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Abstract

Multimodal legal question answering poses
unique challenges: domain-specific terminol-
ogy, tightly coupled textual and visual evi-
dence, and often limited labeled data. This pa-
per describes our submission to the VLSP 2025
MLQA-TSR competition, which addresses two
complementary subtasks: (i) multimodal arti-
cle retrieval and (ii) multiple-choice question
answering grounded in regulatory passages and
images. We develop a zero-shot, prompt-driven
pipeline (ZIQA) that avoids fine-tuning due to
the small training budget. Key components in-
clude a preprocessing stage that concatenates
and captions images and converts HTML ta-
bles to Markdown, a hybrid retrieval system
combining visual embedding search and tar-
geted classification, and carefully engineered
prompting with heuristic rules to reduce confu-
sion from auxiliary article text. On the public
QA split, our selected backbone: InternVL3-
78B with ZIQA+ attains 83.56 % accuracy on
private test.

1 Introduction

Multimodal information retrieval and question an-
swering have become central problems in modern
vision—language research. In image retrieval tasks,
the objective is to identify visual items from a large
collection that are semantically relevant to a given
query (which may be text, an image, or both). Ro-
bust retrieval must therefore reconcile differences
in representation between modalities while remain-
ing scalable to large repositories. In image question
answering (Image QA), the goal is to produce an
accurate natural-language or discrete answer given
an input question and associated visual evidence;
success requires both fine-grained visual under-
standing and the ability to integrate visual cues
with textual context.

Both problems pose recurring technical chal-
lenges that are amplified in domain-specific set-
tings. First, alignment between visual evidence and

textual provisions is non-trivial when regulatory
diagrams, captions, and tabular specifications are
present. Second, long-form documents and verbose
HTML tables can easily exceed model context win-
dows, necessitating careful preprocessing. Third,
labeled data are often scarce in specialized do-
mains, which limits the practicality of supervised
fine-tuning and motivates zero-shot or few-shot ap-
proaches. Finally, multimodal pipelines must be
engineered for robustness: noisy auxiliary informa-
tion (e.g., loosely related “relevant” articles) can
act as distractors and degrade performance if not
controlled.

This paper addresses these challenges in the con-
text of the VLSP 2025 MLQA-TSR competition.
The competition task comprises two complemen-
tary subtasks: (i) multimodal retrieval, where the
system must retrieve the relevant regulatory pas-
sages given a question and associated imagery, and
(1) multiple-choice Image QA, where a discrete an-
swer is required given the retrieved passages and
visual evidence. Each sample includes a mandatory
textual passage and may include images and/or ta-
bles; samples can reference multiple relevant legal
articles, requiring cross-document and cross-modal
reasoning.

Faced with limited labeled data and hetero-
geneous inputs, a zero-shot, prompt-driven de-
sign was chosen over fine-tuning. The proposed
pipeline combines three key components: (1) pre-
processing that concatenates and captions images
and converts HTML tables to compact Markdown
to respect VLM context limitations; (2) a hybrid
retrieval system that couples embedding-based
nearest-neighbor search with targeted classifica-
tion for domain-critical sign categories; and (3)
a Zero-shot Image QA (ZIQA) module that per-
forms structured prompt construction (context,
question, explicit output rules) and applies a small
set of heuristic rules to reduce distractors from
auxiliary article text. Production-grade inference



frameworks (vLLM, lmdeploy) and high-capacity
VLMs (Qwen2.5-VL, InternVL3) were employed
to ensure efficient and reliable evaluation.

The main contributions are summarized as fol-
lows:

* A practical zero-shot pipeline (ZIQA) for reg-
ulatory multimodal QA that emphasizes pre-
processing and prompt engineering rather than
supervised fine-tuning.

* A hybrid retrieval strategy that balances broad
visual/textual matching with deterministic
handling of critical sign categories.

* Empirical results on the VLSP competition
splits showing strong public-set performance
(InternVL3-78B + ZIQA: 83.56% accuracy)
and an analysis of failure modes on the more
challenging private split.

2 Related Work

2.1 Vision-Language Models

Vision-Language Models (VLMs) have emerged
as a central paradigm in multimodal Al, designed
to jointly process and reason over visual and tex-
tual signals. A seminal contribution is CLIP
(Radford et al., 2021), which aligned image and
text embeddings through large-scale contrastive
pretraining, enabling strong zero-shot generaliza-
tion. Subsequent systems extended this founda-
tion by incorporating novel architectural modules
and training strategies. For instance, BLIP-2 (Li
et al., 2023) introduced a Q-former to bridge pre-
trained vision encoders with large language mod-
els (LLMs), MiniGPT-4 (Zhu et al., 2023) lever-
aged lightweight adapters for efficient alignment,
and LLaVA (Liu et al., 2023) exploited gated
cross-attention and multi-stage finetuning for ro-
bust instruction-following. These models highlight
a trend of modular integration, where pretrained vi-
sion backbones are coupled with powerful LLMs to
achieve advanced visual reasoning and multimodal
understanding.

2.2 Multimodal Retrieval

Retrieval plays a crucial role in bridging modali-
ties for practical applications. Early cross-modal
retrieval methods relied on handcrafted features
(e.g., SIFT for images or keyword search for
text), which limited scalability. The advent of
contrastive representation learning, particularly

with CLIP (Radford et al., 2021), transformed
retrieval by enabling direct alignment of hetero-
geneous inputs in a shared embedding space.
BLIP (Li et al., 2023) further enriched retrieval
through cross-attention mechanisms that capture
fine-grained interactions. More recently, retrieval
has been integrated into generative frameworks,
giving rise to multimodal retrieval-augmented gen-
eration (MRAG). Such approaches extend uni-
modal RAG (Patrick Lewis, 2020) by grounding
LLMs in multimodal evidence to reduce hallucina-
tions and improve factuality. Representative sys-
tems include MuRAG (Wenhu Chen, 2022) for effi-
cient nearest-neighbor search and RA-CM3 (Michi-
hiro Yasunaga, 2023) for retrieval-augmented mul-
timodal modeling. This evolution reflects a shift
from modality conversion (e.g., pseudo-MRAG
converting non-text inputs to text) toward native
multimodal pipelines, where MLLMs like GPT-4
preserve information in its original form, enabling
richer retrieval and reasoning.

3 Methodology

3.1 Data Description

Let D = {d;}}L, be the legal reference database
comprising M records. Each record d; =
(law_idj, section_id;, textj) is a tuple with
the fields defined below.

law id Canonical short identifier for the leg-
islative instrument (e.g., "36/2024/QH15",
"QCVN 41:2024/BGTVT")

section id Identifier for the unit within the law
(e.g., chapter/article/paragraph id).

text The textual content of a legal unit may include
inline tags of the form «IMAGE img id
\IMAGE» and «TABLE html table \TA-
BLE».

3.2 Task Definitions

The VLSP 2025 MLQA-TSR is composed of two
complementary subtasks.

Subtask 1 - Multimodal Retrieval: Let (¢, I) be
an input of the problem, where ¢ is a question of
natural language and [ is the associated street im-
age. The system shall output a set of reference
passages R C D relevant to (¢, 1).

Subtask 2 - Question Answering: Let (¢, I, R),
‘R C D is the set of reference passages (terms or ar-
ticle excerpts) provided from the regulatory corpus.



A discrete answer y € ) is required. For this task
Y is either the multiple-choice set { A, B, C, D} or
the binary set { Yes, No} depending on the question
type. Example is shown in Figure 1.

Question: Céc loai xe nao dudc phép luu
thong vao doan duong trén trong khoang ti
6:00 dén 22:00?

A. Xe khdch 40 chd.
B. Xe 6 t0 con.
C. Xe dau kéo.
D. O t6 kéo rd modc.

Reference: Diéu 26.1, P.106(a,b) trong
Thong tu 54/2019/TT-BGTVT
Correct answer: B

Figure 1: Vietnamese QA instance

3.3 Zero-shot Multimodal Retrieval

In this section, we design a zero-shot multimodal
retrieval pipeline that connects traffic sign im-
ages with legal documents. As illustrated in Fig-
ure 3.1, the process begins with detecting and fil-
tering traffic signs using LLMDet (Fu et al., 2025),
followed by classification with Qwen2.5-VL (Bai
et al., 2025) to ensure that only valid traffic signs
are retained. Relevant cropped images are then
matched with queries through a hybrid image re-
trieval stage, which combines feature-based simi-
larity (via ViTamin embeddings and cosine simi-
larity in Milvus) (Chen et al., 2024) with targeted
classification for critical sign categories. Finally,
candidate images are linked to legal articles using
Qwen3-Embed (Zhang et al., 2025), which aligns
references across two subsets of the law database
(L1 and L2). This end-to-end approach ensures ro-
bust retrieval and precise alignment between visual
evidence and textual legal knowledge.

3.3.1 Detecting and Filtering Traffic Signs

In this section, the input images are processed us-
ing both a detection model and a vision-language

model (VLM).

First, the images from the database and test set
are passed through the LLMDet models (Fu et al.,
2025) to extract bounding boxes of traffic signs. At
this stage, the prompt ‘sign’ is applied to detect and
extract all signs present in the image. However, this
approach has the drawback that non-traffic signs,
such as advertising signs, may also be detected. To
address this, all cropped candidate images are sub-
sequently passed through the Qwen2.5-VL-32B-
Instruct (Bai et al., 2025) model, which determines
whether each image contains a traffic sign. Specif-
ically, the model is guided by visual and color de-
scriptions of general signs and produces a binary
answer (‘Yes’ or ‘No’) for each case.

3.3.2 Image Selection

In this stage, given the set of cropped images ob-
tained from the previous filtering step, each ques-
tion in the test set is paired with its corresponding
cropped images and passed through the Qwen2.5-
VL-32B-Instruct (Bai et al., 2025) model. The
model is tasked with determining whether each
image is relevant to the question, producing a bi-
nary decision (“Yes” or “No”). In addition, the
model is prompted to provide a textual explana-
tion of its choice. Preliminary experiments indicate
that the requirement of such explanations improves
the accuracy of the model’s decision making, as
the reasoning process encourages a more consis-
tent alignment between the question and visual evi-
dence. Importantly, this step is crucial because our
objective is to identify the subset of cropped images
that are truly pertinent to the question. By retain-
ing only the relevant images, we establish a more
precise input for the subsequent image retrieval
stage, where these filtered images serve as queries
to search for related content within the database.

3.3.3 Image Retrieval

Our method integrates feature-based similarity
search with targeted semantic classification to
achieve both robust retrieval and precise handling
of specific traffic sign categories.

In the first stage, the vitamin large2 224
(Chen et al., 2024) model is applied to extract fea-
ture embeddings from all images in the database as
well as from query images. Cosine similarity be-
tween embeddings is then used to measure visual
closeness, enabling initial retrieval of candidate
matches.

In the second stage, we employ Qwen2.5-32B-
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Figure 3.1: Overview of the zero-shot multimodal retrieval pipeline. The workflow integrates traffic sign detection,
visual filtering, hybrid image retrieval with cosine similarity, and semantic text retrieval to connect traffic sign

images to their corresponding legal articles.

VL (Bai et al., 2025) as a classification module.
Each query image is classified into one of three pre-
defined categories: “No Entry sign,” “Time sign,”
or “Other.” If the query is classified as No Entry
sign or Time sign, we bypass similarity ranking and
directly map the query to its corresponding image
in the database, ensuring deterministic and inter-
pretable matching for these critical categories. If
the query is classified as Other, we retain the cosine
similarity results from the first stage to provide the
best-matching candidate from the database.

This hybrid approach combines the efficiency
of embedding-based retrieval with the reliability of
targeted classification, ensuring both broad gener-
alization and accurate handling of domain-specific
sign categories.

3.3.4 Text Retrieval

For the database images obtained during the Image
Retrieval step, we first searched for articles in the
database that explicitly mention the correspond-
ing image identifiers (e.g. imagel01, image067,
...). The database was divided into two subsets:
L1, consisting of legal articles with numeric iden-
tifiers (e.g., 1,2, ...), and Lo, consisting of articles
with alphanumeric identifiers (e.g., B.2, G.3, ...).

Since image references were only found in Lo, we
restricted the search to this subset. For each can-
didate passage in Ly, we then retrieved the most
semantically relevant article from L; by computing
cosine similarity over embedding vectors gener-
ated by the Qwen3-Embed-8B (Zhang et al., 2025)
model. Finally, we applied a post-processing step
to eliminate duplicate articles, which yielded the
final set of results for Subtask 1.

3.4 Zero-shot Image QA

The Zero-shot Image QA (ZIQA) module is de-
signed to handle passages that contain both textual
and visual information, with the goal of produc-
ing accurate responses to multiple-choice ques-
tions. Since Vision-Language Models (VLMs) are
constrained by limited context length, careful pre-
processing of multimodal inputs is required. In
addition, due to the scarcity of training data, the
system adopts a prompting-based approach rather
than fine-tuning. Beyond the original question and
answer candidates, the organizers also provide re-
trieved textual and visual information, which serve
as supplementary evidence. These retrieved re-
sources, when properly integrated, enhance the
model’s reasoning capability by compensating for



missing context in the original input. An overview
of the entire pipeline is shown in Figure 3.2.

Database

Database

Data Point Data Point Answer
- Text - Text
-nxImage -1 xImage
- Table (HTML) - Table (MD)
/ / Prompting
[ q [ Vision-1
/ N {Context}
Question {Question} Model
[ / {Rule}
J

Figure 3.2: Overview of the proposed ZIQA archi-
tecture. Raw data points containing text, images, and
HTML tables are preprocessed into a unified representa-
tion (text, concatenated images, and Markdown tables).
The processed passage, together with the input question
and handcrafted rules, are composed into prompts for
the Vision-Language Model, which generates the final
answer.

3.4.1 Data Preprocessing

To ensure compatibility with the context length lim-
itations of the VLM, a series of normalization and
compression strategies are applied. An overview
of processes is shown in Appendix A.1.

Image Processing Passages may contain multi-
ple images, which are concatenated into a single
composite image using the PIL library. Before con-
catenation, each image is annotated with a caption
specifying its identifier in the source passage. This
design enables explicit alignment between textual
references and visual inputs, while simultaneously
reducing the number of images passed to the model.
In practice, this mitigates the risk of exceeding the
context budget, as a single image typically accounts
for 2k-3k tokens.

Table Processing Tables represented in HTML are
often verbose and can easily inflate the sequence
length. To address this, tables are converted from
HTML to Markdown. This conversion reduces the
token footprint while retaining the essential struc-
tural information, ensuring that the model can in-
terpret the table in a manner comparable to HTML.

3.4.2 Prompting

Given the limited availability of training data, fine-
tuning is not performed, as it would likely lead to
overfitting and degraded performance. We also
considered data augmentation via synthetic data
generation. However, this approach requires sub-
stantial computational resources for both genera-
tion and verification. Human verification would

incur significant labeling cost, while automatic ver-
ification by models remains unreliable.

Consequently, no model training was performed.
Instead, we directly employed pretrained vision-
language models and relied on carefully designed
prompting strategies to guide the models in solv-
ing the tasks. The prompt is structured to include
three key elements: (i) the passage context, (ii) the
multiple-choice question, and (iii) explicit output
formatting rules. This design allows the model
to directly generate answers in the desired format,
which can then be mapped to the correct choice in
the multiple-choice setting, without requiring any
additional training.

3.4.3 Model Selection

We adopt Qwen2.5-VL (Bai et al., 2025) and In-
ternVL3 (Zhu et al., 2025) as backbone models
due to their leading performance across multimodal
benchmarks.

Qwen2.5-VL-72B is the flagship model in the
Qwen-VL series. It achieves top-tier results on stan-
dard multimodal benchmarks such as MVBench,
PerceptionTest, Video-MME, and LVBench—e.g.,
scoring 70.4 on MVBench and 73.2 on Percep-
tionTest—surpassing its predecessor Qwen2-VL
(Wang et al., 2024), Video-LLaVA (Lin et al,,
2023) and GPT-40 (Hurst et al., 2024).

InternVL3-78B is another leading open-source
multimodal model, scoring 72.2 on the MMMU
benchmark (Yue et al., 2024). It also excels in long-
context and domain-specific tasks, demonstrating
competitive performance with models like GPT-
40 and Gemini-2.5 Pro.

Given the superior performance of larger models
on diverse multimodal tasks, we prioritize high-
capacity architectures in our pipeline.

4 Experiments

4.1 Dataset

The dataset is constructed from two authoritative
legal sources: (i) the National Technical Regulation
on Road Signs (QCVN 41:2024/BGTVT), and (ii)
the Law on Road Traffic Order and Safety (No.
36/2024/QH15). These documents contain multi-
modal content, including textual passages, regula-
tory tables, and illustrative traffic signs.

The dataset is divided into 530 training samples,
50 public test samples, and 146 private test sam-
ples. Each sample contains multiple relevant legal
articles, and may additionally include images (e.g.,



traffic signs) and/or tables (e.g., regulatory spec-
ifications). The task is framed as multiple-choice
question answering, where the model must align
textual and visual evidence with the appropriate
legal provisions.

4.2 Evaluation Metrics

Subtask 1: Multimodal Retrieval. This subtask is
evaluated using the F2 score, which places higher
weight on recall. For each sample, precision and
recall are defined as:

#correctly retrieved articles

precision = - :
#retrieved articles

#correctly retrieved articles
recall =

#trelevant articles

The F2 score is then computed as:

[ 5 - precision - recall
2™ 4 precision + recall’

The final score is obtained by averaging the F2
values across all samples.
Subtask 2: Question Answering. This subtask is
evaluated using accuracy, defined as the proportion
of correctly answered questions:

#correct answers
Accuracy =

#total questions

4.3 Implementation Details

Zero-shot Multimodal Retrieval We employed
production-level inference frameworks to ensure ef-
ficient multimodal retrieval. Specifically, LLmDet
was utilized to detect traffic signs as the first-stage
filtering mechanism. For visual-language under-
standing, Qwen2.5-VL-32B was deployed through
the vLLM framework to leverage efficient batching
and optimized inference. For the image retrieval
component, vitamin large2 224 was adopted,
integrated with the Milvus vector database to en-
able scalable nearest-neighbor search. Finally, for
text retrieval, we employed Qwen3-Embed-8B as
the embedding backbone to support robust seman-
tic alignment across modalities.

Zero-shot Image QA We employed production-
level inference frameworks, namely vLLM and
Imdeploy, in order to leverage efficient batch-
ing and kernel-level optimizations. Preliminary
experiments with vLLM on InternVL3 did not
yield satisfactory performance; hence, Imdeploy
was adopted for the subsequent experiments with
Qwen2.5-VL and InternVL3 models.

To encourage consistent yet informative re-
sponses in the sampling regime, we adopted the fol-
lowing generation configuration: temperature =
0.3 and top_p = 0.95. All inference experiments
were conducted on a computing cluster equipped
with 8 X NVIDIA A100 40GB GPUs.

4.4 Results
4.4.1 Multimodal Retrieval

We evaluated the proposed multimodal retrieval
pipeline on both the public test set and the pri-
vate test set. The results are reported in Ta-
ble 1. On the public test, the system achieved
strong performance, demonstrating the effective-
ness of integrating LLMDet, Qwen2.5-VL-32B, vi-
tamin large2 224, and Qwen3-Embed-8B. No-
tably, on the private test, the pipeline maintained
consistent accuracy, highlighting the robustness
and generalization capability of the proposed ap-
proach.

Table 1: Performance of retrieval pipeline on the public
and private test set.

Dataset F2
public test | 54
private test | 58

4.4.2 Question Answering

Public test We evaluated four large-scale models:
Qwen2.5-VL-32/72B, and InternVL3-38/78B.
Table 2 reports the results on the public test set.
Among the baselines, InternVL3-78B achieved
the highest accuracy (82%). With the proposed
zero-shot prompting strategy (ZIQA), the per-
formance of InternVL3-78B further improved to
84%.

Table 2: Performance of different backbones on the
public test set.

Backbone Accuracy (%)
Qwen2.5-VL-32B 64
InternVL3-38B 72
Qwen2.5-VL-72B 78
InternVL3-78B 82
InternVL3-78B (ZIQA) 84

Private test We observed that the private test set
is substantially more diverse and challenging com-
pared to the public test set, which contains only 50
questions with relatively limited variability. The



discrepancy between the two distributions, com-
bined with the restriction on the number of submis-
sions, posed significant difficulties for optimizing
models without fine-tuning.

Furthermore, we found that providing the model
with reference article content occasionally in-
troduced confusion, as the additional information
could distract from the actual reasoning process.
To mitigate this, we incorporated a set of rules into
the prompt design, which improved the model’s
ability to focus on the essential context and pro-
duce more reliable answers called ZIQA+. The
detailed rules and prompt examples are provided
in Appendix A.2 and A.3. The final results on the
private test set are summarized in Table 3.

Table 3: Private Test Accuracy of Different Systems on
the Leaderboard.

Team Name Accuracy (%)
ZIQA+ 83.56
ZIQA 81.5
InternVL-78B (w/ Image Processing) 79.45
InternVL-78B (w/ Table Processing) 78.76

4.5 Analysis

Preprocessing The two single-component abla-
tions on the InternVL backbone give 79.45% (w/
Image Processing) and 78.76% (w/ Table Process-
ing). Intuitively, this reflects the task characteris-
tics: compact preprocessing of tables and images
produces a denser, less noisy context, which im-
proves the model’s ability to interpret visual cues
such as shape, color, and temporality and to align
them with the relevant regulatory text.

Prompting ZIQA attains 81.50% while ZIQA+
reaches 83.56%, an absolute improvement of 2.06
percentage points. This shows that, under a strict
zero-shot regime, small but targeted constraints
in the prompt can substantially reduce distractors
from retrieved passages and steer the VLM to the
legally-relevant interpretation of signs and phrases.
Failure-case analysis The example in Ap-
pendix A.4 shows an undercount caused by a dis-
tant, small-scale car being missed by the detector
and thus omitted from the final reasoning pipeline.
This is likely due to scale/resolution sensitivity or
dataset bias against small instances. Short-term
mitigations include multi-scale or sliding-window
inference, modestly lowering detection thresholds,
and adding automatic crop-and-zoom thumbnails
(provided to the VLM) to force attention to small

objects. Besides multi-scale inference and crop-
and-zoom strategies, an alternative remedy is fine-
tuning the vision backbone on traffic-specific data
so the model learns to attend to small objects like
distant cars. This targeted adaptation can improve
robustness in real-world scenarios where vehicles
often appear on varying scales.

5 Conclusion

We presented a training-free, retrieval-enhanced
paradigm for traffic image question answering,
centered on the Zero-shot Image QA (ZIQA)
pipeline. By combining careful multimodal pre-
processing, a hybrid retrieval stage that fuses
visual embeddings with targeted classification,
and prompt-engineered zero-shot reasoning, our
system attains strong empirical performance on
the VLSP MLQA-TSR benchmark—most notably
InternVL3-78B (ZIQA+) achieving 83.56% on
the private test split. These results demonstrate
that, with appropriate retrieval and prompt design,
high-capacity vision—language models can deliver
competitive results without dataset-specific fine-
tuning.

Beyond raw accuracy, our approach emphasizes
practicality: (i) preprocessing (concatenation and
Markdown conversion) reduces multimodal noise
and context bloat; (ii) deterministic handling of
critical sign categories improves interpretability;
and (iii) a lightweight, prompt-first philosophy re-
duces development and labeling cost. Together
these design choices offer a reproducible base-
line for training-free multimodal QA in regulated,
image-rich domains.

We acknowledge that the training-free design en-
tails trade-offs. In particular, domain adaptation
and fine-grained multi-step reasoning remain chal-
lenging under strict zero-shot constraints. Like-
wise, processing whole passages can introduce re-
dundant context that dilutes model focus. Looking
forward, we expect meaningful gains from hybrid
directions such as few-shot prompting or compact
fine-tuning, incorporation of reranking/chunking
to prioritize the most relevant text spans, and ef-
ficiency engineering to make the pipeline more
suitable for real-time or large-scale deployment.

In sum, ZIQA provides a pragmatic, extensible
blueprint for retrieval-augmented, zero-shot mul-
timodal QA. We hope this work serves both as a
strong baseline for competitive benchmarks and
as a practical reference for applied systems that



must reconcile limited labeled data with demand-
ing, domain-specific multimodal reasoning.

Limitations

While the proposed ZIQA framework demonstrates
the feasibility of addressing traffic-related image
question answering in a training-free manner, two
limitations remain noteworthy. First, the system
has yet to fully adapt to domain-specific nuances.
The scarcity of annotated data in the traffic domain
motivates our zero-shot design; however, future
work could benefit from more data-efficient strate-
gies such as few-shot prompting or lightweight
fine-tuning to enhance domain alignment. Sec-
ond, our current approach processes entire retrieved
passages as context, which may introduce redun-
dancy and dilute the model’s focus. A more re-
fined pipeline, for instance incorporating reranking
mechanisms to prioritize only the most relevant
chunks, could mitigate this issue and further im-
prove answer accuracy.
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A Appendix



Before Processing

After Processing

Raw context
Passages may contain multiple images, each
separate.
...- Bién c6 nén mau xanh lam, vién mau trang
v6i cac duong 6t6 khac.

4 N

PHL LG

Ghi chu: Kich thudc ghi trén hinh vé la cm
Hinh I.1 - Cot kilomét dang cot thip
- =

CoHm [ ]
i )

Ghi chu: Kich thudc ghi trén hinh vé la mm
Hinh 1.2 - C6t kilomét dang cdt cao

Processed Context
Images concatenated into a single composite
using PIL, annotated with identifiers.
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...- Bién ¢6 nén mau xanh lam, vién mau
trang véi cac dudng 6td khac.

<Image Caption: image666.jpg>

Ghi chu: Kich thudc ghi trén hinh vé 1a cm
Hinh 1.1 - Cot kilomét dang cot thip

<Image Caption: image668.jpg>

Ghi chu: Kich thudc ghi trén hinh v€ 1a mm
Hinh 1.2 - Cot kilomét dang cdt cao

Table Processing (Before)
Tables in verbose HTML format, inflating
sequence length.

Bang cac gia tri kich thuée trén Hinh 1.3
bon vi: mm
«TABLE:

<table border=\"0\" cellpadding=\"0\"
cellspacing=\"0\" class=\"MsoNormalTable\"
style=\"width:100.0%;border -collapse:
collapse ;mso-padding - alt :0cm_Ocm_0Ocm_Ocm\ "
width=\"100%\"> ...

</table>

JTABLE»

Table Processing (After)
Converted to Markdown, reducing token
footprint while retaining structure.

Bang cac gia tri kich thuée trén Hinh 1.3
Pon vi: mm

«TABLE:

Ky hitcul AIBICIDIEIFIGIHITI

| Gid tri kich thuéc (mm) 13001600 112190 |
1001701250190 140 |
JTABLE»

Figure A.1: Overview of Image and Table Processing Pipelines



ZIQA+ prompting strategy

System Prompt: Ban 12 mot trg 1y 4o c6 kha ning nhan dién bién bdo va hiu biét luat
vé dudng bd Viét Nam.

User Prompt:

Dudi ddy la mot doan thong tin trong database:

{concatenated_law }

Suy lun va trd ra dap 4n cubi cling véi cum tii: Pdp 4n cubi ciing: A, B, C, D... - chi
dudc chon mdt dap an.

Mot sb thong tin can Iuu y khi tra 10i.
{RULE_ADDED}
Néu cau hoi khong lién quan dén thong tin nay thi c6 thé bd qua.

-

Figure A.2: Prompt templates used in our framework. ZIQA employs the base prompt (black text) without any
additional rules. ZIQA+ extends this template by incorporating supplementary rules (highlighted in red) to improve
performance under a zero-shot setting.

RULE_ADDED

- Bién bdo hinh tron, vién do, nén xanh c6 mot gach chéo 12 bién cAm dd xe. Cam dd xe
thi xe dugc phép dung tra khach.

- Bién bdo cAm dd ngay chin, cic phuong tién khong dudc db vao ngay chin trong thiang
(ngay 2, 4, 6,...) tuong tu nhu bién cAm dd ngay 18(bién c6 chit I mau tring, gach do
chéo) (ngay 1, 3, 5,..).

- Bién cAm c6 hinh: hai 6 to6 mau dd/den canh nhau - hiéu luc cAm tit ca cdc loai xe co
gidi vuot nhau (k€ ca xe dudc uu tién theo quy dinh) nhung dudc phép vuot xe may 2
banh, xe gin may.

Figure A.3: Supplementary rules incorporated into the ZIQA+ prompting strategy. These rules provide explicit
constraints for handling traffic sign interpretation and vehicle regulations, helping the model generate more accurate
and context-aware answers.



private_test_135

Input: Duéi diy la mot doan thong tin trong database

a) D€ bao dudng cim céc loai xe cd gidi ké ca xe mdy 3 banh c6 thung di qua, trif xe
mdy 2 banh, xe gin mdy va cic xe dudc uu tién theo quy dinh, dit bién s6 P.103a “Cim

xe 0t0” Néu duong cAm vi ly do dudng, ciu bi yéu, c6 thé dit hang rao chian hay chudng
ngai vat trong phan dudng xe chay.

®® 0

a)Bidnsd P.103a b) Bidn 36 P.103b ) Bidnsd P.103c

Hinh B.3 - Bién sé P.103

Trong hinh trén c6 bao nhiéu phuong tién xe 6 t6 tham gia giao thong vi pham luat giao
thong dudng bo?
Al

oQw
AW

Output: Trong hinh trén, c6 mot bién bao cAm xe 6 t6 (bién s6 P.103a). C6 mot chiée
6 td dang di trén dudng, vi pham bién bdo cAm nay. Cac phuong tién khac nhu xe may
khong vi pham vi bién bdo chi cAm xe 6 t6. Pap 4n cudi ciing 1a A.

Figure A .4: Failure case: the image contains two cars but the model detected only the nearer vehicle; the distant car
is much smaller and was missed, resulting in an incorrect prediction (A — 1).
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