al., 2019; Guo et al.).
Motivated by the limitations of traditional fusion
methods, we design a lightweight hybrid fusion
pipeline that integrates acoustic features and textual
features extracted from Automatic Speech Recog-
nition (ASR) outputs into a unified representation.
This joint representation is processed by multiple
classifiers to exploit their diverse characteristics.
Their outputs are combined through a weighted
ensemble mechanism, with the weights optimized
using Optuna, yielding final predictions that are
efficient, easy to deploy, and reliably accurate.

On the VLSP 2025 private test set, our hybrid fu-
sion approach achieves 0.8438 WA, outperforming
early fusion (0.8131 WA) and late fusion (0.8140
WA). It also surpasses the acoustic-only (0.7458
WA) and text-only (0.7463 WA) methods. This
shows that hybrid fusion not only improves upon
unimodal baselines but also works better than tra-
ditional fusion techniques, making it an effective
solution for SER in Vietnamese.

The main contributions of this work are as fol-
lows:

1. We propose DFAT, a lightweight dual-stage
fusion pipeline that unifies acoustic and tex-
tual features (early fusion) and combines clas-
sifiers through algorithmically optimized en-
semble weighting (late fusion), addressing
data scarcity and complexity in low-resource
SER.

2. This practice includes extensive experiments
comparing our method with early fusion, late
fusion, text-only, and acoustic-only baselines,
showing that the proposed approach consis-
tently outperforms these alternatives.

3. Presented a comprehensive technical report
offering the evaluation of Vietnamese mul-
timodal SER on the VLSP 2025 private test
set.

Our implementation is publicly available.'

2 Related Work

In SER, three main feature fusion strategies are
commonly employed: early fusion, late fusion,
and hybrid fusion. Early fusion enables the model
to capture low-level interactions between prosody
and semantics but requires highly synchronized

"https://github.com/nhitny /DFAT

data, suffers from high dimensionality, and re-
mains sensitive to noise propagation (Zadeh et al.,
2020). Late fusion works better when one modal-
ity is unavailable; however, it fails to exploit the
complementary information between transcript and
speech, making performance heavily dependent on
the quality of each sub-module (Mai et al., 2024).
To address these limitations, hybrid fusion has been
proposed and shown to improve accuracy (Mai
et al., 2024).

Within hybrid fusion, the text branch often relies
on large pre-trained large language models such as
BERT, RoBERTa, or GPT-2 (Chen et al., 2021).
While effective, these models require extensive
labeled data and computational resources, which
poses challenges for low-resource languages like
Vietnamese. On the speech branch, self-supervised
learning backbones such as Wav2Vec 2.0 and Hu-
BERT have become standard since 2020. Prior
studies demonstrated that Wav2Vec 2.0 embed-
dings outperform handcrafted features (Pepino
et al., 2021), HuBERT achieves up to 79.6% WA
on IEMOCAP (Wang et al., 2021), and two-stage
fine-tuning improves the emotional expressiveness
of Wav2Vec 2.0 embeddings (Gao et al., 2023).
More recently, Yu et al. (Yu et al., 2024) provided a
comprehensive benchmark of Wav2Vec 2.0 across
SER, SLU, and speaker verification. Nevertheless,
these backbones are mainly trained on English data
and are not optimized for end-to-end pipelines in
low-resource languages.

3 Method

3.1 Overview of the Pipeline

The system takes raw audio as input and extracts
two feature streams: speech emotion features from
the Speech Emotion Feature Extraction (SEFE)
block, and fext emotion features derived via Au-
tomatic Speech Recognition and encoded with the
Text Emotion Feature Extraction (TEFE) block.
These features are concatenated and fed into three
classifiers: XGBoost, Logistic Regression, and
Random Forest. XGBoost is fine-tuned with Op-
tuna, while the others serve as baselines. Their
probability outputs are then combined through an
Optuna-tuned ensemble to produce the final emo-
tion prediction (Figure 1).

3.2 ASR

Among the many ASR models available for Viet-
namese, we benchmarked three representative
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Figure 1: Overview of the hybrid fusion pipeline. Audio is processed through both speech-based and text-based
feature extraction streams, then merged and classified using XGBoost, Logistic Regression, and Random Forest.
Their outputs fed into a weighted ensemble to produce the final emotion label.

backbones, following the design principles dis-
cussed in (Radford et al., 2023), where models
are selected based on their accessibility, represen-
tativeness, and feasibility for integration into down-
stream pipelines:

* wav2vec2-base-vietnamese — 250h*: a
language-specific model trained on 250 hours
of Vietnamese speech, but it often produces
spelling errors and, lacking a decoder,
generates less coherent transcripts.

* wav2vec2-xls-r-300m>: a large multilingual
model supporting 436 languages (including
Vietnamese), with good cross-lingual gen-
eralization but not fully optimized for Viet-
namese.

o whisper-small*: an encoder-decoder model
trained on 680k hours of multilingual data,
more robust and easier to fine-tune.

Among the whisper variants officially released
(tiny, base, small), we selected whisper-small be-
cause it provides the best trade-off between accu-
racy and computational efficiency. As reported in
the original whisper paper (Radford et al., 2023),
the tiny and base variants are considerably faster
but yield substantially higher WER, especially for
non-English languages such as Vietnamese. In con-
trast, whisper-small achieves much lower error rates
while remaining computationally feasible, which
aligns with the competition’s resource constraints.
The model was fine-tuned on two large-scale Viet-
namese datasets: 28k Vietnamese Voice Augmented
of VinBigData (28k-vn) and PhoAudioBook, using
early stopping based on Word Error Rate (WER)

https://huggingface.co/nguyenvulebinh /wav2vec2
-base-vietnamese-250h

*https://huggingface.co/facebook /wav2vec2-xls-r
-300m

*https://huggingface.co/openai/whisper-small

and saving the best checkpoints. The resulting tran-
scripts were then fed into the TEFE to obtain textual
emotion representations, which were subsequently
fused with acoustic features in the hybrid fusion
pipeline.

3.3 TEFE

The TEFE block takes ASR-generated transcripts
and encodes them into a fixed-length feature that
captures linguistic emotional cues. We experi-
mented with four architectures-LSTM, BiLSTM,
CNN, and BiLSTM_CNN-chosen for their com-
plementary strengths in modeling sequential de-
pendencies and local patterns. All models were
trained on the ViSEC dataset, and the one achiev-
ing the highest accuracy was selected as the TEFE
backbone. The resulting representation, denoted
as frppe € R19%4 s passed into the classifiers and
the fusion module.

34 SEFE

The SEFE block takes raw audio and outputs a
1024-dimensional feature that captures emotion-
related cues for classification and fusion. Under
VLSP 2025 constraints, we evaluated two pre-
trained encoders - WavLM and Emotion2Vec - and
selected the one with higher accuracy on the pub-
lic test set. The pipeline includes resampling to
16kHz, amplitude normalization - where the wave-
form is scaled by dividing all samples by the maxi-
mum absolute amplitude (peak normalization), and
trimming/padding before the backbone generates
the feature vector. The resulting representation,
foppe € R1024 s passed to the classifiers and fu-
sion module.

3.5 Fusion

3.5.1 Overview

The fusion stage concatenates acoustic and textual
features from the SEFE and TEFE blocks into a
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single feature vector, which is then used for classi-
fication. The purpose is to capture complementary
information from both modalities. To make the pre-
diction more reliable, we use an ensemble of three
classifiers - Logistic Regression, Random Forest,
and XGBoost. Each model produces a probability
score, and we combine these scores with learned
weights so that the final decision benefits from the
strengths of all three models. The input is the com-
bined SEFE-TEFE representation, and the output
is the predicted emotion label.

3.5.2 Classifiers

We picked three classifiers with different charac-
teristics:

¢ Logistic Regression (LR): a linear baseline
that provides an interpretable decision bound-
ary. It is efficient and suitable when data is
approximately linearly separable (Hastie et al.,
2009).

¢ Random Forest (RF): an ensemble of deci-
sion trees that models non-linear relationships
and is robust to noise. By averaging predic-
tions from multiple trees, RF reduces variance
and mitigates overfitting (Breiman, 2001).

* XGBoost (XGB): a boosting-based method
that sequentially improves weak learners to
form a strong predictor. Hyperparameters
such as learning rate, maximum depth, and
regularization terms were optimized with
stratified cross-validation, ensuring strong
performance on complex decision boundaries
(Freund and Schapire, 1997).

These models were selected because they repre-
sent diverse inductive biases-linear (LR), bagging
(RF), and boosting (XGB)-which makes their com-
bination more robust (Sagi and Rokach, 2018).
3.5.3 Ensemble Fusion

Instead of relying on a single classifier, we ag-
gregate their probability outputs using a weighted
average:

Prinat = w1 Pxge + w2 Prr + w3 AR, (1)
subject to the constraint:
wy + wa + w3 = 1. (2)

The ensemble weights (w1, w2, w3) were se-
lected based on validation results. This allows the

ensemble to balance the strengths of each model-
LR’s simplicity, RF’s stability, and XGB’s pre-
dictive power while avoiding reliance on a single
classifier.

4 Experiment

4.1 Dataset

We employ three publicly available Vietnamese
datasets for training and evaluation.

(i) ViSEC (Nguyen et al., 2022) is a text-based
emotion corpus, which we use for the textual
branch of SER. It contains 5,280 utterances la-
beled with four emotion categories: neutral, angry,
happy, and sad. To align with the binary classifica-
tion setup of the competition, we map neutral and
happy into a single neutral class, while angry and
sad are merged into the negative class. After this
mapping, the neutral class accounts for 51.7% of
the data and the negative class for 48.3%, result-
ing in a fairly balanced dataset that simplifies the
emotion space while preserving key distinctions
relevant to sentiment polarity.

(i1) 28k-vn (Vingroup Big Data Institute, 2020) is
a speech corpus containing approximately 28,000
augmented utterances, used for ASR fine-tuning.

(iii) PhoAudiobook (Thi Vu and Nguyen, 2025)
is a large-scale Vietnamese audiobook dataset,
which provides long-form speech data to further
improve ASR performance.

In the context of the competition, where the use
of training data is restricted to publicly available
Vietnamese datasets, we carefully selected these
three corpora. They are diverse and representative
of different aspects of the Vietnamese language:
ViSEC provides rich textual emotional expressions,
28k-vn offers a wide range of augmented speech
utterances for robust ASR training, and PhoAu-
diobook contributes large-scale, long-form speech
data that captures natural prosody and speaking
styles. Together, they ensure both diversity and
linguistic characteristics specific to Vietnamese,
which are crucial for building effective SER and
ASR systems.

The statistics of these datasets are summarized
in Table 1.

https://huggingface.co/datasets/hustep-lab/ViS
EC

https://huggingface.co/datasets/natmin322/28
k vietnamese voice augmented of VinBigData

~ https://huggingface.co/datasets/thivux/phoaudi
obook
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Table 1: Summary of Vietnamese datasets used in our
experiments

Dataset Task Size  Unit
ViSEC® SER 5,280  utterances
28k-vn® ASR 28,000 utterances
PhoAudiobook’ ASR 1,494 hours

4.2 Evaluation Metrics
4.2.1 ASR Metrics

To measure the accuracy of ASR models, we
adopted the Word Error Rate (WER), which is the
most widely used evaluation metric in the ASR
literature.

4.2.2 SEFE, TEFE and Fusion Metrics

We evaluate model performance using three stan-
dard metrics widely adopted in SER research:
Weighted Accuracy (WA), Unweighted Accuracy
(UA), and Weighted F1-score (WF1). These met-
rics capture both overall correctness and class-wise
balance, which are crucial for datasets with imbal-

anced emotion distributions.
WA measures the overall proportion of correctly

predicted samples:
WA = izt 1](\37” =) 100,

3)

where N is the total number of samples, y; is the
ground-truth label, and g; is the predicted label.

UA computes the average of recall scores across
all K emotion classes, treating each class equally,
regardless of frequency:

X 1P,

1
UA==-S"_— "%k 100 4
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where TP, and FNj, denote true positives and false
negatives for class k.

WF1 evaluates the harmonic mean of precision
and recall across all classes, weighted by the class
support wy:

K
-F1
wrl = 2=t e Fle g )
k=1 Wk
where F1 is the per-class F1-score:

2 - Precision;, - Recall
Fly="—"——F L ©
Precision;, + Recall,

Higher values of WA, UA, and WFI1 indicate
better classification performance.

4.3 Experimental Setup
4.3.1 Experiment Setup ASR

We conduct ASR experiments for Vietnamese us-
ing three models: wav2vec2-base-vietnamese-
250h, wav2vec2-xls-r-300m, and whisper-small.
The two wav2vec2 models use an encoder archi-
tecture with a CTC head, while whisper applies a
Transformer encoder-decoder architecture.

We evaluated models on the public and private
test sets of VLSP 2025 to compare their initial per-
formance. Subsequently, we fine-tuned whisper-
small on two large-scale Vietnamese datasets:
PhoAudiobook (1,494 hours of audiobook data)
and 28k-vn (28,000 augmented sentences). Fine-
tuning was performed using early stopping based
on WER, and the best checkpoint was saved for
evaluation.

The audio in all datasets is normalized to 16
kHz. The text is normalized (correcting abbrevi-
ations, spelling, special characters) before being
tokenized using WhisperProcessor. The training
process uses AdamW with a learning rate rang-
ing from 1 x 107° to 3 x 1075, a warmup of 500
steps, a maximum of 20 epochs, an effective batch
size of 16-20 (through gradient accumulation), and
training with fp16 mixed precision.

Evaluation: The models are compared using
WER on both the public and private test sets.

4.3.2 Experiment Setup TEFE

The goal of this experiment is to compare different
text embedding feature extraction (TEFE) models
for emotion recognition from text. We evaluate
CNN, LSTM, BiLSTM, and BiLSTM_CNN archi-
tectures to determine which model best captures
textual emotional features.

We use the ViSEC dataset, which contains Viet-
namese text annotated with emotion labels. The
preprocessing includes:

* Tokenizing text into word sequences.

* Mapping tokens to a frozen 1024-dimensional
embedding space, where the 1024 dimension
was chosen to align with SEFE outputs (also
1024-d) to enable direct fusion.

» Padding or truncating sequences to a fixed
maximum length of 200 tokens.

* Handling out-of-vocabulary (OOV) tokens by
mapping them to a special <UNK> symbol.



 Text normalization by converting all charac-
ters to lowercase while preserving Vietnamese
diacritics to maintain semantic distinctions.

We evaluate four different TEFE architectures:

* CNN: A frozen 1024-d Embedding, four par-
allel ConviD branches with 256 filters each,
followed by BatchNorm, ReLU, and Global-
MaxPooling1D. Outputs are concatenated into
a 1024-d vector, followed by Dropout and
a final Dense(1). Total: 8.56M parameters
(4.72M trainable, 3.83M non-trainable).

o LSTM: A frozen 1024-d Embedding, a LSTM
layer with 1024 units, followed by Dropout
and a final Dense(1). Total: 12.23M parame-
ters (8.39M trainable, 3.83M non-trainable).

e BILSTM: A frozen 1024-d Embedding, a
BiLSTM layer with 512 units per direction
(1024 total), followed by Dropout and a final
Dense(1). Total: 10.13M parameters (6.30M
trainable, 3.83M non-trainable).

e BiLSTM_CNN: A frozen 1024-d Embed-
ding, a BiLSTM layer with 512 units per di-
rection, followed by four parallel ConviD
branches (256 filters each, with different ker-
nel sizes). Each branch applies BatchNorm,
ReLU, and GlobalMaxPooling1D; outputs are
concatenated into a 1024-d vector, followed
by Dropout and a final Dense(1). Total:
8.82M parameters (4.99M trainable, 3.83M
non-trainable).

In all models, the textual feature is represented as
frprp € R1024,
For each input sentence:

* The sentence is tokenized and mapped into a
frozen 1024-d embedding.

¢ A TEFE model (CNN, LSTM, BiLSTM, or
BiLSTM_CNN) processes the embedding to
extract textual emotion features.

* A final Dense(1) layer outputs the predicted
emotion.

All models are trained for 30 epochs on the
ViSEC dataset with early stopping to select the
best checkpoint. The models are compared using
Weighted Accuracy (WA), Unweighted Accuracy
(UA), and Weighted F1 (WF1) scores.

We expect to determine which architecture
(CNN, LSTM, BiLSTM, or BiLSTM_CNN) best
captures emotional features from text. By evaluat-
ing these models directly, we will identify the most
effective TEFE design for Vietnamese text-based
emotion recognition.

This setup allows us to determine which TEFE
architecture best captures textual emotional fea-
tures in Vietnamese, while ensuring alignment with
SEFE for seamless multimodal fusion.

4.3.3 Experiment Setup SEFE

The goal of this experiment is to compare the
performance of two pretrained acoustic models,
WavLM and Emotion2Vec, when used as end-
to-end classifiers for speech emotion recognition.
Both models are pretrained specifically for speech
emotion tasks and are capable of mapping an in-
put waveform directly to an emotion label without
requiring any additional downstream classifiers.
We use the VLSP 2025 public test set, which
contains Vietnamese emotional speech. The audio
files undergo the following preprocessing steps:

* Resampling to 16 kHz to match the model
input requirements.

* Converting the audio to mono and applying
peak amplitude normalization.

* Padding or trimming each audio clip to a fixed
length of 5 seconds.

We evaluate two pretrained models in the end-
to-end setting:

 WavLM (Wav2Vec2-based): A model fine-
tuned for speech emotion recognition that pre-
dicts emotion labels directly from raw speech.

* Emotion2Vec: A model trained for speech
emotion recognition that outputs emotion pre-
dictions directly from input waveforms.

For each audio file, the following steps are per-
formed:

* Load the waveform using the librosa library.

* Pass the waveform through the chosen encoder
(WavLM or Emotion2Vec).

* Obtain a probability distribution over emotion
classes and select the label with maximum
probability.



The two models are compared using Weighted
Accuracy (WA), Unweighted Accuracy (UA), and
Weighted F1 (WF1) scores.

This experiment provides a benchmark of end-
to-end acoustic classifiers and serves as a reference
point for the subsequent fusion experiments, where
acoustic features are combined with textual features
for improved performance.

4.3.4 Experiment Setup Fusion

The goal of this experiment is to evaluate the effec-
tiveness of hybrid fusion of acoustic (SEFE) and
textual (TEFE) features. After feature extraction,
we compute frame-level statistics (mean, variance,
maximum, minimum) for each modality and con-
catenate them into a joint feature vector.

Three classifiers are trained on these fused
representations: Logistic Regression (with bal-
anced class weights and maximum 500 iterations),
Random Forest (300 trees, maximum depth = 8),
and XGBoost. (3) XGBoost hyperparameters are
tuned with Optuna over the following search space:
n_estimators € [200,500], max_depth € [3, 8],
learning_rate € [0.01,0.2], subsample €
[0.6,1.0], colsample_bytree €  [0.6,1.0],
min_child_weight € [1,10], and v € [0, 2.0].

To combine classifiers, we adopt an ensem-
ble fusion strategy where the final probability is
a weighted sum of the three outputs. Ensemble
weights (wy, we, ws) are optimized using Optuna
with stratified cross-validation. Unlike uniform
averaging, this approach allows the ensemble to
exploit the complementary strengths of Logistic
Regression (linear), Random Forest (bagging), and
XGBoost (boosting).

Fusion optimization. The search space for the
ensemble weights was defined as w; € [0,1],
wy € [0,1 —w], and w3 = 1 — w; — wy. We
conducted 50 Optuna trials with 2-fold stratified
cross-validation and a fixed random seed (42) to
ensure.

5 Result and discussion

5.1 Result

We evaluated three Vietnamese ASR back-
bones: wav2vec2-base-vi-250h, XLS-R-300M, and
whisper-small. As shown in Table 3, whisper-small
achieved the best performance after fine-tuning and
was selected as the final ASR backbone. For acous-
tic features (SEFE), Emotion2Vec outperformed
WavLM, while for textual features (TEFE), LSTM
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Figure 2: Relationship between ASR quality (WER) and
SER performance (WA/UA/WF1). As WER decreases,
all SER metrics improve, confirming the coupling be-
tween ASR and SER.

gave the best results among four candidates. Fi-
nally, fusion experiments with Logistic Regres-
sion, Random Forest, and XGBoost showed that
the Optuna-tuned ensemble consistently outper-
formed unimodal baselines (Table 2).

After the VLSP 2025 competition results were an-
nounced, we reproduced our experiments following
the described pipeline and achieved 2nd place with
SER Accuracy = 0.8438 (equivalent to Weighted
Accuracy — WA), as shown in (Table 4).

5.2 Discussion

The experimental results highlight that while
whisper-small is the most reliable ASR backbone
and Emotion2Vec and LSTM provide the strongest
unimodal features for speech and text, the largest
gains come from the fusion stage. By combin-
ing SEFE and TEFE features, and optimizing clas-
sifier weights with Optuna, the ensemble consis-
tently surpassed all experiment unimodal baselines.
This confirms that integrating acoustic and textual
cues through fusion is essential for robust emotion
recognition.

The best weights were found to be:

wy; = 0.562 wy =0.160 w3 = 0.279

where wi, we, and ws correspond to XGBoost,
Random Forest, and Logistic Regression, respec-
tively. These results indicate that XGBoost con-
tributed most strongly to the final decision, while
the other classifiers provided complementary im-
provements.

Our model performed well in SER thanks to the



Table 2: Performance on Public and Private test sets. WA = overall accuracy; UA = balanced accuracy; WF1 =

weighted F1

Model Public Test Private Test
WA UA WF1 WA UA WF1

Audio encoders (SEFE)
WavLM 0.5627 0.5627 0.4053 | 0.5709 0.5709 0.4149
Emotion2Vec 0.7458 0.7458 0.7354 | 0.7376 0.7376 0.7253
Text encoders (TEFE)
LSTM 0.7542 0.7419 0.7510 | 0.7462 0.7315 0.7426
BiLSTM 0.7495 0.7374 0.7464 | 0.7300 0.7145 0.7259
CNN 0.7261  0.7060 0.7172 | 0.7105 0.6861  0.6997
BiLSTM_CNN 0.7359 0.7157 0.7271 | 0.7215 0.6981 0.7118
Early Fusion
LSTM + Emotion2Vec + XGB 0.8106 0.8106 0.7616 | 0.8251 0.8251 0.7878
LSTM + Emotion2Vec + RF 0.7569 0.7569  0.6256 | 0.7850 0.7850  0.6870
LSTM + Emotion2Vec + LR 0.4606 0.4606 0.6141 | 04654 0.4654 0.6206
Late Fusion
LR + XGB + RF 0.7900 0.7900 0.7930 ‘ 0.8140 0.8040 0.8130
Hybrid Fusion
LSTM + Emotion2Vec + LR + XGB + RF  0.8439 0.8529  0.8412 ‘ 0.8438 0.8438 0.8436

Table 3: WER results of four ASR models on public
and private test sets

Model Public Test Private Test
wav2vec2-base-vietnamese-250h 0.26 0.26
wav2vec2-x1s-r-300m 0.68 0.67
whisper-small 0.60 0.56
whisper-small (ours) 0.22 0.23

Table 4: VLSP 2025 SER Results

Rank SER Accuracy
1 0.8579
0.8438
0.8221
0.8084
0.7950
0.7913
0.6650

~N N RN

hybrid fusion method, which combines both acous-
tic and textual features for emotion recognition.
As shown in Figure 2, when the ASR WER goes
down, all SER scores (WA, UA, WF1) go up. This
shows that ASR quality has a clear effect on how
well the emotion recognition system works. In
other words, changes in WER can directly affect
SER results.

6 Conclusion and Future Work

This paper introduced a hybrid fusion pipeline for
Vietnamese Speech Emotion Recognition, leverag-

ing acoustic features from Emotion2Vec and textual
features from LSTM applied to whisper-small ASR
transcripts. The two modalities were combined
in a fusion stage where Logistic Regression, Ran-
dom Forest, and XGBoost were trained, and their
outputs aggregated via an Optuna-tuned ensemble.
Experiments on the VLSP 2025 benchmark demon-
strated that this approach consistently outperforms
unimodal systems, highlighting the effectiveness
of modality integration and ensemble fusion.

Future work will focus on two directions. First,
to further improve accuracy, we plan to explore
larger-scale pretraining and advanced fusion ar-
chitectures such as Bayesian neural networks and
test-time augmentation for better uncertainty han-
dling. Second, to enable deployment in real-world
applications with limited resources, we will in-
vestigate model compression techniques-including
knowledge distillation, pruning, and quantization-
to reduce computational and memory overhead
while maintaining performance. These directions
will help extend the proposed pipeline toward both
higher accuracy and broader usability in affective
computing scenarios.
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